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Abstract

The L4 microkernel interface defines a dedicated system call to control thread scheduling param-
eters: Schedule. The current version of Schedule takes just one thread argument, which
implies that only one thread can be modified per invocation. However, many applications (e.g.
virtual machines or time-sharing systems) internally group threads together and manage them
accordingly. Whenever large sets of threads (i.e. their scheduling parameters) must be manip-
ulated, the necessary information cannot be passed to the kernel at once. This thesis proposes
modifications to L4’s scheduling interface, which allows a user-level scheduler to have the kernel
set scheduling parameters for multiple threads at a single blow.

In multiprocessor systems, manipulation of threads that reside on a CPU other than the sched-
uler thread’s (especially Processor migration, which is the most complex scheduling task) is
performed by an in-kernel mechanism. In the current version of Pistachio, the mechanism is
only designed for single threads (which is all it needs to do, because the interface can only
deliver a single thread ID to the kernel level). The altered interface also makes it possible to in-
troduce a new mechanism that is optimised to perform ,,batch scheduling” and therefore induces
less overhead.

The implementations of the proposed designs for the interface and the mechanism will be
evaluated using a microbenchmark that sets certain scheduling parameters for a growing set of
destination threads.
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1 Introduction

As research has shown [1], hypervisors (or virtual machine monitors) [2] and microkernels –
although having different design motivations – possess a significant affinity, which is the reason
why microkernel systems can be easily adopted/used to cater virtualisation tasks.

L4Ka::Pistachio is a second generation microkernel that is developed at the University of
Karlsruhe and implements the L4 X.2 API [3]. This API defines a minimalistic set of abstrac-
tions that cover the underlying hardware resources of a common computer system [4]. Due to
its minimality, which directly derives from the microkernel design paradigm, Pistachio is also
used for many applications that differ from its original purpose: to be utilised as a foundation
for a traditional multi-server operating system [5, 6]. Today, it is mainly used as a hypervisor
which multiplexes the system resources to a set of guest (operating-)systems [7, 8]. A number
of popular operating systems have already been adapted to run on top of L4. Examples in-
clude L4Linux [9] and L4/Darwin [10], which are paravirtualised [11], and more recent Linux-
Kernels (as of writing the newest one is Version 2.6.9), which are pre-virtualised [7].

In order to efficiently fulfill its job, the virtualisation architecture usually makes heavy use of
L4 Threads. Examples are virtual CPUs which can be mapped to kernel level threads by an in-
place VMM [7, Section 2.1] or a guest system which completely relies on the thread mechanisms
and the scheduling of L4. Especially when Pistachio is used to host many virtual environments
(as it is the case for server consolidation), there are many sets of threads that it has to manage –
one set for each virtual environment. To perform management tasks (i.e. migration, swapping or
the manipulation of priority levels and compute time) for these sets, all threads of a set must be
manipulated in the same way. If these manipulations occur frequently, high efficiency is crucial.
(An example is a server consolidation scenario where the migration of whole guest operating
systems among the CPUs in an SMP system is performed according to a certain load balancing
policy.)

1.1 The Problem with Single Thread Scheduling

With today’s implementations of the L4 X.2 API, the only way to set the scheduling parameters
(to perform the management tasks mentioned above) for a set of destination threads is to iterate
over its elements in user mode and invoke the Schedule system call for every single thread.
Switches to kernel mode, however, are very time-consuming on many hardware architectures.
This is particularly true for the processors of the IA32 family, on which this thesis focuses. Even
by using its optimised SYSENTER and SYSEXIT commands, which bypass many processor
internal operations (that support legacy software), L4::Pistachio takes 150 to 200 cycles to en-
ter/exit kernel mode on the Intel Pentium 4 processors [12]. As this is too much overhead to
achieve proper scalability, our thesis presents a different solution.

1



1 Introduction

1.2 Approach: Batch Scheduling

All necessary information that is needed to schedule a whole set of threads is already available in
user space when the Schedule system call is going to be made. Nevertheless, this information
cannot be passed to the kernel at once because of the current L4 ABI/APIs shortcomings.

The main objective of the thesis is to define a generalization of the Schedule call that takes
a set of threads as destination parameter and therefore carries out the batch processing in kernel
mode. This reduces the kernel entry overhead for many threads to a single enter/exit at best. We
will present modifications for the L4 binary interface (ABI) and the L4 programming interface
(API) that enable “batch scheduling” for the kernel. Source-level compatibility with the current
interface and the ability to implement the altered user-level interface on top of an unmodified
kernel are desireable for an evaluation that utilises existing applications.

The main problem is how the parameters are passed to the kernel: In L4, all parameters for
a system call are generally loaded into the processor’s general purpose registers before the pro-
cessor is switched into kernel mode. These registers, however, are rare on certain architectures.
Therefore, as it is already the case for IPC calls, a static per-thread memory object that is always
mapped to physical memory is utilised to emulate an adequate number of registers.

Thread migration, one of the scheduling operations, is performed by an in-kernel mechanism.
Because of L4’s current shortcomings, it is only designed to migrate single threads (in Pistachio)
and must therefore be invoked for every thread in the set. To tap the full potential of the altered
interface (which makes all necessary information that is required to process a set of threads
available at once), we will propose a new mechanism: Instead of triggering the remote CPU for
every cross-processor (XCPU) scheduling operation, scheduling requests are accumulated in a
mailbox that is assigned to the remote CPU. This CPU is finally triggered when all scheduling
requests have been submitted.

The implementations of the design proposals (interface and mechanism) will be evaluated
using a microbenchmark that sets certain scheduling parameters for a growing set of destination
(schedulee) threads.

1.3 Related work

To our best knowledge, there is no documentation of similar approaches yet.

1.4 Outline

The remainder of this thesis is structured as follows: Chapter 2 gives the necessary background
information on how system calls and thread scheduling are defined in L4 and implemented by
Pistachio. Afterwards, the modifications that we propose for the L4 X.2 ABI/API in order to
support ,,batch scheduling” are presented in chapter 3. Chapter 4 describes certain implementa-
tion issues and analyses the effects. Chapter 5 gives a conclusion and suggests future work.
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2 On L4 and Pistachio

This section presents details about L4 (the microkernel specification) and the internals of the
L4Ka::Piatachio kernel that are required to understand the design proposal and implementation
descriptions of the following chapters. The architecture dependent explanations always refer to
IA32.

2.1 Interfaces

L4 specifies three interface levels:

• The Convenience Programming Interface (CPI) presents the highest level of abstrac-
tion that L4 specifies. It consists of several specialised wrapper functions and constant
values that are meant to increase readability and maintainability for the programmer (thus
increasing convenience) and is intended to be used by the programmer.

• The Generic Programming Interface (GPI) maps the kernels binary interface to the
particular programming language. It only defines the essential counterparts of the function
calls and data types that are required to interact with the kernel. Therefore, L4 requires
the GPI to be fully implemented; the CPI is optional.

• The Application Binary Interface (ABI) defines the lowest level of interaction between
microkernel and user code. While the other interfaces are platform independent, the ABI
defines how the GPI is mapped to the specific hardware instructions of the target architec-
ture.

2.2 User Data Objects

L4 defines data objects that are visible to user code, which uses them to invoke system calls
(among other things).

2.2.1 Kernel Interface Page

The Kernel Interface Page (KIP) is a memory page that is always mapped into every address
space. It is maintained by the kernel and cannot be modified by user code. Besides providing
information about the kernel and the underlying hardware, it also contains stub code blocks
for the system calls. With the exception of some constraints like alignment or kernel memory
segments, the address of the KIP can freely be chosen for any new address space. Therefore,
there exists an architecture dependent mechanism, which determines this address for the user
code.

3



2 On L4 and Pistachio

2.2.2 User Level Thread Control Block

In L4, the data that is associated with a thread divides into two parts: User accessible and kernel-
only data. All TCB elements that do not influence threads in another protection domain (address
space) on modification are stored in a data object in user memory and can also be modified by
user code. This is done to increase performance, as it saves kernel mode switches to set and
retrieve thread properties (like the thread ID). Because the UTCB is also read and written by the
kernel, it must be located at an address that is known by the kernel. Therefore, the second L4
specific object in every address space is the so-called UTCB area which is an array of UTCBs.
As it is the case for the KIP, the UTCB area’s address (and size) is specified at address space
creation, and the UTCB area is also guaranteed to be mapped into the address space at all times.

2.2.3 Virtual Registers

A virtual register (VR) is a static per-thread object that is implemented by the kernel. Depending
on the underlying architecture, it is either mapped to a hardware register or to a memory location,
for which it is guaranteed that no pagefault is triggered on access. Due to IA32s shortage of
general purpose registers, the L4 IA32-ABI maps nearly all VRs to memory locations in the
UTCB.

2.3 System Calls

2.3.1 Control Flow

L4 System calls are performed by calling a system call address in the KIP. The offsets (relative
to the KIP’s base address) for the system call entry points are also obtained from this data object
(In practice, obtaining the proper start address for the intended system call is encapsulated in
a library that provides the Generic Programming Interface – see Section 3.2). At every entry
point, there is a code stub which either assists the corresponding kernel code to reduce compute
time in kernel mode (Pistachio’s Schedule system call, for example, accepts a parameter in
two different formats, but the kernel function does not, so this parameter is transformed by the
stub) or even performs the whole operation without a mode switch (as it is the case for Pista-
chio’s ExchangeRegisters, Lipc, or SystemClock). If there is a kernel mode entry, the
according instruction (IA32: SYSENTER for Ipc, INT otherwise) is also located in the stub.
Pistachio only uses one software interrupt number for system calls; control is dispatched to the
appropriate function according to the user instruction pointer that was saved to the kernel stack.

2.3.2 Parameters

The parameters and return values for L4 system calls are normally transferred through the pro-
cessor’s general purpose registers. On IA32, the register bank is automatically saved to the
threads kernel stack when a software interrupt occurs. This ”exception frame object” is later
used to call the system call function with the proper parameters; if the function has return val-
ues, they are also stored there. Errors are reported to the user code by returning a system call

4



2 On L4 and Pistachio

dependent error value. Details on the error cause are stored in a dedicated variable in the user
threads UTCB.

Although the general purpose registers are sufficient for almost every system call, this is not
always the case. Especially Ipc needs up to 64 words to store a message – not counting the
other parameters. This is the reason why the UTCB contains a set of virtual registers, called
the Message Registers (MRs). The Ipc operation transfers the MR’s contents of the sender
thread to the receiver thread’s MRs. Although this was the MR’s original purpose, they are now
also used to pass parameters for the Unmap and the MemoryControl system call, making the
name ”Message Registers” somewhat obsolete.

2.4 Scheduling

2.4.1 Overview

L4 Threads are scheduled to the system’s CPUs according to a fixed in-kernel scheduling policy.
(An in-kernel policy is contradictory to the design goals of minimality and flexibility that were
set for L4, and the approach was only taken for performance reasons. As a consequence, the
scheduler was designed to offer high flexibility. An approach to finally remove the last in-kernel
policy has been presented by Stoess et.al. [13].) The decisions that are made by Pistachio’s
scheduler are influenced by a set of per-thread parameters (e.g. timeslice control, the threads
priority or the CPU on which the thread is running in an SMP system). These parameters can be
modified by a dedicated ”scheduler thread” (or any other thread residing in the same protection
domain) that is assigned to each thread upon its creation.

The scheduler defines 256 priority levels for the threads. These priorities are hard: A thread is
never scheduled to the CPU when another thread with a higher priority level on the same CPU is
ready to run as well. Threads with the same priority level are scheduled in round robin fashion.

The CPU’s idle thread is the only thread which resides on the lowest priority; it is scheduled
when a running thread blocks or runs out of compute time. When activated, it calls the CPU’s
scheduler object to find the next runnable thread. If there is no such thread on the CPU, the
idle thread temporarily halts the CPU. The amount of compute time that is assigned to a thread
is manipulated through a time-control parameter. This parameter defines the total quantum and
the timeslice length. When a thread is running (or has donated its compute time to another
thread), its so-called current quantum is decreased. Upon quantum exhaustion, the thread is
preempted, another thread is selected to run, and the current quantum is reset to the timeslice
length. The total quantum is also decreased whenever the thread is running, but in contrast to
the total quantum, a message is sent to the scheduler thread whenever it is exhausted. It is up to
the scheduler thread to fit its schedulee with a new total quantum to make it ready to run again.
As it is very common to provide threads with a timeslice that lasts forever, the total quantum is
set to infinity in most cases.

5



2 On L4 and Pistachio

Figure 2.1: Conceptual View of the Pistachio Scheduler

2.4.2 System Call Signature

Word Schedule( ThreadId dest,
Word TimeControl,
Word ProcessorControl,
Word Prio,
Word PreemptionControl,
Word* old_TimeControl )

2.4.3 Pistachio Thread Migration

In SMP systems, Pistachio uses a message passing system for cross processor communication.
It guarantees mutual exclusion on per-CPU data objects. Whenever a CPU must alter another
CPU’s data, it sends a message to the other CPU which invokes the according operation locally.

One static mailbox object per CPU is held in memory. These mailboxes are basically ring
buffers that contain message entries of a fixed size (aligned to the underlying architectures cache
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2 On L4 and Pistachio

lines). The message consists of a function address and up to eight parameters. A message
transfer is performed by adding a new message to the receiving CPU’s mailbox and triggering
it by invoking an inter processor interrupt (IPI). The mailbox of the receiving CPU is processed
on every IPI and on every timer interrupt by calling the function pointers with the corresponding
parameters.

Whenever Schedule is called with a valid processor_control parameter, a migration
function is called on the destination thread’s TCB. The function basically unchains the TCB
from the local processor’s ready queue and sets its CPU field to the destination CPU’s ID. If
the thread is not blocked, it must be added to the destination CPU’s ready queue by sending a
message to the destination CPU.

7



3 Interface Design

In this chapter, we present the proposed modifications to the L4 ABI/API to provide a new
Schedule system call that accepts a set of thread IDs (instead of just one) as destination
for its operation. Our goal is to achieve as much source-level compatibility (because most of
the software which is developed for L4 is distributed as source – binary compatibility is not
necessary yet) with existing program code as possible. It should also be possible to implement
the proposed interface for an unmodified kernel so that different applications can be evaluated
easily.

This design proposal will be explained following a top-down scheme. The design of the
convenience programming interface (CPI) is followed first by the generic programming interface
(GPI) and then by the application binary interface (ABI) for IA-32.

3.1 Convenience Programming Interface

Status Quo

At present, the CPI only defines four functions that are derived from the Schedule system call,
which is part of the GPI. The CPI receives the necessary scheduling parameters, the destination
thread’s ID and a pointer to the memory location where an output value is to be written. Because
these are only very few word-typed parameters, there is no necessity for a generic Schedule
function in the CPI, which hides non-trivial parameter-passing.

Analysis

A generic Schedule function which hides low-level kernel- and hardware details must be
defined. This function is the new foundation for the specialised CPI functions. There are several
design parameters that must be taken into consideration:

• Parameter Passing: Thread IDs (like other data) can be passed to a library function in
different ways. Committal via the stack (as function parameters) is very intuitive for the
programmer, but not all programming languages offer infinite parameter lists. Therefore,
it is not an option, as the L4 specification is designed with language independence in mind.
A shared memory object (stored at a pre-defined location in memory that is checked by
the function code) is another solution, but it also has major drawbacks: The user code
(e.g. the L4 library) must provide one object per thread, and the user must be careful not
to overwrite the object. We therefore chose a third solution: The user passes a reference
to a data object as a parameter to the function. This data object represents a set of threads
and is composed by the user; such a practice is also very flexible because the user is able
to use the same format for thread group management and pass it to the function as-is.

8



3 Interface Design

• Data Object: We have chosen the simplest form, which is an array of thread IDs. There
are two ways for the function to determine the array size: Either the number of TIDs is
passed as an extra parameter (or can be found in the data object itself at a fixed position)
or the array is terminated by a special data sequence (i.e. a character string is normally
terminated by 0). We have chosen the first alternative for consistency reasons – it is
already widely used by other function calls, like Unmap.

• Return Values: Two result words are returned for each thread schedule operation. The
simplest solution is to let the user provide a memory address where the variables can be
saved. We decided to use two separate arrays (instead of one array that contains composed
objects) with two pointers that are passed to the function. This enables the user to express
disinterest in the return values (by passing a pre-defined invalid address). If return values
are not required, optimisations are possible.

• Error Handling: The scheduling operation can fail for every thread. This is no problem
for a one-thread schedule, but the semantics of the generic Schedule function must be
refined. What happens if the scheduling operation fails for one thread? The operation can
be aborted, and all previous threads are guaranteed to be in their original state (transaction
semantics). Although this behavior is very convenient for the programmer, it cannot be
implemented if the kernel only accepts a finite number of threads (like the unmodified
kernel, for which the new function should also be implemented). The function’s perfor-
mance is also decreased. An alternative is that the function schedules all threads, and the
user is notified of a failure by the per-thread result values. We chose not to implement
this version, as L4 specifies that error details are transmitted through a single TCR, which
implies that this can only be done for one thread. The third alternative is to change the
semantics of the parameter that specifies the array size from “in” to “in/out”. This enables
the function to proceed until the first error, where the operation is aborted. The output
value of the num parameter specifies the array index of the faulting thread’s ID; then, the
user can handle the error situation and proceed with the scheduling, if necessary.

Proposed Design

As in the case of Unmap, we introduce a function that hides the parameter passing to the kernel.
Figure 3.1 illustrates how all specialised functions that are part of the CPI are now derived from
this new generic ScheduleN function instead from the GPI function. The function itself can be
implemented upon both GPIs. To retain the source level compatibility, all specialised functions
are also defined for single threads. If it is supported by the programming language, the function
names are overloaded accordingly (this is indicated by the (C++) sign). Overloading also enables
full source level compatibility, as the original GPI Schedule function can then be emulated.

9



3 Interface Design

Figure 3.1: Proposed function hierarchy

The following function is intended to be used by the programmer to set all scheduling param-
eters for a set of destination threads 1:

Word ScheduleN( ThreadId* dest,
Word* n,
Word TimeControl,
Word ProcessorControl,
Word Prio,
Word PreemptionControl,
Word* result,
Word* old_TimeControl )

In order to support the manipulation of a set of threads, the function must receive a pointer to a
data object which represents it. This data structure is an array of L4 thread IDs. When the func-
tion is called, the threads that correspond to the first n thread IDs in the array are manipulated
according to the other input parameters.

The function returns an aggregated result value (which had to be altered from the L4 X.2
version in order to support the aggregation) as described below. If per-thread return values
are required, the result and old_TimeControl parameters must be set to pointers. The
vectors of result- and timeControl-values are then saved to the specified memory locations. Both

1For a complete reference of the new scheduling CPI see Appendix A
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3 Interface Design

parameters must be set to ScheduleNoDetails otherwise.

result: ∼ (24/56) c w s p r i d e

The cwspride bits, if set, indicate the occurrence of at least one thread whose operation
resulted as: e=Error, d=Dead, i=Inactive, r=Running, p=Pending send, s=Sending, w=Waiting
to receive, c=Receiving.

3.2 Generic Programming Interface

Status Quo

In the GPI, the Schedule system call takes the destination thread ID as a normal parameter
and stores it according to the target architectures ABI specification before calling the stub code.
Obviously, this technique is not applicable for a set of threads.

Analysis

• Parameter passing: A naive solution would be to make the Schedule system call
accept a pointer to the array of thread IDs instead of just one thread ID. This, however,
would contradict the design of L4: Pagefaults must not happen in kernel mode (the kernels
access to the array could cause a page fault as it is not guaranteed that the page which
contains the array is mapped). Therefore, we chose a different approach: The Message
Registers are used to pass the parameters to the kernel.

• Return values: The same drawbacks that apply to parameters also apply to return values.
To maintain consistency among the system calls, the proposed Schedule call also uses
the 64 MRs to return per-thread status values to the caller. In contrast to Unmap and
MemoryControl, though, there are two return values - not just one. Our approach
to this problem is the constraint that the return values are only available for the first 32
threads. This means that only blocks of at most 32 thread IDs per schedule call must be
passed to the kernel if all return values are of importance.

Proposed Design

All functions that are part of the convenience programming interface are derived from the fol-
lowing function:

Word Schedule( Word* n,
Word TimeControl,
Word ProcessorControl,
Word Prio,
Word PreemptionControl )

11



3 Interface Design

Instead of passing an array of thread IDs to the function, the destination IDs must be loaded
into the message registers. The parameter n now specifies that the thread IDs from MR 0 to
MR n are supposed to be manipulated. This now implies 0 < n ≤ 63 (in contrast to the CPI
where the parameter n can have any value). The call has to be repeated if there are still threads
left that are to be manipulated.
Schedule delivers two result words for each of the first 32 threads. They are also saved in

the message registers and can be accessed in the following form:

old TimeControl (32/64) MR 2i+1

result (32/64) MR 2i

The values correspond to the ith thread where 0 < i ≤ 31 while the return values for
32 < i ≤ 63 are omitted.

3.3 IA32 Binary Interface

As described in section 2.3, the parameters that are passed to the GPI function must be loaded
into general purpose registers (hence, they are not loaded into the message registers). The regis-
ter assignment was also kept in consistency with the other system calls. Notable is the fact that a
pointer to the current thread’s UTCB must be loaded into the EDX register. This is done to save
the kernel the effort of determining the UTCB address.

− Schedule→

call Schedule

n EAX EAX n
prio ECX ECX result

time control EDX EDX ∼
MR 0 ESI ESI MR 0

UTCB EDI EDI ≡
processor control EBX EBX ∼

preemption control EBP EBP ∼
– ESP ESP ≡

12



4 Evaluation

4.1 Implementation

This section contains a description of the user- and kernel-level modifications that we performed
on Pistachio.

4.1.1 User Level

This section describes the glue between the CPI that was presented in section 3.1 and the GPI
from section 3.2. The glue is basically the implementation of the CPI’s ScheduleN func-
tion, because all other CPI functions are derived from it. This function does not change the
semantics of the underlying Schedule system call, which is defined in the GPI, but it hides
kernel-specific details from the user: Thread IDs must be loaded into a finite number of mes-
sage registers. Because the number of MRs is finite and the array of thread IDs that is passed
to the CPI function is almost1 infinite, the GPI function must eventually be called repeatedly
with blocks of thread IDs. The size of these blocks depends on whether the user is interested
in the return values result and old_TimeControl that are generated by the operation
for each thread. There are two paths in the implementation. The values of the result and
old_TimeControl parameters that are passed to the CPI function determine which path is
taken:

• The so-called generic path is executed when the parameters contain pointers to memory
locations where the arrays containing the return values are to be saved. Because the kernel
only returns these values for the first 32 threads, the implementation only passes a maxi-
mum of 32 threadIDs to the kernel at once in order to receive the values for each thread,
making it possible that they are written to the result arrays.

• By setting the memory addresses to ScheduleNoDetails, the user expresses disinter-
est in the return values. Then the fast path can be executed; in this path, a maximum of
64 threadIDs can be passed to the kernel at once. The return values are ignored.

The changes that we made to the GPI and the ABI are straightforward and can easily be
derived from the related specifications in the sections 3.2 and 3.3.

4.1.2 Kernel Level

We have adapted the internal support functions and macros (KIP stub code, in/out parameter
handling) that cater the system call function. The function itself was changed to perform “batch
scheduling”. We will also present the design of an optimised XCPU scheduling mechanism.

1It is only restricted by the address space and the range of the parameter n
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4 Evaluation

Generic

Three loops have been introduced:

1. The first loop retrieves the TCB pointers from the thread IDs and checks for error condi-
tions. In case of error, the loop is aborted, and the upper bound of the following loops is
set to the last sane thread item. This means that all following items, including the erro-
neous one, are not processed. After the invocation, the MRs do not need to be read again
and are therefore free to be used to store the return values.

2. The actual processing happens in the second loop. According to the parameters, the proper
functions for scheduling and migration are called on each TCB.

3. The third loop processes at most the first 32 threads, as it saves the return tuples (result,
old TimeControl) to the MRs.

Optimised

Pistachio’s current XCPU-mechanism is a bottleneck, as it can only deliver single messages,
and therefore an IPI must be triggered for each remote scheduling operation (e.g. migration of a
ready thread). An alternative design of the in-kernel mechanism can address this issue. We have
introduced a static per-CPU mailbox object which stores scheduling requests. If a remote CPU
must alter a CPU’s scheduling data structures (e.g. the ready queues), the according message is
appended to the CPU’s mailbox. The only remaining XCPU-message is a trigger message that
is sent to the destination CPU once all pending scheduling requests are saved. (Therefore, the
overall number of XCPU messages is reduced significantly.)

Figure 4.1: Ring Buffer of the Scheduling Mailbox

The scheduling mailbox itself is constructed as a ring buffer. Whenever a remote CPU sends a
scheduling request to the mailbox, it marks the first free entry as ,,acquired” and increments the
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4 Evaluation

write pointer. (The atomicity of this operation is secured by a spinlock. Acquiring and writing
is split up to minimise the amount of time in which the lock is held by a CPU.) When the data is
written to the entry, the remote CPU marks it as ,,valid”. As soon as all scheduling requests are
posted, the destination CPU it triggered. It then starts processing the scheduling requests (and
incrementing the read pointer / resetting the entries to ,,free”) until the first non-,,valid” entry is
reached.

4.2 Microbenchmark

To illustrate the effect of the improved system call, we have implemented a special benchmark.
It is a user program that creates one scheduler thread and a number N of schedulee threads.
The schedulees run in an infinite loop on a lower priority level than the scheduler (in order to
prevent corrupted measurements caused by scheduler preemption). By using the kernel-specific
implementation of the new CPI, the scheduler then applies new scheduling parameters to the
schedulees. The elapsed time is also measured by the scheduler using the Pentium4’s RDTSC
instruction. All time values below indicate the number of elapsed cycles from the invocation of
the CPI function to the return. However, this does not necessarily imply that the operation has
been completed on all CPUs, as SMP scheduling operations (like thread migration or chang-
ing the scheduling parameters of a thread that resides on a different processor) are performed
asynchronously.

The test runs were ranging from n = 2 threads to n = 100 threads (with a step size of two
threads). The test operation (without return values) was performed 100 times for each n, and the
listed/plotted time is the mean value. For each test series, the test runs with the modified kernels
(“Batch Scheduling ABI” and “Optimised”) are benchmarked against the unmodified kernel.

We used a Pentium 4 2.4 GHz with HyperThreading and 1024 MiB of RAM as a test machine.
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4 Evaluation

We have evaluated three different test configurations:

1. The first configuration sets the prio parameter for threads on the local CPU. prio repre-
sents all parameters except processor_control. These parameters are more or less
directly written to the schedulee’s TCB and do not need a complex logic to be applied (at
least when the destination thread resides on the same CPU as the scheduler). Plain TCB
manipulation is fast; therefore, it does not require a large amount of compute time com-
pared to the kernel entry/exit overhead. The test series basically indicates the potential of
the ABI. Figure 4.2 shows the results.

2. The second test series also sets the prio parameter, but the destination threads reside on
a remote CPU. This means that Pistachio needs to use the XCPU mechanism to modify
the destination TCBs. The results are illustrated by figure 4.3.

3. The processor_control parameter, which is set in the third test series, performs a
thread migration. This is a more complex task. Figure 4.4 compares the unmodified kernel
with the new ABI and the optimised implementation that was explained above.

4.3 Analysis

As it is illustrated by figure 4.2, the performance of the pure system call mechanism (without
expensive migration) lies between 40% (for small N) and 80% (for N ≥ 40). However, this
performance gain is relativised if the processing in the kernel is time-consuming – in our case,
profiling has shown that especially pistachios XCPU mechanism is a bottleneck. The effect
can be observed in figure 4.3 and in figure 4.4. The performance gain for a kernel with the new
“Batch Scheduling ABI” alone is only around 70% for the thread migration scenario. For priority
changes, the gain is even overcompensated. At the time of writing, we have no explanation
for this behavior. However, the optimisation from section 4.1.2, which drastically saves XCPU
messages, reveals that pistachios XCPU messaging system has a dramatical performance impact.
With only very few messages per batch schedule, any operation is nearly as fast as a local priority
change. The result is a performance increase of up to 95% for migration operations.

16



4 Evaluation

Figure 4.2: Priority Manipulation Costs (Local CPU)
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4 Evaluation

Figure 4.3: Priority Manipulation Costs (Remote CPU)
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4 Evaluation

Figure 4.4: Processor Migration Costs
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5 Conclusion

Up to now, management of large L4 thread sets – as they appear with applications like virtual
machines – is connected with a large overhead because the L4 interface only allows the schedul-
ing parameters to be modified for one thread at a time (which implies that a kernel mode switch
must be performed for every thread).

In this thesis, we have developed and presented a modification to the Schedule system call
and the derived parts of the L4 microkernel specification. The proposed function receives an
array of L4 thread IDs (which represents a thread set) as destination parameter for the scheduling
operation. The corresponding library implementation invokes the system call via a modified
kernel binary interface.

This new interface made it possible to alter Pistachio’s in-kernel mechanisms for thread ma-
nipulation in SMP systems in order to perform ,,batch scheduling” – i.e. to reduce communica-
tion and synchronisation overhead by processing a set of destination threads.

We have evaluated the proposed design for the interface and the mechanism using a mi-
crobenchmark which performs certain thread manipulations on a growing set of destination
threads.

5.1 Lessons Learned

,,Batch scheduling” – if done right – brings a huge performance boost for the management
of large thread sets. Although the performance gain that is caused by the saved kernel mode
switches is remarkable (40% - 80%), the full potential is only unchained when the extra infor-
mation that is given to the kernel is used for further optimisations inside the kernel (up to 95%
performance gain).

5.2 Future Work

5.2.1 Practical evaluation

Although the microbenchmark reveals the promising potential of “Batch Scheduling”, the con-
cept has not been tested in a practical environment yet. To investigate the effects, the concept
should be employed in a real virtual machine environment. Load balancing of many virtual
machines is an option.

5.2.2 Alternative interface design

The interface that was proposed in chapter 3 is just one possible generalisation of the Schedule
system call. It is based on the assumption that the application requires the same scheduling
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5 Conclusion

parameters for all destination threads. Given a finite number of parameter words that can be
passed to the kernel – i.e. (virtual) registers – this is a tradeoff for speed (more threads can be
manipulated per system call) against flexibility (the same scheduling parameters are applied to
all threads in the set). An alternative approach is to simply multiply Schedule’s parameter
tuples; it then becomes possible to freely manipulate a number of threads (which is smaller,
though). This design decision is highly application specific and must be evaluated accordingly.

5.2.3 Virtual Register Bank

The Message Registers were originally intended to only serve the Ipc system call, but they are
already “misused” by two other system calls besides the proposed Schedule system call. This
is highly unintentional and can result in nasty bugs, as the programmer is unaware that a CPI call
(i.e. Unmap) will corrupt a message which was previously loaded into the MRs for a pending
IPC operation. We therefore propose a new, more general term: the Virtual Register Bank. The
API documentation should also give information about which CPI functions alter these virtual
registers.

5.2.4 XCPU Mailbox Overflow

Although the modification described in Section 4.1.2 relieved the XCPU bottleneck, there is
still demand for optimisation. The problem of an overflowing XCPU mailbox has not yet been
addressed in Pistachio – resulting in a kernel panic in many situations. We were only able to
run the benchmarks because we implemented busy waiting (while processing the own mailbox
to avoid deadlocks) for the case that the destination mailbox is full, and we argue that this
circumstance has a considerable performance impact.

Although the problem was exposed by the application of batch scheduling, there are also
situations in which the original Pistachio kernel can be crashed. An example is a large number
of XCPU IPC - i.e. pagefault messages that can be caused by a large amount of threads being
scheduled on a different processor than their pager.
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A Convenience Programming Interface
Extensions

#include <l4/schedule.h>

Word* ScheduleNoDetails

Word Schedule (ThreadId *dest, Word *n, Word TimeControl, Word ProcessorControl,
Word Prio, Word PreemptionControl, Word * result = ScheduleNoDetails, Word * old TimeControl
= ScheduleNoDetails) [ScheduleN]

Generic Implementation - Refer to section 3.1.

Word SetPriority (ThreadId *tid, Word *n, Word Prio, Word *res) [SetPriorityN]
{ return ScheduleN( tid, n, -1, -1, Prio, -1, res) }

Word SetProcessorNo (ThreadId *tid, Word *n, Word p, Word *res) [SetProcessorNoN]
{ return ScheduleN( tid, n, -1, p, -1, -1, res ) }

Word SetTimeslice (ThreadId *tid, Word *n, Time ts, Time tq, Word *res) [SetTimesliceN]
{ return ScheduleN( tid, n, ts ∗ 216 + tq, -1, -1, -1, res ) }

Word SetPreemptionDelay (ThreadId *tid, Word *n, Word sensitivePrio, Word maxDelay,
Word * res) [SetPreemptionDelayN]

{ return ScheduleN( tid, n, -1, -1, -1, sensitivePrio ∗ 216 + maxDelay,
res ) }
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