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Abstract

Cloud providers restrict access to fine-grained energy metrics in multi-tenant vir-
tualized environments, as they can be exploited for side-channel attacks. Mean-
ingful interpretation requires system-wide oversight, which is prohibited for
guest VMs. Developers lack the tools to debug and optimize applications for en-
ergy consumption under these restrictions. As a result, energy statistics should
be provided by the host system. This poses a semantic gap, as the host needs
to introspect the guest to calculate meaningful energy statistics. Existing ap-
proaches are either invasive and require VM modifications, or attribute energy
only to the entire VM.

In this thesis, we address this problem by presenting two introspection ap-
proaches that provide metrics required for energy attribution. Both techniques
leverage hardware features, namely MOV to CR3 VM exiting and Intel Processor
Trace (Intel-PT). The MOV to CR3 VM exiting approach allows us to trace an ap-
plication start and execution time, happening in the same address space, on mod-
ern AMD and Intel processors. Intel-PT enables high-resolution process switch
detection and precise cycle counting through the use of trace packets and times-
tamp counter estimation. We evaluate Intel-PT for its impact on performance
and power consumption, identifying optimal configuration parameters. Our ex-
periments indicate an increase in execution time within the range 0-6 % and a
minimal power consumption overhead of 2 to 3 % in the worst case.

This could in the future allow for better energy attribution in data centers,
without the need to modify guest operating systems, yet identify energy-wasting
processes.
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Chapter 1

Introduction

Cloud providers export estimated greenhouse gas emissions on a monthly basis
to their customers [[1-4]]. If consumers want to reduce greenhouse gas emissions
at the software level and improve the energy efficiency of their programs, these
providers do not have the proper tools to report energy consumption on a fine-
grained level.

Power-metric interfaces such as RAPL enable fine-grained measurements at
the system or package level, but lack support for individual processes, VMs, or
containers. As there are multiple tenants on such a system, cloud providers dis-
able such reporting due to the possibility of side-channel attacks on other ten-
ants [5, 6].

To enable energy reporting, there are some approaches shown, e.g., by En-
ergAt [7], VMware [8], and Kepler [1, 9]. However, their work either reports
estimated energy consumption for a whole VM without process attribution or
violate transparency. For instance, Kepler relies on eBPF programs, which need
to be injected into the VM.

To overcome these issues, we envision a debugging framework that inspects
a virtual machine including running applications in the background with mini-
mal overhead and only employs more aggressive logging and inspection on user
interaction or predefined events.

We have built a prototype which allows estimated energy consumption / power
reporting at the process level while bridging the semantic gap introduced by
hardware-accelerated virtual machine boundaries, though certain features are
not yet fully operational. We envision a system that can also be used to gather
valuable data for other purposes, e.g., memory tracing or debugging, keeping the
impact minimal for running VMs.

Our work leverages Intel Processor Trace (Intel-PT), a hardware feature to
trace the execution context and performance of a process or the whole system
with minimal overhead. Intel-PT allows keeping track of the currently running
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process by tracing modifications to the CR3 register, which holds a reference to
the page table in use, on x86. Furthermore, timings, passed clock cycles, and,
depending on the microarchitecture in use, information about power states are
also included in the trace.

By utilizing this tracing mechanism, we are able to generate a timed trace
of running processes. Combined with data from the (virtualized) Performance
Monitoring Unit (PMU) and by utilizing Kepler’s energy attribution framework,
we ideally are able to generate a real-time process energy consumption estima-
tion, even for processes running inside VMs. This data can, in a next step, be
mapped to human-readable process information, i.e. PIDs, using noninvasive or
minimally invasive virtual machine introspection. A possible speed-up would be
a shadow VM / process to gather information from within the VM, without the
need for interruption or code insertion.

We might also export these metrics using VMSH [10] to the guest, if it opts in,
to receive such information in the future. Unknown human-readable processes
are exported by the translated CR3 address. This occurs while using nested vir-
tualization or stale mappings of page table addresses to process identifiers. The
whole accounting process is OS-agnostic and only relies on information gathered
with minimal—additional—interruption of a running VM. Introspection capabil-
ities are out-of-focus for our prototype, but may be limited to common cloud
operating systems, like Linux.

Furthermore, we compare the performance implications with a different ap-
proach, which uses MSR and CR3 register write interception. This technique
enables the use of AMD hardware that does not have an Intel-PT counterpart.

We give an introduction of the used technologies in Chapter|[2] a brief overview
of related work in Chapter [3] Our design can be found in Chapter [4] followed
by the description of our research prototype in Chapter [5/and its evaluation in
Chapter [6]



Chapter 2

Background

The main technology used for our introspection and energy reporting approach
are tracing and performance monitoring capabilities of modern Intel x86 proces-
SOrs.

2.1 Virtual Machines

One of the main goals of operating systems is to provide each process with the
illusion that it is the only process that runs on hardware. Thus, it has to virtualize
hardware in one way or another.

Virtual machines extend this concept to whole operating systems; extend-
ing hardware virtualization to a state where operating systems (guests) run si-
multaneously on a single machine. Doing so provides multiple advantages, e.g.,
isolation, or ease of debugging / testing of applications on multiple emulated ar-
chitectures and operating systems.

Virtual Machine Monitors (VMMs), also called hypervisors, are responsible
for managing virtual machines. They either run directly on the hardware (type
1) or on top of an operating system (type 2) [11]. Major cloud providers [12]]
resort to type 2 hypervisors, backed by KVM.

Akin to context switching, CPU manufacturers provide mechanisms to enter
(VM entry) and exit (VM exit) virtual machines [13, 14]. On exit, the processor
saves and restores the processor state and execution context, e.g., all general-
purpose registers.
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2.1.1 Virtual Machine Control Structure

Prior to entering a virtual machine, the CPU and ultimately the VMM has to set
up structures to organize VMs. Moreover, a dedicated space for the information
saved on VM exits is required.

Intel implements this structure with the Virtual Machine Control Structure
(VMCS) [15]. AMD provides the Virtual Machine Control Block (VMCB) [14],
both serve the same purpose.

Notably, VMCS provides VM entry and exit control fields which can be used
to back up and restore MSRs. It is possible to utilize this feature to restrict Intel-
PT trace generation to the guest.

Furthermore, it specifies event interception, e.g., interrupts, exceptions, and
instructions.

2.1.2 Introspection

Virtual Machine Introspection (VMI) refers to the process of extracting infor-
mation of VMs from the outside. It is mainly used by security researchers who
want to investigate how malware behaves while keeping an additional layer of
security. VMI can be separated into active and passive introspection [[11]]. Pas-
sive introspection refers to unsynchronized observation without interfering with
the VM, whereas active introspection intercepts events. Such events range from
accessing registers to accessing memory or placing breakpoints.

Other applications of VMI are resource-aware scheduling [[16] and VM intru-
sion detection and prevention [17].

These techniques can be used to access additional data to bridge the semantic
gap between the host and the guest OSs.

2.2 Running Average Power Limit

Both Intel and AMD report energy consumption for the package domain through
the Running Average Power Limit (RAPL) MSR. Values are typically updated in
a regular time interval, i.e., every 1 ms on Intel CPUs. AMD also exports power
consumption for each core [[18]], whereas Intel provides information for DRAM
energy consumption and uncore components [13]], i.e., the graphics unit depend-
ing on the model.

RAPL is a widely utilized mechanism in the field of energy estimation and
accounting (Section 3.2).
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2.3 Intel Processor Trace

Intel Processor Trace (Intel-PT) [15] allows tracing of programs and the whole
system with minimal overhead. It follows the goal to trace only the bare min-
imum required to reconstruct the execution in combination with the executed
object (process, container, VM).

Intel-PT is an extension for the Intel x86 architecture and has been introduced
with the Broadwell microarchitecture with the goal of atomically writing iden-
tifying information about the execution to main memory or a platform-specific
tracing subsystem. The captured data provides, depending on the architecture,
insight for:

« The currently running application
+ The control flow

+ Timing

Power state changes

Interrupts and exceptions

« VM entries and exits

Furthermore, user defined information can also be added to the trace (using a new
instruction PTWRITE). It is to be noted that the supported features vary depending
on the deployed microarchitecture, e.g., power state changes are currently only
available for low-power architectures used for E-cores.

Intel provides a reference implementation for decoding traces [[19]. There also
exist several tools [20}[21] for capturing as well as decoding traces in Linux user
space.

2.3.1 Data Output

Intel-PT generates packets for each event, e.g., writes to the CR3 register, which
points to the page table of a process, or periodically, e.g., for system time infor-
mation. These packets are either written to the main memory while bypassing
caches or forwarded to a tracing device. Intel-PT supports three ways to collect
and make the data available to the user:

Firstly, a single physically contiguous memory range that acts as a circular
buffer.

Second, multiple physically contiguous memory ranges which are treated as
one big memory range. It is described in detail in Section[2.3.1{Table of Physical
Addresses).
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Finally, a platform-specific tracing subsystem.

Once a memory range is filled, Intel-PT can trigger a Performance Monitoring
Interrupt (PMI) if requested.

For each core/hyperthread with tracing enabled, a separate output region
must be specified.

Table of Physical Addresses

Multiple ranges of physically contiguous memory can be linked together to form
a single large continuous trace buffer range from Intel-PT’s point of view. To do
that, Intel provides a table structure. Each entry within the table refers to one
physically continuous range. An entry consists of the physical address of the
range, the size encoding of the range, a stop bit, an interrupt bit and an end bit.

If the end bit is set, it indicates that the address points to the next table base.
The table may have its own address written in it, creating a circular trace buffer.
The stop as well as the interrupt bit must be set to 0 in case the end bit is set.
Otherwise, a ToPA error occurs.

If the stop bit is set, the hardware disables trace generation and sets a stopped
bit within the IA32_RTIT_STATUS MSR once the corresponding range is filled. This
mechanism is used to avoid accidental overwriting of unconsumed data. Ranges
marked with the interrupt bit cause a non-maskable interrupt to be issued after
the range has been filled. Once an interrupt is issued, the hardware sets the
IA32_PERF_GLOBAL_STATUS. Trace_ToPA_PMI bit. In contrast to ranges marked with
the stop bit, tracing continues even while handling the interrupt unless tracing
is manually disabled. It is legal for the stop and int bits to be set at the same time.

Prior to enabling tracing with ToPA, the IA32_RTIT_OUTPUT_BASE MSR, which
holds a physical address to the currently active ToPA, must contain a proper
address. TA32_RTIT_OUTPUT_MASK_PTRS stores an entry index of the ToPA and an
offset within the entry to which the trace hardware begins to write packets. Once
tracing has stopped, either by hitting a stop bit within the ToPA or by manually
clearing TraceEn, IA32_RTIT_OUTPUT_BASE and IA32_RTIT_OUTPUT_MASK_PTRS are
updated by the hardware to reflect the current position within the trace buffer.
Unfortunately, both MSRs may not reflect the current write position during trac-
ing.

2.3.2 Packets

Packets consist of a header for packet identification and, optionally, a payload.
In Table 2.1 we introduce some of Intel-PTs packets. Packets TNT to PSB are

available on recent processors and provide insight into the basic execution. The

PTWRITE instruction that yields a PTWRITE packet allows adding user defined
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data to the trace as well as power packets (EXSTOP-PWRX) that offer details on
sleep and power transitions, have been introduced with the Goldmont Plus mi-
croarchitecture [[15]]. Processor Event Based Sampling (PEBS, documented in the
Intel Architectures Software Developer’s Manual (SDM) [13]]) packets (BBP-BEP)
are available starting with the Tremont microarchitecture. Event packets (CFE-
EVD) that expose information about asynchronous events has been introduced
with the Gracemont microarchitecture. However, these features might not be
available even on cores with the required microarchitecture. Support must be
validated using CPUID [15].

We use the blue highlighted packets to identify when and for how long an
application runs. This information allows us to correlate the trace with measured
energy consumption, e.g., Green packets aid in energy estimation by of-
fering insights into the processor’s state and performance. Finally, red packets
provide detailed information about the executed process state and are therefore
used for advanced debug reporting, or could be used for fine-grain thread anal-
ysis.

Packet ‘ Description ‘ Limitiations

Taken/Not- | Contains whether the last N direct IP must be resolved

taken branches have been taken. with other packets

(TNT) and the executed

code.

Target IP Encodes the jump destination, Is not generated for

(TTP) including VM entry / exit and direct branches.
interrupts.

Packet Contains the IP address upon enabling

Generation | tracing.

Enable

(TIP.PGE)

Packet Contains the IP address upon disabling

Generation | tracing.

Disable

(TIP.PGD)

Flow Provides the source IP of jumps caused

Update by asynchronous events, e.g. interrupts

(FUP) or VM exits.
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Paging In-
formation
(PIP)

TraceStop

Core:Bus
Ratio (CBR)

Timestamp
Counter
(TSC)

Mini Time
Counter
(MTC)

TSC/MTC
Alignment
(TMA)

Cycle
Count
(CYO)

VMCS

Overflow
(OVF)

CHAPTER 2. BACKGROUND

Generated on CR3 changes and
contains the updated page table
address. Used to keep track of the
currently running application.
Contains a non-root bit. It is set if the
guest is executing.

Generated when IP is out of scope and
Intel-PT should stop tracing.

Reports the current core to bus
frequency ratio. Can be used to
correlate cycles, frequency and time.

Contains a copy of the timestamp
counter at the point of packet
generation. This includes the software
offset, which may differ in VMs.

Periodically reports a common
timestamp copy, i.e., the core’s crystal
clock tick count. This is used to
correlate real time with generated
packets.

Generated in combination with a TSC
packet and contains the MTC payload
& normalized number of processor
cycles since the last crystal clock tick.
Used to correlate TSC, MTC and
processor cycles.

Encodes the passed clock cycles since
the last packet of its kind. It is used to
count passed clock cycles.

Encodes VMCS address upon a VMPTRLD
instruction. This must happen before a
vCPU can be scheduled. Can be used
for keeping track of the currently
running VM.

Indicates that a buffer overflow
occurred. Holds the IP at which tracing
has been resumed.

Cant be associated
with VM without
further tracking.

Is not generated
often compared to
other packets.

Has a lower
resolution than the
TSC payload.

It does not track
VM entries.
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Packet Is a feedback indicator after a fixed
Stream output of bytes written to the trace
Boundary buffer.
(PSB)
Block Begin | Indicates the begin of PEBS data. Might be
(BBP) unavailable on
some
processors / cores.
Block Item | Data of PEBS event. Might be
(BIP) unavailable on
some
processors / cores.
Block End | End of PEBS event data. Might be
(BEP) unavailable on
some
processors / cores.
PTWRITE | 4 or 8 bytes of data added to the buffer | Might be
(PTW) caused by an executed PTWRITE unavailable on
instruction. It is used to manually add | some
user defined data to the trace. processors/ cores.
Execution Indicates that the execution has Does not specify
Stop stopped. the exact event but
(EXSTOP) indicates a change
in frequency. Might
be unavailable on
some processors.
MWAIT Encodes the CPU power state (C-State) | Might be
changes caused by MWAIT alike unavailable on
instructions. some
processors / cores.
Power Is sent on C-State entries. Might be
Entry unavailable on
(PWRE) some

processors / cores.
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Power Exit | Generated on C-State exits. Might be
(PWRX) unavailable on
some

processors / cores.

Control Indicates the occurrence of Might be
Flow Event | asynchronous events, i.e., interrupts or | unavailable on
(CFE) exceptions. Can be used to detect VM some

entries, exits and the interrupt type if it | processors/ cores.
caused an exit.

Event Data | Includes information about CFE Might be

(EVD) packets which were generated due to a | unavailable on
page fault. Is used to get information some
about the faulted address, VM exit processors / cores.

qualification and reason.

Table 2.1: Intel-PT packet definitions

2.3.3 Configuration

The IA32_RTIT_CTL Model Specific Register (MSR) is available per core or thread
if the microarchitecture is capable of hyperthreading. It is used to enable tracing
and control trace packet generation.

In the following, we highlight important configuration options available in
the MSR. Each entry is annotated with the bit length of the field. Unless stated
otherwise, a value of 1 indicates that the feature is enabled.

TraceEn:1 controls the trace generation.

0OS:1 allows packets to be generated if the Current Privilege Level (CPL) equals
zero. So all kernel activity can be traced. The CPL is used for access control
to protected instructions. A CPL of 0 encodes kernel privileges.

User:1 allows packets to be generated if the CPL is greater than zero. As the
name suggests, all user level packets are recorded.

CYCEn:1 enables the generation of cycle packets.

CycThresh:4 controls how many cycles have to pass until the next CYC packet
can be generated. It is determined by the following equation [21]:

min_CyCles = QCyCThreshf 1
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Not all values are supported on all platforms. Intel provides a bitmap of
valid CycThresh values, which can be queried by the CPUID instruction. Each
set bit positions indicate a valid input. For example, 0b1010 indicate that 1
and 3 are valid inputs, but 0 and 2 are not.

PwrEvtEn:1 controls power event packets (EXSTOP-PWRX in Table [2.1).

ToPA:1 indicates whether the ToPA mechanism described in Section or a
single output range is used.

MTCEn:1 enables Mini Time Counter packets.

MTCFreq:4 controls the frequency of how often the MTC packets are generated
in respect of the Crystal Time Clock (CTC). The CTC ticks which need to
pass until the next MTC packet is generated can be expressed with the
following equation [21]]:

CTC_fregency
2MTCF7”eq

mtc_frequency =

where the CTC_freqgency is the frequency of the Crystal Time Clock.
Akin to the CycThresh value, the MTCFreq has to match a bitmap provided
by CPUID.

TSCEn:1 controls Time Stamp Counter packets.

BranchEn:1 enables the generation of packets which indicate the position within
the executed program. This includes, but is not limited to TNT, TIP and
FUP packets. It does not affect packets required to determine which pro-
cess is currently running.

PSBFreq:4 describes after how many bytes written to the trace buffer a PSB
packet should be generated. The number of bytes needed is seen in the
next equation [21]]:

psb_period = 2P9BFreatl pytes
Again, the value must satisfy the requirements provided by CPUID.

EventEn:1 enables the generation of event packets (CFE-EVD in Table [2.1).

DisTNT:1 suppresses TNT packets even if BranchEn is set.
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2.3.4 Performance Counter

In order to analyze execution performance, insight is required. While this can
be partially archived with software, CPU vendors ship a Performance Monitoring
Unit providing counter MSRs for a variety of events. Two types of performance
counters exist on modern hardware, fixed-function and general purpose coun-
ters. Fixed-function counters are hardwired to a specific event such as retired
instruction count or core cycles. In contrast, general purpose counters can be
configured by the user. For instance, it can provide information about cache
misses or branch instructions where no fixed-function counter exists [13]. On
AMD platforms, only configurable counters are available whereas Intel platforms
provide both [22].



Chapter 3

Related Work

In this Section, we summarize and discuss previous work related to Virtual Ma-
chine Introspection (VMI) and energy attribution.

3.1 Virtual Machine Introspection

As previously mentioned in Section VMI is the process of extracting in-
formation from VMs. We present a range of introspection approaches that uti-
lize agent-based techniques as well as external observation and communication
across VM boundaries.

VMSH is a hypervisor-agnostic abstraction for attaching services to a VM on
demand. Such services range from adding in-VM functionality to uni- and
bidirectional communication between the VM and the host.

Thalheim et al. achieve this by implementing VirtIO character and block
devices using rust-vmm [23], a common set of user space libraries for build-
ing Virtual Machine Monitors (VMMs) developed and relied upon by major
cloud providers [24].

A minimal eBPF program reveals the location of the guest VM’s memory.
Using this information, a library is uploaded to the guest to make the ser-
vices available. Prior to reentering the guest, the Instruction Pointer (IP) is
updated to the sideloaded library’s entry point using system call injection.
VMSH uses ptrace to halt and hijack the VMM process. This is required
as only the VMM process is allowed to perform modifications to the guest,
which includes register altering. It continues by determining the Kernel
Address Space Layout Randomization (KASLR) offset and resolving a min-
imal set of kernel symbols, which are used to start the drivers and make the
VirtIO devices visible to the guest. For block devices, OverlayFS prevents

15
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conflicts between the guest- and service-provided files. Inside the guest,
access to the Memory Mapped 10 (MMIO) of the VirtIO devices triggers
a VM exit. These exits are intercepted with ptrace and forwarded to the
VMSH device, which can proceed processing the exchanged data.

Their prototype implementation works with Linux v4.4 up to v5.10. How-
ever, porting it to a newer guest OS is expected to be of low effort [10].

LibVMI is an open-source library with the purpose of introspecting a VM’s state
from outside. LibVMI is designed to work with running VMs as well as
memory snapshots. Furthermore, passive as well as active introspection in
real-time is possible with a range of hypervisors, such as Xen, Bareflank,
and QEMU-KVM. For QEMU-KVM, there are multiple choices: Using a
patched QEMU-KVM system or KVM’s debugging interface [16, 25, 26].

Libkvmi is an introspection library for KVM and QEMU akin to LibVM]I, intro-
duced in 2020 by Bitdefender.

The introspection subsystem for KVM (KVMi) exposes an introspection
interface for each VM with a Unix domain socket. The user-space library
builds an API on top of the socket [[11]].

Furthermore, Libkvmi has been integrated into LibVMI. Currently, only
Linux v5.4 is supported and porting it to newer Linux versions is not fea-
sible in a reasonable amount of time [27, 28].

VMIFresh introduces freshness guarantees for the memory, process, and ad-
dress translation cache to LibVML It works by generating exceptions for
write access on pages of interest. If an exception occurs, VMIFresh can up-
date the cache entries. In comparison to the unmodified implementation
of LibVMI, which simply flushes the caches every second or not at all [11],
the cache contains no stale data entries. For instance, the process cache,
which holds a mapping of process identifiers to the addresses of the page
table, listens for memory access of pages containing task_struct: :mm.

Furthermore, they propose an integration into Volatility 3 [29], which is a
framework for advanced memory analysis with a focus on static memory
dumps [30].

LibVMI for AMD & ARM summarizes the state-of-the-art for VMI systems for
Intel, AMD & ARM architectures. Dangl et al. extend the VMI functional-
ity available to Intel CPUs to AMD and ARM processors. Their approach
leverages architectural structures, such as the Interrupt Descriptor Table
(IDT) on x86 and the Vector Base Address (VBA) on ARM, to efficiently
determine the KASLR offset. As these structures are defined within the
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KASLR region, they are relocated. Furthermore, their relocated position is
visible through privileged registers. Calculating the difference yields the
offset in constant time.

Linux stores a list of processes in a linked list of task_structs. The first
entry in this list is the init_task, which is also rebased with KASLR. In
contrast, the previous algorithm performs a linear search of the address
space for the init_task struct using an inverted page table . The found po-
sition is compared to the address without KASLR, thus exposes the KASLR
offset.

The constant time algorithm poses a significant improvement over the
previous approach, especially on ARM systems with a significantly larger
search space [31].

VMware Tools provide a set of guest-installed services for Linux, macOS, and
Windows which can be queried by the hypervisor to gain knowledge about
the running VM. For instance, it is capable of acquiring a list of running
processes inside the VM and report it to the hypervisor.

3.2 Energy Accounting and Estimation

In this Section, we examine the field of energy accounting.

Reliable Basic Block Energy Accounting studies fine-grained energy attri-
bution for basic blocks, which are sequences of instructions without con-
ditional branches or jumps. Before each basic block, code to trace RAPL
(Section via the Linux driver, is injected using compiler modifications.
The same is done before external function calls and after returns. The con-
sumed energy is retrieved via the Linux RAPL driver. With Intel Processor
Trace (Intel-PT), the basic blocks are identified within external functions.
Finally, the RAPL delta energy is attributed to the basic blocks by calcu-
lating the ratio of the time spent in the block and the RAPL update inter-
val [32].

Kepler is a framework for energy attribution of processes in containers. It col-
lects system-wide energy consumption data reported by RAPL, ACPI, and
NVML. It measures idle, activation, and dynamic power consumption, and
attributes energy usage to individual processes by correlating power data
with process-level metrics. These metrics include CPU time, interrupts,
and performance counters that are obtained with an eBPF module. Kepler
trains power models based on the collected data to estimate per-process



18 CHAPTER 3. RELATED WORK

energy usage. In their work, Amaral et al. evaluated the accuracy of mod-
els with different combinations of process metrics. [9,33]]

EnergAT provides fine-grained, thread-level energy accounting that respects
multiple NUMA nodes and DRAM usage patterns across heterogeneous
systems. The system performs accounting based on CPU time and memory

usage specific to individual NUMA nodes [7].



Chapter 4

Design

In this chapter, we present the design of how existing hardware features, namely
Intel Processor Trace (Intel-PT) and CR3 write exiting can be leveraged to provide
introspection for process energy attribution. We present two approaches, each
utilizing one of these mechanisms.

VM Tracing

Enables

Process Tracing

VM ID & VCPU

Energy Attribution (—@

Figure 4.1: Overview of the main design components

The whole process comes down to three main components visualized in Fig-

ure [4.1¢

VM Tracking tracks which virtual machines exist, assigning unique IDs to them.
With the Intel-PT method, it tracks further information about vCPUs in or-
der to enable identifying processes uniquely across host-guest boundaries.
Upon a user-initiated enable request, the system is responsible for starting
the Process Tracing component.

Process Tracing tracks when a process is running and collects information
within the hypervisor, which can be used to draw conclusions about the
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energy consumed. Furthermore, it gathers uniquely identifying process in-
formation. In our design, this is the page table address, which resides in the
CR3 register if the process is currently running. We pass this information
as a stream of events to the Energy Attribution component.

Energy Attribution measures overall packet energy consumption and data re-
quired to split up the tracked energy consumption and attribute it to pro-
cesses.

4.1 VM Tracking

The VM Tracking component tracks created Virtual Machines (VM) since the
boot of the host. A unique identifier is assigned to each VM on creation. Once
the user requests enabling of energy estimation for a VM, it starts the Process
Tracing.

Depending on the Process Tracing approach picked, further data is required to
uniquely identify processes. The main problem is that VMs use their own virtual
address space. Multiple guests are allowed to place the page table at the same
address within their address space. This leads to duplicate CR3 content, thus
purely relying on the page table address for process identification is infeasible.
Such addresses are not unique and might further change over time as processes
are created and destroyed.

On Intel platforms with Virtual Machine Extensions, each vCPU is paired
with a control structure (VMCS) (Section [2.1.1). Prior to executing work on a
vCPU, the VMCS has to be loaded into the physical CPU using the VMPTRLD in-
struction. One Process Tracing approach we present in our design takes the
VMCS address as a hint for VM process identification. Thus, the VM Tracking
component has to maintain a lookup data structure of the VMCS address and the
corresponding vCPU and ultimately the VM.

Figure 4.2 shows how the lookup structure is maintained. Once the user cre-
ates a new VM, the hypervisor assigns a unique ID to it. After the identifier is
established, the user may add one or more vCPUs to the VM. The hypervisor
proceeds with creating the vCPUs, ultimately allocating memory for the VMCS.
We take the physical address of each VMCS and pass it along with the VM ID
and vCPU it to the VM Tracker.

If the user requests the hypervisor to destroy a VM, each vCPU is destroyed
along with it. Prior to freeing the VMCS, we remove the mapping from the
lookup structure.
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«— User Request ——

VM Creation VM Destruction

vCPU Creation vCPU Destruction

Inserts i Removes i

VMCS Address vCPU 0 VM 0
| vMcs Address | vcpu1 | vmo
"l vMcs Address | vcPuo | vM 1

Figure 4.2: VMCS address tracking and mapping

4.2 Process Tracing

We identify processes within a VM instance by their Page Table Address (PTA).
Our design tracks the consumed cycles as well as the duration the process runs.
Combined with the time the process is loaded, we can attribute energy as de-
scribed in Section We present two different approaches to track cycles and
time of processes.

4.3 CR3 Write Exiting

Intel as well as AMD provide hardware features which cause VM exits upon
MoV to CR3 [14} 15]], commonly used for shadow paging. On Intel platforms, the
feature is controlled through the VMCS (Section[2.1.1) and can be enabled using
the VMWRITE instruction.

Once VM exit occurs, hardware writes an exit reason to the VMCS [15, |34]
which states whether the exit has been caused by a control register access and
can be retrieved by the hypervisor using the VMREAD instruction. In that case,
we check the exit qualification, also resident within the VMCS, which provides
further information about the access type and which control register has been
accessed in particular. If we find the cause for the VM exit to be a MOV to CR3,
we store the PTA. Additional VMI techniques to translate the PTA to a unique
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process identifier which is not reused must be applied. This is required as PTAs
can be reassigned, if a process terminates and a new one spawns and places its
page table at the same address. However, even if no VMI is used, this might not
be a problem for most energy diagnostic purposes, as short-lived processes have
commonly little to no impact on overall energy consumption.

Furthermore, we retrieve consumed cycles using performance counter and
store the TSC value. Upon VM Exit, we read the performance counter and TSC
again and calculate the delta of consumed cycles. Finally, we pass the event
consisting of the process, start TSC, end TSC, cycle count and the logical cpu on
which the exit happened to the Energy Attribution component (Section [4.5).

4.4 Intel Processor Trace

Intel-PT generates Paging Information Packets (PIP), which contain the new PTA
written in the CR3 register. Furthermore, a non-root bit determines whether the
write has been executed on the host or within a guest. Time stamp counter, Mini
Time Clock and Cycle Packets allow estimating the time stamp counter value for
each PIP packet, which makes them feasible for start time and duration calcu-
lation of processes. The cycle packets are generated with a CYC packet eligible
packet type, which includes the PIP packet. However, the frequency of the CYC
packet generation can be configured.

Intel Processor Trace (—[ Enables VM Tracker

[ Buffer range ] [ VM ID & VMCS Address ]

Y

Parser —[ Unordered Events ]—) Energy Attribution

Figure 4.3: Overview of the Intel-PT based apporoach
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Figure shows how the Intel-PT approach is integrated into our design.
Changes to the basic design overview [4| are highlighted in blue in the figure. In
contrast to the CR3 write exiting approach, we have to trace each CPU the VM
can schedule vCPUs on. Thus, the following has to be done on each logical CPU.

The Intel-PT component begins with allocating the trace buffer and filling
ToPA structure described in Section It continues setting up the MSRs (Sec-
tion and for Intel-PT to produce the required packets and enables it.
Furthermore, we register a non-maskable interrupt handler. Our design saves the
position within the buffer at which tracing has started. Once an interrupt is han-
dled, we pause tracing, read the producer position and update interrupt and stop
positions in the buffer. Placing interrupts is required to avoid buffer overruns
and, as a consequence, loosing data. They enable to process smaller parts of the
buffer without disabling tracing for an extended period of time. After that, trac-
ing is resumed, and we pass the range [original start position, producer position)
to the parser.

When the parser (Section[4.4.4) receives a range from any CPU, it begins pars-
ing the packets. It attributes CPU cycles to each PIP packet and uses the VMCS
to identify which VM the CR3 address belongs to. As ranges are received from
multiple CPUs, CR3 events parsed might have a later timestamp than events
contained in ranges received later on. This results in an unordered stream from
a time point of view, thus we have to sort them within the Energy Attribution
component (Section [4.5).

4.4.1 Configuration

In order to reduce the amount of data generated by Intel-PT and minimize the
parsing overhead, we only enable the minimum of features required for energy
attribution.

As stated in Section we require PIP, CYC, MTC and TSC packets to be
generated. Therefore, we set CYCEn, MTCEn and TSCEn for the value written to the
IA32_RTIT_CTL MSR.

In order to reduce the size of the trace, we aim for the largest supported value
of CycTresh, MTCFreq and PSBFreq. This poses a tradeoft, leading to a loss of pre-
cision in consumed cycles attributed to a process (Section as well as less
granular estimated timestamps per packet. As we only aim to use our approach
for board diagnostic purposes, sample with a relatively low frequency and en-
ergy consumption provided by RAPL may not be completely accurate. We argue
that the resulting effect is negligible. In addition, less PSB packets result in less
recovery points in case the trace gets corrupted. As a consequence, bigger parts
of the trace become unusable and must be skipped, resulting in more severe data
loss.
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Furthermore, we rely on ToPA for the buffer, the setup of which we describe
in detail in Section [4.4.2] In order to use ToPA, we enable the ToPA bit.

As our approach aims to trace everything that runs on a physical CPU, in-
cluding the guest OS, we set both 0S and User bits (Section [4.4.1).

4.4.2 Trace Buffer

In our design, we configure the Intel-PT buffer to behave like a ring buffer using
the ToPA mechanism (Section [2.3.1).

Physical Memory

Virtual Memory

1

[ Producer Position ]

Interrupts Stop

Consumer Position ]

Figure 4.4: Snapshot of the buffer layout before tracing is enabled

Figure[4.4]visualizes the buffer configuration before tracing starts. Each block
refers to a physically continuous range of memory with a size of 2" pages. These
blocks are not required to be of the same size, yet we chose to visualize them as
such for simplicity reasons. Variable size memory ranges become especially use-
ful if the system is under memory pressure or experiencing high fragmentation
and allocating large chunks of physically continuous memory is not possible.
The physical offset of each of these blocks are represented as entries within the
ToPA table. Their ordering matches the sequence in which data is written to the
buffer. The last entry links back to the first one, which ultimately implements
a ring buffer mechanism. Once an entry is filled with data, Intel-PT continues
writing to the subsequent entry unless the filled memory range entry is marked
with a Stop bit (Section[2.3.1).

In the figure the Producer Position marks the offset at which Intel-PT
begins to write data to once TraceEn within the IA32_RTIT_CTL MSR is set. The
Consumer Position points to the position which has already been parsed by the
Parsing component described in section It marks the position up to which
it is safe to write data to without the risk of overriding unconsumed parts of the
trace.
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To ease parsing, we map the physically continuous memory ranges to a single
continuous virtual memory range. The order matches that of the ToPA entries.
Additionally, we map the last physical page of the buffer to the front of the virtual
range. Analogously, we map the first physical page to the end. This is indicated
by the thin colored boxes in figure As a single packet can be split across
range boundaries [[15], it eliminates the need for special treatment in such cases.

Our approach sets the Interrupt and Stop positions (Section [2.3.1) using the
following algorithm (1] First, the ranges containing the Producer Position and

Algorithm 1 Interrupt & Stop bit positioning

Require: cons_pos, prod_pos, buf_size, num_ranges
1: prod_idx < range_of(prod_pos)

2: cons_idx < range_of(cons_pos)

3: int_cand < range_of((prod_pos + (buf_size/4)) mod buf_size)
4: int_cand_dist < (int_cand — prod_idz) mod num_ranges
5: stop_dist < (cons_idx — prod_idx) mod num_ranges

6: if stop_dist > (0 then

7: stop_dist < stop_dist — 1

8: stop_idx <+ (prod_idx + stop_dist) mod num_ranges

9: if stop_dist > 0 then

10: int_dist < stop_dist — 1

11: int_dist < min(int_dist, int_cand_dist)

12: int_idx + (prod_idx + int_dist) mod num_ranges

13: set_int_bit(int_idr)

14: set_int_bit(stop_idz)

15: set_stop_bit(stop_idx)

Consumer Position are identified (lines 1-2). The algorithm selects an interrupt
candidate positioned up to a quarter of the buffer size forward from the produc-
ers current location (lines 3-4). Generally, other interrupt spacing also is possi-
ble. In our design, we chose the distance of one quarter so that the parser has
enough time to consume the range before data is lost. Algorithm{[i]calculates the
number of ranges available for writing before the range of the consumer posi-
tion is reached (line 5). As interrupts and stops are issued at the end of ranges,
the index is decremented by one unless they would be placed at the same entry
again (line 6-7, 9-10). The stop and an interrupt are added to the range prior to
the consumers range (lines 8, 14-15). Finally, the algorithm places an interrupt
at least one range before the stop is reached, unless the interrupt candidate is
closer (lines 10-13).
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In the example figure from the interrupt is placed two ranges ahead of
the producer position. Furthermore, the stop and second interrupt is set to the
range before the consumer, showing the non-conflicting scenario of algorithm[1]

4.4.3 Interrupt Handling

Within the interrupt handler, we first have to check whether the interrupt has
been caused by a ToPA event. We achive this by checking the TraceToPAPMI bit of
TA32_PERF_GLOBAL_STATUS [13]. If so, we stop tracing by clearing TraceEn from the
control MSR. We continue by reading the ToPA MSRs to figure out the position
where tracing has been stopped. This allows us to enqueue the range [original
start position, stop position) for parsing. IA32_RTIT_STATUS.Stopped indicates
that we hit the stop within the ToPA entries. If the consumer position is still
within the subsequent range, resuming parsing would cause data loss. We post-
pone re-enabling tracing to until when a slot is free. We lose information about
PTA switches up to the point where tracing is enabled again and a PSB packet
is generated. As parsing can be done quick (Section [6.4), we only lose track for
a small period of time. In order to enable tracing we clear the status MSR, recal-
culate Stop and Interrupt positions as seen in Section [4.4.2]and update the ToPA
MSRs (Section[2.3.1). Finally, we set TraceEn again to resume tracing.

4.4.4 Parsing

The parser receives ranges ready to be parsed from all CPUs with tracing enabled.
When TraceEn is set, Intel-PT generates a PSB packet. While parsing, we first scan
for it to ensure following packets are not corrupted or interpreted in the wrong
way.

Furthermore, time tracking must be applied as described in the Intel SDM [15]
(Estimating TSC within Intel-PT).

Once we decode a VMCS packet, we store the address and use it to identify
which VM can be scheduled on the CPU the range is received from. Following PIP
packets contain a non-root bit which states whether the PTA switch happened
within VMX root operation mode. If it is not set, it means the switch has been
caused by the host OS. Otherwise, it has been caused by the guest.

Prior to attributing cycles, the parser has to translate the PTA to a unique
process ID as described in Section As the parsing happens after a delay, a
history of changes must be kept.

We account subsequent CYC packet payloads to this process until a new one
occurs. As CYC packets are only generated after a threshold, some cycles might
be attributed wrongly as shown in figure The colored background refers to
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the attributed cycles to a process with the same color. Ranges between CYC pack-
ets and process switches highlighted with diagonal hatching denote wrongly at-
tributed cycles. For example, the cycles consumed between the first CYC packet
and a process switch belong to the process that was running before the switch
but is attributed to the following one.

CYC Packets

Process switches

Figure 4.5: Incorrect attribution of cycles to processes

On each PTA switch, we store the timestamp and process ID to determine
the duration. We issue an event annotated with the last switch’s process ID, the
start timestamp, the duration and the estimated cycles while the process has been
executing. Once the range has been parsed, we check whether Intel-PT has been
stopped to avoid data loss. If so, we restart tracing as described in Section [4.4.3]

CPUOH >

Events } — [ >

=

Figure 4.6: Timeline of parsed events

Figure 4.6/ shows the stream of parsed events (the stream in the middle) gen-
erated by two CPUs and puts it in relation of time (upper and lower stream). The
CPU streams refer to the range’s (the colored boxes) content in real time. Each
point within these ranges correlates to the expected timestamp. The center time-
line shows the parsed events contained within these ranges. The position on the
scale correlates to the time the event is available to the energy estimation com-
ponent. It visualizes how parsed events are not strictly ordered. For instance,
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events of the red range are parsed after the purple range , thus the timestamps

of them are smaller than the ones of the purple ones.

4.5 Energy Attribution

To be able to attribute energy to specific processes, we need to know how much
energy the system consumed. We resort to the RAPL interface provided by In-
tel and AMD (Section . Furthermore, we use performance counters (Sec-
tion to track consumed cycles on each CPU. Both of these statistics are
sampled in a fixed interval and stored in slots within the history. We use that
information to attribute the energy to processes based on consumed cycles.

Process - Cycle 40 % L 47 % 13% |
70%  |30%| 65 % 35% | >
@ >
(cPu1}- >

Figure 4.7: Process cycle to slot attribution

Figure shows the attribution of consumed cycles by processes to slots
within the history. Each colored box refers to one specific process. Rectangles
outlined in black visualize a slot within the history for which consumed full sys-
tem cycles and energy consumption is known. Measured cycles and time are
attributed to each slot.

The following equation specifies the cycle to slot attribution. 7T refers to the
start time of a slot or process, 7. to the end time and C'Y C,,,. expresses the
estimated consumed cycles of a process within a slot.

max(Ts(slot), Ts(proc)) — min(T,(slot), T.(proc))
T.(slot) — Ts(slot)

CYCEL = CY Chyo

proc

Cycles are attributed based on the proportion of time the process runs during the
slot. We require a lookup data structure for accomplishing this, mapping from
process to spent time and cycles.

This attribution approach poses a source of inaccuracy. For example, when a
process frame spans multiple slots, the majority of cycles may be consumed in
the first slot and very few in the second. The attribution averages this imbalance
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across both slots. As a result, the consumed cycles of the whole system may be
smaller than the attributed cycles. However, in practice, this is rarely an issue
due to the typically short scheduling intervals on most systems.

In figure[4.7] the percentage of processes within the slot timeline refer to the
percentage of time the process spends within a slot. For instance, the green
process which runs from time point 2 to 32 spends 40 % within the first slot,
47 % in the second and 13 % in the third slot. The cycles consumed by a process
are attributed to a slot according to this percentage.

The energy attribution is expressed by the following equation. C'Y Cy,; refers
to the consumed cycles of the whole system and Energy,,.. to the energy con-
sumed within a slot.

CYCproc

= Enerqygo ¥ ——
gYsiot CYCup

Ener‘gyslat

proc

Thus, inaccuracies caused by cycle attribution propagate to the estimated energy.

As data from Intel-PT becomes available after an interrupt happens and the
buffer range has been parsed, we have to save quite a bit of history. There is
the option to manually stop and restart Intel-PT after the end of each interval.
However, doing so impacts performance due to smaller buffer sizes (Section|[6.4).
Based on the last known TSC value from each CPU, slots which do not change
anymore can be determined by finding the minimum of those as Intel-PT buffer
ranges parsed later will have a greater TSC value. In contrast to events received
by the Intel-PT approach, the time point up to which attributed cycles do not
change anymore for CR3 Write Exiting is the minimum of the most recent VM
Exit across all CPUs which currently execute VMs.
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Chapter 5

Implementation

In this Chapter, we first present our implementation of the Intel-PT and CR3 Write
Exiting process tracing following the design in Chapter 4, Our implementation
targets the Linux kernel (v6.16) with Fedora patches applied and is integrated into
the KVM hypervisor. We expose configuration options for Intel-PT via a DebugFS
entry for each logical CPU. Enabling both, Intel-PT and CR3 Write Exiting is also
archived with DebugFS [35]. Entries within DebugFS are useful, as they allow
us to perform benchmarks with Process Tracing selectively without the need to
rebuild the kernel. In addition, they mimic requests to enable tracing by the
guest.

On initialization of KVM, we allocate cycle performance events for each log-
ical CPU. Similarly, we rely on the power performance event backed by a perf
driver to gather energy information. As we only use the package domain, only
one event is required.

Additionally, once a VM is created using the KVM_CREATE_VWM ioctl [36]], we
increase a static counter to and assign its value for unique VM identification. For
vCPU creation, this is not needed as the user needs to specify an integer ID for
the KVM_CREATE_VCPU ioctl [36] and KVM uses it internally.

5.1 Intel-PT

Our implementation of the Intel-PT approach is based on the perf driver [21]
shipped with the mainline Linux kernel. Unfortunately, direct use of the main-
line driver is not possible as it heavily relies on the auxiliary area of the perf
subsystem which is designed to be used by the user space. Furthermore, it lacks
customization options for the trace buffer as well as IA32_RTIT_CTL options on
efficiency cores. Intel’s implementation of the driver reads the CPUID on the ini-
tializing CPU, which is a performance core, thus it reports features like EventEn
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as missing on efficiency cores. Modifying it to support our requirements of buffer
range consumption and parsing in kernel space happened to be quite a challenge.

In the following Sections, metadata directly related to the Intel-PT hardware
feature is stored in per-CPU variables, unless stated otherwise.

5.1.1 Trace Buffer

Prior to start tracing on a logical CPU, we allocate 32 high order pages, each
consisting of 4 MiB of continuous physical memory. We chose to use equal 2"
sized ranges for faster offset calculation as it allows us to use bit masks instead
of modulo operations.

A ToPA table is stored in a single 4 KiB page (struct topa_page in listing|[5.1).
Each 4 MiB range becomes an entry within the table (struct topa_entry in list-
ing [5.1), and we set the base and size of it as specified by the ToPA definition

(Section |2.3.1).

struct topa_entry ({
u64 end : 1;
ué4 rsvdo : 1;
u64 intr : 1;
ué4 rsvdl : 1;
u64 stop : 1;
ué4 rsvd2 : 1;
u64 size : 4;
u64 rsvd3d : 2;
u64 base : 40;
u64 rsvd4 : 12;
3
struct topa_page {
struct topa_entry table[507];
struct topa topa;

};

Listing 5.1: Source Code of the ToPA of the Intel-PT Linux Driver

Listing |5.1| shows the ToPA and entry definitions. It is taken from the Linux
Intel-PT driver and is also present in our implementation. The struct topa_table
and struct topa_entry are designed to reflect the memory layout required by
Intel-PT hardware. struct topa is added to the end of a table and holds metadata
information, e.g., the size of all entries.

Finally, a last entry is added which links back to the first one by setting the
base to the one stored in the first entry and setting the end bit.

We continue by creating a virtual mapping and place interrupts and stop bits
as described in Section [4.4.2]
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5.1.2 Configuration

Once the user requests tracing to be enabled on a CPU, we make the trace buffer
known to hardware by storing the table address to IA32_RTIT_OUTPUT_BASE. We
also store, in TA32_RTIT_OUTPUT_MASK_PTRS, the entry index and the offset within
the entry. We clear the IA32_RTIT_STATUS MSR. The IA32_RTIT_CTL MSR is con-
figured as described in Section and its value is saved for use within the
interrupt handler.

5.1.3 Interrupt Handling

Linux provides a common vendor specific PMI handler. Whenever it detects the
interrupt to be caused by ToPA, it tries to handle it inside the KVM hypervisor.
Only if KVM does not handle it, it falls back to the default Intel-PT interrupt
handler of the perf driver. As our implementation resides within KVM, we chose
to implement our handling routines within the preexisting handler. If we handle
the interrupt, the preexisting routines will not execute.

Ranges produced by Intel-PT between interrupts are passed to the parser by
adding work to a workqueue after reading the buffer positions. Each work item
consists of:

« An offset within the buffer relative to the start.
« The size of the range.

« A reference to the Intel-PT metadata for CPU identification, buffer size,
and the virtual mapping.

+ The configured MTC frequency.

Otherwise, the implementation follows the design of Section [4.4.3]

5.14 Parsing

We resort to workqueues [37]] for parsing ranges. Workqueues are a Linux kernel
mechanism designed for asynchronous execution of functions. Enqueued tasks
are processed by threads from a worker pool bound to the workqueue. Once a
worker thread becomes free and the queue of work is not empty, the function
bound to the task is executed. Furthermore, it provides SysFS entries to specify
on which CPUs worker threads can execute. Our initial goal was to employ this
feature in combination with CPU isolation [38]. However, the scheduler only
processes work on the first CPU within the isolated CPU mask, thus preventing
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parallel execution of tasks. Prior to enabling Intel-PT, we allocate an CPU un-
bound workqueue. Each task within the workqueue refers to an unparsed range
of data within the trace buffer.

Furthermore, we maintain a hash map [39] with VMCS addresses as key and
a VM ID and VCPU pair as data. Each time a user creates a vCPU with the
KVM_CREATE_VCPU ioctl, KVM allocates a VMCS. We insert the VMCS address with
the corresponding VM ID and vCPU number into the map. Our prototype does
not remove VMCS addresses and stores a complete log of all events. In future
versions, handling could be implemented by removing them after all ranges of
CPUs with tracing enabled have been parsed. With KVM, this at most affects
the energy attribution for an Energy Attribution interval, as a vCPU associated
with the VMCS is only destroyed if the VM is destructed. Reuse of that address
is only possible after the vCPU is gone, which leaves at most a time window of
the interval length where cycles may be attributed wrongly.

Libipt

For handling tasks within the workqueue and ultimately parsing trace buffers,
we rely on a slightly modified version of libipt [19] to attribute cycles to PTA
switches. Our prototype does not implement PTA replacements and treats the
address as a unique process ID. Libipt is a library developed by Intel for parsing
traces collected with Intel-PT. Furthermore, it handles TSC estimation of packets.
To do that, it requires a trace with CBR, MTC, TSC and TMA packets, the config-
ured MTCFreq, the TSC/ clock ratio and the nominal core crystal clock frequency,
the latter two are provided by CPUID.

libipt provides workarounds for a set of errata.

We enable the ones affecting our test system.

It is written in C and makes almost no use of the C standard library function-
ality, thus making it a good candidate for in kernel space parsing. It is designed
to work on a single continuous data range. For this reason, we require a contin-
uous virtual mapping of the trace buffer and have to split the range to parse in
half if a wraparound in the circular trace buffer happens. We use vmap to create
this mapping.

In the following, we describe our changes to the library to also add cycle to
PTA attribution. Libipt uses a struct pt_time to keep track of timing within
the trace. Each time a TSC, MTC, TMA, CBR or CYC packet is encountered, the
instance of the struct is altered to reflect the current state. We add a new entry
to this structure in order to accumulate the cycles. Each time libipt encounters a
CYC packet, we increase the value of the field by the packet’s payload. When a
PIP packet is decoded, we read the field from the timing structure and reset the
accumulated cycles.
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Additionally, changes have to be applied for wraparound handling. In order
to accomplish this, we split the range at the end of the last range within the ToPA
table. We parse the first half, stop at the last complete packet, and save the offset.
Based on this offset, we calculate the difference to the end of the ToPA entry. For
the second half, this difference is subtracted from the start, ensuring packets can
be fully parsed. We update the position of the packet parser to the start position
and reapply the boundaries. As previously mentioned, this behavior is required,
as packets may be split across ToPA entry ranges. Independent parsing of the
split apart range is not possible as the decoder needs to know where a packet
starts, which requires a PSB packet. Such a PSB packet is unlikely to be the first
one, thus parsing the second part would result in data loss.

Handling Work

As multiple processors can enqueue work and also handle it, we rely on synchro-
nization in the form of a per CPU spin lock protected list which restricts execu-
tion ordering of tasks generated by a logical CPU. We maintain a wait queue [40,
41|] which blocks until the task is at the head of the list. ~ This ensures that
ranges generated by Intel-PT earlier in time are finished before later ranges are
consumed.

We introduce a new work task, indicating that the next range parse should
sync to the next PSB before and then reset the parser configuration. It does
nothing other than set a flag in a per-CPU state so that the next parsing range
knows to search for a PSB first reinitialize the config. This state also contains
an instance of a struct pt_event_decoder used for parsing. The synchroniza-
tion request field is initially set to true. Such synchronizing work items are only
inserted if the buffer size changes or trace generation is manually stopped (ex-
cluding interrupt trace toggles). The reason for this is that, for those events,
either the buffer may change or the configuration used for tracing may change.
Parsing with an invalid configuration can result in incorrect TSC estimation.

The reason for storing and reusing the parser is that we preserve internal
timekeeping metadata and avoid skipping packets due to searches for PSBs. The
TSC might be shifted by the duration during which tracing has been disabled to
handle the interrupt and reset ToPA flags. However, interrupts are handled very
quickly, and we attribute energy based on a 1 second interval, so the inaccuracy
is negligible.

Once the parser task is allowed to execute, we retrieve the decoder from the
range-CPU state. Synchronization may be requested for several reasons: parsing
errors, being the first range to parse, a manual request from outside the parser,
or if the buffer’s starting position does not match the decoder’s saved position. If
any of these conditions are met, we set the MTC frequency that tracing has been
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configured with. We notify libipt about the maximum non-turbo ratio. Further-
more, we set the TSC ART nominator and denominator needed for TSC estima-
tion. As we reinitialize the whole parser configuration, we also need to set the
errata workarounds.

When no synchronization is required, we update the bounds within which
the parser can operate and continue parsing normally.

In cases where the range wraps around, we split the range and apply the
distance to the second part as described in Section

If the parser decodes a VMCS packet, we look up the address in the hash map
(Section and identify the VM. Following PIP packets belong to this VM if
the non-root bit is set. When libipt encounters a PIP packet, we notify Energy
Attribution and provide it with the consumed cycles up to this packet, the PTA
and the estimated TSC value.

Once the range has been parsed, we store unattributed cycles for the CPU
the range has been generated on. We continue with reporting the completion
of parsing with the most recent TSC to the Energy Attribution such that it can
determine whether it is safe to report slots to user space. The safe time point is
determined by the minimum of parsed ranges across introspected logical CPUs.
We consume slots up to this TSC as described in Section[5.3.3]

Next, we update the consumer position on the tracing CPU to mark the parsed
range as safely writable. Finally, task is removed from the parsing order list, and
we wake up tasks waiting in the wait queue.

5.1.5 TSC Offsetting and Scaling

In contrast to the CR3 Write Exiting approach, we require TSC offsetting and
scaling to be disabled, at least in our prototype, as it is also applied to TSC packets
generated by Intel-PT. For a fully functioning implementation, the TSC offset and
shift must be tracked and applied when the CPU is within a VM. For the CR3
Write Exiting approach, this is not required as we only read the TSC within the
hypervisor, thus always receiving unmodified values.

5.2 CR3 Write Exiting

We implement the CR3 Write Exiting approach based on patches from KVMI [28].

Once the user enables CR3 Write Exiting, we notify the Energy Attribution
component to start tracing cycles and energy. After that, we enable interception
on each vCPU which currently exists within KVM. If the vCPU is currently run-
ning, we force a VM exit and enable it afterward. In order to enable interception,
KVMT’s patch reads the current VM execution controls from a bitmap maintained
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as a copy (shadow) within KVM. It enables CR3 write exiting using the VMWRITE
instruction and updates the shadow.

Once a VM exit due to MOV to CR3 happens, the value of it is updated within
KVMs internal vCPU data structure.

Akin to enabling the feature, the disable path clears the bit within the VMCS
as well as the bit in the shadow. It also notifies the Energy Attribution component
that tracing cycles and energy is no longer needed.

Right before entering the vCPU, we save the current cycle count of the logical
CPU the vCPU shall run on as well as the current TSC. Furthermore, we notify
the Energy Attribution that the logical CPU is executing a VM. This is required
to determine the time point prior to which no further changes will occur within
the Energy Attribution component (Section [4.5).

KVM employs a fast path for VM exits, which never hands CPU control to
other processes and immediately reenters the VM. In our implementation, we
treat this case as if the VM were executing the whole time. Only after a slow exit
is done, we read the TSC and cycle count again. Finally, after the code path hand-
ing potential CR3 updates has been executed, we notify the Energy Attribution
component with:

+ VM Entry TSC

VM Exit TSC

« VM ID and vCPU
+ The consumed cycles between entry and exit
« The potentially new PTA

Our prototype uses the PTA as a unique process ID. Furthermore, the Energy
Attribution takes this as an indicator that the logical CPU is not executing a VM
anymore.

5.3 Energy Attribution

As stated in the design the energy attribution is based on slots with a fixed
interval. We chose an interval length of 1 second as it is short enough to provide
meaningful results, yet long enough to reduce the memory footprint of saving
the history. For each slot, we store the end TSC, the energy, and a hash map,
mapping from a process consisting of VM ID, vCPU number, and PTA to the
estimated consumed cycles of that process within the slot. In addition, we store
the consumed cycles of each CPU which falls into the slot’s interval.
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The history of slots is implemented with a circular buffer . As notifications
from the Process Tracer component might be received in parallel, we require syn-
chronization of the data used for energy attribution. Each hash map within the
history is protected by its own spin lock. For all other data, we resort to a rwlock,
which its spin locks allow either the data to be read by one or more CPU, or to
be modified by at most one thread [42, 43].

Prior to tracing consumed cycles and energy, we allocate a performance event
for the RAPL package domain and initialize each hash map within the history.
Additionally, we initialize a hrtimer [[44] timer with a callback.

Once tracing is enabled, we store the start TSC of the first slot in a global vari-
able. As energy and cycles only increase and do not reset between performance
counter reads, we need to store the previous value in order to calculate the delta.
Thus, we also initialize them prior to starting the timer with an expiry time of
1 Second relative to the current time.

5.3.1 Timer Callback

Once the timer reaches its expiry time, the callback is executed.

Our implementation reads the current TSC and grabs the write lock to insert
anew slot to the head of the history. The write lock is required as the speculative
adding (Section[5.3.2) of cycles to a slot writes an estimated next TSC to the slot.
If there is no space within the history, we drop the last entry by updating the tail
index and reinitializing the hash map. After that, the write lock is released again.

We read the energy performance counter, calculate the delta and store it in the
new slot while holding the write lock. Additionally, the previous energy value is
updated to the read value.

In order to get the consumed cycles of all CPUs, we execute a function on all
of them which reads the per CPU cycle performance counter and stores it in the
history. Similarly, we update the previously read cycle count.

After that, we update the expiry time of the timer to one second in the future.

Finally, if CR3 Write Exiting is enabled, we check for complete slots. We find
the minimum of the last VM exit TSC across all CPUs which are reported to
currently execute a VM. If no VM is executing, the slot’s end TSC is used. We
consume slots up to this TSC as described in Section [5.3.3]

5.3.2 Process Cycle to Slot Accounting

When we receive an PTA switch event from the Process Tracer, we first acquire
the read lock. As the Energy Attribution gets notified with the new PTA, we have
to store the previous running process for each logical CPU. Otherwise, the PTA
to which cycles belong cannot be determined. In the following, the process refers
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to the previous PTA paired with the VM ID unless stated otherwise. If Intel-PT
is used, we also store the previous PTA switch TSC and use it as the start TSC.

If the process has no consumed cycles, the TSC range is invalid, or the process
end TSC is before the first slot’s start TSC, we skip further processing. When the
process start TSC is earlier than the first slot’s TSC, we proportionally drop cycles
and adjust the process start TSC to match the first slot’s start TSC. We continue
by finding the slot indices of the process start and end TSC using binary search.

If the required slot does not exist as the range extends to a pending timer expi-
ration, we release the read lock, grab the write lock, and recheck the conditions
mentioned earlier. We speculatively extend the slot’s end TSC by one second
past the latest slot if history is not full. Otherwise, we abort and skip accounting
for the process. Additionally, we update the process end TSC index to the new
slot, release the write lock, and reacquire the read lock.

For each slot in the range, we attribute consumed cycles proportionally based
on the duration the process spent in that slot. The following formulas show how
the duration is calculated:

start = max(proc_start_tsc, slot_start_tsc)

end = min(proc_end_tsc, range_end_tsc)

duration = end — start

The process cycles attributed to this slot is determined by multiplying the
process cycles with the duration spent in the slot divided by the total process
duration. Under spin lock protection, we try to find the process in the hash map
of the current slot. If it exists, the cycles are added. Otherwise, we insert a new
entry with the process cycle count for this slot.

Finally, we release the read lock and update the previous process to the in-
coming PTA and VM ID and vCPU number. In case Intel-PT is used, the previous
PTA switch TSC is updated.

5.3.3 Consumption of Slots

When a safe time point is determined, we can safely consume slots prior to the
time point.

First, we grab the write lock. If we determine there are no slots prior to
the safe time point, we release the write lock and return. Otherwise, we iter-
ate through slots up to the slot containing the safe time point.

For each slot, we continue as follows: First, we sum the consumed cycles of
each CPU. For each process in the hash map, we report the estimated energy
to user space as described in Section The estimated energy is calculated by
multiplying the energy for the current slot by the cycles consumed by the process
divided by the cycles consumed by the whole system.
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Finally, we drop consumed slots from the history, update the first slots start
TSC to the end TSC of the last slot which has been dropped. Additionally, hash
maps are reinitialized and we release the write lock.

5.4 Energy Reporting
We chose to report energy to user space using the relay interface [45]. Once a

slot from the Energy Attribution component is ready, we write packets consisting

of:

The VM ID as described in Chapter|[5|

« The vCPU ID as described in Chapter

The end TSC of a slot. As slots are based on the same interval (1 Second),
a start TSC is not needed. If the user is interested in the exact start TSC, it
can be determined by remembering the end TSC of the previous slot.

+ The PTA of a process which has been running within this slot.
+ The energy attributed to the PTA.

to the global relay channel.

Within user space, one can open the relay file residing in the DebugFS and
poll for incoming events. We also used this mechanism for debugging as data of
Intel-PT and CR3 Write Exiting is generated with high frequency.



Chapter 6

Evaluation

In this chapter, we evaluate the energy and performance overhead of Intel-PT
and analyze the feasibility of Intel-PT for consumed energy estimation of in-VM
processes. First, we give an overview of packets generated by our test system
under various load conditions and discuss the meaning of the amount of data
generated. In addition, we analyze the performance and energy overhead Intel-
PT poses. Furthermore, we evaluate the parsing performance for different buffer
sizes. Finally, we evaluate the performance of the CR3 Write Exiting approach
and compare it to Intel-PT.

6.1 Test Setup

Table|6.1|shows the system setup we used for evaluating Intel-PT and our imple-
mentation.

In Table [6.2| the important Intel-PT features supported on the Intel Core i5-
14600K are listed. Even though it is stated in the Intel documentation that Intel-
PT Event Trace has been introduced with Gracemont and Power Event Trace
with Goldmont Plus, a predecessor of Gracemont, the efficiency cores report it
as unsupported.

CPU errata might also affect our test setup, their actual impact is not com-
pletely obvious. We list them for completeness in Table

6.2 Packet Sizes

In order to determine what an efficient Intel-PT configuration should look like,
we analyze how often packets of specific types are generated and to which size
they accumulate within a time frame. We evaluate consistency of the packet
stream using multiple load types. For each of the following traces taken on logical

41
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CPU Intel Core i5-14600K
Cores 14 (6 P-Cores 12 Threads) & 8 (E-Cores)
Frequency 3.5/2.6 GHz (max Turbo: 5.3/4.0 GHz)
L1 80 KB (P-Core) 96 KB (E-Core)
L2 2 MB (P-Core) / 4 MB (4 E-Core)
Total L2 20 MB
L3 24 MB (shared)
TDP 125W / 181 W
DRAM ‘ 4 x 16 GB Kingston 9965800-015.A00G DDR5-4800
Motherboard | ASUS Pro Q670M-C
CPU Features:
Hyperthreading enabled
Turboboost enabled
Linux Fedora 42 Server Edition
Kernel Version v6.16 with Fedora patches applied
Hypervisor QEMU+Customized KVM
VM Image Fedora 42 Cloud
Number of vCPUs 4
Assigned Memory 4GB

Table 6.1: Evaluation system description

CPU 4, we start two VMs and pin the vCPUs to one logical processor such that
they overlap as shown in Table

We opted to use two VMs as it provokes VMCS switches. It is reasonable as
cloud providers may schedule multiple VMs on a logical CPU to increase CPU
utilization. Parsing has been configured to happen on CPUs 8-11 so they do
not infer with the traced CPU. For each packet the parser sees, we log the type,
the size and the estimated TSC to the relay channel. While tracing, we read
from the channel and store the results to a file. For each tested configuration,
we enable tracing and wait for 60 seconds. After that, we disable tracing. Our
implementation either parses after an interrupt happened or parsing has been
disabled by a write to the DebugFS entry. Packet statistics are collected by a user
space receiver of the relay channel pinned to CPU 0.

As our prototype scans for the first PSB packet if tracing has been manually
stopped by a DebugFS write, the first few seconds have been discarded by the
parser. Thus, our results show the collected packets 15 seconds after tracing has
been enabled for a time frame of 30 seconds.
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Feature ‘ P-Core | E-Core

CR3 Filtering Yes Yes
Number of Address Ranges 2 2

Configurable PSB and CycleAccurate Mode Yes Yes
Valid Configurable PSB Frequency encodings 0-5 0-5
Valid Cycle Threshold encodings 0-5 0-5
MTC Supported Yes Yes

Valid MTC Period encodings 0,3,6,910,3,6,9
PTWRITE Supported Yes Yes
Power Event Trace No No
Event Trace No No
TNT Disable No No
ToPA Output Yes Yes
ToPA Tables Allow Multiple Output Yes Yes
Single-Range Output Yes Yes
IP Payloads are LIP No Yes

Table 6.2: Available Intel Processor Trace Features

vCPU ‘ logical CPU
0 2

1 3
2 4
3 5

Table 6.3: vCPU to logical CPU pinning

CYCEn ‘ CycThresh ‘ MTCEn ‘ MTCFreq ‘ TSCEn ‘ BranchEn ‘ PSBFreq
1| 5 1t | 9 | 1 | o | 5

Table 6.4: Intel-PT configuration with maximum frequency values and branch
tracing disabled

CYCEn | CycThresh | MTCEn | MTCFreq | TSCEn | BranchEn | PSBFreq
1| 5 1 | 9 [ 1 | 1 | 5

Table 6.5: Intel-PT configuration with maximum frequency values and branch
tracing enabled
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First, we capture a trace of an idling system with no load induced to either
the host or the guests.

Total Packet Sizes

180,496
150000 1
w
L
>
< 100000
(5]
.8 59,374
wn 50000 . 49,178 52776
14,116
1000 973
— 750 1
1]
2
>
<2 500 1
B
950 A
0 16 2
D ) o) Sa » & ) )
S & & & & & $
N & & & & &
& <l N & & &
S SHE
& & & O 5 ¥
< & S & & S
& N S N
&S ) &
@ & S
< &%
%\
&
e

Figure 6.1: Idle packet sizes within the trace buffer with the configuration shown

in Table

Figure [6.1| shows the packet sizes using the configuration shown in Table
within the time frame 15s to 30 s past enabling tracing. Even with the highest
possible cycle packet threshold, CYC packets take up the most space (33 %) of all
packets, followed by padding packets (27 %).

While idling, very few packets, compared to systems under load, are gener-
ated.

Akin to Figure the results in[6.2] show packet sizes under the same condi-
tions with the config in Table CYC packets are still the main size consumer
(38 %). TNT packets as well TIP packets are responsible for 49 % of the trace size.

Second, we run a synthetic load on each guest using stress-ng (v0.19.05)
to consume CPU cycles. Within both VMs, we start stress-ng with the int32
stressor and produce an overall CPU utilization of 20 % on CPU 4 (vCPU 3). The
int32 stressor executes 1000 iterations of a series of bit manipulations (and, xor,
shift, ...) and arithmetic operations (addition, multiplication, modulo operation,
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Figure 6.2: Idle packet sizes within the trace buffer with the configuration shown

in Table
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..) [47]]. stress-ng creates the percentage of CPU utilization by sleeping and pro-
ceeding executing while tracking time and adjusting durations. Manual valida-
tion with the tool htop shows that the numbers add up with an occasional margin
of 5 %. The benchmark is started with taskset @x4 stress-ng —cpu 1 —cpu-method
int32 —cpu-load 10.
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Figure 6.3: Packet sizes within the trace buffer with the configuration shown in
Table [6.4]and 20 CPU utilization

In Figure [6.3] we present our results. The CYC packets dominate even more,
taking up 57 % of the buffer. Compared to idle load, MTC packets seem to be
generated much more frequently.

We found that, when confronted with more than idle load, parsing the buffer
results in decoder errors if a PSB is configured to be generated approximately ev-
ery 2 KB. We are unsure whether it is caused by the hardware generating corrupt
packets or by our implementation. Even logging packets to the relay interface
with a high frequency may be a reason for the errors.

Thus, even if PSB packets take up only a fraction of the trace, configuring it to
the minimal possible value is not feasible and requires further work. When con-
fronted with 100 % CPU utilization, the logged packets show periodically missing
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CYCEn ‘ CycThresh ‘ MTCEn ‘ MTCFreq ‘ TSCEn ‘ BranchEn ‘ PSBFreq
1| 5 1 | 9 [ 1 | o | 1

Table 6.6: Trace Configuration for Energy Attribution

slots within the timeline. Due to the lack of time, we did not investigate this issue
any further.

As PSB packets are not generated alone and carry metadata packets between
PSB and PSBEND, we summed the size of packets within the range, including PSB
and PSBEND. We found that for each PSB packet, 86 or 102 bytes of packets are
generated, depending on the enabled Intel-PT features. For example, if BranchEn
is set, an additional PAD, 2 x CYC, MODE, and FUP packets are usually gener-
ated. It is to be noted that the Intel documentation makes no statements about
when PSB packets are generated, just that the processor makes the best effort to
insert them at the requested frequency.

We conclude that, at least for our test system, the configuration in Tableis
sufficient. We choose the PSBFreq as small as possible while choosing the largest
values for MTCFreq and CycThresh as both packets take up a lot of space within
the trace.

6.3 Analysis of Packet Events in Timelines

In this section, we use the same raw data as in Section[6.4] to create a timeline of
packets.

In Figure we show a heatmap of padding, PIP, and cycle packets. The
heatmap suggests that packets are generated in bursts with idle load. A heatmap
of all packets can be found in the appendix (Figure for idle workload and
Figure B.3| with a CPU utilization of 20 %).

6.4 Buffer Size Performance

To evaluate buffer parsing performance, we disable the Energy Attribution and
only parse the buffer ranges. VMCS addresses are still resolved. In order to make
results comparable, we restrict the workqueue affinity to CPU 8 so that the range
is only parsed on one preselected CPU. Each time we parse a range, we measure
the entry TSC of the parser as well as the exit TSC and log the parsed ranges
size. Furthermore, we collect the TSC when an ToPA interrupt happens.

For the benchmarks in this Section we chose the configuration shown in Ta-
ble [6.6| as it should reflect the energy accounting case. Furthermore, we chose
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Figure 6.4: Idle packet heatmap with trace configuration shown in Table

the semaphore stress-ng benchmark from Section [6.2 again as PTA switches in
combination with time attribution is the main target of interest for energy at-
tribution. The VM setup is equal to the one of Section We measure the
parsing throughput of our prototype with a variety of buffer constellations. For
each buffer configuration, we enable Intel-PT for 120 seconds and calculate the
averaged throughput using the following formula:

sizeof(range_to_parse)

Troughput =
gy tsc_to_s(end_tsc — start_tsc)

with tsc_to_s transforming a TSC count to seconds.

In Figure and a page refers to a high order page, a physically con-
tinuous memory range of the size 2°7%" x PAGE_SIZE. We place interrupt
position as stated in our design, leading to parsing ranges of one quarter of the
whole buffer size.

Figure 6.5[shows our results of CPU 4, a P-core. Parsing larger ranges tend to
result in higher throughput.

On the one hand, this can be attributed to the initialization overhead of the
parser. On the other hand, we expect that the hardware benefits from predictable
memory access as larger ranges result in longer sequences of mostly linear mem-
ory access.

We find no performance benefit in parsing ranges larger than 16 MB.
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Figure 6.5: Parsing throughput for multiple buffer configurations on P-Core

We argue that this is the case due to longer predictable continuous ranges,
thus the CPU can adapt. Additionally, more time has to be spent to handling the
interrupts as they occur more often with smaller buffer sizes.
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Figure 6.6: Parsing throughput for multiple buffer configurations on E-Core

In Figure [6.6| we present our results for CPU 18, an E-core. Parsing data on
P-Cores instead of E-Cores yields a throughput up to twice as high. This effect

is particularly observable when parsing large ranges on P-Cores, while smaller
ranges are less affected.
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For the traces produced by our benchmarks, we find that worst mean inter-
rupt interval to parsing ratio is 1:60 for P-Cores and 1:29 for E-Cores for range
sizes of approximately 16 MB.

6.5 Intel-PT Tracing Overhead

In this Section, we evaluate Intel-PT for power and performance overhead. At
the end of this Section, we provide an overview of the results.

6.5.1 Performance

In this Section, we evaluate the performance overhead of Intel-PT. For this, we
run benches from the likwid [48] benchmark suite on the host machine using
taskset 0x10 likwid-bench -t <bench name> -w S0:1GB:1 -i 5000. As shown in
the command, the benchmarks are executed on CPU 4 and repeated 5000 times.
Each benchmark vector has a size of 1 GB.

We evaluate three benchmarks, once with Intel-PT enabled but without inter-
rupt set in the ToPA structure, and once with Intel-PT disabled:

store_mem which sequencially writes to a vector while bypassing caches.

triad_mem_sse which executes A[i] = B[i] + C[i] x D[i] using SSE with
bypassing caches.

stream_mem_sse runsA[i] = B[i] + a * C[i] using SSE. Similarly, the bench-
mark bypasses the caches.

All the benchmarks are measured 7 times with the trace configuration we
chose for energy attribution once with branch tracing disabled and once
with it enabled.

Without Branch Tracing

Figure|6.7|shows the memory bandwidth from likwids point of view with BranchEn
cleared. In Figure we present the measured execution time. There can be no
major difference observed, thus we argue that the slight inaccuracies are the re-
sult of background noise.

With Branch Tracing

In Figure [6.9| we present the memory bandwidth results of the three benchmarks
with BranchEn set. The memory heavy benchmarks store_memand stream_mem_sse
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Figure 6.7: Memory bandwidth benchmark results with Intel-PT en-
abled / disabled and branch tracing disabled

PT Disabled PT Enabled
931 129
o 1351 R
921 128
134
=z
911
(5}
£ 127 1331
&=
£ 126 132
]
o
X 891 —
125 1311
™ %
| B= ==
87

store_mem

triad_mem_sse
Benchmark

stream_mem_sse

Figure 6.8: Execution time benchmark results with Intel-PT enabled / disabled

and branch tracing disabled



52

57000 1

Memory Bandwidth (MB/s)

52000 1

56000 1

55000

54000 1

53000 1

CHAPTER 6. EVALUATION

PT Disabled PT Enabled ]
405001 38600
— ©

40250 1 I

38400
40000 1
39750 1 ° 38200
39500

38000
39250
390001 37800
38750 1

37600
38500

store_mem triad mem_sse

Benchmark

==

stream_mem_sse

Figure 6.9: Memory bandwidth benchmark comparison with Intel-PT en-
abled / disabled and branch tracing enabled
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show slight (2 - 8% in the worst case) regressions with Intel-PT enabled. In con-
trast, the triad_mem_sse benchmark shows almost no change (0.5 to at most 2 %)
in memory bandwidth. We assume this is caused by different access patterns as
the triad benchmark accesses four vectors while the stream benchmark touches
only three.

Furthermore, Figure shows the execution time. Akin to the memory
bandwidth measurement, the execution time has also increased for the store and
stream benchmark. We suggest that this behavior is induced by hitting memory
bandwidth limits, leading to pipeline stalls and overall slowdown.

6.5.2 Power Overhead

Before and after executing the benchmarks of Section [6.5.1, we read the RAPL
based energy counter of the Linux kernel driver. By calculating the delta, we get
the consumed energy of the system while the benchmark has been executing. For
each benchmark run, we calculate power = measured_energy o avaid misleading

execution_time
results by varying execution times. Not considering the time would result in
also measuring the baseline energy consumption of not only the current CPU
the measurements have been taken on. It would also include the baseline energy

consumption of the whole system.
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Figure 6.11: Power benchmark comparison with Intel-PT enabled / disabled and
branch tracing disabled

Akin to the performance while tracing with our configuration, we find a slight
difference in our results shown in Figure with branch tracing disabled which
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Figure 6.12: Power benchmark comparison with Intel-PT enabled / disabled and
branch tracing enabled

can be attributed to the energy overhead of Intel-PT. We find no major differences
in power consumption compared to the results with branch tracing enabled.

Overhead Overview

In Figure we visualize the overhead of memory bandwidth, execution time,
and power consumption without branch tracing. We find a power overhead of
less than 2 % for all three benchmarks. Furthermore, memory and execution time
increase by a negligible percentage compared to the baseline with Intel-PT dis-
abled.

Figure shows the overhead with branch tracing on. Especially for the
store_mem benchmark, the memory bandwidth and execution time increased by
3 %. There also is an increase in overhead of memory bandwidth and execution
time compared to the benchmark with BranchEn cleared of 2 % for store_mem and
stream_mem_sse. The power overhead between the benches with and without
branch tracing and Intel-PT enabled does not change. We assume this is the
case and we measure the overall overhead of power consumption and disregard
the consumed energy. For the benchmarks, tracing with BranchEn set results in
longer execution time, which ultimately also increases the consumed energy.

We conclude that the overall Intel-PT tracing overhead is negligible for both
performance and energy consumption, especially without branch tracing.
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Figure 6.13: Overhead comparison of likwid benchmarks with Intel-PT en-
abled / disabled and branch tracing disabled
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Figure 6.14: Overhead comparison of likwid benchmarks with Intel-PT en-
abled / disabled and branch tracing enabled
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6.6 CR3 Write Exiting Overhead

In this Section, we analyze the additional cost of VM exits caused by CR3 write
exiting. We measure the overhead of VM exits and count how often they are
caused by CR3 writes. In order to do that, we resort to the perf subsystem which
already provides stats about VM exits. It reads KVM trace events issued at VM
exits.

We record VM exits with their reasons for various load types induced by
stress-ng over a time span of 1 minute on vCPU 3. Furthermore, we enable MOV
to CR3 write exiting using our prototype. We disable the Energy Attribution com-
ponent such that an VM exit only serves the original purpose.

At the time of recording, there is only one VM started, and the host system is
idling.

Following load types are induced:

idle induces no stress. VM Exits seen are caused by interrupts or background
noise.

light induce 20 % CPU utilization using the int32 stressor of stress-ng. The stres-
sor is described in detail in Section[6.2]

heavy induce 100 % CPU utilization using the stress-ng int32 stressor.

switch forces many context switches with the stress-ng switch stressor. taskset
0x4 sudo stress-ng -switch 1 creates a parent and child process. The
parent process sends a message to the child with a pipe, forcing a context
switch [47]].

Table 6.7| shows the VM exit reasons collected with perf kvm stat record -C
4 sleep 60s. Each row corresponds to a VM exit reason and each column shows
the number of exits with that reason collected within the time frame for the load
type. The CR Access mean time shows the duration between VM exit and entry
of exits caused by CR writes. Empty cells refer to no VM exit of this type within
the traced timeframe.

As we only configured VM exits for MOV to CR3, CR Access refers to CR3
writes. The switch scenario with artificially induced context switches shows a
very high rate of VM exits caused by CR3 writes compared to other load types.

We find that VM exits caused by CR3 writes are not cheap, yet they rarely hap-
pen under normal load conditions. If a process forcefully context switches very
often, MOV to CR3 can degrade performance drastically. Out of the 60 s recording
interval, KVM spent 16.5 seconds handling VM exits. This poses an overhead of
27.5%.
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VM Exit Reason H Idle ‘ Light ‘ Heavy ‘ Switch
CR Access 30 26 11149631
MSR Write 2545 | 53434 | 60584 60963
MSR Read 59 59
Timer 51 13681 | 60015 60016
Interrupt 51 | 11592 | 63159 17199
Exception 9 2
HLT 822 | 8463
PAUSE 36
CPUID 82 2
EPT misconfiguration 25
Total | 3558 | 87337 | 183767 | 11287874
CR Access mean time (ns) H 3056 ‘ 37441 ‘ ‘ 3900

Table 6.7: VM Exit reasons for different load scenarios

If there is only one process running, the VM does not write to the CR3 register
at all. Furthermore, MSR write access and exits caused by the timer scales with
the load.

The exit count and type heavily depends on the executing process and OS. As
HLT, PAUSE and CPUID instructions are available to regular userspace processes,
they can intentionally cause exits. Additionally, KVM intercepts MSR reads,
writes and CPUID instructions to control available features within VMs.

Even if the VM has been optimized to produce as less VM exits as possible,
e.g., by delivering interrupts directly to the VM bypassing the host, an adversary
can use such synthetic load to overload our energy attribution approach. Thus,
the attribution routines must perform well as they are executed upon every VM
exit.

6.7 Discussion

We tested our implementation of the Energy Attribution with the Intel-PT and
CR3 Write Exiting process tracers. For that, we put load on vCPUs 0 and 2 in
one VM and the same load on vCPUs 1 and 3 of a second one. However, the
attributed energy did not match the load. We are still able to attribute the energy
to the processes, even if the values are incorrect.

The parsed trace yields both process runtimes and cycle counts, providing
detailed execution metrics. Additionally, energy counters can be read at each
VM exit, supplementing the trace data with direct energy measurements. We al-
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ready do this for cycle count in case the CR3 Write Exiting process tracer is used.
Existing energy models, such as Kepler (Section [3.2), can use this data as input
for energy attribution instead of our implementation. Collecting further perfor-
mance metrics, such as retired instructions, is also possible and may enhance the
precision of such models.



Chapter 7

Future Work

In this chapter, we present additional ideas for the utilization of Intel-PT and our
Energy Attribution design.

7.1 Energy Model Selection

Traditional energy models usually perform well for one specific load type. As
shown in the evaluation in Section the CYC packets dominate in size. Fur-
thermore, our simple test has shown that the size of the produced data of Intel-PT
increased by a factor of 20 when switching from an idle state to 20 % CPU utiliza-
tion. Our evaluation shows that the energy and performance overhead of leaving
Intel-PT enabled is negligible (Section|[6.5.1). We suggest that using the trace data
size, e.g., by measuring the interrupt frequency, can be used to classify the load
type and, as a result, can further help to select a fitting energy model. However,
further research and tests are required to support our idea.

7.2 Continuous Trace Collection with Postponed
Analysis

By continuously tracing the system with Intel-PT and postponing their analysis,
systems can efficiently capture execution behavior without immediate runtime
overhead.

If, in addition, no interrupts are set within the ToPA table, not even interrupt
overhead occurs. As shown in our evaluation (Section , we found no major
performance and energy consumption overhead for a minimal trace configura-
tion, effectively yielding a nearly free, always running debug facility, which is
able to look into the past. Furthermore, no VM exits are caused due to tracing.
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However, if interrupt bits are not set, parsing the trace might become a problem
as a safe start position is unknown. If tracing has been stopped for later analysis,
the MSRs contain the current position in the buffer. If there are too few packets
generated for a buffer wraparound, the PSB located to the right of the current
parser position (assuming tracing writes to the right) may not mark a safe start-
ing point for parsing as it may contain stale data from previous tracings, or even
uninitialized memory.

This can even be extended further to trace VMs. Once a VM exit happens,
one can swap the trace buffers which only requires a few MSR writes. The trace
then can be decoded on a different CPU or socket. If VM exits happen frequently
enough, this can be used to attribute the energy of processes without inferring
with the CPU the VM runs on, assuming energy metrics can be collected other-
wise (in our design this refers to the systems consumed cycle count).

Furthermore, the use of branch tracing might enable attributing energy con-
sumption to functions and help pinpoint what code sections are responsible for
high energy consumption. We showed that tracing branches poses a slight per-
formance and energy overhead (Section . However, further work needs to
be done for finding a safe start position within a trace buffer and the use of branch
packets.

7.3 Page Table Address to Process Identifier Map-
ping

It remains an open question how PTA addresses can be mapped to unique pro-
cess IDs and ensuring freshness of data. One apporach is employing VMIFresh
(Section [3.1). Furthermore, we suggest to use Intel Page Modification Logging
(PML) [15] to identify changes to a previously found kernel memory region,
where, e.g., the Linux kernel stores task information in a linked list of task_structs.
To find this memory region, methods of LibVMI can be used (Section .

7.4 On Demand Enablement by VMs

Especially in cloud environments where the access to energy metrics and hard-
ware features are restricted, a tool to measure and debug energy consumption is
required to optimize applications. We suggest that VMs can request energy con-
sumption reporting based on the approaches presented in our design in Chap-
ter This eliminates the need for tracking the energy per process and limits
the overhead to the debugging process. To implement such a functionality, we
suggest integrating them in existing agents cloud providers ship. An alternative
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that does not require installation of agents within the guest system is VMSH
(Section . With the same methods, data can be made available to the guest
for consumption.

7.5 Improving Parsing Performance

One of the main bottlenecks of our design is the need of a fast parser. We did
not optimize libipt for speed. Additionally, there are more parsers for Intel-PT
available, mainly used by fuzzing systems such as libxdc from Schumilo et al. [49]
Further work needs to be done to improve the usability of Intel-PT for energy
attribution.

7.6 Hardware Improvements

As shown in our evaluation (Section , a large part of the trace consists of
padding bytes. They add no additional information and only consume buffer size.
If Intel-PT hardware emitted less padding packets, the time between interrupts
would increase. Combined with our ideas from Section we would be able to
save longer histories in terms of time.
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Chapter 8

Conclusion

In this thesis, we presented two non-invasive VMI techniques providing statistics
which can be used for in-VM process energy attribution.

The first, CR3 write exiting, causes VM exits on MOV to CR3. This allows to
trace process starts, and combined with tracing subsequent VM entries and exits,
the duration which the process runs. Combined with collecting further metrics
such as the consumed cycle count on VM entries and exits, this technique yields
enough statistics to attribute energy to processes.

We evaluate the number of VM exits caused by enabling CR3 write exiting and
measure the duration until reentry with multiple CPU load constellations. We
find that VM exits caused by CR3 writes are not cheap, yet they happen rarely
enough under normal load conditions to classify it as lightweight.

The second approach employs Intel Processor Trace (Intel-PT) and traces the
used CPU cycles, the loaded Virtual Machine Control Structure (VMCS) address
bound to a vCPU and Page Table Address (PTA) switches. TSC estimation based
on Mini Time Clock, Core to Bus ratio, Time Stamp Counter (TSC) and used CPU
cycle packets allow to assign a TSC value to the PTA switch. This is another
method of tracing process start and duration. Additionally, the approximate con-
sumed CPU cycle count of a process can be directly parsed from the trace.

We analyze the packet consistency and their trace size with different trace
configurations and determine an optimal trace configuration for our test setup
and most likely also for future processors. We measure the performance and
power overhead of Intel-PT with our test configuration designed to be used for
energy attribution with both branch tracing enabled and disabled. Our find-
ings suggest that tracing with Intel-PT poses a minimal power overhead of less
than 3 % without branch tracing and less than 5% with branch tracing. Based
on our measurements we suggest that Intel-PT poses negligible execution time
and memory bandwidth overhead without branch tracing, and can thus be used
for energy attribution on process granualrity, even within a VM. With branch
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tracing enabled, we observe a mean decrease in memory bandwidth of less than
3 % for our memory-heavy benchmarks. Our measurements indicate that mem-
ory bandwidth overhead and execution time increase proportionally for memory
intensive workloads.

We propose further research for utilization of Intel-PT for energy attribution
on function and thread level. In addition, we envision always tracing using Intel-
PT as the implied overhead is very small. This, in theory, allows saving execution
histories, which then can be analyzed, if unusual system conditions, like high and
unexpected power/energy consumption is detected, are encountered.
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Additional Tables

Erratum Description
RPL001 Intel Processor Due to this erratum, FUP and
Trace PSB+ Packets | MODE.Exec may be generated
May Contain unexpectedly.
Unexpected
Packets
RPL004 Intel-PT Trace May | A trace decoder may signal a decode
Drop Second Byte | error due to the lost trace byte.
of CYC Packet
RPL017 Intel-PT Trace May | Due to this erratum, a PT trace may
Contain Incorrect contain incorrect values.
Data When
Configured With
Single Range
Output Larger
Than 4KB
RPL025 VM Entry That When this erratum occurs, an

Clears TraceEn
May Generate a
FUP

unexpected FUP may be generated that
creates the appearance of an
asynchronous event taking place
immediately before or during the VM
entry.
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RPL057 Processor Trace Due to this erratum, trace decoder
May Generate PSB | software may see fewer PSB packets
Packets Too than expected. This may lead to the
Infrequently trace decoder software needing to
search further to find a starting point to
decode or, when used in circular mode,
being unable to decode the trace due to
lacking any PSB packets.
RPL058 Processor Trace Due to this erratum, trace decoder
May Not Generate | software may not be able to precisely
a CYC Packet determine when mode changes that
Before involve changing the interrupt flag or
MODE.EXEC the application’s default operand size
Packets happened.

Table A.1: Errata for Intel Core i5-14600K that might affect our tests [50]]
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Additional Figures
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Figure B.1: Complete idle packet heatmap with trace configuration shown in
Table[6.4} Created with the same raw data as used in Section[6.2]
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Figure B.2: Complete idle packet heatmap with trace configuration shown in
Table Created with the same raw data as used in Section [6.2] (continued)
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Figure B.3: Complete packet heatmap with trace configuration shown in Table
and 20 CPU utilization. Created with the same raw data as used in Section
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