Universitat Karlsruhe (TH)
Institut fur
Betriebs- und Dialogsysteme

Lehrstuhl Systemarchitektur

Design and Analysis of Energy-Aware Scheduling
Policies

Christoph Klee

Diplomarbeit

Verantwortlicher Betreuer: Prof. Dr. Frank Bellosa
Betreuender Mitarbeiter: Dipl.-Inform. Andreas Merkel

20. August 2008

Hiermit erklare ich, die vorliegende Arbeit sellasidig verfasst und keine anderen als
die angegebenen Literaturhilfsmittel verwendet zu haben.

I hereby declare that this thesis is a work of my own, and thit cited sources have
been used.

Karlsruhe, den 20. August 2008

Christoph Klee

Abstract

Scheduling policies of multitasking operating systemdipan the time of proces-
sor assignment among all runnable threads. For most sa@redtlis unimportant in
which way a thread utilizes its assigned resources durggjrite of processor con-
trol. A thread’s resource utilization, however, cannotyoaffect the thread itself, but
also subsequent scheduled threads. In the case of a thpemedis consumption, the
power consumption can cause throttling of the thread andegjutent threads. Due to
the interference, the processor allocation between theathle threads is not fair any
longer.

In this thesis, we propose a generic design to enhance denepmse schedulers
to become energy-aware. The enhanced schedulers faitijigrathe system’s en-
ergy among threads to favor energy-efficient threads. Euribre, they assure that
a thread’s power consumption does not affect another tlwrexeécution negatively
by enforcing another thread’s throttling. In order to malestbuse of a processor’s
power limit, we present an energy transfer mechanism ttyfaansfer energy among
threads. It permits threads having power consumptionsrzegopre-defined power
limit to benefit from threads having a power consumption Wwethee limit.

Our evaluation shows that each of our examined schedulerb@zome energy-
aware, and that they assure that each thread preserveswiee foit individually.
Besides, our enhanced schedulers permit to partition amsysenergy fairly, even in
the case of energy transfers. Due to the energy transfertharfdir energy partition-
ing, our enhanced schedulers — limiting each thread’s poaesumption — achieve a
better performance than schedulers only limiting a rundgiseand a processor’s power
consumption, respectively.

Contents

1 Introduction 1
1.1 Problem Analysis&Solving. 1
1.2 Structure e e e 3

2 Background 5

2.1 Terminology. 5
2.2 SchedulingPolicies o 5
221 RoundRobin. o 6
2.2.2 Multilevel Feedback Queue 6
2.2.3 Start-timeFairQueuing. 7
2.2.4 LotteryScheduling 8
225 Stride Scheduling. L. 9
226 O(l)LinuxScheduler. 10
2.2.7 Completely Fair Scheduler. 11
2.3 EnergyAccounting. 12
2.4 Temperature Estimation. 13
2.5 Dynamic Thermal Management 13

3 Design 15
3.1 Problem Description & Analysis 15
3.2 Energy&PowerLimit., 18

3.21 EnergylLimit. 18

3.22 PowerLimit 19

3.3 EnergyPolicies. 21
3.3.1 Strict Power & Non-Strict Energy Limit 22
3.3.2 Strict Power & Strict Energy Limit. 22
3.3.3 Non-Strict Power & Non-Strict Energy Limit 23
3.3.4 Non-Strict Power & Strict Energy Limit 26

3.4 Run-Queue EnergyBudget., 29

3.41 NAaveSolution 29
3.4.2 ProposedSolution., 30
3.4.21 ReceivingThreads. 34

3.4.2.2 Handling Preemptions. 35
3.4.3 Maximum Capacity of the Run-Queue Energy Budget . . 36

3.5 Controllinga Thread’s Energy Limit 37

Vi

viii

B

CONTENTS

Implementation

4.1
4.2

4.3
4.4

4.5
4.6

PowerLimit.
Energy Profile
4.2.1 Updating a Thread's Energy Profile.

4.2.2 Handling Preemptions
423 EnergyTransfer.
Counting Throttled Threads.
Sysfsinterface.
441 EnergyPolicy
4.4.2 Maximum Capacity of a Run-Queue’s Energy Budget . .

443 EnergyTransfer.
Changing the Energy Policy.
Scheduler Specific Adaptions.
4.6.1 O(1)LinuxScheduler.
4.6.2 Completely Fair Scheduler.

Evaluation

51
5.2
5.3
54

55
5.6

5.7

Evaluation Environment. oo
Evaluation Setup.
Scheduler Performance.
Energy Policies.
5.4.1 Scheduler Comparison.
5.4.2 Comparison of Energy Policies
Proportional Share Schedulets.
Interactive Tasks.
5.6.1 Netperf Throughput.
5.6.2 BenchmarkRuntime
Evaluation of Energy Transfer

Related Work

6.1
6.2

Energy Containers.
ECOSystem e e

Conclusion

7.1
7.2
7.3

Achievements
SUMMATY o e e e e e e
FutureWork.

Power Limit
A.l StrictPowerLimit.
A.2 Non-Strict Power Limit.

Run-Queue Energy Budget

Bibliography

39
39
41

41
42
42
43
44
44

45

45

45
46
46
47

49
49
50
51
52
52

54
56
59
60
62
63

65
65
66

67
67
67
68

71
71
72

75

79

Chapter 1

Introduction

In this chapter, we motivate why energy-aware schedulezsepving a power limit
and favoring energy-efficient applications can be an adggnfor data centers. We
analyze which requirements energy-aware schedulers mififittb permit data cen-
ters to bill an application’s caused power consumptiontit&rmore, we analyze how
these schedulers can allow applications having power copgans beyond the power
limit to benefit from applications having power consumpsidielow the power limit.
Subsequently, we present our solution for these two proglamd outline the structure
of our thesis.

1.1 Problem Analysis & Solving

Motivation Today's general purpose operating systems are multitgskapable.
They do not grant a thread — the schedulable entity of an@gjwin — processor con-
trol until it finishes its execution, instead they executettiread only for a short period
of time. This period is calletimeslice By preempting a thread after it has executed
for the duration of its timeslice and scheduling anotheedhl; it seems as if a sched-
uler would execute several threads in parallel on one phlsintral processing unit
(CPU).

A scheduler of a multitasking operating system (OS) is rasjide for schedul-
ing threads. Depending on a thread’s characteristics,gaspeiority or its course of
execution, a scheduler can determine a thread’s timediugth; it can even assign a
pre-defined timeslice length to all threads. After a threasléxecuted for the duration
of its timeslice, it will at the latest get preempted if moham one thread is eligible to
be scheduled. If a scheduler is priority based, a higheriprithread can preempt the
currently running thread as well.

For a scheduler of a general purpose OS it is mostly unimpbntawhich way
a thread utilizes its assigned resources during its timesliThis will be a drawback
if an uncontrolled resource utilization reduces the sy&gmarformance. The power
dissipation, in particular, of a processor caused durifgeetd’s execution can raise a
processor’s temperature above its critical thresholdhif happens, a processor must
be throttled to reduce its power dissipation and tempezd1].

Due to the thermal resistance of a processor’s heat sinlga@gsor’s temperature
changes slowly [14]. Hence, a processor’s throttling taucedits temperature can
last for several timeslices and therefore can affect sulesgty executed threads [10].

2 CHAPTER 1. INTRODUCTION

Thus, a thread’s execution can have negative impacts ornxdwitton of subsequent
threads. The throttling policy implemented in hardware giracessor or an energy-
aware scheduler can throttle the processor. A schedulerargrol which thread it can
throttle and for how long. Furthermore, it can even thrattieeads before they raise
the temperature of the processor above a threshold.

A processor cannot only be throttled to avoid an exceedahagmcessor’s tem-
perature above a threshold, additionally it can be thmbtiberestrict its average power
consumption. The reasons for restricting a processor'’sageepower consumption
can be multifaceted, e.g., a restriction of a power supplyitecal temperature of a
processor as motivated before or even monetary reasons.

A monetary reason can be the costs for a computer room aiiitaoridg (CRAC)
system [28]. Normally, a CRAC must at least have a coolingcHyp to discharge the
hot air caused by the components of a data center with cookwén if these com-
ponents consume their maximum power. If the components magansume more
power than permitted by a power limit, the CRAC can be sizedllento reduce the
CRAC's acquisition and operating costs.

Although the cooling costs of a CRAC and the energy costs graip servers
depend on the power dissipation of the executed applicatioa data center, it is more
usual to pay for an application’s execution time, but notifercaused energy costs.
Sun offers, in particular, its “Sun Grid” [36] computing penfor one dollar per CPU-
hour. An application will execute for one CPU-hour if it ugesodes for its% hours
lasting execution. Similar is Amazon’s approach to sell tbenpute power of their
“Amazon Elastic Compute Cloud” [2,23]. The price for the qorte power depends
on the requested resources as data storage, memory and maofdzenpute units.
Amazon considers how much resources a customer requirebilimthe performed
data transfer, but does not consider the energy costsiregsfrttm the utilization of the
assigned resources.

Analysis For permitting a company to sell its compute power and totbél caused
energy consumption, a scheduler must preclude drawbagksdther threads’ power
consumptions. To avoid these drawbacks and unfairnespeatigely, which are
caused by a thread’s power consumption, an energy-awasglgieln must consider
to limit a processor’s power consumption by throttling theeds individually [6, 47]
and not the complete run-queue.

In addition to limiting a thread’s power consumption, anrggeaware scheduler
can — independently of a power limit — base its schedulingsitets on the energy
consumption of the system’s threads. If a system’s energyjgposed to be fairly
partitioned among the threads eligible to be scheduled/tw fenergy-efficient threads,
threads having the same characteristics — as previoudipedit- must get the same
amount of energy. This means, a scheduler will no longerérea thread for the
duration of its timeslice, but as long as its assigned eneitjyast. Thus, a scheduler
assigns a thread with a lower power consumption to the psocder a longer time
than a thread with a higher power consumption.

Due to the threads having power consumptions below the pbmér a proces-
sor's average power consumption can be below the permitteddimit. This permits
threads with power consumptions above the limit to exceegtwer limit as long as
the processor’s average power consumption is not raisegeahe limit. This energy
transfer must fairly partition the transferred energy toidwnfairness among the re-
ceiving threads. Besides, a scheduler must limit the actation of energy which it

1.2. STRUCTURE 3

can transfer, otherwise — if threads consume the energynwatkhort period of time —
threads can exceed the permitted energy consumption cegsoctemperature.

Solution In this thesis, we propose a generic design to enhance denergose
schedulers to become energy-aware. The enhanced scleedatefairly partition the
system’s energy among threads and can assure that a thpeaas consumption does
not negatively affect another thread’s execution by ernfigr@another thread’s throt-
tling. For limiting a thread’s power consumption, our eneeagvare schedulers throttle
a thread to assure that a thread does not raise its average pomsumption above a
limit. This does, however, not guarantee a fair energy fiaming. Therefore, a sched-
ulers only execute a thread until the thread has consumeehttrgy permitted by an
energy limit. Thus, a thread’s scheduling period does ngéomepend on its times-
lice length, instead it depends on the assigned energy adimay consume. After a
thread has consumed its assigned energy, a scheduler Eshtdunext thread. If it is
not desired to execute a thread for a longer period thannitsdice, a scheduler can
discard a thread’s remaining energy and can schedule artbtead.

In addition to preserving the power limit per thread, ourrggeaware schedulers
can permit threads having power consumptions beyond themawit to benefit from
threads having power consumptions below the limit. Theefare have designed an
energy transfer between threads. As pointed out, the trenesf energy must be fairly
partitioned, hence a first come first serve scheme is inseffitiédr energy transfers. We
partition the offered energy, before a scheduler trandferenergy to threads having
power consumptions above the power limit.

The power limit and the energy limit are independent of eablero We have out-
lined that each limit can be accomplished in two differeishfans. An energy-aware
scheduler can prohibit or permit threads to benefit fromlagrobne’s power consump-
tion, and it can schedule a thread at most as long as the thteadslice last or until
the thread has exhausted its assigned energy. Thus, wé@gatesour different energy
policies.

1.2 Structure

Our thesis is structured as follows: In Chap2ewe present the scheduling policies
we analyze. Furthermore, we point out how the kernel canatevghread’s energy
and power consumption as well as a processor’s temperatumeaf processor’s perfor-
mance counters and how the kernel can limit them. Chéptlrals with our generic
design to enhance schedulers to become energy-aware andé¢cmay from a times-
lice based scheduler to an energy based scheduler. Thexkugats permit to partition
a system’s energy fairly among threads. We consider thesimghtation of our design
on top of the Linux kernel in Chaptdr In addition to implementation details applying
to all of our analyzed schedulers, we examine scheduleifgpadaptions to allow for
scheduler specific characteristics. Afterwards, we evaltree studied schedulers and
the realization of the fair partitioning of the system’s ggyen Chapteb. In Chapte6,
we present related work regarding the fair energy pariitipnAt the end of our thesis,
we point out our achievements, give a short summary of oukwand outline possible
directions of future work in the last Chaptér

CHAPTER 1. INTRODUCTION

Chapter 2

Background

We define in this chapter terms required for our thesis. Afdeds, we present the
seven scheduling policies which we have examined and adiaptbecome energy-
aware. Then we introduce mechanisms to account a threagfgyeand power con-
sumption as well as a mechanism to estimate a processopetatare. At the end, we
outline a mechanism to limit a processor’s power consumptio

2.1 Terminology

In this thesis, we will use the following terms to define thbseguent abstractions:

Thread A thread is a schedulable entity, reflecting a single flow afoeion. Each
thread stores its own program counter — to state which ictstmis executed next — as
well as registers, stack and status. If a thread is execiisagister state is stored in
the physical registers of a processor, otherwise it is dtorenemory.

Task A task is composed of its assigned threads running withinaafi¥ess space.
At least one thread must be assigned to a task.

Timeslice A timeslice is the period of time a scheduler intends to sakeed thread
for. It is assigned to a thread.

Quantum If a scheduler schedules a thread until it has consumedsitgreex] energy,
a thread can exhaust its assigned energy before or aftendslice expires. Therefore,
we must distinguish between the period of time a schedulsigdates to schedule a
thread for (timeslice) and a thread’s actual execution tivile call the actual execution
time quantum.

Run-Queue A run-queue is a queue containing runnable threads of a soce

2.2 Scheduling Policies

We present in this section the scheduling policies we havestigated and adapted to
become energy-aware. At first, we introduce the round robthraultilevel feedback

5

6 CHAPTER 2. BACKGROUND

gueue policies. Afterwards, we consider three proportishare scheduling policies
and, at last, we examine the two schedulers of the Linux 2ekeseries.

2.2.1 Round Robhin

The round robin scheduling policy [37] is a preemptive titieesbased scheduling

algorithm. It picks the first thread of a processor’s runwggighen executes the thread
until its timeslice expires, or the thread blocks or yieldsgessor control back to the
kernel. In the case of a blocking thread, the scheduler resithe thread from the run-

gueue, otherwise it reinserts the thread at the end of theuene. This assures that
after n schedules each thread of the run-queue is scheduled foiiroaslite, while

n is the number of threads of the run-queue. Round robin ttha¢ads equally, so

that it can assign a default timeslice length to each thré4ehce, round robin is a

starvation-free scheduling policy. Besides, round robianO(1) scheduler, because
its scheduling complexity is independent of the number ofdlls assigned to a run-
queue.

Due to the fact that round robin treats threads equally, hierantly penalizes
input/output-bound (I/0O-bound) threads and favors CPUHoIj46] threads. An 1/O-
bound thread normally exhausts only a fraction of its tineesin contrast to a CPU-
bound thread. This effect can be reduced by a shorter tioseldhgth, because then
I/O-bound threads get the chance to be executed more fridguene disadvantage of
a shorter timeslice length is the increased address spaituhisg overhead.

2.2.2 Multilevel Feedback Queue

A multilevel feedback queue (MLFQ) scheduler [39] is a prptwe priority based
scheduling algorithm. Each thread has an assigned pridtitgse priorities define an
order among the threads. If a thread becomes runnable aralltigher priority than
the currently running thread, it will preempt the currenttid. This means the current
thread will no longer be permitted to execute while the higtréority thread will be
permitted to execute. Thus, a priority based scheduleresshat it executes one of
the runnable threads having the highest priority amonguheable threads.

A MLFQ scheduler consists of multiple queues, where eaclugu® associated
with a priority and a timeslice length. Its first queue, lidk&ith the highest priority,
has the shortest timeslice length. The more a queue’s fyridecreases, the more its
timeslice length is extended. A MLFQ scheduler executeghheads assigned to a
gueue in round robin fashion.

If a thread becomes runnable for the first time, the scheduléinsert it at the
end of the first queue assigned to the highest priority. Ag Emithe scheduler has only
executed a lower priority thread before or the processobgas idle, the created thread
preempts this thread and starts with its execution, otlsnitiwaits to be selected by
the scheduler. The preempted thread stays at the front@fi@se to get the chance to
execute for the remaining time of its timeslice.

In the case a thread executes only for a fraction of its timedlecause it blocks,
the scheduler will increase its priority, otherwise theestiler will decrease it. Thus,
a MLFQ scheduler ensures that I1/0O-bound threads executeantigh priority and
preempt low priority CPU-bound threads. Furthermore, #regth of a low priority
thread’s timeslice accommodates the requirements of a Rridd thread.

The MLFQ scheduler is a priority based scheduling algorijttivarefore it suffers
from starvation. If high priority threads can utilize th@pessor td 00%, a low priority

2.2. SCHEDULING POLICIES 7

thread will suffer from starvation, because the scheduldinet execute the thread as
long as higher priority threads are runnable. Torrey, Calend Miller [39] have not
considered starvation in the design and implementatiohe&if MLFQ scheduler. To
overcome this drawback, we introduce an aging mechanisoh tBaead’s age is equal
to the timeslice length corresponding to the thread’s fiyiof he scheduler assigns the
age to a thread whenever it refreshes a thread’s timeslice.

To avoid starvation, the scheduler must at least age thadbreshich have the
lowest priority among a processor’s threads aftekecutions of higher priority threads
if high and low priority threads are runnable. The MLFQ salledmay raise an aged
thread’s priority up to the highest priority if it does noteexite the thread at a lower
priority before.

Our aging mechanism works as follows: it decreases the ag# lofver priority
threads about the timeslice length of the currently exettiteead. If a lower priority
thread’s age is afterwards equal or less than zero, the sldredill raise its priority.
Thus, anO(n) aging mechanism can avoid starvation of lower priority s

2.2.3 Start-time Fair Queuing

Start-time fair queuing (SFQ) is a proportional share sualied algorithm [16]. Before
we present the SFQ scheduler, we outline the general contgpbportional share
scheduling policies.

Proportional Share Policy A proportional share scheduling policy strives to parti-
tion the time of processor allocation fairly among the tlieaccording to the weights
of the threads. Each thread has an assigned weight, thalthwaights define the
relation among the threads. A thread withtimes the weight of another thread,
executesk times longer than the other thread in a period of time. Funtioge, a
thread with weight- shall get the portionrm of the processor allocation, while
Ttotal threads 1S the sum of all threads’ weights of a processor. The praresio-
cation will be fair for a processor’s runnable threads iffelread gets exactly its
portion of time within each time intervéd;, t;]. This is only an idealized definition of
a proportional share scheduling policy, because a threabtallocate a processor in
arbitrarily small units.

Therefore, most proportional share scheduling policieg lconcept ofirtual
time The virtual time defines which thread is scheduled next. pentmnal share
schedulers based on virtual time schedule on of the thre#tstive smallest virtual
time among all threads of a run-queue. Each thread has its/otual time, which is
synchronized with a per run-queue global virtual time whémread becomes runnable.
The idealized idea of virtual time is that the virtual timdsab threads and the global
virtual time of a run-queue are equal at each distinct pditihte.

Only during a thread’s execution its virtual time increas€he greater a thread’s
weight is, the slower its virtual time increases. The défdrincrease of the threads’
virtual times per physical time unit assure a proportiomare among the threads ac-
cording to their weights. As mentioned before, a threadusl time is synchronized
with a per run-queue global virtual time when a thread besmenable. The greater
the total weight of all threads of a run-queue is, the slowerglobal virtual time in-
creases. Proportional share schedulers measure thd tiimean time units. A time
unit can be, e.g., a timer tick, a processor cycle or even aipaltime unit such as a
nanosecond.

8 CHAPTER 2. BACKGROUND

SFQ Scheduler SFQ strives to minimize the unfair processor allocationsealuby
the coarse-grained processor allocation. This is achieyedtroducing a virtual time

v and extending each thread’s thread control block with & sgrS and a finish tag
F. The start tag corresponds to a thread’s virtual time wherstiheduler inserts the
thread into the run-queue. This happens when a thread begomaable or after it has
lost processor control and has to compete again for procesatrol. A thread’s finish
tag denotes a thread’s virtual time after its last executidfter a thread’s execution,
it is equal to a thread’s start tagj increased by the weighted period of time of the
thread’s last quantum it has executed for. A thread’s quandasts at most as long as
the thread’s timeslice. To realize a proportional shareragbreads, SFQ schedules
a thread withk times the weight of another threakltimes more often than the other
thread.

The start tags define the scheduling order of the runnal#adsr. If several threads
have the same start tag, the scheduler will break the tigrariby. When the scheduling
algorithm is initialized, the virtual time and each threastart and finish tag are set to
zero. As long as the processor is not idle, the scheduledsée one of the threads
with the smallest start tag and virtual time, respectiv€ltherwise, the scheduler sets
its virtual time to the maximum of all finish tags. The globattwal time will only
increase if the start tags of all threads are greater thaglti®l virtual time or the
processor is idle.

As outlined before, a thread’s finish tag is incremented bglyhe weighted quan-
tum a thread has executed for and not by one weighted tineedlicerefore, a sched-
uler may schedule blocking threads more frequently thariocking threads with the
same weight due to the blocking threads’ smaller start tagsvatual times, respec-
tively. This guarantees a fair proportional share betweBk®ound and 1/0O-bound
threads. Thus, SFQ is a starvation-free scheduling policy.

2.2.4 Lottery Scheduling

Lottery scheduling is a randomized proportional share daleg algorithm [42]. In
contrast to the remaining proportional share schedulifgips, it does not have the
concept of virtual time. It selects a thread to be scheduethE period of one timeslice
by holding a lottery. Each runnable thread holds ticket®gting to its weight. This
permits to realize a proportional share among threads. Thedsiler allocates the
tickets in the order of the threads in the run-queue. Thetfirsiad holdingj; tickets,
holds the ticket$ up toj;, the second thread holding tickets, holds the tickets + 1

up toj; + j2 and so on. The randomized scheduling algorithm chooseket tiamber
m between one and the total number of tickets held by all rulentidseads. If the
first thread of the run-queue holgsm tickets, then the first thread will be scheduled.
Otherwise, if the first thread holds onfy < m tickets, then the scheduler will check
which one of the following threads holds the winning tick@hereto, the scheduler
selects th&!" thread of the run-queue fulfilling the following two ineqjigats:

Jit ko1 <m (2.1)

Jit et je=m 2.2)

In contrast to SFQ, lottery scheduling is solely probatidély fair. This means, it
is not possible to bound the unfairness between two thremdsdiven interval, because
“the actual allocated proportions are not guaranteed tahmtae expected proportions

2.2. SCHEDULING POLICIES 9

exactly” [42]. Nevertheless, lottery scheduling does mdfies from starvation, because
each thread holds at least one tickeits probability to win a lottery i = %, while
T is the total number of tickets of all runnable threads.

In the case a thread blocks before it has consumed its camietslice, a fair
share between this thread and another one exhausting itsle@mimeslice cannot
be guaranteed any longer. Therefore, if a thread has combanig a fractionf of its
timeslice, the scheduler will scale the thread’s tickethwifor the next time the thread
becomes runnable. Consequently, when the thread becomessthtime runnable it
has a% times greater chance to be elected by the scheduler.

2.2.5 Stride Scheduling

Stride scheduling is a proportional share scheduling @lgar[41]. It is based on

the concept of virtual time outlined in Subsecti®2.3 The basic idea of the stride
scheduling policy is to represent the time interval a thread to wait between its
consecutive executions. This time interval is caéite A thread’s stride is inversely
proportional to a thread’s assigned number of tickets. Thuthread with twice as
many tickets as another thread has to wait half as long agliee one to get executed,
because its stride is only half as long as the other thre&ities

A thread’s stride is measured in virtual time units calledsgs. Each thread has its
own virtual time. After a thread has executed for its timaslithe scheduler updates
a thread’s virtual time. It increases a thread’s virtualdify a thread’s stride. In
comparison to the SFQ’s start tag, the virtual times of alinable threads define the
scheduling order. Hence, the stride scheduler schedutethtbad with the smallest
virtual time. If several threads have the same virtual tithe, scheduler will break
the tie arbitrarily. In order to account for threads not havused up their complete
timeslices, the scheduler merely increments a threadisalitime by the scaled stride.
The scheduler scales a stride by the fraction of the timesiihich the thread has
executed for. Like the two previous proportional share dalers, the stride scheduler
schedules a thread withtimes the number of tickets of another threadimes more
often than the other thread.

In addition to a thread’s virtual time, stride and numberiokets, the scheduler
maintains a global virtual time, a global stride and a glahahber of tickets per run-
gueue. A run-queue’s global stride is inversely proposildn the run-queue’s global
number of tickets. The scheduler requires the global Mirtinge to synchronize a
thread’s virtual time with the global one, whenever it engegea thread into the run-
gueue. Otherwise, a thread blocking for a long period of timay monopolize the
processor until its virtual time is larger than any othee#t’s virtual time of the run-
gueue. In order to avoid that the scheduler schedules eagteead thread at next, the
scheduler increments a thread’s synchronized virtual tirequal to the global virtual
time — with the remaining number of passes which have to patiistive thread’s next
execution. If the scheduler enqueues a thread for the fir& into the run-queue, a
thread’s remaining passes will be equal to its stride. Qifser, they will be equal
to the passes which had to pass until the thread’s next eeleshen the thread was
removed from the run-queue.

In analogy to the dependency of a thread’s virtual time onreatti's tickets or
stride, respectively, the global virtual time depends am global number of tickets
hold by all runnable threads of a run-queue. Therefore, ¢theduler must update the
global number of tickets and the global stride if a threadgar leaves a run-queue as
well as if a user changes a thread’s number of tickets whiteritnnable. Similar to a

10 CHAPTER 2. BACKGROUND

thread’s virtual time, the scheduler increments a globrélial time by the global stride
scaled by the elapsed time having passed since the laseugfdhe global virtual time.

As the other introduced proportional share schedulingrétguos, stride scheduling is
starvation-free.

2.2.6 O(1) Linux Scheduler

The Linux O(1) scheduler was introduced with the Linux 2.6 kernel seri¢gs &n
O(1) priority based scheduling algorithm favoring 1/0O-boundetids. The scheduler
reserves the first hundred priorities for real time thredti€an assign conventional
threads to the remaining forty prioritid$)0 (highest priority) to139 (lowest prior-
ity) [39]. In contrast to the introduced MLFQ scheduler (&ection2.2.2), a thread
with priority 100 has the longest lasting timeslice and a thread with priar3§ the
shortest. Each priority has its own priority run-queue,ltovathe scheduler to sched-
ule the threads of a priority in round robin fashion.

As long as at least one thread is runnable (&) scheduler schedules the thread
at the head of the first non-empty priority run-queue. Thisdd belongs to the group
of runnable threads having the highest priority among theable threads. Otherwise,
the scheduler schedules the idle thread. In order to fa@bbund threads, the sched-
uler bases a thread’s priority on a thread’s static pricéyby the user as well as on a
thread’s dynamic priority bonus determined by the schedigelf. Due to the dynamic
priority bonus, a thread’s priority can diverge from itsti&tariority about+5. 1/O-
bound threads can get a dynamic priority bonus of up-fcand CPU-bound threads
can get a penalty of up te-5, labeled as interactive and batch threads, respectively.
The scheduler bases a thread’s dynamic priority on a thseadtime and the time a
thread sleeps waiting for becoming unblocked. A threadisadyic priority credits a
thread for its sleeping time and penalizes it for its exaxutiThe timeslice length of a
thread, however, depends solely on a thread’s static fyriand not additionally on its
dynamic priority bonus.

A run-queue is organized as a priority queue, hence lowerityrithreads may
suffer from starvation. To prevent starvation and to gugmtheO(1) behavior of the
scheduler, a run-queue consists of two priority arrays:céineand an expired priority
array. After a thread of the active array has executed, thedider inserts it into the
expired array. The scheduler can at the earliest schedzaitaitbad after the active array
is empty. When the active array is empty, the scheduler sesttie arrays. Thus, the
old active array is the new empty expired array and the oldredrray the new active
array containing all runnable threads.

A drawback of this approach is that an interactive high jisidhread may wait for
a long period of time to be executed. Therefore, if a threaddxhausted its timeslice,
the scheduler will check whether the thread is interactiveat. If it is not an inter-
active thread, the scheduler will insert the thread intoekyired array, otherwise it
will usually reinsert the thread at the tail of the priorityepe of the active array. This
special treatment of interactive threads will cause staowaf expired threads if inter-
active threads can completely utilize the processor. Timesscheduler must insert an
interactive thread into the expired array under the follapnéonditions:

1. Its priority is less than the highest priority of a threadhie expired array.

2. The first expired thread has waited already for a suffiidohg time, which
depends on the number of runnable threads in a processo+ueue.

2.2. SCHEDULING POLICIES 11

At last, the scheduler improves the interactivity betweggh tpriority interactive
threads by forbidding an interactive thread to exhausiritedlice in one piece, instead
its timeslice is split into several pieces ensuring a be#activity of threads having the
same priority. Otherwise, a thread would monopolize thegssor for a long period,
as in the case of high priority batch threads due to the len§their high priority
timeslices.

2.2.7 Completely Fair Scheduler

The completely fair scheduler (CFS) is a proportional seaheduling algorithm intro-
duced with the Linux kernel 2.6.23. Its aim is to model an alj@recise multitasking
CPU” [9] on real hardware. Such an ideal CPU does not existefbre CFS executes
the thread with the greatest demand for processor time ant@nginnable threads.
This assures that all threads get an equal share of prodassoproportional to their
weight. As SFQ and stride schedulers, CFS is based on thegbotvirtual time (cf.
Subsectior?2.2.3.

In contrast to the previou®(1) Linux scheduler, the CFS is no longer based on
run-queues and priority arrays. Instead, a red-black tredefs the future scheduling
order of the runnable threads. Consequently, CFS is n@?@n scheduler, but an
O(log(n)) scheduler.

CFS schedules the thread with the least difference betweshitead’s virtual time
and the per-processor virtual time. A per processor virtiuad increases by the time
having passed since its last update scaled with the totajhweif all threads. The
greater the total weight of all threads of a processor isstbeer the per processor
virtual time increases. A thread’s virtual time only incsea by its weighted execution
time during a thread’s schedule. The greater a thread’'shwegthe slower increases
the thread’s virtual time.

Contrary to the per priority fixed timeslice length of the @ld1) scheduler of
Linux, CFS has dynamically determined timeslices of vdedéngth due to the fol-
lowing two reasons:

1. If the currently executing thread’s virtual time is grezathan the smallest virtual
time in the red-black tree, while the scheduler allows a sgeg between both
virtual times to avoid an over-scheduling of threads anshirag of a processor’s
cache, the thread with the smallest virtual time will preéthp current thread.

2. In order to improve the reactivity of interactive threatti® scheduler can ignore
a thread’s sleeping time. This will be the case, if a threaklesaip from sleeping
and has slept for less than a certain period defined by a teisableduling la-
tency. Consequently, it is possible to place a thread atrtme 6f the scheduling
timeline which an event has just woken up.

Unlike waking up a sleeping thread and possibly insertirad he front of the timeline,
the scheduler inserts a newly woken up thread at the end dirtiedine. The same
applies to threads yielding processor control back to theedte

In contrast to CFS, the previous proportional share scliveglalgorithms have re-
alized the proportional share by scheduling threads meguintly according to the
threads’ weights. CFS schedules a thread witimes the number of tickets of another
thread,k times longer than the other thread, but not more often. Therafiffer-
ence between CFS and the previous proportional share deheduthat the previous
proportional share schedules define a proportional shdyebetween all threads of a

12 CHAPTER 2. BACKGROUND

run-queue. CFS defines an additional hierarchy betweee thesads. This hierarchy
groups threads together either based on their user ids dredmassignment to an ad-
ministrative defined group of threads (e.g., a group of besa)s Thus, the weight of a
thread does only influence its proportional share withirmgsigned group. The group
weight defines the proportional share between the diffegenips.

CFSis a proportional share scheduling policy and eachdrasavell as each group
gets a non-zero fraction of the system’s share, hence iaigation-free and therefore
the CFS — unlike thé&(1) scheduler — does not need to check whether a thread starves.

2.3 Energy Accounting

With the rising energy costs, energy becomes a first classatipg system re-
source [47]. To be able to manage energy as a resource, aigehedjuires to account
the energy consumption caused by a thread’s activities.t®the increasing complex-
ity of modern microprocessor architectures, a processmesgy consumption cannot
be revealed from its utilization and duty cycles, respetyivany longer, because a pro-
cessor’s power consumption shows a wide variety for a giveogssor utilization [45].
For older microprocessors as the Pentium 2 processor, #ipossible due to the sim-
pler architecture [32].

Nevertheless, for limiting a processor’s power consunmptio preventing an ex-
ceedance of its temperature above a threshold, it is negassaccount a processor’s
energy consumption or at least its temperature. Bellosa pt@pose to correlate a few
processor’s events with their caused energy consumpt@jie gstimate a processor’s
energy consumption. The energy consumption can be estinfatiee events cover
a processor activities contributing mostly to a processeriergy consumption. To
account the relevant events, they use a processor’s penfaercounters. Most mod-
ern processors have performance counters; they are résiedios accounting specific
events as mispredicted branches or cache misses [1, 18LdByiating and weighting
the relevant events, a processor’s energy consumptionecastimated. Our proposed
energy policies require this mechanism in order to decidelbag they may schedule
athread if the scheduling decision is based on a threadfsastd energy consumption.

Power Consumption To limit a thread’s power consumption it is necessary to know
its current power consumption or at least its average poasumption caused during
the lastk milliseconds. The approach of Bellosa et al. to estimateeatlis energy
consumption can also be used for estimating a thread’s poaresumption, because
energy is the product of power and time. By periodically acting a thread’s energy
consumption every milliseconds, its average power consumption can be acedunt

A thread’s power consumption can change from time to timebse of distinct
phases of execution of a thread. The power consumption Gamgehmore frequently
if a scheduler throttles a thread for very short periodsroétiike the period of one timer
tick. An exponential average can smooth the effect of actogra quickly changing
power consumption. If it is not possible or not intended tocamt a thread’s energy
consumption every milliseconds, an exponential average can be enhancedotw all
for sampling periods of variable length of a thread’s energgsumption [25]. An
energy profilecontains a thread’s exponential average energy consumgatia its total
consumed energy. To limit a thread’s power consumptioneoergy policies require
the exponential average energy consumption. For a faiggrgartitioning, we need
the total consumed energy.

2.4. TEMPERATURE ESTIMATION 13

2.4 Temperature Estimation

A processor’s consumed energy is dissipated as heat [33{ertperature and power
consumption are closely coupled quantities [3], becaugse@psor’s power consump-
tion increases its temperature and vice versa. To reducecassor’s temperature, a
heat sink mainly accumulates a processor’s dissipatedgrepart is stored within the
processor itself. A heat sink can slow down an increase obegssor’'s temperature.
Due to the limited capacity of a heat sink, it emits heat toaimbient air [20].

A heat sink can be modeled as a thermal capacitor being athargy discharged
like an electrical capacitor [17]. Due to the exponentialirse of charging and dis-
charging a capacitor, a processor’s temperature courg@mential as well.

To measure a processor’s temperature, its thermal diodeeased, but reading
the diode takes several milliseconds (abbunson a Pentium 4) [21]. To avoid this
overhead, Bellosa et al. propose a thermal model for a haat Isipermits to predict a
processor’s current temperature without reading a thedoae. This model depends
on the heat sink’s characteristics, the ambient temperatnd the processor’s energy
consumption [6, 20].

Skadron et al. [22] propose a more fine-grained solution.yTUse performance
counters and a processor’s floorplan to predict the temyreraf individual functional
units. For our work Bellosa’s thermal model is sufficient.

2.5 Dynamic Thermal Management

With the increasing complexity of modern microprocessaors their applied on-chip
power management techniques, the gap between a processonumapower con-
sumption and its typical power consumption increases ewghdr [8]. To be able to
deal with a processor's maximum power dissipation, a psmréscooling techniques
must be designed for it. The total integration costs for pssors having maximum
power dissipations abow$-40WW increase with each Watt abdiit [38], hence it will
be an advantage if dynamic thermal management (DTM) tedesigan reduce the
maximum power dissipation.

In this case, the cooling techniques merely need to be capalleal with the typ-
ical power dissipation of a processor, but not with the maximpower consumption.
One or more DTM techniques are responsible for reducing thegssor’s power con-
sumption and temperature, respectively. It depends on ffd f2chnique how long
its response delay lasts, until it starts to reduce the gsmés power consumption and
what the resulting performance loss is.

Next, we discuss CPU throttling as a mechanism to limit ag@ssor’'s power con-
sumption. More DTM techniques such as voltage and frequsnaling as well as
instruction cache throttling or speculation control [8¢ aut of scope of this thesis.
Therefore, we do not discuss them.

CPU Throttling For reducing an idle processor’s power consumption, seaechi-
tectures have a special instruction. This special indongbermits the processor to
switch to a low power state. Due to an external event, thegasar switches again to
the running state. Additionally, this instruction, e.ggeth t instruction of x86 proces-
sors [11] gives the opportunity to throttle a thread by exieguthe instruction during
the thread’s execution [5]. Although throttling does nonimiize a processor's max-

14 CHAPTER 2. BACKGROUND

imum power consumption, it can reduce a processor’'s avgrager consumption as
well as its temperature.

If the throttling results in quick changes of a processodw@r consumption, the
usable capacity of a battery can be significantly reduce@mparison to discharging
the battery with a continuous load having the same averagempoonsumption [24].
Therefore, the throttling mechanism has to avoid thosekfyuithanging power con-
sumptions if the system is battery based by executing theapestruction for several

milliseconds.

Chapter 3

Design

Multitasking operating systems partition the time of theqassor assignment among
all runnable threads of a system. Thereby, it seems as ifhtleads execute in par-
allel, although they might only execute on one physical ClPle operating system’s
scheduling policy decides which thread it schedules nedtfanhow long it executes
the thread. Its scheduling decision is based on a threaofsepties as priority, weight
or position in the processor’s run-queue.

Most scheduling policies do not base their scheduling d@atien utilization of
resources assigned to a thread during its processor camdothe consequences re-
sulting from its utilization for other threads. A threadsezgy consumption during
its quantum, in particular, has usually no impact on a sclmglyolicy assuring a
fair processor assignment. The reason for this is that adsddreconsiders the fair
processor assignment only in the time dimension, but ndténdimension of energy
consumption.

In an environment where the energy consumption is limitest avperiod of time
of a processor, due to limits of a power supply or thermal iwt|rations, it will be an
advantage if a scheduler fairly partitions the energy anahipreads.

At first, we motivate why a fair energy partitioning will be advantage if a pro-
cessor’'s power dissipation is limited or its temperaturestmot be raised above a
threshold. Afterwards, we outline that to guarantee a faargy partitioning and to
limit a processor’s power consumption we require energypowder limits. Then we
introduce four energy policies which strive to assure adagrgy partitioning. At last,
we propose a design for a per run-queue energy budget piegrtitt transfer energy
among threads, and we point out how a scheduler can presémuesal’s energy limit.

3.1 Problem Description & Analysis

Most scheduling policies only consider to partition thediwf processor assignment
among the processor’s assigned threads. In the case afyhased scheduling poli-
cies, a scheduler fairly partitions the time between thsdaelonging to the same pri-
ority. Nevertheless, from the point of view of fair processime partitioning, the
partition cannot be fair if a thread’s resource utilizatias negative effects on the suc-
cessive execution of other threads. We will consider a thisegxecution as negative
for other threads, if other threads cannot achieve at leassame during their quanta,
as without running the thread additionally.

15

16 CHAPTER 3. DESIGN

This is the case, in particular, in an environment with ledienergy resources or
a critical processor temperature which may threads notsekcé thread’s power con-
sumption can force other threads to consume less power Yemdran exceedance of
the processor’s critical temperature or due to a limited @am@f energy. This the-
sis addresses mechanisms to avoid an exceedance of pmxessrgy consumption
over a period of time or of its critical temperature by limgiand fairly partitioning a
processor’s energy.

Power Consumption Limitation Limiting the energy consumption of a run-queue
over a period of time, is equivalent to limiting its and th@gessor’'s average power
consumption, respectively. Then, threads consuming moeegg than assigned to
them within their quanta — having average power consumgtimyond the allowed
power limit —, force other threads in the run-queue to coresigss energy than as-
signed to them during their quanta, to meet the overall peigueue energy consump-
tion limit.

Dynamic frequency or voltage scaling [8, 13, 15,43, 44] ab agethrottling [5, 45]
can achieve the lower energy consumption of a processorofféred frequencies and
voltages can be insufficient to meet the energy consumptiat) therefore it might be
necessary to throttle the current thread as well. The thmgttnechanism to reduce the
power consumption results in a performance degradationttufead, even in the case
of I/O-bound threads.

A thread’s power consumption cannot only affect threadssadwn priority-queue,
but also threads of other priority-queues. Consider thevahg case: a low priority
thread consumes so much power that it enforces its ownlihgpéind also the throttling
of the following higher priority threads. In this case, thighter priority thread suffers
from the behavior of a lower priority thread, possibly réisg in priority inversion.
Consequently, an energy-aware scheduling policy museptehis behavior.

Fair Energy Partitioning To favor energy-efficient threads, energy-aware sched-
ulers have to partition the system’s energy but not the timeray threads. For a fair
energy partitioning, it is mandatory that each thread ofraqueue does not consume
more energy than allowed during its quantum. We call the arhofienergy a thread
may consume during its quantuhread energy budgett is defined as

Ebudgetthread = Plimit * ttimeslice (31)

while Py is the pre-defined power consumption which a thread may restezkand

tiimeslice the timeslice length of the thread assigned by a schedutehefbeginning of

a thread’s quantum, a scheduler set a thread'’s thread ebedgyet. With the thread’s
further execution, its energy budget decreases until itwiempty. If a thread’s energy
budget is empty, a scheduler will schedule the next threadnalh reset the thread’s
energy budget.

To schedule the next thread directly after a thread has sxbathe energy of its
energy budget, would required to account a thread’s enemgsuenption continuously.
Nevertheless, this is impossible because a thread’s emerggumption can only be
accounted if the kernel executes, but not while a threadutgsc Therefore, during
a thread’s next quantum, the thread has to be charged fon#rg\eit has consumed
more than permitted in its last quantum.

A thread energy budget solely assures a fair energy pauititioby executing a
thread until its energy budget is exhausted. It does not &rtliread’s power consump-

3.1. PROBLEM DESCRIPTION & ANALYSIS 17

tion. Consequently, the length of a thread’s quantum dependhe power consump-
tion caused during its execution. If a thread’s average poaesumption is below the
power limit P4, its quantum will be longer than the thread’s pre-definectslice.
Otherwise, if a thread’s average power consumption is béyn,;;, its quantum will
be shorter than its pre-defined timeslice. Only if its averpgwer consumption is
equal to the permitted one, its quantum is as long as its licees

This is shown in Figur&.1 In this example four threads are scheduled and exe-
cuted until they have exhausted their energy budget. A tfsemergy budgel - T'
is equal to the amount of energy required to execute a thréthdthve average power
consumptiorl for its timesliceT'.

P

2L —

3L2 —

213 ——
L2 —

Th, Th, Th; Thy

0 T 2T 3T 4T 5T

Figure 3.1: Thread Energy Budget

We want to fairly partition a processor’s total energy amtimgads, thus we assign
the processor’s leakage energy [34] to a thread as well. mipg on the thread’s
power consumption, the thread spends a greater or lessenaofats assigned energy
for the processor’s leakage energy. Threads with a low poaesumption spend most
of their energy for leakage, while threads with a high powmrstimption spend only a
smaller fraction of their energy for leakage.

In order to prevent an exceeding of a processor’s temperaoove a threshold
or to limit its energy consumption over a period of time, aeslider has to limit the
average power consumption of a thread during its executdothread energy budget
is insufficient for this.

Structure In the next Sectiod.2, we propose a design to limit a thread’s power con-
sumption without negatively affecting other threads antiirelhow to limit a thread'’s
energy consumption. For a fair energy partitioning of a tédiamount of energy;, it

is necessary to combine these two limits. We outline fouledght energy policies
limiting a thread’s power consumption and striving to achia fair energy partition-

ing by limiting the thread’s power and energy consumptiosattion3.3. Thereby,

two of the four policies permit threads having power constiomg above the permit-
ted power limit to benefit from other threads having powerstonptions beneath the
limit. In Section3.4, we propose a design of a per run-queue energy budget totpermi

18 CHAPTER 3. DESIGN

threads to benefit from other threads’ power consumptioresoMline in the last Sec-
tion 3.5 of this chapter a mechanism to preserve a thread’s energyoler several of
its quanta, by charging the thread for its extra consumertggne

3.2 Energy & Power Limit

Before we discuss how to assure a fair energy partitioningisvan environment with
limited energy resources or a critical processor tempegatthich a thread may not
exceed, we introduce energy and power limits in the follgawo subsections. The
energy limit's purpose is to assure a fair energy partitigrdmong threads. Therefore,
a scheduler executes normally a thread until the thread dv@asumed the amount of
energy permitted by the energy limit. We outline when a thriegpreempted, although
its energy budget is not empty. For restricting a procesgmwer dissipation an energy
limit is insufficient, instead a power limit is required. # responsible for limiting a
thread’s power consumption.

3.2.1 Energy Limit

The energy limitis defined analogously to a thread’s energy bud@ef).(The only
difference between the two is that it does not define how muoelhgy a thread may still
consume, instead it defines how much energy a thread mayrmerstimost, before a
scheduler schedules the next thread and refreshes thd'theaargy budget.

When a scheduler assigns to a thread its energy budget, ttgydnglget is equal
to the energy limit of this thread. The energy limit remainastant during the thread’s
execution, whereas the thread’s energy budget decreasiasiarexhausted. A sched-
uler will execute a thread no longer if the thread’s energydat is exhausted and the
thread has consumed the amount of energy permitted by thgyelimait, respectively.

As analyzed in the preceding section, a fair energy pantitip does no longer re-
quire a thread’s timeslice to decide how long a thread iscigled, instead the thread’s
energy limit and the thread’s power consumption define hawg lils quantum lasts.
Nevertheless, the timeslice assigned to a thread by itslatihg policy has a big im-
pact, it is proportional to the thread energy bud@et)(as well as to the energy limit.

Due to the fair energy partitioning, the length of a threagllsntum depends on
the power consumption of a thread. A quantum has a lower dsawah upper bound.
The maximum power consumption of a processor defines the loawend, whereas a
processor’s idle power consumption defines the upper bound.

Threads having power consumptions below the power limitdearease the sys-
tem’s reactivity. Their quanta will last longer than thémeslices if a scheduler does
not split their quanta into smaller pieces. In order to auoigplit a quantum into
smaller pieces and to assure a system'’s reactivity, it isiplesto schedule the next
thread. This has to happen at the latest after the curresddhinas executed for the
duration of its timeslice, even if the thread’s energy budg@ot empty. A scheduler
will discard the preempted thread’s remaining energy oftihead’s energy budget, but
will refresh the thread'’s energy budget and quantum.

If a scheduler permits a thread to execute at most for thegeni the thread’s
timeslice, although the thread’s energy budget is not emvpgywill call this anon-
strict energy limit Thus, a scheduler penalizes threads having power consurapt
below the power limit in comparison to threads having attlg@sver consumptions

3.2. ENERGY & POWER LIMIT 19

equal to the permitted one, because threads with power ogotgns below the power
limit may not consume their assigned energy.

A fair energy partitioning demands each thread to executi ithas consumed
the assigned energy of its energy budget, as long as it hagoti@n preempted or
blocked. As outlined before, this can decrease the systera&tivity. If — for a fair
energy partitioning — we accept that a thread’s quantum edorger than a thread’s
timeslice, we will call this astrict energy limit

We show the difference between the strict energy limit aredrtbn-strict energy
limit in Figure 3.1and in Figure3.2, respectively. Thread'h, executes in both cases
for the timeT and threadl'h, for % Applying the strict energy limit or the non-strict
energy limit has only a consequence for the thréBdsandThs, because their power
consumptions are below the power limit. If we apply the steigergy limit, thread
Thy’s quantum will last for2T', threadThs’s quantum for%, otherwise each thread’s
quantum would only last fdr'.

P

3L2 —

2L/3 ——
L2 —

Th, Th, Thy Th,
t
| | | | | |

0 T 2T 3T 4T 5T

Figure 3.2: Non-Strict Energy Limit

Strict vs. Non-Strict Energy Limit Next, we compare the strict energy limit and the
non-strict energy limit and outline their implications offeé energy partitioning.

The advantage of a strict energy limit is a fair energy parting of the processor’s
total consumed energy among the threads, whereas the digade may be a reduced
system reactivity due to threads having longer lasting tuiran timeslices. In con-
trast to the strict energy limit, the non-strict energy tiblbunds a thread’s quantum by
athread'’s timeslice. Therefore, it does not suffer frompiablem of a reduced system
reactivity like the strict energy limit. Its disadvantageain unfair energy partitioning
among all threads, due to the limited execution time of aatiisetimeslice.

3.2.2 Power Limit

As mentioned before, a thread energy budget and its relagrdglimit are inadequate
for limiting a processor’s power consumption. Therefore,require a power limit.

20 CHAPTER 3. DESIGN

In contrast to an energy limit which aims at partitioning agessor’s energy fairly
among the threads, a power limit's aim is to restrict a preges power consump-
tion. Mechanisms like dynamic frequency and voltage sgadisn achieve this. They
decrease the maximum power consumption of a processorhbeutaquencies and
voltages cannot be scaled continuously — instead the haedvifers only a few. This
prohibits to meet an arbitrary power limit. We require therenfine-grained instruc-
tion throttling mechanism to limit a processor’s as well ethreead’'s average power
consumption in order to meet an arbitrarily pre-defined pdimt.

A kernel cannot use throttling for limiting the maximum pawmsnsumption of
a processor. It only reduces the processor's number of dugles. During a duty
cycle [12] a thread may consume the maximum power. Nonetbglierottling permits
to limit the average power consumption of a thread duringuentum, to meet the pre-
defined power limit. For this thesis we consider instructlmottling as the mechanism
to limit a thread’s average power consumption in order totraggre-defined power
limit.

If we loose the requirement of meeting a pre-defined poweit bwer the period
of a thread’s quantum, and simply enforce to meet it over a&hyperiod of several
threads’ quanta, a scheduler daansferenergy between threads. The transferred en-
ergy results from threads having power consumptions bdtevpbwer limit.

Without permitting an energy transfer, a thread’s averageep consumption
caused during its quantum must not exceed the power limieréfbre, we call it a
strict power limit If a thread may exceed the power limit due to performed gnerg
transfers, we call it @on-strict power limit A strict power limit enforces to meet the
pre-defined power limit over the period of a thread’s quantand the non-strict power
limit over the hyper-period of several threads’ quanta.

Strict vs. Non-Strict Power Limit ~ After having introduced the strict power limit and
the non-strict power limit, we discuss their implicationsathread’s performance.

The advantage of the non-strict power limit is the permiteergy transfer be-
tween threads offering energy and threads having poweruogpisons beyond the
power limit. Energy transfers can reduce a thread’s thngitin the best case they can
even avoid a thread’s throttling. The offered energy reduttm threads having power
consumptions beneath the power limit. Consequently, astget-power limit can in-
crease the system’s performance significantly in compatisa strict power limit. For
exhausting a processor’s power limit over a hyper-periatieeduler needs to transfer
energy. Without performing energy transfers, threadsrgapower consumptions be-
low the power limit cause a processor’s average power copsombeneath the power
limit.

To outline the difference between these two limits, we ad&siheir impacts on our
first example (cf. Figur&.1). Although threadl'h, has a power consumption of about
2L, it consumes solely, due to the throttling mechanism, which we apply because of
the strict power limit, as shown in Figu3. By contrast, the non-consumed energy
of threadsT'h, andThs will nearly avoid the throttling of thread'h,, if we apply the
non-strict power limit. We show this in Figu4.

We discuss the two proposed power limits in detail in Appendli There we
present how one can determine the amount of enékgy,.q a thread can offer, and
how a scheduler can assure that a thread receives at mastigaed fraction of offered
energyEfraC-

3.3. ENERGY POLICIES 21

P

3L2 —

2L/3 ——
L2 —

Th, Th, Ths Thy

0 T 2T 3T 4T 5T
Figure 3.3: Strict Power Limit
P Offered Energy

Received Energy

2L —
11L/6 ——

3L2 —

2L/3 ——
L2 —

Th, Th, Th; Thy

0 T 2T 3T 4T 5T

Figure 3.4: Non-Strict Power Limit

3.3 Energy Policies

In the next section, we explain how both the strict and noietstnergy and power
limits can be combined to apply energy-aware schedulingigsl in order to realize a
fair energy partitioning while limiting the processor’syper consumption. Besides, we
discuss what their advantages and disadvantages are iradsmpto one other. The
ensuing section deals with the realization of a fair panithg of the offered energy in
the case of a non-strict power limit.

We have introduced strict as well as non-strict energy amdepdimits in the an-
tecedent section. Both limits can be combined with eachrolieeause

e the power limit merely assures that a thread does not excpegtdefined power
limit in order to restrict a processor’s power dissipatiand

22 CHAPTER 3. DESIGN

e the energy limit only assures a fair energy partitioning agthreads, but does
not have an influence on the course of a thread’s power cortgamp

Thereby, it is unimportant whether an energy policy meegslithits strictly or not.
In the next four subsections, we discuss the four differ@ssiple combinations, and
how fair they can partition the system’s energy. Additity)ale consider the energy
policies’ implications on a thread’s runtime.

3.3.1 Strict Power & Non-Strict Energy Limit

We have outlined in Subsectidh2.2that a thread’s average power consumption may
not exceed the power limit in the case of a strict power linfiherefore, an energy
transfer among threads is not possible. The non-stricggrienit enforces that a non-
blocking thread’s quantum may last at most as long as itsstioeelasts. Without
considering the power limit, the maximum power dissipatiba processor defines its
lower bound (cf. SubsectioB.2.1). Due to the limited power consumption caused by
the strict power limit, its lower bound is equal to its uppeuhd. Both bounds are
equal, because a thread can have consumed its assigneg andrg earliest after a
scheduler has executed it for the period of its timeslice tduthe strictly preserved
power limit. This energy policy is equivalent to a schedglipolicy throttling each
thread individually and executing a thread at most for théogleof its timeslice.

A scheduler can avoid to account the energy consumptiontotad on each timer
tick; it is sufficient to execute the thread until its timesliexpires. In the case of threads
having average power consumptions below the allowed pawét, their energy bud-
get is never exhausted by themselves. Due to these threddbeastrict power limit
forbidding energy transfers, threads cannot exceed a gsocs power limit.

This policy enforces that a thread can at the earliest havewned its assigned en-
ergy after the period of its timeslice and may execute at fiooshe period of its times-
lice. Thus, a scheduler can avoid to account a thread’s coed@energy. Nonetheless,
to ascertain whether a scheduler must throttle the threthe &ieginning of the thread’s
next quantum to charge it for exceeding the power limit impitsvious quantum, it is
necessary to account a thread’s power consumption aftguastum.

Referring to our example, thredth, must be throttled assuring an average power
consumption equal to the permitted oneloflt cannot benefit from the lower power
consumptions of the thread%, andThs, because we do not allow energy transfers.
Due to the non-strict energy limit, the quanta of the twoelathreads are equal to their
timeslices. Which we have outlined in Figu3eb.

The strict power limit and the non-strict energy limit onlysare that a thread does
not suffer from the energy consumption caused by the exatofiother threads. It is
insufficient for a fair energy partitioning among threadtss ttan only be achieved by
applying the strict energy limit discussed in the next sabea.

3.3.2 Strict Power & Strict Energy Limit

Analogously to the previous energy policy, this energy@otireserves the pre-defined
power limit strictly. Consequently, the lower bound of agthd’s quantum is its times-
lice length. Before, a thread strictly preserving the poliveit cannot have consumed
its assigned energy. In contrast to the previous energgyydkie idle power consump-
tion defines the upper bound. The upper bound depends onathenergy budget,

as outlined in Subsectioch2.1

3.3. ENERGY POLICIES 23

P

2L —

3L2 —

2L/3 ——
L2 —

Th, Th, Th; Thy

0 T 2T 3T 4T 5T

Figure 3.5: Strict Power & Non-Strict Energy Limit

In this way, a fair energy partitioning among threads is fmdsswhereas a sched-
uler prohibits energy transfers. The drawback of the s#m&rgy limit is the extended
quantum in comparison to the timeslice length of threads$nigeaverage power con-
sumptions below the power limit. Thus, the system’s reégtislecreases and the
throughput of threads having quanta lasting as long as #issigned timeslices drops
as well. By contrast, it is possible that threads can ineréfasir throughput which have
average power consumptions below the power limit.

In comparison to the remaining policies, threads which rexerage power con-
sumptions beyond the power limit, suffer at most from thisqyo They cannot benefit
from power consumptions below the power limit of other tliehy an energy transfer.
A scheduler executes them less frequently within a peridihté, because of quanta
lasting longer than timeslices. Therefore, this energycpatauses the worst perfor-
mance for these threads, which we show in Figdu& We discuss the influence on
threads having extended quanta later on.

3.3.3 Non-Strict Power & Non-Strict Energy Limit

This energy policy and the next energy policy consider thee e a non-strict power
limit and its impacts on strict and non-strict energy limit€ontrary to the energy
policy outlined in SubsectioB.3.1 where a scheduler cannot transfer non-consumed
energy to other threads, this policy allows energy trassfé¥e have pointed out in
Subsectior8.2.2that it is mandatory for exhausting a processor’s powet lirtransfer
energy between threads. This energy transfer can have figoetit semantics:

1. Non-consumed energy is given away to other threads.

2. Non-consumed energy can be used to give other threadsitmésgion to exceed
the power limit, but not their thread energy budgets.

We call the first semantiesxtended energy budgéecause the received energy is given
away to a thread and extends the thread’s energy budgetntrasbto that, we call the

24 CHAPTER 3. DESIGN

3L2 —

2L/3 —
L2 —

Thy Th, Th; Thy

t
I I I I | |

0 T 2T 3T 4T 5T

Figure 3.6: Strict Power & Strict Energy Limit

second semantiexceeded power limibecause it merely permits a thread to exceed
the power limit, but not its energy budget.

Extended Energy Budget In the case of giving the non-consumed energy away, the
energy neither extends nor reduces an energy receivingdsrquantum, because the
energy permits a thread to exceed the power limit during ugnéum, but not to ex-
tend its quantum. Therefore, a thread’s quantum lasts asderin the case of non-
performed energy transfers.

A thread receiving energy consumes more energy during agefitime than a
thread offering energy, because the latter thread givesffissed energy away. This
applies also for the case of the strict power limit and the-siwict energy limit. The
extended energy budget energy transfer, however, eveaases the energy gap be-
tween threads with power consumptions below the limit ami®t above even more,
because only threads receiving energy can benefit from ihréad receiving offered
energy can consume the energy of its thread energy budgkadaiitionally it can con-
sume its fraction of the offered enerd@y, .. for exceeding the power limit. Hence, this
policy in combination with the extended energy budget enpdéransfer results in the
best performance for the latter threads with respect toghmaming proposed policies.

Exceeded Power Limit Contrary to giving away the non-consumed energy, the sec-
ond semantics only gives other threads the permission teeglikthe power limit. A
thread can exceed the power limit, until it has spent its detegraction of offered en-
ergy Er. for the energy caused by the power consumption above therpioaie The
fraction of offered energy;,... a thread receives does not extend the thread’s energy
budget. Consequently, a thread’s quantum will not lastag &s its timeslice if its av-
erage power consumption is beyond the limit due to energysteas. The advantage of
the exceeded power limit energy transfer is the diminishmenigy gap between threads
offering and threads receiving energy.

3.3. ENERGY POLICIES 25

Independently of an energy transfer’'s semantics, it is $sa§ to account a thread'’s
energy consumption in order to determine when a thread hasuomed its assigned
fraction of offered energy,... If we apply the exceeded power limit energy transfer,
a thread’s lower bound of its quantum will no longer depenty @m its timeslice,
but also on the processor’'s maximum power consumption. dattis quantum length
still depends on its timeslice, because a thread’s enerdgditis proportional to its
timeslice 38.1).

We outline the difference between these two semantics ifotlosving two figures.
Therefore, we consider once again our initial example oediin Sectior8.1 If we
apply the extended energy budget energy transfer, themaffthreads cannot benefit
from their offered energy (cf. Figurg7). The offering threads can benefit from their
offered energy if we apply the exceeded power limit energggfer, because the turn
around time will be decreased (cf. FigB).

. Offered Energy
Received Energy

2L —
11L/6 —

3L2 —

Th, Th, Ths Thy

0

-
(38
]
W
<]

4T 5T

Figure 3.7: Non-Strict Power & Non-Strict Energy Limit - Extded Energy Budget
. Offered Energy

Received Energy

2L —

3L2 —

Th, Ths Thy

BN\

Thy
t
| | | | | |
0 T 2T 3T 4T ST

Figure 3.8: Non-Strict Power & Non-Strict Energy Limit - Eeeded Power Limit

26 CHAPTER 3. DESIGN

3.3.4 Non-Strict Power & Strict Energy Limit

In contrast to the energy policy realizing the strict powarit and the strict energy
limit outlined in Subsectior3.3.2 this energy policy permits energy transfers. In this
subsection we outline which thread may receive the energydéscuss the implica-
tions of our four proposed energy policies on the performafdhreads receiving and
threads offering energy.

The non-strict energy limit of the preceding policy forbidstransfer energy to
threads not exceeding the power limit due to the restricteshtym length of a thread’s
timeslice. In contrast to that, the strict energy limit oistipolicy allows to transfer
energy to threads not exceeding the power limit by extentiia quanta. Nonetheless,
such an energy transfer has the following drawbacks:

e Athread’s quantum will no longer have an upper bound or theupound will
solely be defined if the amount of received energy is limit&&bnsequently,
the turn around time of a thread within a run-queue may irserestieadily, if a
thread’s quantum has no upper bound as presented in RBdure

e The energy transfer is no longer only used for exhaustingpagssor’s power
limit, instead it is additionally used for extending a thatsaquantum, but this is
not the intention of the energy transfer.

Next, we show how an energy-aware scheduler can realizeenfigy transfer without
these drawbacks.

A z Offered Energy
Received Energy

2L —

3L2 ——

s

1 Th, } Th, Th,

N N 1
B

0 2T 4T 6T 8T 10T

Figure 3.9: Energy Transfer Permitting Unbound Turn Aroliinde

We have outlined in the last subsection two different waysesforming an energy
transfer. The energy can be given away to a thread or merelys®e for permitting
a thread to exceed the power limit. This applies also for plokécy. The non-strict
energy limit of the previous policy inhibits a fair energyrfioning, even in the case
of applying the exceeded power limit energy transfer. Tbigy, however, can achieve
this by applying the exceeded power limit energy transfers.

3.3. ENERGY POLICIES 27

Extended Energy Budget The extended energy budget energy transfer prevents
threads offering energy to other threads to benefit fronr thiééred energy. This is
the case because a scheduler does not decrease the quamteadsk treceiving en-
ergy. These non-decreased quanta are the reason why tbenpente of threads only
offering and not receiving energy remains unchanged in esisgn to their perfor-
mance while prohibiting an energy transfer. Neverthelessrgy transfers result in an
increase of the system’s throughput caused by the threadwirgy energy in compar-
ison to the energy policy realizing the strict power limitseen in Figure.10

P Offered Energy

Received Energy
32—

t
| | | | | | |
0 T 2T 3T 4T ST

Figure 3.10: Non-Strict Power & Strict Energy Limit - ExtestiEnergy Budget

2L —

Exceeded Power Limit This policy in combination with the exceeded power limit
energy transfer assures a fair energy partitioning likepbkcy introduced in Sub-
section3.3.2 which realizes the strict power limit and the strict eneligyit. The
advantages of this policy are its permitted energy trassferincrease the system’s
throughput. The increase is achieved on no thread’s accdumeads having power
consumptions below the power limit and other having powassamptions beyond the
power limit can both benefit from this policy as long as theglgphe exceeded power
limit energy transfer.

Threads offering energy to other threads benefit from thisydecause a sched-
uler diminishes the quanta of threads receiving the offereelgy. Thus, a scheduler
executes them more frequently within a period of time and theoughput increases.
The same applies to threads receiving energy. Although theinta are shorter, they
can make the same progress as during their non-reducedaguénteover, they can
normally achieve more progress during their quanta. Théyaest a smaller fraction
of their thread energy budgets for a processor’s leakagepdie have illustrated this
scenario in Figur&.11

Energy Policy Comparison After we have outlined the design of the four policies
and have already discussed the impacts of this policy on ¢nfenmance of threads
which may - if allowed — offer or receive energy, we proceethwhe discussion of

28 CHAPTER 3. DESIGN

P z Offered Energy

Received Energy

2L —

3L2 —

w1 D o7

Thy Th, Th; Thy

| | | | | |
0 T 2T 3T 4T 5T

Figure 3.11: Non-Strict Power & Strict Energy Limit - ExcesddPower Limit

the three previously introduced policies. For our consitiens, we examine a set of
threads consisting of both types.

At first, we have proposed the strict power limit and the ntyictsenergy limit
energy policy. This policy forbids energy transfers andriets a quantum length to
a timeslice, hence threads of both types suffer from thigpolhis policy results in
the worst performance for threads offering energy, bechlisgts a thread’s quantum
length and prohibits energy transfers. Due to the protdb#eergy transfer, the per-
formance of threads receiving energy is not as good as inabe af permitted energy
transfers, but not as bad as in the case of the second endigy; pdich realizes the
strict power limit as well as the strict energy limit. Threaghich receive energy suffer
from this policy because of the extended quanta of threadshwdifer energy. There-
fore, they will have the worst performance if we apply thisigo Contrary, the longer
guanta of threads offering energy can improve their peréore in comparison to the
first policy.

The last two proposed policies allow energy transfers efloee the performance
for both types of threads is at least as good as without ertegiggfers but often even
better. In the case of the non-strict power limit and the soiict energy limit, threads
receiving energy can achieve their best performance if vpdyahe extended energy
budget energy transfer. This policy does not consider tlesieived energy. Their
performance is not as good as if we apply the exceeded pawigelnergy transfer, but
even better than with prohibited energy transfers. Thre&dsing energy can achieve
the same performance as in the case of the strict power finvit iapply the extended
energy budget energy transfers, because they cannot bogfitheir transfers. If
we apply the exceeded power limit energy transfer, theifoperance will improve
because a scheduler will execute them more frequently ddeetshorter quanta of
threads receiving energy.

3.4. RUN-QUEUE ENERGY BUDGET 29

3.4 Run-Queue Energy Budget

In the antecedent section, we have outlined how a fair engagytioning can be real-
ized. Thereby, we have only considered in which way eaclathreceives its assigned
amount of energy, but we have not discussed what is requordrty partition offered
energy. Within this section we propose a design for a perqueue energy budget
permitting to fairly partition offered energy among threa@efore, we outline why a
first come first serve scheme is insufficient.

3.4.1 Nadve Solution

We have pointed out in the previous section that the sensaottian energy transfer de-
termines whether we can fairly partition energy among aéldls or whether it leads to
an increased unfairness between threads offering enetgthegads receiving energy.
If we consider that a scheduler can fairly partition the syss energy among threads, a
first come first serve scheme might result in an unequal pegoce of threads with the
same priority and weight, respectively, as well as an eqaalgp consumption, even
in the case of permitted energy transfers. An example faethiereads are several in-
stances of the same task. The unequal performance resutgHrottling one instance
of the task more frequently than another instance. The nrecpiéntly throttled task
spends more of its energy for the idle energy consumed ditsrigrottling than the
other one.

In the following, we consider the case of a set of threadsisting of both threads
offering and receiving energy. A scheduler transfers tiierefl energy in a first come
first serve scheme. Thus, each thread willing to receiveggneray receive its re-
guested amount of energy until the offered energy is exbdufesides, we consider
that the amount of offered energy is insufficient to avoidrattting of each thread, a
scheduler must at least throttle one thread.

Extended Energy Budget At first, we consider that the offered energy is given away
in a first come first serve scheme. A scheduler does not havedtlé threads re-
ceiving their requested energy. These threads’ quantasasing as their timeslices.
They can achieve their best performance during their quartiaeads requesting of-
fered energy which a scheduler schedules after the offaredyg has been exhausted
cannot consume as much energy as the threads before. lioadditscheduler must
throttle them due to the non-received energy. Hence, thegataachieve as much as
the previously scheduled threads during their quanta. &prently, a first come first
serve scheme is insufficient for a fair energy partitionmgjch strives to ensure the
same performance for each instance of a task.

Exceeded Power Limit This will be also the case if we apply the exceeded power
limit energy transfer and permit threads to receive thegniera first come first serve
scheme. The threads receiving energy and therefore agaid@ir throttling can real-
ize their best performance during their quanta, althouglr tjuanta are shorter than
their timeslices. After the first threads have exhaustedffezed energy, a scheduler
must throttle the remaining threads requesting offeredggndhe quanta of the latter
threads last as long as their timeslices, but they have todspdraction of their as-
signed energy for their throttling. This prevents that thayp make the same progress
as threads which have received the offered energy restuttiag unfair partitioning

30 CHAPTER 3. DESIGN

of offered energy. The performance gap between threadwimgenergy and threads

being throttled results from throttling the latter threalilsthe case of the extended en-
ergy budget energy transfer the gap is even larger, becaeskrbttled threads receive
less energy than the energy receiving threads.

To confirm this, we consider a setting of three threads. Thetfireadl'h; offers the
two remaining thread¥'hy, andThy — instances of threadh, — its non-consumed
energy. We show this in Figui@12 These two latter threads have a power consump-
tion of 2L. The offered energy is insufficient to fulfilThy's request, therefore its
average power consumption is on% and it must be throttled. Thredlth,: has only
an average power consumption bf because afteéf'hs,’s execution no more offered
energy was left.

P Offered Energy

Received Energy

2L —

3L2 —

L —7
w3 — /
L2

Th, Thy' Thy" Th, Th,' Thy"

N\

0 T 2T 3T 4T 5T

Figure 3.12: Nave Run-Queue Energy Budget - Extended Energy Budget

As mentioned before, if we apply the exceeded power limirgnéransfer, the
unfairness will result from throttling one thread and na tither one. We present this
in Figure3.13

3.4.2 Proposed Solution

The run-queue energy budget proposed in this subsectivessthle problems outlined
in the previous subsection. Our proposed run-queue enedgebassures a fair energy
partitioning of offered energy.

As discussed before, a simple first come first serve schemeufficient for a fair
partitioning of offered energy. An obvious solution forghproblem is to partition
the offered energy among all threads of a run-queue or priqrieue. Thereby, for
proportional share scheduling policies one has to condhlieramount of tickets or
the weights of threads to partition the energy fairly. Thavarack of this policy is
the coarse-grained partitioning of offered energy. Theesfsome threads can get
a fraction of the offered energy, although they do not regjitir Consequently, the
system’s performance cannot be as good as if a schedulgrgaititions the energy

3.4. RUN-QUEUE ENERGY BUDGET 31

. Offered Energy
Received Energy

2L —

3L2 —

L —7 o
3 — / /
L2

Th, Th,' Thy" Th; Th,' Thy"

t
I | | I

0 T 2T 3T 4T 5T

Figure 3.13: N&ve Run-Queue Energy Budget - Exceeded Power Limit

only among threads requiring it. The same will happen if @aldrreceiving energy
cannot exhaust its fraction of offered energy.

The idea of the proposed per run-queue energy budget is fileataathread has
executed for its quantum, it defines for how many threads fteeenl energy lasts and
how much of the offered energy each thread may receive at f@ostproposed energy
budget has the following structure:

® e

e threads

L4 Enon—consumed

The energyFy... defines the amount of energy each thread may receive at mist an
threads defines the remaining number of threads permitted to re@ieegy. In the
case of proportional share scheduling policiggeads defines the sum of tickets or
the sum of weights of threads allowed to receive energy. Hraad has not con-
sumed its complete enerdy: .., a scheduler adds the remaining energy to the energy
Elon-consumed- A Scheduler can partition this energy among threads later o
Independently of any scheduling policy, the total amountftéred energy which
a scheduler can still transfer is defined as:

Eiotal offered = Erac - threads +Epon-consumed (32)

After we have presented the structure of a per run-queuggberdget, we outline
how it assures a fair energy transfer. We have to distinghistiollowing three cases:

1. Athread exhausts its complete fraction of offered energy
2. Athread receives a share of its fraction of offered energy

3. Athread offers its non-consumed energy.

32 CHAPTER 3. DESIGN

Case 1 If a thread has exhausted its complete fractiap,. of the offered energy,
a scheduler will decremenhreads to reflect the thread’s energy consumption. In
the case of a proportional share scheduling policy, a thvaldchave consumed the
energyFi . ticketsinread, While ticketsnreaq 1S the number of tickets held by a thread.
Therefore, a scheduler will decremehteads aboutticketsiread-

Case 2 If a thread has not consumed the energy of its complete fradi}, .. and
Efac - ticketsinread, respectively, a scheduler must once again partition thmairging
energy among the threads. One possibility is to partitissmehergy among the remain-
ing threads having not already received their fractionfefdffered energy. The draw-
back of this approach is the dependency of a thread’s fradiijg,. on the scheduling
sequence. This makes it impossible to fairly partition tered energy. To prevent
this, the update oF.,. must be delayed untilhreads is zero. This permits to ac-
cumulate the non-consumed energy of several threadsidrect The valughreads
will be zero if the number of predicted threads willing to ea® the offered energy
threads,cceive Nave received their energy. If a thread has consumed lebe afffered
energy than permittefl,cccived < Efrac, the non-consumed ener@,on-consumed Will
be updated:

Enon-consumed = Efrac - Ereceived + Enon-consumed (33)

Afterwards, if the threads which have received the offereetgy have caused a sched-
uler to decrementhreads to zero, a scheduler can partition the non-consumed energy
E\on-consumea Of threads’ fractions amongireads,eceive threads.

Case 3 If athread has an average power consumption below the pawirit can
offer its non-consumed energy,g.req 10 Other threads. A scheduler can fairly parti-
tion the energy and, in addition to that can fairly partitible non-consumed energy
Elon-consumed If threads is zero. The fraction of the offered energy a thread may
receive is:

E _ Eoffered + Enon—consumed (3 4)
frac threads;eceive '

while a scheduler has regéireads to the number of thread$ireads,eceive Which may
receive the energy.

Due to the scheduling sequence or several threads offemieigg threads can be
greater than zero. In this case, a scheduler has to incre@seh-consumed energy
Eon-consumed DY Fofiered, SO that it can fairly partition the energy later on.

After we have outlined how our run-queue energy budget assufair energy trans-
fer, we discuss under which conditions we can update or dtieidpdate of the energy
Ey.c. Afterwards, we present two figures outlining that our rwege energy budget
applies to both semantics of an energy transfer.

A thread receiving only a share of its assigned fraction efdffered energy can
update the energ¥;.... Additionally, it can update this energy if its average powe
consumption is below the power limit. To avoid updatifig,. twice, a scheduler will
solely update the non-consumed enefgy,,_consumed if @ thread receives energy but
does not consume its complete fraction.

Furthermore, a scheduler can updaig,. not only if threads is zero, but also if
threads,eceive < threads or both are equal anfl,o,-consumea iS NOt zero. In the two
latter cases, a scheduler can offer the non-consumed etwethg receiving threads,
because it does not induce an unfair energy transfer.

3.4. RUN-QUEUE ENERGY BUDGET 33

Our run-queue energy budget is independent of the semarfitics energy transfer
itself. It permits a fair partitioning of the offered energy the extended energy budget
energy transfer shown in Figufe14as well as for the exceeded power limit energy
transfer presented in FiguBels

P Offered Energy

Received Energy

3L/72 —
S AR A

w—7 7

L2

Th, Thy' Thy" Th, Thy' Thy"

0 T 2T 3T 4T 5T

Figure 3.14: Proposed Run-Queue Energy Budget - ExtendedyizBudget

P 7] Offered Energy

Received Energy

3L/72
4L/3

2L/3
L2

Th, Thy' Thy" Th, Th,' Thy"

t
I I | | | I

0 T 2T 3T 4T 5T

Figure 3.15: Proposed Run-Queue Energy Budget - ExceedeerRamit

For the design of our run-queue energy budget, it is uninapdtiow many threads
may receive the energy. The amount of offered energy, hawavbread may receive
depends on the number of threads among a scheduler partttienoffered energy.
Consequently, restricting the number of threads which nemgive the energy can
avoid throttling of threads requiring the non-consumee@t energy. Within the fol-
lowing part of this subsection, we discuss how a scheduleestimate the number of
receiving threads.

34 CHAPTER 3. DESIGN

3.4.2.1 Receiving Threads

We have mentioned before that a scheduler can partition fleeed energy among
all threads of a run-queue. Next, we discuss what problesesfrom a too coarse
partitioning of offered energy. Afterwards, we outline hawscheduler can estimate
the number of threads willing to receive the offered enemyartition the offered
energy only among this number of threads.

Coarse Partitioning A scheduler can partition the offered energy among all tisea
of a run-queue. This is a drawback, in particular, for ptiobased schedulers. Of-
ten only a subset of threads is eligible to be scheduled dtectthreads’ priorities.
Nonetheless, even partitioning the energy among all tisrefd priority-queue belong-
ing to a run-queue may be a too coarse partitioning, becanisellof these threads
require to receive energy.

The consequence of a too coarse partitioning is a smallero$izy, .. than neces-
sary. Thus, a scheduler may throttle threads more oftenrtbaessary if the threads’
required power consumptions to achieve their best perfoces cannot be satisfied.
Later on we will prove in AppendiB, that a scheduler will fulfill each thread'’s request
at the latest aften? runs of then threads of a run-queue if the offered energy is suffi-
cient to fulfill the requests. Even if each thread's requastoe fulfilled aftem? runs,
it will be an advantage if a scheduler only partitions theedfl energy among threads
which are eligible to be scheduled and require the offeredggn

Fine Partitioning To estimate the number of threadsreads,cceive requiring the
energy, it is sufficient that a scheduler accounts how mamatts it has or would have
throttled during the last execution of the scheduled thseaklscheduler would have
throttled a thread, if the thread’s estimated power consiomfghad been beyond the
power limit, but it had not throttled the thread due to endrgnsfers.

For proportional share scheduling policies, it is insuéfitito account only the
number of threads requiring the energy, instead a schenuwlst account the threads’
tickets or weights. Consequently, a thread has to decrethesids, ...iv. about its
number of tickets and its weight, respectively. The enefy,_consumea Will only
be made available ifhreads is zero or equal tahreads,.ccive. HeNce, an energy
transfer will be impossible ifthreads is smaller than any receiving thread’s weight
and its number of tickets, respectively. Therefore, a k@cgithread may consume the
offered energy, even threads is smaller than its assigned weight or number of tickets.
Consequently, the fraction of offered energy a thread hgltiicketsp c.q tickets may
receive is:

Efrac = Tnin{Ebudget

- threads, Epudget - ticketSthread b (3.5)

thread thread

After the thread has executed for its quantum andiitads is smaller than its number
of assigned tickets, it must not decremeiekets aboutticketsinread, iNStead it must
reset it to zero.

We have explained that it is unnecessary to partition theredf energy among all
threads of a run-queue, because a scheduler can efficistittyage how many threads
will probably require the offered energy.

3.4. RUN-QUEUE ENERGY BUDGET 35

3.4.2.2 Handling Preemptions

Next, we discuss when we have to updalg,. andthreads,cceive t0 realize a pri-
oritized energy transfer to fulfill the demands of a priofitgsed scheduling policy.
Afterwards, we outline how to assure that the run-queueggnieudget reflects the
offered energy after a thread’s preemption and before teerppted thread continues
with its execution.

Priority based scheduling policies require a prioritizeergy transfer. A prior-
itized energy transfer partitions the offered energy ontyong the threads eligible
to run belonging to the highest priority and probably redgungsthe offered energy.
Runnable threads assigned to lower priorities and reqgpshie offered energy are
not considered by a scheduler. Only if the lower priorityetias are eligible to run, a
scheduler will consider them.

A priority based scheduling policy requires to updateeads,eceive 8S Well as
Er..., whenever the priority of the previously executed threadhisqual to the priority
of the next scheduled thread. The offered energy is solatjtipaed among threads
of a priority-queue willing to receive the energy. If no thdeis willing to receive the
energy, we will sethreads,«ccive t0 ONE, in order to give a thread the opportunity to re-
ceive the offered energy. This permits to realize a priveilienergy transfer. Without a
prioritized energy transfer, the number of lower prioritygads can affect the fraction
a high priority thread can receive of the offered energy.

The main disadvantage of a priority based scheduler is tferypartitioning of
offered energy among eligible threads of a priority-queddis will be the case if
a scheduler has scheduled a few lower priority threads pasfiready received their
complete fraction and a scheduler has not already scheth#e@maining threads of
a priority-queue. Moreover, if these latter threads aredualed after a higher priority
thread having received an amount of the offered energy,a¢hesot receive the fraction
of the offered energy previously designated to them. In toestvcase, the higher
priority thread has received the complete offered energhtl@a lower priority threads
which have not yet received a share of this energy cannoiveeaay offered energy
anymore, because it is exhausted.

As preliminarily pointed out in Subsectid4.2 the invariant of our proposed run-
gueue energy budget structure is the definition of the enghggh is left for subsequent
energy transfers after a thread’s execution. Next, wercaitiow we assure that the run-
gueue energy budget reflects the offered energy, which astdrecan transfer after a
thread’s execution. We have to consider the following tweesa

1. Athread gets preempted during its quantum.

2. A thread continues with its execution after another ttireas preempted this
thread.

Case 1 To meet the requirement that the run-queue energy budgetddfie amount

of energy which can be transferred, it is not sufficient tortefiy,.,, , as follows:*

FEfrac, - threads
=BG v 3.6
threads,eceive (3.6)
Eac, is the offered energy before the update, dfd., . , is the offered energy after

the update. The reason for this is that a preempted threadheneyreceived energy of

Efraclurl

Lfor clarity, we have not consideré, on_consumed in the following equations

36 CHAPTER 3. DESIGN

its fraction, but a scheduler has not yet decremetiteechds before this thread has got
preempted. To account thiBy.,.,,, must be defined as follows:

Efmci - threads _EI'eCeiVedpreexnpted
Efraci_;_l =

3.7
threadseceive (3.7)
Here,threads is the number of remaining lower priority threads permittedeceive
the offered energy, anithreads,qccive IS the number of higher priority threads willing
to receive the offered energy, cceived is the already received energy of the
preempted thread.

preempted

Case 2 Equation 8.6) will not apply if the preempted thread continues with its ex
ecution, because its already received energy is not carsiddf one prohibits the
preempted thread to receive more energy, it may receiveelessyy than the subse-
guent threads of its priority-queue. Alternatively, if oaklows the preempted thread
to receive more energy, and if one does not consider itsdrezceived energy, a
scheduler cannot fairly partition this received energy agihe eligible threads.
Therefore, if a preempted thread continues with its exeauts,..,,, has to be
defined as:
Efraci - threads +Ercccivcd
threads;eceive

If Efrac,,, < Ereceivedpreemprear € Preempted thread has received more energy
than permitted by the new fraction of offered enefgy.., , , . Therefore, the preempted
thread must not receive more energy. In addition, this éguatdicates a run-queue
energy budget allowing to transfer more energy than prelWoaffered. It permits
each of the remaininthreads,.ccive —1 threads to receive more energy than previously
offered:

. preempted
Efraclurl = (38)

Ereceivedpreempted - EfraciJr 1

3.9
threads,eceive —1 (3.9)

To avoid transferring more energy than offered before, a&daler must check
whetherEfac,,, < Ereceivepreemprea (3-8)- If this is the casely..,,, must be defined

as:
Efac, - threads

- threads,eceive —1
After the preempted thread has executed for its quanturmhedsder only decrements

threads. Thus, the run-queue energy budget defines how much enededider can
transfer.

Efrac/ (3 10)

3.4.3 Maximum Capacity of the Run-Queue Energy Budget

At last, we outline in this section why the capacity of the rggebudget has to be
limited and on which factors the limitation depends.

The idea of the run-queue energy budget is to permit to exlagquecessor’s power
limit over a hyper-period of threads’ quanta. If some theewdhich are eligible to be
scheduled offer more energy than other threads receiveruthgueue energy bud-
get will accumulate this non-consumed offered energy. Aedater can transfer this
offered energy to threads requiring this energy for thest Iperformance later on. Ex-
hausting the accumulated energy in a short period of timeceaase problems, e.g.,
the transferred energy can raise a processor’s tempetsyond the threshold, or can
permit threads to receive more energy than permitted pesrhgeriod.

3.5. CONTROLLING A THREAD’S ENERGY LIMIT 37

Therefore, the maximum capacity of the run-queue energgdiutiust be defined
to avoid a violation of one of these limits. We will outlinem@ne can determine the
maximum capacity in the case of limiting a processor’s temaoee for avoiding its ex-
ceedance above the processor’s critical temperature efidier we consider Kellner’s
temperature model of a processor [20].

Example We assume an ambient air temperatur@4f)°C, a processor idle tem-
perature of33.5°C and72.5°C as the processor’s critical temperature. The maximal
power dissipation of the processoniks W and the permitted average power consump-
tion P is 80WW. This average power consumption yields a processor tertypera
of about70.1°C. To assure that a thread cannot raise the processor's eaboyg
the critical temperature by performed energy transfershawes to consider a proces-
sor's maximal power dissipation. The capacity of the ruetgpienergy budget must be
exhausted before a thread consuming the maximal power isa@the processor’s tem-
perature above the threshold. In our example, a threachdigsy the maximal power
will raise the processor’s temperature above its critieadpierature aftei4s if the pro-
cessor temperature 7.1°C. Consequently, the maximum capacity of the run-queue
energy budget may be at most

Etotal offered — tmaximal runtime ° (Pmax - Plimit) (311)

Here, t maximal runtime 1S the maximal execution time of a thread consuming the pro-
cessor's maximal poweP,,,., before it raises the processor’'s temperature yielded by
Pinit above the critical temperature. Considering our exampéentaximum capacity
of the run-queue energy budget may be at mo855.J.

In our example (cf. Figur8.16), at first the processor is idle fa00s and yields
a temperature 035.5°C. Afterwards, a thread with an average power consumption
of 80 executes foR200s and raises the processor temperatureda°C. If the
thread executes also for the followiri@0s, the processor temperature will remain
constant, but if we replace the thread with another onepiisig1 1517, the processor
temperature will exceed the threshold temperature afecwging that thread fai4s.

3.5 Controlling a Thread’s Energy Limit

The last section of our design considers how a thread’s grimrgget can be met over
several quanta. It cannot be met during one quantum, betiaikernel cannot account
the energy consumption constantly. Thus, a thread exceedrérgy budget before a
scheduler can schedule the next thread.

Depending on the energy policy, the length of a thread’s twmarcan be based
on a thread’s energy budget. If this is the case, a schedulst atcount the energy
consumption of a thread periodically, to determine how lisgquantum may last
and when its energy budget is exhausted, respectively. Adsdér can perform this
during the timer interrupt handling. As long as a thread'srgg budget has not been
exhausted, a scheduler executes the thread at least fontbeuntil the next timer
interrupt occurs.

If a thread has exhausted its energy budget, a scheduleseti#dule the next
thread. Usually, a thread has consumed more energy thatitget by the energy limit,
because a scheduler accounts a thread’s energy consuraptjoat distinct points in
time. Besides, it depends on a scheduler whether it dir@ettforms a thread switch

38 CHAPTER 3. DESIGN

70

65
o 60
% %
= i
5 55
© /
@ 50| 72.5C
g- / 8OW
e a5t 1I5W -

! 23545 -
40 -
35

0 400 800 1200 1600 20002300 2325 2350 2375 24D
Time [s]

Figure 3.16: Processor Temperature

after the accounting or whether the kernel delays the thseamth. Consequently, a
thread’s energy consumption can significantly differ frasiénergy limit. In order
to preserve the threads’ energy budgets over several delsedie additional, non-
permitted energy must be accounted.

We call itextra used energ¥oyira usea @nd it is defined as:

Eextra used; — Paverage : tquantum - Ebudgetthread + Eextra used; —1 (312)

To penalize a thread in its+ 1" quantum for its extra consumed energy caused during
its i quantum, a thread will lose processor control if the follegvequation is true:

Ebudget““,ead S Paverage : tquantum + Eextra used; (313)

If a thread loses processor control because it has exhaitstgdantum or has
blocked, a scheduler will reset the thread’s energy budfjet & has calculated the
thread’s extra used energy. A scheduler will 88%.. usea tO Zero, if the last equa-
tion (3.13 is false. This can happen if a thread blocks or we apply thestoct
energy limit, causing a thread to lose processor contrtiipagh it has not exhausted
its energy budget.

A scheduler must not reset a thread’s energy budget if it doeseset a thread’s
guantum after the thread has been preempted by anothedthfemthread’s energy
budget was reset, it would cause to reset the thread’s gmanithis would permit
the thread to execute once again for the duration of its cetamuantum. Thus, by
steadily interrupting a thread’s execution, a schedularldvoeset the thread’s energy
budget periodically. This would possibly cause starvatibather threads.

Chapter 4

Implementation

After we have presented our design assuring a fair enerdifipaing among threads,
this chapter addresses implementation details of our desigtop of the Linux
2.6.22.15 kernel. Our implementation is based on the fommks of Waitz [40]
and Merkel [25]. They have implemented the support for anting a thread’s energy
consumption as well as estimating a thread’s power condampt

This chapter at first addresses how one can realize thelihgothechanism in
Linux for preserving a pre-defined power limit. Afterwards consider when we can
avoid to update a thread’s energy profile to increase theuaticy period for estimat-
ing a thread’s power consumption per update of a threadiggmeofile. Furthermore,
we outline which enhancements we have performed for hamgliremptions within
a thread’s quantum and for accounting appropriately a ttsemnergy transfers. We
point out how to estimate the number of throttled thread$eir tweight and tickets,
respectively. Afterwards, we propose the Linux sysfs fais to change the energy
policy as well as the semantics of energy transfers and toeltfe maximum capacity
of a run-queue’s energy budget. At the end of this chaptermetvate why some
scheduling policies will require to be notified if a user chas the energy policy and
which data structures must be updated then. At last, we denscheduler specific
adaptions to realize our proposed design.

4.1 Power Limit

In order to limit a thread’s power consumption, in our designhave considered throt-
tling as the mechanism of choice, because it allows to meet-agfined power limit
(cf. Subsectior8.2.2. Throttling is achieved by executing a special instrutctad
a processor, which simply consumes a processor’s idle poasumption, e.g., the
hl t instruction of x86 processors [11]. This instruction isharecture specific, thus
Linux executes an architecture specific idle thread to eeeifie instruction. We dis-
cuss in this section how we can throttle a thread as well ag@ssproper accounting
of a thread’s throttling and outline when we can avoid to act@ thread's power
consumption.

Thread Throttling For throttling a thread in Linux, a scheduler must schedydema
cessor’s idle thread at least for the duration of one tinude e have proposed to ac-
count a thread’s power consumption while handling the timearrupt, and to throttle

39

40 CHAPTER 4. IMPLEMENTATION

afterwards the current thread if necessary. Linux formdshedule a thread while han-
dling the timer interrupt, therefore it is not possible tbadule the idle thread eagerly.
Instead, it must be done lazily by setting the current theeBld=_NEED RESCHEDflag.
This flag indicates the kernel to schedule another thread K€mel evaluates this flag
before it returns to user mode and after it has handled ther fimerrupt.

The flag only indicates a scheduler to schedule anotherdhbes not which one.
Hence, a scheduler would not schedule the idle thread nesause at least the thread
to be throttled is runnable. Therefore, we have extendedeepsor’s run-queue data
structure by a pointer pointing to the scheduled thread kvhigyht be throttled. The
pointerschedul ed_t hr ead indicates which thread is executed, that is why it is unim-
portant whether the thread is throttled or not. In contraghé pointercur r, pointing
to the currently executed thread of a run-queue, a schedillerot change the pointer
schedul ed_t hr ead if it schedules the idle thread in order to throttle a threBuls, if
a scheduler does not throttle a thread, the poirtehedul ed_t hr ead andcur r will
both point to the same thread. If a scheduler throttles atheehedul ed_t hr ead
will point to the throttled thread currently not executed anr r to the idle thread cur-
rently executed. Besides, we have extended a thread'sitbhozdrol block (TCB) by a
resched flag. A scheduler will set the flag if it shall throttle a norrdttled thread or
shall no longer throttle a throttled thread.

These two enhancements allow a scheduler to decide whethas ibeen called
because it shall schedule another thread, throttle a thveadop a thread’s throt-
tling. If the scheduled threadisesched flag is set, a scheduler will throttle or stop
throttling the scheduled thread. Otherwise, a schedulsrbeen called to sched-
ule another thread. Due to the lazy thread scheduling, ibssiple that a scheduler
has set a thread’sl F_NEED RESCHED flag more than once before the kernel eval-
uates it. Therefore, a scheduler may only set the flegched if it has not set the
Tl F_NEED_RESCHED flag before. Additionally, if a scheduler sets this flag aftdéras
set ther esched flag, it must reset theesched flag to preempt the scheduled thread.

As pointed out, for throttling a thread, a scheduler musedale the processor’s
idle thread. Consequently, the idle thread is the currertitth This raises the following
problems:

e A scheduler does not charge a thread for its throttling, bee@ scheduler does
not decrease the thread’s remaining timeslice length ag denthe idle thread
is scheduled. Moreover, a scheduler does even not incretfseaa’s runtime.
Consequently, a thread’s throttling extends its quantum.

e A thread’s user and system times will not increase, if a seleedxecutes the
idle thread.

To solve these problems, we replace the pointer to the dutinezad with the pointer
to the scheduled thread, whenever it is necessary.

Power Consumption Accounting If a thread does not exceed the power limit, it can
be an advantage to avoid accounting a thread’s power corigxmgm each timer tick.
Therefore, we have to consider under which circumstancesawavoid the accounting
within the timer interrupt.

To estimate the number of threads which might receive enésgg allow energy
transfers, we proposed in Subsubsect®of.2.1to account how many threads have
been or would have been throttled. Therefore, we have egteadhread’s TCB with
two flags: throttl ed andthrottl ed_|l ast. These two flags indicate whether a

4.2. ENERGY PROFILE 41

scheduler has throttled or has intended to throttle a thde&dg the thread’s current or
previous quantum. The latter flag is not required for esfimgatow many threads may
receive energy, instead its purpose is to extend the permlé & scheduler accounts a
thread’s power consumption on each timer tick.

Thus, a scheduler will not require to account a thread’s paeasumption on
each timer tick if both flags are not set. Nonetheless, itgsired to account a thread’s
power consumption periodically aftértimer ticks to conclude whether the thread’s
power consumption is still below the power limit.

4.2 Energy Profile

We outline in this section when a scheduler has to updatedimplete data structures
of a thread’s energy profile, or when it is sufficient to updady a subset of it, to
account a thread’s power consumption and its energy cortsump

In the following three subsections, we explain how we canich¥o update a
thread’s energy profile each time a thread’s power or eneamsumption is ac-
counted. We want to decrease the frequency of updating adisrenergy pro-
file in order to increase the accounting period for estingatan thread’'s power
consumption per update. Therefore, we extend the energffieptay the field
consumed_ener gy_accounting_period. It stores the energy consumed dur-
ing a thread’s quantum. In addition, we point out how to updatpreempted
thread’s and its preemptor’s energy profile for accountimgrtconsumed energy ac-
curately. To account their consumed energy, we extend tleegermprofile by the
field preenpti on_energy. At last, we discuss how the energy transfer can be re-
alized as presented in our design. It requires to extendribegg profile by the field
recei ved_ener gy. This accounts the amount of energy a thread has receivetbdue
energy transfers.

4.2.1 Updating a Thread’s Energy Profile

A thread’s energy profile contains a thread’s amount of todaisumed energy and a
thread’s exponential average energy consumption. Thisrexptial average smoothes
the change of a thread’s energy consumption. The former sveokely required to
update a thread’s energy profile before scheduling the tegtad. Thus, the kernel
can save the performance counter values as well as a thremussimed energy in
appropriate data structures after accounting them. Ouysgsexd policies require to
account a thread’s energy consumption — depending on thgyepelicy — on every
timer tick for estimating at least a thread’s power consuompor even for limiting a
thread’s energy consumption during its quantum. Our preggolicies, however, do
not require to update the data structures each time the pmvesrergy consumption is
accounted.

By updating these values after each timer tick, a schedwderedses the period
for accounting a thread’s current power consumption. Thiemgés diminished to the
duration of one timer tick; without updating the values imdast up to a thread’s quan-
tum. If a scheduler updates the power consumption on eadn tiok, it will weight
the power consumption caused during each period of one tiokegxponentially. Oth-
erwise, it will only weight the average power consumptionsiamed during a thread’s
guantum exponentially. Consequently, the thread’s ctigewer consumption has a
greater impact on its estimated power consumption in therlaase. Aside from the

42 CHAPTER 4. IMPLEMENTATION

longer accounting period, this mechanism reduces the esérifor maintaining the
energy profile, but this is only a minor reason.

Not only the power limit requires to account a thread’s comsd energy on
each timer tick, the energy limit does require this as welb atcount a thread’s
power consumption, the accounting mechanism simply neegsetd the exponen-
tially weighted power consumption. Limiting a thread’s egyeconsumption requires
to account its consumption during its quantum, additignallherefore, a scheduler
must update the sum of energy a thread has already consuntedrwide, it must
save how much energy a thread has consumed since the ladt wdda thread’s
energy profile. We have chosen the latter approach and havefdine extended a
thread’s energy profile by the fieldonsuned_ener gy_accounti ng_period. A
scheduler is required merely to account each time a threamiger or energy con-
sumption; it does not need to update the complete energyerdffiupdates only the
field consuned_ener gy_accounti ng_peri od and the energy profile yields the es-
timated power consumption.

4.2.2 Handling Preemptions

In Section3.5 of our design, we have pointed out that a scheduler must 1set &
thread’s energy budget if it does not reset a thread’s quastiter a thread gets pre-
empted, otherwise we would not account a thread’s energgdiabpropriately. Con-
trary to the former works, we must account the total consuemealgy caused during a
thread’s quantum. Thereby, it is unimportant whether aatthrgets preempted during
its quantum or not.

The field consumed_ener gy_account i ng_peri od accounts the energy con-
sumed since the last complete update of its energy profigéstructure. In the case of
priority based schedulers, we update a thread’s energyeoraft only after the thread
has exhausted its energy budget, but also after a threacchaspbeempted. Thus, the
field consumed_ener gy_account i ng_per i od will no longer reflect a thread’s con-
sumed energy within its quantum if a scheduler reads it aftaread gets preempted.

To account how much energy the thread has already consuntbih it quan-
tum, we must enhance the thread’s energy profile. A schedoteases the
field preenpti on_energy by the energy a thread has consumed during its last
scheduling period when it gets preempted. Furthermorehadsder must reset the
consunmed_ener gy_account i ng_peri od to zero, thuspr eenpt i on_ener gy and
consumed_ener gy_account i ng_peri od together mirror a thread’s consumed en-
ergy during its quantum. A scheduler must resetgheenpti on_ener gy to zero
after a thread has blocked or exhausted its quantum. Heniegpassible to account
a thread’s energy consumption appropriately, even in tee o&priority based sched-
ulers.

4.2.3 Energy Transfer

The extended energy profile simply allows to control a thieadergy limit as well

as its power limit, but it is not possible to realize the egetignsfer, as proposed

in Subsectior.4.2 In order to perform the energy transfer, we must account how
much offered energy a thread has already received, to aswitré does not receive
more offered energy than permitted By,... To permit energy transfers, we extend
the energy profile by the fieldecei ved_ener gy. After a scheduler has accounted
a thread’s energy consumption within the timer tick, it cédtes the energy a thread

4.3. COUNTING THROTTLED THREADS 43

may have received. It updates the received energy as dedéniB\ppendix A.3). Due
to the performed energy transfers, a thread’s power consompan be beyond the
allowed limit. Because we do not measure a thread’s poweswption, but estimate
the power consumption — it is based on a thread’s previouggm®nsumptions —, a
scheduler would throttle a thread due to an average powsuogotion above the limit
if the power limit was not reset to the allowed one.

Only reseting a thread’s power consumption to the pre-defpwver limit does
not avoid its throttling, because we have chosen to updateead’s energy profile
only after the thread has lost processor ownership. Coesglgua scheduler consid-
ers a thread’s power consumption caused during the pertbenergy transfers for
the estimated power consumption. To avoid this, a schedolest update a thread’s
energy profile after a thread has exceeded its assignedbfragittransferred energy.
After reseting the power consumption to the pre-definedt/ithie thread behaves as
expected from the perspective of the power limit. To accauthiread’s energy budget
appropriately, the energy consumed during its scheduld brisonsidered until the
update of its energy profile. Analogously to the case of ppam a thread, a sched-
uler increasegr eenpt i on_ener gy by consuned_ener gy_account i ng_peri od
and resets the latter value to zero. Only in the case of pyibased schedulers the pre-
emption energy can be non-zero. Otherwise, a schedulethiseglue only to permit
a proper accounting of a thread’s energy consumption. Tihiggpossible to account a
thread’s power and energy consumption appropriately.

4.3 Counting Throttled Threads

We have considered in our design to partition the offeredggnenly among threads
being eligible to be scheduled and probably willing to reeg¢his energy. This section
addresses how one can account these threads.

In the case of non-priority based schedulers, it is suffid@account the total num-
ber of throttled threads. If a scheduler applies a propoaiishare scheduling policy, it
must account a throttled thread’s number of tickets and éig/kat, respectively, instead
of accounting the thread itself.

We will consider a thread as willing to receive offered enefga scheduler has
or would have throttled a thread within the thread’s cur@nprevious quantum. To
avoid accounting the number of probably receiving thre#itsy weights or number
of tickets threads,.ccive €very time before partitioning the offered energy, we store
a counter per run-queue. For a correct accounting, it isssacg to know whether
a thread has already increased the counter and must noagectiee counter another
time, or whether it has already increased the counter anchmaylecrease it. Besides,
we have extended a thread’s TCB with thexei ve_ener gy flag. This flag indicates
whether a thread has already increased the counter or not.

A scheduler will increase the counter and will set a threadtsei ve_ener gy flag
if

e athread gets enqueued into the run-queue and a scheduterdtied the thread
within the thread’s current or previous quantum before kinead got dequeued,
or

e a thread'sr ecei ve_ener gy flag is not set and a scheduler has throttled the
thread within the thread’s currently expired quantum.

44 CHAPTER 4. IMPLEMENTATION

Opposite to incrementing the counter, a scheduler will eilent the counter and will
reset a thread’'secei ve_ener gy flag to zero if this flag is set and

e athread gets dequeued from the run-queue, or

e a scheduler has not throttled the thread within the threewfsently expired
quantum and the thread is still enqueued.

In the case of proportional share scheduling policies, adwler must update the
counter according to a thread’s number of tickets or weigkdditionally, if a user
changes a thread’s weight or number of tickets and a thread'si ve_ener gy flag
is set, a scheduler must update the counter appropriately.

Priority based schedulers require one counter per priguigue. A runnable
thread’s priority change requires to dequeue the thread fi® current priority-queue
and enqueue it into its new priority-queue, hence a schedale update the counters
analogously to the run-queue’s counter of a non-priorigelsescheduler.

4.4 Sysfs Interface

This section deals with the Linux sysfs interface to selewt of our four proposed
energy policies. Besides, it allows to set the maximum dépata run-queue energy
budget and to choose which energy transfer semantics shaplied.

Normally, a user cannot change the internal data structfréise Linux kernel.
Nonetheless, Linux offers two interfaces to export intekeanel data structures from
kernel space to user space: the proc filesystem and sys{sfées[7]. We have chosen
the sysfs interface to allow the user to select one of theqsep energy policies, to
set the maximum capacity of a run-queue’s energy budgetcarttbose the semantics
of energy transfers. The proc filesystem is used to definediveplimit as described
in [25].

4.4.1 Energy Policy

To allow the user to select one of our four proposed energgipslon runtime, we have
extended the virtual sysfs filesystem with the filys/ ker nel / ener gy_policy. A
user can select one of the four following policies by writihg policy’s number into
the file. When reading this file, it provides the names and gagmns of the four
policies and indicates which of these policies is active Taeble4.4.J).

| Number | Policy]
0 strict power & non-strict energy limit
1 strict power & strict energy limit
2 non-strict power & non-strict energy limit
3 non-strict power & strict energy limit

Table 4.1: Energy Policies

4.5. CHANGING THE ENERGY POLICY 45

4.4.2 Maximum Capacity of a Run-Queue’s Energy Budget

To avoid a violation of a processor’s critical temperatura digher energy consump-
tion during a long period of time, it is required to limit theawsimum capacity of a run-
queue’s energy budget. A user can set the limit by writingnié@ maximum capacity
measured in.J into the file/ sys/ ker nel / maxi mum capaci ty_ener gy_budget .
When reading the file, it returns the current maximum capadityrun-queue’s energy
budget inu.J.

We would set the maximum capacity of the run-queue’s eneuglgét of our ex-
ample discussed in Subsectidm.3to 1, 855, 000, 000u.J .

4.4.3 Energy Transfer

In our design, we have outlined two different semantics foreaergy transfer: the
transferred energy can be given away or can merely permiteadhto exceed the
power limit.

Therefore, we have added the fileys/ ker nel / gi ve_ener gy_away to the vir-
tual sysfs filesystem. Reading this file supplies the usdn Whieé information which
semantics a scheduler currently applies for energy tramsfewill return zero if the
energy transfer only permits to exceed the power limit, analill return one if the
transferred energy is given away by the offering threads.

4.5 Changing the Energy Policy

The sysfs file/ sys/ ker nel / ener gy_pol i cy allows the user to specify which en-
ergy policy a scheduler shall apply. In this section, weinativhich scheduling poli-
cies will require to update their own internal data struesjiand the TCB structure of
the system’s threads if a user changes the applied energy.pol

This applies especially to the SFQ scheduling policy oatlim Subsectio2.2.3
If we select the strict power limit and the non-strict eneligyit energy policy and do
no longer apply the strict energy limit energy policy, theeduler must reset its virtual
time and maximum finish tag as well as each thread’s start arghfiag. The virtual
time and these tags have been based on a thread’s consunmgy betore. After
the switch, they are based on a thread’s exhausted fradtitstomeslice measured in
timer ticks. A thread’s consumed energy causes the viritua to increase much faster
than the exhausted fraction of a thread’s timeslice duestditier resolution. Therefore,
the resulting gap between the virtual times of the individhaeads is substantially
larger in the first case than in the latter. If one did not rélsetvirtual time and the
tags, the thread with the lowest virtual time would execwotesf long period of time,
until its virtual time would be larger than any other thresadirtual time of the run-
gueue. Consequently, it is necessary to reset the schisdaer threads’ virtual time
related fields.

To avoid the overhead of accounting the throttled threadesriergy policies imple-
menting the strict power limit, each scheduler resets itstar for the throttled threads
as well as the ecei ve_ener gy flag of each thread. Therefore, the kernel notifies the
current scheduler when the user changes the energy pdlidges not notify the cur-
rent scheduler when the user changes the semantics of gy éramsfers, because the
semantics simply defines whether a thread’s received emgftggnces the length of a
thread’s quantum or not, but does not affect data structures

46 CHAPTER 4. IMPLEMENTATION

4.6 Scheduler Specific Adaptions

In addition to our proposed enhancements to permit a fairggngartitioning, some
schedulers will require changes for adapting their specifaracteristics and applying
our proposed design if the scheduling decision is based loread’s energy consump-
tion. This applies to the CFS and thk1) scheduler. In the following two subsections,
we outline the adaptions for these two schedulers.

4.6.1 O(1) Linux Scheduler

The Linux scheduler does not only favor interactive thrdadmcreasing their priority
in contrast to decreasing the priority of CPU-bound threaddditionally, it splits
the timeslices of interactive threads into several smat@s (cf. SubsectioR.2.6.
The scheduler reinserts a thread into the run-queue aftethtiead has executed for
the duration of the piece of its timeslice. This increasesréactivity of interactive
threads, thus it shall also be possible if the schedulingsitecis based on a thread’s
energy consumption.

At first, we outline how the original timeslice based schedumplements this
mechanism. Afterwards, we propose our adaption for theggriEased energy policies.
The scheduler will reinsert an interactive thread into tirequeue if the thread resides
in the active array of the run-queue and its remaining tilcesk not smaller than
its timeslice granularity. A thread’s timeslice granufarassures that the scheduler
executes a thread for a minimum number of timer ticks betaray reinsert the thread.
Therefore, the following equation must be fulfilled in adtutit

0 = (timeslicegoral — timesliceremaining) mod timeslicegranularity 4.1)

Here,timeslice;ota) IS the timeslice length of the priority-queue a thread isgaeed to,
timesliceremaining the remaining length of its timeslice arigheslicegranularity the pre-
viously introduced timeslice granularity of a thread’sgpitiy. If an interactive thread
fulfills these three conditions, the scheduler will reitgbe thread into the thread’s
priority-queue.

In the case of an energy based scheduler, a thread’s consmagryy does not sim-
ply increase by one unit. This applies only to a thread’s iiaing timeslice decreasing
after each timer tick by one unit. Therefore, it is inadeguatsolely adapt the previ-
ous equation4.1) for splitting a thread’s energy budget, because its foifiliht is very
improbable. This can be seen in the following equation:

0= Ebudgct“,read mod (}Dlimit * tin’leSlicegranulaﬂrity) (42)

Instead, we have to allow for a non-predictable increase tbfead’'s consumed
energy from one timer tick to another. The scheduler willtspi interactive thread’s
energy budget if the thread is enqueued in the active array tlze thread’s energy
consumption fulfills the following inequation:

Econsumed Z (timesncesplit +1) : (Plimit : tiIneSlicegranularity) (43)

Eeconsumea iS the energy a thread has already consumed during its quardnd
timeslicespi counts how often the inequation has already been fulfilletthiwithe
guantum. Thereto, on each timer tick the scheduler checlethehthe thread’s con-
sumed energy solves this inequation. If this is the casestheduler will increment

4.6. SCHEDULER SPECIFIC ADAPTIONS 47

timeslicespiit. Afterwards, if the thread is interactive, the schedules fusst incre-
mentedtimeslicespii; and the thread is enqueued into the active array, the saredul
will reinsert the thread into the thread’s priority-queua.this way, it is possible to
split a thread’s energy budget into small fragments, amalsly to splitting a thread’s
timeslice.

4.6.2 Completely Fair Scheduler

For our implementation we have used the Linux 2.6.22.15&terThis kernel imple-
ments the presented(1) scheduler. From Linux kernel version 2.6.23 on, ¢h@)
scheduler has been replaced by the Completely Fair SchddiilsSubsectior?.2.?).
To evaluate this new Linux scheduler, we have applied a pafacing the old sched-
uler with the CFS of the Linux 2.6.24.1 kernel. Molnar [26Fh&ovided the patch.

The CFS uses timeslices of variable length which it dynalyictetermines to
realize the proportional share among the threads. Thereddhread’s weight extends
a thread’s timeslice length, but does not affect how oftendtheduler schedules a
thread, like in the case of the other presented proportisinate scheduling policies.
If merely one thread is runnable, the thread'’s timeslicgtlerwill be unbound, until
another thread will become runnable. Therefore, CFS awtoideeck whether another
thread is eligible to be scheduled or not.

As outlined in Sectiort.2, we only want to update a thread’s energy profile before
scheduling the next thread, after a thread has completegived the energyy, .. or
has exhausted its energy budget. If just one thread is rimrthle scheduler will never
update a thread’s energy profile. In this case, the threatimated power consumption
is equal to its average power consumption caused sincehiesdate. Therefore, the
scheduler must update a thread’s energy profile after thedgef & timer ticks, if it
has not updated the energy profile within this period.

In addition to an unbound timeslice of a thread, the CFS hascentrast to the
remaining proportional share scheduling policies — a texel hierarchy for its pro-
portional share and not only one. The top-level defines thpgtional share between
different groups or users, whereas the bottom-level defimeproportional share be-
tween the threads assigned to a group or to a user. An adrainistan group a user’s
threads to an administrator defined group together. We ud®ifollowing the more
abstract concept of groups for our considerations, but gpply for users as well.
To account the weight of all throttled threads, it is insudfit to account only their
own weight, instead the scheduler must consider the weifgtiteogroup a thread is
assigned to as well. The scheduler represents a threadip ¢mpa per group run-
queue, calledCFS rq. Each group is assigned to the top-le@slS rq. We have
extended the data structure by a counter. This counter atthe weight of the throt-
tled threads assigned to tReS_r g. If the scheduler considers a thread to be willing
to receive energy, the scheduler will increment at first thenter of the thread’s group
by the thread’s own weighhreadyeight. Afterwards, the scheduler will increment the
counter of the top-levelFS_r q by threadweight - SrOUDycight -

Thus, if a user changes a group’s share, the CFS can updatevthtetal weight of
the throttled threads easily. The scheduler must updatephkevel counter as follows:

counteryop = countertop +(— GrouPyeight,,, - 8rOUPyeight, .) COUntergroup (4.4)

In this way, it is possible to efficiently account the weightlte throttled threads, even
in the case of a multi-level proportional share scheduliolicp.

48

CHAPTER 4.

IMPLEMENTATION

Chapter 5

Evaluation

This chapter deals with the evaluation of our proposed degigfirst, we describe our
evaluation environment, and compare the performance ofewgn examined sched-
ulers with each other. Subsequently, we evaluate whetlbr @ahese schedulers can
fulfill the demands of our designed energy policies. Aftexigawe examine whether
the proportional share scheduling policies performingdmsigned energy transfer can
fairly partition the offered energy according to the thr€asdeights. Furthermore, we
discuss the implications of I/O load on our fair energy pening. At last, we evaluate
the performance of our designed energy transfer.

5.1 Evaluation Environment

We evaluate the performance and fairness of our implementah a simultaneously
multithreaded3.8GHz Pentium 4 processor with two logical processors agdByte
memory. To preclude an influence of a load balancing mechmafds our evaluation,
we have deactivated one of the two logical processors. Dumméslice lengths ofOms
in case of proportional share schedulers, we have set tiee fiequency td 000Hz

To analyze our design we have chosen two benchmarks of th€ SFEJ2006
benchmark suite [35]: thiemrer benchmark and thebmbenchmark (cf. Tablé.1).
We have chosen these two benchmarks, becausertiee benchmark can benefit from
thel bmbenchmark if we permit energy transfers. Furthermorehtirer benchmark
requires more energy for its execution, but has a shorté¢imerthan thé bmbench-

| Benct | Min PC [W]°[Av PC [W]°[Max PC [W]] AvRT [s]®] EC[J]'|
hmmer 106 107 110 1,209 [128,700]
lbm 93 94 96 1,343 | 127,0007

a Benchmark

b Minimum Power Consumption
¢ Average Power Consumption
d Maximum Power Consumption
€ Average Runtime

 Energy Consumption

Table 5.1: Benchmarks

49

50 CHAPTER 5. EVALUATION

mark. This permits to explore the consequences of our enmaiigies. For our consid-
erations, we only consider the energy consumption of the,@Bthot of the complete
system.

To investigate the interrupt latency induced by our enharergs, and to measure
the network performance, we have attached an Intel E1008b&igetwork interface
card to the system. An external client and our target systezsute theNet per f
benchmark [27] to generate I/O load on our system. Ridteper f benchmark has an
average power consumption of approximatepiv.

5.2 Evaluation Setup

To evaluate our generic design, we have set the average iaviteof our system to
100W and restricted the maximum capacity of a run-queue’s erlgugget to300.J.
We have chosed00.J to permit thenmmrer benchmark to exceed the power limit about
10W for 30s. In order to only compare the performance of our seven exaarsched-
ulers, we have not applied these restrictions and deaetivaiergy accounting.

We have set the timeslice lengths of the schedulers to thefiolg values:

| Scheduler | Timeslice Length [mg] |

O(1) Scheduler 100

MLFQ Scheduler 5,7,10,14, ..., 824
Round Robin (RR) Scheduler 100

SFQ Scheduler 10

Stride Scheduler 10

Lottery Scheduler 10

CFS variable

Table 5.2: Timeslice Length

The timeslice length of00msis the default timeslice length of th@(1) scheduler.
We have chosen this timeslice length for the round robin dglee as well, and set
the timeslice length of SFQ, stride and lottery schedulerdimsto favor 1/0-bound
threads. To assign the appropriate timeslice length to #aelad, the MLFQ sched-
uler has a specific timeslice length per priority. The CFSsdoat have a concept of
timeslices. It determines a thread’s time of processorrobdynamically.

We have proposed four different energy policies and two s¢icgfor energy
transfers. Therefore, we have to evaluate six differentgnpolicies. In addition,
we evaluate the performance of a per run-queue throttlidigypto examine whether
we can achieve a better performance by throttling each dhiredividually than by
throttling the complete run-queue. The run-queue thratholicy throttles the current
thread as long as the estimated power consumption is bepengbiver limit. There-
fore, hmmer 's power consumption and exceedance of the power limit capetdnis
throttling, resulting in an unfairness among the two beratks. The abbreviations of
our policies are shown in Tabe3.

The kernel does not display its output on a monitor, but sérttisough the serial
interface. This permits to log the kernel messages from &arel client. To evaluate
a thread’s energy consumption, we have extended the exgraysall. It transfers
to the serial interface the data how often a thread was tadothot throttled, or its

5.3. SCHEDULER PERFORMANCE 51

| Energy Policy | Energy Transfer [Abbrev. |
Strict Power & Non-Strict Energy Limit None SPNE
Strict Power & Strict Energy Limit None SPSE

Non-Strict Power & Non-Strict Energy Limit Extended E. Budget NPNE1
Non-Strict Power & Non-Strict Energy Limit Exceeded P. Limit | NPNE2
Non-Strict Power & Strict Energy Limit Extended E. Budget NPSE1
Non-Strict Power & Strict Energy Limit Exceeded P. Limit | NPSE2

Run-Queue Throttling None RQTH
E. = Energy
P. = Power

Abbrev. = Abbreviation

Table 5.3: Energy Policy Abbreviations

throttling was avoided due to energy transfers. Addititypal transmits a thread’s
runtime, consumed energy and received energy.

5.3 Scheduler Performance

Before we evaluate the fairness and performance of ourlesiggcompare the perfor-
mance of the seven examined schedulers. Therefore, we kavated the complete
SPEC CPU2006 int and fp benchmark suite per scheduler. We dveacuted each
individual benchmark of the benchmark suites three timesevaluate the overhead
caused by an individual scheduler in comparison to our eefex scheduler, th@(1)
scheduler, we have selected the shortest runtime of eaathivemk out of the three
runs. The overall execution times of the SPEC CPU2006 intfarmbnchmark suite
are shown in Tabl&.4and in Tableb.5, respectively.

The overhead in the following two evaluations indicatesaberhead for executing
the complete benchmark suite by a specific scheduler comhpaceir reference sched-
uler. Minimum and maximum overhead outline how far the penance between the
investigated and the reference scheduler drifts throughbdenchmark suite.

[Scheduler | Runtime [s] | Ovh [%]?] Min Ovh[%]°] Max Ovh [%]]
O(1) Scheduler 12511.94 0.00 0.00 0.00
MLFQ Scheduler 12522.01 0.08 -0.6 0.93
RR Scheduler 12550.15 0.31 -1.08 1.21
SFQ Scheduler 12573.78 0.49 -0.64 1.84
Stride Scheduler 12551.92 0.32 -0.62 1.51
Lottery Scheduler 12571.02 0.47 -0.46 2.19
CFS 12518.46 0.05 -0.19 2.44
a Overhead

b Minimum Overhead
¢ Maximum Overhead

Table 5.4: SPEC CPU2006 int Benchmark Suite

52 CHAPTER 5. EVALUATION

[Scheduler [Runtime [s] | Ovh [%] | Min Ovh[%] | Max Ovh [%] |
O(1) Scheduler 23459.74 0.00 0.00 0.00
MLFQ Scheduler 23508.65 0.21 -0.71 0.94
RR Scheduler 23553.68 0.40 -0.09 3.08
SFQ Scheduler 23544.92 0.36 -0.11 1.43
Stride Scheduler 23530.82 0.30 -0.70 4.03
Lottery Scheduler 23512.79 0.23 -0.75 3.45
CFS 23500.38 0.17 -0.67 1.5

Table 5.5: SPEC CPU2006 fp Benchmark Suite

For an individual benchmark, the runtime difference betwine reference sched-
uler and one of the six remaining schedulers is at most al§éuihe overall overhead
for executing the benchmark suite by one of the non-referascbedulers is at most
0.5% in comparison to the reference scheduler. Therefore, weatxpat the later
evaluation results are comparable among the seven schedule

5.4 Energy Policies

In Subsectior8.3.4 we have discussed the expected performance of our proposed
ergy policies. To expose the effect of energy transfers, awe tselected themmer
benchmark and thebmbenchmark. We execute these benchmarks in parallel and set
the power limit to1001V. If a scheduler performs energy transfers, theer bench-
mark can benefit from thebmbenchmark’s lower power consumption. Independently
of performed energy transfers, we expect that a scheduterot@ompletely avoid the
hmrer benchmark’s throttling.

5.4.1 Scheduler Comparison

Before we examine the impacts of the six energy policies hadun-queue throttling
policy on these two benchmarks individually, we analyzeithpacts of the energy
policies on the total execution time of this scenario. Itddeom the start of these two
benchmarks until both have finished with their execution.

Energy Policies The non-strict power limit reduces the total execution tiofiehis
scenario significantly as seen in Figlrd. Depending on the scheduler, the total exe-
cution time can be reduced betweeh% and4.8% in comparison to the two policies
realizing the strict power limit.

If a scheduler’s energy policy forbids energy transfarsyer must spend between
8.3% and9.0% of its executed ticks for its throttling. Otherwise, if werpet energy
transfers, a scheduler will throttterrer at most abou8.5%. Depending on the esti-
mated power consumption bbm-— it varies betweef3.3WW and96.4W —, a scheduler
can avoid completelysnmer ’s throttling. This applies to SFQ and stride schedulers as
well as CFS while applying one of the following energy pa&i NPSE1, NPNE2 or
NPSE2. If a scheduler applies one of these energy policteahas a longer lasting
guantum in comparison tomer . Due to its longer execution time per quantum, it can

5.4. ENERGY POLICIES 53

2750
NPSE1lrrrzz)
NPNE2 &
NPSE
2700 , RQTFH
T 2650 - g R
2 8 B B OB B
= S SN 5 g 2 8
2600 : j 2 : :
2550 3 o : G
O(1) MLFQ RR SFQ Stride Lottery CFS
Scheduler

Figure 5.1: Scheduler Comparison - Total Execution Time

offer more energy than in the case of applying the NPNE1 gnpadicy and there-
fore avoidinghmer ’s throttling. Applying the strict energy limit in contrash the
non-strict energy limit and permitting energy transfeduees the total execution time
in the case of)(1), MLFQ, round robin and lottery schedulers. This outlinest th
fair energy partitioning does not necessarily increasédta execution time of several
threads.

The lottery scheduler is a probabilistic proportional ghsgheduling policy. Conse-
qguently, the scheduling order of these two benchmarks idetenministic. The sched-
uler can schedule a benchmark consecutively for severaitguand not only for one
which reduces the number of context switches. If the scleedidhedules thenmer
benchmark consecutively for several quahtayer can consume up to the complete
offered energy of thé bm benchmark and enforces its own throttling. Tinerer
benchmark must spend at mdst% of its executed ticks for its own throttling if the
scheduler permits energy transfers. Nevertheless, dhe tetiuced number of context
switches, the performance of the lottery scheduler is coaipe to the performance of
the remaining schedulers. Among our seven examined sarsdtie total execution
time of the two benchmarks differs at most betwédi¥, and1.7% for the six energy
policies. Consequently, the aim of each energy policy caadbéeved independently
from a specific scheduler. To execute the two benchmarks rmengg-aware sched-
ulers with the exception of the CFS scheduler require apprately 3.3% more time
than an unmodified Linu¥)(1) scheduler. The CFS requir@s¥% more time than an
unmodified LinuxO(1) scheduler, but onlg.8% more time than an unmodified CFS.

54 CHAPTER 5. EVALUATION

Run-Queue Throttling Policy After we have compared the energy policies with one
another, we compare them with the run-queue throttlingcgoli he run-queue throt-
tling policy has been applied in the former works of Waitz][4Ad Merkel [25] to limit

a processor’s power consumption and temperature, but fiotitdhem per thread like

in our work. To limit a processor’s temperature, a run-qutbuettling policy is suffi-
cient, but it induces unfairness because it can throttksilte which have not consumed
more power than permitted.

If we prohibit energy transfers, the run-queue throttlingjqy will achieve a better
performance than our strict power limit energy policies;dwese the run-queue throt-
tling policy preserves a processor’s power limit over a myperiod of several thread’s
guanta. Therefore, it will finish the execution of both bemeinks between.5% and
3.3% earlier. In comparison to the fastest energy policy of eatteduler permitting
energy transfers, the run-queue throttling policy requiretweeri.0% and4.5% more
time to finish the execution of this scenario.

5.4.2 Comparison of Energy Policies

After we have compared the performance of the schedulersomi¢é another and have
come to the conclusion that each scheduler can fulfill thesafithe energy policies,
we analyze the implications of the six energy policies onftteer benchmark and
thel bmbenchmark. We have chosen th¢1) scheduler to evaluate the performance
of these benchmarks. The performance of the remaining stdrsdis comparable.
In Figure5.2, we show the runtime of the benchmarks for each energy policy

SN [
2650 R Ibm wxesss
IO
R
OS,
255
RIS
2 S22
O, OO
QN 2055
O SO
R S
= 25 S
(O XIS SIS
5 K2 3
O OIS L3
Snly S, W2
OIS DD SR
IS O e 0%,
QN 2055 esnes] S, [5%05 R3S
0 DTS 255, 05 055, IO
2055 e IO OB D0 RS
O3, O Sy W Sl O30
“2 S 2SO OIS O 52
LS NS 255, 2055 2, IS
R85 o O S0 S S
—_— S LI K2 52 S5 DI
S 2 O S S0, “OX
[7) SRS, R 8 o 53 IS
—_ DI OGS SR S s N OIS
X O3S 255, X 55 O, 2SS
] Lo 2RO SR R QR 2 RS
E SR D G, O, SIS, 5’8@ &f@é
PR R % <O 0% QRS S
= 5 2 OO (SO S0, X GO
LS OB 2085 RS, 2055 ORS LS
R385 RN SIS S (365 20 20
OO 2300 RN 62 e OIS O
562 2055 2300 IO RIS X X
LIS S RS 255 R, LS LSO
2055 s XX OB IS 28 20
XX SIS, koo SR o 2R S
Sy RS QL OIS CQ; G2 S
OO O, NS oxeo XS, OIXSO: 3OS
RS 55 O OO IS 2% S
SO L3O ¥ VoS S S 0SS
5 2 OO O, S0, X GO
IS DS 255, 225 2045 SRS, RS,
R385 RN SO WS IS 2 2
XSG L0 5 w2 KNP SIS SIS
w2 Koo OING: LIS SO%S 0SS 03
S S R S5 R S O
OIS O%S R 5 R SIS SIS
SR R S O, OIS $OR 203
2055 e X0 036 O CR% 2
SO S, SR VoS S LS 2
e S) 23S S, s R0
OO LS GO S8 P05 R R
62 2085 236N) OIS, O X
P3O SIS 2055 25 255, S LSO
2055 K O G S RS 2
SIS O3S, 5 52 o SIS O
SR 55 OGS TS, SRS 0% 23
2055 o EXC XS O RS QR
X S Qo S22 R S OIS
e R S, S (S 0 50
R R % S SO R0 XS
0 2055 L300 LIS RO% 23 <OR
IS S R R R S LSO
2300 SIS LIS s 52 SR NS O

SPNE SPSE NPNE1 NPSE1NPNE2 NPSE2 RQTH
Energy Policy

Figure 5.2: Energy Policy Comparison

5.4. ENERGY POLICIES 55

Energy Policies The hmrer benchmark cannot benefit from the lower power con-
sumption of the bmbenchmark if we apply energy policies enforcing the stratwer
limit. In case of the strict power limit and the non-stricteegy limit energy policy,
hmmer finishes its execution earlier thabm because its runtime is shorter thasnis
runtime. This energy policy does not consider thater consumes more energy.

In comparison to that energy policy, the strict power linmitidhe strict energy limit
energy policy favors bmby extending its quantum due to its low power consumption.
Therefore,l bmfinishes its execution first, because in total it consumes éeergy
during its execution thahnmer . In this particular casénmmer requiress3s longer for
its execution thahbm This time corresponds roughly to the greater amount ofggner
(5124.J) it requires.

As pointed out in SubsectioB.3.3 a thread receiving offered energy will benefit
at most from the non-strict power limit and the non-stricergy limit energy policy
if the offered energy extends the thread’s energy budgets djpplies to thenmmer
benchmark as well. It finishes its executi®s beforel bmfinishes its execution. We
have analyzed in Subsecti8rB.4that threads offering energy do not benefit from their
offered energy. Neverthelesishm has finishedl01s earlier than in the case of the
prohibited energy transfers. This results from the fact thal bmbenchmark has to
compete for processor control only 484s and not for2648s.

The gap oR0s between the two benchmarks can be diminishe3btaf the sched-
uler applies the strict energy limit in contrast to the néniesenergy limit. The sched-
uler cannot achieve a fair energy partitioning, becausd tmebenchmark gives its
offered energy away. If thebmbenchmark permits thiemmer benchmark to exceed
its power limit but not to extend its energy budget, the ga/ben the two benchmarks
can be reduced significantly.

Yet, thehmer benchmark will still finish33s before thel bmbenchmark if we
apply the non-strict energy limit. In contrast to that, thembenchmark will finish
41s earlier its execution than themrer benchmark if the offered energy is not given
away. In general, if a scheduler applies the strict enemit in contrast to the non-
strict energy limit, the gap between these two benchmarkseaat least diminished
by aboutd5% or thel bmbenchmark can finish even earlier thantiheer benchmark.

In the case of the deterministic proportional share sclieglydolicies, we cannot
recognize a significant difference between the NPNE2 andB2RShergy policies.
These schedulers realize a proportional share based ohrerels energy consump-
tions. Therefore| bmcan execute for another timelibnis virtual time and energy,
respectively, are belowmmer ’s one.

Run-Queue Throttling Policy As outlined before, the run-queue throttling policy
requires more time for the execution of the two benchmar&s thost of our energy
policies. This results from throttling thebmbenchmark, which has a longer runtime
than thehnmmer benchmark. Thus, the drawback of the run-queue throttlmigyis
that it can also throttle threads which have not exceedegddher limit. In Table5.6,
we outline how often a scheduler has throtthedrer andl bmduring their execution.
The drawback of the run-queue throttling policy becomestrabsgious in the case
of the MLFQ scheduler. It causésmer to be throttled in0.1% of its executed ticks
andl bmto be throttled irt.0% of its executed ticks by the scheduler. The scheduler’'s
throttling of| bmfurther increaseisbnis runtime. This benchmark finishes its execution
294s later tharhnmrer . In the case of our energy policiegymfinishes its execution at
most165s later tharhmmer .

56 CHAPTER 5. EVALUATION

| Scheduler | H.Th. Ticks | H.To. Ticks | L. Th. Ticks [L. To. Ticks |

O(1) Scheduler 2700 1189484 43488 1392513
MLFQ Scheduler 1383 1194582 59553 1477219
RR Scheduler 2700 1187132 1000 1419862
SFQ Scheduler 410 1093335 600 1396696
Stride Scheduler 170 1091977 80 1391428
Lottery Scheduler 1470 1086519 1580 1398468
CFS 1475 1213850 2521 1379748

H. = Hmmer

L.=Lbm

Th. = Throttled

To. = Total

Table 5.6: Run-Queue Throttling

5.5 Proportional Share Schedulers

In contrast to round robin or MLFQ schedulers, a proporticteare scheduler per-
mits to fairly partition the time of processor allocationtbe processor energy among
threads according to their weights. We want to evaluate taislyfa scheduler parti-
tions the offered energy among threads with different wisigh

Therefore, we have executed twemer benchmarks and oriebombenchmark in
parallel. Thel bm benchmark and one of themer benchmarksHmer - 1) have
weight one and the secortthmer benchmark has weight twohifrer - 2). The
hmer - 2 benchmark has to execute two iterations of the benchmaskead of one
iteration like the two other benchmarks. Thus, the tmaer benchmarks shall finish
at the same time.

In contrast to the previous scenario, the offered energhef bmbenchmark is
insufficient to avoid a throttling of the twormer benchmarks, because we have set the
power limit to 1001/. Nonetheless, energy transfers can significantly redueéotial
execution time of this scenario as shown in Fighr& Among our four proportional
share scheduling policies, the total execution time of thied benchmarks differs at
most between.2% and2.1% for the six energy policies. Due to the throttling of the
two hnmer benchmarks, our energy-aware schedulers require atZr¥stmore time
for the execution of the three benchmarks than an unmodiftesl C

The run-queue throttling policy requires betwdetf% and2.6% more time for the
execution of this scenario than our energy policies peimgitenergy transfers. This
applies to each of the four schedulers. Like in the previmenario, the run-queue
throttling policy will finish the execution of this scenararlier if we apply the strict
power limit.

After we have analyzed the total execution times, we exerifpknalyze the run-
times of the individual benchmarks for the stride schedulére results of the three
remaining schedulers are comparable for the six energgipsliand the run-queue
throttling policy.

Energy Policies If we apply the extended energy budget energy transfer,vtloe t
hmer benchmarks will finish earlier tharom Thel bmbenchmark will finish earlier
its execution than the twbmmer benchmarks if we apply the exceeded power limit

5.5. PROPORTIONAL SHARE SCHEDULERS 57

5600
NPSE1 77777
NPNE2 &
NeSE2:
5400 ;
f z
[0} u :
g 5300 : . : ?
] : : i 3
5200 : i i ;
5100 o8 7 : -
4
5000 o SNGNG AR N
Stride Lottery CFS
Scheduler

Figure 5.3: Proportional Share Scheduler Comparison 4 Extacution Time

energy transfer. It benefits from a fair energy partitioningwe apply the NPSE2
energy policy, it will finish76s beforenhmrer - 2 and95s beforehmmrer - 1. The gap
between theannmer benchmarks and thebm benchmark will be larger, if we apply
the strict power limit and the strict energy limit energyipgl In this case, thébm
benchmark will finish1 59s beforehmmrer - 2 and170s beforehmmer - 1.

Run-Queue Throttling Policy As outlined before, our seven schedulers can achieve
a better performance if they apply our energy policies pgimgi energy transfers in
contrast to applying the run-queue throttling policy. The-gueue throttling pol-

icy causes a performance degradation, because it thrttddsombenchmark. This
benchmark has to spend betwele#f% and9.6% of its executed ticks for its throttling.
Therefore| bmfinishes its execution betwedi65s and308s after the slower one of
the twohnmer benchmarks has finished its execution.

Energy Policies At last, we compare the twemmer benchmarks with each other. To
examine whether a fixed timeslice length is a drawback in @ispn to a timeslice
of variable length, we examine the performance of the ssadeeduler and the CFS.
For comparing the twanmmer benchmarks with each other, we consider the following
ratios: runtime, consumed energy (energy sum), receivedygnthrottled ticks, not
throttled ticks and avoided throttled ticks due to energypsfers. The run-queue throt-
tling policy does not transfer energy, therefore we havahsetatios received energy
and avoided throttling to zero. We outline the first threéosatn Figure5.4 and the
latter three ratios in Figurg.5.

58 CHAPTER 5. EVALUATION

4
CFS-NPNE1C—— Stride-NPNElr—~>7
35 CFS-NPSE1: Stride-NPSE1:
P -NPN Stride-NPSNEZ2:
- Stride-NPSE2:
3 ... Stride-RQTH mons
2.5
il
IS 2
[n'd
1.5
1
0.5
0

Runtime Energy Sum Received Energy
Scheduler & Policy

Figure 5.4: Proportional Share Scheduler Comparison - Hnitagos Part 1

The ratios runtime and amount of consumed energy correstootie ratio of the
two hrmer benchmarks’ weights, independently from the applied gnpdijcy or the
scheduler. In the case of the stride scheduler the ratidvestenergy does not corre-
spond to the ratio of the twbmer benchmarks. Thamer - 2 benchmark receives
more than twice the energy of themer - 1 benchmark. Thereforémmer - 2 will fin-
ish43s, 13s, 18s and19s earlier than the other benchmark if we apply NPNE1, NPSEL1,
NPSE1, NPNE2 and NPSE2 energy policies, respectively.4Bkhel3s, 18s and19s
correspond to runtime ratios @f97, 1.99, 1.98 and1.98, respectively. These ratios
result from the fixed timeslice length of the stride schedule achieve a proportional
share among the threads, it schedules a thread haviimges the weight of another
threadk times more often. The thread with a higher weight has a greltence to
receive the offered energy. This, however, does not apptheoCFS, because this
scheduler uses timeslices of variable length and therefoes not schedule a thread
more often than another one. Consequently, each threaidesdts designated offered
energy.

Considering the ratios throttled, not throttled and avditi®ottling, one can see
that these ratios vary significantly. If the stride schedthlieottles thennmer - 2 bench-
mark less than twice as often as thener - 1 benchmarkhnmer - 2 will receive a
bigger share of offered energy than expected. This doesfigat she ratios runtime
and energy sum significantly, becausetiheer benchmarks must spend at mést%
of their timer ticks for their throttling. Consequently,rgqeroposed energy transfer in
combination with our energy policies achieve to partitibe energy among threads
fairly according to their weights.

5.6. INTERACTIVE TASKS 59

4
CFS-NPNE1C———3 Stride-NPNElr—~~
35 Stride-NPSE
2 » Stride-NPSNEZ2:]
Stride-NPSE2:
3 ...Stride-RQTH oo
2.5
.8
< 2 B
a4
15
1
0.5
0

Throttled Not Throttled Avoided Throttling
Scheduler & Policy

Figure 5.5: Proportional Share Scheduler Comparison - Hnira&os Part 2

Run-Queue Throttling Policy If we apply the run-queue throttling policy, the gap
between the twamer benchmarks will bé9s, 40s, 3s and72s when the benchmarks
will be executed by SFQ, stride, lottery and completely fahedulers, respectively.
This gap will result from throttlinchrmer - 2 not twice as often asmmer - 1. In the
case of the CFS, the gap betweemer - 2 andhmer - 1 is 72s, because CFS ex-
ecuteshmrer - 2 twice as long asimmer - 1, but not twice as often as the remaining
schedulers. Hencapmer - 2 can benefit twice as long frofrbnis throttling and lower
power consumption ifimmer - 2 is scheduled right aftdrbom Therefore hmmer -1 is
throttled1.5 times more often thahmer - 2. The other schedulers throtthemer - 2
betweenl.4 and2.4 times more often thahmer - 1.

5.6 Interactive Tasks

In the previous sections, we have evaluated the performain€®U-bound tasks, but
have not considered I/O-bound tasks. To analyze how an d@wbthread affects our
proposed fair energy partitioning, we execute Keeper f benchmark [27] as well as
hmmer andl bmin parallel. We set once again the power limitit@1V. TheNet per f
benchmark sends as many data packages as possible fromeanaéxient to our
system withinl0s. Afterwards, it returns the average throughput achievediwihis
time. The benchmark executes over and over again untihthher benchmark and
thel bmbenchmark have finished with their execution. An unmodifigtlk system
can achieve a throughput of approximatéf;@MTb“. We analyze in the following two

60 CHAPTER 5. EVALUATION

subsectionslet per f 's throughput and the implications of the generated 1/O load
thehmmer benchmark and thebmbenchmark.

5.6.1 Netperf Throughput

1200
SPNE txxxx3
SPSE s
1000 =
g sl H0
= 2N 2N o
= o S)
= o B S
3 600 : 2
< o o o
m xz\ O 2;
= 28 :
< 3
£ 400l B -
200 |0 K 2
xj~ 5 R o 4 Xy
0 Sk VR KIS PN RS D AN N R
(1) MLFQ RR SFQ Stride Lottery

Scheduler

Figure 5.6: Scheduler Comparison - Netperf Performance

CFS as well a® (1) and MLFQ schedulers achieve the throughput of the unmod-
ified O(1) Linux scheduler of abOL852MTbit. Stride and SFQ schedulers achieve the
highest throughput of aboBBOM?b", whereas the round robin scheduler achieves the
lowest throughput of abOLHB""Tbit as shown in Figur®.6. With the exception of the
SFQ scheduler, these six schedulers have in common thatatiaion of through-
put does not depend on the applied energy policy. Merelyhtamughput achieved by
lottery and SFQ schedulers varies substantially.

SFQ and lottery schedulers will achieve a throughput oftavp'plately759'\"Tbit and
825""%", respectively, if the scheduling decision is based on thesatliis execution time
(SPNE and NPNE1) and of abo880™™ and830™2", respectively, if the schedul-
ing decision is based on a thread’s energy consumption (SRBEE1, NPNE2 and
NPSEZ2). To benefit I/O-bound threads, the SFQ schedulezases a thread’s virtual
time only by the fraction of a thread’s timeslice the thread bxecuted for. If the SFQ
scheduler measures a thread’s period of execution in coaeseed timer ticks, it will
overestimate a thread’s execution time. An overestimatedwgion time causes that a
thread’s virtual time increases further than necessaris Whl be not the case, if the
SFQ scheduler measures a thread’s execution time in nastad®cThen, the scheduler
schedules\et per f more frequently, which increasaist per f 's throughput.

5.6. INTERACTIVE TASKS 61

Similar to the SFQ scheduler, the lottery scheduler benéfith measuring a
thread’s execution time in nanoseconds and not in timestibkcause it has to deter-
mine the fraction of a thread’s timeslice a thread has exeldatr. The lottery scheduler
requires this fractiorf, because it scales a thread’s tickets with the fa¢ttr increase
an 1/0-bound thread’s chance to be elected the next timéntkad becomes runnable.

The CFS and our implementation of the stride scheduler meastinread’s execu-
tion in nanoseconds, therefore they do not suffer from tbelpm of an overestimation
of a thread’s execution time. This outlines that measuritiy@ad’s execution time in
timer ticks is to coarse-grained for proportional sharegies.

5000 SPNE xxxx3 NPSE1lrrrz7

SPSE weszan NPNE2

NPNE1 : NPSE2

RQTH

4500 %
@ 4000 g 2 -
¢ | Rl |
: | R
3500 - . :
3000 [.
2500 =R : R i - a

O(1) MLFQ RR SFQ Stride Lottery

Scheduler

Figure 5.7: Scheduler Comparison - Total Execution Time winker and Lbm While
Executing Netperf

Although the CFS is not a priority based scheduler, it wMdal/O-bound threads
by inserting them at the front of the scheduling timeline theead has slept just for a
short period of time. Due to the high rate of interrupts cdusgtheNet per f bench-
mark, the benchmark sleeps only for a short period of timetaeckfore preempts the
currently executed thread to handle the outstanding inpésr In the case ad(1) and
MLFQ schedulers, thset per f benchmark has a higher priority thanmer andl bm
and thus preempts these ones.

Contrary, SFQ, stride, round robin and lottery schedulensat preempt the current
thread and therefore delay the interrupt handling. How lttvggdelay lasts, depends
on the number of threads in the run-queue and the schedtitegslice length. The
timeslice length ofl00ms of the round robin scheduler delays the interrupt handling
considerably. The achieved throughput is simply abﬁé@.

62 CHAPTER 5. EVALUATION

Although SFQ, stride and lottery schedulers all have a tiicekength ofl0Oms the
throughput gap between the lottery scheduler (bémw"'b—,b“) on the one hand and the
stride and SFQ schedulel%oMTb“) on the other hand is noticeable. The gap results
from lotteries passing until the scheduler electsNbeper f benchmark to be sched-
uled. SFQ and stride schedulers permit Ha¢ per f benchmark to achieve a better
performance tha852'\"7b”, becauseNet per f can handle more outstanding interrupts
when they execute it, which reduces the overhead. In cas€@f Stride and lottery
schedulersiNet per f ’s throughput will decrease Net per f has to compete with more
than the two benchmarks for processor control, becausadhisduled less frequently
and therefore loses interrupts. As pointed out in Subsebtih.2 one cannot recognize
a significant performance difference between the NPNE2 aP8E2 energy policies.
Therefore, the throughput for the two policies is compagabl

To evaluate the overhead caused by the logic of our energgigmhnd by the en-
ergy accounting mechanism, stride and SFQ schedulersappriopriate. They delay
the interrupt handling and thereby achieve the highesutfirpput among the sched-
ulers. Therefore, we think that CFS as well@&l) and MLFQ schedulers are better
indicators for the overhead. We cannot notice a throughyag, Ibut an increase of the
runtimes ofhmmer andl bm For the execution of both benchmark(1) and MLFQ
schedulers requir2.4% and3.2% more time, respectively. The overhead of the CFS
is more significant. It require$.4% and7.1% more time for the execution of this
scenario than the unmodifi€el(1) scheduler and CFS, respectively.

5.6.2 Benchmark Runtime

After we have stated that the throughput of tee per f benchmark depends on the
scheduler and its timeslice length, but not on the energigypale analyze the impli-
cations of the generated 1/O load on thverer benchmark and thebmbenchmark.

Energy Policies Energy transfers can decrease with one exception the txtalie
tion time of this scenario at least abduB% and at most aboui.3% as shown in
Figure5.7. If the CFS applies the NPNEL1 energy policy, it will incredise total ex-
ecution time of this scenario abou2% in comparison to applying the SPNE energy
policy. In Section5.1, we have pointed out that the runtime of thenbenchmark is
longer than the runtime of themrer benchmark. Hence, the generated 1/O load affects
thel bmbenchmark more seriously than themer benchmark, becausénis execu-
tion is interrupted more often, and in the case of schedfdermsing I/0O-bound threads
preempted more often. Although preempting the currenathessures a quicker han-
dling of the outstanding interrupts, it degrades the thihpug and increases the total
execution time of the two benchmarks. The throughput degiad and increase of the
total execution time result from the additionally requirdtiress space switches and
from estimating the threads’ energy consumptions.

Due to these drawbacks, it depends on the scheduler whéebmbenchmark
finishes earlier than themmer benchmark in the case of SPSE or NPSE2 energy poli-
cies. Nevertheless, all schedulers have in common thattreyeduce the gap between
hmer andl bmif we apply the strict energy limit. Thus, even in the case/©fbound
threads, our strict energy limit energy policies favor thenbenchmark as intended.

Run-Queue Throttling Policy The performance of the run-queue throttling policy
is comparable to the performance of the NPSE1 energy politys applies to the

5.7. EVALUATION OF ENERGY TRANSFER 63

individual runtimes of the two benchmarks as well to theltet@cution time of both
benchmarks. The runtimes vary at most abog%.

5.7 Evaluation of Energy Transfer

At last, we evaluate the performance of our examined sckeslapplying the non-strict
energy limit and the strict energy limit. These two polictesnot limit a processor’s
power consumption. We want to ascertain whether our enestigigs permitting en-
ergy transfers and preserving a power limitl@b1W can achieve — due to the energy
transfers — the performance of the non-strict energy limit #ae strict energy limit not
applying a power limit.

The non-strict energy limit preempts a thread at the latiést the thread has exe-
cuted for the period of its timeslice, the strict energy tiexecutes a thread until the
thread has consumed the energy of its energy budget. Toateahe performance of
the schedulers applying the strict energy limit, we havetsepower limit to100W .
This power limit does not cause a thread’s throttling, it idyorequired to define a
thread’s energy budge8(l). We compare the results of the schedulers applying the
non-strict energy limit and the strict energy limit with tfesults achieved by the sched-
ulers applying our energy policies preserving the poweitloh 100/. Our energy
policies prohibiting energy transfers and therefore #ripreserving the power limit
cannot achieve the performance of the non-strict energydind the strict energy lim-
its, because they must throttlemer to preserve the power limit. This applies to each
of the previously discussed scenarios.

Energy Policies In our first scenario, we have only executed then benchmark
and thehmer benchmark in parallel. If we apply the non-strict energyitjrmost

of the examined schedulers applying our non-strict endrgit nergy policies will
require betweer®.2% and 1.5% more time to execute both benchmarks. The CFS
and the stride scheduler can decrease the total executienaibout).8% and0.4%,
respectively. If we apply the strict energy limit energy ipigs, the schedulers can
reduce the execution time betwe@8% and3.3%. Depending on the scheduler, our
energy policies can decreakbnis runtime at most abou.3%, or increasd bmnis
runtime at most about5% in comparison to the schedulers applying non-strict ocistri
energy limits. In contrast tbbm the non-strict energy limit energy policies cannot
decreas@nmer 's runtime. NPNE1 energy policies increase the runtime betw.1%
and 3.8%, whereas NPNE2 energy policies increase the runtime betwéé&; and
6.7%. The overhead caused by the NPNE2 energy policies resatis their shorter
guanta to favor thebmbenchmark. Our strict energy limit energy policies can dase
the runtime ohrmmer betweer.9% and6.1%.

Proportional Share Schedulers We have executed twamer benchmarks and one
I bmbenchmark in parallel in our second scenario. ®meer benchmark has weight
two (hmer - 2), the other two benchmarks have weight ohemr - 1 andl bm 1).
Each of the latter benchmarks has to execute one iteratide bénchmark, whereas
hmmer - 2 has to execute two iterations of its benchmark.

Our non-strict energy limit energy policies permitting emetransfers require be-
tween1.0% and3.1% more time to finish the execution of these three benchmarks.
The overhead results from throttling the twemer benchmarks, it cannot be com-
pletely prevented by the offered energy of them 1 benchmark. In the case of our

64 CHAPTER 5. EVALUATION

non-strict energy limit energy policies, the overhead emietweer2.0% and2.6%.

In Figure5.8, we outline the runtime of the three benchmarks for eachdidee At
first, each scheduler has applied the non-strict energy\itmich preempts each thread
after exhausting its timeslice. Afterwards, each schechds applied the strict energy
limit which executes a thread until it has exhausted itsg@nbudget. One can see that
each scheduler fulfills the demands of the strict energytJiamd that the strict energy
limit can mostly reduce the total execution time of this suém

5200
hmmer-1 xxxa
hmmer-2 wzzzszs
Ibm-1 : o
5100
5000 SR
2, i
©
£ o o
" 4000 - o
4800 o8 R
8
N o
S S
4700 JON Fo‘f{: O a e oo S
SFQ SFQ Stride Stride Lottery Lottery CES
NE SE NE SE NE S SE

Scheduler & Policy

Figure 5.8: Proportional Share Scheduler Comparison - i@t Time Non-Strict
Energy Limit & Strict Energy Limit

Interactive Tasks In our third scenario, we have executést per f , hmer andl bm
benchmarks in parallelO(1) and MLFQ schedulers applying our non-strict energy
limit energy policies can reduce the total execution timerofer andl bmabout0.3%
and0.1%. The remaining schedulers cause an overhead bettve#nand4.6%. With

the exception of0(1) and MLFQ schedulers, the schedulers will increase the total
execution time of the benchmarks at most ab&ats if we apply the strict energy
limit energy policies. O(1) and MLFQ schedulers applying our strict energy limit
energy policies reduckebnis execution time about.6% and0.7%, respectively, and
hence also the total execution time ab6uit% and0.7%, respectively. As discussed
previously, the throughput ®det per f cannot be significantly affected by our energy
policies, instead it depends on a specific scheduler. This @bplies to the case of
not throttling our benchmarks. Therefore, tket per f results are comparable to the
results of our energy policies and not discussed further.

Chapter 6

Related Work

In this chapter, we present two approaches to account thigyeoensumption of activ-
ities in a client-server environment appropriately, ancetize a fair energy partition-
ing among activities. These approaches are similar to cenggrpolicies realizing the
strict power limit combined with the strict energy limit aglvas the non-strict power
limit combined with the non-strict energy limit.

6.1 Energy Containers

An energy container is an abstract kernel entity, perngittmaccount and to limit the
energy consumption caused by a specific activity [6]. It isdohon the concept of
resource containers [4].

A resource container permits to account the usage of ressbrca thread’s activity
in a client-server environment. Thereto, a resource coetat initially bound to its
creator — can be bound to several threads, and one threadechaund to several
resource containers. Thus, a thread’s protection domai ibnger the limitation
to account an activity’s resource usage. It is possible &tize a proportional share
among resource containers, because each resource cothtasna share defining the
fraction of resource allocations it gets from its parent.e Parent-child relationship
among resource containers defines a hierarchy among thecesmwntainers.

Each energy container has an assigned amount of energygyEt@ntainers can
consume this energy within an epoch. An epoch is a periodnef &fter which a sched-
uler refreshes an energy container [47]. By limiting thergpeonsumption of the root
energy container, an exceedance of a processor’'s tempegiave a threshold can
be prevented, because the child containers can at leastroerthe energy of the root
container. Bellosa et al. propose to penalize threads advigh power consumptions
and to favor threads having low power consumptions by aidigishe timeslice length
of a thread. A scheduler assigns shorter timeslices todkrkaving high power con-
sumptions and assigns longer timeslices to threads hawimgbwer consumptions.
This is very similar to our approach of the strict power limitmbined with the strict
energy limit.

The major difference between the approach of energy carsand our approach
is that if all energy containers have run out of energy, theegssor will stop the en-
ergy containers’ activities and will enter a low power stitegeduce its power dissi-
pation [6]. The energy consumed by the processor’s low patate is not assigned

65

66 CHAPTER 6. RELATED WORK

to the energy containers which have average power consomsptieyond the power
limit and have caused the processor’s throttling. Thushadualer does not consider
the contribution of throttling an energy container to anrggeontainer’s energy con-
sumption. We instead do not exceed a thread’s energy buidgétrottling a thread
as soon as the thread’s estimated power consumption extreedsewer limit, and by
assigning the energy caused during a thread'’s throttlitheidhread itself. Hence, the
approach of energy containers forbids an accurate andrfaigg partitioning.

6.2 ECOSystem

ECOSystem is a system [47] to manage energy as a first clagsces Like the energy
containers it is based on the concept of resource contaifibes resource containers,
however, are not based on energy, instead they are baseduwreatcymodel to ac-
count the energy consumption of an activity. The term cueseis a combination of
the terms current and currency.

In contrast to assigning an amount of energy to an energyatuartt the currentcy
model assigns a number of currentcy units to a resource ioentaA currentcy unit
corresponds to a defined amount of energy which a resourc®sit must consume
within a pre-defined time limit. If a thread does not consuithefdts currentcy units,
it can accumulate them. Nevertheless, the ECOSystematsstine accumulation to
avoid high peaks of power consumptions in the future. Thizr@gch is similar to
our non-strict power limit and non-strict energy limit eggrpolicy, but instead of
accumulating the energy per thread, we will accumulaterirpe-queue if we permit
energy transfers.

If a thread runs out of currentcy before the kernel refreshesesource container,
the kernel will stop the thread’s execution and will enteloa Ipower state. Thus,
an accurate and fair energy partitioning is impossible iikéhe case of the energy
containers. They divide the time into energy-epochs as ér each energy-epoch,
a kernel thread distributes the total currentcy among teeuree containers according
to the shares of the resource containers. By defining thé d¢ateentcy which the
system can distribute per energy-epoch, the system’s gegrawer consumption can
be regulated.

The main difference between the ECOSystem and the concepeody containers
is the handling of threads having power consumptions beapower limit. ECOSys-
tem permits to accumulate the non-consumed currentcy,ealkehe energy containers
extend the timeslices of these threads.

Because the ECOSystem merely limits the amount of currexitdyenergy, respec-
tively, which a thread can accumulate, but not all threadetfter can accumulate, it
cannot prevent that threads raise a processor’s tempeiiore a threshold. This can
happen if threads consume their accumulated energy tagethshort period of time.

Chapter 7

Conclusion

At first, we outline in this chapter our achievements. Aftards, we give a short
summary of our thesis, and point out possible directionsitafré work.

7.1 Achievements

In this thesis, we have proposed a generic design to enhaneeaj purpose schedulers
to become fair energy-aware schedulers. These schedalefaidy partition the sys-
tem’s energy as well as preserve a pre-defined power limith Baread preserves the
power limit individually, to preclude drawbacks for othéreads caused by its power
consumption. In contrast to the former works in the field of &nergy partition-
ing [6,47], we consider the energy consumed during a thsgadbttling, to assure that
a thread does not consume more energy as permitted in a péitioge. This permits
data centers to base their accounting not only on the timeoafgssor control, but also
on the caused energy consumption. The main contributiohisfwork is the design
of a fair energy transfer to exhaust a processor’s powet bixrér the period of several
threads’ quanta. It allows threads having power consumstiyond the power limit
to benefit from threads having power consumptions belowithit, lwhile assuring a
fair energy partitioning. We have achieved that our enenggre schedulers can fairly
partition the transferred energy among the receiving ttse&cording to each thread’s
weight. Our energy policies applying the strict energy tiarie capable of favoring
energy efficient threads by extending their period of exeouin contrast to energy
inefficient threads. Thereby, it is unimportant whetherttimeads are CPU-bound or
I/O-bound. By throttling each thread individually and pétmg energy transfers, we
achieve a better performance than by throttling the coraplat-queue of a processor.

7.2 Summary

General purpose schedulers are only responsible for fatitioning the processor
control among the threads. They do not consider the resauiiczation caused by
a thread during its schedule, although the resource utdizacan also affect other
threads. For a fair partitioning of processor assignmesyt #fhould consider it.

We have proposed in this thesis a generic design to enhaheelders to take
a thread’s energy consumption into account for their sclirgldecisions to become

67

68 CHAPTER 7. CONCLUSION

fair energy-aware schedulers. These enhanced schedifler$onr different energy
policies. All four energy policies have in common that theyndimit a processor’s
power consumption in order to avoid exceeding a procespovier limit or raising its
temperature above a threshold.

Out of these four policies, two realize a fair energy pamiithg by executing a
thread until it has consumed its assigned energy. The twer qtblicies preempt a
thread at the latest after it has executed for the time ofiritedlice to increase the
system’s reactivity and to discard the remaining energigass to a thread.

Furthermore, two of our four proposed policies — one readjza fair energy par-
titioning and the other one not — request of each thread niise its average power
consumption beyond the pre-defined power limit, which grghito accumulate en-
ergy. The two remaining energy policies will permit thresaalgxceed the power limit
if other threads have average power consumptions belowirttie IThis permits to
transfer energy among threads for exhausting a procegsmwer limit. Due to the en-
ergy transfers, a scheduler does not preserve the powémohmai a thread’s quantum,
but over a hyper-period of several threads’ quanta. Theaomsumed energy cannot
only be consumed later on by the thread itself, but also bgratireads. Our per run-
gueue energy budget prevents that threads can cause am@xce®f a processor’s
temperature threshold. To assure that threads with the shamacteristics receive the
same amount of energy, the scheduler fairly partitions ffered energy before the
threads willing to receive the energy may receive it.

We have shown that the fairness of the individual energycpsidoes not depend
on a specific scheduler. To evaluate the fairness of therdiffeenergy policies, we
have executed two benchmarks in parallel, while one bendhhas an average power
consumption above the power limit and the other benchmaskamaaverage power
consumption beneath the power limit. If the energy polipiesnit the first benchmark
to benefit from the latter’'s power consumption, the two bematks will finish earlier
with their execution, because they exhaust the procegsower limit. Otherwise, the
processor’s average power consumption is below the praatefiower limit. More-
over, our evaluation has shown that an instance of a thredukvtimes the weight of
another instance, also receivesmes the amount of offered energy as requested by our
fair energy transfer. In summary, each scheduler can aelaiéair energy partitioning,
thereby it is unimportant whether a scheduler permits ohipits energy transfers.

7.3 Future Work

Although we have designed a per run-queue fair energy joaitig, we have evalu-
ated our design only on a uni-processor system to preclageesfects from the load
balancing mechanism. The side-effects of different migrestrategies of a load bal-
ancing mechanism should be considered in order to designtapmrcessor capable
fair energy-aware scheduler. Furthermore, more appriglgnamic thermal manage-
ment mechanisms like throttling should be considered fducang a thread’s power
consumption. Especially, quickly changing power consuomstcaused by throttling a
processor only for one timer tick should be avoided in ordagramly to be an energy-
aware scheduler for servers, but also for battery basedrmgstOur proposed throt-
tling mechanism is not applicable for battery based systémsause a non-constant
discharge rate reduces the capacity of a battery subdtaii#i4]. To increase the en-
ergy saving or to offer more energy to threads willing to reeé, a scheduler should
select each thread’s appropriate voltage and corresppfidgiquency [29, 30, 44]. The

7.3. FUTURE WORK 69

increased overhead caused by the voltage switches showddegptable for today’s
processors [19].

Although preserving the power limit per thread is adequatesf/stems without
client-server interactions, preserving the power limit pEsource [4] or energy con-
tainer [6] can be an advantage in client-server environmddata centers, in particu-
lar, can benefit from accounting the energy consumptionazhbg an activity, by per-

mitting energy transfers between different activities xbaust the pre-defined power
limit.

70

CHAPTER 7. CONCLUSION

Appendix A

Power Limit

A throttling mechanism assures that the average power ogpisoen of a thread and of
a processor is not raised above a pre-defined power limit. Ulléhed in our design,
a scheduler will strictly preserve the power limit if it fads energy transfers. Thus,
each thread has to preserve the power limit during its quanand threads having
power consumptions above the power limit cannot benefit fitmm@ads having power
consumptions beneath the limit. If we loose the requireroépireserving the power
limit over the period of a thread’s quantum, and it must beealyemet over a hyper-
period of several threads’ quanta, a scheduler can traeségy.

In the following two sections of this chapter, we discus&sand non-strict power
limits in detail. Besides, we present how a scheduler caardgtbe the amount of
offered energy for energy transfers, and outline how a adeedan assure that a thread
receives at most the amount of offered energy assigned to it.

In order to discuss the differences between these two pomés,) we distinguish
the following three courses of power consumptions in thesegbent sections of this
chapter:

1. Athread has continuously a power consumption below teeptmit.
2. Athread has continuously a power consumption beyonddheplimit.

3. Athread has partially a power consumption above the pbmér

A.1 Strict Power Limit

Case 1 Ascheduler should preserve the strict power limit over tgqul of a thread’s
guantum. It inherently strictly preserves the limit, besma thread has a power con-
sumption below the power limit.

Case 2 The power consumption would cause a constant violationeptiwer limit.
Thus, a scheduler must throttle a thread if the thread hasvarnmmnsumption beyond
the power limit, in order to meet the pre-defined power limhis throttling lasts until
the thread’s power consumption is below the allowed limitriBg a thread’s quantum,
a thread’s throttling and its execution can alternate sgvgnes. Hence, the average
power consumption of a thread should be — after its quantugual¢o the power limit.
The partially lower power consumption of the thread doesesutlt from its execution,
it is only caused by the throttling mechanism.

71

72 APPENDIX A. POWER LIMIT

Case 3 In distinction to a lower power consumption caused by thettling mech-
anism, a thread itself can cause its lower power consumptibhas only partially

a power consumption above the allowed power limit. Depemdin the course of
a thread’s power consumption, it is possible that the adeaupower consumption
never violates the power limit although it does happen, beea scheduler cannot ac-
count the power consumption constantly. In this case, theage power consumption
during a thread’s quantum is at most equal to the power liotiterwise a scheduler
must throttle a thread during the thread’s execution. Th&siges that a scheduler can
strictly preserve the power limit.

A.2 Non-Strict Power Limit

The major difference between the strict power limit and tba-strict power limit is
the permitted energy transfer in the latter case. Thergfeedoose the requirement to
preserve the power limit over a thread’s quantum, and wevathopreserve the power
limit over a hyper-period of several threads’ quanta. Dudaéomaximum capacity of a
run-queue’s energy budget (cf. Subsectioh.3, the hyper-period does not need to be
limited, additionally. To point out which thread can offarezgy for energy transfers
and how much energy a thread may receive of the offered engeggonsider the three
courses of power consumption previously outlined.

Case 1 Athread has continuously a power consumption below the pbmé. Con-
sequently, a thread has not consumed as much energy asdligwitbe power limit.
This non-consumed energy can a scheduler now partitiosr, affd transfer among alll
threads or only among a subset of threads of the run-queisedéfined as

Eoffered = (Plimit - Paverage) : tquantum (Al)

while Py is the pre-defined power consumption limit affgherage @ thread's ac-
counted average power consumption during its quantisum -

Case 2 This type of thread will have continuously a power consumptieyond the
power limit if a scheduler does not throttle it. The shareheffraction or the complete
fraction a thread receives of this offered enefjy,. may a thread only use for exceed-
ing the power limit during its quantum. After each timer tigkscheduler accounts a
thread’s energy consumptidty,; tick- The following equation will be true, if a sched-
uler does not throttle a thread of this type. It shows thaetiergy consumption caused
within the period .t tick between the last and the current timer tick is greater than th
allowed consumption due to the power limit:

Elast tick > Bimit - tast tick = Elimit tick (A.2)

A scheduler does not need to throttle a thread as long as itbacthas not consumed
the complete fraction of the offered enerB).,. assigned to it. Therefore, a scheduler
increases on each timer tick the amount of enefigy..iv., , a thread has received
during the previous — 1 timer ticks by the received ener@¥.s: tick — Elimit tick the
thread has received during it$ timer tick. A thread must not receive more energy
than offered to it E¢.ac), thereforeE cceive; Must be limited byEy,.., as outlined in
the next equation:

Ereceived,- = min{Ereceivedi,l + (Elast tick — Plimit tick)v Efrac} (A3)

A.2. NON-STRICT POWER LIMIT 73

After a thread has received its assigned fraction of offemeergy and may there-
fore exceed the power limit no longer, its power consumptiorst meet the power
limit. Its current power consumption is above the power tichie to the received en-
ergy which has permitted the thread to exceed the pre-defioedr limit. Depending
on the mechanism to account a thread’s power consumptieméthanism considers
a thread’'s power consumption caused during the energyférafs a thread’s cur-
rent power consumption. In this case, a scheduler wouldttarthe thread until the
thread’s power consumption would be beneath the power, liooit we do not desire
this. Only the power consumption should be considered td thegoower limit caused
after the energy transfer. Therefore, a scheduler musteadisat the previous power
consumption has no longer any impact on a thread’s accopatedr consumption.

If a thread has not completely consumed the amount of engggy before it loses
processor control, a scheduler can offer the non-consumerd e of a thread’s fraction
Etrac — Ereceivea t0 Other threads. Furthermore, if a thread’s power consiam|x be-
yond the permitted power limit due to performed energy tienss the thread’s received
energy must not cause the thread’s throttling later on.

Case 3 Asoutlined in regard to the strict power limit, the averagea/pr consumption
of a thread can be below the power limit, although a threadphatsally violated the
power limit. It would be a drawback for the further executiohsuch a thread if
we assume a thread’s current power consumption to be eqtia¢ tpermitted power
limit after its quantum. Consequently, we may only assuna¢ ¢hthread’'s power
consumption is equal to the power limit if it is a benefit fohaegiad.

A thread of this type partially exceeds the power limit, eerquationA.2) can be
true from time to time. Only if this equation is true, the psited power consumption
exceeds the power limit anB,cceivea < Efrac, @ thread may receive energy. If this
equation is true but a thread’s accounted power consumgties not exceed the power
limit, an energy transfer will be unnecessary.

Another difference between threads consuming steadilynty partially more
power than allowed is that the average power consumptidredétter allows an energy
transfer. This will be obvious for the case if a thread’s agerpower consumption is
below the power limit, in spite of performed energy transfddevertheless, it is even
mandatory if a thread’s average power consumption is abuygower limit, but it
had a partial power consumption beneath the power limit ds @é&erwise, the non-
consumed energy caused by a thread’s power consumptiow betdimit would not
be offered to other threads for exhausting the processoweplimit. Instead, the per-
formed energy transfers decrease the amount of offeredendext, we outline how
we can assure that a thread'’s received enéfgy.;.. does not reduce the amount of
energy it can offer to other threads.

In order to account that a thread can receive energy as welfexenergy, because
it has partially a power consumption below the limit, we memtsider a thread’s re-
ceived energy..c.ive if we offer a thread’s non-consumed energy. This received en
ergy does not only have to be considered for the case of aag&@ower consumption
beyond the limit but also beneath, because the received\ehas raised the average
power consumption of both.

After a thread has executed for its quanttffl.cum, @ scheduler can transfer the
following energyFgereq t0 Other threads:

Eoffcrcd = (]Dlimit - Pavcragc) : tquantum + Ercccivcd (A4)

74 APPENDIX A. POWER LIMIT

In contrast to the preceding definition 8fg...q in (A.1), we have considered the re-
ceived energy. In the case of threads continuously congutess power than allowed
during their execution, their received enerfly.c.iveq iS zero. Therefore, the more
general equationX.4) applies to them.

To point out why the latter equation is necessary, we havagdtthread’'s'hs
course of its power consumption in comparison to the presexamples. The thread
still has an average power consumption%f, but at first it receives a share of thread
Thy's offered energy. In Figuré.1 we have applied equatioA(1) and in FigureA.2
we have deployed the last equation. We outline in the firsingta that threadl'h;
receives energy, but does not offer this received energynagais causes that thread
Thy is throttled more often in comparison to the latter examplieich considers the
received energy.

A Offered Energy
Received Energy
2L @ Non-Offered Energy
31L/18 —
3L2 —
43 —
L
L2 —
e —f M
| I ¢

0

Figure A.1: Non-Strict Power Limit Without Considering Réged Energy

5T

P Offered Energy

Received Energy

11L/6 —

3L2 ——
4L/3 —

L 7—

L2 —

Th
L6 — !

0 T 2T 3T 4T 5T

Figure A.2: Non-Strict Power Limit With Considering ReoeiVEnergy

Appendix B

Run-Queue Energy Budget

We have proposed in Subsecti8rt.2a design to partition the offered energy fairly
among threads. To partition the offered enefgy...a Only among threads eligible
to be scheduled and willing to receive the energy, we haveictsl the number of
receiving threads tohreads,cccive @S Outlined in Subsubsecti@®¥.2.1 If we do not
adjust the number of receiving threads, a scheduler willitiar the offered energy
among alln threads of a run-queue. Therefore, even if the offered grisrsufficient
to fulfill each thread’s request to receive the amount ofreffeenergy to achieve its
best performance, a scheduler cannot fulfill the requests #ife first run, because it
partitions the energy among all threads of a run-queue. &pmently, the receiving
threads have only consumed a fraction of the offered endtgyarun, the remaining
offered energy of a run offers a scheduler during the nextVWmwill prove at next that
at the latest aften? runs —n is the number of threads of a run-queue — a scheduler can
fulfill each thread’s request if the offered energy is suditito fulfill their requests.

Theorem If a scheduler fairly partitions the offered energy, asioetl in Subsec-
tion 3.4.2 and the offered energy is sufficient to fulfill each threadiguest to receive
the amount of offered energy to achieve its best performamaeheduler can fulfill
each thread’s request at the latest afféruns.

Proof We assume without loss of generality (w.l.0.g.) that thealdisTh; to Thy
offer energy and the threads; to Th,, receive the offered energy. The offered
energy is sufficient to fulfill the receiving threads reqgedsio assure that a scheduler
has not to offer more energy as later on received by the réiggdhreads, we assume
that the offered energy; up to E}, of the firstk threads is equal to the requested
energyFy.1 up to £, of the lastn — k threads:

Eoﬂered = El ++Ek = Ek+1 ++En (Bl)

k threads offering energy n—k threads receiving energy

After the first run, the threadBhy_; to Th,, have consume®.,,sumeda, €NErgy Of
the offered energy. A scheduler partitions the energy anatingthreads, but not only

75

76 APPENDIX B. RUN-QUEUE ENERGY BUDGET

among the: — k threads requesting the energy, therefore it is not possilitéfill each
thread’s request.

Eoffered 2 IIllIl {Eu
k+1<i<n

= Econsumed1 (BZ)

In order to prove the correctness of our theorem, we havestindiish between
the two borderline cases:

Eof'fcrcd
—k
et})

1. (n — k — 1) requests can be fulfilled, but one request cannot be fulfilled

2. (n — k) requests cannot be fulfilled.

These two borderline cases are important, because thesewdlal the worst case num-
ber of runs required to fulfill each thread’s request.

Case 1l W.l.o.g. we assume that a scheduler can fulfill the requédteedhreads
Thyy1 up to Th,,_;. Only thread’sTh,, request cannot be fulfilled by a scheduler.
Additionally, we assume that only thredth,, requires energy. This can happen if
the threadsl'hy,, up to Th,_; have power consumptions equal to the power limit
and neither offer nor receive energy. Therefore, this prinievaluate the worst case
number of runs until a scheduler can fulfill each thread’sies;

Ek+1 == En—l = 07 En = Lioffered (BS)

Runl ThreadTh,, has consumed after the first run oy, ,sumed, Of the offered
energy.

B3 FEoftered
(:>) Econsumcdl - O;re (B4)

Run2 The energyFofrered — Feconsumed; Which the thread has not received after
the first run, offers a scheduler additionally to the offeesrbrgy designated for the
second rurF, gereq to the thread.

2E0ffered - Econsumed

1 1

2Eoffered — Econsumed1 > min {El, }
k4+1>i>n n
(TL - k) = Econsumedg (B5)

Although threadTh,, is the only thread receiving energy, it has not receivedeits r
guested energy,,. Instead, it has only consumed the following energy in tfreosd
run:

2Eloffered - Econsumedl
n

(B.3)
= Econsumedg =

2Lzloﬂcered - Eof;’:red
a n
_ 2E0ﬁered _ Eoffered
B n n?

2

_ Z(2) Eoﬂgred (_1)(1'4,_1)
, 2 n'

1=1

2
—14+n
= Eoﬁered - Eoffered (n > (BG)

77

Runn? After n(n—1) runs, thread'h,, has already receiveE;i’;_l) Econsume,
energy of thew(n—1) E,gerea amount of offered energy. In rui?, threadTh,, receives
the energyF onsume, » -

Y

min {E;, %}(n —k)

2
n Eoffered - Econsumedl - = Econsumen(n_l) krl<i<
<i<n

«

- Econsumeng (87)

If we assume that the thredth,, has still not consumed its requested enefgy,

Econsumenz IS'

2

n 2
B3 B Z n '\ Eoftered (i+1)
= Econsumedng = o < i) 7,”}, (71)
= 1 y
—14n
Eoffered - Eoffered (n) (88)

After n? runs, a scheduler can fulfill the thread’s request of rengieinergyr,,.

-1 n
lim <Eoffcrcd - Eoffcrcd < i n)) = Eof‘fcrcd = En (Bg)
n

n—oo

Consequently, also a scheduler can fulfill the thread’sestyuof the subsequent runs.

Case 2 A scheduler cannot fulfill the requests of the thredts, ., up to Th,,.
W.l.o.g. we assume that each of these thréBidsrequires the same amount of energy.
This permits to evaluate the worst case number of runs ustihaduler can fulfill each
thread’s request:

Eoﬂered

Bjyr = - = B, = —2

(B.10)
Runl After the first run, the receiving threads have receivedtto®& ..., sumed,
energy of the offered energy.

Eoﬁered
n

(B:%O) Econsumed1 = (n - k) (Bll)

Run2 The energyFEostered — Feonsumed, Which the threads have not received
after the first run, offers a scheduler in addition to theraffeenergy designated for the
second rurE,gereq t0 the threads.

2Ejoffered - Econsumed
. 1
2Eoffered - Econsumedl 2 k—&-IFZHZ'lZn{Ei? n }

(n - k) = Econsumeds (B.12)

78 APPENDIX B. RUN-QUEUE ENERGY BUDGET

The receiving threads have not received their requeste[g)erﬁ% in this run,
therefore they have only consumed the following energy:

2Eoffered - Econsume1 (n _ k)

(B.10)
= Econsume2

n

2E0ffered Eoffered 2
= T(n—k)— 2 (n—k)

2 7
- Z(2)Eﬁmd(ﬁ_k}(_l)(iﬂ)

1 nt
=1
k 2

= Foffered — Foftered (n> (813)

Runn After n — 1 runs, the thread$hy, to Th,, have already received the energy
Z;.:ll FEconsume, Of the amount of offered energy. —1) Eggerea. INrunn, they receive
the energ)Econsumen .

Y

min {E;, %}(n —k)

nEoffered - Econsumed1 - Econsumen,l :
k+1<i<n

«

= Econsume” (814)

If we assume that the thread®;; to Th,, have still not consumed their requested
energyXetiered, Eoncume, 1St

(B.10) _ - n Eofrerea (n - k)l 1\ (i+1)
= Econsumen - ‘§_1< i)nz(1)
E\™
= FEogered — Foffered E (815)

After n runs, a scheduler can fulfill each thread’s request to redbir energyE;’Lff_—C;;d.

k n n
lim (Eoffered - Eoffered <> > - Eoffered - Z Ez (816)
n

n— oo
i=k+1

Thus, a scheduler can fulfill the subsequent requests ofiteadsI'hy ; to Th,, after
n runs.

In summary, our proposed energy transfer assures that didehean fulfill at the
latest aftem? runs each thread’s request to receive the thread’s reqeiredyy if the
offered energy is sufficient to fulfill each thread’s request

Bibliography

[1]

(2]

3]

[4]

(5]

[6]

[7]

(8]

9]

[10]

[11]

Advanced Micro DevicesAMDG64 Architecture Programmer’s Manual. Volume
2. System Programming.14 edition, September 29 2007.

Amazon elastic compute cloudht t p: / / www. amazon. com gp/ br owse.
ht M ?node=201590011, July 04 2008.

K. Banerjee, Sheng-Chih Lin, A. Keshavarzi, S. Narendnad V. De. A self-

consistent junction temperature estimation methodologyn&nometer scale ics
with implications for performance and thermal managemefiectron Devices

Meeting, 2003. IEDM ’03 Technical Digest. IEEE Internatbnpages 36.7.1—
36.7.4, Dec. 2003.

Gaurav Banga, Peter Druschel, and Jeffrey C. Mogul. Resocontainers: a new
facility for resource management in server systemsO8DI '99: Proceedings
of the third symposium on Operating systems design and imgpiation pages

45-58, Berkeley, CA, USA, 1999. USENIX Association.

Frank Bellosa. The benefits of event-driven energy anting in power-sensitive
systems. IrProceedings of the 9th ACM SIGOPS European WorksKolaling,
Denmark, September 17-20 2000.

Frank Bellosa, Andreas Weissel, Martin Waitz, and Sirkefiner. Event-driven
energy accounting for dynamic thermal managemerRraceedings of the Work-
shop on Compilers and Operating Systems for Low Power (CG8)PNew Or-
leans, LA, September 27 2003.

Daniel Pierre Bovet and Marco Cesatinderstanding the Linux KerngD'Reilly,
3. ed. edition, 2006.

D. Brooks and M. Martonosi. Dynamic thermal management [igh-
performance microprocessondigh-Performance Computer Architecture, 2001.
HPCA. The Seventh International Symposiumpamges 171-182, 2001.

Completely fair scheduler. http://kerneltrap.org/ node/ 8059,
April 18 2007.

P. Dadvar and K. Skadron. Potential thermal securgiggiSemiconductor Ther-
mal Measurement and Management Symposium, 2005 IEEE Triesttnnual
IEEE, pages 229-234, March 2005.

D.J. Deleganes. A high performance, low power pentiuatessorCircuits and
Systems, 1995., Proceedings., Proceedings of the 38thadidBymposium on
2:1127-1130 vol.2, Aug 1995.

79

http://www.amazon.com/gp/browse.html?node=201590011
http://www.amazon.com/gp/browse.html?node=201590011
http://kerneltrap.org/node/8059

80 BIBLIOGRAPHY

[12] James Donald and Margaret Martonosi. Techniques fdticote thermal man-
agement: Classification and new explorati@GARCH Comput. Archit. News
34(2):78-88, 2006.

[13] Krisztian Flautner and Trevor Mudge. Vertigo: automatic perforoeasetting
for linux. SIGOPS Oper. Syst. Re86(Sl1):105-116, 2002.

[14] Mohamed Gomaa, Michael D. Powell, and T. N. Vijaykumdtleat-and-run:
leveraging smt and cmp to manage power density through teetipg system.
In ASPLOS-XI: Proceedings of the 11th international confeeson Architectural
support for programming languages and operating syst@ages 260—-270, New
York, NY, USA, 2004. ACM Press.

[15] Kinshuk Govil, Edwin Chan, and Hal Wasserman. Compaédtgorithm for dy-
namic speed-setting of a low-power cpu. MtobiCom '95: Proceedings of the
1st annual international conference on Mobile computing aetworking pages
13-25, New York, NY, USA, 1995. ACM.

[16] Pawan Goyal, Xingang Guo, and Harrick M. Vin. A hieraa cpu scheduler
for multimedia operating systems. pages 491-505, 2001.

[17] Wei Huang, Mircea R. Stan, Kevin Skadron, Karthik Samakarayanan,
Shougata Ghosh, and Sivakumar Velusam. Compact thermaglimgdfor
temperature-aware design. DAC '04: Proceedings of the 41st annual confer-
ence on Design automatippages 878—-883, New York, NY, USA, 2004. ACM.

[18] Intel CorporationIntel® 64 and IA-32 Architectures Software Developer’s Man-
ual. Volume 3B. System Programming Guide, ParEdbruary 2008.

[19] Intel Corporation. Intel® Core"'2 Duo Processor and Int8l Core" Extreme
Processor on 45-nm Process for Platform Based on Mobild ®1@65 Express
Chipset FamilyJanuary 2008. Data Sheet.

[20] Simon Kellner. Event-driven temperatur control in cgtéeng systems. Study the-
sis, Operating System Group, University of Erlangen, GegmnApril 30 2003.

[21] A. Kumar, Li Shang, Li-Shiuan Peh, and N.K. Jha. Systewal dynamic thermal
management for high-performance microprocessGsnputer-Aided Design of
Integrated Circuits and Systems, IEEE Transactions231(1):96—108, Jan. 2008.

[22] Kyeong-Jae Lee and Kevin Skadron. Using performanaeiess for runtime
temperature sensing in high-performance processorsPD®PS '05: Proceed-
ings of the 19th IEEE International Parallel and Distribdt®rocessing Sympo-
sium (IPDPS’05) - Workshop 1page 232.1, Washington, DC, USA, 2005. IEEE
Computer Society.

[23] Huan Liu and Dan Orban. Gridbatch: Cloud computing fangk-scale data-
intensive batch applications. CGRID, pages 295-305. IEEE Computer Soci-
ety, 2008.

[24] Thomas L. Martin.Balancing batteries, power, and performance: system ssue
in cpu speed-setting for mobile computin@hD thesis, Pittsburgh, PA, USA,
1999. Adviser-Daniel P. Siewiorek.

BIBLIOGRAPHY 81

[25] Andreas Merkel. Balancing power consumption in mutiessor systems.
Diploma thesis, System Architecture Group, University @frlsruhe, Germany,
September 30 2005.

[26] Ingo Molnar. Completely fair scheduler patcht t p: / / peopl e. r edhat .
com m ngo/ cf s- schedul er/ sched- cfs-v2.6.22. 15-v24. 1.
pat ch, January 14 2008.

[27] Netperf benchmarkht t p: / / ww. net per f. or g/, July 14 2008.

[28] C.D. Patel, R. Sharma, C.E. Bash, and A. Beitelmal. marconsiderations
in cooling large scale high compute density data cent€h&rmal and Thermo-
mechanical Phenomena in Electronic Systems, 2002. ITHEBRM. Z'he Eighth
Intersociety Conference ppages 767—776, 2002.

[29] C. Poellabauer, L. Singleton, and K. Schwan. Feedlmded dynamic volt-
age and frequency scaling for memory-bound real-time agifitins. Real Time
and Embedded Technology and Applications Symposium, RIS 2005. 11th
IEEE, pages 234-243, March 2005.

[30] Anand Raghunathan, Niraj K. Jha, and Suijit Didigh-Level Power Analysis and
Optimization Kluwer Academic Publishers, Norwell, MA, USA, 1998.

[31] Ravishankar Rao and Sarma Vrudhula. Performance apfamocessor throt-
tling under thermal constraints. IBASES '07: Proceedings of the 2007 in-
ternational conference on Compilers, architecture, andtlsgsis for embedded
systemgspages 257-266, New York, NY, USA, 2007. ACM.

[32] E. Rohou and M. Smith. Dynamically managing processongderature and
power. In2nd Workshop on FeedbackDirected Optimizatidov 1999.

[33] A.Shah, V. Carey, C. Bash, and C. Patel. Impact of chipgralissipation on ther-
modynamic performanceSemiconductor Thermal Measurement and Manage-
ment Symposium, 2005 IEEE Twenty First Annual IEg&ges 99-108, March
2005.

[34] K. Shin and T. Kim. Leakage power minimisation in aritbtic circuits. Elec-
tronics Letters40(7):415-417, April 2004.

[35] Spec cpu2006ntt p: / / www. spec. or g/ cpu2006/ , July 14 2008.

[36] Inc. Sun Microsystems. On-demand computing using agtwom. White paper,
Santa Clara, CA, USA, August 2007.

[37] Andrew S. TanenbaumModern operating systemsPrentice Hall PTR, Upper
Saddle River, NJ, USA, second edition, 2001.

[38] V. Tiwari, D. Singh, S. Rajgopal, G. Mehta, R. Patel, ahdBaez. Reducing
power in high-performance microprocessorBesign Automation Conference,
1998. Proceedingpages 732—737, Jun 1998.

[39] Lisa A. Torrey, Joyce Coleman, and Barton P. Miller. Angmarison of inter-
activity in the linux 2.6 scheduler and an mifg schedul8oftw. Pract. Exper.
37(4):347-364, 2007.

http://people.redhat.com/mingo/cfs-scheduler/sched-cfs-v2.6.22.15-v24.1.patch
http://people.redhat.com/mingo/cfs-scheduler/sched-cfs-v2.6.22.15-v24.1.patch
http://people.redhat.com/mingo/cfs-scheduler/sched-cfs-v2.6.22.15-v24.1.patch
http://www.netperf.org/
http://www.spec.org/cpu2006/

82 BIBLIOGRAPHY

[40] Martin Waitz. Accounting and control of power consufoptin energy-aware
operating systems. Diploma thesis, Operating System Gridojversity of Er-
langen, Germany, January 31 2003.

[41] C. A. Waldspurger and E. Weihl. W. Stride scheduling: tédministic
proportional- share resource management. Technical tePambridge, MA,
USA, 1995.

[42] Carl A. Waldspurger and William E. Weihl. Lottery schdithg: flexible
proportional-share resource managementO8DI '94: Proceedings of the 1st
USENIX conference on Operating Systems Design and Imptatioem page 1,
Berkeley, CA, USA, 1994. USENIX Association.

[43] Mark Weiser, Brent Welch, Alan Demers, and Scott Shenk&cheduling for
reduced cpu energy. 1@SDI '94: Proceedings of the 1st USENIX conference
on Operating Systems Design and Implementati@ge 2, Berkeley, CA, USA,
1994. USENIX Association.

[44] Andreas Weissel and Frank Bellosa. Process cruisealomvent-driven clock
scaling for dynamic power managementdASES '02: Proceedings of the 2002
international conference on Compilers, architecture, agdthesis for embedded
systemspages 238-246, New York, NY, USA, 2002. ACM.

[45] Andreas Weissel and Frank Bellosa. Dynamic thermal agament for dis-
tributed systems. IfProceedings of the First Workshop on Temperatur-Aware
Computer Systems (TACS'08)unich, Germany, June 2004.

[46] Jun Wu and Tei-Wei Kuo. Real-time scheduling of cpu-ewand i/o-bound
processesReal-Time Computing Systems and Applications, 1999. RT&EA
Sixth International Conference ppages 303—-310, 1999.

[47] Heng Zeng, Carla S. Ellis, Alvin R. Lebeck, and Amin Valhd Ecosystem:
managing energy as a first class operating system resous¢&PLAN Not.
37(10):123-132, 2002.

	Contents
	Introduction
	Problem Analysis & Solving
	Structure

	Background
	Terminology
	Scheduling Policies
	Round Robin
	Multilevel Feedback Queue
	Start-time Fair Queuing
	Lottery Scheduling
	Stride Scheduling
	O(1) Linux Scheduler
	Completely Fair Scheduler

	Energy Accounting
	Temperature Estimation
	Dynamic Thermal Management

	Design
	Problem Description & Analysis
	Energy & Power Limit
	Energy Limit
	Power Limit

	Energy Policies
	Strict Power & Non-Strict Energy Limit
	Strict Power & Strict Energy Limit
	Non-Strict Power & Non-Strict Energy Limit
	Non-Strict Power & Strict Energy Limit

	Run-Queue Energy Budget
	Naïve Solution
	Proposed Solution
	Receiving Threads
	Handling Preemptions

	Maximum Capacity of the Run-Queue Energy Budget

	Controlling a Thread's Energy Limit

	Implementation
	Power Limit
	Energy Profile
	Updating a Thread's Energy Profile
	Handling Preemptions
	Energy Transfer

	Counting Throttled Threads
	Sysfs Interface
	Energy Policy
	Maximum Capacity of a Run-Queue's Energy Budget
	Energy Transfer

	Changing the Energy Policy
	Scheduler Specific Adaptions
	O(1) Linux Scheduler
	Completely Fair Scheduler

	Evaluation
	Evaluation Environment
	Evaluation Setup
	Scheduler Performance
	Energy Policies
	Scheduler Comparison
	Comparison of Energy Policies

	Proportional Share Schedulers
	Interactive Tasks
	Netperf Throughput
	Benchmark Runtime

	Evaluation of Energy Transfer

	Related Work
	Energy Containers
	ECOSystem

	Conclusion
	Achievements
	Summary
	Future Work

	Power Limit
	Strict Power Limit
	Non-Strict Power Limit

	Run-Queue Energy Budget
	Bibliography

