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Abstract

Multicore architectures are employed more and more in tedggtem. A main
task of current operating systems is to equalize the loaddf €PU’s core, it is ac-
complished by the migration policy of an operating systerevédtheless, the migra-
tion policy of an operating system is mostly entangled inkbmel. Thus, migration
policies of guest kernels running within virtual machineayntontradict each other.
Therefore, virtualization must break up applied policiesf guest operating systems.

A virtual machine monitor allows to perform migrations ipgadently of a guest.
Thus, a virtual machine monitor can apply its own migratiotiqy in order to fulfill
system-wide requirements.

This thesis considers to load balance the power consumgtithe cores of a CPU
to decrease the overall emitted temperature as well as teeetthe system’s power
consumption. Therefore, our thermal balancing policy excfes a virtual CPU with
one consuming less power.

In order to determine a virtual CPU’s power consumption, a@rgy accounting
mechanism accounts each core’s power consumption thatecasdigned to a virtual
CPU. To predict a virtual CPU’s power consumption succelysfor the next period,
it is necessary that it does not change significantly. Thesra’s power consumption
is accounted and a virtual CPU is migrated very frequently.

Experimental results show that the overhead caused by tinigra virtual CPU up
to a thousand times per second is acceptable but not ndgligib
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Chapter 1

| ntroduction

Most of todays operating systems (OSes) are supportingehennulticore architec-
tures, which have been launched in the last two years. Tollgquidize a central
processing unit's (CPU's) cores, threads have to be midratgween them by the
OS. Although some OSes are supporting different schedplitigies, their migration
policy is mostly entangled in their kernel. This prohibitsapply different migration
policies.

Virtualization of a physical machine allows to run guest ®&wlated from each
other on top of a smakirtual machine monitoVMM). Furthermore, it guarantees
that the virtual machine itself and the underlying systerhandware are not effected
of a guest system’s crash. For this purpose, a VMM abstraethardware allowing a
guest OS to run on top of one or more virtual CPUs. Therebygertwan one virtual
CPU can be mapped to a physical one. Additionally, the pay§i®Us can be shared
among the virtual machines. This permits to achieve a battkzation of each core
and balance their load.

Due to a VMM's introduced hardware abstraction, it is difftdor guest OSes to
apply appropriate power management policies for theigassi resources, in particular
for a virtual CPU. Additionally, the isolation of the guegstems causes that a guest
system has merely a local system view. Especially, if gu&sOwvant to apply their
policies to improve the system’s performance or reduce fi@ver consumption, the
policies of the different guest OSes can contradict eacérofthis can resultin an even
worse performance than without their policies. As a coneage, virtualization has to
break up the applied policies from guest OSes by applyingaan\éMM policy.

This thesis proposes a thermal balancing policy. It bale@c€PU’s power con-
sumption among the cores of a CPU to reduce the system-wigermonsumption and
decrease the overall emitted temperature. Since a virtBal €xecuting on top of a
core causes mainly a core’s power consumption and not the \Wstf, exchanging a
virtual CPU with one consuming less power allows to distigtithe power consumption
among the cores.

Instead of migrating a thread that executes a virtual CPbh fooe core to another,
our proposed migration mechanism merely exchanges thealiPU contexts of the
involved threads. Since our thermal balancing policy ergea the virtual CPU caus-
ing the highest power consumption with the one causing tivesg only two threads
are involved. The same applies for the remaining threadsutixe a virtual CPU.

In order to determine a virtual CPUs power consumption olicyp@emands an
energy accounting mechanism that allows to assign a coogpconsumption to a
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virtual CPU. A virtual CPU’s power consumption can changgmgicantly during a
few timeslices, because executed guest applications eatls#nging power consump-
tion. Nevertheless, our policy needs to predict a virtuaUSRower consumption to
balance the power consumption among the cores. Therefatigtual CPU’s power
consumption is accounted more frequently than a guest C&latds its threads. This
permits to react quickly to a changing power consumptionrbg@propriate migration
and to predict a virtual CPU’s power consumption for the reedounting period more
successfully. Furthermore, a short accounting period eegugnt migrations reduce
the impact of a mispredicted power consumption.

This thesis is structured as followed: chapter two givesatsieview of power
management, migration and the old and new scheduling agipioaL4. In addition
to that, it introduces the L4Ka virtualization environmenh chapter three, related
work about energy accounting and energy-aware load balgnieipresented. The de-
sign in chapter four considers our thermal balancing pddicgl its demanded energy
accounting and migration mechanisms. Chapter five addré@sggementation details
to realize the design on top of L4. Finally, chapter six pnseselected evaluation
results.



Chapter 2

Background

This chapter gives a brief introduction of power managenantvell as migration.

Afterwards, we present the old scheduling approach of L4s fi&as been replaced with
a user-controlled scheduling approach. It allows to scleetiueads without kernel
interference. Finally, we explain the L4Ka virtualizatienvironment. On top of this
environment, we have implemented and evaluated the prdutesegn of chapter four.

2.1 Power Management

Today, power management of CPUs is becoming more and moi@rtamp, this con-
cerns not only users of mobile devices as laptops, but alsguating centers. Users
of mobile devices are expecting a long uptime of their devigighout recharging bat-
teries. Power management can increase this uptime edpdwyjaleducing the power
consumption of its CPUs, e.g. by frequency and voltagersgakince a CPU may not
reach a critical temperature, it has to be cooled down by twveaair- or liquid-cooled
heat sink to avoid its overheating. This heat sink is spendiore power as higher
the temperature of the cooled CPU is. By lessen the powemogpison of the CPU,
the power consumption of the heat sink can be reduced asiwehie best case also
avoided.

Computing centers try to reduce their cooling costs by panenagement. If their
applied power management policies achieve to reduce thempmnsumption of their
servers, the hardware is less heated, they might scale d@imcomputer room air
conditioner and reduce the floor space for their hardwarpeéially the cooling costs
and the power consumed for cooling a computing center ai@hiag a major problem
on the background of higher prices for power and emissiasigtieg from producing
this power.

The next section discusses why migration is necessary anahjtacts for power
management.

2.2 Migration

Multi- and many-core architectures are becoming popuias; aillow to run threads in
parallel. To be able to run a thread on another core thanittalione, a thread has to
be migrated from one core to another. The main purpose ofatiigr is to keep the
length of the runqueues of all cores more or less equal;ghialledload balancing

3
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From the perspective of load balancing it will be importantitigrate threads be-
tween different cores as infrequent as possible if each leasea distinct cache. A
cache allows a core to access memory data with a lower latiilacya memory ac-
cess lasts. Normally, an application only requires to axedsw memory data objects
during a point of time; it is called an application’s workisgt. If this working set is
small-sized, it is possible to store it in a core’s cache. ddre to which an application
is migrated to, may not contain the working set of the apfilice. In that case, it is
required to load these memory objects before they can besedeTo ensure later on
a low latency access they are stored in the core’s cache.

Therefore, a thread would not be migrated from one core téhandn an core
system, if onlyn —1 or less threads are runnable and each of these threads isgum
its own core. Consequently, one or more cores are idle afirtfee Power management
can take advantage of this situation. By accepting to loadre’s cache, a CPU’s
temperature and its power consumption can be decreasedjbgting a running thread
to a cold idle core. This allows to heat up cores more evendyextheless, it might also
be useful to migrate load between two non-idle cores, ifrthveirkloads are resulting
in different temperatures of a core.

2.3 Schedulingin L4

The older versions of the Lg-kernel have vectored out any interrupt, except for the
timer interrupt. Therefore, L4 was responsible for schieduits runnable threads and
waking up threads, if they requested it. Since the schegldatisions were made by
the round-robinu-kernel scheduler; they were intransparent for user-igrelhds.

Especially guest threads of a virtual machine and the pmdace of virtual ma-
chines suffered from this fixed scheduling policy. Becausesgthreads were sched-
uled independently of Linux by L4, threads were allowed o, uhich had blocked in
Linux, as long as they had not blocked in L4 as well. This reslbin a performance
degradation of up to 86% as shown in [9].

In the next section we introduce our new user-controlleedaling mechanism.

2.4 User-Controlled Scheduling on Top of L4

In order to prevent a performance degradation of a guestmsydtie to an entangled
scheduling policy in L4, it is necessary to permit userdéhieeads to schedule them-
selves. Therefore, a recent prototype of thei-Kernel does not perform any schedul-
ing anymore. To allow a user-level thread to schedule amtithead, the timer interrupt
must be handled by a scheduler as well. Since only one thrmade assigned as a
timer interrupt handler per CPU, the root scheduler of a CRudtes timer interrupts.
This root scheduler schedules the remaining user-thréatiste assigned to its CPU.

A user-level scheduling implies that the kernel can not é&sngake up threads,
since it requires a scheduling decision by the kernel. Thontradicting a user-level
scheduling approach, therefore one can only spesifyo or never as a timeout for
an interprocess communication (IPC). Given that the kedoek not longer dispatch
threads, only one thread may be runnable per processor. erhaining threats are
preempted and waiting for an IPC and time donation respedgtiv
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2.5 L4KaVirtualization Environment

Our design outlined in chapter four has been integratedthed_4Ka virtualization
environment [1]. The environment is composed of four défégrmodules: a hypervi-
sor, a resource monitor, an in-place virtual machine moaibtal a pre-virtualized guest
OS [6]. The hypervisor is a recent prototype of the L-4ernel, which supports SMP
for x86. The resource monitor interacts with fladernel to manage all HW resources
as well as handling all interrupts, including the timer intt. Therefore, the L4Ka
resource monitor is privileged to execute the privilegestam calls of L4. The third
module is the virtual machine monitor, which is called thedfurn wedge. It consists
of two parts: an IA32 front-end and a L4 specific back-end.seh®vo latter modules
implement the virtualization services. The last modulesevirtualized Linux 2.6.9
kernel in which the afterburn wedge resides. This allowsxicate most virtualiza-
tion services in-place, avoiding expensive address speitehes. Nevertheless, some
services are requiring extended privileges, so that thedace parts have to call their
external parts, which are residing in the resource mortiadylfill them.

Per virtual processor, one afterburn wedge is runningetheall wedges reside in
the same address space. It consists of two threads, theanani a main thread. The
main thread executes the code of the guest kernel and theantimead is responsible
for resource management and scheduling the main thread.

Consequently, the L4Ka Virtualization Environment has arftevel scheduling
hierarchy. On top are the timer interrupt handlers, at therse level the monitor
threads, followed by the main and guest kernel threads cégply and the guest user
threads at the lowest level.
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Related Work

In the first half of this chapter, we present an energy acdogiaipproach. It permits to
predict the power consumption and temperature of a CPU Hyatiag a CPU'’s per-
formance counters. The second half considers differenmggrevare load balancing
policies, which try to reduce a CPU’s temperature and irs@és throughput.

3.1 Energy Accounting

One of the most important problems of today’s microprocesgotheir power con-
sumption and temperature. To predict a CPU’s power condamas well as tempera-
tureenergy profilesvere introduced by Merkel & Bellosa [7]. They permit to esdiie
the power consumption of a task caused during one timeslice.

Atask lifetime is divided in various phases of executionjakittan be distinguished
by varying power consumptions. Within such a phase the peaesumption is more
or less static, so that the last power consumption durindgtttimeslice can be used
as a prediction for the next time the task becomes runnalalim adyevertheless, it is
possible that the power consumption of a task changes signify from one timeslice
to another. This is due to a phase change of a task. How lorfyayphase lasts is
defined by the input data, the actual executing algorithm additionally, by other
running tasks, because they are causing unpredictabléngeaid paging effects.

Nonetheless, this phase changes occur rarely. As long absdastial various
power consumption lasts simply a few timeslices is not rediby a noticeable tem-
perature change because of a heat sink’s thermal capaeitiirean merely be recog-
nized by a changed power consumption.

To reflect not only the last timeslice, an energy profile cao a@ccount the en-
ergy spent during the timeslices before. Thus, short teramgés of power consump-
tion have not a big impact on a task’s energy profile, whereasiderable long term
changes are resulting in a changed energy profile.

At next, we discuss different energy-aware load balancivlicies, whereas two
policies are based on energy profiles.

3.2 Energy-aware Load Balancing

Observations by Powell, Gomaa & Vijaykumar [4] have revedieat the cooling time a
core needs, after one of a core’s essential resources ltiekits critical temperature,

6
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does not depend considerably on the number of resourcdsabato be cooled down.
Therefore, the authors propose to heat up uniformly allueses of a core, to later
cool them all together down. This approach is caheght-and-RunNevertheless, one
has to consider that a CPU’s scheduling units are in use et from the executed
instruction, since every instruction has to be processed pipeline. Consequently,
scheduling units are often the hottest ones on a chip [5].

In contrast to integer instructions that heat up merelygeteunits, floating point
instructions equally use chip resources. To react in ancgpjate way to this various
resource utilization, it is important to monitor the powensumption not in a coarse
grained manner. This means — in the field of multicore pramsss not to measure
only the complete processor but each core. Otherwise ittibagossible to throttle
merely overheated cores, but one has to throttle all corleishwesults in unnecessary
throughput degradation.

In particular, each core of a Pentium D is provided with 1&grenance counters,
which can be used for monitoring each core’s power consump8]. An accounted
performance counter event is not directly related to its groeonsumption [2]. By
multiplying a performance counter value with a weight, otams the energy con-
sumption of the accounted event [3]. In addition to perfarogacounters, temperature
sensors are used by Lee & Skadron [5] for the@at-and-Rurapproach. Their val-
ues allow to determine whether a core is overheated or ndat.islfoverheated, tasks
will be migrated away from the overheated core to a colder &irece migration is an
expensive operation, it should happen as infrequently asiple.

Thehot task migratioris a similar approach [7]. It is not the aim to heat up a CPU
to its critical temperature, but to migrate a task of a hot G®&n evident cooler CPU,
if the temperature difference between both has reachedreeddfireshold. To prevent
a load imbalance the task of the cold CPU has to be migratekl hathe cold CPU
is idle, a hot task can be migrated. In the case that the hottagdd not be migrated,
though, the CPU has to be throttled, which results in a thnpugdegradation. The
characterization, whether a task is hot or cold, is detezthiny the energy profile
explained in the previous section, which is only based ofopmiance counter values.
The same accounts for a CPU’s temperature estimation. nigemature estimation is
based on a thermal model. Its input data are performancdeovaiues.

The major drawback why a thermal diode is not even used fosaresy whether
the critical temperature of a CPU has been reached, is thding a thermal diode
implies significant overhead. It tasks 515 on a Pentium 4 [3].

To prevent throttling a CPU when applying the hot task migratMerkel & Bel-
losa propose thenergy balancingechnique [7]. If a remote CPU’s temperature is
hotter than the local one and the tasks of the remote runeqaseiexhausting more
power than of the local one, tasks will be swapped. Cold taskise local run-queue
will be exchanged with hot ones of the remote run-queue. hlagacterization which
of the run-queues exhausts more power or is hotter, depentedasks’ energy pro-
files belonging to the same run-queue. In the same manneeantrgy profile, the
estimation of a CPU’s temperature is only based on perfocmaounters. Tasks are
exchanged between the run-queues to achieve an energyibglavithout leading to
a load imbalance.

In the next chapter we outline our thermal balancing pol@yalance the cores’
power consumptions. It is based on Merkel's & Bellosa’s jsmgal energy balancing
and hot task migration policies.



Chapter 4
Design

Todays operating systems migrate threads between distines of a CPU to increase
the system’s throughput. They achieve this by keeping thgtkeof the run-queues of
the processors balanced. Balanced run-queues will gegranteven turn-around time
of each thread. This is ensured by a migration policy that éstiy entangled in an

OS'’s kernel.

An entangled migration policy forbids a virtual machine riton(VMM) to apply
its own migration policy to fulfill system-wide requiremsnsince it cannot influence
a guest’s migration policy. Furthermore, a guest systenohfsa local system view,
which forbids that a guest systesnperforms a successful thermal balancing migration
policy, since a guesB’s migration policy can contradict’s.

Therefore, a VMM must perform the migration on its own. lastef migrating
only a guest user thread from one virtual CPU (vCPU) to anmabhe, it executes a
vCPU on top of another physical CPU (pCPU). This allows ergdirag a vCPU with
one consuming less power to apply a thermal balancing pdtEpurpose is to reduce
the system-wide power consumption and decrease the oeendted temperature.

At first, this chapter introduces the structure of the asgtiiire required for our
proposed thermal balancing policy. Then we discuss, wisyrgguired to load balance
the power consumptions of the cores of a CPU. A core’s poweswmption is caused
by a vCPU that is introduced afterwards. Applying our polieguires an energy ac-
counting mechanism. This mechanism is outlined, beforétdenal balancing policy
is considered. At last, we introduce our migration mechartis migrate a vCPU as
required by the proposed policy.

4.1 Architecture

Virtual machines allow to execute guest operating systemmarallel. To multiplex
the hardware between different guest OSes, a virtual madias to abstract the bare
hardware. Obviously, the most important resource to bealfized is a CPU.

A virtual machine monitor (VMM), as shown iRigure 4.1 consists of threads
executing within distinct virtual CPU contexts. These #u®can either execute VMM
or guest system code.

For this design, we assume that per virtual CPU offered toestggystem a vCPU
thread executes within a VMM. Although a vCPU thread execWbIM and guest
system code, it is not allowed to execute privileged ingtons at all. Therefore, the
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vCPU,
vCPU,

VMM

Hardware

Figure 4.1: Structure of a virtual machine monitor

guest system must call the correlating VMM function of a ipeiyed instruction; these
calls are namebypercalls Furthermore, a vCPU thread has to be able to notify another
vCPU thread about outstanding events.

4.2 Problem Description & Analysis

A guest system tries to increase its throughput by migratingads between its virtual
CPUs without considering that a hot core needs to be thdotitevn. This throttling
costs system performance and should therefore be avoided.

If a guest system considers not to overheat its virtual CR& cbre executing the
virtual CPU’s thread may overheat, because other guestragsalso account for a
core’s power consumption and temperature. Due to the isolaf guest systems, a
guest system can only consider its local contribution, lmitthe global contribution
caused by all running guest systems.

A VMM does not suffer from a local system view like a guest systdoes. There-
fore, it can prevent to overheat a core by an appropriateatidgr policy as long as not
all cores of a system are overheated and hot respectively.

To balance the power consumption and temperatures of &sajra CPU, a migra-
tion policy must know the temperature and power consumpifagach core to make
right migration decisions. Since a core’s temperature geartoo slowly and the res-
olution of a thermal diode is too low, an estimation of a cemgdwer consumption is
required. This estimation can be made by using an energy Infimda core. From
the core’s performance counters it allows to derive the’sqrewer consumption and
temperature.

The estimation allows a VMM’s migration policy not only tocnt the power
consumption of a core, but also of the vCPU currently runmingop of it. Conse-
quently, one can distinguish between hot and cold cores d4sawdetween hot and
cold vCPUs.

Since a vCPU executes different guest applications witlerdint energy profiles,
a vVCPU'’s power consumption may change significantly durifgnatimeslices. This
makes it impossible to predict successfully a vCPU’s povesisamption for the next
time period. Therefore, it is necessary to account a vCPbligep consumption very
frequently to be able to migrate a vCPU more often than a gedsdules its threads.

Achieving that all cores of a CPU consume approximately #mes amount of
energy demands to exchange hot with cold vCPUs. Therebymtbeation policy
has not only to consider the vCPU's current power consumptiot also the core’s
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power consumption it is running on over a longer period ofetinThe core’s power
consumption is required, since it includes the contrimgiof the remaining guest
systems. Without their contribution a VMM’s migration pofihas only a local view
of its guest system.

In addition to the ind4.4 outlined energy accounting approach, a migration mech-
anism is required to exchange hot with cold vCPUs. This i®endished by our
proposed migration policy described in secti®bb. As explained before, the migra-
tion has to happen very frequently to assure that the pestimbwer consumption of a
vCPU will also be caused by it in the most cases.

In contrast to the migration of a vCPU thread including itfCcontext to another
core, our migration mechanism describedtifidynamically exchanges the context of
avCPU. Thus, a vCPU thread can execute another vCPU. Thigesdhat the threads
exchanging their vCPU contexts cooperate with each otloethis purpose, they have
to pass by a common synchronization path to exchange théitbvébntexts, since a
context will only reflect the current guest system’s statitsithread executes VMM
code. Due to the fact that our policy swaps a hot with a coldwQRerely two vCPU
threads need to interact to exchange their vCPUs.

Before we discuss our thermal balancing policy and its meguénergy accounting
and migration mechanisms, we outline the demands for a vCigjtation.

4.3 Virtual CPU

On top of virtual CPUs a guest system executes. Each virtBél S a memory object
abstracting a physical CPU. A virtual CPU is reflecting theaion state of the guest
system thread currently running on top of it. The executtatesof a vCPU can simply
be an instruction pointer, but it can even be a complete texgiame.

Per virtual CPU that is offered to a guest system one virt@ll @hread exists. A
virtual CPU thread runs within the context of a virtual CPWislallows a vCPU thread
to execute VMM code as well as guest code. As long as a vCPddhexecutes guest
system code, the data of a virtual CPU object will be invadidce the guest system’s
execution state will be synchronized at first if the vCPU #arexecutes VMM code.
A guest system’s execution state allows a guest to procethitvthe context defined
by the execution state.

Due to the fact that a virtual CPU thread is assigned to a Bpgdiysical CPU,
a virtual CPU is mapped to a pCPU. Therefore, it is possibde ¢hfew of its data
structures relate to the physical CPU it is running on, étge,physical CPU id. In
case a vVCPU contains pCPU dependent objects, it is not p@ssimigrate a virtual
CPU to a different physical one without any changes. If a v@®btains no pCPU
dependent data, a virtual CPU migration will only requireréplace a vCPU object
and its associated context of a vCPU thread with anothertbos,a vCPU thread will
execute afterwards in a different virtual CPU context.

Since a vCPU may only be executed by one vCPU thread, a nagratia vCPU
requires a re-migration of another one. Besides, the vCiRkatls would execute con-
currently within the same vCPU context. As a consequenc&Rilthread must be
responsible for exactly one virtual CPU over its lifetimat the vCPU does not neces-
sarily have to be the same.

To be able to perform a vCPU migration, a vCPU object has tgbieup into two
parts: a physical CPU dependent and an independent pahtisiway it is possible to
migrate only the physical CPU independent part of a virtudUC
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4.4 Energy Accounting

Applying a thermal balancing policy requires assigning wC&U its power consump-
tion and temperature. Accounting a vCPU’s power consummitd temperature ne-
cessitates performance counters and a core’s energy model.

By evaluating selected events that can be accounted folP&ighower consump-
tion can be estimated. To suggest an accounted event’s powsumption, an energy
model must weight a performance counter value. Each coogigpconsumption dur-
ing the last accounting period is provided to the VMM'’s pglicTo avoid that the
policy has only a local system view, each core’s power comqgiom that has been ac-
counted during a longer period is provided additionallyntiudes the contribution of
the remaining guest systems.

Depending on the required performance counters for an gmeogel, it is possible
to read the counters sequentially, instead of explicifiyiot all performance counters
are required, it will be unnecessary overhead to read eattrp@ance counter. Instead,
only the activated performance counters need to be reaq. areeactivated by distinct
control registers.

As long as each'i control register corresponds with tH& performance counter,
reading thef performance counter requires to set its control registéirsit Thus,
instead of activating the control register by an assemhbkgruction directly, it can be
done by calling an activation function performing the instion as well. Additionally,
this function marks the performance counter within a stmectas active. Hence, the
energy accounting function merely reads each entry of thifemeance counter struc-
ture. Only if the entry indicates an activated performancenter, the performance
counter will be read as well.

Since the performance counter values are provided to vCRddl, it can be omit-
ted to provide values of non activated performance counfénerefore, the values of
activated performance counters are saved one after andthey are updated as fre-
guently as requested by the thermal balancing policy.

Instead of providing merely raw performance counter valtlesenergy consump-
tions of the counted events are saved. This applies for theeyaccounted over a
longer period and the ones of the last VM’s timeslice. Todatk to the VMM’s policy
that a new energy consumption has been accounted, a bifristeetprovided structure
which can be cleared by a vCPU thread.

During the activation of a performance counter one can §petiether the perfor-
mance counter should generate a performance monitor uptefMI) whenever the
performance counter overflows. The interrupt delivery camwoided as long as it is
guaranteed that an accounted event does not lead to an ewveiitltin an accounting
period.

Hence, our in the next section outlined thermal balancirigpoan account each
vCPU’s power consumption.

45 Energy-aware Virtual CPU Allocation

Our thermal balancing policy assigns vCPUs to pCPUs depgrati a vVCPU'’s power
consumption and temperature. Thereby, the vCPU causirtughest power consump-
tion is swapped with the vCPU causing the lowest power copsiom, preferably with
an idle vCPU. The same accounts for the remaining vCPUs.
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Merkel & Bellosa [7] have shown that swapping a cold with atask can decrease
a core’s temperature as well as increasing the system widaghput. Their policy
has the advantage that it knows which task will be schedudadl nThis allows their
policy to consider a task’s energy profile for its migratiatibions.

In contrast to Merkel's & Bellosa’s approach, a policy in gwal machine environ-
ment cannot know which task will be executed next. This istduke fact that a virtual
machine monitor at most knows which task has been executiegtdt it is saved in
the vCPU object. The question which task is executed negftitd a guest OS. There-
fore, the VMM policy can generally only regard a vCPU’s powensumption, but not
assign the power consumption to a guest task.

Hence, a mispredicted energy consumption of a vCPU willraaiitt a policy. This
can happen whenever the guest OS schedules a task with asiteggergy profile than
predicted by a policy right after a new mapping between vC&usvCPU threads has
been set up. Additionally, whenever a guest schedules rmaredne guest task during
an accounting period, more than one guest task’s activsychatributed to a vCPU's
power consumption.

One way to lessen this effect is to migrate vCPUs more fretiyuéman the guest
OS typically schedules threads. In that case, a guest systiroontinue with the
execution of a guest task if it does not to have to handle arugpt. Otherwise if it
schedules a thread with a different energy profile, merethateginning of a guest
timeslice the underlying mapping can contradict the poliayring the remaining parts
of a guest's timeslice, the policy’s aims will be fulfilledhiE allows to react quickly to
changing power consumptions of a vCPU.

Nevertheless, accounting only a vCPU'’s power consumptsrtiine advantage that
it is unimportant whether the energy consumption resutisifthe kernel or from the
user activity of a task. In comparison with Merkel's & Belis policy that only mi-
grates user threads but not kernel threads, our policy teigreCPUs including their
kernel and user threads.

Nevertheless, it is obvious that a migration between a hdtcatd vCPU is not
reasonable if the overhead for a migration is greater ttsagain. Then, vCPUs might
be migrated with a negligible different power consumptidherefore, a threshold has
to be defined controlling that only vCPUs are swapped whosepaonsumptions
differed more than k% during the last period.

A disadvantage of this threshold is that a vCPU may consumek®& power than
another one over its lifetime, not only over one period. Toidwa slow overheating of a
core, while the remaining ones are kept cold, one needs teedefien the requirement
of an equalized power consumption is overruling the thrigsand vice versa.

In contrast to Merkel's & Bellosa’s policy that accepts a parature difference
between the cores over a longer period of time, we do not adhep Their policy
will migrate tasks only if the temperatures of the coresadifihore than defined by a
threshold. This threshold results from the costs of one aiign. We consider that
the costs of one migration can be amortized over more tharaooeunting period.
Nevertheless, our policy is based on Merkel's & Bellosa’bqyo

Since the main purpose of our policy is to minimize the eneyay between two
cores, our policy assures — except for two cases — that theegagins at least static or
can even be reduced. The first case allowing the gap doulilimgst is caused by the
threshold, the second case allowing it is caused by a coogigpconsumption over a
longer period. In order to prevent that a core heats up tdpasaccept an energy gap
doubling at most. But only if an unchanged mapping causesethat has consumed
less power to consume more power than the other core aftaegi@ccounting period.
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Nevertheless, this is only true as long as the cores consuer@rédicted power.
In order to discuss our policy in detail, we have to consideres cases:

Let E; := energy, corghas consumed during c timeslicasd
e; := energy> 0, core has consumed during the last timeslarsd
k := threshold> 1 be.

1. Ife; = e; Ni # j, a swapping does not change the power consumptiais of
andj’s core. Irrespectively whether; and E; are equalized, a vCPU migration
will be avoided.

2. If core is currently exhausting significantly more power than gpbeit the en-
ergy gap between both cores is bigger, the energy gap caarubb$ed after the
next timeslice 4.1).

e; > ke; AN Ei—E; >e —¢; >0 AN iFEg (4.1)

<~ 0<Ei<Ej+€j—€Z‘ (42)
Therefore, the core’s correlating vCPUs must not be swapibdrwise the gap
would be increasedi(3).

no swappin
:>pp ¢}

Ei/ = Ei + €; A (43)
Ej/ = Ej + Bj

Thus, the energy gap between both cores will be at least abaiter the next
timeslice 4.5).

(4'%4.3) E,'/ <Ej+ej—e+e (4.4)
, .
- Ej + €; = Ej
= Ej/ —E/'> ¢
~ (4.5)
@D
= <e;—e;

3. If the energy gap between cpr@nd core is not as big as in case two, the gap
between both cores will be bridges without swapping theigised vCPUs4.7).

e; > ke; AN O0LE;—E;<e—e N i#] (4.6)

— 0<E;<Ei+e —e, (4.7)

Although it fulfills the requirement of an equalized powensamption, corghas
consumed considerably more power than gamghe last timeslice and probably
also during the previous timeslices. In the case that theepeansumption of
both cores has been static, both cores’ vCPUs have not begped because of
their significant unequalized power consumption in the.pa@kerefore, it was
not critical to heat up corebut now it may become critical. To prevent this, the
policy swaps the core’s assigned vCPUS).

swgplng Ei/ =F; + €; A (48)
Ej/ = Ej + €;
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Consequently, the energy gap between both cores will notidgdal, instead it
will be doubled in the worst casd.(L0).

@049 Ef' <Ei+e —ej+e
=F; +2¢; — €; (49)
= Ej,/ + 2(6i — ej)

<~ Ejl — Eil < 2(61 — 6]') (410)

4. If the current power consumption of comes well as its power consumption in
the lastc timeslices are higher than cgi®ones, the cores’ assigned vCPUs will

be swapped4.11).
e; > ke; N E;>E; A (4.12)

Thus, it is mandatory to swap the cores’ assigned vCRUS,

swappin
iPP g

E :=Ei+e; A (4.12)
Ejl = Ej +e;

5. As the main aim of this policy is to achieve an equalized grogonsumption of
all cores, a vCPU migration has to counteract the effect dbwlg and steady
increasing energy gap between distinct cores.

Therefore, if the gap betweel; and E; has the same magnitude as the gap
between are; ande,, that would cause a migration because of the threshold
criterion, a migration will be accomplished.(3

e; <e; < kej N E;— Ej > (k‘ - 1)€j AN i#£] (4.13)
= Ej + (/{3 — 1)€j < FE; (414)
In order to prevent an increasing energy gap between bo#is cthreir correlating
vCPUs are swapped (15.
swei)}ping Ei/ = F; + e; A (4-15)
Ej/ = Ej + €;

Since the energy gap between both cores accounted duringghémeslice
is less than the energy gap between them accounted durinigghe times-
lices, corg will have consumed also more power than gaatter the next times-

lice (4.16).
(419,(4.19 B/ = E; +e;
(413
< B+ ke (4.16)

<E,‘+€j:Ei/
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6. If the energy gap between both cores does not exhibit tidresd magnitude as
in the last case, a migration will not be accomplishéd 7).

e; <€ < kej N E; — Ej < (k‘ — l)ej N ) 7&] (417)

Therefore, their assigned vCPUs will not be exchandgetd.

no swappin
:>Pp 9

Ei/ = Ei + e A (418)
Ej/ = Ej —+ ej

Nevertheless, after the next timeslice, the gap may becbmadeded magni-
tude @.19, so that case five applies neAt13.

(4.1'0:,§4.l& Ei/ _ Ej/
S (k—1)6j+6i—6j
< ke; + (k—2)e;
= 2(k — l)ej

7. Ife; < e < key Ai # 4, corg has consumed more power than goaed
2(E; — E;) > e; — e, the energy gap between both cores will be bridged. Oth-
erwise if2(E; — E;) < e; — e;, the gap will be increased. However, it will not
be increased as much as if the vCPUs are swapped. Conseggaemigration
may not be enforced in both cases.

The presented migration decisions of our policy are redlizg the virtual CPU
migration mechanism outlined in the next section.

4.6 Virtual CPU Migration

Our migration policy tries to reduce a core’s power consuompand temperature by
exchanging hot with cold virtual CPUs. This requires a ntigramechanism that
dynamically assigns vCPUs to pCPUs. It considers swappB#objects and their
related contexts, but not migrating a vCPU thread to angiG&tU.

The mechanism tries to accomplish assigning a vCPU to a vC@iead as re-
guested by the thermal balancing policy. Given that only tavU is swapped with
a cold vCPU, merely two vCPU threads must cooperate to ealjzolicy’s requested
migration. Therefore, both threads have to execute VMM dodassure that their
vCPU objects are valid.

Our thermal balancing policy tries to predict a vCPU’s poaensumption, there-
fore it needs to react quickly to a changing power consumpiica vCPU. Otherwise
a VCPU’s power consumption would be caused by several gaslss with different
energy profiles, so that a successful prediction of a vCPliggp consumption would
become impossible. Therefore, our proposed migration am@shm must not increase
the system’s latency significantly and it has to be possiée it can be called very
frequently.

Before we consider our migration mechanism and how fredyéns called, we
outline how a core’s power consumption can be assigned toRUvBut at first we
discuss when a vCPU forbids its migration and how it can beatdd to the VMM’s

policy.
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4.6.1 Virtual CPU State

Since our migration mechanism migrates only the vCPU olgjedtits associated con-
text from one vCPU thread to another, a vCPU object has to It ié is migrated.
Itis synchronized whenever a vCPU’s guest requires to egexhypercall. Therefore,
vCPU threads exchanging their vCPUs among each other araloaed to execute
guest code during an ongoing migration.

We have concluded ia.3that a virtual CPU must be split up into two independent
parts: a physical CPU dependent and an independent one.nfskonly objects of
the independent part are accessed, the vCPU can be migratatijring the accesses
of objects of the dependent part a migration is forbiddenhe®tise a vCPU could
access another vCPU’s pCPU dependent data.

To avoid that a guest system will be migrated while it accesdgects of the phys-
ical dependent part of a vCPU object, the virtual CPU objestlieen enhanced with a
flag to indicate whether it is feasible to migrate the vCPU.

Before entering a code section that requires to access a mepeéhdent object,
the flag has to be set and the old value of the flag must be sduesithis value can
be reassigned after the critical code section has beendhgsét is important not to
reset the flag, because in this case the virtual CPU statedwaaingly suggest that it
is allowed to migrate a vCPU within nested pCPU dependetiosec

The next subsection outlines how to ensure that a core’s poaresumption can
be assigned to a vCPU, although a policy’s determined mappétween vCPUs and
VvCPU threads is not reflecting the real system state becdys€RlJ dependent ac-
cesses.

4.6.2 Assigning Virtual to Physical CPUs

The migration mechanism has to try to migrate a vCPU as debgesimapping be-
tween vCPUs and vCPU threads, which is determined by ouratiggr policy. The
mapping depends on the vCPUs’ and cores’ power consumpespegctively.

Given that the mapping is required for a migration, it hasetimain unchanged as
long as the migration of vCPUs is in progress. Besides, itieprevented that more
than one vCPU thread wants to execute in the same vCPU cagenttivated irt.3.

Due to the fact that each vCPU thread is executed at leastpmrdemer interrupt,
the mapping can be determined on each timer tick, but merag and not by each
thread. Therefore, a counter is required to ensure that #pping is only determined
by the first passing thread. The counter is incremented atdiyiby each thread after
it has passed by the migration mechanism. Only if the cowrdenls the number of
vCPU threads, a new mapping may be set up.

This ensures that a mapping can only be changed after all gGRldads have
passed by the migration function. Therefore, each vCPUathtes to execute this
function exactly once. Thereby, it is unimportant whethmes tnapping requires a mi-
gration or not.

If a determined migration of a vCPU is not realized becausewIPU forbidding
its migration, the old mapping will not reflect the real syststate. However, to set
up a mapping it is necessary to know which vCPU is executedtighwCPU thread
to assign a core’'s power consumption to a vCPU. Thereforecansl mapping of
vCPUs to vCPU threads must be introduced. It is always réfigdhe real system
state, except for the short period of time during an ongoingration. Whenever a
vCPU is migrated from one vCPU thread to another, the mapgpingdated.
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This allows accounting the amount of consumed resourcessitin vCPU. Never-
theless, this can only be assured if a new mapping is detethand realized by the
migration mechanism shortly after a core’s power consumnptias been accounted
and provided to the VMM’s migration policy. Otherwise thegmdtion mechanism
described in the next sections, can perform a migratiorcthréefore the consumed
resources would be accounted, thus the migration polidgwes that the vCPU actu-
ally executing on top of the pCPU would have caused it.

4.6.3 Synchronization Path to Swap Virtual CPUs

The migration policy proposed in sectidrbsets up mappings requiring that two vCPU
threads exchange their vCPU objects. Therefore, it is serffichat merely two virtual
CPU threads cooperate in order to swap their vCPU object® ré&maining vCPU
threads of a virtual machine are not affected by a migratidhese two vCPUs.

A migration is accomplished by a migration function exchagghe pCPU depen-
dent objects of two involved vCPU objects of an ongoing ntigra Furthermore, it
updates the memory references of the vCPU objects, henc®Hd #W@ead continues
with its execution in the migration partner’s old vCPU cote

In order to allow a vCPU thread to indicate its migration partthat it should swap
their vCPU objects, a notification mechanism is requireceréhy, it has to be assured
that merely one of two vCPU threads trying to swap their vCBjéats with each other
sends a notification. Otherwise both threads are waitinthionotification reply of the
other one forever.

Therefore, the mapping structure is enhanced Byrechronization leveflag. Its
main purpose is to indicate whether a notification has ajrdezbn sent to the part-
ner of the vCPU migration. Additionally, it indicates at whipoint of the migration
mechanism a vCPU thread is.

The highest level indicates that the thread has not senifécatibn yet, the second
highest level that a notification has been sent and the loleest that the migration
mechanism has been passed.

Since the flag is read by the partner vCPU thread at the begjrofithe swapping
mechanism to state whether the other thread has alreads setification, a common
lock must be acquired. The following accesses caused byitration mechanism can
be performed without acquiring a lock, because concurrecgsses can be precluded.

By setting thesafe threadflag, a thread indicates its migration partner a feasible
migration. Additional to the synchronization level flagdtdaved in the mapping struc-
ture.

When the first thread sends the notification, the partnerdaa receive this mes-
sage at two distinct situations. In most cases, the nofificas received because the
thread is waiting for an event. In that case, the thread isngahe swapping mecha-
nism to perform the vCPU migration. Furthermore it is polesibat the partner thread
has already called the swapping function and determinds thé help of the syn-
chronization level flag that it is not the first thread. Theref it has to receive the
outstanding natification at first.

Afterwards, the second thread can try to migrate the vCPUsy iDboth vCPUs
and their safe thread states respectively allow a migrasionigration is permitted. In
all other cases, merely a notification is sent to the initiafdhe migration allowing it
to proceed with its execution.

To perform the migration, the thread must exchange the pGigntient parts of
the vCPU objects. Afterwards the memory references have topdated, so that —
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whenever a vCPU object is requested — the new one will berrediur

Before both vCPU threads can acquire their vCPU object ogeénathe callee
must send a notification to the caller. The notification afidive callee to continue
executing. At last each vCPU thread has to update the mappitexting the real
system state, so that a core’s power consumption can benaddig the causing vCPU.

f:alse/ first thread true
vCPU'’s partner’s safe thread vCPU's safe thread

false false

true true

Y

send initiated migration notificatign

received initiated migration notificatio

true

receive initiated migration notification

vCPU'’s safe threaP

/true

swap vCPU objects

\_

send migration done notification

S

Figure 4.2: Flowchart to swap two vCPUs

o

false

Y

receive migration done notification

—

get current vCPU

Instead of calling the partner thread unconditionally leet migration is feasible,
it is sufficient to send a notification only if the vCPU statetdd initiating thread allows
a migration. If this is not the case, the synchronizatioreldiag is set to “passed
already the migration mechanism” and zero respectivetystife thread flag is set to
zero as well.

Accordingly, the second vCPU thread may not try to receivetification from
its partner thread. Therefore, the second thread has tk etdicst the other thread’s
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safe thread flag while it is holding a common lock. This assthat the flag is in a
consistent state until the next new mapping. If it is indiogua failed migration, the
thread must only set its synchronization level and safeathfiag to zero.

In the case that a vCPU should not be migrated to a differeRiyGhe swapping
method is simply passed by, its safe thread flag is ignoredtsusginchronization level
flag reset to zero.

The operating sequence of the migration mechanism is showigure 4.2 How
frequently it has to be called and the resulting consequeacediscussed next.

4.6.4 ResettingtheMapping Structure

A virtual CPU forbidding its migration prevents the reatipa of a determined map-
ping. To increase the probability that a vCPU is feasiblegarigrated allowing to
realize a vCPU migration, the migration mechanism can bkedahore frequently
than a core’s power consumption is accounted.

Additionally, due to asynchronous timer interrupts or eystlatencies it cannot
be assured that a vCPU thread is calling the swapping funciidy once per new
mapping. But as explained #6.2 at the end of the swapping function, the counter
indicating that a thread has passed this function, mustdrerimented exactly once by
each thread per new determined mapping.

Therefore, the mapping structure must know whether a thhesdalready tried
to migrate its vCPU and incremented the counter respegtivelthis way, it can be
ensured that each vCPU thread has passed at least once th@rsyvaethod before
a new mapping structure has to be initialized. Only the mappémains unchanged
as long as the bit of the provided performance counter stre¢hdicates that no new
values have been accounted.

To enforce the new mapping as fast as possible the swappigda as well as
the method setting up the new mapping has to be called befo@®8 thread returns
from a hypercall.

Since a vCPU thread may execute the swapping method moreoti@nper de-
termined mapping, the mapping may change after a threaddsse@ the method at
least once. Therefore, the mapping can change while a tligeaecuting within the
function if the thread has already tried to migrate its vCP&Jassure that the mapping
changes transparently for a vCPU thread, a thread must sewgle-it is holding a
common lock — which vCPU it has to swap with as well as whethkas passed the
method already. Afterwards, the thread is only allowed &mirihis copied data, so that
its real status may have been changed in the meantime.

Thus, our thermal load balancing policy can migrate vCPUg frequently to bal-
ance the power consumption of the cores and decrease ttadl @raitted temperature.
In the next chapter we discuss details of the implementatfosur design on top of
L4.



Chapter 5

| mplementation

This chapter addresses the realization of the proposedrdesi top of L4 and its
integration into the afterburner framework [1].

At first, we present the afterburner framework and our afterer virtual CPU
model. It is compared with the virtual CPU model of our desigkfterwards, we
discuss the problem of accessing a virtual CPU object. Irsthesequent section we
consider the allocation and virtualization of guest useedls required for their mi-
gration. The next section examines the implementatiorildetbthe vCPU migration
including its guest kernel and user threads migrations profd-4. At the end of the
chapter we discuss the impact of the vCPU migration for hagdhterrupts and for
the interrupt latency.

5.1 Afterburner Framework

For evaluating our thermal balancing policy and the perforoge of our proposed mi-
gration mechanism, we have integrated it into our afterbuframework.

The afterburner framework as shownhkigure 5.1consists of four modules. The
first module, a recent prototype of the L4kernel acts as a virtual machine moni-
tor's hypervisor. Since it abstracts the bare hardwareffér® a VMM a high-level
application interface (API) for handling hardware (HW) reszes.

Our second module is the L4Ka resource monitor. It is peeaitb execute priv-
ileged system calls of L4. These are required for handling H¥burces as well as
interrupts, including the timer interrupt. For handlinglkaore’s interrupts, one vir-
tual IRQ (VIRQ) thread per core resides within the resouromitor's address space.
Additionally, a roottask thread is located in this addresace. It is implementing
virtualization services requiring extended privilegefie3e services are called by the
afterburn wedge, the framework’s third module.

This third module implements the remaining virtualizatsamvices of the VMM. If
a service cannot be handled by the afterburn wedge itselfuse it requires extended
privileges, the resource monitor's corresponding serisceequested. An afterburn
wedge resides within the address space of the guest sydtemsl, our last module.
Thus, virtualization services requiring no extended feiyes, can be executed in-place
avoiding expensive address space switches.

One afterburn wedge exists per virtual CPU offered to a gayegem. All wedges
of a guest reside within the guest kernel’'s address spaceftArburn wedge consists

20
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Figure 5.1: Structure of the afterburner framework

of a monitor and main thread. A monitor thread receives IR@# fits scheduler and
VIRQ thread respectively, whenever an interrupt has to lnelled. These interrupts
are delivered to a guest kernel where an interrupt specifibadenandles the delivered
interrupt. These methods are called interrupt handlers.

A VIRQ thread allows a monitor thread to proceed with its eien by sending
it an IPC caused by an interrupt. Consequently, a vIRQ thredlde scheduler of a
monitor thread. Since a vIRQ thread is not scheduled by amgrahread, it is merely
activated to handle an interrupt, it is the root scheduler @fre. Hence, a vIRQ thread
accounts the consumed power of its core and offers its cpmiser consumption to
the scheduled VMMs.

In contrast to a monitor thread that executes merely VMM ¢@deain thread
executes guest system code as well. It is scheduled by ignassmonitor thread.
One main task of a main thread besides executing guest systée) is to schedule a
guest’s user tasks. Each guest user task is spanned by itadusess space consisting
of one thread per vCPU. Thus, each main thread schedulesiitshwead of a guest
user task.

Next we discuss our afterburner vCPU and how to accompbs$yiichronization.
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Additionally, we consider what needs to be done for updaditigead’s execution state.

5.2 Afterburner Virtual CPU Modd

The thermal balancing policy proposed in the previous @ragiquires to migrate vir-
tual CPUs by exchanging a vCPU thread’s context. TheretbeeyCPU of our design
described im.3will only contain the current guest thread’s executionestbits vCPU
thread executes VMM code. Thus, a vCPU’s execution statangsleither to a guest
kernel thread or to a guest user thread. In contrast to tmatafterburner vCPU will
contain the execution state of its assigned guest kernehdhand of the last executed
guest user thread on top of its vCPU if the vCPU is synchrahize

Due to the fact that guest code is executed by a monitor's thagad, a monitor
needs to update the execution state of its main thread pivgnit to proceed within
a new context. Therefore, a vCPU's execution state doesmptcontain an instruc-
tion pointer, but it contains the complete register fram¢hefmain thread. The same
accounts for the execution states of the guest user threamt® they have to be ex-
changed as well if a vCPU is migrated.

A thread’s execution state must be synchronized with itggass VCPU object
whenever it gets preempted. For this purpose, a preemptessage is generated by
the u-kernel and sent to the thread’s scheduler. This preemptiegsage contains the
execution state of the preempted thread.

In the case that the scheduler has also been preempted aatifgvior an IPC, it
receives the preemption message implicitly, otherwiseustmneceive the preemption
message to synchronize the vCPU explicitly. This applieshfe monitor as well as for
the main thread. Both must synchronize the execution sfatew scheduled threads
before the migration mechanism may be called.

By sending a new execution state along with a preemptioty repksage allowing
a thread to proceed, a thread can resume its execution iheanointext. Since the
vCPU thread of our design has been replaced by the vCPUgreesbimonitor, main
and guest user threads, the migration mechanism must ufidagxecution state of
these threads. Additionally, the monitor and main threaasnory reference of the
vCPU object has to be updated.

A thread’s execution state can also be sent explicitly bjintpthe system call
L4 _Thr eadSwi t ch sending a preemption yield message to the thread’s assighed-
uler. It will be called by a main thread in order to yield itsopessor control to its
monitor thread if its vCPU is idle.

The implementation of our design on top of L4 demands thaititial relationship
between vCPUs and pCPUs can be obtained, e.g., for detagnifiether a vCPU can
handle an interrupt. Therefore, the physical CPU depenalgiett pCPU objec} of
a vCPU contains thaiitial vCPU id. Hence, each vCPU has an own pCPU object,
although more than one vCPU can be mapped to a pCPU.

In the next section we consider the impact of preemptionshosatls accessing
their vCPU objects.

5.3 Accessing aVirtual CPU Object

Monitor and guest kernel threads access virtual CPU obgratisexecute within the
context of their assigned vCPU object respectively. Sinoeproposed mechanism
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migrates a vCPU object without the knowledge of a guest keéhnead, it is necessary
that a guest kernel thread executes within the context ofi¢iaeobject, afterwards. If
this is not the case, two distinct kernel threads would eteewithin the same context.

Therefore, we have to consider how it can be assured that tgataed threads
are accessing their assigned vCPU objects. If a guest kéhrezld gets preempted
while it does not access a vCPU object, the new vCPU objettbweiteturned to the
thread after the migration. A vCPU migration is forbiddeuridg the access of pCPU
objects, therefore it is not causing any problem. The firigicaf situation in which a
thread can be preempted is while it acquires its vCPU object.

If a vCPU object is not acquired atomically, a thread coult preempted while
obtaining its vCPU object. Since the migration mechanisnmo& recognize this, it
migrates the vCPU including updating the address of theathiserCPU object. Thus,
the thread continuing with acquiring the vCPU object, doatsatquire its vCPU ob-
ject. Instead of acquiring the old one of its migration partrit obtains the migration
partner’s new vCPU object. This vCPU object was its old one.

In order to prevent that both threads access the same vCRUtptbje thread needs
to acquire the vCPU object again to obtain a valid one. Tordete whether the vCPU
object is valid, a thread compares its own processor numtiikrtiae physical CPU id
of the pCPU object. If both numbers are equal the thread mageed, otherwise it
must try to receive a valid object once again.

In case that merely pCPU independent objects of a vCPU aessed, the vCPU
can be migrated, because for these accesses it is not etpiobtain the vCPU once
again. Hence, the address of the vCPU object is stored onéble s

One drawback of this approach is that a vCPU thread will gétalid vCPU ob-
ject if two vCPUs that are mapped to the same pCPU are excaNgwertheless, this
case will never occur, since vCPUs mapped to the same pCPblewér be exchanged.

54 Guest User Threads

Our migration mechanism discussed!iB exchanges merely the vCPU contexts of two
involved vCPU threads. Since the structure of our afterbuxMM is more complex
than the assumed structure of a VMM in our design, it is ndiigaht to update the
monitor and main thread’s vCPU references. Instead, foiroptementation we have
to consider the allocation of a guest application as weltsaigration.

Before we examine which data structures of a guest apmitatiust be virtualized
for performing a migration, we discuss how to manage an efficjuest application
allocation.

541 Allocation

A user application of a guest OS executes in its own addressesprhis guarantees
that a crash of a guest application can neither effect the Viwivthe guest system.
Therefore, a guest user task and its address space needsaltodaged by the VMM
whenever the guest OS creates a new application. At leasjuest thread of a task
has to be allocated. This allows to schedule a task on tog af#igned vCPU.

In order to permit a guest OS migrating its applications faoma vCPU to another, a
thread of a guest task will be allocated instead of migrdtad vCPU assigned thread
of the guest application exists. Thus, a guest task’s thcaadot only be allocated
when a new guest address space is created, but also duripglézation’s execution.
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This is a drawback when a vCPU is migrated but no thread of tiestguser task
executing afterwards is allocated. To avoid a thread’scation during the migration
mechanism, one thread per vCPU is allocated during a gugditajon’s creation.
Consequently, during the execution of a guest user task nbits threads will be
allocated.

To avoid expensive cross processor IPCs, a guest taské&tigscheduled anytime
by the same main thread . Therefore, its scheduler and pagsrba set accordingly.
Since vCPUs may be migrated while threads of a guest tasklacated, it is manda-
tory that each thread has a distinct scheduler and pages, Tthia prohibited to rely
on vCPU's properties, instead pCPU objects have to be aatebsectly without the
indirection of a vCPU object, because they remain unchaaffedtheir initialization.
Their initialization is accomplished before the first gueseér thread is allocated. This
ensures that a guest user thread’s scheduler and pagetidmaam threads.

5.4.2 Virtualization

Applying our thermal balancing policy, demands a migratieechanism. Our mech-
anism does not only have to swap and update vCPU objects afitblved monitor
and main threads, but also to migrate vCPU’s assigned gsesthreads. Analogous
to a vCPU migration, only a guest user thread’s executice $tas to be updated. This
avoids changing a guest user thread’s scheduler and pageg ds lifetime.

A thread infoobject contains the execution state of a guest user threacekhs
as two thread dependent objects: a thread’s thread id amsthis. The thread id is
required for replying to a guest user thread by a guest useadls main thread. A
thread’s state indicates whether a thread is merely preszinptpage fault or exception
has occurred, or if it is waiting for its startup IPC. Themefdfor migrating a guest user
thread its thread info object has to be split up into two patdread dependent and
independent part.

In the case that a thread has not received its startup IP@ gratst receive it before
it can execute. If a thread has received the startup IPClréas unimportant which
message it receives as long as it is not a startup IPC, sintzetaps|PC may only be
received once.

Therefore, a thread’s state needs to reflect a thread'stegalanly until the thread
has received its startup reply message. Afterwards, theistao longer thread depen-
dent, so that the state can be migrated. Hence, two thretas steay exist: the first
state depending on its thread assures that a thread reisigéstup IPC, the second,
independent state that afterwards the requested messkhge went unconditional of
a thread’s real state.

If a guest user thread sends a message to its main threadetisage will contain
at least the thread’s execution state. This message is satteel message registers of
the receiving thread and main thread respectively. To adbiat the message will not
get lost or attributed to another thread, the used messgg#ars have to be saved in
the thread’s thread info object at first. Afterwards, it iadible to migrate the guest
user thread as well as the vCPU.

Therefore, it is no longer permitted to rely on the messagésters of a main
thread, since they may belong to a different guest userdhr@acordingly, it is not
allowed to migrate a vCPU as soon as the message registensaifidhread have been
loaded because of its reply to a guest user thread. Otheavgaest thread may receive
a wrong message, resulting in an unpredictable user agiplidaehavior.
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5.5 Migrating Virtual CPUs

In our design we have not distinguished between running atdeenel or a guest user
thread on top of a vCPU. Due to the VMM structure of our afteneu framework we
must distinguish between them, since a monitor thread stbgderely a guest kernel
thread, but no guest user threads as well. They are schelylgetir assigned main
threads.

As long as a main thread executes guest kernel or in-place \Gddé, a monitor
thread must merely receive a main thread’s preemption rgegsa synchronizing its
vCPU object, since the execution state of the last executedtgiser thread has been
synchronized before. In the case that a main thread scledueest user thread, a
guest user thread’s preemption message has to be receigedeinto synchronize its
execution states with the main thread’s vCPU object, bef@feU can be migrated.

Consequently, migrating a vCPU while it executes guest csde is more com-
plex. Therefore, we discuss this case after we have outtmedhechanism to migrate
a vCPU executing guest kernel or VMM code.

55.1 Migration During Guest Kernel Execution

Our migration mechanism does not only allow to migrate gusst threads, but allows
to migrate a complete vCPU including its guest kernel thresl long as the vCPU
executed guest kernel or in-place VMM code before its prémmpour migration
mechanism must merely synchronize the main thread’s execstate with its vCPU
object to swap its vCPU. The migration will be feasible, i€ tmain thread does not
access a pCPU object required for accessing a privileged \8éMice. However,
before we consider implementation details of our migrafienction, it is outlined
what needs to be done to call the swapping mechanism and wivat it.

Minimizing the time between setting up a mapping and itsizatibn, requires to
call the swapping mechanism as frequently as possible.oA¢h a monitor’'s event
loop — for receiving IPCs and scheduling its main thread -sdu# only receive pre-
emption, preemption yield and preemption reply messapesgtthree message types
are the most frequently received ones. In order to avoid ttreatswapping method
can only be called by one of these handlers because of tlffgralit code sequences,
these three handlers have to execute a common code seqtiencabing the swap-
ping mechanism. This code sequence is cadl@dp reply it is a combination of their
handlers.

Before the preemption and preemption reply handler of a tapttiread reply to
their main thread, they check whether an interrupt neede tacknowledged and de-
livered. This can be omitted in the preemption yield handieice a vCPU can only be
idle if no interrupt is pending.

Swapping a vCPU within the preemption yield handler chanigesituation a bit,
since the migrated vCPU executing after a performed vCPUatian is not necessar-
ily idle. Consequently, also the preemption yield handlesththeck after a migration
whether an interrupt has to be acknowledged and delivered.

Therefore, this is done by the swap reply method as well. dtkk for interrupts,
delivers them and replies to its main thread as long as thdviShot idle. If the
VvCPU is idle, a monitor thread sends a preemption yield ngesgaits scheduler. The
preemption reply handler introduces no more complexithgesit has a common code
base with the preemption handler. Therefore, the swap fapltion does not need to
distinguish between them.
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After we have discussed what is required to call our swappieghanism, we
explain under which condition the swapping method must aag not be called.

If a main thread yields its processor control, the preenmptield handler must save
the thread’s execution state in its vCPU object beforerggtine migration mechanism.
The same applies for the preemption handler receiving a tha@ad’'s preemption
message. It must call the swapping method independentiy the question whether a
migration is feasible or not.

—

fff2 -

/
/
" vCpu is preempted vcpu is not allowed to be migrated

|
\

\ ffd2 A vepu is not preempted

ff\o/lo
ffdl A vepu isidle
ffd2

Figure 5.2: Swap a vCPU during guest kernel execution

messages:

ffdO: preemption

ffd1: preemtion yield
ffd2: preemption reply
fff2: swap vcpus

In the case that a monitor receives a preemption reply medsa its scheduler,
a VCPU object may not be synchronized. If a vCPU is not synibeal, the moni-
tor replies toL4 ni | t hr ead for receiving the outstanding preemption message of its
main thread for synchronizing its vCPU object. Since thissage is received by the
monitor’s event loop, the preemption handler calls the givapfunction. This will not
be necessary if a monitor's vCPU is already synchronizednTh preemption reply
handler merely calls the swapping method. Furthermoreswapping function can
also be called if the vCPU state forbids its vCPU migrationefeby, it is unimportant
whether the vCPU is already synchronized or not, since aatir is not feasible be-
cause of its state and therefore must not be performed. Ekizithed flow is shown in
Figure 5.2

In subsectiort.6.3we have outlined that a notification mechanism is required to
swap two vCPUs. For our implementation on top of L4 we propmsdPC based
notification mechanism, which is outlined next.
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For swapping a monitor's vCPU, the monitor thread initigtanmigration sends a
swap vcpus message to its migration partner. If the reagiviread has already called
the swapping method, the message must be received expliditin the method. Oth-
erwise this message will be received within a monitor’s ¢Veop by the swap vcpus
handler.

Comparable to the preemption reply handler, the swap vcandler must receive
the outstanding preemption message of its main thread ¥@#U is not preempted.
If this is not the case, it has to call the swapping mechani@unsequently, the pre-
emption reply handler can also handle swap vcpus messagedy has to distinguish,
which message has been received to set the argumeeeiled swap vcpus message
of the swapping mechanism appropriately to indicate whetthe swapping method
needs to receive the outstanding message or not. Furthertier preemption reply
handler can avoid trying to update the mapping if it handlswap vcpus message.

After a successful migration of a monitor’s vCPU, a monitarstupdate — with the
next reply to its main thread — its main thread’s executiatesby sending a preemption
reply message. Therefore, a flag has to be saved in the vCRGt ddjlicating whether
a main thread’s execution state must be updated. If the se@p method replies to
its main thread and the flag is set, it must update its mairathseexecution state.
Afterwards, it must reset the flag, in order to avoid updatiregexecution state even if
it has not changed.

In this subsection we have discussed how to migrate a vCPtlLrg guest ker-
nel or in-place VMM code, the next subsection addresses ibeation of a vCPU
executing guest user code.

5.5.2 Migration During Guest User Execution

The main task of a guest system is to execute guest user cdaeefdre, it must be
possible to migrate a vCPU executing guest user code anchhoaawCPU executing
guest kernel or in-place VMM code.

Due to the afterburner VMM structure, a main thread schesdallguest user thread
by sending a guest user thread a preemption reply message retinires to access
the thread dependent part of a guest user thread’s threadhjegct 6.4.2, therefore it
is not feasible to migrate a vCPU while its main thread scheeda guest user thread.
Furthermore, a monitor thread can merely receive its ma@atiis execution state, but
not the execution state of the currently executed guestthsead required for a vCPU
migration. A guest user thread’s execution state can ontgtxved by its main thread.

In order to allow a migration while a vCPU has executed guset aode, a mon-
itor's main thread must be scheduled to receive the outstgrekecution state of its
scheduled guest user thread. It is saved in the thread inéxtobf the user thread.
Since, a main thread accesses no more thread dependerts@fjecwards, it is per-
mitted to perform a vCPU migration. For switching back tonitsnitor thread, a main
thread performg&4 _Thr eadSwi t ch. This sends the thread’s execution state along with
the preemption yield message to its scheduler.

Since a main thread must only switch to its monitor thread iifiigration is in-
tended, the vCPU object has been extended by the flagding swapack swapand
executing userA monitor thread sets the pending swap flag whenever a rnograt
outstanding and the main thread has set its status to emgausier. A main thread
sets this flag during the access of thread dependent obfgdstieduling a guest user
thread. After a main thread has received and saved a usedifiexecution state, it
checks whether a pending swap is outstanding. If this is #ise,ca main thread sets
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the ack swap flag to indicate that a migration may be perforamatiswitches to its
monitor thread.

As long as the executing user and pending swap flags are setnéomthread
knows that a migration will be feasible, since its main tiréas to call the system
call L4_Thr eadSwi t ch within one timeslice. Therefore, any handler except the pre
emption yield handler must allow its assigned main threguréceed for receiving the
outstanding execution state of a main’s guest user thread.

swapvcpus

prA euA psA asA ts

ffd2 A —pr A euA ps
ffd2 A pr A euA psA —ts

Monitor;

ffgo
ffdl A euA psA as
ffd2
abbreviations: messages:
as: ack swap ffdO: preemption
eu: executing user ffd1: preemtion yield
virg, pr: preemption ffd2: preemption reply

ps: pending swap fff2: swap vcpus
ts: ThreadSwitch

Figure 5.3: Swap a vCPU during guest user execution

If a main thread gets preempted before it caisThr eadSwi t ch and has already
acknowledged the pending swap, a vCPU migration must noteb®nmed. Since
its pending swap and ack swap flags are reset within the sngppéthod, a main’s
preemption yield message would be interpreted as an IPGirgathe monitor to send
ayield IPC to its scheduler. Therefore, only the preempyiefd handler is allowed to
call the swapping function if a main thread has acknowledgpdnding swap. This is
shown inFigure 5.3

A vCPU migration requires that a guest user thread’s threfdbject is set ap-
propriately, as discussed in subsect®d.2 It has to be assured that a main thread
replies only to its assigned guest user threads, but notée ohother main threads.
This can be assured by a main thread itself or in cooperatitmits monitor thread.
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Let us at first consider that a monitor cooperates with itshntlaiead. During a
successful vCPU migration each monitor thread has to ugtateurrent guest user
thread’s thread dependent part. This assures that a maiadttaccesses — within its
event loop for receiving IPCs and scheduling its guest Usertls — a valid thread info
object required for replying to one of its assigned threaus especially for sending
a startup reply message if a thread has not received onee 8inlg the object of the
last executed guest user thread of a vCPU is adjusted by aondimiead during the
migration mechanism, the remaining objects reside undrnbhey must be adjusted
on demand whenever a main thread schedules a new guesiadipplic

In contrast to this first approach a main thread can assur®utithe assistance
of its monitor to use a valid thread info object if it accesdesthread dependent part.
Instead of adjusting the object only if a main thread scheslalnew task, it is necessary
to adjust it before each reply. By extending the thread dégetpart of the thread info
object with aninitial vCPU id, it is possible to adjust the object and send the guest
user thread a new execution state merely if the object®INMCPU id differs with the
VvCPU’s ones. In the case that both ids are equal, it can beleddd send the new
execution state along with a preemption reply message,rgsde a main thread has
received a preemption message. Otherwise the exceptioager fault handler may
have modified the thread’s execution state requiring to semdew execution state.

Since the last approach will only send a new execution st#tesimandatory, it is
calledlazy guest user thread migratiomn contrast to that, the cooperative migration
is namecdeager guest user thread migration

After we have discussed the necessary changes for migra@iRy)s in order to
apply our thermal balancing approach, we propose a hardiweegupt notification
mechanism in the next section. It reduces the impact of a v@Rjgation on the
interrupt latency.

5.6 Interrupt Handling

A vCPU migration caused by our thermal balancing approdsériently influences the
interrupt handling of a virtual machine on top of L4. A vIRQehd is assigned at least
to its timer interrupt to handle a core’s timer interrupt.dit@bnally, it can be assigned
to hardware interrupts to handle them. Due to the afterlgtnecture, a vIRQ thread
delivers an interrupt only to its assigned monitor threads.

Since the vCPU migration should be as transparent as pessiblinterrupt must
be delivered to its designated vCPU. One approach is thantgeation mechanism
migrates the IRQ threads of a vCPU as well. Furthermore, ilR®\thread of a vCPU
must be reassigned to its new IRQ threads to deliver thegrrmpts to its vCPU. The
drawback of this approach is that an IRQ thread’s migratisiwall as assigning a
VvIRQ thread to an IRQ thread requires to call privileged Ldteyn calls. In order to
perform these calls two address space switches are reqsineé these calls can only
be by accomplished by threads of the L4Ka resource monitor.

In order to avoid the overhead of these privileged systels,aaé apply our second
approach proposed next. It assures that interrupts amgnaskio the same pCPU than
without a vCPU’s migration.

For this purpose, a VMM service must call a vCPU’s interrughdiler that is not
necessarily also its pCPU interrupt handler, whenever &dénterrupt should be en-
abled or disabled. Although an interrupt is only delivergdabvIRQ handler to its
monitor thread, each handler can handle every interruptaeledgement, even in-
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terrupts not assigned to it. In order to acknowledge anrfiapera VIRQ thread is not
assigned to, a thread must propagate the acknowledgememtR® thread represent-
ing the interrupt.

Since the ongoing vCPU migrations are transparent for a iR@ad, a VIRQ
thread delivers its hardware interrupts to its monitorakreHowever, this is a problem,
since a monitor does not execute in its initial vCPU’s conik the time, but the
hardware interrupt can only be handled and acknowledgekiswCPU. Hence, an
interrupt can only be recognized if the vCPU'’s current mamihecks for them, which
can last up to one timeslice.

This may become a bottleneck especially for hardware imp¢intensive applica-
tions. Thus, a hardware interrupt notification mechanistween vIRQ and their as-
signed monitor threads as well as between the monitor terésinselves is required.

The hardware interrupt notification between vIRQ and theinitor threads can be
accomplished by setting a flag indicating an outstandingvsare interrupt. Before
a monitor thread waits for an IPC from its scheduler or maiedH, it checks the
flag to distinguish whether it must notify another monitaretid about an outstanding
interrupt.

Only if the monitor thread does not execute or has executéatdéhe last tried
migration in its initial vCPU’s context, it must send the niton executing in its initial
vCPU'’s context a hardware interrupt notification. It enfesthat this monitor handles
the outstanding interrupt. Otherwise, it has handled tteiapt itself and no interrupt
is outstanding anymore, or the interrupt will be handledtbyriigration partner. After
sending the notification or handling the interrupt, the fiageiset by the monitor thread.

Our proposed interrupt notification mechanism is not rezglifor timer interrupts,
since each guest kernel thread can handle a timer inteffheteby, it is unimportant
whether a timer interrupt is designated for the monitor'srent vCPU, since each
monitor delivers a timer interrupt to its current vCPU.

In the next chapter we present selected evaluation rediuthe implementation of
our design on top of L4. In particular, we consider the eagdrlazy guest user thread
migration as well as the benefit of our proposed interrupfioation mechanism.
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Evaluation

The performance of the implementation of our proposed desigtop of L4 has been
evaluated on a 3 GHz Pentium D830 with 2 cores and 2 GByte merAarirtual ma-
chine consisting of one guest kernel thread per core haséesmuted on this system.
The virtual machine’s timeslice lastsiiks and the guest's timeslice k0s. A migra-
tion frequency of OH z in the following benchmarks is equivalent to the afterburne
performance without any changes.

Due to the lack of a energy model of the system, it has not bessilple to apply
the proposed energy-aware vCPU allocation policy. Instéedapplied policy tries to
migrate the vCPUs as often as possible to achieve 1,000200Q0 or one migration
per second.

At the beginning of this chapter, we present the networkgeerance of our imple-
mentation. Thereby, we compare the eager with the lazy gisestthread migration.
Furthermore, we show the benefit of our proposed interrugificetion mechanism for
the network performance and interrupt latency. Afterwawds examine the overhead
introduced by our migration mechanism by building the Likexnel. We finish this
chapter with an evaluation of the impact of physical CPU delpat object accesses on
the realization of determined mappings by the migratioricgol

6.1 Network Performance

For measuring the network performance and interrupt |gteaspectively, an Intel
E1000 Gigabit network interface has been attached to thtersysThe 1/O load has
been generated by tinet per f benchmark [8], which has been executed by an external
client.

As outlined in5.5.2 a guest user thread can be migrated eagerly or lazily. These
two approaches have been compared with each other, whergupmigration policy
tries to migrate a vCPU every 1, 10, 50, 100 and 1,600

As you can see iffable 6.1 the lazy thread migration is a bit better than the eager
thread migration, but not significantly. Besides, a frequeigration increases the
Net per f performance, since a monitor thread checks for outstaridiegrupts more
often.

In order to achieve these performances, it is necessarytbaseinterrupt notifica-
tion as proposed in sectidn6. The benefit of this interrupt notification mechanism is
outlined inTable 6.2 The throughput can be increased at least aboutMgEG. A pol-

31
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| Migration frequency [Hz] | Netperf [2222] (eager) | Netperf [2221] (lazy) |

0 846.25 846.25

1 841.40 844.67

10 841.77 844.91
20 846.51 849.92
100 855.64 858.84
1,000 855.72 859.12

Table 6.1: Eager vs. lazy guest user thread migration

icy migrating a vCPU up to a thousand times per second betleéiteiost. Thereby,
lazy and eager migrations can profit to the same degree if gmarés the different
performances between eager and lazy migrations.

| B[Hz] | NeP[2E] [ Def[M2E] [ Ine?| NIF[222E] | DIF[22E] | |nl9]

1 714.50 126.90| 127,412 711.14 133.53| 129,535
10 712.74 129.03| 126,957 709.65 135.26| 128,003
20 715.04 131.47| 125,893 715.13 134.79| 131,813

100 727.98 127.66| 113,892 724.31 134.53| 119,083
1,000 686.79 168.93| 71,879 674.15 184.97| 77,869

a Migration frequency

b Netperf without interrupt notification (eager)

¢ Difference to Netperf with interrupt notification (eager)
d Interrupt notifications (eager)

¢ Netperf without interrupt notification (lazy)

" Difference to Netperf with interrupt notification (lazy)

9 Interrupt notifications (lazy)

Table 6.2: Interrupt notification

To attain this performance, more than 70,000 cross procéR6s are required. If
a VCPU is migrated merely less than everys4@, more than 125,000 IPCs will be
required. This is due to the fact that — currently or before [ist reply — the vCPU
handling the hardware interrupts is not executed by itginmonitor thread. Only if
it is executed by its initial monitor thread a notificatiomdae omitted. This applies
more for frequent migrations.

We have considered the influence of the migration mechanisnthg interrupt
latency, in the next section we evaluate the overhead of igeation mechanism for
building the Linux kernel.

6.2 Kerned Build Performance

Given that the network performance only indicates whetherititerrupt latency has
been increased significantly, the kernel build performastoewvs how far an appli-
cation’s execution time is affected by trying to swap a vCR&htiently. Since the
performance difference between eager and lazy migratsomsgligible, merely results
of the lazy migration are outlined.
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| Migration frequency [Hz] | Total execution time[s] | Performanceloss[%] |

0 187 0.0

1 191 2.1

10 191 2.1
20 193 3.2
100 199 6.4
1,000 209 11.8

Table 6.3: Kernel build performance

Table 6.3shows that enforcing thousand migrations introduces aifgignt but
acceptable overhead. Since the system boots from a RAM ditlhas no hard disk,
hardware interrupts can be excluded. Only the swapping amgsin is responsible for
this performance degradation.

This performance degradation will probably be decreasectifpply our thermal
balancing policy, since a migration is mostly performedsfgain is greater than the
overhead introduced by the migration mechanism. Never$iself our proposed load
balancing policy does not reduce the migration frequenggificantly, it will be nec-
essary to migrate a vCPU less frequently. Thereby, one heasrtsider the tradeoff
between the mispredicted power consumption of a core anettheed overhead.

In the two previous sections we have evaluated the perforenahour migration
mechanism, in the next section we examine the impact of pay§iPU dependent
object accesses on the realization of a determined mapping.

6.3 Physical CPU Dependent Object Accesses

Our migration mechanism has been implemented on top of a#3€d system, there-
fore pCPU dependent objects are accessed frequently byrathread and forbid a
vCPU migration. To evaluate whether these pCPU dependertses prohibit to re-
alize determined mappings, it has been counted how manyg prosessor IPCs need
to be sent for realizing a mapping. Furthermore, it has beesidered how often the
mapping structure needs to be reset for realizing it. To g@istic values, the values
have been accounted while building the Linux kernel.

As explained in subsectich6.3 to realize a mapping determined by a policy, it is
often required to pass by the swapping method more than ofiue.can be seen in
Table 6.4for migration frequencies less than 180:. Resetting the mapping structure
only leads to the desired mapping in less than 40 % of thess chievertheless, merely
around 20 % of all cross processor IPCs indicate an outstgradvap, resulting in an
unchanged mapping. Therefore, it is mandatory to reset #pping structure as often
as needed.

A migration frequency of 1,008 > exemplifies this. The mapping is only reset 4 %
more often than a new mapping is set up. Consequently, onf & the requested
mappings have been realized. The breakeven point wheraegebsted mapping can
be realized is between a migration frequency of 20 and AQ0 Already 95 % of
all requested migrations will be fulfilled, if a new mappirgset up each 16s. To
achieve such a good coverage, the mapping structure nebdséset more often than
125 % as a new mapping is determined. This is no major ovetfoedidequencies less
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than 100H z, since the required cross processor IPCs are only a smetiloineof IPCs
that are required to indicate an outstanding interrupt.

| |1Hz |10Hz | 20 Hz [ 100 Hz | 1,000 H= |

Et| 191 1901 193 199 209
DmP| 191 | 1,913| 3,867| 19,994| 209,648
Rm®| 191 | 1,913| 3,867 | 19,095 139,110

Srf| 244 | 2,361| 4,929| 23,610 159,452
Rtm®| 550| 4,800 10,163| 45,538| 217,848

Rrf[ 1.00 1.00 1.00 0.96 0.66
Mmrd| 0.65 0.60 0.62 0.58 0.36
RmM| 2.88 251 2.63 2.28 1.04

Snit| 0.22 0.19 0.22 0.19 0.13

& Execution time

b Different mappings

¢ Realized mappings

d Swap notification count

¢ Reseted mappings

" Realized-ratio%

9 Mappings-miss-ratiol — £

h Required-mappings-to-realized-ratjo:
' Swap-notification-miss-ratiot — g

Table 6.4: Physical CPU Dependent Object Accesses

We have shown that a vCPU can be migrated transparently withterfering a
guest system with an acceptable performance degradatiqgplyiAg our proposed
thermal balancing policy will probably decrease the perfance degradation, since a
vCPU migration will only be performed if the gain of a migiatiis greater than its
overhead.
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