
Universität Karlsruhe (TH)
Institut für

Betriebs- und Dialogsysteme

Lehrstuhl Systemarchitektur

Diploma Thesis

Energy-Efficient Scheduling for
Multi-Core Processors

The System Architecture Group
Prof. Dr. Frank Bellosa
University of Karlsruhe

Johannes Lieder

Advisors:
Prof. Dr. Frank Bellosa

Dipl.-Inform. Andreas Merkel

November 18th, 2008

Hiermit erkläre ich, die vorliegende Arbeit selbständig verfasst und keine anderen als
die angegebenen Literaturhilfsmittel verwendet zu haben.

I hereby declare that this thesis is a work of my own, and that only cited sources have
been used.

Karlsruhe, den 18. November 2008 Johannes Lieder

Abstract

Constant advances in processor microarchitecture promise new levels of performance
and efficiency with each new hardware generation. However, depending on the type of
software a computer is processing, running the CPU at the highest frequency setting
may not be the most efficient mode of operation. Previous work in the area of power
management demonstrated that it is possible to make an operating system energy-aware
in order to run hardware at its most efficient performance state. With the emergence
of multi-core processor architectures, new challenges arise for operating system software
and CPU power management in particular. The main obstacles are caused by hardware
dependencies between cores where all cores share a common interface to main memory
and groups of cores are subject to a common clock frequency.
This work presents an approach to apply previous knowledge about the energetic char-

acteristics of microprocessors to computer systems based on a multi-core design. By
employing an energy-aware scheduling algorithm, which collects specific energy-related
information regarding the processes in the system, the operating system can determine
the most efficient performance state the respective processor should operate at. This
concept is augmented to the multi-core case by coordinating the set of individual perfor-
mance state requests according to processor topology and the policy objectives the user
can specify. The side effects shared memory bandwidth has on our policy are overcome
by employing a heuristic that models the memory-related behavior of our platform.
We implemented energy-efficient scheduling for the Linux operating system kernel. Our

evaluations show that the proposed design allows to run a multi-core system at optimum
efficiency under varying workload conditions. The significant gains in energy efficiency
that are possible with some workloads come at no additional hardware requirements or
costs.

Acknowledgements

I would like to thank my advisors at the University of Karlsruhe, Prof. Dr. Frank
Bellosa and Andreas Merkel for their constant support and the opportunity to conduct
research on such a rewarding topic as power management with regard to the architecture
of computer systems is. Equally, I would like to extend my sincere thanks to Prof. Dr.
Gernot Heiser and his ERTOS group at the NICTA research lab in Sydney, Australia.
Without the most inspiring research environment and the interaction with his team this
work would not have been possible in this form. Here, especially, I want to mention Dr.
Peter Chubb, my supervisor, for his input and guidance as well as David Snowdon and
Etienne Le Sueur for the fruitful discussions I had regarding my thesis work.
Finally, I want to thank my parents and family for the trust and love I receive and their
selfless dedication to support all of my goals during the time of my studies.

7

Contents

1 Introduction 11
1.1 Improving Energy Efficiency . 11
1.2 Chip Multi-Processors . 11
1.3 Energy-Efficient Scheduling for Multi-Core Processors 12
1.4 Thesis Outline . 14

2 Background and Related Work 15
2.1 Background . 15

2.1.1 Processor Architecture . 15
2.1.2 Power and Performance . 17
2.1.3 Power-Related Hardware Mechanisms 19
2.1.4 Power Management . 20

2.2 Related Work . 22
2.2.1 Event-Driven Energy Estimation 22
2.2.2 Process Cruise Control . 24
2.2.3 Workload Classes . 25
2.2.4 Energy-Aware Policies . 26
2.2.5 Multi-Programmed Workloads . 27
2.2.6 Multi-Core Caches . 28
2.2.7 Energy-Efficient Scheduling . 28

2.3 Minutiae . 28

3 Design 29
3.1 Problem Statement . 29
3.2 Design Overview . 29
3.3 General Reasoning . 30
3.4 Measurement Setup . 31
3.5 Basic Energy Model . 32
3.6 The Multi-Core Case . 34
3.7 Mixed Workloads . 36
3.8 Online Estimation . 39

3.8.1 Memory Bottleneck . 39
3.8.2 Bandwidth Model . 40

9

3.9 Multi-Chip Module Issues . 43
3.10 Energy-Efficient Scheduling . 47

4 Implementation 51
4.1 Energy Infrastructure . 51

4.1.1 Architecture-Specific Enhancements 51
4.1.2 Workload Classes and Threshold Policy 52

4.2 Coordination Framework . 54
4.3 Scheduler . 55

5 Evaluation 57
5.1 Test Setup . 57
5.2 Bandwidth Model Verification . 58
5.3 Benchmark Suite . 58
5.4 Parameter Optimization . 59
5.5 Multi-Core Energy Gains . 61

6 Conclusion 65
6.1 Summary . 65
6.2 Achievements . 66
6.3 Future Directions . 67

10

Chapter 1

Introduction

1.1 Improving Energy Efficiency

With the advancements in semiconductor technology, integrating a steadily increasing
number of transistors with smaller feature sizes on the same processor die area, power
dissipation is becoming a serious concern for the design of computer systems. As an
inherent property of processors based on a Complementary Metal-Oxide Semiconduc-
tor (CMOS) design, power consumption of an integrated circuit is a function of clock
frequency and supply voltage. Recent processor microarchitectures offer the capability
to adjust these hardware parameters during operation in order to allow for a trade-off
between power consumption and performance. While today’s operating systems often
use these mechanisms to reduce hardware power dissipation based on the current load
situation, these measures only have a limited benefit on system efficiency. By collecting
specific energy-related information about the software workload, it is possible to selec-
tively apply frequency- and voltage-scaling during phases where processor performance
does not depend as much on clock frequency and consequently results in an increase in
energy efficiency.
Previous research in this area demonstrated that it is possible to dissipate less energy

for the same amount of work by means of an improved – i.e., energy-aware – scheduling
strategy inside the operating system kernel. In this design, necessary information about
the exact composition of the currently executed workload is obtained by means of pro-
cessor hardware registers counting performance-related events. Together with dynamic
frequency scaling, these commonly available architectural features can be exploited to
render processor operation more efficient. For the end-user, energy efficiency translates
into increased battery life, a lower energy budget, and more dependable operation due
to optimized power consumption – without involving additional hardware requirements
or costs.

1.2 Chip Multi-Processors

The microarchitectural design of processors recently made a significant leap with the
emergence of multi-core processor architectures featuring multiple CPU cores in a single

11

Chapter 1 Introduction

physical package. Processor architects try to cope with the obstacles of increasing design
complexity by co-locating a number of identical processor cores on a single silicon die. For
economical reasons, such a design usually implies that some hardware components have
to be shared among the individual cores. Most prominently for chip multi-processors,
this is the common interface to main memory and basic circuitry regarding clock signal
and supply voltage. With frequency- and voltage-scaling as primary means to realize an
energy-efficient operating system policy, such an architecture creates mutual dependen-
cies that have to be considered when optimal decisions in terms of energy dissipation are
necessary.
While existing proposals for energy-aware scheduling policies are applicable to a variety

of systems based on single-core processors, ranging from embedded systems to more
common desktop CPUs, they are oblivious to the apparent peculiarities of chip multi-
processors. Disregarding the particular topology of the underlying hardware will most
certainly result in a suboptimal usage of processor performance states or even an increased
energy dissipation. Obviously, power management techniques have to keep up with the
advances of processor architecture. In fact, considering the range and number of deployed
systems based on a multi-core design today, optimizing energy consumption by means
of a minor modification to the operating system kernel may have a sustainable effect.
However, the challenge associated with systems based on a multi-core design has not
been sufficiently tackled yet.

1.3 Energy-Efficient Scheduling for Multi-Core Processors

The objective of this thesis is to modify an operating system scheduler in a way that
hardware, based on a multi-core design, runs at optimal efficiency while system workload
and utilization may vary. The best choice regarding processor frequency and voltage at a
certain point in time can be determined a priori (i.e., offline) or at runtime, but depends
inherently on the type of instructions that are being executed. Chip multi-processors
complicate this situation as now multiple streams of instructions are being processed in
parallel while, at the same time, changes in clock frequency may affect not only one core
of the processor package.
An approach to energy-aware scheduling by collecting information related to the behav-

ior of each task in the system has distinct advantages. Provided that these task profiles
contain information specific to the characteristics of a process, at each point in time when
a scheduling decision is due, the operating system scheduler has exact knowledge about
each task’s properties and can determine optimized decisions regarding a multitude of
objectives. The performance monitoring facilities all major processor architectures fea-
ture today prove to be suitable indicators for energy-related properties of the currently
executed workload. As application behavior typically depends on input parameters at
runtime, compared to offline analysis, this reactive best-effort approach is well suited for

12

1.3 Energy-Efficient Scheduling for Multi-Core Processors

practical computing scenarios. Moreover, such a design can be realized entirely in soft-
ware and does not require special preparations prior to deployment. We argue that an
advanced operating system should exploit all available mechanisms provided by modern
processor architectures in order to support performance of the underlying hardware at
optimum efficiency.
Since the individual cores of a chip multi-processor are still based on the same design

as previous single-core processor architectures, the basic principles for leveraging more
efficient CPU operation are likely to remain unchanged. Assuming the context of a single
processor core, a former decision to scale CPU voltage and frequency may still prove valid.
However, given the possibility of hardware dependencies, a universally applicable energy-
aware solution has to ensure that the employed strategy honors policy objectives to a
similar degree for multi-core processors.
Supported by an online energy estimation design, our solution exploits the concept of

per-task energy profiles for the implementation of CPU power management on multi-core
systems. Based on these profiles, carrying information about the rate of specific types of
energy-related events, it is possible to determine the impact scaled frequency has on power
consumption as well as performance. By employing a simple model based on two heuristic
algorithms, it is possible to determine the best performance state on a per-core basis. As
this decision has to remain consistent in a multi-core context, these transition requests
will be reevaluated by an additional software layer taking possible hardware dependencies
into account. This basic design principle is depicted in the following diagram.

Coordination Layer

Multi-Core Processor

Energy-Related Workload Information

Tasks

Policy

{ }T₁ T₂ T₃ Tn...

Performance State
Requests

Based on an existing energy infrastructure allowing task-specific energy estimation, we
implemented an energy-efficient scheduling policy for the Linux operating system kernel.
We augmented this design to support a new processor microarchitecture and extend the
concept of energy-efficient scheduling to the multi-core domain. Our evaluations show
that significant improvements in energy efficiency are possible with hardware systems
based on a chip multi-processor architecture.

13

Chapter 1 Introduction

Thesis Scope

Throughout this thesis, we will focus on operating system tasks that are not interactive
(i.e., utilizing the processor hardware for extended periods of time), as these processes
offer optimal behavior to save significant amounts of energy. For interactive tasks, it
is likely that the effort incurred by transitioning to another frequency setting for only
a short period of time might outweigh the benefit of an adjustment in the first place.
Further, in order to limit the complexity of analyzing the characteristics of a multi-
core processor with all possible combinations of frequencies and tasks, we constrain our
analysis to the utilized case. Meaning, there are only as many tasks active in the system
as there are processor cores. Regarding a particular point in time, a situation with more
tasks is a special case of the task configurations we will analyze.

1.4 Thesis Outline

The rest of this thesis is structured as follows. Chapter 2 elucidates the background for
CPU power management and the architecture of multi-core processors in particular. The
second part of the chapter presents related work in the field of energy-aware scheduling.
Chapter 3 analyzes and verifies the energetic characteristics of our hardware platform
with regard to previous results and develops a solution that augments our policy design
to chip multi-processors in general. Chapter 4 discusses the issues relevant for the ac-
tual implementation of energy-efficient scheduling for the Linux operating system kernel,
while Chapter 5 evaluates and confirms the soundness of our design. Finally, Chapter 6
concludes this work and puts it into the context of possible future research.

14

Chapter 2

Background and Related Work

The purpose of this thesis is to apply and augment existing power management policies
to multi-core processors. This objective combines two fields of recent attention: the need
for energy-efficient operation of computer hardware becoming more and more crucial and
software having to deal with the burden of complex processor architectures featuring a
steadily increasing number of cores on a single chip. Knowledge about the energetic
characteristics of microprocessors in general is a prerequisite for an adequate analysis of
situations where energy actually can be saved, as is the understanding of the implications
imposed by the special architecture of chip multi-processors.
We will provide this background information in the following sections of this chapter.

Subsequently, we will present the results of previous research that relates to the main
themes we have to take into account for our design. As power management is a wide field,
we will identify clues among this work that may as well apply to our target platform,
serving as foundation towards an energy-aware power management policy for multi-core
processors.

2.1 Background

2.1.1 Processor Architecture

Since the emergence of the first highly integrated circuits, information technology is
driven by the advancements that have been made with the fabrication of semiconduc-
tors. The past decades have seen a constant increase in processing power and a decrease
in feature size (which is usually determined by the width of a single transistor’s gate).
Smaller structures means considerably more space for transistors, which allows for more
elaborate functional units to be integrated on a chip of the same size. While tech-
niques like out-of-order execution and multiple issue found their way into more advanced
generations of microprocessors, performance does not necessarily scale linearly with the
additional costs in resources. Many of these enhancements depend on the predictability
of the workload (i.e., the stream of instructions the CPU has to process) or have to take
dependencies into account, which might arise between operands. Obviously, a micropro-

15

Chapter 2 Background and Related Work

cessor spends a considerable amount of logic and power to speculatively calculate results,
which might not even contribute to the final outcome of a series of instructions.
A speculative design is inherently limited by the fact that there is no guarantee for a

constant rate of correct predictions, despite the presence of multiple potentially underuti-
lized functional blocks. In terms of power consumption and efficiency, these diminishing
gains do not justify the accompanying loss in die space. Therefore, the implementation
of resources for ILP purposes seems to be economical only up to a certain level. Super-
scalar processors exhibit an architecture-specific instruction issue capability per clock
cycle. Taking phases of narrow issue utilization into account, other ways of harnessing
the computational resources effectively had to be found [13]. In conjunction with the
continuous increase in processing speed outpacing memory access latencies, both devel-
opments are sometimes referred to as the ILP- and memory wall, which pose the two
major obstacles to the recent development of more advanced processor architectures.
Typically, the software that runs on a microprocessor shifted towards multi-threaded

workloads in the last years. From a hardware point of view, different independent streams
of instructions offer the opportunity to execute threads in an overlapping fashion, even
if there is only one processor core worth of functional blocks.
The frequency headroom, which is made possible by continuous advances in semi-

conductor technology, could not be translated into higher clock rates lately due to the
challenge to keep pipeline depth low and avoid undue critical path delays. However,
provided that an improved fabrication process also leads to more space available for ad-
ditional logic, new approaches to satisfy the need for more processing power had to be
conceived. Maintaining the focus on threaded workloads, the next step in this evolution
is to not only optimize the utilization of parts of a single processor but to provide mul-
tiple equally potent instances of the same core – all fitted with their own exclusive ILP
optimizations as well as dedicated cache memory. Depending on various design choices
all or a subset of cores may be co-located and share the same silicon die. Either way the
interface of the physical package appears as a single processor, although in reality there
well may be a multi-chip module inside.
From a hard- and software point of view, these Chip Multi-Processors (CMP) represent

a special form of symmetrical multiprocessing with a number of equal processors (in this
case processor cores) of the same microarchitecture and ISA. Within certain boundaries
and depending on the workload (embarrassingly parallel applications are a prominent
example), having more than one core available can lead to a multiplication of exploitable
processing power on the same die area. However, software support is required since
this form of parallelism is not dynamic and depends on prior decomposition of the
workload so the hardware can assign execution threads to the separated resources –
unlike multiple issue, which takes place during runtime. Thus, CMP represents a natural
approach to cluster resources in the era of billion transistor chips [9] and at the same time
helps to alleviate potential problems at the design level regarding increasing interconnect

16

2.1 Background

delays [12]. Apart from an independent core layout, CMP chips also share several key
components, e.g. the last level of the cache hierarchy or even the front side bus, an
interconnect that interfaces the entire package to the system’s main memory subsystem.
Shared resources are likely to pose a major system bottleneck and may incur interfer-

ence among otherwise independently acting processor cores. This is the reason why the
particular architectural organization of a processor may not be neglected with regard to
both performance and efficiency. Hence, for the task of designing a valid solution, we will
have to pay special attention to the issues architectural constraints may imply. First,
however, we will clearly state what the notion of efficiency means in the particular case
of microprocessors and how this metric relates to power and performance.

2.1.2 Power and Performance

Integrated circuits, especially chips based on a Complementary Metal-Oxide Semicon-
ductor (CMOS) design, which is the predominant technology used for microprocessors
nowadays, dissipate power due to several distinct physical effects. It is important to note
the reasons why power dissipation turns into a problem with the evolution of modern
microprocessors and which parameters may have an influence on the energetic profile of
CMOS circuits in general.
Recent generations of CPUs exhibit an extremely high complexity, turning the task of

working with or even calculate a precise power model into a hard problem. Therefore,
to be able to estimate the power requirements a certain mode of operation will have,
in most cases it is necessary to abstract the model to a basic level that still reflects the
dominant effects observed on the outside.
In the domain of electrical circuitry, power is one of the major quantities, since it has

an impact, for example, on thermal design and also the efficiency a device can provide.
In an electrical context, power is typically dependent on the actual supply voltage and
the amount of current running through the device under test. Power is measured in units
of Watt and is closely related to energy as power denotes the instantaneous energy at a
certain point in time. Basically, for each operation a microprocessor performs the current
that runs through the IC for this certain amount of time gets converted to heat. During
the remaining time static leakage effects usually dominate.
In theory, CMOS logic should only dissipate minimal power due to the design principle

where either the N-MOS part of the logic or the complementary P-MOS part gates.
Despite the fact that there should be no current path from supply voltage (Vdd) to
the ground (Vss) whatsoever, charging load capacitances involved with each field-effect
transistor makes up a major part of the overall power consumption. Since the effect
increases with the rate transistors are switching between states, this term of the equation
becomes the dynamic part (or dynamic power), which depends on the frequency the
circuit runs with. The reason for an idle microprocessor to consume a fixed amount of
energy per time is due to leakage effects within the transistor structures (gate as well as

17

Chapter 2 Background and Related Work

source/drain leakage) and even between the interconnects, which become an important
concern as feature sizes shrink. In fact, today’s microprocessors dissipate an increasing
fraction of their energy on leakage [24]. Since feature sizes decrease to a level where the
dimensions of the gate’s dielectric are reduced to a height of only several atomic layers,
these effects also contribute to power consumption on a macroscopic scale. Without any
advances in substrate technology, it even becomes mandatory to add supplementary logic
for the processor to be able to cut unneeded parts of the logic from the power plane in
order to save static power for this area of the die.
In the context of power analyses, logic designers and system builders often resort

to a principal equation similar to (2.1), which reflects the relationship between power
dissipation and the main parameters driving an integrated circuit [21]. With increasing
power levels, the associated development of heat cannot be neglected. This is the reason
why the TDP (thermal design power) has also become a growing design constraint.

P ∼ CV 2f + V Ileak (2.1)

As previously discussed, the given equation covers two main effects, namely the dy-
namic and the static components of a CMOS circuit’s power dissipation. Provided that
some activity, which invokes an increase in dynamic power consumption, is taking place
on the chip, it is possible to reduce the chip’s dissipation significantly by either reducing
the clock rate, which usually comes at a certain performance penalty, or even to a more
effective degree by reducing supply voltage. This is because V contributes quadratically
to the first term compared to the linear relation in power when changing f (i.e., the clock
rate). Although this seems to offer a tempting opportunity to just lower the voltage at
runtime, this cannot be done arbitrarily since a certain voltage level is required when the
microprocessor is supposed to run reliably at a high frequency.
Power has already become an important architectural constraint in today’s design of

microprocessors and will most certainly remain a serious problem in the future taking
the constant trend towards increasing integration sizes and the need for high density
computing environments into account. Considering a large deployment of computer
systems, either in a high-performance computing environment or simply on a global
scale, any improvement in energy efficiency may pay off significantly.
On the software side, throughput, apart from latency, is one of the most important

factors for characterizing the performance of a computer system. In computer science
the term performance describes an amount of operations that can be processed by a
system in a given period of time. Performance is closely related to the term energy, since
a benchmark application (i.e., a well defined sequence of instructions) takes a certain
period of time to complete and therefore dissipates a specific amount of energy. For a
hypothetical non-pipelined in-order microprocessor this would be the sum of the energies

18

2.1 Background

spent for each operation in that sequence. Having a configuration doing the same amount
of work at a lower power level in comparable time would mean an increase in efficiency.

2.1.3 Power-Related Hardware Mechanisms

Compared to previous generations, recent CPU architectures increasingly employ sup-
plementary features, for example access to functionality that is related to the micro-
processor’s external interface or some integrated special-purpose circuitry. Among these
components are the local APIC, thermal monitoring capabilities (TM2), architectural
performance monitoring, as well as control over core frequency and processor supply
voltage [8]. All these circuits are likely to be processor family or even chipset-specific
and are therefore made accessible via a range of special control registers rather than by
means of an additional set of instructions for each new type of extension. Consequently,
the organization of this model-specific address space of registers may vary significantly
among CPUs of different vendors. Model-Specific Registers (MSRs) can be uniformly ac-
cessed by reading or writing predefined values via rdmsr and wrmsr instructions from a
valid register address. Reading from an MSR allows for system software to determine the
current state of this particular part of the hardware. This essentially means, while the
software keeps executing against a consistent and immutable ISA, software also becomes
privileged to change crucial external parameters, which have an immediate influence on
the operating point and performance of the processor, but not the general execution of
instructions apart from that.
Obviously, both the respective microprocessor and its chipset have to provide support

for the implementation of a dynamic change of core voltage and frequency at runtime.
With the evolution of processors and mainboard chipsets across desktop, server, and
mobile computers, virtually all recent platforms support a proprietary implementation
of dynamic voltage and frequency scaling (DVFS). Depending on the architecture of a
particular platform, however, there are different clock signals, which may or may not have
requirements regarding a fixed frequency ratio. Intel’s processor architecture typically
uses a front side bus to interface to the system’s northbridge and main memory. Since the
core clock gets derived from the FSB by a PLL (phase-locked loop) multiplier, frequency
can typically be increased in fixed multiples of the bus frequency while peripherals are
bound to be clocked according to the bus system. However, changing the FSB to core
clock ratio usually comes at a latency penalty during which the PLL settles to the new
frequency.
Fortunately, new generations of microprocessors profit from recent efforts in the indus-

try on optimizing hardware power management mechanisms, resulting in significantly
improved performance state transition latencies [7, p. 17]. This in turn encourages per-
formance state adjustments to be issued at high frequencies, enabling system software to
implement more elaborate CPU power management policies.

19

Chapter 2 Background and Related Work

2.1.4 Power Management

The notion of power management describes the capability to control when and how
certain activities in the system may take place. Compared to a conventional computer
system, such fine-grained control translates into the ability to use the present hardware
in a more energy efficient manner during phases of varying usage patterns.
With the introduction of ACPI [6], the Advanced Configuration and Power Interface,

the complexity associated with properties of a certain platform in terms of power manage-
ment – meaning the management of hardware details – gets hidden. ACPI is an interface
specification that allows the system to communicate abstract information about avail-
able power states to the operating system. These states can be applied to individual
devices as well as the entire system, which is under the control of a power management
policy. The advantage of this approach is that the operating system gains comprehensive
control over all available power saving mechanisms while not interfering with a device’s
firmware-based mechanisms.
Since the main CPU is of an essential role for system operation and performance, this

component is represented by an own class of ACPI devices. Recent processors can enter
different CPU and power states, which get mapped to a number of available power saving
modes and frequency states the platform exposes. Generally, there is a distinction be-
tween CPU power states (C-states), performance states (P-states) and throttling modes
(T-states) [6].
Valid performance states for a certain family of processors are usually determined

by the manufacturer who designed and tested the hardware for compatibility. P-states
have an influence on the operation point of the processor as they determine at which
voltage and frequency the circuit runs. According to the ACPI specification, valid P-
states are indexed by an integer number in ascending order beginning at zero. As a
result, P0 denotes the state of nominal processor speed and all lower frequency settings
are organized as P-states with a higher index number. We will abide by this notation for
the rest of this thesis.
Transitions between power states (C-states) occur when the system enters or exits an

idle situation where no operations at all are pending to be executed, at least until the
next interrupt event. A lower power state allows the processor to disable unneeded parts
of the logic in order to conserve energy while pausing. Low power modes often come at
a higher cost in terms of latency, whereas a simple hlt instruction (equivalent to ACPI
C1 state) incurs the smallest delay to get the processor to full operation mode again.
Since the processor is able to almost instantly resume its work, there is not that much
opportunity to shut down functional units than compared to the deeper sleep states.
Hardware traits like multi-core organization and simultaneous multi-threading capabil-

ities cause dependencies among available hardware states and therefore introduce another
dimension of complexity to the coordination of processor-class devices. Power manage-
ment policies must not neglect such platform peculiarities since this most certainly will

20

2.1 Background

result in suboptimal energetic behavior. Given a compliant ACPI firmware implemen-
tation, supplementary information about hardware dependencies is usually provided to
the operating system by means of special purpose ACPI tables [6, Ch. 8.4]. Accordingly,
system software can take such hints into careful consideration in order to implement a
policy that actually agrees with the effective state the hardware operates at.

21

Chapter 2 Background and Related Work

2.2 Related Work

Information regarding the power and energy behavior of a system can be obtained in
several ways. There are two main approaches to energy estimation. Offline analysis can
be conducted by simulating the behavior of a particular system along with the specific
software that is subject to investigation. This approach can yield detailed information
about energy consumption based on a mathematical model. The advantage of such a
model is the possibility of increased simulation accuracy. On the other hand, keeping
the model at a basic level may allow saving computational resources and time (Wattch
simulator by Brooks et al. [3]). Another offline method for energy estimation is to collect
data by means of a Data Acquisition Device (DAQ). By sampling real world data, this
method can be superior to simulation, provided that the needed accuracy of the involved
measurement setup is given. A shortcoming of all methodologies based on an offline
approach is the requirement of prior knowledge of the exact workload that is to be run
on the deployed system [17]. For real-time systems this requirement is likely to be met,
since these systems are required to be analyzed prior to their actual deployment anyway.
However, offline approaches allow for optimal power management decisions to be made
regarding the entire time of execution. Given that conditions remain unchanged, this
obviously also applies to all future runs.
Nevertheless, in almost all cases software behavior is dependent to various input param-

eters and thus cannot be predicted a priori, rendering the offline approach impractical for
commodity (i.e., non-realtime) systems. The complement approach, on the other hand,
acknowledges this fact by striving to base decisions on actual observations at runtime. In
either approach, energy-related behavior is supposed to be the basis of any power man-
agement decision. This is the reason why online energy estimation tries to achieve some
kind of prediction based on present and past behavior. This prediction obviously does not
guarantee for optimal decisions and rather pursues a best-effort policy approach. Nev-
ertheless, to warrant any such best-effort claim, as precise knowledge as possible about
the tasks and the system itself is necessary. Since an online energy estimation approach
seems to be practical enough to be actually implemented in future versions of energy-
aware operating systems without any additional hardware requirements, the increasing
demand in energy-efficient computer systems well justifies the effort in implementing
such a mechanism.

2.2.1 Event-Driven Energy Estimation

Although performance counting facilities of microprocessors have been used to gain per-
formance related information before, Bellosa [1] pioneered in proposing to take direct
influence on scheduling decisions by means of such runtime information. The work un-
folds a basic relation between energy consumption and accountable performance events
(i.e., activity of distinct hardware units) for its test systems. By performing a cali-

22

2.2 Related Work

bration for a particular system offline, it is possible to turn selective event information
into runtime energy information. Meaningful performance events related to integer and
control flow instructions, floating point instructions, L2 cache references, and memory
accesses are identified as being relevant to energy consumption. Further, it is reasoned
that proper power management in an operating system can only take place if task-specific
energy accounting is possible. By instrumenting the operating system kernel accordingly,
this energy-related information can be associated to a task’s runtime context. In fact,
previous scheduling code has been entirely CPU-centric, whereas in-depth information
about hardware activity enables the scheduler to tune its decisions for better overall
performance (e.g., cache thrashing situations the scheduling code has been oblivious to
in the past) or towards specialized energy-related objectives. The paper even envisions
the possibility of adjusting processor frequency for each task individually to operate at
an energy-optimal level at any time. Furthermore, any energy-aware scheduling policy
will be mostly transparent to user-level applications since necessary changes will happen
while the kernel is executing privileged code.
Before proceeding, however, it has to be noted that the presented methods, as the

name suggests, perform an estimation of dissipated energy. This obviously involves an
inherent margin of error as the instrumented performance counter events are geared
towards giving meaningful hints regarding performance rather than energy dissipation.
For example some chip activities cannot be accounted for since no proper performance
event is available that covers just that specific case. As previous related work [1, 25]
already indicated, a linear approach by counting a set of events as weights towards a
momentary energy value proves useful, yielding the linear combination of (2.2).

E =
n∑

i=1

ai · ci (2.2)

Here, ai is the predetermined energy weight and ci the event count during the past esti-
mation interval. Kellner [14] worked on the first sophisticated energy model by manually
selecting adequate performance events for the Intel Pentium 4 generation of microproces-
sors and reports estimation errors of up to 10% for some applications (29% for the worst
case that could be identified). Nevertheless, employing performance monitoring counters
is a suitable means to estimate power dissipation with no additional instrumentation
necessary and incurring only minor performance overhead. Further, due to the high rate
of events, it is possible to estimate energies for relatively short timespans as well. Par-
ticularly brief periods of application I/O, however, are not necessarily representative in
their composition of instructions compared to the rest of the code.
By proposing a methodology for online event-driven energy accounting, this paper has

laid a solid foundation for subsequent work aiming to further improve energy-aware op-
erating system policies. The event-driven approach has proven to be superior to previous

23

Chapter 2 Background and Related Work

approaches only taking idle phases versus periods of utilization into account [11]. As-
suming unpredictable application behavior, recurrent analysis of performance and energy-
related hardware events allows for the operating system’s measures to adept in order to
implement its energy-aware policy.
Similar to this approach, the solution of this thesis will use the methodology of energy

estimation to realize more energy-efficient system behavior. Although not aiming at
building a sophisticated energy model from performance event data, our design will use
and extend these mechanisms later to collect and evaluate energy-related events.

2.2.2 Process Cruise Control

The proposal of Process Cruise Control by Weissel and Bellosa [25] as a novel operating
system policy is based on previous achievements of event-driven energy estimation, which
encourage the instrumentation of Performance Monitoring Counter (PMC) hardware in
the processor to have a beneficial influence on scheduling decisions – i.e., an energy-aware
policy. In contrast to earlier work, the goal of this policy is not to constrain overall energy
consumption, but to yield gains in energy efficiency (see Section 2.1.2). In order to find
clues relevant to this goal, the paper attempts to identify components which either benefit
from clock scaling or not and the types of tasks that are using these components. As
already anticipated by Bellosa [1, Sect. 4.2], the authors discover a relationship where
a high count in memory references and a low number of instructions indicates that the
speed of execution is dominated by memory latency. Throttling the processor’s clock
speed on behalf of such a latency-bound application should therefore end up in only a
minor performance penalty. Apart from that, the work defines an additional constraint
where performance degradation due to frequency scaling should not exceed 10% at any
time.
To accommodate the fundamental relationship between performance penalty due to

instructions, which scale with core frequency, and opportunities for energy savings de-
termined by latency-bound workloads, the authors define the concept of application-
dependent optimal processor speeds. This setting, by definition, involves the minimum
energy profile for a given workload. Determining an optimal frequency parameter under
a given performance constraint is subject to a benchmarking process that is platform-
specific (and so is the resulting data). However, in order to make this information acces-
sible to the operating system’s scheduler without incurring undue performance overhead,
they approach this problem by partitioning the parameterized space into frequency do-
mains. In order to find the optimal execution speed for the next timeslice, two input
parameters to this model are determined by performance counting facilities – namely, the
number of instructions and memory requests per clock cycle. Hence, the decision-making
process can be broken down to a simple table lookup for the respective energy-aware al-
gorithm.
By choosing an interval-based approach, this work avoids any concern regarding so-

24

2.2 Related Work

phisticated phase detection techniques, which have been subject to extensive research
in the past. Since scaling decisions are met recurringly for each new time interval (i.e.,
the next scheduling timeslice), this strategy also provides a solution to program phase
detection. Clearly, the possible resolution of phase changes will be limited. Employing
a more sophisticated detection technique, the accuracy (and thus possible gains) could
be improved. However, any effort made in this direction will lead to a trade-off between
additional overhead and diminishing gains in efficiency.
The work of Weissel and Bellosa manages to enhance the operating system’s scheduling

decisions by a new dimension, which can be of great benefit especially in environments
where energy is a limited resource (e.g., battery-driven devices or high density comput-
ing). By using energy economically, significant savings are achievable; up to 22% of the
dynamic energy for an embedded platform at 10% performance loss.
Towards a viable power management policy ready to be deployed with general-purpose

computer systems, the presented online-feedback approach qualifies by involving only
moderate effort on the software side, whereas system requirements are easily met with
newer generations of computer hardware. In our design, we will use the same basic
approach in order to implement an energy-efficient scheduling policy for the new platform.
Moreover, we will evaluate whether it is feasible to enforce a timing constraint similar to
the proposal of Bellosa [1].

2.2.3 Workload Classes

Similar observations regarding the potential to save significant amounts of energy have
been made in related research papers as well. The basic idea is to split contribution to
performance loss between major classes of operations instead of using an application’s
IPC rate as indicator for performance, which turns out to be an undue simplification [15].
It is necessary to distinguish between processor activities, which are dependent from core
frequency and events that are latency bound and therefore subject to separate external
clocking signals. Differently put, we have to distinguish between on- and off-chip [5]
activity, meaning, CPU- and memory-intensive phases. The respective authors denote
this approach as workload decomposition [4] or partitioning . Kotla et al. [15, Sect. 3.1]
investigate the behavior of the target platform with a synthetic benchmark program to
tune between memory- and CPU-boundedness, respectively. Whereas on-chip activity
still scales while changing frequency settings, the effect of memory saturation becomes
apparent when regarding throughput at different boundedness ratios. For their studies
concerning the impact of varying core frequencies on different levels of memory intensity,
the authors employed fetch-throttling. They argue that adequately throttled processor
cores can mimic the energetic and memory-access behavior caused by frequency scaling.
By developing a simple model to predict application performance at a lower frequency it is
possible to determine the optimum clock parameter depending on its memory intensity.
Our design resorts to the given notion of workload classes. It resumes and consequently

25

Chapter 2 Background and Related Work

exploits the approach this paper proposed and studied only preliminarily. In contrast to
a sophisticated energy model, which seeks to assign a large number of functional units
and performance events with respective energy weights, the workload class approach
reduces the energetic analysis of arbitrary application workloads to a meaningful yet
simple model. Having a model as concise as possible keeps additional overhead incurred
by the maintenance of an energy-aware scheduling policy at a minimum. We will have
to identify a mechanism, which is capable of carrying and maintaining this abstract
workload class data on a per-task basis.

2.2.4 Energy-Aware Policies

Closely related to these aspects of energy estimation is the development of scheduling
strategies that are able to implement thermal policies. Kellner [14] also did initial research
in Dynamic Thermal Management by deriving a CPU thermal model from data yielded
by energy estimation (see Section 2.2.1). Without the need for online temperature
measurements, the author demonstrates the possibility of throttling the execution of
tasks according to their energy-specific characteristics and the thermal requirements of
the system. As a result, any given temperature limit will not be exceeded.
Given that the workload is sufficiently diverse in its energy profile, a multi-processor

system opens new levels of freedom in terms of thermal management. Merkel [18] stud-
ies this case in order to find more optimal methods of balancing temperature among
processors. Caused by emergency circuitry in today’s processor architectures, critical
device temperatures trigger a throttling mechanism, which can incur undue performance
penalties, while other processors might be underutilized and therefore still operate well
within temperature limits. The combination of energy-aware policies – energy balancing
and hot-task migration – proposed in this work effectively mitigates thermal imbalances
among processors. Therefore, in the event of aggravated cooling conditions, the operating
system’s awareness of a task’s energy profile can significantly help in improving system
throughput. In order to accommodate the Linux scheduler in its energy-aware decisions,
Merkel puts an energy infrastructure in place, consisting of Energy Estimator , Energy
Profiler , and an Energy Aware-Scheduler. The first component provides the means to
evaluate the processor’s performance counter MSRs and keeps track of the number of
events that occurred since the last invocation. To turn this data into per-task values –
i.e., counting the events that happened during the execution of that particular task –, the
energy profiler invokes an evaluation function on each context switch. The energy profiler
in turn is responsible for assigning energy values to the respective task’s energy profile
as well as maintaining an average power consumption rate for each processor. The con-
sumption rate has been adjusted to mirror the thermal behavior of the respective CPU
by means of an exponential average function [18, Ch. 3.5.6].
This energy framework provides a starting point for a set of extensions we will apply

in order to support a new processor platform and accommodate the type of task-specific

26

2.2 Related Work

workload information our design requires. We will delve further into the details of the
energy infrastructure while we elaborate on our solution in the subsequent design and
implementation chapters.

2.2.5 Multi-Programmed Workloads

As our previous reasoning about the particular architecture of multi-core processors al-
ready suggested (see Section 2.1.1), we will have to consider any special case that might
arise when a system bottleneck starts to impose performance penalties on concurrently
running tasks. Computer systems inherently exhibit upper-bounds in their processing
capabilities: for instance, operations per time or in case of the memory subsystem read-
write accesses per time. Side effects can heavily impede performance if vital system
devices are shared between multiple components. Since efficiency is closely related to
performance, we have to identify and analyze these cases energetically in order to work
out the optimal management policy to handle such kind of events in an efficient manner.
Similar issues regarding degraded efficiency due to memory bus contention in SMP

systems have been approached in the past. Compared to the processing capabilities
of a recent microprocessor, the speed of memory lags behind significantly; also com-
monly known as the memory wall [2]. This general situation gets aggravated if even
more devices, as in a multi- or chip multi-processor system, contend for access to caches
and memory as typical shared resources. Koukis and Koziris [16] did related research
in order to avoid saturation of system bottlenecks. They chose to instrument perfor-
mance counters to gain information about memory access patterns. Accordingly, they
propose a policy of bandwidth-aware scheduling, which basically describes an optimized
co-scheduling algorithm assisted by heuristics based on task bandwidth utilization. The
authors report significant gains in throughput (40–48%).
With the focus on energy management considerations for multi-programmed Intel Pen-

tium 4 processors (comparing SMT and CMP systems of similar microarchitectures),
Winkelmeyer [26] reports analogous observations regarding shared resource effects. By
running several synthetic benchmark applications in parallel, the author tries to iden-
tify the implications these combinations have on power and performance. For the given
architecture, the number of micro-operations retired is an indicator for application per-
formance while the number of bogus micro-operations (i.e., a value based on a speculative
misprediction) is an indicator for power dissipation. Apart from the predominantly pre-
dictable behavior of a CMP system across a broad range of CPU-bound applications
(since functional units are exclusively partitioned), for pairs of memory-intensive work-
loads notable effects of interference emerge. The author reasons that with the given
behavior, it is possible to limit energy consumption of tasks by scheduling them accord-
ing to their estimated energy profile and how this could be assisted by using processor
performance states.

27

Chapter 2 Background and Related Work

2.2.6 Multi-Core Caches

Efficiency benefits by leveraging processor caches in an optimal way to improve thread
communication and minimize cache contention is beyond the scope of this thesis. We
refer to related work, showing that migrating dependent groups of tasks to processor
cores sharing a part of the cache hierarchy can further improve efficiency [23].

2.2.7 Energy-Efficient Scheduling

Given that the workload situation warrants any freedom in co-scheduling a set of tasks –
viz., there are more tasks eligible to run than processors available – an advanced schedul-
ing algorithm may exploit additional information in order to even out or minimize the
interference among tasks regarding shared memory bandwidth (s.a.) and cache utiliza-
tion [2, 10]. As already stated in the introduction, we aim to focus our attention on the
utilized case. We point out that situations of over-utilization can be temporally decom-
posed into a configuration of n concurrently running tasks (with n = number of cores)
during a particular window in time. Accordingly, we will approach limited memory band-
width from the perspective of a given static configuration of tasks. Still, any resulting
conclusion of our work will also be valid for the special case, contributing to the overall
understanding of multi-core characteristics and the improvement of advanced scheduling
policies.

2.3 Minutiae

Since many of the notions we will use in the following chapters have an association to
more than one physical or logical parameter, the usage of certain common terms might
become ambiguous. For the sake of clarity, we will define these notions and their usage
beforehand.
According to Section 2.1.4, P-states are indexed in ascending order with decreasing

frequency. Hence, we speak of a high or higher P-state when a setting at a lower clock
frequency is meant. However, the terms scaling up or down are usually understood with
regard to frequency, meaning we scale up to a higher and down to a lower clock frequency.
In the next chapter, we will use performance as another parameter to make determi-

nations regarding efficiency. Typically, we normalize values denoting performance to a
default value of 1.0 for the speed a workload is running at the highest processor fre-
quency. Accordingly, if we speak of slowdown, this term is usually understood in a
context of performance and throughput, resulting in factors of less than 1. A slowdown
factor of σ = 0.8 describes an increase in runtime of 25% = 0.8−1− 1. Thus, if we speak
of increased runtime or a slowdown in terms of time, this value is usually provided in
percent or identifiable as a factor greater than 1.

28

Chapter 3

Design

3.1 Problem Statement

Referring to the motivation of this work in the introduction, the primary challenge with
realizing an energy-efficient scheduling policy is to find regularities and rules in the ener-
getic behavior of the system subject to analysis. The evaluation of related work showed
that more efficient processor operation is feasible for a range of systems and yielded
valuable clues how such policies can be implemented. Towards a valid design for our
particular hardware platform, we first have to verify the applicability of these clues by
analyzing the system energetically. Based on this analysis, we can develop an adequate
strategy for our policy to adjust processor frequency and voltage to the most efficient
state, taking the energetic characteristics of the current workload into account. Mutual
influences between cores have to be regarded by this analysis as well in order to achieve
optimal results and ensure the universality of our solution. Due to the large number
of possible configurations with tasks and performance states in the multi-core case, the
overall approach has to be methodical.

3.2 Design Overview

Throughout this chapter, we will elaborate on a viable design to allow for energy-efficient
operating system policies to be implemented in a generic manner. Following the approach
of previous work (see Section 2.2.2), we will use energy-related data specific to a particular
task to determine the performance state, which is optimal while this task is running
on a processor. By employing an online energy estimation approach, our solution is
independent from offline application analysis and can adapt to varying workload patterns
at runtime. It makes this design suitable to be deployed as part of a general purpose
operating system.
The starting point of our design proposal is the distinction between multiple classes of

processor events (on-chip and off-chip) in order to support energy-related classification of
the current workload. The generic infrastructure is complemented by a simple heuristic,
which will determine the most efficient performance state the task should run with. In
general, the prediction of future application activity based on past behavior does not

29

Chapter 3 Design

allow for accurate decisions or guarantees. However, following a best-effort approach,
employing a heuristic as mechanism still promises to yield considerable gains in energy
for memory-intensive workloads. With the parameters of the policy tuned correctly,
the respective processor may run at an efficient state most of the time. We augment
the proposed policy to the multi-core case by coordinating incoming performance state
requests from each core in a way that takes physical dependencies into account and
transitions the overall processor package into the most beneficial state.
Another important constraint, which adds to the complexity of the situation, is the

processor’s shared interface to external memory. Especially since memory is the same re-
source that allows for energy savings in the first place. Available bandwidth is inherently
limited, meaning once multiple cores perform accesses to memory, they will only obtain
a share of this resource. Since ultimately a task has to wait for a memory operation
to complete, insufficient bandwidth can turn an otherwise compute-intensive task into a
memory-bound workload. Obviously, this condition has an important influence on our
policy. We take this architectural constraint of chip-multi processors into consideration
by developing an appropriate bandwidth model, which provides the input data for the
proposed threshold heuristic.

3.3 General Reasoning

In the introductory chapter and Section 2.2, we already mentioned some details regard-
ing the goals and the approach this work will take. Before starting to reason about any
specific decision in design, along with the accompanying advantages and shortcomings, it
is necessary to define our objectives precisely. Thus, we will declare the principal guide-
lines for our policy first: that is, the goals we strive to accomplish and any foreseeable
behavior we might have to tolerate beyond this policy.

Energy Metric

As a natural approach, the primary accomplishment of the solution we are aiming at is
to conserve energy. Assuming the transition to another processor performance mode at
lower frequency, this means the ratio of savings in power consumption has to be larger
than the additional proportion of time required for executing the same workload. Yet,
it may be undesirable to run disproportionally slow for the task to complete within an
equal energy budget. More sophisticated metrics like the energy delay product (EDP)
trade an improvement in energy with a comparable slowdown in execution time. Energy-
times-delay metrics require detailed information (derived from energy and time models)
to be evaluated. Interestingly enough, research in this area discovered that such metrics,
consulted on a per-interval basis, may even yield non-optimal overall results. For short
timeframes, Sazeides et al. [22] demonstrate mathematically that metric values can result

30

3.4 Measurement Setup

in suboptimal decisions compared to what the same metric would suggest regarding
overall execution time.
In fact, since the amount of static power consumption during processor operation

makes up a large portion of the overall power dissipation, a pure energy metric puts
substantial weight on the parameter of execution time: for every second the policy affords
to take longer until completion, the overall savings in energy have to compensate for the
additional static energy.

Objective. As guideline for the solution of this thesis, we define (1) overall energy
consumption for a given workload as primary metric. In order to avoid unduly prolonged
execution times, we add a supplementary constraint (2) not to exceed a defined limit in
slowdown.

Given that objectives (1) and (2) have to be considered at the same time, situations
may arise where both goals suggest different decisions. For instance, energy savings might
be possible but are prohibited by the timing constraint. As this thesis is to investigate
improved energy-efficiency for the multi-core processor case, the policy definition must
also hold true for multi-programmed workloads that utilize more than one processor core
and may lead to conflicting situations as well.

3.4 Measurement Setup

In order to quantify the power dissipation of our target platform and make respective
statements about energetic behavior, the system has been customized to accommodate
the necessary measurements. By placing a serial shunt resistor into the CPU’s Vdd rail be-
tween power supply and load (processor), it is possible for the data acquisition equipment
to probe momentary power consumption (viz., the rate energy is dissipated). The actual
power value can easily be approximated by the proportional relationship to the voltage
drop across Rshunt. A very similar test setup has been used for equivalent measurements
in the past [14]. It has been verified that no other components with significantly varying
power characteristics were involved in the electrical circuit subject to our measurements.
Further, since the sampling takes place before the power supply’s output gets stabilized
to the processor’s final supply voltage, it is possible to derive power consumption with-
out the need to consider changing processor voltage levels (see Section 2.1.3). This is an
important fact to note as implementing our policy aims at a frequent transition between
performance states, which will also entail adjustments to the processor’s supply voltage.
The installed LabView data acquisition setup (National Instruments SC-2345) allows

for voltage measurements at high sampling rates. The development environment pro-
vides access to any acquired data by means of a dataflow programming language. High-
resolution data with several thousand samples per second can be used to monitor even

31

Chapter 3 Design

short periods of activity, such as the execution of interrupt handling routines in the oper-
ating system kernel. However, in order to smoothen out variances in short-term activity,
we created a virtual instrument that processes any high-rate sample input and turns it
into averaged values regarding a user-defined interval. Provided that our measurements
are not subject to aliasing effects, the yielded average values (calculated from a set of
samples) remain sound for any energy-related considerations.
In this setup, the device under test appears as a black box to the researcher. Hence,

any specific data or clue about the inside structure of the device regarding its energetic
behavior can only be inferred by examining its crucial parameters on the outside. Obvi-
ously, the current, which might or might not flow through the separate cores of a CMP,
can only be observed as a sum by our measurements. To develop an adequate energy
model, we have to unveil the processor’s basic rules in power behavior. By conducting
experiments with different workloads we will approach the target systematically and then
derive the general case from the observed behavior.

3.5 Basic Energy Model

The range of related work we evaluated earlier provided valuable hints about the type of
workload that allows for savings in energy. According to Section 2.2.3, it is possible to
distinguish between classes of instructions that are either directly affected by frequency
changes (i.e., they exhibit a constant cycles per instruction behavior) or appear less
affected as they depend on components external to the processor. Thus, performance of
memory-intensive applications is not as much affected by frequency as applications that
perform mostly on-chip activity.
Subsequently, as next step, we will analyze how the distinct functional components

contribute to overall power consumption of our particular target platform. Further,
we will determine how the power consumption and throughput of these resources are
affected by different performance states. Our test machine exhibits two ACPI P-states
to accommodate high performance (P0 at nominal processor speed) as well as low power
requirements (P1 at reduced frequency and voltage).
In order to observe the processor’s energy behavior under stress, we developed a set of

simple microbenchmark applications that reiterate a particular type of operation contin-
uously, namely utilizing arithmetic logical units (ALU), speculative mechanisms, cache,
and memory extensively. Microbenchmarks invoke special cases and therefore can only
provide hints regarding the behavior of real-world applications. Nevertheless, in terms
of energy characteristics, these benchmarks do not exhibit the varying behavior of typ-
ical workloads and therefore can help deducing to the normal case. Further, with this
synthetic behavior it is possible for particular system bottlenecks to be identified.
The int application performs different arithmetic operations on integer values, as does

float on floating point values. Since the memory reference patterns generated by l2

32

3.5 Basic Energy Model

benchmark Power [W] Performance Energy
P (fmax) P (fmin) ratio ratio possible gain

float 43.7 30.9 0.707 0.666 -6.2%
int 44.2 31.8 0.719 0.665 -8.1%
l2 45.2 32.2 0.712 0.667 -6.7%
mem 60.5 42.5 0.702 0.91 22.9%

Table 3.1: Power and performance ratios (single instance)

exhibit a high degree of locality, this application generates a large number of cache hits,
whereas mem saturates the memory bus by copying large chunks of memory using the
memcpy() function. We customized all benchmark application to respond to operating
system signals. On a signal event, the application indicates the momentary iteration
count. By sending an XCPU signal to the application at fixed time intervals, we can
determine the current performance with regard to throughput. The large number of
samples taken eliminates variations.
For the following analysis of the multi-core processor, we first study the single instance

case – that is, running one benchmark task at a time on one core while the other cores
are idling. We also assume that the impact of operating system management processes
on all subsequent power and performance measurements is negligible. To account for the
influence of temperature-related leakage effects on power consumption, we constantly ran
the following microbenchmarks for several minutes prior to sampling an average power
value.
By measuring power and throughput of the microbenchmarks for both available ACPI

states P0 and P1 (at fmax = 2400MHz and fmin = 1600MHz), it is possible to assign each
application to one of the distinct on- and off-chip workload classes. As Table 3.1 shows,
all benchmarks – with the exception of the memory-intensive workload – belong to the
on-chip class with a lower bound of 0.6̄ in performance slowdown. This factor corresponds
to the frequency ratio of fmin/fmax = 0.6̄. At the same time, the accompanied savings
in power dissipation are in the range between 0.702 and 0.719. Apart from the runtime
being increased by 50%, tasks of this type of workload would not be more energy efficient
until the corresponding power ratio would fall below a value of 2/3.
As already noted, power consumption of the mem application follows the same rules as

the rest of the benchmark programs. However, the slowdown due to lower processor clock
frequency turns out to be significantly smaller. By multiplying the ratio of power savings
with the factor of increased runtime (due to degraded performance), we can determine
the energy savings theoretically possible to up to 22.9% = 1 − 0.702 · 0.91−1 for this
synthetic case.
Based on these measurements, it is valid to assign the second level cache benchmark

33

Chapter 3 Design

to the on-chip class of applications as well. This rules out cache hits as energy saver
and suggests that memory references may serve as an indicator for more energy efficient
operation. These observations match the results of previous work regarding different
platforms and supports the notion of workload classes. It also verifies that our target
platform behaves according to this classification model.

3.6 The Multi-Core Case

The following section will complement our knowledge by including the remaining cores
of the quad-core processor in the analysis. In Table 3.2 and 3.3, we list the resulting data
of running the same microbenchmarks on multiple cores at the same time.

int instances 1 2 3 4
P (fmax) [W] 45.0 53.0 60.0 66.5
P (fmin) [W] 31.1 35.0 39.3 43.2
ratio 0.691 0.660 0.655 0.650

Table 3.2: Multiple instances of integer tasks

mem instances 1 2 3 4
P (fmax) [W] 61.0 63.0 67.0 69.2
P (fmin) [W] 43.0 44.1 44.8 46.1
ratio 0.705 0.700 0.669 0.666

Table 3.3: Multiple instances of memory-intensive tasks

For the case of two cores fully saturated with integer tasks, the power ratio falls below
the slowdown factor of 0.6̄. This indicates that it is possible to run the entire chip
multi-processor at P1 while not dissipating more energy for the same task. Further,
overall decreasing power consumption ratios, irrespective of the workload, suggest that,
beginning with a certain ratio of utilization, it may become profitable to scale all processor
cores to a lower frequency. However, apart from violating our second policy goal to have
energy savings at reasonable maximum slowdown, we would only yield marginal energy
savings for int tasks (less than 2%). Thus, running a processor loaded with compute-
bound tasks at the highest P-state only makes sense if the intention is to limit overall
power consumption.
The activation of additional int tasks makes a distinct regularity in increasing power

consumption apparent. Each instance dissipates approximately 7 Watt. This constant
increase across all four configurations suggests the definition of a notional power con-
sumption value for an absence of activity. Subtracting this delta from the single instance

34

3.6 The Multi-Core Case

power value yields 45 Watt− 7 Watt = 38 Watt. This baseline power differs significantly
from the actual idle power spent by a system with no utilization of approximately 30 Watt.
The difference shows that the processor deactivates some common circuitry while entering
a halt (C1) state. As a result, once active, a multi-core processor should be sufficiently
utilized to mitigate the burden of this activation cost. This analysis matches with the
conclusion Winkelmeyer made in his work [26, Sect. 7.6].

core Power [W] Average Potential
0 1 2 3 fmax fmin slowdown savings

mem — — — 61.0 43.0 9.9% 22.8%
mem int — — 62.4 43.4 27.4% 11.4%
mem int int — 68.0 44.5 34.5% 16.6%
mem int int int 70.6 45.5 38.5% 17.9%

Table 3.4: Performance and power ratios (mixed instances)

Extending our analysis to configurations of mixed workloads (see Table 3.4), it becomes
apparent that the activation of the shared memory bus accounts for a large amount of
the overall energy dissipation. When comparing the first and the second configuration,
additional int instances incur only a minor increase in power consumption. The power
profile incurred by compute-intensive workloads is superimposed by the power required
for front side bus activation and accesses to memory. The irregular rise between the
second and the third configuration can be accounted to another part of the processor
being activated from a low-power state. It is obvious that this processor is made from
two separate parts. In fact, the quad-core design subject to our analyses comprises of
two dual-core dies combined as a multi-chip module (see Section 2.1.1).
The next step is to regard the same situation when scaling the entire processor to a low

frequency setting. We already know from Table 3.1 that memory-bound tasks experience
a smaller performance slowdown of 0.91; in contrast to compute-intensive workloads with
a slowdown of 0.6̄. Since this configuration is free of any resource contention (only one mem
instance uses the available memory bandwidth exclusively), each individual performance
situation remains unchanged compared to an independent run with the other cores idle.
This means, each task executes at exactly the speed it would progress when running
on one core at P-state P1. Hence, with n denoting the number of active cores, we can
describe overall package slowdown for a given configuration by using Equation (3.1).

σ(n) =
0.91 + (n− 1) · 0.6̄

n
n ∈ N (3.1)

The resulting slowdown factor σ is normalized to a value of 1.0 for the same config-
uration running at P-state P0. We list the results this performance model yields in the

35

Chapter 3 Design

slowdown column of Table 3.4. Obviously, the penalty involved with scaling all processor
cores to a lower frequency increases with the ratio changing from a more memory-bound
to a more CPU-bound workload. The more the ratio is weighted towards a compute-
bound workload the more slowdown we have to tolerate while energy gains diminish. For
instance, energy gains of 22% that were possible with an instance of the mem application
earlier (see Table 3.1) are lower in the second configuration and come at a high cost of
nearly 30% performance slowdown. This poor performance is caused by running three
quarters of the processor performing integer instructions at a low frequency.
Nevertheless, these measurements support the conclusion that a specific blend of work-

load – in this case, across the border of multiple cores – becomes increasingly eligible
for frequency scaling the more it tends to be memory-bound. Throughout the next sec-
tion, we will generalize the knowledge we obtained regarding workload blends consisting
of on-chip and off-chip instructions. This approach will yield a formula allowing us to
describe a basic timing model for workloads in general.

3.7 Mixed Workloads

In order to extend our knowledge to tasks that are neither memory limited nor entirely
compute-bound, we decompose the execution of a given task into discrete phases accord-
ing to our notion of workload classes. This may be accomplished by assigning a variable
portion of time to each class. At a lower frequency, both classes contribute to the overall
slowdown during their distinct phases. To an extent, this approach represents a sim-
plification, since on- and off-chip instructions may be interleaved within the instruction
stream in such a way that on-chip computations become bound by the latency of adjacent
memory references. While the course of this action may result in an overestimation of
on-chip slowdown, it is not an issue for the overall threshold approach as the energetically
optimal threshold value will be determined by real-world workloads during optimization.
As a result, the final threshold parameter might deviate from the theoretical values this
section will determine. Yet, since we do not overestimate the off-chip but the on-chip
workload class, we can still draw valid conclusions in terms of worst-case execution time
behavior.
The previous Equation 3.1 already weighs slowdown factors on a core level, which

allows us to bring this formula into a more general form. In order to do that, we introduce
the memory-boundedness ratio ρ (ranging between 0 and 1) of a task τ . Regarding a given
time interval, the value of 1 assumes a workload continuously accessing memory. For
values smaller than 1, the remaining part of the interval is considered compute-bound.
This yields the general form of (3.2). By separating workload phases, we can start making
assumptions about the extent of impact a certain ratio of memory-boundedness may have
on execution time. Obviously, with σmem = 0.91 and σcpu = 0.6̄, this formula proves

36

3.7 Mixed Workloads

valid for the synthetic cases of our compute- and memory-bound microbenchmarks (see
Section 3.5).

σ(ρ) = ρ · σmem + (1− ρ) · σcpu (3.2)

Putting the resulting values into relation with the power consumption ratios of our
basic energy model yields a clue at which level a workload with the memory ratio of ρ
becomes eligible to run at a low frequency while dissipating less energy. According to this
distinction, we propose to assign tasks to two major classes of workloads: that is, either
a task is memory-bound or CPU-bound. The maximum power dissipation ratio over a
variety of benchmarks, determined in Section 3.5, has a value of approximately 0.72. This
means the slowdown we should tolerate for any workload in the worst case – in order to
still accomplish an energetic gain – should be less than this value. Within certain limits
it is possible to infer from a slowdown value to the theoretical memory ratio ρ of this
workload. In accordance with our model, we can use the inverse form of our slowdown
model given in Equation 3.4. By solving the equation for the slowdown value of 0.72,
we yield the corresponding memory-boundedness parameter necessary to not incur more
than this much slowdown. Thus, for the entire range of our synthetical workloads and
the given hardware platform, the premise of more energy efficient operation is guaranteed
to be met with a theoretical minimum memory ratio of

θ0 = σ−1(0.72) ≈ 0.22 (3.3)

σ−1(σ) =
σ − 0.6̄
0.243̄

=
σ − σcpu

σmem − σcpu
(3.4)

By using this threshold law as a heuristic, we are able to classify a task’s workload
and reliably determine the most energy-efficient performance state to run this workload
with. At the same time, the slowdown part of the model (Formula 3.2) predicts an upper
limit for the increase in execution time. The worst case can be modeled with a workload
of memory-ratio ρ tending towards θ0. This is the workload with the longest CPU-
bound phase that would yet be still classified memory-bound. Running this workload
at P1 would incur the mentioned maximum slowdown of σ(θ0). With Heuristic 1, we
present the basic algorithm to classify a task according to its workload type. As already
motivated in the introduction, we do not regard interactive tasks in our policy. Hence,
the unspecified class assignment for tasks of this type.
Since the threshold parameter is specific to the energetic behavior of a given platform,

we have to verify our reasoning empirically by determining the optimal value θopt for

37

Chapter 3 Design

our hardware configuration regarding a variety of workloads. In other words, θopt should
allow for an optimal bisection of both task classes at runtime. We will conduct this
optimization step subsequently during the evaluation of our design.

Heuristic 1 Energy profiler: global threshold policy
Require: ρ(τ) is the memory ratio of τ , θ is global threshold value
Ensure: χ(τ) is the task class of τ
1: if τ is interactive then
2: χ(τ)← unspec
3: else
4: if ρ(τ) > θ then
5: χ(τ)← mem
6: else
7: χ(τ)← cpu
8: end if
9: end if

Multiple Active Cores

With the new notion of mixed workloads separated by workload class, we have a means to
gain deeper insight into scenarios where tasks start to influence each other while running
on a multi-core processor in parallel. In a chip multi-processor architecture, the shared
memory bus is the most limiting component that is shared by all cores.
In order to motivate our reasoning, we assume up to n mixed workloads with the

same memory-boundedness ratio ρ. For the sake of brevity, we will call this value mem-
ratio for the rest of this thesis. We further assume that the memory phases of these n
workloads do not overlap. Meaning, the workloads can obtain the full memory bandwidth
at any point in time. In this best case scenario, all workloads run without mutual
interference at maximum performance. This is possible since shared memory as well
as individual computational resources are exclusively available. As the mem-ratio of ρ
also denotes the duration of the memory phase per interval, accesses to memory will
begin to overlap with ρ > 1/n. This is the configuration where the memory interface
becomes the system bottleneck. Thus, within the range for ρ from 0 to 1/n, the multi-
core processor yields optimum throughput. However, with further increasing mem-ratios,
individual performance will deteriorate to a value of 1/n once all tasks exhibit a mem-ratio
of 1. Meaning, at this ratio, overall package performance equals the performance of one
entirely memory-bound task running exclusively on the processor.
Yet, from an energetic point of view, heavily memory-bound workloads run more effi-

ciently under frequency scaling. While performance slowdown for mixed workloads under
scaling diminishes with increasing mem-ratios (see Section 3.2), the memory bottleneck

38

3.8 Online Estimation

heavily impedes overall performance the more the tasks increase their demand in mem-
ory bandwidth. Obviously, two factors with contrary influence on overall performance
superimpose in this case. Hence, the optimum workload, yielding peak efficiency for a
multi-core processor under scaling, cannot be one of the extreme types of entirely CPU-
or memory-bound tasks. Rather, optimum hardware efficiency can be achieved for a
workload having full throughput while experiencing the least slowdown effect due to
scaling. This point coincides with the emergence of the bottleneck at a memory ratio
of ρ = 1/n. The exact value of this mem-ratio depends on the number of tasks that are
concurrently active. For one task, the most efficient operation point coincides with a
completely memory-bound task, as performance always equals to 1. For a number of
four active tasks, the optimal per-task mem-ratio is ρ = 0.25. If the eventual threshold
parameter of our heuristic is below this theoretical value, we would exploit these points
of optimum efficiency with our approach by scaling to the respective performance state
accordingly.

3.8 Online Estimation

The proposed threshold heuristic of Section 3.7 requires specific performance event data
in order to make determinations regarding task classes. To exploit the advantages of an
online feedback approach, our design will acquire this data at runtime through perfor-
mance events that account for on- and off-chip activity. In the latter case, the rate of
memory accesses might serve as a meaningful indicator. This rate, however, depends on
the maximum bandwidth the memory subsystem can provide and is therefore an entirely
platform-specific constant, which is not known a priori.
It is necessary to determine this upper bound before we can calculate a correct memory-

boundedness ratio ρ of a task τ . Further, we need a counterpart measure to account for
the time the processor performs on-chip instructions. By normalizing the maximum
possible memory access rate to the number of unhalted processor cycles, we yield the
correct ratio ranging between 0 and 1 by simply determining the quotient of both values.
With the bandwidth-saturating mem microbenchmark, we record up to 0.038 memory
accesses per clock cycle. The inverse value is the weight we have to assign to each
memory-related performance event in order to normalize it to the cycle count of 2.4×109

per second.

3.8.1 Memory Bottleneck

Following the analysis of the preceding Section 3.7, overall progress across processor cores
can depend on the amount of contention for shared memory bandwidth.
Taking four instances of the mem microbenchmark as an example, we can verify em-

pirically that each task will obtain a quarter of the available bandwidth (in accordance
with the performance deterioration mentioned in the previous section). Without loss of

39

Chapter 3 Design

24

–

–

–

24

24

(1)

6

–

–

–

6

6

(2)

6

6

6

6

12 12

24

(3)

–

4.8

2.8

14

4.8 16.8

21.6

(4)

Figure 3.1: Bandwidth configurations

generality, we assume a classification threshold of θ = 0.3. As also the rate of memory ac-
cesses drops to 1/4, all tasks will be classified CPU-bound, despite of still being completely
memory-bound. Obviously, the overall bandwidth situation has a significant influence
on our heuristic. Moreover, CPU-bound tasks just below the threshold might become
memory-bound as well, due to the increased latency for memory accesses. By turning
the determined upper bound constant for memory events into a variable and decreas-
ing it according to the overall bandwidth situation, we can compensate for the missing
bandwidth on a per-core basis and eventually restore the correctness of our heuristic in
general.
Consequently, we have to analyze how memory bandwidth gets assigned to distinct

cores in order to apply our threshold approach for the multi-core case. We will accomplish
this by developing an appropriate bandwidth model for chip multi-processors in the
following section.

3.8.2 Bandwidth Model

Given the situation that more than one core performs operations on the memory bus,
the controller logic has to arbitrate these accesses. Each core should be assigned bus
time according to its requirements. In the most simple case we just analyzed, this means
all four cores of the processor running an instance of the mem application will obtain a
quarter of the available bandwidth.
The scenario becomes more complicated when multiple application access the memory

bus at different rates. To collect clues regarding the exact arbitration behavior of a multi-
core processor, we conducted further experiments with the microbenchmarks already
presented throughout this chapter and a new synthetic bench application capable of
generating mixed workloads.
We developed the bench application to generate workloads with alternating phases of

40

3.8 Online Estimation

memory- and CPU-bound characteristics. The duration of these phases is configurable by
a command line parameter, allowing the user to run an application with a distinct mem-
ratio. The bench application is intended to specifically generate synthetic workloads in
accordance with the simplified notions of mixed workloads and distinct workload phases
we introduced in the previous section. We will use this application to generate more
differentiated scenarios for the following bandwidth analysis of the processor.
Figure 3.1 presents a set of configurations to elucidate the runtime bandwidth behav-

ior the given quad-core processor exposes. Here, the values inside the box denote the
normalized amount (see Section 3.8) of memory accesses this core issues. Each half of the
processor represents a distinct core group, acting as a so-called bus agent. The combined
number of accesses of this agent is denoted above, while the overall sum of all accesses
is given by the value centered on top of the entire package.
By observing the particular behavior in a variety of configurations, we will be able to

derive a heuristic, which allows to determine the remaining bandwidth for each member
core. It is important to note that each core only provides access to the counters in a
hierarchical fashion. All cores only have access to memory reference events counting on
its own core, agent and package level. Thus, since the heuristic has to work on each
core independently, it may only resort to this limited set of three event counts in order
to infer the overall bandwidth situation. However, as an observer, we have access to all
event counts at once and can therefore analyze the overall situation.
In order to gain insight and consequently work out an adequate model of the given

behavior, all possible situations have to be decomposed by the influence of the individual
core’s bandwidth situation. For cases (1) and (2), the available memory bandwidth
for each core is dictated. Saturating the memory bus in case (1) does not differ from
an application that only uses a quarter of the available bandwidth: in both cases the
maximum bandwidth of bw = 24 is applicable. The situation is different in configuration
(3). This is the configuration we used as initial example. All cores run tasks that entirely
saturate memory as they force the share between all cores to a 1:1:1:1 ratio. Each core
obtains a quarter of the bandwidth. As already mentioned, the model must compensate
by yielding a lower value of bw = 6 for all cores involved. Recalculating the mem-ratio
using this new individual bandwidth, each core yields the correct ratio of 1 = 6/6 = this/bw

(with this = the decreased rate of memory accesses of a particular core). The criterion
that segregates this special configuration from the former two is indicated by the memory
reference count for the respective bus agent being not equal to the overall package count
(see Heuristic 2, line 1).
Being the most specific case, configuration (4) allows us to infer on bandwidth assign-

ment in more differentiated situations. We configured the bench application to generate
a mem-ratio of ρ = 0.25 on two cores while running aside a bandwidth saturating ap-
plication on the third core. Due to the structure of this benchmark, switching between
compute and memory phases based exclusively on timing and irrespective of the real

41

Chapter 3 Design

number of completed memory operations, two tasks with the same demand in mem-
ory accesses (ratio between CPU- and memory-bound phase) obtain a different share in
available bandwidth. This fact points at the internal topology of our multi-core processor
where cores of the same core group get arbitrated first. Afterwards, the requests issued
by the distinct bus agents get arbitrated again. Since the memory phases of both tasks
capture the same amount of time – that is, they exhibit the same amount of cycles bound
to memory latency relevant to our heuristic –, the bandwidth model should compensate
for the deviation in order to maintain our notion of a mem-ratio. Hence, the proposed
model will assign both applications the same ratio of approximately 1/4 by implementing
different rules for both bus agents.
Since the agent on the right hand side is fully saturated, both member cores determine

each others bandwidth. The core running the mem instance obtains a share that represents
a mem-ratio of 1 for this particular configuration. The less demanding core on the same
agent, in turn, obtains a quarter of this bandwidth according to its demand of ρ = 0.25.
Thus, if we adjust the bandwidth to bw = 14 (i.e., the value of the higher-demanding
core) for both cores, each core can again determine its correct mem-ratio (Heuristic 2,
lines 5–9). As both cores cannot access the other core’s memory event rate, the coreother

value has to be determined by calculating the delta between coreall and corethis (line 5).
Consistent with the unbalanced case we just discussed, the special case of two entirely
memory-bound tasks balanced matches with the case in configuration (3). The more
demanding both instances become, the more the resulting bandwidths converge to a
common value (e.g., bw = 12 or bw = 6 in the example of configuration (3)).
The other agent, in turn, receives a share in relation to the more memory-intensive

agent. We have to approximate the rate of the most demanding core from the other side
of the chip. We compensate for the differently favored bus agents by including a special
case (Heuristic 2, line 11) conceding a bandwidth bonus (i.e., effectively a penalty on
mem-ratio) of the delta between both agents. This yields the approximate bandwidth of
the core with the highest demand. In relation to this increased bandwidth, the access
rate of the more favored cores is in the correct order again (4.8/16.8 ≈ 0.25). Since all
these rules are experienced differently by each core involved in this scenario, the algorithm
applied on all cores independently yields the correct mem-ratios for both bench instances
and the mem application on the third core.
According to our analysis, we present a heuristic algorithm that covers all mentioned

cases and models the processor’s apparent arbitration strategy. Required input param-
eters for Heuristic 2 are memory-related event counts on the core, agent, and package
level (corethis, coreall, agentall) while running a specific task τ . The heuristic returns
the maximum bandwidth from this snapshot in time, which can be used to calculate
the correct mem-ratio ρ(τ) of the currently running task. At the same time, the algo-
rithm is independent from the execution on a particular core. With accordance to our

42

3.9 Multi-Chip Module Issues

requirements, it properly derives the core-specific situation from the set of accessible
performance counters.

Heuristic 2 Chip multi-processor: available per-core bandwidth model
Require: memmax, corethis, coreall ≤ agentall

Ensure: bw = bandwidth share (of this core), corethis/bw = ρ(τ)
1: if coreall ≈ agentall ∧ coreall 6≈ memmax then
2: bw ← memmax

3: else
4: {limited bandwidth case}
5: if corethis < coreother ← coreall − corethis then
6: bw ← coreother

7: else
8: bw ← corethis

9: end if
10: {agent bandwidth compensation}
11: if coreall < agentother ← agentall − coreall then
12: bw ← bw + agentall − 2 · coreall

13: end if
14: end if

3.9 Multi-Chip Module Issues

As already observed in case of the bandwidth allocation model, it is no longer appro-
priate to abstract from apparent dependencies and non-uniformities among cores within
a chip multi-processor. Up to this point, for the theoretical considerations in terms of
mixed workloads, we assumed that only the entire processor package can be scaled to a
common performance state. Towards the implementation of an energy-aware policy for
our platform, however, it is necessary to apply the understanding of workload classes to
possible physical constraints of the particular multi-chip topology of our processor.
In Section 3.8.2, we acknowledged the existence of multiple bus agents (i.e., an agent

is a group of two processor cores). In fact, this commonality extends to the capability of
assuming different performance states, as in our case both cores of a dual-core die share
the same clock frequency signal. Clearly, these frequency domains have an influence on
how distinct processor cores should be scaled with accordance to the defined objectives
of our policy (see Section 3.3). In order not to violate the policy definition for all member
cores of a group (we will use the notions of core group and bus agent synonymously),
it is necessary to coordinate workload classification of each core group. Necessarily, the
performance-related decision determined for a single core earlier has to remain valid for
all affected cores of a P-state change.

43

Chapter 3 Design

Assuming there is one processor core active with its workload classified as memory-
bound (i.e., the task exhibits a memory reference versus bandwidth ratio greater than
θ), the processor gets scaled down since there is an opportunity to save energy and the
associated timing constraint is met (policy definition (1) and (2)). Without loss in gener-
ality, we extend this scenario by another core located within the same frequency domain.
We assume that the new core executes a purely compute-bound workload. This in turn
means that the overall ratio of compute-bound instructions for both cores surpasses the
given threshold. As a result, leaving both cores scaled at a lower frequency would violate
the worst case timing we assumed when scaling the first core down. Obviously, providing
that it is intended to enforce both policy goals, the given threshold value has to apply
to all cores within that frequency domain. Meaning, in our case, we should only scale
this domain down if two tasks of the mem-bound class will get co-scheduled to run at
the same time. For the remaining three possibilities, the second timing constraint would
get violated. Correspondingly, the entire core group has to run at the highest frequency
setting. Since processor P-states are indexed in ascending order with the highest fre-
quency state beginning at zero (see Section 2.1.4), it is possible to translate this logical
conjunction into an arithmetic min function over all requested performance states within
a frequency domain.
Hence, in order to augment our policy to the more specific case of multi-core and multi-

chip module processors, we propose the coordination of P-state requests in accordance
with the objective of our policy. Consulting topology information allows to yield correct
decisions for multi-chip processors in general. Algorithm 3 registers the performance state
requests of all processor cores and determines the actual state of a dependent group of
cores according to the min function. The algorithm still works correctly in the special
case of a multi-core processor without any physical dependencies among cores, as in this
case the set of dependent processor cores (Γ) is empty and the result of coordination
coincides with the output our heuristic yields for individual cores. We amended the code
with an idle policy that runs the entire package at minimum power dissipation in the
absence of activity. The optmem operator returns the optimal P-state for memory-bound
workloads.

Task Grouping

With the introduction of the min policy, it appears necessary to align execution of
memory-bound tasks with the internal topology of the multi-core processor. Given a
mixed configuration of int and mem tasks (see first configuration in Table 3.5), instead
of running all cores at the most power consuming setting, grouping both mem tasks on
a common dual-core die would cause the policy to scale the first core group to a lower
frequency state.
Following this assumption, we measure power consumption of both configurations.

Although the available memory bandwidth gets shared between both mem instances in

44

3.9 Multi-Chip Module Issues

Algorithm 3 Chip multi-processor: energy and time constrained P-state coordination
Require: πi = P-state for core i, id = processor index of this core, τ = current task on

this processor, Π = set of available P-states (6= ∅), χ(τ) = task class of τ , Γi = set
of processor indices sharing i’s frequency domain, min Π = returns high performance
P-state, max Π = returns low power P-state

Ensure: each frequency domain runs at its optimum operating point
1: πmem ← optmem Π
2: if τ = idle then
3: πid

req ← max Π
4: else
5: if χ(τ) = mem then
6: πid

req ← πmem

7: else
8: πid

req ← min Π
9: end if

10: end if
11:
12: if |Γid| > 1 then
13: {shared frequency domain constraint}
14: πid

act ← min
i∈Γid
{πi

req}
15: else
16: {optimization: no dependencies among cores}
17: πid

act ← πid
req

18: end if

agent0 agent1 P-states Power Package Potential
0 1 2 3 agent0 agent1 [W] slowdown savings

mem int mem int P0 P0 69.2 0% 0%
mem mem int int P1 P0 64.9 4.7% 1.8%

Table 3.5: Energetic effect of task class grouping

45

Chapter 3 Design

either configuration, we assume a full performance value of 1 for each instance, since
we do not analyze this situation for a general assessment, but rather for an immediate
comparison of similar configurations regarding task placement.
As each individual mem instance experiences a slowdown of 0.91 under frequency scal-

ing (second configuration), we note a minor overall package slowdown of approximately
5% for the grouped configuration. Although the first agent runs at a lower frequency,
power dissipation is only lowered modestly resulting in a mere energy benefit of 2% (see
Table 3.5). Obviously, scaling the frequency of one half of the multi-chip module has
not the same impact on energy savings once the other agent runs at P0. We can verify
this behavior by running a single task on our processor with all cores at P1. Requesting
a higher frequency setting for one of the processor cores of the idle agent results in a
significant increase in power consumption, although the running task is not bound to
this agent. Both bus agents apparently share the same supply voltage of a single voltage
regulator. Since one of the agents operates at a high frequency, both agents are supplied
with an elevated voltage level. As a result, the drop in power dissipation for a mixed
P-state is not as significant (see Section 2.1.2) and the increase in energy efficiency for
running two memory-bound tasks on a common agent, while the other agent operates
at a low P-state, is only marginal. In fact, there are even task configurations that may
result in a worsened energetic profile. Running heavily compute-bound tasks at a low
frequency while the other agent is running at P0, causes a significant performance penalty
for these tasks. The minor drop in power consumption cannot compensate the overall
loss in throughput. For a configuration of a mem and int task on the first agent and a
single int task on the second agent, we determine a 16.7% loss in performance. As power
consumption drops only marginally, we experience a loss in efficiency of up to 5.7% when
running the processor at mixed P-states.
From an energetic point of view, the new constraint of a shared voltage plane does not

warrant the specific migration of tasks within a multi-chip module processor for the short
term. In the improbable case of an unaligned task configuration, potentially leading to
efficiency loss, our min policy avoids energetically disadvantageous P-state configurations
by its requirement of a minimum memory-boundedness of both tasks on a common agent
in order to scale this agent down. The small gains, on the other hand, that might be
possible with task grouping may be amortized by penalties due to increased cache miss
rates after a migration.

Relaxing the Time Constraint

We developed the min policy with the goal to ensure both our policy objectives of in-
creased energy efficiency in conjunction with a limited penalty on performance. By doing
that, we effectively partitioned the space of possible energy savings in order to limit an
exceeding increase in execution time. This means, regarding the example of Section 3.6
(Table 3.4), we intersected all configurations involving memory-bound tasks into config-

46

3.10 Energy-Efficient Scheduling

urations that consist only of memory-bound tasks (configuration 1, involving a minor
slowdown) and configurations that represent a mix and thus cause undue runtime penal-
ties exceeding 27%. By shifting the focus of our coordination algorithm more towards
the energy objective, it seems possible to exploit more situations where energy savings
are conceivable.
Considering the classification of tasks, the bandwidth model adjusts the threshold

heuristic once both cores in a core group utilize the memory bus. This increases the
likelihood for both cores to be classified as mem-bound. Consequently, this frequency
domain can be scaled down. Yet, as soon as another compute-bound task is added, all
scaling gets inhibited due to the strict timing constraint. By relaxing that constraint,
we can exploit the latter configurations (Table 3.4) that were energetically beneficial but
incurred significant performance penalties on the package level. In order to consider the
other half of this partitioned space with our threshold policy, we can shift the coordination
policy from a logical conjunction to a disjunction. With regard to our algorithm this
means the implementation of an arithmetical max function over all performance state
requests. The rest of our framework for state coordination remains identical. The choice
between policy objectives leads to another configurable parameter for our design. It
allows the user to specify that – under the given hardware constraints – either timely
execution should be favored or opportunities of possible energy gains.
Obviously, in the single-core case, the results of both proposed algorithms match.

Given that only one core is active, it is not necessary to distinguish both policy goals
under the constraint of shared frequency domains. However, due to the shared voltage
plane of our multi-core processor as another constraint in freedom, it only makes sense
to apply a max policy if core groups can actually run at a low frequency and voltage.
Running both agents at mixed performance states would invoke the case of decreased
efficiency we determined earlier (see previous Section 3.9). Hence, for a chip multi-
processor similar to our hardware platform with voltage dependency, the energy favoring
max policy should be applied on the entire set of dependent cores (i.e., all cores of the
processor package) to yield optimal gains in energy.

3.10 Energy-Efficient Scheduling

In the preceding sections, we systematically analyzed the energetic behavior of the target
processor in order to develop a strategy to run a multi-core processor continuously at
an optimal performance state. We will pick up the threads of these sections to finish
the proposed design and concludingly summarize the advantages and limitations this
solution has.
According to Bellosa (see Section 2.2), task-specific information about energy-related

characteristics is necessary in order to allow the operating system to implement sophis-
ticated power management policies. We follow this approach by building our solution

47

Chapter 3 Design

on an online energy estimation design of previous work [18]. Determining energy-related
information at runtime, however, is based on the assumption that it is possible to extrap-
olate from past to future behavior and thus carries the risk of potential mispredictions.
There may even arise pathological situations, where program behavior switches between
opposite workload types with each estimation interval. Since the decision for the upcom-
ing time quantum will be based on the classification of the previous one, this pathological
behavior would result in all decisions being contrary to the actual situation. However,
assuming that changes in program behavior happen less frequently (i.e., the duration of
a time quantum is much smaller than the period of an application phase), this best-effort
approach will yield a correct determination for a majority of the runtime.
As input for the threshold heuristic, specific data regarding workload classes is required.

The heuristic is responsible to determine the class a task belongs to (CPU-bound or
memory-bound). In order to yield correct results, the processor’s shared memory band-
width has to be taken into account. Prior to being evaluated by the threshold heuristic,
data regarding the off-chip workload class is edited by the bandwidth heuristic. The flow
of information in this design is depicted in Figure 3.2.

W
o

rk
lo

ad
 C

la
ss

es

B
an

d
w

id
th

M
o

d
el

Energy Profiler

θ

τ
Task Class

Global Threshold

Figure 3.2: Workload classes and energy profiler

By employing a heuristic, we can avoid the need for a complex energy model. Such
a model for all available P-states would be able to estimate a workload’s exact energy
requirements at different performance states. Thus, more differentiated decisions regard-
ing energy gains and execution times would be possible. However, maintaining such a
precise model will most likely incur considerable runtime overhead due to the calculation
of energy values for a multitude of state configurations, especially in the multi-core case.
We argue that the extra effort would only result in minor gains for corner cases. With
our best-effort approach, on the other hand, we differentiated the significant cases during
analysis and accordingly derived generally valid conclusions: we moved the calculation
overhead from the latest possible moment at runtime to our offline analysis. Still, heuris-

48

3.10 Energy-Efficient Scheduling

tics are a powerful tool to limit the complexity of decisions while promising comparable
gains to more elaborate approaches.
In our case, the heuristic requires a simple input parameter, which allows the user to

tune the trade-off the policy is allowed to make. Increasing the threshold parameter gives
the user the opportunity to dictate more strict guidelines in terms of timing requirements.
Still, on the downside of this approach is the need for determining the optimal threshold
value that matches the energetic characteristics of the given hardware platform.
In order to accommodate the propagation of workload class data and the inclusion

of the bandwidth model and threshold heuristic, the energy infrastructure has to be
augmented in its estimator and profiler component. Since consequently energy-related
information is directly associated to the task’s execution context, the operating system
scheduler instance running on a particular processor core can issue the request to adjust
the performance state for the following time quantum.
The proposed coordination framework processes this request according to hardware

topology and policy requirements. The resulting overall system design and the relation
between components is depicted in Figure 3.3.

Coordination Framework

Chip Multi-Processor

Runqueues

τ₁ τ₂ τ₃ τ₄

P-state Requests

Active Tasks

Policy

En
er

g
y

Pr
o

fil
er

Figure 3.3: Energy-efficient scheduling and P-state coordination

The indirection achieved by this underlying coordination component represents a layer
of abstraction from hardware peculiarities. The user can specify on a high level, which
policy objectives have to be implemented. Irrespective of possible performance state
dependencies among processor cores, coordination ensures at any time that all objectives
are enforced accordingly.

49

Chapter 3 Design

50

Chapter 4

Implementation

In order to implement the design we propose, our solution builds on the Energy In-
frastructure (see Section 2.2.4) for the Linux 2.6 kernel developed by Merkel [18]. The
available code provides the basic building blocks to perform online energy estimation
based on performance counter events. The energy profiler assigns this energy-related in-
formation to the currently running task. We extended the infrastructure in the respective
components that either had to be modified to work in conjunction with our processor
architecture or augmented to process the information necessary to our model.
Both, our platform independent and the architecture-related modifications for the

Core 2 microarchitecture sum up to several hundred lines of code. The rest of the system
remained unchanged, since we aimed at demonstrating that it is possible to achieve an
optimized energetic behavior of the system by applying a small set of modifications.
Apart from the architecture-specific details we will consider during the course of the
this chapter, our design should be generic enough to be ported in a similar form to
other operating systems. The accompanying algorithms are available in pseudo code (see
Chapter 3) and thus ready to be implemented irrespective of any particular programming
language or platform.

4.1 Energy Infrastructure

The code by Merkel has originally been developed for multiprocessor systems based on
the NetBurst microarchitecture (Intel Pentium 4). These processors offer a large number
of performance counters that can be programmed to trace events in different functional
parts of the chip. The Intel Core 2, however, follows the design inherited from the Intel
Pentium Pro (P6) generation of processors. This architecture provides two performance
counter registers, which can be programmed independently to count two types of events
at a time.

4.1.1 Architecture-Specific Enhancements

For the energy estimator as architecture-specific part of the energy infrastructure, we had
to apply enhancements that accommodate the new performance counter facilities of our

51

Chapter 4 Implementation

target platform. Although available performance counter registers are also mapped into
the larger address space of model-specific registers, newer generations of microprocessors
ship with an optimized instruction set to access performance counters. The rdpmc in-
struction of the Core 2 requires less processor cycles to read a performance register and
allows to access the available pair of programmable counters.
The programming of the energy estimator with event counters and their respective

weights is typically done from user space in order to make the kernel mechanism appli-
cable to a range of similar performance counter architectures. By means of a formatted
string passed to the Sysfs filesystem, the estimator can be instructed to count a specific
event. We extended the estimator code with support for the rdpmc instruction and in-
troduced a new syntax to make this functionality accessible. As only two independently
programmable performance events are available with the given hardware architecture,
we also implemented multiplexing for performance counters, which allows to use more
energy weights than counter registers actually implemented in hardware.
Multiplexing is accomplished by a time-sharing approach, changing the programming

of the event select register (associated with a performance counter) in a round-robin
fashion. On each timer tick, the respective counter updates the event count for the
elapsed time interval and proceeds with counting the next event in the list. Further, to
maintain the context of each event counter to the task currently running, this switching
has to occur on every task switch as well. However, depending on the number of events
being multiplexed, it is necessary to extrapolate the event counts to a full time interval.
Hence, the accuracy of counter multiplexing is limited by the rate of timer ticks and the
duration of the minimum scheduling timeslice. In an extreme case, a task could toggle
its behavior with every timer tick, resulting in the estimator only counting events of
alternating program phases and not the overall task behavior. To allow for fine-grained
performance counter multiplexing, we configured our kernel code to a timer frequency
of 1000Hz. In the case of task preemption due to the activation of higher priority tasks
in the system, we discard multiplexed event counts from time periods that are too short
to yield meaningful results from extrapolation and consequently would provoke bogus
values.
Performance counter multiplexing compensates for the limitations of the underlying

hardware architecture on a low level, without influencing the remaining part of the de-
sign. Apart from the activation of multiplexing by including the mux keyword in the
programming string for a new energy weight, the particular method of how performance
counters are evaluated by the energy estimator is transparent to the rest of the energy
infrastructure.

4.1.2 Workload Classes and Threshold Policy

We implemented the bandwidth model and the threshold classificator in the energy pro-
filer according to the pseudo code of Chapter 3. The energy infrastructure extends the

52

4.1 Energy Infrastructure

operating system’s task context with a data structure representing the energy profile.
In order to support our algorithms, building on the notion of workload classes, we ex-
tended this energy profile with a generic vector of energy values. Workload classes are a
generalization of the concept of a single value representing the task’s estimated energy
consumption. We now have a set of weighted energy values specific to classes of energy-
related events. The underlying energy estimator has been enhanced to assign arbitrary
sets of energy weights to each class. By introducing a vector of bits for each energy
weight, we can specify to which workload classes this weight contributes to (e.g., a bit-
mask of 0x6 means this energy weight contributes to the second and the third workload
class).
This results in a more generic concept of a linear combination of energy values split

into multiple classes. These energy classes, in turn, provide the necessary input data for
the subsequent bandwidth and threshold heuristics according to our notion of compute-
related and memory-related events. With the freedom of configurable energy weights
and class assignments, our mechanism can be flexibly reconfigured to match the energy-
related properties of a variety of architectures.
In order to support our threshold classification heuristic, we require two separate class

inputs accounting for the time the processor spends with the distinct workload classes
we defined as rationale for our solution. We use the number of unhalted processor
cycles as a measure for the time spent with on-chip activity. The performance event
of UNHALTED_CYCLES.REF counts active processor cycles according to a reference clock
signal, which is unaffected by frequency scaling, thus providing a constant measure per
time interval for our on-chip class. Regarding memory accesses, we require a type of event,
which can be counted on the hierarchical levels of a chip multi-processor topology. We
select the performance event BUS_TRANS_MEM, which can be programmed to count memory
accesses on the core, agent, and package level. In order to support the bandwidth model
and subsequently the correct classification of the task workload, we have to propagate all
four event rates as abstract workload classes in the task’s respective energy profile. The
global threshold parameter is incorporated into the energy profiler and can be configured
via the Sysfs file system interface. Reevaluating the workload classes on each context
switch enables the energy infrastructure to determine the current task class for each
process according to its recent behavior.
In order to simplify the process of configuring the energy estimator according to our

policy, we developed a user-level program core_pmc that can generate the appropriate
bitmasks for programming performance monitoring counters. Complemented by a set
of shell scripts, we configure the necessary workload classes required as input for the
bandwidth and threshold heuristic.

53

Chapter 4 Implementation

4.2 Coordination Framework

With the introduction of our coordination framework for processor ACPI states, we
bypass Linux’ CPUFreq software infrastructure usually responsible for CPU power man-
agement. CPUFreq is geared towards implementing basic policies and is not properly
prepared to be called from core parts of the operating system as the scheduler. Since the
scheduler is a frequently invoked part of the operating system, changing the processor’s
performance state should incur the lowest overhead possible. However, compared to the
CPUFreq code, it is not necessary to migrate the current thread of execution to the
processor that is intended to change its performance state. As each scheduler instance
runs exclusively on the processor it has been assigned to, moving the responsibility of
issuing P-state requests to the scheduler makes sense, as now the necessary core-specific
instruction can be invoked directly.
In order to realize a valid implementation of the proposed coordination algorithm (see

Chapter 3), we first have to determine the exact behavior of our multi-core processor when
different performance state values are written to the respective core’s P-state MSR. In
contradiction to the platform datasheet, stating that the processor assumes the lowest
(i.e., highest frequency and highest voltage) of all requested P-states, each agent of the
package transitions to the last state requested. That is, issuing a wrmsr instruction on
either of both member cores transitions the entire agent to the new state. Nevertheless,
the documented behavior applies to the shared voltage plane between agents, where the
package transitions to the highest voltage required to operate both agents according to
their frequency requirements. Consequently, the proposed min and max policies can
be implemented by noting all current requests, calculating the respective minimum or
maximum value, and selectively issuing the necessary P-state transition if the new state
differs from the actual state.
By using a domain mask for the calculation of minimum or maximum P-state, we

can realize coordinated behavior on an arbitrary set of member cores. According to our
reasoning of Chapter 3, the domain mask should reflect the physical dependencies of the
chip multi-processor. Given the particular behavior of our target platform, a core level
coordination would result in erratic behavior as all state requests issued on a frequency-
dependent core group would cause this agent to toggle between states. Meaning, for
both policies (min and max) all coordination should at least happen on the core group
level. This core group information (input parameter Γ of Algorithm 3) is derived from
the operating system’s knowledge about physical core dependencies. The set is empty
once there are no P-state dependencies between cores (native multi-core processor). In
this case, coordination is bypassed and performance state requests are issued without
need for reevaluation. Further, as stated in Section 3.9, using a max policy for a chip
multi-processor with shared voltage plane only makes sense if the entire package can scale
to a low voltage. Running an agent at low frequency but high voltage is suboptimal in
terms of energy efficiency.

54

4.3 Scheduler

In order to hide these platform peculiarities, we provide a high-level interface function
to our energy-efficient scheduling policy, which allows to set the main objective to either
favor time or energy. According to this high-level objective, the coordination framework
is configured to use the arithmetic min or max function (see Chapter 3). Following the
rules mentioned above, the domain mask defaults to a value for core group coordination,
unless the chip multi-processor features a shared voltage plane. In this case, if energy is
the primary policy objective, the domain mask is set to all member cores of the package.

4.3 Scheduler

We modified the Linux scheduler in a way that it calls an energy-related function on every
context switch in the schedule() function, dispatching a performance state request to the
underlying coordination framework. Representing a layer of abstraction from processor
hardware, the coordination framework provides a generic interface for the scheduler to
the underlying core’s performance states. Once the general energy-aware policy objective
is set, the scheduler can pass performance state requests to this layer according to the
requirements anticipated for the task regarding the next timeslice. The scheduler itself
remains oblivious from any possible physical hardware constraint regarding performance
states.
Our scheduler activates the sched_mc_power_savings policy of the Linux 2.6 kernel

for a basic load balancing strategy. In compliance with our previous observations in
Section 3.6, this policy implements energy-aware load balancing striving to first utilize
entire core groups before assigning tasks to another core group or package. While this
behavior can lead to suboptimal usage of available hardware caches [23], such a strategy
saves possible activation costs in energy for a second core group. Furthermore, both our
coordination strategies are favored, since configurations of two tasks will be co-scheduled
on one core group, deferring situations of energy inefficiency due to a shared voltage
plane to configurations where both agents necessarily have to be active.

55

Chapter 4 Implementation

56

Chapter 5

Evaluation

For this thesis, performing the evaluation of the proposed algorithm serves two purposes.
Primarily, we want to demonstrate that the approach we suggest can in fact significantly
benefit overall energy consumption. These gains were indicated earlier by our prelim-
inary observations with synthetic workloads. However, these theoretical scenarios are
improbable to happen to this extent in real-world applications. Thus, the results we
may expect are likely to be more moderate than the theoretical gains of a best case.
Secondly, the measurements will serve as necessary optimization step for our heuristic
where we determine the optimum setting of the main classification parameter. An im-
portant property of this parameter should be the correct separation of compute-bound
from memory-bound workloads.

5.1 Test Setup

The configuration of our test machine is based on a commodity multi-core hardware
system. An Intel Core 2 Quad (Q6600, Kentsfield) with 4MiB of L2 cache and 4GiB of
RAM was running on a desktop mainboard. In order to evaluate and optimize our policy,
we conducted energy measurements running the SPEC CPU2006 suite of benchmarks.
The measurement equipment was the same as presented in Chapter 3.4.
To account for the overhead our modifications may incur, we used a vanilla Linux 2.6.18

operating system kernel for the collection of reference values in execution time and energy.
In order to compensate for minor variations in benchmark runs, we collected the data
of five runs and averaged the results. All remaining measurements have been conducted
with our modified -ees branch of the Linux kernel. Accordingly, all subsequent gains in
energy efficiency will be calculated against a possible increase in execution time due to
the overhead of our policy.
Prior to benchmarking, however, we will prove by measurement that the bandwidth

model of Section 3.8.2 yields viable results for our target system. Based on that model, we
proceed determining the energy gains possible for the single instance case across a range
of real-world benchmarks. Subsequently, we will evaluate whether our design performs
as expected for the utilized case (i.e., a mixed set of tasks running at the same time).

57

Chapter 5 Evaluation

5.2 Bandwidth Model Verification

In order to verify the soundness of the proposed bandwidth model, we ran multiple
configurations of synthetic benchmark tasks comparable to the examples we resorted
to during the modeling process. By means of the procfs pseudo filesystem interface,
we have access to the information held within each task’s energy profile. This includes
real-time information about workload classes and the task class this process has been
assigned to by the classification code.
In accordance with our design, the memory-saturating mem microbenchmark is reliably

classified as memory-bound. While the application is running, the determined mem-ratio
never drops below a value of 0.95. Compute-intensive tasks, on the other hand, show a
mem-ratio of 0 as no references to memory occur except for the phase of task creation.
This confirms basic operation of the proposed estimation and threshold design including
the required enhancements.
In order to check the bandwidth heuristic in conjunction with the classificator, we

have to produce cases of serious utilization imbalances between bus agents. Regarding
configurations of concurrently running tasks, we tried to determine the threshold value
that is necessary to ensure that the entire set of tasks still receive correct classification.
As the real value is known, it is possible to infer on the accuracy of our underlying
bandwidth model in a real application.
In case of four instances of mem, a threshold value of 0.95 makes sure that all tasks

are classified memory-bound. In order to include the correct classification for the case
of maximum asymmetry in our model, the threshold value had to be lowered to 0.85
to ensure the same premise for three running tasks. While the energy infrastructure is
subject to systematic fluctuations, this translates into a margin of error of up to 15% for
our heuristical approach. For more balanced situations, however, the deviation is less
than 5% (see above), verifying the soundness of the heuristic bandwidth model we built
for this processor architecture.

5.3 Benchmark Suite

Apart from the microbenchmark applications we used to develop a basic energy model,
we will evaluate our design with the SPEC CPU2006 suite of benchmarks in the following
sections. These benchmarks represent a set of standardized workloads, which have been
derived from real-world applications and also exhibit a more variant behavior compared
to the static properties of synthetic microbenchmarks. This is important as we want to
prove that the proposed design based on online estimation reacts accordingly to changing
application behavior.
As a first step, we present the particular set of benchmarks we used for our evaluation.

In order to assess the nature of these benchmarks, we use the inverse representation of

58

5.4 Parameter Optimization

execution time [s] mem-ratio hint
Benchmark fmax fmin ρ(τ) Description

400.perlbench 605 874 10.5% Programming Language
401.bzip2 858 1250 8.1% Compression
403.gcc 563 759 30.9% C Compiler
445.gobmk 800 1163 8.7% Artificial intelligence
456.hmmer 1225 1819 2.8% Search gene sequence
458.sjeng 923 1342 8.7% Artificial intelligence
462.libquantum 1357 1748 45.1% Quantum computing
464.h264ref 1224 1815 3.2% Video compression
471.omnetpp 591 717 64.8% Discrete event simulation
473.astar 778 1081 21.8% Path-finding algorithms

Table 5.1: Set of SPEC CPU2006 benchmarks (reference values)

our timing model (Formula 3.4). In accordance with our prior usage of this equation,
we can determine a hint regarding the ratio of memory phases for each task (i.e., the
amount of memory-related slowdown). The result will also suggest which performance
state would be most beneficial for the benchmark to run with.
A large portion of the benchmarks in Table 5.1 show a time penalty close to the

theoretical value of 1.5 for on-chip workloads. Clearly, these benchmarks are almost
entirely CPU-bound and should therefore run at the fastest performance state. There
are also the instances of libquantum, omnetpp, gcc and astar that seem to be rather
memory-bound as the penalty factor is more moderate and tends towards the value for off-
chip activity. Regarding memory ratio hints, we have to note that these values relate to
the entire execution time of the benchmark. For example, a given ratio of ρ(τ) = 21.8%
can only model the average mem-ratio of this task, meaning that we cannot make a
determination whether the real application behavior consists of short memory-intensive
phases or a constant rate of memory accesses.

5.4 Parameter Optimization

In this section, we attempt to determine an optimal threshold parameter for the combi-
nation of our software design and the particular hardware system we run the benchmark
applications on. The operating system kernel is configured with the workload class
weights normalized appropriately (see Section 4.1.2). We will measure timing and en-
ergy dissipation with the installed equipment while the presented set of SPEC benchmark
applications run on the test machine. After each iteration, the global threshold value
will be adjusted in order to determine the influence of this parameter on overall energy

59

Chapter 5 Evaluation

efficiency. As we compare measured energies and execution times with the results of an
unmodified kernel at the highest processor frequency setting, energy gains can assume a
negative value for additional overhead and mispredictions, approximately zero for CPU-
bound tasks that are correctly classified, and a positive value for tasks that are running at
a more energy efficient performance state due to our improved scheduling policy. For the
case that the threshold parameter is tuned optimally, the average value of energy gains
across all benchmarks assumes a maximum value. This average value is of no particular
expressiveness except from serving as an indicator for the optimum setting and, further,
being consistent across the series of measurements we conducted for this optimization
process. The following diagram (Figure 5.1) depicts these average energy gains varying
with a threshold parameter ranging between 0.1 and 0.7.

0%

0.5%

1%

1.5%

2%

2.5%

3%

3.5%

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

A
vg

er
ag

e
E
ne

rg
y
G
ai
n

Threshold Parameter

Figure 5.1: Average energy savings depending on threshold parameter

The diagram shows that average gains do not vary significantly within the range of
0.1 to 0.2 for the threshold parameter θ. Detailed results with the lower threshold value
(θ = 0.1) show that we have to accept a slightly increased runtime for applications that
have a mem-ratio in the range of the threshold parameter. Although average energy gains
are similar, possible mispredictions that have a beneficial effect on energy gains in some
cases incur performance penalties in others. As the accuracy of separating workloads is
slightly better for the higher threshold value and this choice also shows the most reliable
energy gains across the set of benchmark applications we evaluated, we select an optimal
threshold parameter of θopt = 0.2. Although covering more extreme cases induced by
synthetic microbenchmark code, the theoretical value of θ0 = 0.22 we determined in
Section 3.7 is in the same order as our θopt. Obviously, the real-world workloads of the

60

5.5 Multi-Core Energy Gains

SPEC benchmarks exhibit a higher degree of memory dependence among instructions,
making it profitable to scale at a lower threshold value in practice.
In Table 5.2, we directly compare the reference values we determined earlier with the

results in energy and execution time for a threshold of θopt. According to the gains listed
in this table, it is possible to save up to 13.8% in energy for a single memory-intensive
application. Consistent with the assumption of Section 5.3, the omnetpp benchmark
heavily relies on the memory subsystem and therefore yields the best results in energy
gains. Second to this case is the libquantum benchmark with 9.35% gain in energy. These
memory-intensive applications experience a performance slowdown of up to 29%, whereas
the CPU-bound benchmarks consistently run at full speed. Although the applications
with energy savings run substantially longer, this maximum slowdown is well below the
theoretical worst-case prediction of 40% slowdown our timing model (see Section 3.7)
yields for θ = 0.2.
With a slowdown of 29%, the libquantum benchmark would violate the timing con-

straint for a threshold value of 0.5. Our measurement for θ = 0.5 shows that the increase
in execution time for this benchmark drops significantly to 18%. Obviously, the timing
constraint is still held, resulting in a slowdown that remains within the allowed range for
the new threshold value. However, as opportunities to adjust the processor performance
state are severely limited by a higher threshold, energy gains drop to 6% accordingly. In
accordance with more strict timing requirements, the higher θ is chosen the more overall
energy gains diminish (see Figure 5.1).
Having determined the optimum threshold parameter that separates workload classes

reliably for a variety of benchmarks, we will proceed to evaluate the case where multiple
tasks run concurrently on different cores of the processor. We will keep the optimal
threshold setting of θopt = 0.2 for all remaining measurements. For the single-core case,
it has to be noted that the policy works in accordance with our model by enforcing the
timing constraint and running both task classes at their most efficient performance state.

5.5 Multi-Core Energy Gains

As next step, we proceed in verifying the correct implementation of our policy for the
multi-core case. According to the exact policy goals we specify at runtime – energy
efficiency regarding or disregarding a time limit – the underlying coordination framework
gets adjusted appropriately. In our case, with a multitude of hardware dependencies
inside the multi-core processor, state coordination is a necessary requirement to ensure
that the processor runs efficiently within the bounds of the given policy. As already
noted during design in Section 3.9, both coordination policies match for the single-core
case. This is the reason why we were able to disregard the coordination policy in the
previous section.
For our evaluation, we present some exemplary configurations, demonstrating how the

61

Chapter 5 Evaluation

Reference Runs (fmax) θopt = 0.2
Benchmark energy [J] time [s] energy gain time factor

400.perlbench 30238.7 605 0.55% 0.99
401.bzip2 43738.7 858 1.32% 0.99
403.gcc 29203.6 563 3.02% 1.04
445.gobmk 39150.9 800 0.09% 1.00
456.hmmer 60474.7 1225 0.19% 1.00
458.sjeng 45978.9 932 -0.05% 1.00
462.libquantum 82383.9 1357 9.35% 1.29
464.h264ref 58840.4 1224 -0.12% 1.00
471.omnetpp 32615.2 591 13.81% 1.22
473.astar 40320.9 778 4.68% 1.04

Table 5.2: Energy gains and time factors for θopt (SPEC 2006)

0%
2%
4%
6%
8%
10%
12%
14%

40
0.
pe

rl
be

nc
h

40
1.
bz

ip
2

40
3.
gc
c

44
5.
go

bm
k

45
6.
hm

m
er

45
8.
sj
en
g

46
2.
lib

qu
an

tu
m

46
4.
h2

64
re
f

47
1.
om

ne
tp
p

47
3.
as
ta
r

E
ne

rg
y
G
ai
n

Figure 5.2: Single-core energy gains for θopt (SPEC 2006)

62

5.5 Multi-Core Energy Gains

core Policy: time Policy: energy
0 1 2 3 energy gain runtime energy gain runtime

libq hmmer — — 1.34% 1.04 11.9% 1.26
hmmer libq hmmer — 0.29% 1.0 14.41% 1.23
gcc gcc gcc — 1.34% 1.03 6.73% 1.10
libq libq libq — 6.81% 1.03 7.34% 1.03
libq libq libq libq 26.58% 1.06 27.0% 1.06

Table 5.3: Multi-core energy gains (regarding time and energy policy)

given policy gets enforced with regard to the overall processor package and proving that
savings are also possible in the utilized case. We chose a subset of the available bench-
marks that belong to different task classes but have comparable execution times. The
hmmer benchmark is a CPU-bound application, whereas libquantum is heavily and gcc
moderately memory-bound. For a multi-programmed benchmark, we start all processes
at the same time. The measurement will proceed until the last process finishes. With
an output of overall elapsed time for the entire job, we can determine the interval of
measurement samples that have to be considered for this run.
In Table 5.3, we compare test results of various combinations of tasks with the multi-

core coordination policy either set to favor time or energy. The column for the time
policy shows that notable energy gains are possible if the task configuration allows to
scale the processor without the risk to overly increase overall runtime. This is possible if
all tasks are memory-bound, resulting in a lower demand in energy of 6.8% for three in-
stances of libquantum. Compute-bound configurations, on the other hand, are executed
with regard to optimal runtime behavior and thus allow for no improvements in energy
dissipation. Accordingly, this restrictive policy limits the maximum runtime penalty to
6% across all configurations. For consistently memory-bound configurations, where such
a strict timing can still be realized under scaling, the policy yields the respective energy
efficiency.
Relaxing the requirements on timing, it is possible to save energy in more situations.

For configurations where a CPU-bound task formerly inhibited the scaling of the chip
multi-processor due to the timing policy, we can now note considerable gains in energy.
For three tasks, consisting of hmmer and libquantum instances, gains reach a level of
14.4%. However, this efficiency improvement is accompanied by a runtime penalty of
up to 26%. For configurations of consistently memory-bound tasks, the results for both
policy objectives match.
Notably for the moderately memory-bound gcc benchmark is that a configuration of

three instances executed in parallel can yield more significant gains of up to 6.7% than
compared to the minor gain of 3% in the single-core run (see Table 5.2). In the extreme

63

Chapter 5 Evaluation

scenario of four memory-intensive tasks contending for shared memory bandwidth, our
concept of energy-aware scheduling can exploit the full efficiency of the multi-core hard-
ware platform subject to our analysis. At a tolerable increase of 6% in runtime, it is
possible to decrease energy consumption by 27% compared to an operating system not
using ACPI P-states.
If the user is willing to trade optimum performance for increased energy efficiency in

the multi-core case as well, it seems appropriate to recommend a default configuration
of our energy-aware scheduler with θopt = 0.2 and a coordination policy favoring energy
in order to yield energy-optimal system behavior.
In summary, both coordination policies enforce their respective high-level objectives.

The energy policy increases efficiency notably for a variety of workloads – however,
in most cases with a significant impact on performance. Unless overall workload is
not heavily memory-bound, the time policy is enforced strictly, resulting in a behavior
where scaling of the multi-core processor is only allowed if the incurred delay can be
guaranteed to be very limited. This, in turn, is also dependent on the value of the global
threshold parameter. Furthermore, the distinction between policy objectives is a result
of the imposed hardware constraints in the first place. An underlying hardware platform
free from performance state dependencies would allow for more fine-grained decisions as
frequency domains would be more fine-grained as well. Still working correctly, we assume
that our energy-aware scheduling policy would lead to more differentiated results on such
a platform, with energy gains and time penalties ranging within the bounds of the two
coordination policies we evaluated. Conversely, assuming a processor architecture with
further accumulated frequency domains of four or more processor cores and only two P-
states, the results of both policy objectives would diverge even more due to the inherent
limitations of the underlying hardware with regard to effective use of frequency scaling.

64

Chapter 6

Conclusion

6.1 Summary

Recent generations of microprocessors ship with the capability to transition between a
set of performance states at runtime. The dynamic adjustment of clock frequency and
processor supply voltage has a significant influence on power consumption as well as
performance. However, the impact on performance is not as severe for activity that is
bound to the latency of components external to the processor (i.e., main memory or off-
chip bus systems in general). Given that the processor continuously runs at its highest
frequency and voltage setting, the accompanying waste of opportunities to save energy
applies to traditional single-core and multi-core architectures alike. Although methods
to exploit more efficient processor operation have been developed in the past, viable
solutions that realize such an approach for recently deployed systems, prevalently based
on chip multi-processors, are not available for use with commodity operating systems.
Clearly, as the trend towards more sophisticated processor architectures will continue,
power management has to keep up with the complexity of an increasing number of cores
within a single processor package.
In order to tackle the challenge of designing an energy-aware power management policy

for multi-core processors, we based our analysis on notions that have been introduced
by previous approaches to CPU power management. The distinction between two main
classes of instructions, on-chip and off-chip – categorized by the different performance
under clock scaling –, leads to memory accesses as an indicator for inefficient use of energy
at a high clock frequency state. As foundation for our solution, we exploit a heuristic in
conjunction with an online estimation design, which collects energy-related information
by means of hardware performance counters. The heuristic provides the mechanism to
reliably determine the energy-optimal performance state regarding a single processor core.
At the same time, the mechanism remains independent from any particular hardware, as
the threshold parameter to this heuristic is configurable according to the specific energy-
related characteristics of the given processor architecture. The optimal parameter to this
heuristic has to be obtained by measurement.
For architectural reasons, chip multi-processors feature a series of shared resources

among its constituents. These shared components, most prominently the memory bus

65

Chapter 6 Conclusion

and common frequency/voltage circuitry, prove to pose the main obstacles for the im-
plementation of an energy-aware scheduling policy. Since available memory bandwidth
is shared between cores, the rates of memory-related performance events heavily de-
pends on the interaction between member cores. We oppose this problem by employing
a bandwidth model that compensates for the mutual interference and secures the correct
performance of our workload classification. Further, as the transition to a different fre-
quency and voltage state may influence adjacent processor cores, our system coordinates
performance state requests in order to ensure that workload execution for the entire clock
or voltage domain does not violate or even invert the given policy objectives.
Based on an existing energy infrastructure implementation for the Linux 2.6.18 kernel,

we extended the energy estimator component to support multiplexing of the limited set of
available hardware performance counters. Multiplexing remains transparent to the rest of
the infrastructure while the intrusive support of workload classes is necessary to support
the bandwidth and threshold heuristics located in the energy profiler. By evaluating our
implementation with a set of benchmarks, we were able to tune the hardware-specific
threshold parameter of our policy for optimal gains in efficiency while running on the
Intel Core 2 Quad (Q6600) based test machine. Running compute-intensive tasks at a
low frequency results in an undue increase in execution time and typically a worsened
energy profile. Accordingly, our policy schedules CPU-bound workloads with optimum
efficiency at a high frequency setting. Compared to a system constantly running at
nominal processor frequency, our implementation increases overall efficiency for memory-
intensive applications and in idle phases. Providing that the typical workload situation
for a multi-core system consists of a diverse range of applications, as in case of the
benchmark suite used for evaluation, improvements of 14% in energy efficiency for single
and multiple task workloads are possible. Given all tasks are heavily memory-bound while
the processor is fully utilized, our energy-aware scheduling design can harness the full
efficiency of the processor hardware leading to an 27% decrease in energy consumption.
While these gains may come at a considerable penalty of execution time increased by a
quarter, our policy can be configured to favor time in situations where performance is
indispensable. With this objective and a mix of CPU- and memory-bound applications,
energy savings of up to 7% are possible.

6.2 Achievements

In this thesis, we demonstrated the potential of multi-core processors to handle given
workloads more energy-efficiently. Compared to the very basic power management poli-
cies shipped with today’s operating systems, our approach considers specific information
about workload composition and processor topology at runtime to determine the most
efficient hardware performance state configuration this workload should run with. There

66

6.3 Future Directions

are two configurable parameters to the presented policy allowing the user to influence
the trade-off between increased runtime and energy gains.
We built our solution on an existing energy infrastructure and enhanced this design in

order to accommodate a new processor architecture and the algorithms we developed. Ex-
ploiting the concept of workload classes, we provided two major contributions towards an
energy-efficient scheduling policy for multi-core processors. Firstly, a bandwidth model
ensuring that the proposed threshold heuristic yields correct results in situations where
a shared memory bus becomes a bottleneck. Secondly, a coordination framework that
accounts for the clustered architecture of chip multi-processors and maintains the given
policy objective for the entire CPU package.
By modeling the behavior of chip multi-processors and mapping this behavior to heuris-

tic algorithms, we minimized the effort necessary to implement an energy-aware policy
for a complex underlying hardware architecture. We moved considerable computational
overhead from runtime to the design phase, rendering the development of a sophisti-
cated energy model, featuring dozens of energy weights per core, to solve the problem
unnecessary.

6.3 Future Directions

The power and performance-related analysis of chip multi-processors is a difficult task,
given the complexity of the underlying hardware and the number of possible configura-
tions and dependencies between software execution, hardware constraints and the mutual
influence in each case. In order to focus the scope of this thesis on methods immediately
leading to a gain in energy efficiency, we excluded an entire class of scenarios from our
analysis, namely the possibility of task co-scheduling once more active tasks exist in the
system than processor cores.
In server and high-performance computing environments, systems have to run at peak

efficiency while under full load or even when oversubscribed with processing jobs. In these
situations, task-specific knowledge can be instrumental in order to facilitate optimized
scheduling decisions compared to a scheduler that is oblivious to the energy-related char-
acteristics of a task. These scheduling strategies especially have to take shared resources
such as limited memory bandwidth into account. Although this thesis only considered
configurations with a limited number of concurrently active tasks, our results can also be
applied to the overutilized case. The presented bandwidth model for the given quad-core
processor architecture can derive the actual memory-intensiveness of a task depending
on the overall bandwidth situation. This type of edited data promotes more meaningful
energy-related task profiles and may improve the accuracy of advanced co-scheduling
policies – such as memory-aware scheduling [19] and task activity vectors [20] – striving
to avoid resource contention due to the accompanied negative impact on energy efficiency
by influencing the order runqueues are processed. In conjunction with energy-efficient

67

Chapter 6 Conclusion

frequency scaling, as presented in this thesis, it is possible to increasingly harness the
full efficiency of the processor’s hardware.
As the underlying processor architectures evolve, also these software-based techniques

will. For the future, it is probable that some of these energy-aware mechanisms will
eventually find their way into commodity operating systems or even the hardware itself,
as the need for efficient computer systems is becoming inevitable.

68

List of Algorithms

1 Energy profiler: global threshold policy . 38
2 Chip multi-processor: available per-core bandwidth model 43
3 Chip multi-processor: energy and time constrained P-state coordination . 45

69

List of Algorithms

70

Index

Advanced Configuration and Power In-
terface, 20

Arithmetic Logical Unit, 32

Bandwidth Model, 40
Baseline Power, 34
Benchmark Suite

SPEC CPU2006, 58

Chip Multi-Processor, 16
frequency domain, 43

Coordination Framework, 54
CPUFreq, 54

Data Acquisition Device, 22
Dynamic Thermal Management, 26

Energy Efficiency, 19
Energy Estimation

offline, 22
online, 22

Energy Framework
Energy Estimator, 26
Energy Profiler, 26

Energy Weight, 23
Energy-Aware Policies

Energy Balancing, 26
Hot-Task Migration, 26
Process Cruise Control, 24
Thermal Policy, 26

Front Side Bus, 19

LabView, 31

Metric
Energy-Delay Product, 30

Model-Specific Registers, 19
Multi-Chip Module, 16

Parameter Optimization, 57
Performance Monitoring Counter, 19, 24

multiplexing, 52
Phase-Locked Loop, 19
Process Cruise Control, 24

frequency domains, 24

Task Classes, 37
Thermal Design Power, 18
Threshold Heuristic, 37

Workload
decomposition, 25
partitioning, 25

71

Index

72

Bibliography

[1] Frank Bellosa. The benefits of event-driven energy accounting in power-sensitive
systems. In In Proceedings of the 9th ACM SIGOPS European Workshop, 2000.

[2] Frank Bellosa. Three Dimensions of Scheduling. PhD thesis, University of Erlangen-
Nürnberg, Germany, November 27 1998.

[3] David Brooks, Vivek Tiwari, and Margaret Martonosi. Wattch: a framework for
architectural-level power analysis and optimizations. In ISCA ’00: Proceedings of
the 27th annual international symposium on Computer architecture, pages 83–94,
New York, NY, USA, 2000. ACM Press. ISBN 1-58113-232-8.

[4] Kihwan Choi, Ramakrishna Soma, and Massoud Pedram. Dynamic voltage and fre-
quency scaling based on workload decomposition. In In Proceedings of International
Symposium on Low Power Electronics and Design (ISLPED, pages 174–179, 2004.

[5] R. Choi and M. Pedram. Fine-grained dynamic voltage and frequency scaling for
precise energy and performance trade-off based on the ratio of off-chip access to
onchip computation times. In IEEE Transactions on Computer Aided Design of
Integrated Circuits and Systems, January 2005., 2005.

[6] Hewlett-Packard Corporation, Intel Corporation, Microsoft Corporation, Phoenix
Technologies, and Toshiba Corporation. ACPI specification 3.0a, December 30 2005.

[7] Intel Corporation. Mobile Intel Atom Processor N270 Single Core, 2008.

[8] Intel Corporation. Intel 64 and IA-32 Architectures Software Developer’s Manual
Volume 3B: System Programming Guide, 2008.

[9] Intel Corporation. Introducing the 45nm next-generation Intel Core microarchitec-
ture, 2007.

[10] Alexandra Fedorova. Operating System Scheduling for Chip Multithreaded Proces-
sors. PhD thesis, Harvard University, September 2006.

[11] Krisztián Flautner and Trevor Mudge. Vertigo: automatic performance-setting for
Linux. In OSDI ’02: Proceedings of the 5th symposium on Operating systems design
and implementation, pages 105–116, New York, NY, USA, 2002. ACM.

73

Bibliography

[12] Lance Hammond, Basem A. Nayfeh, and Kunle Olukotun. A single-chip multipro-
cessor. Computer, vol. 30, no. 9:79–85, September 1997. Stanford University.

[13] John L. Hennessy and David A. Patterson. Computer architecture. Morgan Kauf-
mann, 3. ed. edition, 2003. ISBN 1-55860-724-2, 1-55860-596-7.

[14] Simon Kellner. Event-driven temperatur control in operating systems. Study thesis,
Operating System Group, University of Erlangen, Germany, April 30 2003.

[15] R. Kotla, A. Devgan, S. Ghiasi, T. Keller, and F. Rawson. Characterizing the impact
of different memory-intensity levels, 2004.

[16] Evangelos Koukis and Nectarios Koziris. Memory and network bandwidth aware
scheduling of multiprogrammed workloads on clusters of SMPs. In ICPADS ’06:
Proceedings of the 12th International Conference on Parallel and Distributed Sys-
tems, pages 345–354, Washington, DC, USA, 2006. IEEE Computer Society. ISBN
0-7695-2612-8.

[17] Min Yeol Lim and Vincent W. Freeh. Determining the minimum energy consumption
using dynamic voltage and frequency scaling. Parallel and Distributed Processing
Symposium, International, 0:348, 2007.

[18] Andreas Merkel. Balancing power consumption in multiprocessor systems. Diploma
thesis, System Architecture Group, University of Karlsruhe, Germany, September 30
2005.

[19] Andreas Merkel and Frank Bellosa. Memory-aware scheduling for energy efficiency
on multicore processors. In HotPower Workshop ’08, 2008.

[20] Andreas Merkel and Frank Bellosa. Task activity vectors: a new metric for
temperature-aware scheduling. In Eurosys ’08: Proceedings of the 3rd ACM SIGOP-
S/EuroSys European Conference on Computer Systems 2008, pages 1–12, New York,
NY, USA, 2008. ACM. ISBN 978-1-60558-013-5.

[21] Trevor Mudge. Power: A first-class architectural design constraint. 2001. University
of Michigan.

[22] Yiannakis Sazeides, Rakesh Kumar, Dean M. Tullsen, and Theofanis Constantinou.
The danger of interval-based power efficiency metrics: When worst is best. IEEE
Computer Architecture Letters, 4(1), 2005. ISSN 1556-6056.

[23] Suresh Siddha, Venkatesh Pallipadi, and Asit Mallick. Process scheduling challenges
in the era of multi-core processors. Intel Technology Journal, 11(4):361–370, 2007.
ISSN 1535-864X.

74

Bibliography

[24] David C. Snowdon, Stefan M. Petters, and Gernot Heiser. Accurate on-line predic-
tion of processor and memory energy usage under voltage scaling. In EMSOFT ’07:
Proceedings of the 7th ACM & IEEE international conference on Embedded software,
pages 84–93, New York, NY, USA, 2007. ACM. ISBN 978-1-59593-825-1.

[25] Andreas Weissel and Frank Bellosa. Process cruise control: event-driven clock scaling
for dynamic power management. In CASES ’02: Proceedings of the 2002 interna-
tional conference on Compilers, architecture, and synthesis for embedded systems,
pages 238–246, New York, NY, USA, 2002. ACM. ISBN 1-58113-575-0.

[26] Dominik Winkelmeyer. CPU power management for SMT and CMP proces-
sors. Study thesis, System Architecture Group, University of Karlsruhe, Germany,
March 21 2007.

75

	1 Introduction
	1.1 Improving Energy Efficiency
	1.2 Chip Multi-Processors
	1.3 Energy-Efficient Scheduling for Multi-Core Processors
	1.4 Thesis Outline

	2 Background and Related Work
	2.1 Background
	2.1.1 Processor Architecture
	2.1.2 Power and Performance
	2.1.3 Power-Related Hardware Mechanisms
	2.1.4 Power Management

	2.2 Related Work
	2.2.1 Event-Driven Energy Estimation
	2.2.2 Process Cruise Control
	2.2.3 Workload Classes
	2.2.4 Energy-Aware Policies
	2.2.5 Multi-Programmed Workloads
	2.2.6 Multi-Core Caches
	2.2.7 Energy-Efficient Scheduling

	2.3 Minutiae

	3 Design
	3.1 Problem Statement
	3.2 Design Overview
	3.3 General Reasoning
	3.4 Measurement Setup
	3.5 Basic Energy Model
	3.6 The Multi-Core Case
	3.7 Mixed Workloads
	3.8 Online Estimation
	3.8.1 Memory Bottleneck
	3.8.2 Bandwidth Model

	3.9 Multi-Chip Module Issues
	3.10 Energy-Efficient Scheduling

	4 Implementation
	4.1 Energy Infrastructure
	4.1.1 Architecture-Specific Enhancements
	4.1.2 Workload Classes and Threshold Policy

	4.2 Coordination Framework
	4.3 Scheduler

	5 Evaluation
	5.1 Test Setup
	5.2 Bandwidth Model Verification
	5.3 Benchmark Suite
	5.4 Parameter Optimization
	5.5 Multi-Core Energy Gains

	6 Conclusion
	6.1 Summary
	6.2 Achievements
	6.3 Future Directions

