
Universität Karlsruhe (TH)
Fakultät für Informatik
System Architecture Group

Fabian Knittel

Study Thesis

Scalable Source Routing
in the AmbiComp
Environment

Tutors: Johannes Eickhold, Pengfei Di
and Björn Saballus

Registration date: October 30, 2008
Submission date: April 30, 2009

Contents

1 Introduction 3

2 The AmbiComp platform 5
2.1 Hardware . 5
2.2 Software . 6
2.3 Build environment . 7
2.4 Integration of the SSR protocol . 7

2.4.1 Interaction . 7
2.4.2 Environment . 9

3 Introduction to ssr-core 11
3.1 Important components . 11

3.1.1 The node . 11
3.1.2 Routing . 11
3.1.3 Timers . 13
3.1.4 Messages . 14

3.2 State machine . 14

4 Changes to ssr-core 17
4.1 Avoiding heap memory and the STL 17

4.1.1 SSR messages . 18
4.1.2 SSR payload messages . 18
4.1.3 SSR timer events . 19
4.1.4 NIC addresses . 20
4.1.5 Interface table . 20
4.1.6 Routing table . 21
4.1.7 Neighbour table . 21
4.1.8 Source paths . 21
4.1.9 Maximum node . 22

4.2 Reducing and choosing table sizes 22
4.2.1 Interface table . 23
4.2.2 Source paths . 23
4.2.3 Routing table . 23

4.3 Exceptions . 25
4.3.1 Errno value . 25
4.3.2 Exceptions from constructors 25

4.4 Run-Time Type Identification . 26
4.5 Removing inlining . 26

i

ii CONTENTS

4.6 Code renovation . 27

5 The new ssr-core library 29
5.1 Code configuration . 29

5.1.1 Abstract cNode class . 29
5.1.2 Compile-time options . 30

5.2 State machine . 31
5.2.1 State SSRConstr . 32
5.2.2 State SSRIsoMax . 32
5.2.3 State SSRMax . 32
5.2.4 State SSR . 33
5.2.5 State SSRShutd . 34
5.2.6 State SSRDestr . 34

5.3 Class diagrams . 34
5.3.1 cNode . 34
5.3.2 cRouteCache . 35
5.3.3 BitFieldArray . 35
5.3.4 Events . 36
5.3.5 cAddr . 36
5.3.6 Interfaces . 37
5.3.7 NeighborTable . 38
5.3.8 MaxNodeAnnounceStore . 38
5.3.9 NicAddr . 39
5.3.10 Paths . 39
5.3.11 Messages . 40
5.3.12 cNodeEnumeration . 42
5.3.13 cStaticPool . 42

6 Evaluation 43
6.1 Unit tests . 43
6.2 Automated simulation tests . 44
6.3 Running on the AVR platform . 45

7 Conclusion and future work 47
7.1 Conclusion . 47
7.2 Safety in the wild . 47

7.2.1 Errors in constructors . 47
7.2.2 Length limitation on source paths 48
7.2.3 Limited number of physical neighbours 48
7.2.4 Table sizes need reality check 48

7.3 Integration with the AmbiComp environment 48
7.3.1 Link-layers . 48
7.3.2 ACVM . 49

A Source tree and build environment 51
A.1 Files and directories . 51
A.2 Build targets . 54

List of Figures

2.1 Ambient Intelligence Control Unit (AICU) consisting of several sand-
wich modules. 5

2.2 Overview of the AmbiComp software stack. 6
2.3 SSR in the AmbiComp software stack. 7
2.4 Interactions with SSR. 8

3.1 A virtual ring of node addresses [Fuh05, fig. 1]. 11
3.2 An example source path. 12
3.3 An example routing table. 13
3.4 Simplified state machine, documenting the states of an SSR node. . . 14

5.1 Users of the ssr-core library need to sub-class the abstract Node class. 29
5.2 State machine, documenting the states of an SSR node. 31
5.3 Class hierarchy of class cNode. 34
5.4 Class hierarchy of class cRouteCache. 35
5.5 Class hierarchy of class cBitFieldArray. 36
5.6 Event class hierarchy. 36
5.7 Class hierarchy of class cAddr. 37
5.8 Interfaces class hierarchy. 37
5.9 Class hierarchy of class cNeighborTable. 38
5.10 Class hierarchy of class cMaxNodeAnnounceStore. 38
5.11 Class hierarchy of class cNicAddr. 39
5.12 Path class hierarchy. 40
5.13 Message class hierarchy. 41
5.14 Class hierarchy of class cNodeEnumeration. 42
5.15 Class hierarchy of template class cStaticPool. 42

6.1 Message passing within the OMNeT++ simulation framework. 44
6.2 SSR test application in the partial AmbiComp software stack. 45

iii

iv LIST OF FIGURES

List of Tables

4.1 Shows which timer events were embedded in which class. 19
4.2 Structure of a single entry in the routing table before space optimisation. 24
4.3 Structure of a single entry in the routing table after space optimisation. 25
4.4 Code and data sizes of ssr-core in bytes – before and after removing

excessive inlining. 27

5.1 Reflexive edges on the SSR state. 30
5.2 Abbreviations used within the state machine. 32
5.3 Reflexive edges on the SSRIsoMax state. 33
5.4 Reflexive edges on the SSRMax state. 33
5.5 Reflexive edges on the SSR state. 34

v

vi LIST OF TABLES

Statement of authorship

I hereby certify that this study thesis has been composed by myself, and describes
my own work, unless otherwise acknowledged in the text. All references and verba-
tim extracts have been quoted, and all sources of information have been specifically
acknowledged.

Karlsruhe, April 30, 2009

1

2 LIST OF TABLES

Chapter 1

Introduction

The AmbiComp project [EFS+08] envisages thousands of small, self-organised, em-
bedded devices, all scattered through-out a building or even a whole neighbourhood.
The devices only provide very limited amounts of RAM and CPU processing power.
The project’s vision is to let the devices communicate transparently with each other,
forming a potentially large distributed system.

The project assumes some kind of underlying networking protocol, but does not
yet provide or specify one. At the time of writing, the project uses direct network- or
link-layer access without the envisaged transparency, automatic routing or scalability
features.

The main focus of the project is to help software engineers to cope with the above
scenario, by providing a development environment that allows easy development and
deployment of applications. In addition to the development environment, a matching
software and hardware stack is provided. One of the main building blocks of the soft-
ware stack is the Ambient Computing Virtual Machine (ACVM), a highly optimised
runtime environment for transcoded Java bytecode.

The Scalable Source Routing (SSR) protocol [FDKC06] is a routing protocol de-
signed for message and memory efficient routing in large unstructured networks. It
provides routing based on virtual addresses (key based routing). The virtual addresses
form a ring and allow the routing of messages with only small amounts of routing state,
making SSR very scalable. In contrast to other protocols (e.g. Chord [SMK+01]), the
SSR protocol provides these features without depending on a separate network layer,
which greatly improves the protocols efficiency.

In summary, the SSR protocol was designed for environments which closely match
the environments assumed by the AmbiComp project. An integration of the protocol
implementation into the AmbiComp’s software stack would therefore provide a key
building block to complete the network transparency aspects of the AmbiComp project.

This study thesis aims at taking a first step towards this integration. It focuses on
the following topics:

• Analysis of the restrictions imposed by AmbiComp’s software stack.

• Analysis of the old SSR protocol implementation, regarding its code quality,
extensibility and portability.

• Preparation of the implementation’s code for future integration with the Ambi-
Comp stack.

3

4 CHAPTER 1. INTRODUCTION

• Porting the protocol implementation to AmbiComp’s hardware platform.

• Documentation of the new SSR protocol implementation and its design deci-
sions.

The paper is structured as follows: Chapter 2 provides an overview of the hard-
ware and software stack of the AmbiComp project. In addition, it briefly discusses
how the SSR protocol fits into the software stack and which aspects of this integra-
tion are within the scope of this work and which are not. Chapter 3 introduces the
SSR protocol implementation ssr-core. It concentrates on a high-level view, presenting
the larger concepts which remain unaffected by the changes introduced by the thesis.
Based on these introductory chapters, chapter 4 identifies problems with the existing
SSR implementation and discusses solutions to these problems. In chapter 5, the new,
refactored SSR protocol implementation is detailed and explained. The new implemen-
tation is evaluated in chapter 6, based on automatic testing and a test implementation
for the target environment. Finally, chapter 7 describes unresolved issues within the
new implementation and other future work.

Chapter 2

The AmbiComp platform

This chapter provides an overview of the AmbiComp project’s hardware and software
stack and the specific limitations imposed by them. In addition, it explains where
and how the Scalable Source Routing should be integrated into the software stack and
which aspects of that integration are within the scope of this work and which are not.

2.1 Hardware
The AmbiComp project developed the concept of an AICU (Ambient Intelligence Con-
trol Unit) [EFS+08, p. 1]. AICUs can serve as flexible building-blocks and therefore
ease the development of products which intend to make use of the features promoted
by the AmbiComp project.

One AICU consists of one or more sandwich modules (SMs). The SMs are con-
nected via a backplane. There are different types of SMs, each with distinct capabili-
ties, such as network connectivity, generic I/O interfacing or acting as the power supply
for the AICU. Figure 2.1 shows an example configuration.

Figure 2.1: Ambient Intelligence Control Unit (AICU) consisting of several sandwich
modules.

For the purpose of this thesis, we only need to take note of the “intelligent SMs”,
meaning all SMs with a CPU. (In the above AICU example, all SMs apart from the
BPPSSM have a CPU.)

5

6 CHAPTER 2. THE AMBICOMP PLATFORM

The CPU used at the time of writing is the Atmel AVR ATmega2561 RISC processor
[EFS+08, p. 2]. It features clock speeds between 7.37 MHz and 16 MHz and 8 KiB of
internal SRAM. SMs have up to 512 KiB External SRAM. Persistent storage is provided
in the form of 256 KiB of flash memory.

All intelligent SMs run an instance of the AmbiComp software stack, specifically
configured for the purpose of the respective SM and the purpose of the AICU.

The AICUs described here are currently the only hardware available for the Am-
biComp project, so the capabilities and limitations present in the hardware described,
directly affect the integration of the SSR protocol stack.

The only alternative run-time environment is the development environment on
Linux, based on the Linux-BIOS and the Linux-ACVM. Please see the next section
for more details.

For more details on the hardware, please see [EFS+08, p. 3f].

2.2 Software
The software stack is divided into three layers (see figure 2.2).

Figure 2.2: Overview of the AmbiComp software stack.

The lowest layer of the software stack, the BIOS, provides basic hardware abstrac-
tion. It interfaces with the underlying hardware and hides most system specific issues
behind a common set of interfaces. It also contains the hardware specific parts of device
drivers.

The so-called OS layer solely consists of a collection of libraries providing network
stacks, e.g. TCP/IP or the various Bluetooth protocols. The network stacks can be
enabled or disabled, so for certain SMs, the OS layer may be completely empty.

The upper layer, the Ambient Computing Virtual Machine (ACVM), runs the actual
application code. It has no direct contact with the underlying hardware. Applications
are developed in Java and specially transcoded to reduce the size of the resulting byte
code.

For all layers apart from the ACVM, no regular heap memory is available.
The Linux-BIOS is a special BIOS variant. Instead of interfacing with real embed-

ded hardware, it emulates the BIOS API on a regular Linux system. Together with a
Linux-ACVM, this allows for convenient development and testing without AICUs.

2.3. BUILD ENVIRONMENT 7

2.3 Build environment
While the application developer solely produces Java code and interacts with Java inter-
faces, the underlying layers, especially the OS- and BIOS-layers are written in C code
(with a few seldom occurrences of assembly). For the AVR platform, they are com-
piled using the GNU C cross-compiler for Atmel AVR. As C library, the AVR Libc1 is
used, which provides a subset of the standard C library. (For the Linux development
platform, the regular GNU C compiler and GNU Libc is used.)

2.4 Integration of the SSR protocol
As the SSR protocol provides networking functionality, its obvious place is within the
OS layer, together with the other network stacks (compare figure 2.3). In this position,
it is directly accessible by the ACVM and at the same time, has access to other network
stacks for use as link layers.

Figure 2.3: SSR in the AmbiComp software stack.

2.4.1 Interaction
The necessary interactions with the SSR implementation can be roughly grouped into
four categories (see figure 2.4 for an overview).

Link layer

The SSR library expects to get passed-in packets which were received by the link-layer
via HandleFromNic(). Each link-layer packet signifies an SSR message.

The library expects to be able to send out packets via the link-layer to physical
neighbours via direct addressing (SendToNic()) or broadcasting (Broadcast()).

The network stacks present within the OS-layer present no common interface. I.e.
the library providing the capability to send packets out via an Ethernet interface is
quite different from the library providing the various Bluetooth protocols. Therefore, a

1See http://savannah.nongnu.org/projects/avr-libc/

http://savannah.nongnu.org/projects/avr-libc/

8 CHAPTER 2. THE AMBICOMP PLATFORM

Figure 2.4: Interactions with SSR.

simple adapter needs to be written per link layer, providing a way to send and receive
SSR packets via that layer.

SSR only provides a single entry point for sending and receiving link-layer packets.
So to support more than one link-layer at a time, a multiplexer/demultiplexer needs to
be created.

Neither the creation of a common interface, nor the creation of a multi-
plexer/demultiplexer for access to multiple link-layers is part of the work presented
here.

Application layer

To send messages, the application layer can pass down a block of payload data and an
SSR destination address (SendPayload()).

When the SSR library receives a message intended for the local node, it will pass
up the data to the application layer (SendUp()). It also informs the application layer
of messages that couldn’t be delivered (SendDroppedUp()).

For the AmbiComp software stack, the ACVM is the “application layer”. Either
a Java native interface needs to be built, to send messages to SSR nodes from within
Java applications. Or, alternatively, to support Globally Accessible Objects [SEF08]
or similar mechanisms providing transparent communication to Java applications, the
ACVM needs to make use of SSR directly.

Neither approach is within the scope of this paper.

2.4. INTEGRATION OF THE SSR PROTOCOL 9

Timer management

SSR expects to be able to register (CallMeLater()) and unregister
(CancelEvent()) timer events, allowing call-backs into the SSR code
(CallFromMaster()) to occur after a requested amount of time.

The BIOS provides only a single timer event. Therefore the more sophisticated
timer management expected by the SSR implementation needs to be provided else-
where. It can either be adapted from timers provided within the ACVM or by a newly
developed timer library called from within the ACVM’s event queue.

A simple timer library was developed in the course of this study thesis, which
allows to be driven by the single BIOS timer event. The final integration with the
ACVM remains as future work.

Life-cycle management

The SSR implementation needs to initially register a few timers and announce its pres-
ence to its physical neighbours via the link layer. This is done via the Init() call,
which should be called when all other layers within the OS layer have been initialised.

The GoingDown() call performs the opposite operation. It announces the shut-
down of the node to its physical neighbours and halts any running timers. Although
the SSR protocol has means to detect nodes which disappear silently, explicitly calling
GoingDown() should be preferred for efficiency reasons.

2.4.2 Environment
The SSR library instance needs to cope with the limitations presented by AmbiComp’s
hardware stack and build environment. Specifically

• the library’s code and static data need to fit into the flash memory,

• the run-time memory foot-print needs to fit into the internal or external RAM,

• the library needs to be compilable by the build environment currently used within
the AmbiComp project.

Analysing these limitations and preparing the SSR implementation to overcome
them, is the main focus of this study thesis.

10 CHAPTER 2. THE AMBICOMP PLATFORM

Chapter 3

Introduction to ssr-core

This chapter reveals the inner workings of the SSR black-box shown in the previous
chapter and introduces the main building blocks of the library.

The library implementing the SSR protocol is called ssr-core. It is written in C++
and was developed in parallel to the evolving specification of the SSR protocol.

3.1 Important components

3.1.1 The node
The main component within ssr-core is the abstract node class. One instance of the
node class represents a single SSR node. The node class provides all entry points and
hooks presented in chapter 2.4.1, i.e. it serves as the main entry point into the library.
The outgoing hooks are implemented as purely virtual methods. Users of the library
are expected to sub-class the node class and implement the purely virtual methods.

3.1.2 Routing
Each node has two types of addresses: virtual and physical addresses. A node has
exactly one virtual address, but potentially several physical addresses: one physical
address per available link-layer network interface.

Figure 3.1: A virtual ring of node addresses [Fuh05, fig. 1].

11

12 CHAPTER 3. INTRODUCTION TO SSR-CORE

Based on the virtual addresses, the nodes in an SSR network form a virtual ring
(figure 3.1). Each node has two virtual neighbours: a predecessor and a successor in
the ring.

The list of available physical neighbours (and their respective virtual and physical
addresses) is stored in the InterfaceStore class. It allows the routing of messages from
the local node to a node that is a direct physical neighbour.

Messages that need to be sent beyond the node’s physical neighbours potentially
need more work: If the message contains a source path in its header which has a valid
next hop, it is forwarded to that hop. For messages that originate from the local node
or who’s source path does not describe a valid next hop, the node’s local routing table
is used to determine a new path.

Figure 3.2: An example source path.

Source paths are a list of virtual addresses, which define the routing path of a mes-
sage. The path is initially created by the sending node, but it is potentially amended
or changed by nodes forwarding the message. Forwarding nodes also use source paths
from received messages to update their knowledge of active nodes and routes in the
network.

The forwarding nodes need no stored knowledge about valid routes to the mes-
sages’ destination node. In figure 3.2, the source route contains the hops A, B, C and F.
For the routing to work, only node A needs to know of the route initially. All forward-
ing nodes (B and C) can forward the message solely on the basis of the source route
(prepared by node A) and the knowledge of their direct physical neighbours.

The RouteCache class provides the routing table, which consists of a fixed-size list
of SSR node addresses and links between those addresses. The routing table forms a
tree of nodes with additional auxiliary links, representing the known routes between
nodes.

The routing table seen in figure 3.3 shows a possible routing table for node A.
Routing a message from node A to node F is performed by looking up the destination
node F in the table. In the example, the node F is located at table entry 5. Following
the uplink indices, the source route is created step-by-step in reverse order: Node F’s
uplink is entry 3, which is node C. Node C’s uplink is node B in entry 1. Finally, node
B’s uplink is the originating node. At that point the route is completed and just needs
to be reversed to serve as a source route for the message. The resulting source route
matches the one from figure 3.2.

The alternative parent uplinks shown in the routing table allow alternative routes to
be stored.

3.1. IMPORTANT COMPONENTS 13

Figure 3.3: An example routing table.

The routing table contains at least the routes to the node’s virtual predecessor and
successor. Assuming a correctly and fully formed virtual ring, a message can be routed
to its destination simply by passing it along the virtual ring. Solely using this approach
would lead to very inefficient routing.

By storing paths to additional nodes in the routing table, the average routing step
and path length is significantly reduced. In the optimal case, the stored paths should
lead to nodes with exponentially increasing virtual distance to the local node. This
allows for routing steps to be, on average, within O(log N), for a network consisting
of N nodes [Fuh05, p. 244].

In case the routing table does not contain a direct route to the intended destination,
the message is instead forwarded to the node with the virtually closest address and the
shortest hop count. These routing steps repeat until the intended destination is reached
or the closest virtual address determines, that the destination node does not exist.

3.1.3 Timers
The ssr-core library uses timers to cope with node churn within the network:

• The broadcast timer event (EventBroadcast) causes the node to regularly broad-
cast its existence to all physical neighbours.

• The interface1 timeout event (EventIfTimeout) exists once per physical neigh-
bour. The timer’s timeout is reset in the case of activity from the physical neigh-
bour. In case of a timeout, the physical neighbour is assumed to have vanished
(e.g. because it has lost power or because it has moved out of radio range) and is
removed from the InterfaceStore.

• The notification timer (EventNotification) causes the node’s virtual neighbours
to be contacted. This keeps the routing table up-to-date regarding the paths to

1The term “interface” currently stands for a single physical neighbour. Originally, there were more
interface types apart from the remaining point-to-point one and the “interface” term was more justified.

14 CHAPTER 3. INTRODUCTION TO SSR-CORE

the virtual neighbours. If the neighbour table feature is activated, the notification
message also includes a copy of the local neighbour table. This further improves
the robustness of SSR in case of node churn. (See 5.3.7 for further details on
neighbour tables.)

See section 5.3.4 for details on the timer events’ implementation.

3.1.4 Messages
All communication between SSR nodes takes place in the form of SSR messages. All
messages have a common header, which indicates the message’s type.

The MsgPayload message transports the actual data from the upper application
layer. All other message types are responsible for maintaining the SSR network, e.g.
by announcing new nodes, invalidating specific routes, etc.

See section 5.3.11 for details on the messages.

3.2 State machine
The simplified state machine in figure 3.4 shows the states in which an SSR node can
reside in. Additionally, it shows the state transitions. The transitions are caused by
the incoming function calls Init(), GoingDown(), CallFromMaster() and
HandleFromNic().

Figure 3.4: Simplified state machine, documenting the states of an SSR node.

The states implicitly result from the contents of the node’s routing table and inter-
face store. They are not explicitly modeled within the library.

On Init() an SSR node changes from state SSRConstr to state SSRIsoMax. At
this point, all timers have been set and the node has announced its existence to the direct
physical neighbours. It does not yet know of any neighbours and therefore remains
isolated. Additionally, due to its isolation, the node’s address is the highest known
address in the (empty) virtual ring.

3.2. STATE MACHINE 15

The the node’s shutdown is caused by calling GoingDown(), in which case the
state changes to the final state SSRShutd, regardless of the previous state. Any physical
neighbours are now informed about the node’s removal and all timers are disabled.

The events shown on the state diagram are timer events and are triggered by the
CallFromMaster() function, which is the call-back for timers that were previously
registered by ssr-core and have timed out. The only timer event relevant for state
changes is the interface timeout event.

The messages shown are SSR messages, received via HandleFromNic(). Any
SSR message routed through the SSR node can implicitly change the state of the SSR
node. This is due to updates to the routing table from source paths stored within the
SSR messages. The SSR messages explicitly changing the node’s state are MsgHello,
MsgKill, MsgRouteUpdate, MsgNeighborNotification and MsgMaxNodeAnnounce.

During regular operation, the SSR node is either in state SSRMax or in state SSR,
depending on whether it has the largest address in the virtual ring or not2. Interface
timeouts and Kill messages can lead back to the nodes isolation (SSRIsoMax) or it
could turn the node into the node with the largest address (SSRMax). The introduction
of new nodes might lead to a change from state SSRMax to state SSR, if one of the new
nodes has a higher virtual address.

Detailed information regarding the state machine is given in section 5.2.

2Specifically, it checks whether the node’s virtual successor has a lower virtual address than the local
node.

16 CHAPTER 3. INTRODUCTION TO SSR-CORE

Chapter 4

Changes to ssr-core

This chapter describes the changes applied to the ssr-core library in the course of the
study thesis. The changes can be roughly categorised into two groups: One group
of changes was made necessary by the fact that the library needed to be ported to a
new platform. The other group of changes had to do with general code maintenance.
The changes in the former group will be thoroughly documented in this chapter. The
changes in the latter group will be presented in far less detail, as they were mainly
implementation work without much academical value.

As described in chapter 2, the library needed to be ported to the AVR platform
and its build environment. Before this porting effort, the ssr-core library had been
integrated and tested with simulation frameworks like OMNet++ 1 and run on reg-
ular desktop PCs. In addition, for the Linyphi project [DEF08], the implementation
had been ported to small Linux-based routers running on MIPS processors [DEF08, p.
685]. Compared to the targeted AVR platform, both previous environments provided
relatively large amounts of RAM and had build environments without restrictions to the
available tool-set. To make the code-base usable within AmbiComp’s OS layer and on
the AVR platform, it needed changes regarding the used C++ feature-set, the memory
usage and memory management and its code size.

The following sections will analyse which aspects of the implementation needed
changes. They will then develop possible solutions for each aspect and finally present
the chosen solution.

4.1 Avoiding heap memory and the STL
The SSR protocol stack will reside within the OS layer of the ACVM. The OS and
BIOS layers don’t provide regular malloc() and free() functions. Instead, al-
locations on the stack, static allocations or specific memory assignments at link-time
have to be used. So the use of malloc() and free() needs to be removed and
dynamic memory allocations should be replaced or avoided as much as possible.

In the following sub-sections, central structures or repetitive patterns using dynamic
memory allocations will be analysed. Based on the analyses, approaches for replacing
the dynamic allocations with storage on the stack or static allocations will be presented.
Every sub-section will conclude with the approach chosen for the new ssr-core imple-
mentation, when configured for the AVR platform.

1http://www.omnetpp.org/

17

http://www.omnetpp.org/

18 CHAPTER 4. CHANGES TO SSR-CORE

In addition to the memory allocation restrictions, the AVR platform does not pro-
vide any C++ libraries. Specifically, the STL is not included and including it would
cause the code-size to increase dramatically. Therefore, any code using STL constructs
is analysed and approaches for replacement are discussed.

4.1.1 SSR messages
Problem

The SSR message classes represent the protocol’s messages sent over the network be-
tween SSR nodes (e.g. payload messages, hello messages, etc.). The classes can seri-
alise and deserialise themselves.

All SSR messages are created dynamically. Their life-time is restricted to calls into
the SSR core, i.e. they get created during an SSR core method call and get released
before its return. So in theory, many dynamic allocations could be replaced by placing
the objects on the stack.

Unfortunately, messages retrieved (i.e. deserialised) from the network are turned
into objects by a factory method. In addition the (optional) neighbour table distribution
requires SSR message cloning functionality. Both features aren’t easily transferred to
static or stack-based allocations.

Without an extensive design change, the only viable approach is one, that emulates
dynamic memory allocation without using a regular heap. The allocation mechanism
would only need to provide space for a very small number of messages and could
therefore work from a statically allocated buffer of fixed size.

Solution

The new implementation follows the dynamic memory allocation approach. It does
this by using a cStaticPool<>-based cMessagePool, which is a statically sized
and allocated message pool, providing N blocks of equal size for the storage of N
messages2. The syntax of message allocations is unchanged, as the pool is connected to
the base message class through operator new and operator delete methods.
The latter aspect kept the amount of work needed to implement the change very low.

4.1.2 SSR payload messages
Problem

The payload messages are the messages containing the actual data, i.e. they transport
the data sent by the layer above the SSR protocol. Due to the large payload buffer,
these messages are – by far – the largest messages among all SSR messages and would
thus waste a lot of memory in the cMessagePool, which was proposed as solution
above.

As mentioned in section 4.1.1, a message’s life-time is restricted to call into the SSR
core. While processing a payload message, the SSR core does not create an additional
one, so no two payload messages will be handled at the same time. Therefore a global
static payload buffer would be able to replace the dynamically allocated buffers.

2The block size is equal to the largest message size. The largest message size is determined at compile-
time, using a list of all message classes in MessagePool.cc. Space for 2 messages is reserved, as ssr-core only
processes one incoming message at a time and creates a maximum of one additional message as response,
i.e. never needs space for more than 2 messages at a time.

4.1. AVOIDING HEAP MEMORY AND THE STL 19

Alternatively, instead of creating a private copy, the storage could also be avoided
completely by reusing the original buffer containing the payload.

Solution

The latter approach was used in the new implementation. The payload buffer pointer
was modified to point to a constant buffer, i.e. the library modifies the data and applica-
tions which get handed the payload may not modify it either. This allowed the payload
message class to reuse the raw incoming buffer from the callee, simply pointing from
within the message instance into the raw buffer. The approach completely avoids any
buffer copying and therefore also avoids the memory allocation problem.

In case the message comes from the network, the payload pointer points into the
network buffer. In case it comes from the application, the pointer refers to the buffer
supplied by the application. The pointer’s constness assures, that no modifications are
applied.

4.1.3 SSR timer events
Problem

As mentioned previously, SSR’s timer event system uses event class instances to reg-
ularly send broadcasts, to watch out for physical neighbour timeouts (called interface
timeouts) and to keep its virtual neighbours updated.

The event objects are created dynamically and get passed out of SSR core as trans-
parent pointers (via CallMeLater()). They therefore have a life-time that exceeds
SSR core method calls, ruling out the possibility of using stack-based storage.

For all timer events in SSR, there is an object that has a matching life-time: The
cEventNotification and cEventBroadcast events have a life-time match-
ing that of the local node. The cEventIfTimeout’s life-time matches that of its
associated physical neighbour, i.e. the cPointToPointInterface. A straight-
forward approach could therefore be to make them member objects of the object who’s
life-time matches theirs. Thereby the problem of allocating event objects would be
reduced to the already existing problem of allocating their container objects.

Solution

The above approach was implemented, by first modifying the event classes to be em-
beddable within other classes. Specifically, they needed to be made assignable by
receiving correct assignment operators. (Allocating the events on the heap and sim-
ply storing pointers within their new storage locations would have defeated the whole
purpose of the approach.)

Next, the dynamic event object allocations were replaced by embedding the objects,
as shown in table 4.1.

Timer event Embedded in
cEventBroadcast cNode
cEventNotification cNode
cEventIfTimeout cPointToPointInterface

Table 4.1: Shows which timer events were embedded in which class.

20 CHAPTER 4. CHANGES TO SSR-CORE

In addition, the timer event system needed a way to inform the external event loop
of timers that should be disabled. Therefore the new call-back CancelEvent was
introduced. To ease the event management, an additional void* handle property was
added to the events, to allow the external event loop to store a local identifier.

4.1.4 NIC addresses
Problem

SSR uses a small data block to transparently represent local physical addresses within
the SSR core. SSR does not interpret the NIC address internally, i.e. they are only
meaningful to the caller. The data blocks are copied into dynamically sized and allo-
cated buffers.

As the physical address size typically depends on the used interface types (e.g. 48
bit Ethernet hardware addresses or 64 bit ZigBee addresses) and we will know the used
interface types at compile-time, the dynamic allocations can be replaced with buffers
of fixed size.

Solution

In the new implementation, the pointers to dynamic memory were replaced with
cNicAddr wrapper objects which can use an internal, embedded buffer of static size
to store the address (if configured to use the cStaticNicAddr storage back-end,
see section 5.1.2). The class is implemented as a value type (i.e. the instances can be
copied or assigned similar to built-in C++ types), so all dynamic memory usage can be
avoided.

4.1.5 Interface table
Problem

The interface table maps SSR node addresses (i.e. virtual addresses) of all known
physical neighbours to a cPointToPointInterface instance, which contains
further information about the neighbor (e.g. the link-layer address). The table uses
a std::map without any size limitations. This needs to be replaced with an approach
not depending on the STL and not requiring heap memory.

Any non-dynamic approach unavoidably restricts the number of physical neigh-
bours stored in the table. Therefore a mechanism needs to be designed, that decides
what to do with newly detected neighbours while the neighbour table has no space left.

A complete analysis of the possible approaches is not within the scope of this thesis.

Solution

The ported ssr-core library uses a fixed-size list of interfaces instead of the std::map,
aiming for simplicity in implementation. The interface size is defined at compile-time.
No replacement strategy is used, so interface announcements will be dropped if more
interfaces are active than allowed for at compile-time.

4.1. AVOIDING HEAP MEMORY AND THE STL 21

4.1.6 Routing table
Problem

The routing table is an array of SSR nodes, containing information about parent / child
relationships and when each entry was last used in a routing decision.

The routing table is well prepared for the necessary conversion to static memory
allocation, as all memory is allocated via the new[] operator at construction time and
can be easily replaced with a embedded arrays of fixed size.

Solution

All involved routing table member types are made embeddable and the allocated arrays
are replaced with arrays of fixed size, which are embedded within the routing table
class (cStaticCacheCore). The size, i.e. the number of routing entries, is defined
at compile-time (see section 5.1.2).

4.1.7 Neighbour table
Problem

The neighbour table storage has no dynamic elements and does not use the STL. The
implementation is incomplete though (see 5.3.7), so this code section could be made
optional.

Solution

The code supporting the neighbour table feature is enclosed within the preprocessor
symbol SSR_WITH_NEIGHBOR_TABLE and disabled for the AVR target to minimise
the code-size.

4.1.8 Source paths
Problem

Source paths consist of a list of virtual node addresses that can be traversed to reach a
certain target node. Within ssr-core such paths are stored in cPath objects.

The cPath objects are used on the stack, as return values and embedded in mes-
sage objects. The life-times of the reference-counted paths is very diverse.

The old cPath implementation stores the path in a dynamically allocated and
reference-counted memory buffer, allowing for unrestricted path lengths.

Assuming that a maximum path length can be determined at compile-time, a buffer
of fixed size could be used for the path.

Ignoring the existing reference-counted approach, this buffer could be embedded
directly within the cPath object. The benefit would be that out-of-memory (OOM)
conditions could be handled easier: The allocations would already fail when allocating
the cPath instance instead of later on, within the cPath constructors. An additional
benefit would be, that the required code for the embedded buffer approach would be
very simple.

As cPath objects are passed by value with-in ssr-core, the obvious down-side to
the above approach would be the frequent copying of the path lists, possibly causing

22 CHAPTER 4. CHANGES TO SSR-CORE

performance problems. Another problem could be the increased memory usage due to
multiple copies of the same path using up memory.

A different approach is to continue supporting the reference counted approach. In-
stead of dynamic allocation from the heap one could use a central fixed-size pool of
fixed-size source path lists which could then be shared between all cPath objects.
This would avoid the frequent copying, but could lead to out-of-memory conditions
due to an insufficient pool size, i.e. due to more paths allocated than available in the
pool.

Any solution not assuming fixed-length paths would require far more complex
memory management functions or the use of dynamic memory provided by the ACVM.

Solution

For the new implementation, the reference-counted approach with fixed maximum path
lengths was chosen to optimise for speed and memory usage, while assuming well-
chosen path lengths and pool sizes. The fixed-size source paths are stored in a statically
allocated cStaticPool<>.

It remains unclear whether a fixed-length path structure is a viable long-term solu-
tion.

4.1.9 Maximum node
Problem

To avoid disjoint rings, a node who’s virtual address is higher than its successor’s (i.e.
has the highest address in the virtual ring) needs to broadcast this information using
cMsgMaxNodeAnnounce messages [CF05, sec. 2.3]. The messages are flooded
through-out the SSR network.

On receiving such a message, the virtual address of the message originator (i.e. of
the node that initially sent the message and has the highest virtual address) is stored in
a std::set. If the same node address already exists in the set, the message won’t be
processed.

This prevents the node from processing the same information multiple times and
stops the message from being endlessly flooded back and forth through the network.

An approach to get rid of the std::set, would be to use a static queue of the last
L maximum node announcements.

Solution

To resolve the problem, the maximum node announcement storage was split out into
a class that uses a queue of fixed length to keep track of the last L maximum node
announcements.

4.2 Reducing and choosing table sizes
As the hardware used by the AmbiComp project has limited memory resources, all
large data structures need to be analysed, so that their size can be reduced as far as
possible.

Some structures already have a default size in the old ssr-core implementation. It
will be determined whether that size can be reduced.

4.2. REDUCING AND CHOOSING TABLE SIZES 23

Additionally, a few data structures were previously dynamically sized. Therefore,
appropriate static sizes for these previously dynamically sized structures need to be
found.

4.2.1 Interface table
Depending on which interface types are compiled in and the expected device density,
the optimal interface table size will vary widely.

E.g. a wired ethernet interface connected to a switched network can theoretically
have an almost unlimited number of physical neighbours. Estimating a useful interface
table size is very difficult in this case and will have to be based on an assumed deploy-
ment environment (i.e. expected number of neighbours in the specific environment).

The number of physical neighbours of a wireless interface is easier to foresee, as
there are restrictions on the radio’s range and (e.g. for Bluetooth piconets) on the
number of simultaneous communication partners.3

Depending on the interface types involved, the assumed number of neighbours will
always be arbitrary. A one-size-fits-all value seems unlikely, so this parameter will
need to be adjusted depending on the device’s intended environment.

During past simulations performed by Pengfei Di with the SSR protocol, nodes had
no more than 20 physical neighbours at a time, so 20 will be used as a default table size
for AmbiComp’s implementation.

More tests should be performed to determine typical average numbers of physical
neighbours depending on node density, to allow educated guesses for a specific envi-
ronment.

4.2.2 Source paths
The SSR protocol and the AmbiComp project both assume a random, distributed Ad-
Hoc sensor network. In these types of networks, the worst case node topology, where
all nodes are chained together in a long line, is assumed to be very unlikely. Even a
network forming a unit disk graph induces potentially long average paths: O(

√
N).

According to [Fuh05, p. 248], small-world network scenarios have far shorter av-
erage path lengths. Assuming such a scenario, it is still unclear what specific values to
choose, especially during earlier phases of the network setup boot-strap.

The actually necessary sizes will need to be determined by further simulations.
The implementation now reserves space for path lengths of 30 hops, which should be
a safely high number of hops for small-world scenarios.

4.2.3 Routing table
The routing table contains SSR nodes, organised in a tree structure. The links in the
tree represent known routing paths. The tree is stored as an array, where each array
element represents a single node with information about parent / child relationships
and when each entry was last used in a routing decision (compare figure 4.2).

The SSR protocol assumes O(log N) routing table entries in a network with N
nodes [Fuh05, p. 240]. For the old ssr-core implementation, each entry (i.e. routing
table line) was 18 bytes large (see figure 4.2). The implementation always used 255
entries and therefore required 4,080 bytes of RAM for the routing table entries alone.

3Depending on whether the Bluetooth stack supports scatternets, this limitation could be circumvented.
In theory, there’s no real limitation, but real-world implementations are often restricted in their capabilities.

24 CHAPTER 4. CHANGES TO SSR-CORE

Type Name Bytes Description
addr_t address 4 Virtual SSR node address.
u16_t uplink 2 Array index of parent entry.
u16_t auxlink 2 Possible, alternative parent entry.
u8_t hop 1 Number of hops from the local node.
u16_t fan 2 Number of child nodes.
bool protect 1 Is node protected?
bool used 1 Is entry in use?
bool reserved 1 Is entry reserved?
u16_t time 2 Value of global time counter at last use.
Total 16 Total number of bytes used per entry.

Table 4.2: Structure of a single entry in the routing table before space optimisation.

We only intend to use about 2 to 3 KiB of RAM for the complete implementation,
so the routing table needs to be significantly reduced in size.

Reducing the number of routing table entries

The SSR protocol implementation was successfully tested with a routing table consist-
ing of 255 entries for up to N = 128, 000 nodes [Fuh05, p. 247].

Unfortunately, none of the papers on SSR analyse the effect of routing tables with
significantly less than 255 entries. Apparently, the assumption was, that 255 entries
would not use up more than 4 KiB of memory and that using 4 KiB of memory would
be suitable for sensor networks [Fuh05, p. 246, “Global consistency and achieved
routing stretch”]. Currently, although the routing table itsself only uses 4 KiB, the
rest of the library uses additional memory and therefore exceeds the 4 KiB limit and
additionally, even using 4 KiB might still be too much for targetted the AVR target
system.

As the big-O-notation does not provide us with a straight-forward mathematical
way of calculating smaller table sizes for smaller values of N , we can only rely on
informed guesses for now:

The minimum number of routing entries that need to be cached consists of the path
to the node’s virtual successor and predecessor nodes as well as all physical neighbours.
In the worst case, all nodes could form a chain, which would result in the successor
and predecessor each being up to N − 1 hops away. This would mean (assuming M
neighbours) that we’d need O(N +M) routing table entries. As that would exceed the
used table size by far, the lower boundary obviously is not helpful.

Unfortunately, it remains unclear how the O(log N) entries translate to a specific
number of entries (and what N to assume in our AmbiComp environment). We will
likely have to reduce N until all data structures fit into the available memory space.

Reducing the size of each routing table entry

Looking at the routing table structure, one finds potential for space optimisations.
Shrinking down the integer size of entries that serve as indexes to a byte and using
a single byte for the boolean values (which previously used a byte each), leads to 11
bytes per entry (figure 4.3). This amounts to a total of 2,805 bytes for the 255 entries.
An even more compact representation of the remaining two boolean flags (using the

4.3. EXCEPTIONS 25

newly written cBitFieldArray, a structure that uses one bit per boolean entry),
saves another 159 bytes. As the code made no use of the protect flag, it can be removed
completely, saving yet another 31 bytes. After all optimisations, the table is 10.25 bytes
per entry, amounting to 2,613 bytes for 255 entries.

type name bytes
addr_t address 4
u8_t uplink 1
u8_t auxlink 1
u8_t hop 1
u8_t fan 1
bool used 0.5 (0.125)
bool reserved 0.5 (0.125)
u16_t time 2
Total 11 (10.25)

Table 4.3: Structure of a single entry in the routing table after space optimisation.

4.3 Exceptions
As the AVR target-environment currently misses support for exceptions, that C++ fea-
ture needed to be removed from the ssr-core library. Exceptions were used through-out
the code for out-of-memory (OOM) conditions, various internal error states and even
abused to indicate the successful delivery of a message4.

4.3.1 Errno value
An approach similar to libc’s errno was chosen: A thread-specific error number vari-
able, accessable via global SetErrno() and GetErrno()methods was introduced.
This is used to provide detailed information about the last error.

Functions originally without return value now return a boolean value indicating
failure or success and set the Errno value appropriately. To easily identify legacy code
that does not check the return value, the attribute SSR_MUST_CHECK_RETVAL is
introduced to enable compile-time warnings.

Functions which already returned a value needed to be modified to return an obvi-
ously invalid value for the error case. To allow this, a few types needed to be enhanced.
E.g. cPath::zero and cNicAddr::zero were introduced.

4.3.2 Exceptions from constructors
One class of exceptions could not be easily replaced: Exceptions thrown from con-
structors. Constructors cannot return an error value, so there’s no easy way for them
to indicate an error. A typical approach to reporting errors in constructors is to move
the actual work into an init function. That function would then be able to indicate
initialisation errors through regular return values.

4The DestinationReachedException was used to indicate that a message had reached its destination.

26 CHAPTER 4. CHANGES TO SSR-CORE

For the old and new code, this problem affects the cPath classes. The constructors
attempt memory allocations and cannot indicate or resolve OOM conditions gracefully.
Unfortunately, the cPath classes are used in hundreds of different places through-out
the code (routing code, message handling, etc.), making the proposed init-function-
approach very work-intensive.

It is assumed, that OOM conditions can be avoided for controlled network envi-
ronments, so for now, the library calls SSR_ERROR() (typically causing std::abort to
be called) on OOM conditions. This temporary approach allows the exceptions to be
removed without the need for a lot of redesign work.

4.4 Run-Time Type Identification
Although the target platform supports RTTI, the feature is disabled by default. When
activated, the feature would requires a few additional bytes per class and should
therefore be avoided if possible. The old code uses RTTI through the use of
dynamic_cast<> to determine the type of message classes. As every message al-
ready has an embedded type ID5, this can be used as type information instead.

Therefore, in the new ssr-core implementation all dynamic_cast<>s were re-
placed with checks against getID() or a few helpers6 and static_cast<>s.

Ideally, the functionality using explicit message type tests should be refactored into
virtual methods of the cMessage class, so that explicit type checks are no longer
necessary. The refactoring was not performed and remains as future work.

4.5 Removing inlining
The goal of removing the inlining used within the old code-base was to reduce the
code size. Currently, small code-size is more important for the use-cases of the ssr-
core library than speed, especially for the AVR platform.

The old implementation inlined large portions of the code either implicitly, by em-
bedding the code within the class definition in the class’ header file, or explicitly by
defining the method in the header and using the inline keyword.

Both of these inlining approaches were removed from the new code-base. All
method implementations now reside within the implementation files (*.cc), i.e. the
header files (*.hh) only contain the class declarations and definitions.

This is true even for template classes. The template classes’ implementation was
moved to *.inl files. These template inline files are included in *.cc files, where
the template classes are then explicitly instantiated7.

As can be seen in table 4.4, removing inlining saved 98, 152 − 84, 320 = 13, 832
bytes, i.e. the approach was rather successfull.

The table’s text column signifies the code size, the data column represents the size
of the initialised static data and the BSS column represents the size of the uninitialised
static data. The total is the total space used on the flash. As the code is not loaded to
the RAM, the text column has no influence on the RAM usage.

5The ID is defined in the enum tMessageType and is used in serialised messages to determine the type.
6IsMsgConnect() and IsMsgHopByHop are helpers to support checking against the messages’ class hier-

archy.
7For explicit template instantiation in C++, see e.g. http://msdn.microsoft.com/en-us/

library/by56e477.aspx

http://msdn.microsoft.com/en-us/library/by56e477.aspx
http://msdn.microsoft.com/en-us/library/by56e477.aspx

4.6. CODE RENOVATION 27

Text Data BSS Total Inlining cBitFieldArray
92928 1094 4130 98152 with without
94820 1094 3872 99786 with with
79584 702 4034 84320 without without
79652 702 3872 84226 without with

Table 4.4: Code and data sizes of ssr-core in bytes – before and after removing exces-
sive inlining.

The cBitFieldArray is a template class minimising the size of the routing
table (see section 4.2.3). As can be seen from the table and the earlier section on
routing table shrinking, the space used on the flash increases by only 68 bytes, while
saving 159 bytes of RAM.

4.6 Code renovation
Previous to the porting work described in this paper, the ssr-core code-base was diffi-
cult to understand. Before analysing the code, a thorough code cleanup was performed.

This involved:

• Applying a consistent coding style to the code. This included the renaming of
classes, functions and member variables as well as applying consistent indenta-
tion.

• The detection and removal of unused code and unused variables.

• The normalisation of class hierarchies. Specifically, the node classes were pulled
together into a single abstract node class. Previously, the various classes were
divided into parent and base classes, but followed no abstraction between one-
another, which only caused confusion and unnecessary up-castings.

• Making various methods either non-virtual or purely virtual to clearly document
the intended usage through C++ language features.

• Splitting up the header and implementation files into one header and one im-
plementation file per class. Previously, the classes were organised in only a
hand-full of header and implementation files, which made navigating the classes
difficult.

• Creating a Makefile based build system, that properly handled incremental re-
builds and supported building for several target platforms.

• Improving the automated testing of the code and integrating the unit testing into
the build system. (See chapter 6 for details.)

• Introducing an SSR namespace to allow intuitive naming of the implementa-
tion’s classes without fearing collisions with application code. Any existing
SSR-prefixes in class names were removed.

28 CHAPTER 4. CHANGES TO SSR-CORE

Chapter 5

The new ssr-core library

This chapter provides a detailed configuration-, state- as well as class-level overview
of the reworked ssr-core implementation.

5.1 Code configuration
The ssr-core library is designed to be usable in different applications and environments
without the need for code modifications. Therefore only one code-base needs to be
maintained and all applications and platforms profit from any fixes or enhancements
added to the code.

The flexibility necessary to achieve the above goal is reached through two ap-
proaches, which are detailed below.

5.1.1 Abstract cNode class
The library provides an abstract cNode class with purely virtual methods perform-
ing application and system specific operations. This includes sending and receiving
network packets on the link layer, handling of the payload data, timer handling and
more. A new application therefore only needs to sub-class and implement the abstract
cNode class and does not need to modify the ssr-core library itsself. The child class
will most likely act as adapter class, relaying actions between the application and the
environment through itsself to cNode, as shown in figure 5.1.

Figure 5.1: Users of the ssr-core library need to sub-class the abstract Node class.

29

30 CHAPTER 5. THE NEW SSR-CORE LIBRARY

5.1.2 Compile-time options
To enable or disable certain code-paths within the library, preprocessor symbols are
used.

The preprocessor symbols listed in table 5.1 can be defined (or left undefined) in
the target directory’s config.hh file.

The study thesis added all compile-time options apart from SSR_WITH_DEBUG.
The concept of one config.hh file per target, containing all config preprocessor
symbols, was also newly introduced.

Preprocessor symbol Description
SSR_WITH_DEBUG Enable debugging.
SSR_WITH_SIMULATION_SUPPORT Enable methods and settings relevant for

simulating the code with OMNeT++.
SSR_WITH_STATIC_TABLES Activate static tables.
SSR_WITH_NEIGHBOR_TABLE Enable support for the neighbour table fea-

ture.
SSR_HAS_STL Platform provides support for STL.
SSR_HAS_HEAP Platform provides heap memory.
SSR_HAS_EXCEPTIONS Architecture has support for exceptions.
SSR_HAS_TLS Architecture has thread-local storage.
SSR_SET_NUM_SIMULTANEOUS_MSGS Number of messages expected to be instan-

tiated at once.
SSR_SET_NIC_ADDR_SIZE Size of link-layer addresses for physical

neighbours in bytes.
SSR_SET_ADDR_SIZE Size of virtual node addresses in double

words (4 bytes).
SSR_SET_CACHE_CORE_SIZE Number of entries within the routing table.

Table 5.1: Reflexive edges on the SSR state.

Switches either indicate features available or unavailable on a specific plat-
form (SSR_HAS_*), control optional functionality within the ssr-core library
(SSR_WITH_*) or set certain configuration values (SSR_SET_*).

Note: In case the existence of a class or the relationship between classes depends
on the above symbols, the following diagrams are coloured appropriately.

As described in section 4.1, dynamic classes where replaced with static variants for
the AVR platform. The dynamic and static code-paths are disabled or enabled by the
above mentioned preprocessor symbols. To avoid littering the code with preprocessor
#ifdefs, the code was most often refactored into two separate classes: One class
providing the dynamic approach – often using the STL – and one class providing the
static one with fixed table sizes.

The dynamic code parts are compiled as long as the platform provides the necessary
features. E.g. symbol SSR_HAS_STL and symbol SSR_HAS_HEAP are very often
necessary for the dynamically sized structures. The static code variants are activated as
long as SSR_WITH_STATIC_TABLES is specified.

The idea behind allowing both code paths to be activated at the same time is to
allow the compile-testing of both code-paths on a single build target. This can quickly
reveal obvious bugs during development.

5.2. STATE MACHINE 31

Thread-local storage is optionally used for the storage of error numbers (see
section 4.3.1) in thread-specific memory. If the platform has support for it and
SSR_WITH_STATIC_TABLES is disabled, multiple threads can each run an instance
of cNode.

If a switch configuration is chosen that does not allow the library to work, an error
is displayed at compile-time. An example for such an errornous configuration would
be disabling SSR_WITH_STATIC_TABLES and SSR_HAS_HEAP at the same time.

5.2 State machine
As already mentioned in section 3.2, the ssr-core library neither has explicit states nor
an explicit state machine. The state machine in figure 5.2 none-the-less attempts to
document the major implied states in which the SSR node can reside.

Figure 5.2: State machine, documenting the states of an SSR node.

The states are implied by the entries contained within the routing table, by the
interface table (section 5.3.6 and by the object life-cycle of the node object (section
5.3.1).

Details on the names and abbreviations used within the state diagram are given in
table 5.2. The states are explained in the following sub-sections.

32 CHAPTER 5. THE NEW SSR-CORE LIBRARY

Event name Event class
EvIT cSsrEventIfTimeout

Message name Message class
MsgH cMsgHello
MsgK cMsgKill
MsgMNA cMsgMaxNodeAnnounce

Condition name Description
LIF Last interface, there was only one interface left.
MaxNo The local node now has the max virtual address in the

known ring.
Entry point Description
Init() Initialises the node, activates various timers and an-

nounces the nodes existence.
GoingDown() Notify the network, that this node is shutting down.
delete Destruct the node instance.

Table 5.2: Abbreviations used within the state machine.

5.2.1 State SSRConstr
The SSRConstr state is the initial state directly after construction of an SSR node. Only
the basic initialisations have been performed, no timers are active and the physical
neighbours know nothing of this new node.

As soon as Init() is called, the node transitions to state SSRIsoMax and a
cMsgHello message is broadcast via cNode::Broadcast(), to announce the
node’s existance.

5.2.2 State SSRIsoMax
In the SSRIsoMax state, the node is isolated. It has no known physical neighbours and
therefore the known network is empty, apart from itsself (i.e. the routing table and
the interface store are both completely empty). The virtual ring has the local node as
its only member, which means that the local node is the node with the highest virtual
address.

The SSRIsoMax state is the initial state directly after initialising the node. At that
point, none of the potential neighbours had the opportunity to announce themselves
yet.

The state is left as soon as one of the physical neighbours reacts to the regularly
broadcasted hello messages (or if one of the neighbours hello messages is received).

The state can of course be reached again at a later point in time, if all known phys-
ical neighbours disconnect or go out of range.

The timer events and entry-points documented in table 5.3 cause no state changes
and are therefore reflexive edges on the state.

5.2.3 State SSRMax
In the SSRMax state, the node has the largest virtual address in the known virtual ring.
The node regularly broadcasts this knowledge to the whole network.

5.2. STATE MACHINE 33

Incoming event Action
cSsrEventNotification None
cSsrEventBroadcast send cMsgHello
Entry point Action
SendPayload() call SendDroppedUp()
SendPayload() call SendUp()

Table 5.3: Reflexive edges on the SSRIsoMax state.

Apart from having the highest virtual address in the SSR network, the state is equal
to the SSR state, see below.

In case a message is received, which indicates that there is another node with a
higher virtual address, the state transitions to the SSR state.

In case all physical neighbours are lost, the state transitions back to the SSRIsoMax
state.

The timer events, messages and entry-points documented in table 5.4 cause no state
changes and are therefore reflexive edges on the state.

Incoming event Action
cSsrEventNotification send cMsgMaxNodeAnnounce and

cMsgNeighborNotification
cSsrEventBroadcast send cMsgHello
cSsrEventIfTimeout and more than
one interface left

None

Entry point Action
SendPayload() for remote node send cMsgPayload
SendPayload() for unreachable node call SendDroppedUp()
SendPayload() for local node call SendUp()
Incoming message Action
cMsgPayload for remote node cMsgPayload
cMsgPayload for unreachable node if
not marked as routed

SendDroppedUp()

cMsgPayload for unreachable node if
marked as routed

SendUp()

cMsgPayload for local node SendUp()

Table 5.4: Reflexive edges on the SSRMax state.

5.2.4 State SSR
The SSR state is the state in which most nodes within the SSR network will reside most
of the time. The node has knowledge of other SSR nodes within the network. It is not
the node with the largest virtual address (see state SSRMax).

Sending and receiving messages is possible and the sent messages should be able
to reach their destinations.

34 CHAPTER 5. THE NEW SSR-CORE LIBRARY

The following timer events, messages and entry-points cause no state changes and
are therefore reflexive edges on the state:

Incoming event Action
cSsrEventNotification send cMsgNeighborNotification
cSsrEventBroadcast send cMsgHello
cSsrEventIfTimeout and more than
one interface left and not the maximum
node

None

Entry point Action
SendPayload() for remote node send cMsgPayload
SendPayload() for unreachable node call SendDroppedUp()
SendPayload() for local node call SendUp()
Incoming message Action
cMsgPayload for remote node cMsgPayload
cMsgPayload for unreachable node if
not marked as routed

SendDroppedUp()

cMsgPayload for unreachable node if
marked as routed

SendUp()

cMsgPayload for local node SendUp()

Table 5.5: Reflexive edges on the SSR state.

5.2.5 State SSRShutd
In the SSRShutd state, the node was deregistered from the SSR network. All timers are
inactive. No messages can be received or processed.

State transitions to this state cause cMsgKill to be broadcast to all physical neigh-
bours.

5.2.6 State SSRDestr
In the SSRDestr state, the node instance was destructed and its memory freed. All
timers are inactive. No messages can be received or processed.

5.3 Class diagrams

5.3.1 cNode

class cNode

Figure 5.3: Class hierarchy of class cNode.

The cNode class as seen in figure 5.3 is an abstract class representing an SSR node
in the network. Most library interaction is performed through this class.

5.3. CLASS DIAGRAMS 35

The class provides a set of pure-virtual methods through which the node commu-
nicates with the upper and lower layers. Users of the library are expected to sub-class
cNode and implement the virtual methods. This allows to adapt the ssr-core library to
many different environments.

See section 2.4.1 for a detailed description of the expected interactions.

5.3.2 cRouteCache

class cDynamicCacheCoreclass cStaticCacheCore

typedef tConfiguredCacheStorage

class cRouteCache class cCacheCore
cache

!SSR_WITH_STATIC_TABLES

Figure 5.4: Class hierarchy of class cRouteCache.

A cNode instance, as seen in figure 5.4, maintains one instance of
cRouteCache. It maintains the node’s routing table. It contains cCacheCore as a
member element, which contains all known source routes in a tree-like structure (see
section 4.2.3).

The class contains all routing, path updating and merging logic. The actual storage
of the source route elements, i.e. the known routing hops, is performed by the cache
member of type cCacheCore.

The cCacheCore has two storage options: One option is to allocate memory on
the heap (using cDynamicCacheCore). The other option is to use a fixed-size em-
bedded member variable (using cStaticCacheCore). The latter option effectively
causes the memory to be embedded within the cRouteCache instance, which itsself
is embedded within the cNode instance.

The cDynamicCacheCore class is only built if SSR_HAS_HEAP
and SSR_HAS_EXCEPTIONS are enabled. And depending on whether
SSR_WITH_STATIC_TABLES is defined or not, cStaticCacheCore or
cDynamicCacheCore are used as storage.

5.3.3 BitFieldArray
The cBitFieldArray template class, as seen in figure 5.5, provides an array of
N elements, each providing storage for NUM_BITS number of bits. The storage is
optimised for space. Single bits within the list can be read or written. Read and write
complexity is within O(1).

The class allows to select from two storage types: cDynamicBitFieldArray
allows N to be specified at run-time and stores the elements in heap memory.
cStaticBitFieldArray sets N at compile-time and uses a fixed-size buffer.

36 CHAPTER 5. THE NEW SSR-CORE LIBRARY

class cDynamicBitFieldArray class cStaticBitFieldArray

class cBitFieldArray

Figure 5.5: Class hierarchy of class cBitFieldArray.

The data structure is used within the cCacheCore storage back-ends to store a
few bits per entry in a space efficient way (see section 4.2.3).

5.3.4 Events

class cEvent

class cEventBroadcast class cEventNotification class cEventIfTimeout

Figure 5.6: Event class hierarchy.

The classes extending the abstract base class cEvent, as seen in figure
5.6, represent time-based events. The event management is handled transpar-
ently through virtual methods in cNode (see cNode::CallMeLater() and
cNode::CancelEvent()), so there’s no event-loop in ssr-core.

The purpose of the event subclasses cEventBroadcast,
cEventNotification and cEventIfTimeout was already described in
3.1.3.

As described in section 4.1.3, the events are stored within objects that match their
life-time. I.e. cEventBroadcast and cEventNotification, which regularly
notify physical and virtual neighbours of the local node’s existence, are stored within
the cNode object. Accordingly, cEventIfTimeout, which times out physical
neighbours, is stored within the physical neighbour’s entry in the interface table.

5.3.5 cAddr
The cAddr class, as seen in figure 5.7, stores a single SSR node address of fixed size.
Although the class is intended to allow SSR node addresses of configurable sizes, it
currently assumes an address size of 4 bytes and will need further work to function
with different sizes.

cBaseAddr provides an address-length independent base for address storage and
may be used by code external to the ssr-core, e.g. for representing a NIC address.

5.3. CLASS DIAGRAMS 37

template class cBaseAddr

class cAddr

Figure 5.7: Class hierarchy of class cAddr.

class cPointToPointInterface

class cDynamicInterfaceStore class cStaticInterfaceStore

template class cInterfaceStore

typedef tInterfaceStore

!SSR_WITH_STATIC_TABLES

!SSR_WITH_STATIC_TABLES

Figure 5.8: Interfaces class hierarchy.

5.3.6 Interfaces
The SSR node maintains one instance of tInterfaceStore, which keeps track of
all known, active, physical neighbours.

The class, as seen in figure 5.8, provides a dynamically sized and a statically sized
storage backend. The dynamically sized backend (cDynamicInterfaceStore)
uses a map of unrestricted size, mapping each physical neighbour’s virtual ad-
dress to its cPointToPointInterface instance. The statically sized backend
(cStaticInterfaceStore) uses a fixed-size array to store the same mapping. It
does not yet provide a proper replacement strategy in case the array is full.

A cPointToPointInterface instance mainly stores the physical neigh-
bour’s physical address of type tNicAddr and keeps track of when the neighbour
has last shown activity. This is regularly checked for timeouts by its embedded
cEventIfTimeout timer.

The cDynamicInterfaceStore class is only built if SSR_HAS_STL is de-
fined. And depending on whether SSR_WITH_STATIC_TABLES is defined or not,
cStaticInterfaceStore or cDynamicInterfaceStore are used as stor-
age backend.

38 CHAPTER 5. THE NEW SSR-CORE LIBRARY

5.3.7 NeighborTable

class cNeighborTable

Figure 5.9: Class hierarchy of class cNeighborTable.

The SSR node maintains one instance of the cNeighborTable seen in figure
5.9, which stores the virtual neighbours of a node and a subset of the virtual neighbours’
physical neighbours.

Copies of the table, filled with physical neighbours of the local node, are sent to
the node’s virtual neighbours via the cMsgNeighborNotification message. On
reception of such a message from one of the virtual neighbours, the information is used
to update the local cNeighborTable instance.

The table increases the likelyhood of quickly finding an alternative path to a virtual
neighbour in case a path breaks. The feature is especially interesting for networks with
a lot of node churn. (Please see the paper introducing this feature [Fuh06, p. 37] for
further details.)

In its current state the class only works for simulation environments, as the serial-
isation and deserialisation functions are incomplete. This aspect of the code was not
enhanced or modified by this work.

The cNeighborTable class is only built, if SSR_WITH_NEIGHBOR_TABLE
is defined.

5.3.8 MaxNodeAnnounceStore

class cDynamicMaxNodeAnnounceStore class cStaticMaxNodeAnnounceStore

class cMaxNodeAnnounceStore

!SSR_WITH_STATIC_TABLES

Figure 5.10: Class hierarchy of class cMaxNodeAnnounceStore.

The SSR node maintains one instance of cMaxNodeAnnounceStore. The class
as seen in 5.10 keeps track of the last N MsgMaxNodeAnnouncemessages, avoiding
duplicate message handling (and endless flooding with the same message).

See section 5.3.11 for details on its use.
The class provides a dynamically sized and a statically sized storage backend.

The dynamically sized backend (cDynamicMaxNodeAnnounceStore) uses an
std::set class, storing an unlimited number of node addresses. The statically sized
backend (cStaticMaxNodeAnnounceStore) uses a simple FIFO, storing the last
N addresses.

The cDynamicMaxNodeAnnounceStore class is only
built if SSR_HAS_STL is defined. And depending on
whether SSR_WITH_STATIC_TABLES is defined or not,

5.3. CLASS DIAGRAMS 39

cStaticMaxNodeAnnounceStore or cDynamicMaxNodeAnnounceStore
are used as storage.

5.3.9 NicAddr

class cDynamicNicAddr class cStaticNicAddr

template class cNicAddr

typedef tNicAddr

!SSR_WITH_STATIC_TABLES

Figure 5.11: Class hierarchy of class cNicAddr.

Instances of the tNicAddr class as seen in figure 5.11 represent a physical neigh-
bour’s link-layer address. Within the SSR core, these addresses are handled completely
transparently as a block of bytes and comparisons between two addresses are performed
byte by byte.

This allows the library user to hand in any kind of structure that identifies a single
physical address. A sensible data block might be e.g. a 48 bit Ethernet MAC-address
or a 32 bit memory pointer, pointing to a more complex data structure on the heap.

The cDynamicNicAddr storage back-end uses heap memory to dynamically
store a copy of any number of address bytes. The cStaticNicAddr storage back-
end instead uses a fixed-size embedded buffer for the copy.

The cDynamicNicAddr class is only built if SSR_HAS_HEAP
and SSR_HAS_EXCEPTIONS are defined. Depending on whether
SSR_WITH_STATIC_TABLES is defined or not, cStaticNicAddr or
cDynamicNicAddr are used as storage.

5.3.10 Paths
The cPath class as seen in figure 5.12 stores a source route, which consists of an
array of SSR node addresses. The cWritablePath class is a sub-class that allows
the manipulation of the stored source route and the cEmptyPath sub-class represents
an empty route.

The cDynamicPath storage back-end uses heap memory to dynamically allocate
memory for the list of SSR node addresses. The length of the path is not restricted. The
cStaticPath storage back-end instead uses a fixed-size array, therefore restricting
the possible path lengths to a value defined at compile-time.

Both storage back-ends use reference counting, to avoid duplicate copies of the
same path. For cStaticPath, this is achieved by using cStaticPool, see section
5.3.13.

40 CHAPTER 5. THE NEW SSR-CORE LIBRARY

class cDynamicPath class cStaticPath

template class cPath

typedef tPath template class cEmptyPath template class cWritablePath

typedef tEmptyPath typedef tWritablePath

!SSR_WITH_STATIC_TABLES

Figure 5.12: Path class hierarchy.

The cDynamicPath class is only built if SSR_HAS_HEAP and
SSR_HAS_EXCEPTIONS are defined. The typedefs tPath, tWritablePath and
tEmptyPath are defined to use the static or dynamic path storage depending on
whether or not SSR_WITH_STATIC_TABLES is defined.

5.3.11 Messages
The leaf classes within the class hierarchy tree, as seen in figure 5.13, represent SSR
messages sent over the wire. The messages are either unserialised from the bit-stream
using the cMessage::ReadFromBuffer() factory method, newly constructed by
the library via new or cloned via the Clone() virtual method.

The non-leaf classes cMsgHopByHop and cMsgConnect are implementation
helpers and do not represent real SSR messages.

In case the environment provides no heap memory (i.e. SSR_HAS_HEAP is not
defined), the messages are created using the cMessagePool (which is based on
cStaticPool, see section 5.3.13).

The hello message, represented by the cMsgHello class, is used to broadcast the
local node’s existence to all physical neighbours. The message is regularly broadcast
by the local node using the cEventBroadcast-based timer. On reception of such a
message, it is not forwarded to other nodes, as it only concerns direct physical neigh-
bours.

The kill message, represented by the cMsgKill class, is used to indicate a node’s
shutdown. It is broadcast to all physical neighbours. When receiving the message, the
indicated node is removed from the interface table and the routing table. The message
is not forwarded to other nodes.

The max node announcement message, represented by the
cMsgMaxNodeAnnounce class, is used by the node with the highest virtual
address to broadcast its existence to the whole SSR network. Every node receiving
the message will first check whether it has received the same message before. If the

5.3. CLASS DIAGRAMS 41

class cMessagePool

abstract class cMessage

abstract class cMsgHopByHop

class cMsgRouteUpdate abstract class cMsgConnect

class cMsgNeighborNotification class cMsgPayload

class cMsgHello class cMsgKill class cMsgMaxNodeAnnounce

!SSR_HAS_HEAP

Figure 5.13: Message class hierarchy.

message is new, it will check whether the broadcasted information matches with its
knowledge of the virtual ring. Based on this it might possibly send updates to its
virtual neighbours. In the end, the announcement message is broadcast to all physical
neighbours (apart from the one it originally received it from).

The neighbour notification message, represented by the
cMsgNeighborNotification class, is regularly sent to both virtual neigh-
bours in the virtual ring. In case the neighbour table feature is enabled, the message
includes a copy of the local neighbour table. (See section 5.3.7 for details on neighbour
tables.)

The payload message, represented by the cMsgPayload class, transports the ac-
tual data from the upper layer. The class instance does not hold a copy of the payload
data within the instance, instead only a pointer to the original data is stored. If the
message is newly created, the payload pointer points to the application’s provided data
buffer. It it was received from the link-layer, the pointer points to the raw message
buffer. If the message has the routed flag set, it is assumed that the message’s target
address might not refer to an existing node’s address, but instead be intended for the
node that is virtually nearest to the target address.

Route update messages, represented by the cMsgRouteUpdate class, contain
route updates and always target a specific node. It is used to inform nodes about broken
links, so that they can update their routing tables. The message implicitly contains
freshly updated replacement routes through its source path.

42 CHAPTER 5. THE NEW SSR-CORE LIBRARY

class cNodeEnumeration

Figure 5.14: Class hierarchy of class cNodeEnumeration.

5.3.12 cNodeEnumeration
The cNodeEnumeration, as seen in figure 5.14, is used to allow node addresses
from cRouteCache to be enumerated by users of the cRouteCache class.

5.3.13 cStaticPool

class cStaticPool

Figure 5.15: Class hierarchy of template class cStaticPool.

The cStaticPool template class, as seen in figure 5.15, provides a pool of mem-
ory chunks. Each chunk is of equal size. The class only provides simple acquiring or
freeing of chunks. The memory pool is statically allocated at compile-time.

The class is used as implementation detail in cMessagePool for messages and
in cStaticPath for a pool of reference counted source paths.

Chapter 6

Evaluation

The following sections detail how the modifications to the ssr-core library were verified
and tested.

6.1 Unit tests
Modifications to any non-trivial piece of code need to be verified and tested thoroughly
to avoid introducing bugs. The old ssr-core implementation used a separately main-
tained set of unit tests to verify some of the library components.

As the code coverage of the unit tests was very limited and the tests weren’t inte-
grated into the build process, they weren’t very effective in preventing the introduction
of bugs. Therefore, the test-suite is now integrated into the build tree and executed after
each compile cycle, causing the build to fail in case one of the tests fails.

Errors within the unit tests are now reported in a format, that allows common graph-
ical development environments to visibly point to the failed test. 1

The unit tests were extended to cover more major components present within the
library. Specifically, the following tests were added in this work:

• In suite cTestPath, the tests TestSingleHop, TestWritable,
TestReverse and TestZero.

• In the newly added suite cTestRouteCache, the tests
TestEmptyHasSelfRW, TestEmptyThrowsNoPathFound,
TestLearnsPath, TestRemoveLink, TestPhysicalNeighbors,
TestPredecessorSuccessor and TestPathTowards.

• In the newly added suite cTestBitFieldArray, the tests
TestSizeCalculation, Test3And8Single, Test3And8Highest,
Test3And8All, Test8And3Single, Test8And3Highest and
Test8And3All.

Further tests were later added by Pengfei Di, the maintainer of the ssr-core library.
According to make check-test-coverage, which uses the LTP GCOV ex-

tension2, the current code coverage remains at only about 43.5 percent.
1The messages are displayed in a format that is sufficiently similar to the error output of the GNU GCC

compiler. This was verified with Eclipse.
2See http://ltp.sourceforge.net/coverage/lcov.php

43

http://ltp.sourceforge.net/coverage/lcov.php

44 CHAPTER 6. EVALUATION

Although the code coverage is far from perfect, the existing unit tests helped iron
out a few bugs during the ssr-core porting effort.

6.2 Automated simulation tests
Unit tests, as described in the previous section and as used within the project, are
explicitly intended for the testing of classes without the interaction of other classes
(and their bugs). Therefore, unit tests cannot test whether the components in the ssr-
core library properly interact and whether the library correctly implements the SSR
protocol.

To achieve something close to this kind of verification, SSR network simulations
are used, based on the OMNeT++3 framework. OMNeT++ provides a simulation en-
vironment that passes messages between user defined layers (figure 6.1). The environ-
ment allows the definition of hosts and network topologies, the tracking of the messages
between the defined network layers and hosts. It also simulates the progress of time,
allowing network tests spanning several hours to be simulated within seconds.

Figure 6.1: Message passing within the OMNeT++ simulation framework.

Using this framework and a simulation of a typical MAC layer allows the realis-
tic modelling and full simulation of an SSR network. These types of full simulation
scenarios were used to test ssr-core since the early stages of the library.

For reproducible simulations, as required for automated testing, the existing, com-
plex simulation of the MAC-layer was too unpredictable. Therefore, the complex MAC
simulation was reduced by Pengfei Di to a new, simple and deterministic message-
passing layer. This layer is provided within the new easyOmMac framework.

One of the features of the new framework, provided by the simulated application
component, is the detailed logging of packet paths, packet run-times and similar infor-
mation. Logs of known good simulation runs – using a trusted ssr-core library version
– are saved as reference log files. Based on these reference log files, log differences
during future simulation runs can be detected and reported.

The various simulation scenarios are stored in the scenario/ subdirectory, while
the expected content of the simulation log output files are stored within the results/

3http://www.omnetpp.org/

http://www.omnetpp.org/

6.3. RUNNING ON THE AVR PLATFORM 45

subdirectory. By running the simulation for each scenario and comparing the log re-
sults with the matching reference log files, the simulator was turned into an automated
simulation tester.

The simulations based on the easyOmMac predictable MAC-layer proved very
important for the ssr-core porting effort, as it was the only run-time integration test
available during most of the development time. Although the simulations never showed
any changes in routing behaviour, they did uncover interaction bugs or crashes within
the library.

According to the LTP GCOV extension, the simulation scenarios cover 47.3 per-
cent of the code, so more scenarios should be created to increase the code coverage.
Especially error and packet-loss cases are currently untested.

6.3 Running on the AVR platform
To verify, that the ported ssr-core library actually executes on the AVR target platform
and can use the basic AmbiComp software stack, the library was integrated into a test
environment (figure 6.2).

Figure 6.2: SSR test application in the partial AmbiComp software stack.

The test environment layers on top of the AmbiComp BIOS version 1.0. To avoid
integration complexity and memory limits, it uses a custom test application instead of
the ACVM. No interaction with any link-layer is performed. Instead, all activity of
ssr-core is fed back into the test application and logged to the BIOS’ serial console.

To allow the test application to run, the ssr-core library first needed to be compiled
for the AVR platform. As GCC’s AVR port only provides very basic C++ support, two
simple libraries needed to be created: avr-libstdc++ and avr-libsupc++.

The avr-libstdc++ library serves as a very simple replacement for the missing
libstdc++. It only provides a few missing, standard C++ headers and most of them
merely wrap around standard C headers (e.g. cstring wraps around string.h).

The avr-libsupc++ library provides method stubs and definitions, that belong
to the compiler side of C++ support and are absolutely necessary to link a C++ program
when using virtual methods or certain allocation and deallocation operators.

Next, based on the fully ported ssr-core library, a cStubSsrNode class was writ-
ten, sub-classing SSR::cNode. For all virtual methods the stub class logs the activity

46 CHAPTER 6. EVALUATION

and returns. The only methods implementing real functionality are the timer event han-
dlers (CallMeLater() and CancelEvent()). They interact with a timer event
scheduler.

As the ACVM would normally provide the timer management, the test application
needed to provide that facility itsself. Therefore, cTimerEventScheduler was
created, to queue and schedule a limited number of events. It gets repeatedly called by
the BIOS’ single timer event.

As the node and timer instances are too large for the stack, they are allocated on the
first external SRAM page (XRAM, page 0).

Tests have shown, that the node correctly registers its timers and regularly attempts
to announce itsself to its neighbours:

XRAM: Detected 4 pages, each page 32 Kbytes large
XRAM: Creating cTimerEventScheduler
XRAM: Creating cStubSsrNode
cStubSsrNode constructed
Calling node init
cStrubSsrNode::CallMeLater(2.520563)
cStrubSsrNode::CallMeLater(1.183149)
Starting timer
Entering event loop
cStrubSsrNode::HandleTimerEvent for event type 3
cStrubSsrNode::CallMeLater(3.849298)
cStrubSsrNode::HandleTimerEvent for event type 1
cStrubSsrNode::Broadcast
cStrubSsrNode::CallMeLater(3.895320)
cStrubSsrNode::HandleTimerEvent for event type 3
cStrubSsrNode::CallMeLater(4.234942)
cStrubSsrNode::HandleTimerEvent for event type 1
cStrubSsrNode::Broadcast
cStrubSsrNode::CallMeLater(2.092654)
cStrubSsrNode::HandleTimerEvent for event type 1
cStrubSsrNode::Broadcast
cStrubSsrNode::CallMeLater(2.505668)
cStrubSsrNode::HandleTimerEvent for event type 3
cStrubSsrNode::CallMeLater(3.804689)
...

Any further testing would need to involve at least a second node instance, which
would require adapting the code to at least one of the available link-layers. Due to time
constraints, these additional efforts are not within the scope of this work.

Chapter 7

Conclusion and future work

7.1 Conclusion
In the course of this study thesis, the restrictions imposed by the AmbiComp environ-
ment, regarding the integration of the ssr-core library, were determined. Approaches
were analysed to allow the library to cope with these restrictions. In the end, appro-
priate approaches were chosen and implemented. This involved the removal of heap
allocations, exceptions, RTTI usage and STL usage. It also involved shrinking data
structures and removing function inlining to shrink the memory and code foot-prints.

The changes were applied in such a way, that the ssr-core code-base remains fully
usable for all previous and future use-cases. This was achieved by refactoring data
storage classes and making the code configurable through compile-time options.

By improving the library’s unit test coverage and by the introduction of repro-
ducible network simulation scenario tests, the library was continuously verified.

The final ssr-core implementation was tested on the target platform AVR, interact-
ing with AmbiComp’s BIOS layer and performing basic operations.

Through-out the work, the library’s code was cleaned up and refactored.

7.2 Safety in the wild
The new implementation of the ssr-core library compiles, links and runs on the targetted
AVR platform and for the previously existing environments (i.e. within the OmNet++
simulation and on the MIPS platform). Before it is safe for usage in an environment
outside of simulations and carefully managed nodes, at least the following issues need
to be resolved.

7.2.1 Errors in constructors
As mentioned in section 4.3.2, the cPath-based classes do not handle out-of-memory
(OOM) conditions gracefully. To fix this, the Init()-approach mentioned in that
section could be implemented. It would involve moving the actual work out of the
constructors into Init() functions. Errors would then be indicated by an appropriate
return value and OOM conditions could be handled appropriately, e.g. by dropping
packets. Those conditions would therefore no longer cause the program to abort.

47

48 CHAPTER 7. CONCLUSION AND FUTURE WORK

7.2.2 Length limitation on source paths
The cStaticPath class assumes that paths do not exceed a certain hop-count (i.e.
length). Apart from the unsafe allocation problems mentioned in the previous section,
this static length approach might conflict with regular routing. Simulation runs might
help to determine typical, maximum path lengths. It could also be analysed how many
paths are used at the same time within the ssr-core implementation. Based on this
information, useful values could be determined for the cStaticPath hop length and
pool size.

7.2.3 Limited number of physical neighbours
The fixed-size interface storage table (cStaticInterfaceStore) needs a strategy
for entry replacement in case it is full. Currently, in case a new neighbours appears and
the table is full, the operation fails and the new neighbour is ignored.

Consider the following problems:

• How can network fragmentation be avoided if not all nodes within the local
network are known to each other? How can a consistent virtual ring be then
maintained?

• Would it help to accept new neighbours by picking them randomly, so that hope-
fully all nodes within the local network have connections to each other?

• Should nodes be prioritised before being thrown out? The priorisation could be
based on network type (to keep links between different types of networks active),
activity, age or some other scheme.

• Nodes announce themselves in regular intervals, so a full interface storage table
would regularly lead to the same overflow conditions. Should interface churn be
avoided within the table?

7.2.4 Table sizes need reality check
The table sizes chosen for various newly fixed-size structures should be verified by
simulations. Currently, most of the sizes are arbitrarily chosen, as they can’t easily be
determined by theoretical observations.

This includes the interface table, the source path lengths and the size of the static
source path pool.

7.3 Integration with the AmbiComp environment

7.3.1 Link-layers
To be useful for the AmbiComp environment, the SSR::cNode needs to communi-
cate with other nodes. It therefore needs to have access to link-layers, so that commu-
nication with other AICUs is possible.

An adapter for link-layers would need to handle support for more than one link-
layer type per node, e.g. for both ethernet and bluetooth at the same time. It would
therefore have to multiplex/demultiplex the HandleFromNic(), SendToNic()
and Broadcast() calls to and from the appropriate link-layers.

7.3. INTEGRATION WITH THE AMBICOMP ENVIRONMENT 49

7.3.2 ACVM
Event loop

As the ACVM handles the event loop, any timer management would need to interact
with the ACVM or use possibly existing timer infrastructure within it. In case the
ACVM provides insufficient timer handling capabilities, cTimerEventScheduler
(introduced in section 6.3) could be used as a starting point.

Access to SSR functionality

The ACVM needs to gain access to the functionality provided by the ssr-core library.
This can either be explicit access, by providing Java Native Interfaces for message
sending and receiving or transparently, by adapting the GAO implementation (compare
[SEF08]) to make use of SSR.

Dynamic memory

As the ssr-core resides within the OS-layer and neither that layer nor the accompanying
BIOS-layer provide dynamic memory management, all dynamic memory allocations
had to be circumvented. It might be worthwhile to explore possibilities of using the
ACVM’s memory management facilities within the SSR.

50 CHAPTER 7. CONCLUSION AND FUTURE WORK

Appendix A

Source tree and build
environment

This appendix explains the layout of the library’s source files and build system. It
introduces naming conventions for source code and code configuration.

A.1 Files and directories
A clean checkout from the code repository will contain the following files and directo-
ries:

File or directory Description
/ The base directory contains all source files, in-

cluding all headers (except config.hh).
/README.txt Contains information about the library and its

structure. Briefly documents how to use it.
/TODO Short list of open items.
/Makefile The central makefile. It provides short-cuts

for the actual makefiles within the compilation
target directories.

/common.mk Library of build targets used by the compila-
tion target makefiles.

/Doxyfile Configuration file for Doxygen, which is a
documentation generator.

/*.hh All C++ header files use the file name exten-
sion .hh. A single header file should describe
a single C++ class. The base name is derived
from the class name.

/*.cc All C++ implementation files use the file name
extension .cc.

/*.inl All C++ inline files use the file name extension
.inl. The inline files typically contain the
implementation of C++ template classes and
methods.

51

52 APPENDIX A. SOURCE TREE AND BUILD ENVIRONMENT

/cross-avr/ Each compile target has a separate directory. It
contains a Makefile and a config.hh file.
The “cross-avr” target is intended for use
within the ACVM. The code gets cross-
compiled for the AVR architecture. It is con-
figured for static tables and no heap. No unit
tests are run.

/cross-avr/config.hh Defines a set of preprocessor symbols to con-
figure the build for the “cross-avr” compile tar-
get.

/cross-avr/Makefile Based on /common.mk this makefile builds
the library for the “cross-avr” compile target.

/cross-mipsel/ Cross-compilation target for MIPS routers. No
unit tests are run. The directory contains the
same files as the /cross-avr/ directory.

/debug-linux/ Full-featured dynamic linux target with debug-
ging. The unit tests are run. The directory con-
tains the same files as the /cross-avr/ di-
rectory.

/release-linux/ Full-featured dynamic linux target without de-
bugging. The unit tests are run. The directory
contains the same files as the /cross-avr/
directory.

/static-linux/ Linux build with static tables and no heap. The
unit tests are run. This allows the static code
paths used by AVR to be tested on a linux ma-
chine. The directory contains the same files as
the /cross-avr/ directory.

/tests/ Directory containing the source files for the
unit tests.

/tests/main.cc Contains the unit test runner.
/tests/Test*.cc Unit test implementation file names are pre-

fixed with “Test” by convention.
/tests/cppunit2junit.xsl XSL file to translate the XML produced by

CPPUnit to the XML format normally pro-
duced by JUnit.

/tests/tests-common.mk Library of build targets specific to unit test
building. It includes /common.mk and is
used by the unit test compilation target make-
files.

/tests/release-linux/ Each native target has a matching build direc-
tory within tests. It contains a Makefile and
all compile-time generated files. This specific
directory is for the “release-linux” target.

/tests/release-linux/Makefile Based on /tests/tests-common.mk
this makefile builds the unit tests for the
“release-linux” compile target.

A.1. FILES AND DIRECTORIES 53

/tests/static-linux/ Build directory for the static-linux target.
The directory contains the same files as the
/tests/release-linux/ directory.

/tests/debug-linux/ Build directory for the debug-linux target.
The directory contains the same files as the
/tests/release-linux/ directory.

As soon as one or more targets were built, the above directories contain the follow-
ing new files and directories:

File or directory Description
/<target>/ This should be read as the target’s directory, i.e.

replace <target> with the name of the built tar-
get (e.g. /cross-avr/).

/<target>/build_flags.mk This makefile inclusion file contains the
CPP_FLAGS used to build the library. It is
automatically created by the build-system and
can be included in projects that make use of the
library.

/<target>/*.d All files with the .d suffix are dependency files,
documenting the matching .cc file’s header de-
pendencies, i.e. the build dependencies of the re-
sulting object file.

/<target>/*.o All files with the .o suffix are the object files for
the matching .cc files.

/<target>/libssr-core.a The ssr-core library variant intended for static
linking.

/<target>/libssr-core.so The ssr-core library variant intended for dynamic
linking.

/<target>/include/ssr-core/ This directory is created at build-time. It
contains symbolic links to the actual header
files. By providing this directory structure,
the headers can be referenced through fully
qualified #include<ssr-core/Class.hh>
statements, instead of through less specific
#include<Class.hh> statements.

/tests/<target>/*.d Dependency files. Same as /<target>/*.d,
only for the unit tests.

/tests/<target>/*.o Object files. Same as /<target>/*.o, only for
the unit tests.

/tests/<target>/SSR-Test The executable running all unit tests.
/tests/<target>/
SSR-Test.cppunit.xml

After running the above unit test exe-
cutable, this file contains the unit test re-
sults in CPPUnit XML format. Calling
make SSR-Test.junit.xml would then
create the same information in the JUnit XML
format. (See below.)

54 APPENDIX A. SOURCE TREE AND BUILD ENVIRONMENT

A.2 Build targets
The following build commands are possible from the source’s root directory:

Make command Description
make or make all Build the library for all build targets.
make check-test-coverage Builds debug-linux and static-linux build tar-

gets and gathers code coverage for the unit
tests. Generates a code coverage static in the
test-coverage-html/ directory.

make clean Clean all build targets.

The following build commands are possible within a build target directory (e.g.
within /debug-linux/ for the “debug-linux” build target):

Make command Description
make or make all Build the library for the build target. For native

builds, i.e. non-cross-compile builds, this auto-
matically triggers make run-tests as well.

make run-tests This make target only exists for non-cross-
compile builds. It compiles and runs the unit tests.
(It runs make within the matching unit test’s build
directory, see below.)

make clean Cleans all build artifacts for current build-tree and
the matching unit test tree.

The following build commands are possible within a unit tests’ build directory (e.g.
within /tests/debug-linux/ for the “debug-linux” unit test build):

Make command Description
make or make all Builds the unit tests and runs them in case some-

thing changed (either within the tests or within the
library).

make run-tests Builds and runs the unit tests.
make gdb-run-tests Builds the unit tests and runs them within a gdb

session.
make SSR-Test.junit.xml This reads the SSR-Test.cppunit.xml file

and creates the JUnit format.
make clean Cleans all build artifacts for the current unit test

build tree.

A.2. BUILD TARGETS 55

56 APPENDIX A. SOURCE TREE AND BUILD ENVIRONMENT

Bibliography

[CF05] Curt Cramer and Thomas Fuhrmann. Isprp: A message-efficient protocol
for initializing structured p2p networks. In Proceedings of the 24th IEEE
International Performance, Computing, and Communications Conference
(IPCCC), pages 365–370, Phoenix, AZ, April 7–9 2005.

[DEF08] Pengfei Di, Johannes Eickhold, and Thomas Fuhrmann. Linyphi: cre-
ating ipv6 mesh networks with ssr. Concurr. Comput. : Pract. Exper.,
20(6):675–691, 2008.

[EFS+08] Johannes Eickhold, Thomas Fuhrmann, Bjoern Saballus, Sven Schlender,
and Thomas Suchy. Ambicomp: A platform for distributed execution of
java programs on embedded systems by offering a single system image. In
AmI-Blocks’08, Workshop at the European Conference on Ambient Intel-
ligence 2008, Nuremberg, Germany, 2008.

[FDKC06] Thomas Fuhrmann, Pengfei Di, Kendy Kutzner, and Curt Cramer. Push-
ing chord into the underlay: Scalable routing for hybrid manets. Interner
Bericht 2006-12, Fakultät für Informatik, Universität Karlsruhe, June 21
2006.

[Fuh05] Thomas Fuhrmann. Scalable routing for networked sensors and actua-
tors. In Proceedings of the Second Annual IEEE Communications Society
Conference on Sensor and Ad Hoc Communications and Networks, pages
240–251, September 2005.

[Fuh06] T. Fuhrmann. Scalable routing in sensor actuator networks with churn.
Sensor and Ad Hoc Communications and Networks, 2006. SECON ’06.
2006 3rd Annual IEEE Communications Society on, 1:30–39, Sept. 2006.

[SEF08] Bjoern Saballus, Johannes Eickhold, and Thomas Fuhrmann. Global ac-
cessible objects (gaos) in the ambicomp distributed java virtual machine.
In Proceedings of the Second International Conference on Sensor Tech-
nologies and Applications (SENSORCOMM 2008), Cap Esterel, France,
August 25 – 31, 2008. IEEE Computer Society.

[SMK+01] Ion Stoica, Robert Morris, David Karger, M. Frans Kaashoek, and Hari
Balakrishnan. Chord: A scalable peer-to-peer lookup service for inter-
net applications. In SIGCOMM ’01: Proceedings of the 2001 conference
on Applications, technologies, architectures, and protocols for computer
communications, pages 149–160, New York, NY, USA, 2001. ACM.

57

	Introduction
	The AmbiComp platform
	Hardware
	Software
	Build environment
	Integration of the SSR protocol
	Interaction
	Environment

	Introduction to ssr-core
	Important components
	The node
	Routing
	Timers
	Messages

	State machine

	Changes to ssr-core
	Avoiding heap memory and the STL
	SSR messages
	SSR payload messages
	SSR timer events
	NIC addresses
	Interface table
	Routing table
	Neighbour table
	Source paths
	Maximum node

	Reducing and choosing table sizes
	Interface table
	Source paths
	Routing table

	Exceptions
	Errno value
	Exceptions from constructors

	Run-Time Type Identification
	Removing inlining
	Code renovation

	The new ssr-core library
	Code configuration
	Abstract cNode class
	Compile-time options

	State machine
	State SSRConstr
	State SSRIsoMax
	State SSRMax
	State SSR
	State SSRShutd
	State SSRDestr

	Class diagrams
	cNode
	cRouteCache
	BitFieldArray
	Events
	cAddr
	Interfaces
	NeighborTable
	MaxNodeAnnounceStore
	NicAddr
	Paths
	Messages
	cNodeEnumeration
	cStaticPool

	Evaluation
	Unit tests
	Automated simulation tests
	Running on the AVR platform

	Conclusion and future work
	Conclusion
	Safety in the wild
	Errors in constructors
	Length limitation on source paths
	Limited number of physical neighbours
	Table sizes need reality check

	Integration with the AmbiComp environment
	Link-layers
	ACVM

	Source tree and build environment
	Files and directories
	Build targets

