
Universität Karlsruhe (TH)
Institut für

Betriebs- und Dialogsysteme

Lehrstuhl Systemarchitektur

Transparent, Thermal Balancing of Virtual
Machines in Multicore Systems

Christoph Klee

Studienarbeit

Verantwortlicher Betreuer: Prof. Dr. Frank Bellosa
Betreuende Mitarbeiter: Dipl.-Inform. Jan Stöß
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Abstract

Multicore architectures are employed more and more in todays system. A main
task of current operating systems is to equalize the load of each CPU’s core, it is ac-
complished by the migration policy of an operating system. Nevertheless, the migra-
tion policy of an operating system is mostly entangled in thekernel. Thus, migration
policies of guest kernels running within virtual machines may contradict each other.
Therefore, virtualization must break up applied policies from guest operating systems.

A virtual machine monitor allows to perform migrations independently of a guest.
Thus, a virtual machine monitor can apply its own migration policy in order to fulfill
system-wide requirements.

This thesis considers to load balance the power consumptionof the cores of a CPU
to decrease the overall emitted temperature as well as to reduce the system’s power
consumption. Therefore, our thermal balancing policy exchanges a virtual CPU with
one consuming less power.

In order to determine a virtual CPU’s power consumption, an energy accounting
mechanism accounts each core’s power consumption that can be assigned to a virtual
CPU. To predict a virtual CPU’s power consumption successfully for the next period,
it is necessary that it does not change significantly. Thus, acore’s power consumption
is accounted and a virtual CPU is migrated very frequently.

Experimental results show that the overhead caused by migrating a virtual CPU up
to a thousand times per second is acceptable but not negligible.
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Chapter 1

Introduction

Most of todays operating systems (OSes) are supporting the new multicore architec-
tures, which have been launched in the last two years. To equally utilize a central
processing unit’s (CPU’s) cores, threads have to be migrated between them by the
OS. Although some OSes are supporting different schedulingpolicies, their migration
policy is mostly entangled in their kernel. This prohibits to apply different migration
policies.

Virtualization of a physical machine allows to run guest OSes isolated from each
other on top of a smallvirtual machine monitor(VMM). Furthermore, it guarantees
that the virtual machine itself and the underlying system orhardware are not effected
of a guest system’s crash. For this purpose, a VMM abstracts the hardware allowing a
guest OS to run on top of one or more virtual CPUs. Thereby, more than one virtual
CPU can be mapped to a physical one. Additionally, the physical CPUs can be shared
among the virtual machines. This permits to achieve a betterutilization of each core
and balance their load.

Due to a VMM’s introduced hardware abstraction, it is difficult for guest OSes to
apply appropriate power management policies for their assigned resources, in particular
for a virtual CPU. Additionally, the isolation of the guest systems causes that a guest
system has merely a local system view. Especially, if guest OSes want to apply their
policies to improve the system’s performance or reduce their power consumption, the
policies of the different guest OSes can contradict each other. This can result in an even
worse performance than without their policies. As a consequence, virtualization has to
break up the applied policies from guest OSes by applying an own VMM policy.

This thesis proposes a thermal balancing policy. It balances a CPU’s power con-
sumption among the cores of a CPU to reduce the system-wide power consumption and
decrease the overall emitted temperature. Since a virtual CPU executing on top of a
core causes mainly a core’s power consumption and not the VMMitself, exchanging a
virtual CPU with one consuming less power allows to distribute the power consumption
among the cores.

Instead of migrating a thread that executes a virtual CPU from one core to another,
our proposed migration mechanism merely exchanges the virtual CPU contexts of the
involved threads. Since our thermal balancing policy exchanges the virtual CPU caus-
ing the highest power consumption with the one causing the lowest, only two threads
are involved. The same applies for the remaining threads executing a virtual CPU.

In order to determine a virtual CPUs power consumption our policy demands an
energy accounting mechanism that allows to assign a core’s power consumption to a
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virtual CPU. A virtual CPU’s power consumption can change significantly during a
few timeslices, because executed guest applications causea changing power consump-
tion. Nevertheless, our policy needs to predict a virtual CPU’s power consumption to
balance the power consumption among the cores. Therefore, avirtual CPU’s power
consumption is accounted more frequently than a guest OS schedules its threads. This
permits to react quickly to a changing power consumption by an appropriate migration
and to predict a virtual CPU’s power consumption for the nextaccounting period more
successfully. Furthermore, a short accounting period and frequent migrations reduce
the impact of a mispredicted power consumption.

This thesis is structured as followed: chapter two gives a short review of power
management, migration and the old and new scheduling approach in L4. In addition
to that, it introduces the L4Ka virtualization environment. In chapter three, related
work about energy accounting and energy-aware load balancing is presented. The de-
sign in chapter four considers our thermal balancing policyand its demanded energy
accounting and migration mechanisms. Chapter five addresses implementation details
to realize the design on top of L4. Finally, chapter six presents selected evaluation
results.



Chapter 2

Background

This chapter gives a brief introduction of power managementas well as migration.
Afterwards, we present the old scheduling approach of L4. This has been replaced with
a user-controlled scheduling approach. It allows to schedule threads without kernel
interference. Finally, we explain the L4Ka virtualizationenvironment. On top of this
environment, we have implemented and evaluated the proposed design of chapter four.

2.1 Power Management

Today, power management of CPUs is becoming more and more important, this con-
cerns not only users of mobile devices as laptops, but also computing centers. Users
of mobile devices are expecting a long uptime of their devices without recharging bat-
teries. Power management can increase this uptime especially by reducing the power
consumption of its CPUs, e.g. by frequency and voltage scaling. Since a CPU may not
reach a critical temperature, it has to be cooled down by an active air- or liquid-cooled
heat sink to avoid its overheating. This heat sink is spending more power as higher
the temperature of the cooled CPU is. By lessen the power consumption of the CPU,
the power consumption of the heat sink can be reduced as well;in the best case also
avoided.

Computing centers try to reduce their cooling costs by powermanagement. If their
applied power management policies achieve to reduce the power consumption of their
servers, the hardware is less heated, they might scale down their computer room air
conditioner and reduce the floor space for their hardware. Especially the cooling costs
and the power consumed for cooling a computing center are becoming a major problem
on the background of higher prices for power and emissions resulting from producing
this power.

The next section discusses why migration is necessary and its impacts for power
management.

2.2 Migration

Multi- and many-core architectures are becoming popular, they allow to run threads in
parallel. To be able to run a thread on another core than its initial one, a thread has to
be migrated from one core to another. The main purpose of migration is to keep the
length of the runqueues of all cores more or less equal; this is calledload balancing.
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From the perspective of load balancing it will be important to migrate threads be-
tween different cores as infrequent as possible if each corehas a distinct cache. A
cache allows a core to access memory data with a lower latencythan a memory ac-
cess lasts. Normally, an application only requires to access a few memory data objects
during a point of time; it is called an application’s workingset. If this working set is
small-sized, it is possible to store it in a core’s cache. Thecore to which an application
is migrated to, may not contain the working set of the application. In that case, it is
required to load these memory objects before they can be accessed. To ensure later on
a low latency access they are stored in the core’s cache.

Therefore, a thread would not be migrated from one core to another in an core
system, if onlyn−1 or less threads are runnable and each of these threads is running on
its own core. Consequently, one or more cores are idle all thetime. Power management
can take advantage of this situation. By accepting to load a core’s cache, a CPU’s
temperature and its power consumption can be decreased by migrating a running thread
to a cold idle core. This allows to heat up cores more evenly. Nevertheless, it might also
be useful to migrate load between two non-idle cores, if their workloads are resulting
in different temperatures of a core.

2.3 Scheduling in L4

The older versions of the L4µ-kernel have vectored out any interrupt, except for the
timer interrupt. Therefore, L4 was responsible for scheduling its runnable threads and
waking up threads, if they requested it. Since the scheduling decisions were made by
the round-robinµ-kernel scheduler; they were intransparent for user-levelthreads.

Especially guest threads of a virtual machine and the performance of virtual ma-
chines suffered from this fixed scheduling policy. Because guest threads were sched-
uled independently of Linux by L4, threads were allowed to run, which had blocked in
Linux, as long as they had not blocked in L4 as well. This resulted in a performance
degradation of up to 86% as shown in [9].

In the next section we introduce our new user-controlled scheduling mechanism.

2.4 User-Controlled Scheduling on Top of L4

In order to prevent a performance degradation of a guest system due to an entangled
scheduling policy in L4, it is necessary to permit user-level threads to schedule them-
selves. Therefore, a recent prototype of the L4µ-kernel does not perform any schedul-
ing anymore. To allow a user-level thread to schedule another thread, the timer interrupt
must be handled by a scheduler as well. Since only one thread can be assigned as a
timer interrupt handler per CPU, the root scheduler of a CPU handles timer interrupts.
This root scheduler schedules the remaining user-threads that are assigned to its CPU.

A user-level scheduling implies that the kernel can not longer wake up threads,
since it requires a scheduling decision by the kernel. This is contradicting a user-level
scheduling approach, therefore one can only specifyzero or never as a timeout for
an interprocess communication (IPC). Given that the kerneldoes not longer dispatch
threads, only one thread may be runnable per processor. The remaining threats are
preempted and waiting for an IPC and time donation respectively.
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2.5 L4Ka Virtualization Environment

Our design outlined in chapter four has been integrated intothe L4Ka virtualization
environment [1]. The environment is composed of four different modules: a hypervi-
sor, a resource monitor, an in-place virtual machine monitor and a pre-virtualized guest
OS [6]. The hypervisor is a recent prototype of the L4µ-kernel, which supports SMP
for x86. The resource monitor interacts with theµ-kernel to manage all HW resources
as well as handling all interrupts, including the timer interrupt. Therefore, the L4Ka
resource monitor is privileged to execute the privileged system calls of L4. The third
module is the virtual machine monitor, which is called the afterburn wedge. It consists
of two parts: an IA32 front-end and a L4 specific back-end. These two latter modules
implement the virtualization services. The last module is apre-virtualized Linux 2.6.9
kernel in which the afterburn wedge resides. This allows to execute most virtualiza-
tion services in-place, avoiding expensive address space switches. Nevertheless, some
services are requiring extended privileges, so that their in-place parts have to call their
external parts, which are residing in the resource monitor,to fulfill them.

Per virtual processor, one afterburn wedge is running, thereby all wedges reside in
the same address space. It consists of two threads, the monitor and a main thread. The
main thread executes the code of the guest kernel and the monitor thread is responsible
for resource management and scheduling the main thread.

Consequently, the L4Ka Virtualization Environment has a four level scheduling
hierarchy. On top are the timer interrupt handlers, at the second level the monitor
threads, followed by the main and guest kernel threads respectively and the guest user
threads at the lowest level.



Chapter 3

Related Work

In the first half of this chapter, we present an energy accounting approach. It permits to
predict the power consumption and temperature of a CPU by evaluating a CPU’s per-
formance counters. The second half considers different energy-aware load balancing
policies, which try to reduce a CPU’s temperature and increase its throughput.

3.1 Energy Accounting

One of the most important problems of today’s microprocessors is their power con-
sumption and temperature. To predict a CPU’s power consumption as well as tempera-
tureenergy profileswere introduced by Merkel & Bellosa [7]. They permit to estimate
the power consumption of a task caused during one timeslice.

A task lifetime is divided in various phases of execution, which can be distinguished
by varying power consumptions. Within such a phase the powerconsumption is more
or less static, so that the last power consumption during thelast timeslice can be used
as a prediction for the next time the task becomes runnable again. Nevertheless, it is
possible that the power consumption of a task changes significantly from one timeslice
to another. This is due to a phase change of a task. How long such a phase lasts is
defined by the input data, the actual executing algorithm and, additionally, by other
running tasks, because they are causing unpredictable caching and paging effects.

Nonetheless, this phase changes occur rarely. As long as a substantial various
power consumption lasts simply a few timeslices is not reflected by a noticeable tem-
perature change because of a heat sink’s thermal capacitance. It can merely be recog-
nized by a changed power consumption.

To reflect not only the last timeslice, an energy profile can also account the en-
ergy spent during the timeslices before. Thus, short term changes of power consump-
tion have not a big impact on a task’s energy profile, whereas considerable long term
changes are resulting in a changed energy profile.

At next, we discuss different energy-aware load balancing policies, whereas two
policies are based on energy profiles.

3.2 Energy-aware Load Balancing

Observations by Powell, Gomaa & Vijaykumar [4] have revealed that the cooling time a
core needs, after one of a core’s essential resources has reached its critical temperature,
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does not depend considerably on the number of resources thathave to be cooled down.
Therefore, the authors propose to heat up uniformly all resources of a core, to later
cool them all together down. This approach is calledHeat-and-Run. Nevertheless, one
has to consider that a CPU’s scheduling units are in use independent from the executed
instruction, since every instruction has to be processed bya pipeline. Consequently,
scheduling units are often the hottest ones on a chip [5].

In contrast to integer instructions that heat up merely integer units, floating point
instructions equally use chip resources. To react in an appropriate way to this various
resource utilization, it is important to monitor the power consumption not in a coarse
grained manner. This means – in the field of multicore processors – not to measure
only the complete processor but each core. Otherwise it is not be possible to throttle
merely overheated cores, but one has to throttle all cores, which results in unnecessary
throughput degradation.

In particular, each core of a Pentium D is provided with 18 performance counters,
which can be used for monitoring each core’s power consumption [3]. An accounted
performance counter event is not directly related to its power consumption [2]. By
multiplying a performance counter value with a weight, one obtains the energy con-
sumption of the accounted event [3]. In addition to performance counters, temperature
sensors are used by Lee & Skadron [5] for theirHeat-and-Runapproach. Their val-
ues allow to determine whether a core is overheated or not. Ifit is overheated, tasks
will be migrated away from the overheated core to a colder one. Since migration is an
expensive operation, it should happen as infrequently as possible.

Thehot task migrationis a similar approach [7]. It is not the aim to heat up a CPU
to its critical temperature, but to migrate a task of a hot CPUto an evident cooler CPU,
if the temperature difference between both has reached a defined threshold. To prevent
a load imbalance the task of the cold CPU has to be migrated back. If the cold CPU
is idle, a hot task can be migrated. In the case that the hot task could not be migrated,
though, the CPU has to be throttled, which results in a throughput degradation. The
characterization, whether a task is hot or cold, is determined by the energy profile
explained in the previous section, which is only based on performance counter values.
The same accounts for a CPU’s temperature estimation. Its temperature estimation is
based on a thermal model. Its input data are performance counter values.

The major drawback why a thermal diode is not even used for measuring whether
the critical temperature of a CPU has been reached, is that reading a thermal diode
implies significant overhead. It tasks 5.5ms on a Pentium 4 [3].

To prevent throttling a CPU when applying the hot task migration, Merkel & Bel-
losa propose theenergy balancingtechnique [7]. If a remote CPU’s temperature is
hotter than the local one and the tasks of the remote run-queue are exhausting more
power than of the local one, tasks will be swapped. Cold tasksof the local run-queue
will be exchanged with hot ones of the remote run-queue. The characterization which
of the run-queues exhausts more power or is hotter, depends on the tasks’ energy pro-
files belonging to the same run-queue. In the same manner as the energy profile, the
estimation of a CPU’s temperature is only based on performance counters. Tasks are
exchanged between the run-queues to achieve an energy balancing without leading to
a load imbalance.

In the next chapter we outline our thermal balancing policy to balance the cores’
power consumptions. It is based on Merkel’s & Bellosa’s proposed energy balancing
and hot task migration policies.



Chapter 4

Design

Todays operating systems migrate threads between distinctcores of a CPU to increase
the system’s throughput. They achieve this by keeping the length of the run-queues of
the processors balanced. Balanced run-queues will guarantee an even turn-around time
of each thread. This is ensured by a migration policy that is mostly entangled in an
OS’s kernel.

An entangled migration policy forbids a virtual machine monitor (VMM) to apply
its own migration policy to fulfill system-wide requirements, since it cannot influence
a guest’s migration policy. Furthermore, a guest system hasonly a local system view,
which forbids that a guest systemA performs a successful thermal balancing migration
policy, since a guestB’s migration policy can contradictA’s.

Therefore, a VMM must perform the migration on its own. Instead of migrating
only a guest user thread from one virtual CPU (vCPU) to another one, it executes a
vCPU on top of another physical CPU (pCPU). This allows exchanging a vCPU with
one consuming less power to apply a thermal balancing policy. Its purpose is to reduce
the system-wide power consumption and decrease the overallemitted temperature.

At first, this chapter introduces the structure of the architecture required for our
proposed thermal balancing policy. Then we discuss, why it is required to load balance
the power consumptions of the cores of a CPU. A core’s power consumption is caused
by a vCPU that is introduced afterwards. Applying our policyrequires an energy ac-
counting mechanism. This mechanism is outlined, before thethermal balancing policy
is considered. At last, we introduce our migration mechanism to migrate a vCPU as
required by the proposed policy.

4.1 Architecture

Virtual machines allow to execute guest operating systems in parallel. To multiplex
the hardware between different guest OSes, a virtual machine has to abstract the bare
hardware. Obviously, the most important resource to be virtualized is a CPU.

A virtual machine monitor (VMM), as shown inFigure 4.1, consists of threads
executing within distinct virtual CPU contexts. These threads can either execute VMM
or guest system code.

For this design, we assume that per virtual CPU offered to a guest system a vCPU
thread executes within a VMM. Although a vCPU thread executes VMM and guest
system code, it is not allowed to execute privileged instructions at all. Therefore, the
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Hardware

vCPUn

vCPUi

vCPU0

VMM

Figure 4.1: Structure of a virtual machine monitor

guest system must call the correlating VMM function of a privileged instruction; these
calls are namedhypercalls. Furthermore, a vCPU thread has to be able to notify another
vCPU thread about outstanding events.

4.2 Problem Description & Analysis

A guest system tries to increase its throughput by migratingthreads between its virtual
CPUs without considering that a hot core needs to be throttled down. This throttling
costs system performance and should therefore be avoided.

If a guest system considers not to overheat its virtual CPU, the core executing the
virtual CPU’s thread may overheat, because other guest systems also account for a
core’s power consumption and temperature. Due to the isolation of guest systems, a
guest system can only consider its local contribution, but not the global contribution
caused by all running guest systems.

A VMM does not suffer from a local system view like a guest system does. There-
fore, it can prevent to overheat a core by an appropriate migration policy as long as not
all cores of a system are overheated and hot respectively.

To balance the power consumption and temperatures of all cores of a CPU, a migra-
tion policy must know the temperature and power consumptionof each core to make
right migration decisions. Since a core’s temperature changes too slowly and the res-
olution of a thermal diode is too low, an estimation of a core’s power consumption is
required. This estimation can be made by using an energy model for a core. From
the core’s performance counters it allows to derive the core’s power consumption and
temperature.

The estimation allows a VMM’s migration policy not only to account the power
consumption of a core, but also of the vCPU currently runningon top of it. Conse-
quently, one can distinguish between hot and cold cores as well as between hot and
cold vCPUs.

Since a vCPU executes different guest applications with different energy profiles,
a vCPU’s power consumption may change significantly during afew timeslices. This
makes it impossible to predict successfully a vCPU’s power consumption for the next
time period. Therefore, it is necessary to account a vCPU’s power consumption very
frequently to be able to migrate a vCPU more often than a guestschedules its threads.

Achieving that all cores of a CPU consume approximately the same amount of
energy demands to exchange hot with cold vCPUs. Thereby, themigration policy
has not only to consider the vCPU’s current power consumption, but also the core’s
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power consumption it is running on over a longer period of time. The core’s power
consumption is required, since it includes the contributions of the remaining guest
systems. Without their contribution a VMM’s migration policy has only a local view
of its guest system.

In addition to the in4.4 outlined energy accounting approach, a migration mech-
anism is required to exchange hot with cold vCPUs. This is accomplished by our
proposed migration policy described in section4.5. As explained before, the migra-
tion has to happen very frequently to assure that the predicted power consumption of a
vCPU will also be caused by it in the most cases.

In contrast to the migration of a vCPU thread including its vCPU context to another
core, our migration mechanism described in4.6dynamically exchanges the context of
a vCPU. Thus, a vCPU thread can execute another vCPU. This requires that the threads
exchanging their vCPU contexts cooperate with each other. For this purpose, they have
to pass by a common synchronization path to exchange their vCPU contexts, since a
context will only reflect the current guest system’s state ifits thread executes VMM
code. Due to the fact that our policy swaps a hot with a cold vCPU, merely two vCPU
threads need to interact to exchange their vCPUs.

Before we discuss our thermal balancing policy and its required energy accounting
and migration mechanisms, we outline the demands for a vCPU migration.

4.3 Virtual CPU

On top of virtual CPUs a guest system executes. Each virtual CPU is a memory object
abstracting a physical CPU. A virtual CPU is reflecting the execution state of the guest
system thread currently running on top of it. The execution state of a vCPU can simply
be an instruction pointer, but it can even be a complete register frame.

Per virtual CPU that is offered to a guest system one virtual CPU thread exists. A
virtual CPU thread runs within the context of a virtual CPU. This allows a vCPU thread
to execute VMM code as well as guest code. As long as a vCPU thread executes guest
system code, the data of a virtual CPU object will be invalid,since the guest system’s
execution state will be synchronized at first if the vCPU thread executes VMM code.
A guest system’s execution state allows a guest to proceed within the context defined
by the execution state.

Due to the fact that a virtual CPU thread is assigned to a specific physical CPU,
a virtual CPU is mapped to a pCPU. Therefore, it is possible that a few of its data
structures relate to the physical CPU it is running on, e.g.,the physical CPU id. In
case a vCPU contains pCPU dependent objects, it is not possible to migrate a virtual
CPU to a different physical one without any changes. If a vCPUcontains no pCPU
dependent data, a virtual CPU migration will only require toreplace a vCPU object
and its associated context of a vCPU thread with another one,thus a vCPU thread will
execute afterwards in a different virtual CPU context.

Since a vCPU may only be executed by one vCPU thread, a migration of a vCPU
requires a re-migration of another one. Besides, the vCPU threads would execute con-
currently within the same vCPU context. As a consequence, a vCPU thread must be
responsible for exactly one virtual CPU over its lifetime, but the vCPU does not neces-
sarily have to be the same.

To be able to perform a vCPU migration, a vCPU object has to be split up into two
parts: a physical CPU dependent and an independent part. In this way it is possible to
migrate only the physical CPU independent part of a virtual CPU.
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4.4 Energy Accounting

Applying a thermal balancing policy requires assigning to avCPU its power consump-
tion and temperature. Accounting a vCPU’s power consumption and temperature ne-
cessitates performance counters and a core’s energy model.

By evaluating selected events that can be accounted for, a vCPU’s power consump-
tion can be estimated. To suggest an accounted event’s powerconsumption, an energy
model must weight a performance counter value. Each core’s power consumption dur-
ing the last accounting period is provided to the VMM’s policy. To avoid that the
policy has only a local system view, each core’s power consumption that has been ac-
counted during a longer period is provided additionally. Itincludes the contribution of
the remaining guest systems.

Depending on the required performance counters for an energy model, it is possible
to read the counters sequentially, instead of explicitly. If not all performance counters
are required, it will be unnecessary overhead to read each performance counter. Instead,
only the activated performance counters need to be read. They are activated by distinct
control registers.

As long as each ith control register corresponds with the ith performance counter,
reading the ith performance counter requires to set its control register atfirst. Thus,
instead of activating the control register by an assembler instruction directly, it can be
done by calling an activation function performing the instruction as well. Additionally,
this function marks the performance counter within a structure as active. Hence, the
energy accounting function merely reads each entry of the performance counter struc-
ture. Only if the entry indicates an activated performance counter, the performance
counter will be read as well.

Since the performance counter values are provided to vCPU threads, it can be omit-
ted to provide values of non activated performance counters. Therefore, the values of
activated performance counters are saved one after another. They are updated as fre-
quently as requested by the thermal balancing policy.

Instead of providing merely raw performance counter values, the energy consump-
tions of the counted events are saved. This applies for the values accounted over a
longer period and the ones of the last VM’s timeslice. To indicate to the VMM’s policy
that a new energy consumption has been accounted, a bit is setin the provided structure
which can be cleared by a vCPU thread.

During the activation of a performance counter one can specify whether the perfor-
mance counter should generate a performance monitor interrupt (PMI) whenever the
performance counter overflows. The interrupt delivery can be avoided as long as it is
guaranteed that an accounted event does not lead to an overflow within an accounting
period.

Hence, our in the next section outlined thermal balancing policy can account each
vCPU’s power consumption.

4.5 Energy-aware Virtual CPU Allocation

Our thermal balancing policy assigns vCPUs to pCPUs depending on a vCPU’s power
consumption and temperature. Thereby, the vCPU causing thehighest power consump-
tion is swapped with the vCPU causing the lowest power consumption, preferably with
an idle vCPU. The same accounts for the remaining vCPUs.
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Merkel & Bellosa [7] have shown that swapping a cold with a hottask can decrease
a core’s temperature as well as increasing the system wide throughput. Their policy
has the advantage that it knows which task will be scheduled next. This allows their
policy to consider a task’s energy profile for its migration decisions.

In contrast to Merkel’s & Bellosa’s approach, a policy in a virtual machine environ-
ment cannot know which task will be executed next. This is dueto the fact that a virtual
machine monitor at most knows which task has been executed atlast if it is saved in
the vCPU object. The question which task is executed next is left to a guest OS. There-
fore, the VMM policy can generally only regard a vCPU’s powerconsumption, but not
assign the power consumption to a guest task.

Hence, a mispredicted energy consumption of a vCPU will contradict a policy. This
can happen whenever the guest OS schedules a task with an opposite energy profile than
predicted by a policy right after a new mapping between vCPUsand vCPU threads has
been set up. Additionally, whenever a guest schedules more than one guest task during
an accounting period, more than one guest task’s activity has contributed to a vCPU’s
power consumption.

One way to lessen this effect is to migrate vCPUs more frequently than the guest
OS typically schedules threads. In that case, a guest systemwill continue with the
execution of a guest task if it does not to have to handle an interrupt. Otherwise if it
schedules a thread with a different energy profile, merely atthe beginning of a guest
timeslice the underlying mapping can contradict the policy. During the remaining parts
of a guest’s timeslice, the policy’s aims will be fulfilled. This allows to react quickly to
changing power consumptions of a vCPU.

Nevertheless, accounting only a vCPU’s power consumption has the advantage that
it is unimportant whether the energy consumption results from the kernel or from the
user activity of a task. In comparison with Merkel’s & Bellosa’s policy that only mi-
grates user threads but not kernel threads, our policy migrates vCPUs including their
kernel and user threads.

Nevertheless, it is obvious that a migration between a hot and cold vCPU is not
reasonable if the overhead for a migration is greater than its gain. Then, vCPUs might
be migrated with a negligible different power consumption.Therefore, a threshold has
to be defined controlling that only vCPUs are swapped whose power consumptions
differed more than k% during the last period.

A disadvantage of this threshold is that a vCPU may consume k%more power than
another one over its lifetime, not only over one period. To avoid a slow overheating of a
core, while the remaining ones are kept cold, one needs to define when the requirement
of an equalized power consumption is overruling the threshold and vice versa.

In contrast to Merkel’s & Bellosa’s policy that accepts a temperature difference
between the cores over a longer period of time, we do not accept this. Their policy
will migrate tasks only if the temperatures of the cores differ more than defined by a
threshold. This threshold results from the costs of one migration. We consider that
the costs of one migration can be amortized over more than oneaccounting period.
Nevertheless, our policy is based on Merkel’s & Bellosa’s policy.

Since the main purpose of our policy is to minimize the energygap between two
cores, our policy assures – except for two cases – that the gapremains at least static or
can even be reduced. The first case allowing the gap doubling at most is caused by the
threshold, the second case allowing it is caused by a core’s power consumption over a
longer period. In order to prevent that a core heats up too fast, we accept an energy gap
doubling at most. But only if an unchanged mapping causes a core that has consumed
less power to consume more power than the other core after thenext accounting period.



CHAPTER 4. DESIGN 13

Nevertheless, this is only true as long as the cores consume the predicted power.
In order to discuss our policy in detail, we have to consider seven cases:

Let Ei := energy, corei has consumed during c timeslicesand
ei := energy> 0, corei has consumed during the last timesliceand
k := threshold> 1 be.

1. If ei = ej ∧ i 6= j, a swapping does not change the power consumption ofi’s
andj’s core. Irrespectively whetherEi andEj are equalized, a vCPU migration
will be avoided.

2. If corei is currently exhausting significantly more power than corej , but the en-
ergy gap between both cores is bigger, the energy gap cannot be closed after the
next timeslice (4.1).

ei > kej ∧ Ej − Ei > ei − ej > 0 ∧ i 6= j (4.1)

⇐⇒ 0 < Ei < Ej + ej − ei (4.2)

Therefore, the core’s correlating vCPUs must not be swapped, otherwise the gap
would be increased (4.3).

no swapping
⇒ Ei

′ := Ei + ei

Ej
′ := Ej + ej

∧ (4.3)

Thus, the energy gap between both cores will be at least aboutej after the next
timeslice (4.5).

(4.2),(4.3)
⇒ Ei

′ < Ej + ej − ei + ei

= Ej + ej = Ej
′

(4.4)

⇐⇒ Ej
′ − Ei

′ > ej
︸︷︷︸

(4.1)
⇒<ei−ej

(4.5)

3. If the energy gap between corei and corej is not as big as in case two, the gap
between both cores will be bridges without swapping the asssigned vCPUs (4.7).

ei > kej ∧ 0 ≤ Ej − Ei ≤ ei − ej ∧ i 6= j (4.6)

⇐⇒ 0 ≤ Ej ≤ Ei + ei − ej (4.7)

Although it fulfills the requirement of an equalized power consumption, corei has
consumed considerably more power than corej in the last timeslice and probably
also during the previous timeslices. In the case that the power consumption of
both cores has been static, both cores’ vCPUs have not been swapped because of
their significant unequalized power consumption in the past. Therefore, it was
not critical to heat up corei, but now it may become critical. To prevent this, the
policy swaps the core’s assigned vCPUs (4.8).

swapping
⇒ Ei

′ := Ei + ej

Ej
′ := Ej + ei

∧ (4.8)
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Consequently, the energy gap between both cores will not be bridged, instead it
will be doubled in the worst case (4.10).

(4.7),(4.8)
⇒ Ej

′ ≤ Ei + ei − ej + ei

= Ei + 2ei − ej

= Ei
′ + 2(ei − ej)

(4.9)

⇐⇒ Ej
′ − Ei

′ ≤ 2(ei − ej) (4.10)

4. If the current power consumption of corei as well as its power consumption in
the lastc timeslices are higher than corej ’s ones, the cores’ assigned vCPUs will
be swapped (4.11).

ei > kej ∧ Ei > Ej ∧ i 6= j (4.11)

Thus, it is mandatory to swap the cores’ assigned vCPUs (4.12).

swapping
⇒ Ei

′ := Ei + ej

Ej
′ := Ej + ei

∧ (4.12)

5. As the main aim of this policy is to achieve an equalized power consumption of
all cores, a vCPU migration has to counteract the effect of a slowly and steady
increasing energy gap between distinct cores.

Therefore, if the gap betweenEi andEj has the same magnitude as the gap
between anel and em that would cause a migration because of the threshold
criterion, a migration will be accomplished (4.13)

ej < ei ≤ kej ∧ Ei − Ej > (k − 1)ej ∧ i 6= j (4.13)

⇒ Ej + (k − 1)ej < Ei (4.14)

In order to prevent an increasing energy gap between both cores, their correlating
vCPUs are swapped (4.15).

swapping
⇒ Ei

′ := Ei + ej

Ej
′ := Ej + ei

∧ (4.15)

Since the energy gap between both cores accounted during thelast timeslice
is less than the energy gap between them accounted during thelast c times-
lices, corei will have consumed also more power than corej after the next times-
lice (4.16).

(4.14),(4.15)
⇒ Ej

′ = Ej + ei

(4.13)
≤ Ej + kej

< Ei + ej = Ei
′

(4.16)
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6. If the energy gap between both cores does not exhibit the required magnitude as
in the last case, a migration will not be accomplished (4.17).

ej < ei ≤ kej ∧ Ei − Ej ≤ (k − 1)ej ∧ i 6= j (4.17)

Therefore, their assigned vCPUs will not be exchanged (4.18).

no swapping
⇒ Ei

′ := Ei + ei

Ej
′ := Ej + ej

∧ (4.18)

Nevertheless, after the next timeslice, the gap may become the needed magni-
tude (4.19), so that case five applies next (4.13).

(4.17),(4.18)
⇒ Ei

′ − Ej
′

≤ (k − 1)ej + ei − ej

= ei + (k − 2)ej

≤ kej + (k − 2)ej

= 2(k − 1)ej

(4.19)

7. If ej < ei ≤ kej ∧ i 6= j, corej has consumed more power than corei and
2(Ej − Ei) ≥ ei − ej , the energy gap between both cores will be bridged. Oth-
erwise if2(Ej − Ei) < ei − ej , the gap will be increased. However, it will not
be increased as much as if the vCPUs are swapped. Consequently, a migration
may not be enforced in both cases.

The presented migration decisions of our policy are realized by the virtual CPU
migration mechanism outlined in the next section.

4.6 Virtual CPU Migration

Our migration policy tries to reduce a core’s power consumption and temperature by
exchanging hot with cold virtual CPUs. This requires a migration mechanism that
dynamically assigns vCPUs to pCPUs. It considers swapping vCPU objects and their
related contexts, but not migrating a vCPU thread to anotherpCPU.

The mechanism tries to accomplish assigning a vCPU to a vCPU thread as re-
quested by the thermal balancing policy. Given that only a hot vCPU is swapped with
a cold vCPU, merely two vCPU threads must cooperate to realize a policy’s requested
migration. Therefore, both threads have to execute VMM codeto assure that their
vCPU objects are valid.

Our thermal balancing policy tries to predict a vCPU’s powerconsumption, there-
fore it needs to react quickly to a changing power consumption of a vCPU. Otherwise
a vCPU’s power consumption would be caused by several guest tasks with different
energy profiles, so that a successful prediction of a vCPU’s power consumption would
become impossible. Therefore, our proposed migration mechanism must not increase
the system’s latency significantly and it has to be possible that it can be called very
frequently.

Before we consider our migration mechanism and how frequently it is called, we
outline how a core’s power consumption can be assigned to a vCPU. But at first we
discuss when a vCPU forbids its migration and how it can be indicated to the VMM’s
policy.
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4.6.1 Virtual CPU State

Since our migration mechanism migrates only the vCPU objectand its associated con-
text from one vCPU thread to another, a vCPU object has to be valid if it is migrated.
It is synchronized whenever a vCPU’s guest requires to execute a hypercall. Therefore,
vCPU threads exchanging their vCPUs among each other are notallowed to execute
guest code during an ongoing migration.

We have concluded in4.3that a virtual CPU must be split up into two independent
parts: a physical CPU dependent and an independent one. As long as only objects of
the independent part are accessed, the vCPU can be migrated,but during the accesses
of objects of the dependent part a migration is forbidden. Otherwise a vCPU could
access another vCPU’s pCPU dependent data.

To avoid that a guest system will be migrated while it accesses objects of the phys-
ical dependent part of a vCPU object, the virtual CPU object has been enhanced with a
flag to indicate whether it is feasible to migrate the vCPU.

Before entering a code section that requires to access a pCPUdependent object,
the flag has to be set and the old value of the flag must be saved, thus this value can
be reassigned after the critical code section has been passed by. It is important not to
reset the flag, because in this case the virtual CPU state would wrongly suggest that it
is allowed to migrate a vCPU within nested pCPU dependent sections.

The next subsection outlines how to ensure that a core’s power consumption can
be assigned to a vCPU, although a policy’s determined mapping between vCPUs and
vCPU threads is not reflecting the real system state because of pCPU dependent ac-
cesses.

4.6.2 Assigning Virtual to Physical CPUs

The migration mechanism has to try to migrate a vCPU as definedby a mapping be-
tween vCPUs and vCPU threads, which is determined by our migration policy. The
mapping depends on the vCPUs’ and cores’ power consumptionsrespectively.

Given that the mapping is required for a migration, it has to remain unchanged as
long as the migration of vCPUs is in progress. Besides, it must be prevented that more
than one vCPU thread wants to execute in the same vCPU contextas motivated in4.3.

Due to the fact that each vCPU thread is executed at least onceper timer interrupt,
the mapping can be determined on each timer tick, but merely once and not by each
thread. Therefore, a counter is required to ensure that the mapping is only determined
by the first passing thread. The counter is incremented atomically by each thread after
it has passed by the migration mechanism. Only if the counterequals the number of
vCPU threads, a new mapping may be set up.

This ensures that a mapping can only be changed after all vCPUs threads have
passed by the migration function. Therefore, each vCPU thread has to execute this
function exactly once. Thereby, it is unimportant whether the mapping requires a mi-
gration or not.

If a determined migration of a vCPU is not realized because ofa vCPU forbidding
its migration, the old mapping will not reflect the real system state. However, to set
up a mapping it is necessary to know which vCPU is executed by which vCPU thread
to assign a core’s power consumption to a vCPU. Therefore, a second mapping of
vCPUs to vCPU threads must be introduced. It is always reflecting the real system
state, except for the short period of time during an ongoing migration. Whenever a
vCPU is migrated from one vCPU thread to another, the mappingis updated.
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This allows accounting the amount of consumed resources foreach vCPU. Never-
theless, this can only be assured if a new mapping is determined and realized by the
migration mechanism shortly after a core’s power consumption has been accounted
and provided to the VMM’s migration policy. Otherwise the migration mechanism
described in the next sections, can perform a migration directly before the consumed
resources would be accounted, thus the migration policy believes that the vCPU actu-
ally executing on top of the pCPU would have caused it.

4.6.3 Synchronization Path to Swap Virtual CPUs

The migration policy proposed in section4.5sets up mappings requiring that two vCPU
threads exchange their vCPU objects. Therefore, it is sufficient that merely two virtual
CPU threads cooperate in order to swap their vCPU objects. The remaining vCPU
threads of a virtual machine are not affected by a migration of these two vCPUs.

A migration is accomplished by a migration function exchanging the pCPU depen-
dent objects of two involved vCPU objects of an ongoing migration. Furthermore, it
updates the memory references of the vCPU objects, hence a vCPU thread continues
with its execution in the migration partner’s old vCPU context.

In order to allow a vCPU thread to indicate its migration partner that it should swap
their vCPU objects, a notification mechanism is required. Thereby, it has to be assured
that merely one of two vCPU threads trying to swap their vCPU objects with each other
sends a notification. Otherwise both threads are waiting forthe notification reply of the
other one forever.

Therefore, the mapping structure is enhanced by asynchronization levelflag. Its
main purpose is to indicate whether a notification has already been sent to the part-
ner of the vCPU migration. Additionally, it indicates at which point of the migration
mechanism a vCPU thread is.

The highest level indicates that the thread has not sent a notification yet, the second
highest level that a notification has been sent and the lowestlevel that the migration
mechanism has been passed.

Since the flag is read by the partner vCPU thread at the beginning of the swapping
mechanism to state whether the other thread has already senta notification, a common
lock must be acquired. The following accesses caused by the migration mechanism can
be performed without acquiring a lock, because concurrent accesses can be precluded.

By setting thesafe threadflag, a thread indicates its migration partner a feasible
migration. Additional to the synchronization level flag it is saved in the mapping struc-
ture.

When the first thread sends the notification, the partner thread can receive this mes-
sage at two distinct situations. In most cases, the notification is received because the
thread is waiting for an event. In that case, the thread is calling the swapping mecha-
nism to perform the vCPU migration. Furthermore it is possible that the partner thread
has already called the swapping function and determines with the help of the syn-
chronization level flag that it is not the first thread. Therefore, it has to receive the
outstanding notification at first.

Afterwards, the second thread can try to migrate the vCPUs. Only if both vCPUs
and their safe thread states respectively allow a migration, a migration is permitted. In
all other cases, merely a notification is sent to the initiator of the migration allowing it
to proceed with its execution.

To perform the migration, the thread must exchange the pCPU dependent parts of
the vCPU objects. Afterwards the memory references have to be updated, so that –
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whenever a vCPU object is requested – the new one will be returned.
Before both vCPU threads can acquire their vCPU object once again, the callee

must send a notification to the caller. The notification allows the callee to continue
executing. At last each vCPU thread has to update the mappingreflecting the real
system state, so that a core’s power consumption can be assigned to the causing vCPU.

first thread

vCPU’s safe threadvCPU’s partner’s safe thread

received initiated migration notification

receive initiated migration notification

vCPU’s safe thread

swap vCPU objects

send migration done notification

get current vCPU

send initiated migration notification

receive migration done notification

truefalse

true

true

truetrue

false

false

false false

Figure 4.2: Flowchart to swap two vCPUs

Instead of calling the partner thread unconditionally whether a migration is feasible,
it is sufficient to send a notification only if the vCPU state ofthe initiating thread allows
a migration. If this is not the case, the synchronization level flag is set to “passed
already the migration mechanism” and zero respectively, the safe thread flag is set to
zero as well.

Accordingly, the second vCPU thread may not try to receive a notification from
its partner thread. Therefore, the second thread has to check at first the other thread’s
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safe thread flag while it is holding a common lock. This assures that the flag is in a
consistent state until the next new mapping. If it is indicating a failed migration, the
thread must only set its synchronization level and safe thread flag to zero.

In the case that a vCPU should not be migrated to a different pCPU, the swapping
method is simply passed by, its safe thread flag is ignored andits synchronization level
flag reset to zero.

The operating sequence of the migration mechanism is shown in Figure 4.2. How
frequently it has to be called and the resulting consequences are discussed next.

4.6.4 Resetting the Mapping Structure

A virtual CPU forbidding its migration prevents the realization of a determined map-
ping. To increase the probability that a vCPU is feasible to be migrated allowing to
realize a vCPU migration, the migration mechanism can be called more frequently
than a core’s power consumption is accounted.

Additionally, due to asynchronous timer interrupts or system latencies it cannot
be assured that a vCPU thread is calling the swapping function only once per new
mapping. But as explained in4.6.2, at the end of the swapping function, the counter
indicating that a thread has passed this function, must be incremented exactly once by
each thread per new determined mapping.

Therefore, the mapping structure must know whether a threadhas already tried
to migrate its vCPU and incremented the counter respectively. In this way, it can be
ensured that each vCPU thread has passed at least once the swapping method before
a new mapping structure has to be initialized. Only the mapping remains unchanged
as long as the bit of the provided performance counter structure indicates that no new
values have been accounted.

To enforce the new mapping as fast as possible the swapping function as well as
the method setting up the new mapping has to be called before avCPU thread returns
from a hypercall.

Since a vCPU thread may execute the swapping method more thanonce per de-
termined mapping, the mapping may change after a thread has passed the method at
least once. Therefore, the mapping can change while a threadis executing within the
function if the thread has already tried to migrate its vCPU.To assure that the mapping
changes transparently for a vCPU thread, a thread must save –while it is holding a
common lock – which vCPU it has to swap with as well as whether it has passed the
method already. Afterwards, the thread is only allowed to read this copied data, so that
its real status may have been changed in the meantime.

Thus, our thermal load balancing policy can migrate vCPUs very frequently to bal-
ance the power consumption of the cores and decrease the overall emitted temperature.
In the next chapter we discuss details of the implementationof our design on top of
L4.
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Implementation

This chapter addresses the realization of the proposed design on top of L4 and its
integration into the afterburner framework [1].

At first, we present the afterburner framework and our afterburner virtual CPU
model. It is compared with the virtual CPU model of our design. Afterwards, we
discuss the problem of accessing a virtual CPU object. In thesubsequent section we
consider the allocation and virtualization of guest user threads required for their mi-
gration. The next section examines the implementation details of the vCPU migration
including its guest kernel and user threads migrations on top of L4. At the end of the
chapter we discuss the impact of the vCPU migration for handling interrupts and for
the interrupt latency.

5.1 Afterburner Framework

For evaluating our thermal balancing policy and the performance of our proposed mi-
gration mechanism, we have integrated it into our afterburner framework.

The afterburner framework as shown inFigure 5.1consists of four modules. The
first module, a recent prototype of the L4µ-kernel acts as a virtual machine moni-
tor’s hypervisor. Since it abstracts the bare hardware, it offers a VMM a high-level
application interface (API) for handling hardware (HW) resources.

Our second module is the L4Ka resource monitor. It is permitted to execute priv-
ileged system calls of L4. These are required for handling HWresources as well as
interrupts, including the timer interrupt. For handling each core’s interrupts, one vir-
tual IRQ (vIRQ) thread per core resides within the resource monitor’s address space.
Additionally, a roottask thread is located in this address space. It is implementing
virtualization services requiring extended privileges. These services are called by the
afterburn wedge, the framework’s third module.

This third module implements the remaining virtualizationservices of the VMM. If
a service cannot be handled by the afterburn wedge itself, because it requires extended
privileges, the resource monitor’s corresponding serviceis requested. An afterburn
wedge resides within the address space of the guest system’skernel, our last module.
Thus, virtualization services requiring no extended privileges, can be executed in-place
avoiding expensive address space switches.

One afterburn wedge exists per virtual CPU offered to a guestsystem. All wedges
of a guest reside within the guest kernel’s address space. Anafterburn wedge consists

20
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Figure 5.1: Structure of the afterburner framework

of a monitor and main thread. A monitor thread receives IPCs from its scheduler and
vIRQ thread respectively, whenever an interrupt has to be handled. These interrupts
are delivered to a guest kernel where an interrupt specific method handles the delivered
interrupt. These methods are called interrupt handlers.

A vIRQ thread allows a monitor thread to proceed with its execution by sending
it an IPC caused by an interrupt. Consequently, a vIRQ threadis the scheduler of a
monitor thread. Since a vIRQ thread is not scheduled by any other thread, it is merely
activated to handle an interrupt, it is the root scheduler ofa core. Hence, a vIRQ thread
accounts the consumed power of its core and offers its core’spower consumption to
the scheduled VMMs.

In contrast to a monitor thread that executes merely VMM code, a main thread
executes guest system code as well. It is scheduled by its assigned monitor thread.
One main task of a main thread besides executing guest systemcode, is to schedule a
guest’s user tasks. Each guest user task is spanned by its ownaddress space consisting
of one thread per vCPU. Thus, each main thread schedules its own thread of a guest
user task.

Next we discuss our afterburner vCPU and how to accomplish its synchronization.
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Additionally, we consider what needs to be done for updatinga thread’s execution state.

5.2 Afterburner Virtual CPU Model

The thermal balancing policy proposed in the previous chapter requires to migrate vir-
tual CPUs by exchanging a vCPU thread’s context. Therefore,the vCPU of our design
described in4.3will only contain the current guest thread’s execution state if its vCPU
thread executes VMM code. Thus, a vCPU’s execution state belongs either to a guest
kernel thread or to a guest user thread. In contrast to that, the afterburner vCPU will
contain the execution state of its assigned guest kernel thread and of the last executed
guest user thread on top of its vCPU if the vCPU is synchronized.

Due to the fact that guest code is executed by a monitor’s mainthread, a monitor
needs to update the execution state of its main thread permitting it to proceed within
a new context. Therefore, a vCPU’s execution state does not only contain an instruc-
tion pointer, but it contains the complete register frame ofthe main thread. The same
accounts for the execution states of the guest user threads,since they have to be ex-
changed as well if a vCPU is migrated.

A thread’s execution state must be synchronized with its assigned vCPU object
whenever it gets preempted. For this purpose, a preemption message is generated by
theµ-kernel and sent to the thread’s scheduler. This preemptionmessage contains the
execution state of the preempted thread.

In the case that the scheduler has also been preempted and is waiting for an IPC, it
receives the preemption message implicitly, otherwise it must receive the preemption
message to synchronize the vCPU explicitly. This applies for the monitor as well as for
the main thread. Both must synchronize the execution state of their scheduled threads
before the migration mechanism may be called.

By sending a new execution state along with a preemption reply message allowing
a thread to proceed, a thread can resume its execution in another context. Since the
vCPU thread of our design has been replaced by the vCPU’s assigned monitor, main
and guest user threads, the migration mechanism must updatethe execution state of
these threads. Additionally, the monitor and main thread’smemory reference of the
vCPU object has to be updated.

A thread’s execution state can also be sent explicitly by calling the system call
L4 ThreadSwitch sending a preemption yield message to the thread’s assignedsched-
uler. It will be called by a main thread in order to yield its processor control to its
monitor thread if its vCPU is idle.

The implementation of our design on top of L4 demands that theinitial relationship
between vCPUs and pCPUs can be obtained, e.g., for determining whether a vCPU can
handle an interrupt. Therefore, the physical CPU dependentobject (pCPU object) of
a vCPU contains theinitial vCPU id. Hence, each vCPU has an own pCPU object,
although more than one vCPU can be mapped to a pCPU.

In the next section we consider the impact of preemptions on threads accessing
their vCPU objects.

5.3 Accessing a Virtual CPU Object

Monitor and guest kernel threads access virtual CPU objectsand execute within the
context of their assigned vCPU object respectively. Since our proposed mechanism
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migrates a vCPU object without the knowledge of a guest kernel thread, it is necessary
that a guest kernel thread executes within the context of thenew object, afterwards. If
this is not the case, two distinct kernel threads would execute within the same context.

Therefore, we have to consider how it can be assured that two migrated threads
are accessing their assigned vCPU objects. If a guest kernelthread gets preempted
while it does not access a vCPU object, the new vCPU object will be returned to the
thread after the migration. A vCPU migration is forbidden, during the access of pCPU
objects, therefore it is not causing any problem. The first critical situation in which a
thread can be preempted is while it acquires its vCPU object.

If a vCPU object is not acquired atomically, a thread could get preempted while
obtaining its vCPU object. Since the migration mechanism cannot recognize this, it
migrates the vCPU including updating the address of the thread’s vCPU object. Thus,
the thread continuing with acquiring the vCPU object, does not acquire its vCPU ob-
ject. Instead of acquiring the old one of its migration partner, it obtains the migration
partner’s new vCPU object. This vCPU object was its old one.

In order to prevent that both threads access the same vCPU object, the thread needs
to acquire the vCPU object again to obtain a valid one. To determine whether the vCPU
object is valid, a thread compares its own processor number with the physical CPU id
of the pCPU object. If both numbers are equal the thread may proceed, otherwise it
must try to receive a valid object once again.

In case that merely pCPU independent objects of a vCPU are accessed, the vCPU
can be migrated, because for these accesses it is not required to obtain the vCPU once
again. Hence, the address of the vCPU object is stored on the stack.

One drawback of this approach is that a vCPU thread will get aninvalid vCPU ob-
ject if two vCPUs that are mapped to the same pCPU are exchanged. Nevertheless, this
case will never occur, since vCPUs mapped to the same pCPU will never be exchanged.

5.4 Guest User Threads

Our migration mechanism discussed in4.6exchanges merely the vCPU contexts of two
involved vCPU threads. Since the structure of our afterburner VMM is more complex
than the assumed structure of a VMM in our design, it is not sufficient to update the
monitor and main thread’s vCPU references. Instead, for ourimplementation we have
to consider the allocation of a guest application as well as its migration.

Before we examine which data structures of a guest application must be virtualized
for performing a migration, we discuss how to manage an efficient guest application
allocation.

5.4.1 Allocation

A user application of a guest OS executes in its own address space. This guarantees
that a crash of a guest application can neither effect the VMMnor the guest system.
Therefore, a guest user task and its address space needs to beallocated by the VMM
whenever the guest OS creates a new application. At least oneguest thread of a task
has to be allocated. This allows to schedule a task on top of its assigned vCPU.

In order to permit a guest OS migrating its applications fromone vCPU to another, a
thread of a guest task will be allocated instead of migrated if no vCPU assigned thread
of the guest application exists. Thus, a guest task’s threadcannot only be allocated
when a new guest address space is created, but also during an application’s execution.
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This is a drawback when a vCPU is migrated but no thread of the guest user task
executing afterwards is allocated. To avoid a thread’s allocation during the migration
mechanism, one thread per vCPU is allocated during a guest application’s creation.
Consequently, during the execution of a guest user task noneof its threads will be
allocated.

To avoid expensive cross processor IPCs, a guest task’s thread is scheduled anytime
by the same main thread . Therefore, its scheduler and pager must be set accordingly.
Since vCPUs may be migrated while threads of a guest task are allocated, it is manda-
tory that each thread has a distinct scheduler and pager. Thus, it is prohibited to rely
on vCPU’s properties, instead pCPU objects have to be accessed directly without the
indirection of a vCPU object, because they remain unchangedafter their initialization.
Their initialization is accomplished before the first guestuser thread is allocated. This
ensures that a guest user thread’s scheduler and pager are valid main threads.

5.4.2 Virtualization

Applying our thermal balancing policy, demands a migrationmechanism. Our mech-
anism does not only have to swap and update vCPU objects of theinvolved monitor
and main threads, but also to migrate vCPU’s assigned guest user threads. Analogous
to a vCPU migration, only a guest user thread’s execution state has to be updated. This
avoids changing a guest user thread’s scheduler and pager during its lifetime.

A thread infoobject contains the execution state of a guest user thread aswell
as two thread dependent objects: a thread’s thread id and itsstate. The thread id is
required for replying to a guest user thread by a guest user thread’s main thread. A
thread’s state indicates whether a thread is merely preempted, a page fault or exception
has occurred, or if it is waiting for its startup IPC. Therefore, for migrating a guest user
thread its thread info object has to be split up into two parts, a thread dependent and
independent part.

In the case that a thread has not received its startup IPC yet,it must receive it before
it can execute. If a thread has received the startup IPC already, it is unimportant which
message it receives as long as it is not a startup IPC, since a startup IPC may only be
received once.

Therefore, a thread’s state needs to reflect a thread’s real state only until the thread
has received its startup reply message. Afterwards, the state is no longer thread depen-
dent, so that the state can be migrated. Hence, two thread states may exist: the first
state depending on its thread assures that a thread receivesits startup IPC, the second,
independent state that afterwards the requested message will be sent unconditional of
a thread’s real state.

If a guest user thread sends a message to its main thread, the message will contain
at least the thread’s execution state. This message is savedin the message registers of
the receiving thread and main thread respectively. To assure that the message will not
get lost or attributed to another thread, the used message registers have to be saved in
the thread’s thread info object at first. Afterwards, it is feasible to migrate the guest
user thread as well as the vCPU.

Therefore, it is no longer permitted to rely on the message registers of a main
thread, since they may belong to a different guest user thread. Accordingly, it is not
allowed to migrate a vCPU as soon as the message registers of amain thread have been
loaded because of its reply to a guest user thread. Otherwisea guest thread may receive
a wrong message, resulting in an unpredictable user application behavior.
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5.5 Migrating Virtual CPUs

In our design we have not distinguished between running a guest kernel or a guest user
thread on top of a vCPU. Due to the VMM structure of our afterburner framework we
must distinguish between them, since a monitor thread schedules merely a guest kernel
thread, but no guest user threads as well. They are scheduledby their assigned main
threads.

As long as a main thread executes guest kernel or in-place VMMcode, a monitor
thread must merely receive a main thread’s preemption message for synchronizing its
vCPU object, since the execution state of the last executed guest user thread has been
synchronized before. In the case that a main thread schedules a guest user thread, a
guest user thread’s preemption message has to be received inorder to synchronize its
execution states with the main thread’s vCPU object, beforevCPU can be migrated.

Consequently, migrating a vCPU while it executes guest usercode is more com-
plex. Therefore, we discuss this case after we have outlinedthe mechanism to migrate
a vCPU executing guest kernel or VMM code.

5.5.1 Migration During Guest Kernel Execution

Our migration mechanism does not only allow to migrate guestuser threads, but allows
to migrate a complete vCPU including its guest kernel thread. As long as the vCPU
executed guest kernel or in-place VMM code before its preemption, our migration
mechanism must merely synchronize the main thread’s execution state with its vCPU
object to swap its vCPU. The migration will be feasible, if the main thread does not
access a pCPU object required for accessing a privileged VMMservice. However,
before we consider implementation details of our migrationfunction, it is outlined
what needs to be done to call the swapping mechanism and when to call it.

Minimizing the time between setting up a mapping and its realization, requires to
call the swapping mechanism as frequently as possible. Although a monitor’s event
loop – for receiving IPCs and scheduling its main thread – does not only receive pre-
emption, preemption yield and preemption reply messages, these three message types
are the most frequently received ones. In order to avoid thatthe swapping method
can only be called by one of these handlers because of their different code sequences,
these three handlers have to execute a common code sequence after calling the swap-
ping mechanism. This code sequence is calledswap reply; it is a combination of their
handlers.

Before the preemption and preemption reply handler of a monitor thread reply to
their main thread, they check whether an interrupt needs to be acknowledged and de-
livered. This can be omitted in the preemption yield handler, since a vCPU can only be
idle if no interrupt is pending.

Swapping a vCPU within the preemption yield handler changesthe situation a bit,
since the migrated vCPU executing after a performed vCPU migration is not necessar-
ily idle. Consequently, also the preemption yield handler must check after a migration
whether an interrupt has to be acknowledged and delivered.

Therefore, this is done by the swap reply method as well. It checks for interrupts,
delivers them and replies to its main thread as long as the vCPU is not idle. If the
vCPU is idle, a monitor thread sends a preemption yield message to its scheduler. The
preemption reply handler introduces no more complexity, since it has a common code
base with the preemption handler. Therefore, the swap replyfunction does not need to
distinguish between them.
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After we have discussed what is required to call our swappingmechanism, we
explain under which condition the swapping method must and may not be called.

If a main thread yields its processor control, the preemption yield handler must save
the thread’s execution state in its vCPU object before calling the migration mechanism.
The same applies for the preemption handler receiving a mainthread’s preemption
message. It must call the swapping method independently from the question whether a
migration is feasible or not.
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swapvcpusj
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∨
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messages:

ffd0: preemption
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ffd2: preemption reply

fff2: swap vcpus

Figure 5.2: Swap a vCPU during guest kernel execution

In the case that a monitor receives a preemption reply message from its scheduler,
a vCPU object may not be synchronized. If a vCPU is not synchronized, the moni-
tor replies toL4 nilthread for receiving the outstanding preemption message of its
main thread for synchronizing its vCPU object. Since this message is received by the
monitor’s event loop, the preemption handler calls the swapping function. This will not
be necessary if a monitor’s vCPU is already synchronized. Then, a preemption reply
handler merely calls the swapping method. Furthermore, theswapping function can
also be called if the vCPU state forbids its vCPU migration. Thereby, it is unimportant
whether the vCPU is already synchronized or not, since a migration is not feasible be-
cause of its state and therefore must not be performed. This described flow is shown in
Figure 5.2.

In subsection4.6.3we have outlined that a notification mechanism is required to
swap two vCPUs. For our implementation on top of L4 we proposean IPC based
notification mechanism, which is outlined next.
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For swapping a monitor’s vCPU, the monitor thread initiating a migration sends a
swap vcpus message to its migration partner. If the receiving thread has already called
the swapping method, the message must be received explicitly within the method. Oth-
erwise this message will be received within a monitor’s event loop by the swap vcpus
handler.

Comparable to the preemption reply handler, the swap vcpus handler must receive
the outstanding preemption message of its main thread if thevCPU is not preempted.
If this is not the case, it has to call the swapping mechanism.Consequently, the pre-
emption reply handler can also handle swap vcpus messages. It only has to distinguish,
which message has been received to set the argument (received swap vcpus message)
of the swapping mechanism appropriately to indicate whether the swapping method
needs to receive the outstanding message or not. Furthermore, the preemption reply
handler can avoid trying to update the mapping if it handles aswap vcpus message.

After a successful migration of a monitor’s vCPU, a monitor must update – with the
next reply to its main thread – its main thread’s execution state by sending a preemption
reply message. Therefore, a flag has to be saved in the vCPU object indicating whether
a main thread’s execution state must be updated. If the swap reply method replies to
its main thread and the flag is set, it must update its main thread’s execution state.
Afterwards, it must reset the flag, in order to avoid updatingthe execution state even if
it has not changed.

In this subsection we have discussed how to migrate a vCPU executing guest ker-
nel or in-place VMM code, the next subsection addresses the migration of a vCPU
executing guest user code.

5.5.2 Migration During Guest User Execution

The main task of a guest system is to execute guest user code. Therefore, it must be
possible to migrate a vCPU executing guest user code and not only a vCPU executing
guest kernel or in-place VMM code.

Due to the afterburner VMM structure, a main thread schedules a guest user thread
by sending a guest user thread a preemption reply message. This requires to access
the thread dependent part of a guest user thread’s thread info object (5.4.2), therefore it
is not feasible to migrate a vCPU while its main thread schedules a guest user thread.
Furthermore, a monitor thread can merely receive its main thread’s execution state, but
not the execution state of the currently executed guest userthread required for a vCPU
migration. A guest user thread’s execution state can only bereceived by its main thread.

In order to allow a migration while a vCPU has executed guest user code, a mon-
itor’s main thread must be scheduled to receive the outstanding execution state of its
scheduled guest user thread. It is saved in the thread info object of the user thread.
Since, a main thread accesses no more thread dependent objects afterwards, it is per-
mitted to perform a vCPU migration. For switching back to itsmonitor thread, a main
thread performsL4 ThreadSwitch. This sends the thread’s execution state along with
the preemption yield message to its scheduler.

Since a main thread must only switch to its monitor thread if amigration is in-
tended, the vCPU object has been extended by the flagspending swap, ack swapand
executing user. A monitor thread sets the pending swap flag whenever a migration is
outstanding and the main thread has set its status to executing user. A main thread
sets this flag during the access of thread dependent objects for scheduling a guest user
thread. After a main thread has received and saved a user thread’s execution state, it
checks whether a pending swap is outstanding. If this is the case, a main thread sets
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the ack swap flag to indicate that a migration may be performedand switches to its
monitor thread.

As long as the executing user and pending swap flags are set, a monitor thread
knows that a migration will be feasible, since its main thread has to call the system
call L4 ThreadSwitch within one timeslice. Therefore, any handler except the pre-
emption yield handler must allow its assigned main thread toproceed for receiving the
outstanding execution state of a main’s guest user thread.
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Figure 5.3: Swap a vCPU during guest user execution

If a main thread gets preempted before it callsL4 ThreadSwitch and has already
acknowledged the pending swap, a vCPU migration must not be performed. Since
its pending swap and ack swap flags are reset within the swapping method, a main’s
preemption yield message would be interpreted as an IPC, causing the monitor to send
a yield IPC to its scheduler. Therefore, only the preemptionyield handler is allowed to
call the swapping function if a main thread has acknowledgeda pending swap. This is
shown inFigure 5.3.

A vCPU migration requires that a guest user thread’s thread info object is set ap-
propriately, as discussed in subsection5.4.2. It has to be assured that a main thread
replies only to its assigned guest user threads, but not to ones of other main threads.
This can be assured by a main thread itself or in cooperation with its monitor thread.
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Let us at first consider that a monitor cooperates with its main thread. During a
successful vCPU migration each monitor thread has to updatethe current guest user
thread’s thread dependent part. This assures that a main thread accesses – within its
event loop for receiving IPCs and scheduling its guest user threads – a valid thread info
object required for replying to one of its assigned threads and especially for sending
a startup reply message if a thread has not received one. Since only the object of the
last executed guest user thread of a vCPU is adjusted by a monitor thread during the
migration mechanism, the remaining objects reside unchanged. They must be adjusted
on demand whenever a main thread schedules a new guest application.

In contrast to this first approach a main thread can assure without the assistance
of its monitor to use a valid thread info object if it accessesthe thread dependent part.
Instead of adjusting the object only if a main thread schedules a new task, it is necessary
to adjust it before each reply. By extending the thread dependent part of the thread info
object with aninitial vCPU id, it is possible to adjust the object and send the guest
user thread a new execution state merely if the object’s initial vCPU id differs with the
vCPU’s ones. In the case that both ids are equal, it can be avoided to send the new
execution state along with a preemption reply message, as long as a main thread has
received a preemption message. Otherwise the exception or page fault handler may
have modified the thread’s execution state requiring to sendthe new execution state.

Since the last approach will only send a new execution state if it is mandatory, it is
called lazy guest user thread migration. In contrast to that, the cooperative migration
is namedeager guest user thread migration.

After we have discussed the necessary changes for migratingvCPUs in order to
apply our thermal balancing approach, we propose a hardwareinterrupt notification
mechanism in the next section. It reduces the impact of a vCPUmigration on the
interrupt latency.

5.6 Interrupt Handling

A vCPU migration caused by our thermal balancing approach inherently influences the
interrupt handling of a virtual machine on top of L4. A vIRQ thread is assigned at least
to its timer interrupt to handle a core’s timer interrupt. Additionally, it can be assigned
to hardware interrupts to handle them. Due to the afterburner structure, a vIRQ thread
delivers an interrupt only to its assigned monitor threads.

Since the vCPU migration should be as transparent as possible, an interrupt must
be delivered to its designated vCPU. One approach is that themigration mechanism
migrates the IRQ threads of a vCPU as well. Furthermore, the vIRQ thread of a vCPU
must be reassigned to its new IRQ threads to deliver their interrupts to its vCPU. The
drawback of this approach is that an IRQ thread’s migration as well as assigning a
vIRQ thread to an IRQ thread requires to call privileged L4 system calls. In order to
perform these calls two address space switches are required, since these calls can only
be by accomplished by threads of the L4Ka resource monitor.

In order to avoid the overhead of these privileged system calls, we apply our second
approach proposed next. It assures that interrupts are assigned to the same pCPU than
without a vCPU’s migration.

For this purpose, a VMM service must call a vCPU’s interrupt handler that is not
necessarily also its pCPU interrupt handler, whenever a device interrupt should be en-
abled or disabled. Although an interrupt is only delivered by a vIRQ handler to its
monitor thread, each handler can handle every interrupt acknowledgement, even in-
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terrupts not assigned to it. In order to acknowledge an interrupt a vIRQ thread is not
assigned to, a thread must propagate the acknowledgement toan IRQ thread represent-
ing the interrupt.

Since the ongoing vCPU migrations are transparent for a vIRQthread, a vIRQ
thread delivers its hardware interrupts to its monitor thread. However, this is a problem,
since a monitor does not execute in its initial vCPU’s context all the time, but the
hardware interrupt can only be handled and acknowledges by this vCPU. Hence, an
interrupt can only be recognized if the vCPU’s current monitor checks for them, which
can last up to one timeslice.

This may become a bottleneck especially for hardware interrupt intensive applica-
tions. Thus, a hardware interrupt notification mechanism between vIRQ and their as-
signed monitor threads as well as between the monitor threads themselves is required.

The hardware interrupt notification between vIRQ and their monitor threads can be
accomplished by setting a flag indicating an outstanding hardware interrupt. Before
a monitor thread waits for an IPC from its scheduler or main thread, it checks the
flag to distinguish whether it must notify another monitor thread about an outstanding
interrupt.

Only if the monitor thread does not execute or has executed before the last tried
migration in its initial vCPU’s context, it must send the monitor executing in its initial
vCPU’s context a hardware interrupt notification. It enforces that this monitor handles
the outstanding interrupt. Otherwise, it has handled the interrupt itself and no interrupt
is outstanding anymore, or the interrupt will be handled by its migration partner. After
sending the notification or handling the interrupt, the flag is reset by the monitor thread.

Our proposed interrupt notification mechanism is not required for timer interrupts,
since each guest kernel thread can handle a timer interrupt.Thereby, it is unimportant
whether a timer interrupt is designated for the monitor’s current vCPU, since each
monitor delivers a timer interrupt to its current vCPU.

In the next chapter we present selected evaluation results of the implementation of
our design on top of L4. In particular, we consider the eager and lazy guest user thread
migration as well as the benefit of our proposed interrupt notification mechanism.
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Evaluation

The performance of the implementation of our proposed design on top of L4 has been
evaluated on a 3 GHz Pentium D830 with 2 cores and 2 GByte memory. A virtual ma-
chine consisting of one guest kernel thread per core has beenexecuted on this system.
The virtual machine’s timeslice lasts 1ms and the guest’s timeslice 10ms. A migra-
tion frequency of 0Hz in the following benchmarks is equivalent to the afterburner
performance without any changes.

Due to the lack of a energy model of the system, it has not been possible to apply
the proposed energy-aware vCPU allocation policy. Instead, the applied policy tries to
migrate the vCPUs as often as possible to achieve 1,000, 100,20, 10 or one migration
per second.

At the beginning of this chapter, we present the network performance of our imple-
mentation. Thereby, we compare the eager with the lazy guestuser thread migration.
Furthermore, we show the benefit of our proposed interrupt notification mechanism for
the network performance and interrupt latency. Afterwards, we examine the overhead
introduced by our migration mechanism by building the Linuxkernel. We finish this
chapter with an evaluation of the impact of physical CPU dependent object accesses on
the realization of determined mappings by the migration policy.

6.1 Network Performance

For measuring the network performance and interrupt latency respectively, an Intel
E1000 Gigabit network interface has been attached to the system. The I/O load has
been generated by theNetperf benchmark [8], which has been executed by an external
client.

As outlined in5.5.2, a guest user thread can be migrated eagerly or lazily. These
two approaches have been compared with each other, whereupon the migration policy
tries to migrate a vCPU every 1, 10, 50, 100 and 1,000ms.

As you can see inTable 6.1, the lazy thread migration is a bit better than the eager
thread migration, but not significantly. Besides, a frequent migration increases the
Netperf performance, since a monitor thread checks for outstandinginterrupts more
often.

In order to achieve these performances, it is necessary to send an interrupt notifica-
tion as proposed in section5.6. The benefit of this interrupt notification mechanism is
outlined inTable 6.2. The throughput can be increased at least about 126Mbit

s
. A pol-
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Migration frequency [Hz] Netperf [ Mbit
s

] (eager) Netperf [Mbit
s

] (lazy)

0 846.25 846.25
1 841.40 844.67

10 841.77 844.91
20 846.51 849.92

100 855.64 858.84
1,000 855.72 859.12

Table 6.1: Eager vs. lazy guest user thread migration

icy migrating a vCPU up to a thousand times per second benefitsthe most. Thereby,
lazy and eager migrations can profit to the same degree if one ignores the different
performances between eager and lazy migrations.

fa [Hz] Neb [ Mbit
s

] Dec [ Mbit
s

] Ined Nle [ Mbit
s

] Dlf [ Mbit
s

] Inlg

1 714.50 126.90 127,412 711.14 133.53 129,535
10 712.74 129.03 126,957 709.65 135.26 128,003
20 715.04 131.47 125,893 715.13 134.79 131,813

100 727.98 127.66 113,892 724.31 134.53 119,083
1,000 686.79 168.93 71,879 674.15 184.97 77,869

a Migration frequency
b Netperf without interrupt notification (eager)
c Difference to Netperf with interrupt notification (eager)
d Interrupt notifications (eager)
e Netperf without interrupt notification (lazy)
f Difference to Netperf with interrupt notification (lazy)
g Interrupt notifications (lazy)

Table 6.2: Interrupt notification

To attain this performance, more than 70,000 cross processor IPCs are required. If
a vCPU is migrated merely less than every 10ms, more than 125,000 IPCs will be
required. This is due to the fact that – currently or before the last reply – the vCPU
handling the hardware interrupts is not executed by its initial monitor thread. Only if
it is executed by its initial monitor thread a notification can be omitted. This applies
more for frequent migrations.

We have considered the influence of the migration mechanism for the interrupt
latency, in the next section we evaluate the overhead of the migration mechanism for
building the Linux kernel.

6.2 Kernel Build Performance

Given that the network performance only indicates whether the interrupt latency has
been increased significantly, the kernel build performanceshows how far an appli-
cation’s execution time is affected by trying to swap a vCPU frequently. Since the
performance difference between eager and lazy migrations is negligible, merely results
of the lazy migration are outlined.
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Migration frequency [Hz] Total execution time [s] Performance loss [%]

0 187 0.0
1 191 2.1

10 191 2.1
20 193 3.2

100 199 6.4
1,000 209 11.8

Table 6.3: Kernel build performance

Table 6.3shows that enforcing thousand migrations introduces a significant but
acceptable overhead. Since the system boots from a RAM disk and has no hard disk,
hardware interrupts can be excluded. Only the swapping mechanism is responsible for
this performance degradation.

This performance degradation will probably be decreased ifwe apply our thermal
balancing policy, since a migration is mostly performed if its gain is greater than the
overhead introduced by the migration mechanism. Nevertheless, if our proposed load
balancing policy does not reduce the migration frequency significantly, it will be nec-
essary to migrate a vCPU less frequently. Thereby, one has toconsider the tradeoff
between the mispredicted power consumption of a core and thereduced overhead.

In the two previous sections we have evaluated the performance of our migration
mechanism, in the next section we examine the impact of physical CPU dependent
object accesses on the realization of a determined mapping.

6.3 Physical CPU Dependent Object Accesses

Our migration mechanism has been implemented on top of an IPCbased system, there-
fore pCPU dependent objects are accessed frequently by a main thread and forbid a
vCPU migration. To evaluate whether these pCPU dependent accesses prohibit to re-
alize determined mappings, it has been counted how many cross processor IPCs need
to be sent for realizing a mapping. Furthermore, it has been considered how often the
mapping structure needs to be reset for realizing it. To get realistic values, the values
have been accounted while building the Linux kernel.

As explained in subsection4.6.3, to realize a mapping determined by a policy, it is
often required to pass by the swapping method more than once.This can be seen in
Table 6.4for migration frequencies less than 100Hz. Resetting the mapping structure
only leads to the desired mapping in less than 40 % of these cases. Nevertheless, merely
around 20 % of all cross processor IPCs indicate an outstanding swap, resulting in an
unchanged mapping. Therefore, it is mandatory to reset the mapping structure as often
as needed.

A migration frequency of 1,000Hz exemplifies this. The mapping is only reset 4 %
more often than a new mapping is set up. Consequently, only 66% of the requested
mappings have been realized. The breakeven point where eachrequested mapping can
be realized is between a migration frequency of 20 and 100Hz. Already 95 % of
all requested migrations will be fulfilled, if a new mapping is set up each 10ms. To
achieve such a good coverage, the mapping structure needs tobe reset more often than
125 % as a new mapping is determined. This is no major overheadfor frequencies less
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than 100Hz, since the required cross processor IPCs are only a small fraction of IPCs
that are required to indicate an outstanding interrupt.

1 Hz 10 Hz 20 Hz 100 Hz 1,000 Hz

Eta 191 191 193 199 209
Dmb 191 1,913 3,867 19,994 209,648
Rmc 191 1,913 3,867 19,095 139,110
Snd 244 2,361 4,929 23,610 159,452

Rtme 550 4,800 10,163 45,538 217,848

Rrf 1.00 1.00 1.00 0.96 0.66
Mmrg 0.65 0.60 0.62 0.58 0.36
Rmrh 2.88 2.51 2.63 2.28 1.04
Snri 0.22 0.19 0.22 0.19 0.13

a Execution time
b Different mappings
c Realized mappings
d Swap notification count
e Reseted mappings
f Realized-ratio:c

b
g Mappings-miss-ratio:1 − c

e
h Required-mappings-to-realized-ratio:e

c
i Swap-notification-miss-ratio:1 − c

d

Table 6.4: Physical CPU Dependent Object Accesses

We have shown that a vCPU can be migrated transparently without interfering a
guest system with an acceptable performance degradation. Applying our proposed
thermal balancing policy will probably decrease the performance degradation, since a
vCPU migration will only be performed if the gain of a migration is greater than its
overhead.



Bibliography

[1] Afterburner framework. http://l4ka.org/projects/
virtualization/afterburn/.

[2] Frank Bellosa. The benefits of event-driven energy accounting in power-sensitive
systems. InProceedings of the 9th ACM SIGOPS European Workshop, Kolding,
Denmark, September 17–20 2000.

[3] Frank Bellosa, Andreas Weissel, Martin Waitz, and SimonKellner. Event-driven
energy accounting for dynamic thermal management. InProceedings of the Work-
shop on Compilers and Operating Systems for Low Power (COLP’03), New Or-
leans, LA, September 27 2003.

[4] Mohamed Gomaa, Michael D. Powell, and T. N. Vijaykumar. Heat-and-run: lever-
aging smt and cmp to manage power density through the operating system. In
ASPLOS-XI: Proceedings of the 11th international conference on Architectural
support for programming languages and operating systems, pages 260–270, New
York, NY, USA, 2004. ACM Press.

[5] Kyeong-Jae Lee and Kevin Skadron. Using performance counters for runtime tem-
perature sensing in high-performance processors. InIPDPS ’05: Proceedings
of the 19th IEEE International Parallel and Distributed Processing Symposium
(IPDPS’05) - Workshop 11, page 232.1, Washington, DC, USA, 2005. IEEE Com-
puter Society.

[6] Joshua LeVasseur, Volkmar Uhlig, Matthew Chapman, Peter Chubb, Ben Leslie,
and Gernot Heiser. Pre-virtualization: Slashing the cost of virtualization. Technical
Report 2005-30, Fakultät für Informatik, Universiẗat Karlsruhe (TH), November
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