\

NIT

Karlsruhe Institute of Technology

Applying Modern Processor
Features to L4 Microkernels

Bachelor’s Thesis
submitted by

cand. inform. Martin Ludwig Gurres

to the KIT Department of Informatics

Reviewer: Prof. Dr. Frank Bellosa
Second Reviewer: Prof. Dr. Wolfgang Karl
Advisor: Dipl.-Inform. Thorsten Gréninger

17. Juni 2025 — 17. Oktober 2025

KIT — The Research University in the Helmholtz Association WWW. klt-ed u

I hereby declare that the work presented in this thesis is entirely my own and
that I did not use any source or auxiliary means other than these referenced.
This thesis was carried out in accordance with the Rules for Safeguarding Good
Scientific Practice at Karlsruhe Institute of Technology (KIT).

Karlsruhe, October 17, 2025

iv

Abstract

Optimizing time performance of interprocess communication (IPC) facilities on
microkernels (ukernels), kernels with minimal functionality, is essential to en-
suring competitiveness with monolithic kernels like Linux. With the emergence
of recent work like SkyBridge, modern processor features have become key re-
search subjects to develop new IPC libraries with that surpass native imple-
mentations and therefore improve pkernels. selL4 is a modern representative
of pkernels, which we use as a design and implementation platform for user-
interrupt (UINTR) support, Intel’s recently-introduced extension to send and re-
ceive (inter-processor) interrupts directly from user-space. In addition to UINTR
we also implement support for the new user-wait extension, e.g. timed pause
TPAUSE, and design an IPC library to make use of both of these new features on
seL4. We find that our new IPC library—ulntercom (ulcom)—provides 1.1 —5.5X
better time performance than either existing seL4 IPC facilities in the cross-core
case, while potentially indicating better power efficiency in some metrics.

vi

ABSTRACT

Contents

Abstract

Contents

1 Introduction

2 Background

2.1

2.2

2.3

24

2.5

Microkernels
2.1.1 WhatisaKernel?
2.1.2 Micro- & Monolithic Kernels
2.1.3 Historical and Modern L4 Microkernels
Interprocess Communication L.
221 JPCCategories
222 MessagePassing
223 Signals
2.24 Remote ProcedureCalls
Interrupts L
23.1 Mechanism
2.3.2 Advanced Programmable Interrupt Controller
233 Exceptions. o
234 InterruptHandling
Modern Processor Features
2.4.1 UINTR Feature Background
2.4.2 Receiving User-Interrupt Notifications
2.43 Sending User Interprocessor Interrupts
244 UINTR-XState
245 Limitationsof UINTR
24.6 User-Wait Extension
IntroductiontoseL4 Lo
251 SystemCalls.
2.5.2 Capabilitieso

O 00 00 NN I N

10
10
10
11
11
11
12
13
13
13
14
14
17
19
20
20
21
21
22

253
254

IPC Capeabilities .

CONTENTS

Interrupt Handling

3 Related Work

5 Implementation

5.1

5.2

5.3

3.1 User-Level-Interrupts
3.1.1 Introductory Work
3.1.2 Security Aspects oo
3.1.3 Technical Analyses
3.2 Applications of UINTR
3.2.1 User-level Preemption with UINTR
3.2.2 Other Applications of UINTR
3.3 IPConMicrokernels.
331 SkyBridge o
332 UnderBridge.
333 HyBridgeo .
334 Otherwork
4 Design
4.1 Capability-based User-level Interrupts
4.1.1 Initial Approach
4.1.2 Capability-based User-level Interrupts
4.2 IPC Library with UINTR support
421 WaitTypes L o
422 Signals
423 MessagePassing
424 Remote Procedure Calls
4.25 Final Overview

User-Interrupts on KVM/QEMU
5.1.1 CR4 and CPUID pass-through
5.1.2 UINTR-XState support
User-Interruptsonsel4
5.2.1 Additional Background 0oL
5.2.2 Initial Steps and UINTR Capabilities
523 Issues Encountered
5.2.4 Finalizing our Capabilities
52,5 Summary
libUIntercom L
53.1 Morethanjust UINTR
5.3.2 ConnectionSetup

25
27

29
29
29
30
30
31
31
33
34
34
34
35
36

37
37
37
38
41
42
42
44
44
45

47
47
48
48
49
49
49
50
52
52
54
54
54

CONTENTS 3

5.3.3 User-Interrupt and Connection Handlers 56

53.4 Sending and Receiving 56

535 Summary o000 60

6 Evaluation 61
6.1 Methodology 61
6.1.1 Measuring Time 62

6.1.2 Measuring Energy Consumption 63

6.1.3 Measuring Efficiency L. 63

6.1.4 Further Performance Indicators 64

6.2 Benchmarking 64
621 Setup. o 64

6.2.2 Benchmark Design 65

63 Results 66
6.3.1 Time Performance 66

6.3.2 Power Performance 71

6.3.3 Further Performance Indicators 72

6.3.4 Comparison to Related Work 74

7 Conclusion 77
7.1 Conclusion 77

72 FutureWork 78
7.21 Expanding ulntercom 78

7.2.2 Expanded Evaluation 79
Bibliography 81
A Discussed Data 89
B Further Data 101

C Glossary 109

CONTENTS

Chapter 1

Introduction

Microkernels (pukernels), kernels with minimal functionality, built to increase iso-
lation and limit error propagation, have been a topic of research for nearly 40
years now [1]. Since then, they have been redesigned and improved in every
way [2], used as operating system (OS) research subjects [3], and even formally
verified [4]. Major contributions to the field were also developed here in Karl-
sruhe [5]. Recently introduced processor features, such as memory protection
keys (MPKs), have just started being investigated for applicability in these min-
imal systems, sometimes with impressive results [6, 7].

User-interrupts (UINTRs) are a new technology that allows interrupts to be
forwarded directly to user-space. As a kernel-bypass mechanism, they might be a
potential candidate for improving pkernel interprocess communication (IPC) and
scheduling performance, which have been major bottlenecks of pkernels ever
since their inception [8]. Another recently introduced technology is the user-
wait extension, which allows user-space processes to enter power-saving states
while waiting for events [9], which was only possible in kernel mode before.
Given the precedent for modern processor features improving IPC performance
in addition to two yet-to-be-evaluated new features on Intel’s x86/64 platform,
we ask whether these can be 1. Integrated into a modern pkernel representative
and 2. Used to create a new IPC library that performs better than the native
systems from both a time and energy perspective in the cross-core case. In the
following chapters we answer these questions.

First, we introduce these features and necessary background in detail in Chap-
ter 2 and give an overview of related work in Chapter 3. After this we present
our design for both the integration and the IPC library on our chosen pkernel
in Chapter 4, which is then followed by our description of both the implementa-
tion process and its details (Chapter 5). We then present our benchmark design
and evaluate the collected data in Chapter 6, which we use to finally draw our
conclusion and present an outlook for future work in Chapter 7.

CHAPIER 1. INTRODUCTION

Chapter 2

Background

This chapter is a summary of important concepts and necessary background in-
formation for later chapters. We first introduce the concept of pkernels in §2.1 to
provide an insight into some core concepts as well as their history. Afterwards,
we take a look at basic terms in IPC and provide some examples in §2.2. As
UINTRs relies on interrupts as an underlying mechanism, §2.3 briefly introduces
regular interrupts, which will be expanded upon in §2.4, in which we discuss
the new UINTR feature, how it works, and how the user-wait extension could
provide synergizing effects. Finally, we introduce important systems of the seL4
pkernel in §2.5.

2.1 Microkernels

In this section we introduce pkernels. For this, we first introduce the concept
of a kernel itself (§2.1.1), which is then used to define the differences between
pkernels and monolithic kernels in §2.1.2. To conclude, we give a brief history
of the L4 family of pkernels in §2.1.3.

2.1.1 Whatis a Kernel?

An OS is responsible for abstracting system resources and providing a generally
platform-independent, isolated interface for user applications [10]. To this end,
most OS’s have a core part, called a kernel, that directly controls these hardware
resources with privileged instructions. These instructions can only be executed
with certain execution privileges, which the kernel—in most cases—reserves for
itself in order to keep untrusted user software from interfering with other pro-
grams or itself. This mode of increased execution privilege is incidentally called
“kernel mode”.

8 CHAPTER 2. BACKGROUND

In order to perform low-level interactions with hardware or parts of the OS,
user software must do so through system calls, which are predefined entry points
into the kernel and run in kernel mode (unless the kernel itself is running on a
virtual system, in which case it usually has a different privilege level, which is
lower than the actual kernel mode). Once the system call has finished executing,
control is returned to the user software with the original privileges [11].

2.1.2 Micro- & Monolithic Kernels

Traditional kernels, such as Linux or Windows, have many different modules
with various functions such as device drivers, extensive memory management,
file system functions, a or multiple schedulers, etc. integrated right into the ker-
nel. This leads to a large interconnected code base, a monolith, running in kernel
mode. This is what is traditionally considered a monolithic kernel [8]. Monolithic
kernels have large trusted codebases (TCBs), meaning there is a large amount of
code that is trusted to be safe and secure. A potential attacker has a large attack
surface to exploit, since compromising a single kernel module can compromise
the entire kernel. In a similar vein, an erroneous kernel module can bring the
entire system down by, for example, writing into a critical section of memory.

In contrast, a pkernel is often the minimal set of system calls and subsystems
required to get a system to run user-mode software. Modules that are part of
the kernel in monolithic kernels are delegated to processes in user-space (called
“system servers”), which can be called by clients via IPC, which is one of the
few systems managed by modern pkernels [12]. Moving kernel modules to user-
space system servers reduces the attack surface of the actual kernel by deprivi-
leging large chunks of potentially vulnerable code and leads to better fault isola-
tion, since an erroneous server will only compromise itself, while the rest of the
system is unaffected. This isolation, however, comes at a cost. Since in mono-
lithic kernels inter-module communication consists of simple function calls and
user-module communication requires a single system call, these processes are
comparatively speedy when seen in contrast with pkernels, where a simple file
system access can take multiple IPC round-trips through various system servers,
tightly coupling client performance with that of the IPC design [7].

2.1.3 Historical and Modern L4 Microkernels

The original L4 pkernel itself was born out of frustration with the state of first-
generation pkernels, which were promised to be fast, secure, and lightweight, but
in practice were slow, boiled-down versions of existing monolithic kernels, with
the slowness of IPC being a major limiting factor for their performance [8]. L4
started as a from-scratch redesign of the IPC subsystem of Liedtke’s L3 pkernel,

2.2. INTERPROCESS COMMUNICATION 9

with a focus on new ideas that would lead to speed improvements. By reducing
the amount of invoked system calls by merging send & receive, novel optimiza-
tions for message passing, like passing small messages via registers, and a new
design for thread control blocks (TCBs) led to a 20x speed advantage compared
to the Mach pkernel at that time [13]. These were later expanded upon and spun
off into the new L4 pkernel, with a truly minimal amount of kernel systems, like
a new form of address space management via system calls for sharing, granting
and revoking pages and interrupt forwarding via IPC messages [2].

Fiasco was the first L4 pkernel to be implemented in a higher language and
was designed for and used in real-time systems, but continued the belief that
ukernels were inherently platform specific and had to be implemented in assem-
bly in order to have competitive IPC speeds [8] by doubling the latency compared
to the original L4 [14]. However, this was disproven by Liedtke and his students
in Karlsruhe with L4Ka::Hazelnut, which reimplemented L4 mostly in C++ and
still retained comparable IPC speeds [15] along with L4Ka::Pistachio, which was
developed in cooperation with UNSW/NICTA and introduced a split of L4’s ap-
plication programming interface (API) and application binary interface (ABI).
L4Ka::Pistachio was therefore able to be the first easily ported multi-architecture
version of L4 [5], with ports mostly only needing to modify 10% of the kernel
code [16].

pkernels were a popular target for formal verification of OS’s [17], an effort
aimed at increasing security and reliability, which culminated in sel4, a from-
scratch reimplementation of L4 with security and verification in mind [18]. seL4
was the first general purpose OS to be formally verified [4]. While the initial at-
tempts assumed correctness of the compiler, hardware, assembly and boot code,
more recent work targets not just the kernel itself, but the entire core seL4 plat-
form [19] and is still the subject of current research, such as adding time protec-
tion to kernels to avoid timing attacks [3].

2.2 Interprocess Communication

IPC is the general term for communication methods between different corre-
spondents on either the same machine or sometimes even remote machines. As
such, it encompasses many different types, the most important of which we in-
troduce in §§2.2.2 to 2.2.4. However, before dealing with these communication
pathways, we first introduce categories for IPC implementations in §2.2.1, which
we can later use to categorize both existing and our own IPC mechanisms.

10 CHAPTER 2. BACKGROUND

2.2.1 IPC Categories

We categorize IPC into three different categories, based on required behavior for
successful message delivery:

1. Synchronous, meaning both the sender and receiver need to be waiting on
the IPC object at the same time

2. Asynchronous, meaning the sender and receiver do not need to be waiting
on the IPC object at the same time, but instead only need to call the IPC
object after another

3. Asynchronous-Preemptive, meaning only the sender needs to call the IPC
object and the receiver is preempted to receive and/or process the message

Calls to synchronous, asynchronous, and asynchronous-preemptive IPC objects
can be either blocking or non-blocking. However, for synchronous IPC, at least
one of the IPC participants needs to be using a blocking call for successful deliv-
ery.

Examples for these categories in conventional OS’s are: 1. SendMessage of the
Win32 library, which waits until the message has been processed [20], 2. Pipes on
Linux, where sent data is buffered by the kernel until retrieved by a receiver [21]
and 3. operating system signal (OSS) on Linux, where pending signals are pro-
cessed upon reentering user-space [22].

2.2.2 Message Passing

Our first IPC type is message passing, which is a mechanism to communicate and
synchronize actions between correspondents and, in general, provides two op-
erations: 1. Send to send a message and 2. Recv to receive a message [23, sec. 3.6].
The communication link used by the mechanism varies from implementation to
implementation, but can range from network packets to shared memory. Mes-
sage passing mechanisms are usually either synchronous or asynchronous, with
an asynchronous mechanism also needing to specify a buffering policy—either
bounded or unbounded buffers—to determine how a “large amount” of messages
is dealt with, sometimes by discarding messages if the buffer is full [23, sec. 3.6.3].

2.2.3 Signals

Similar to message passing, signaling mechanism also use the Send and Recv op-
erations and serve as event notifications, usually combined with a flag or data
word to determine the type. The signaling mechanism usually only stores one

2.3. INTERRUPTS 11

pending signal per signal type, as seen with Linux signals [22], or seL4’s Noti-
fication, which we cover in §2.5.3. Signals are usually either asynchronous or
asynchronous-preemptive and sometimes used as the underlying mechanism to
implement message passing, where they are combined with a shared buffer and
a pending signal signifies pending data in the buffer.

2.2.4 Remote Procedure Calls

Remote procedure calls (RPCs) are an abstraction on top of bidirectional message-
passing IPC between a client and a server that types messages from the client to
the server as procedure arguments and messages from the server back to the
client as return values [23, sec. 3.8.2]. This allows the client to call procedures
on a remote server, which allows it to

« Outsource computation and/or

« React to events from outside sources (other clients, for example) by having
a shared state without holding shared memory

An example for a system using RPCs is a remote file-system, with calls relating to
normal file access such as read, write, open, delete instead being remote calls [23,
sec. 3.8.2]. Return values would either be file data or status codes, depending on
the operation.

“Remote” in this case simply means “not in this address space”, meaning that
communication between threads with separate address spaces on the same ma-
chine that is structured like a procedure call is an example of a RPC. This defini-
tion is common for client-system server communication on pkernels [13], how-
ever, if system servers are passive instead of active, meaning they do not have
their own executing thread but simply consist of an address space, this form of
communication is instead referred to as protected procedure calls (PPCs) [24].

2.3 Interrupts

In this section we introduce the concept of an interrupt (§2.3.1), briefly touch on
the hardware mechanism for delivering interrupts (§2.3.2), continue with how
interrupts are tied to exceptions on Intel’s x86/64 platform (§2.3.3), and how user-
space programs usually interact with interrupts (§2.3.4).

2.3.1 Mechanism

Interrupts on x86/64 are, at their basic level, signals sent to the processor to no-
tify it that something has happened, combined with a number, which is called an

12 CHAPTER 2. BACKGROUND

interrupt vector (IV), to determine how to process the interrupt [25]. The first 32
IVs are reserved for exceptions, while the remaining 224 are called user-defined
interrupts (UDIs), and have no architecture-defined causes. Every IV is also as-
signed a priority, which determines if an interrupt service routine (ISR) may be
suspended and interrupted by the arrival of an interrupt with an IV of a higher
priority.

Interrupts can be classified either as external (hardware) interrupts or soft-
ware interrupts [25, sec. 7.3]. Hardware interrupts are caused by external sources
to notify the system of certain events that need to be handled. Since interrupts
could only be received by privileged software until the introduction of UINTR,
the notified system was usually the OS and contained drivers, or the interrupt
was forwarded to user-space software with OS-specific mechanisms, some of
which we introduce in §2.3.4. Common sources for hardware interrupts are
finished-work notifications from input/output (I/O) devices, like a disk drive, and
periodic timer interrupts configured by the OS [26]. Software interrupts, on the
other hand, are classified into the following categories:

« Exceptions, some details of which we discuss in §2.3.3.

« Interprocessor interrupts (IPIs), interrupts sent from one processor to an-
other.

« Self-interrupts, caused by executing instructions such as INTR n.

On a task-level an interrupt is handled by 1. suspending the current task,
2. executing the ISR, 3. restoring the suspended task. This means an interrupt is
transparent to the executed software. However, care must be taken when design-
ing ISRs as, if the interrupts arrive faster than they can be handled, the system
may end up in a live-lock, constantly servicing interrupts while not completing
any other work [26].

2.3.2 Advanced Programmable Interrupt Controller

Interrupts are managed in hardware by the local advanced programmable inter-
rupt controller (APIC), which is a per-core piece of hardware that receives in-
terrupts from processor pins, internal sources, or the IOAPIC [25, ch. 12]. Local
APICs also have a unique ID, which can be used to address a core when sending
IPIs. The IOAPIC is an external piece of hardware that receives external inter-
rupts from I/O devices and system sources and then forwards these interrupts to
the local APICs. APICs, as reflected in their name, are highly configurable and
support features such as posted-interrupt processing, which allows physical inter-
rupts to be rerouted to virtual interrupts, which can be used to direct interrupts
directly into virtual machines [27, sec. 31.6].

2.4. MODERN PROCESSOR FEATURES 13

2.3.3 Exceptions

Exceptions can be classified into three categories [25]:

« Faults, a usually correctable exception that occurs during the execution of
an instruction. The offending instruction is restarted after fault handling.

« Traps, an exception that occurs after the successful completion of an in-
struction. The next instruction is started after trap handling.

« Aborts, severe exceptions. Handlers need to shut down the offending ap-
plication or even system.

When an exception occurs, a software interrupt with the associated IV is gener-
ated. Depending on the exception, additional data may be pushed to the stack to
be consulted by the handler. A common fault exception is a page fault that occurs
when a process accesses an address on a page currently not in memory [25].

2.3.4 Interrupt Handling

On the Linux monolithic kernel, interrupts are usually handled in kernel-space,
but for memory-controllable devices, user-space drivers can also make use of
userspace I/O (UIO) [28] to handle and acknowledge interrupts. UIO can be used
to move kernel drivers to user-space, but some devices may still require a small
kernel module to control device functions. Interrupts with UIO are controlled
by blocking read() or select() calls on the device-specific files to get notified
of pending interrupts, and write(), which is usually used to enable or disable
interrupts

Alternatively, some drivers, such as the Intel’s high precision event timer
driver, forward interrupt events as OSS [29] to then be received in user-space.
However, interrupt processing itself is still done in the kernel driver.

In contrast to this, pkernels simply forward interrupts to user-space as IPC
messages and forego further processing in the kernel [26]. Device drivers either
wait for the next interrupt IPC message, or register an asynchronous routine,
which is called upon receiving an interrupt. The user-space tasks need to perform
interrupt processing and then reset the hardware themselves, by either calling
appropriate system calls or performing writes on memory-mapped devices.

2.4 Modern Processor Features

We introduce the background and current state of support for Intel’s UINTR fea-
ture on their x86/64 platform in §2.4.1, after which we go into detail on how a

14 CHAPTER 2. BACKGROUND

thread would receive (§2.4.2) and send (§2.4.3) interrupts with this new feature
enabled. We end our focus on UINTR by specifically highlighting some of its
limitations in §2.4.5. Finally, we introduce the user-wait extension in §2.4.6.

2.4.1 UINTR Feature Background

UINTR is a relatively new feature of Intel’s x86/64 platform to allow forwarding
of regular interrupts, which would normally trap into an interrupt handler in
kernel mode, to an interrupt handler in user-space. While the theoretical poten-
tial of such a feature for faster networking and high-speed devices was already
being discussed in the early 2000s [30], its first potential for implementation was
the planned Risc-V “N”extension [31], which was later withdrawn due to a lack
of support for the current design [32]. Despite further support from some of the
embedded systems community [33], the feature has yet to (re-)appear on other
architectures. Intel is therefore the first, and, to this day only, manufacturer to
support the UINTR feature, which was first introduced on Sapphire Rapids server
processors and later on Sierra Forest, Grand Ridge, Arrow Lake and Lunar Lake
processors [34].

In addition to allowing regular interrupts to be forwarded to user-space han-
dlers, Intel’s UINTR implementation additionally provides user interprocessor
interrupts (UIPIs), which allow user processes to send software interrupts with
an additional parameter to each other [9]. Since its original introduction, there
has been one minor revision that was introduced with processors after Sapphire
Rapids. No OS has built-in support for the UINTR feature, with the official pro-
posed Linux patch-set from Intel being fully abandoned in April 2024 [27] after
the Linux kernel mailing list seemingly lost interest after 2022 [35].

2.4.2 Receiving User-Interrupt Notifications

In essence, UINTR allows user-space processes to receive interrupts directly in
user-space instead of using OS-specific mechanisms like UIO [25]. By allowing
this, UINTR has the potential to reduce the inherent latency of first handling
the interrupt in kernel-space and afterwards forwarding them to the user pro-
cess [35].

Once enabled by setting a bit in the CR4 register, potential recipients of user-
interrupt notifications (UINs), which is what the delivery of a normal inter-
rupt to user-space is called [25, sec. 8.1], need to set three model-specific regis-
ters (MSRs). These are 1. IA32_UINTR_HANDLER, 2. TA32_UINTR_MISC, and 3. IA32_-
UINTR_PD, as well as the optional IA32_UINTR_STACKADJUST MSR, each of which set
a specific aspect used during user-interrupt delivery (UID).

2.4. MODERN PROCESSOR FEATURES 15

IA32_UINTR_MISC

The IA32_UINTR_MISC MSR sets multiple values. For one, it contains a bit for
storing the user-interrupt flag (UIF) flag which is a flag that en- or disables UID.
It is of note that the flag is only actually stored in this bit in the MSR’s XSAVE-
region after the UINTR state is been XSAVES-ed, not in the actual MSR [25, sec.
8.3.2]. The UIF is controlled by three new user-level instructions [25, sec. 8.6]:

1. STUI, which sets the UIF.
2. CLUI, which clears the UIF.
3. TESTUI, which returns the current value of the UIF.

In addition to this, it also contains the user-interrupts notification vector (UINV),
which is used to determine the IV that triggers UIN identification, which, if suc-
cessful, eventually leads to UID. Finally, it also contains the UITTSZ, which we
will explain in §2.4.3.

IA32_UINTR_PD and the UPID

This MSR sets the address of the user posted-interrupt descriptor (UPID), which
is the structure used by the processor to track a thread’s current UINTR state in
the PIR field, with the remaining fields only being used by sending agents.

The UPID consists of the ON (outstanding notification) and SN (suppress noti-
fication) fields, which determine if a user-interrupt is a) pending and/or b) sup-
pressed. They are used by sending agents to determine if they should send an
IPL ON is set automatically by SENDUIPI, while SN is free to be set by software. The
UPID’s memory layout can be observed in Figure 2.1.

63 31 23 5

NDST Rsvd. NV Reserved
PIR bit-field

127 64

Zw»n | =
ZO | o

Figure 2.1: UPID memory layout

In addition to these two bits, there is also the NV (notification vector) field,
which sets the IV used by the IPI when SENDUIPI is executed while targeting this
UPID, as well as the NDST (notification destination), which is the APIC ID of the
destination core. Ideally, the NV is equal to the UINV set by the core targeted

16 CHAPTER 2. BACKGROUND

by ND, otherwise the interrupt is received by the kernel instead of the targeted
user-space thread. The remaining field is the PIR bit-field, which has a bit for
every possible user-interrupt vector (UIV) v with v € [0;63]. Bit v is set if UIV
v is requesting service [25]. Upon UIN processing, the PIR is OR-ed into the user-
interrupt request register (UIRR), which lives in the IA32_UINTR_RR MSR, the most
significant bit of which is the first UIV processed during UID.

IA32_UINTR_HANDLER

This sets the user-interrupt handler (UIHandler), which is the linear address of
the routine the rip is set to upon successful UID. The only requirement for this
address is that it is canonical' and usually points to an ENDBR64 instructions [25].
The UlHandler is given two arguments upon execution: 1. The UINTR frame,
consisting of the RIP, RSP, and RFLAGS of the interrupted thread; and 2. The UIV,
which multiplexes a single UINV into multiple UIVs, thereby allowing multiple
sources to signal the same thread with the same IV and still be distinguished
by the receiver. UIVs are necessary because a thread can only have a single IV
set as its UINV. Upon completion, the UIHandler should call UIRET, which is a
new instruction that restores the state stored in the UINTR frame [25, sec. 8.6]
and sets the UIF [25, sec. 8.3.1]. Intel introduced an extension to UINTR called
“Flexible Updates of UIF by UIRET”, which instead makes UIRET load RFLAGS[1]
into UIF, allowing threads to manage UIF from the UlHandler [25, sec. 8.7]. This
enables receivers to mitigate potential live-locks from over-eager senders, which
was impossible before this extension, as we again mention in §2.4.5.

IA32_UINTR_STACKADJUST

This MSR sets the user-interrupt stack adjustment (UIStackadjust), a value which
determines how the stack is adjusted when handling a user-interrupt. This is
needed to prevent clobbering of the stack’s red zone, a region behind the stack
pointer considered “reserved” and not allowed to be modified by interrupt han-
dlers in some ABIs [37]. UlStackadjust[@] is used to determine whether the stack
address is calculated by subtracting UlStackadjust from the current stack pointer,
or simply set to the value of UlStackadjust. Since the resulting stack pointer is
then forcibly 16-byte aligned, UlStackadjust[@] is automatically discarded when
processing a user-interrupt [25, sec. 8.4.2].

The step-by-step process of successful UID is available in Listing 2.1. It is of note
that a user-interrupt recognition (UIR) is only triggered if UIRR # 0. Therefore,

A canonical address needs to have its unimplemented bits set to either all zeros or all ones.
On the current x86/64 platform, these are all bits from index 63-48 [36, sec. 3.3.7.1].

2.4. MODERN PROCESSOR FEATURES 17

63 15 7 0

Reserved uv Rsvd. V
UPIDADDR

127 64

Figure 2.2: UITT memory layout

successful UID can only occur if the PIR field has any set bits before a UIN is
processed, which can prove to be a challenge when trying to receive interrupts
from external devices [38].

2.4.3 Sending User Interprocessor Interrupts

In addition to allowing the reception of interrupts in user-space, UINTR also
introduced the SENDUIPI instruction, which allows threads running in user-space
to send IPIs to other user-space threads if correctly configured. Like with the
setup of UINs, sending UIPIs also requires setting two MSRs: 1. IA32_UINTR_TT
and 2. TA32_UINTR_MISC.

IA32 UINTR_TT and the UITT

Similar to the IA32_UINTR_PD MSR, the IA32_UINTR_TT MSR sets the address of the
sender-specific data-structure, the user-interrupt target table (UI'TT). The UITT,
as the name implies, is a table consisting of one or more user-interrupt target
table entries (UITTes), each of which describe a combination of a receiver, by
containing the address of a UPID in UPIDADDR, with a UIV, which is set in the uv
field. Additionally, there is also the V (valid) field, which determines whether an
entry is valid. A UITTe’s memory layout can be examined in Figure 2.2. Of note
is that the length of UV is 8 bits, which sets its possible value range to [0; 255],
however, bits 15:14 must be set to zero, lowering the permitted range back to
[0; 63], therefore not conflicting with the UPID’s PIR bit-field as seen in §2.4.2. In
addition to the UITT’s address, IA32_UINTR_TT also contains a bit to activate the
SENDUIPI instruction. When SENDUIPI n is executed, the nth entry in the UITT
is indexed into and checked for a set V bit. If set, the UPID from UPIDADDR is then
retrieved and the Uvth bit in the UPID’s PIR bit-field is set. If neither the UPID’s
ON or SN bits are set, the executing core then sends an IPI with IV NV to the APIC
with ID NDST [9, chpt. 4, SENDUIPI]. An IPI sent via this mechanism is called a
UIPL

O 0 1 O U1 B W DN

10

12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30

18

CHAPTER 2. BACKGROUND

[Previous Events and Conditions]

All (receiver) MSRs are set to valid values
UPID.PIR[UIV] = 1, UPID.PIR[!=UIV] = @
UIF =1
An interrupt of vector IV = UINV
was sent to the core with the UPID installed

[Start User-Interrupt Notification Identification]

Local APIC is acknowledged
Local APIC interrupt is dismissed

[Start User-Interrupt Notification Processing]

UPID.ON = @
UIRR |= UPID.PIR
UPID.PIR = ©

[User-Interrupt is Recognized]
[Start User-Interrupt Delivery]

Processor is woken up from
user-entered power saving states
IF UISTACKADJUST[Q] == 1:
- RSP = UISTACKADJUST
ELSE:
- RSP = RSP - UISTACKADJUST
RSP = RSP & ~OxF
User-interrupt frame (0ld RSP, RIP, RFLAGS)
is pushed to stack
UIV is pushed to stack
UIRR[LUIV] = @

UIF = @
RIP = UIHandler
[End]

Listing 2.1: UID, with some minor details omitted

2.4. MODERN PROCESSOR FEATURES 19

IA32_UINTR_MISC (continued)

As previously mentioned, the TA32_UINTR_MISC MSR also contains the UITTSZ
field. UITTSZ + 1 determines the size of the UITT if SENDUIPI is activated in
IA32_UINTR_TT. It is used when executing the SENDUIPI n instruction, where, if
n > UITTSZ, execution is aborted and a general protection fault (GP fault) is
raised.

2.4.4 UINTR-XState

The extended state (XState) is a set of state components that originally was lim-
ited to just the x87 FPU state [36, sec. 10.5]. It is thread-specific and needs to
be saved and restored during context-switches, for which the instructions XSAVE
and XRSTOR were implemented [36, chpt. 13]. XSAVE and XRSTOR are not privi-
leged and save the XState to memory given by an argument [9, sec. 6.1, XSAVE].
Eventually, XSAVES and XRSTORS were also introduced, which are privileged in-
structions that save and restore additional XState components that should not
be accessed or modified from user-space [9, sec. 6.1, XSAVES]. XSAVES-managed
state components are both set and enumerated differently than the regular XSAVE
components.

UINTR also has an XSAVES-managed state component that can be saved and
restored. It encompasses every MSR mentioned above, as well as the UIF flag.
Notably, executing XSAVES on the UINTR state component modifies the IA32_-
UINTR_MISC MSR and clears UINV [36, sec. 13.5.11]. This means that XSAVES
is destructive for the UINTR state and executing two consecutive XSAVES will
overwrite the saved state with the cleared state, deleting UINV. Implementa-
tions therefore need to either keep track of UINVs or ensure that every XSAVES is
always followed by XRSTORS before the next call.

A potential reason for this truly baffling behavior is the issue of erroneous
UID, which might occur of the UINTR MSRs are not cleared when another thread
is switched in. The theoretically still valid MSR values lead to UIN processing if
the memory address of IA32_UINTR_PD is somehow still valid and ON or SN or any
reserved bits are not coincidentally set when a sender, unaware of the receiving
threads scheduling, executes SENDUIPI. UIN processing then triggers UID, which
sets RIP to the previously-set UIHandler address, which then tries to execute
potentially random memory, causing errors. Clearing UINV prevents this, as the
IPI is instead delivered to the kernel. However, this only solves the issue for
kernels that use XSAVES, which is not guaranteed (see §5.2.3).

20 CHAPTER 2. BACKGROUND

2.4.5 Limitations of UINTR

UINTR cannot be fully controlled by user-space. In order to receive UINs, a
thread needs to set at least three MSRs, while a sender only needs to set two.
Both the sender and receiver need to have the receiver’s UPID mapped to their
respective address spaces. Furthermore, the sender also needs to have their UI'TT
mapped into their own address space. However, since all memory accesses dur-
ing the execution of SENDUIPI and UIN processing are performed with supervi-
sor privileges [9, 25], these mappings do not not need to be user-accessible. In
fact, we believe user access to these data structures is dangerous, the reasons for
which we explain in the remainder of this section.

We conclude that some level of kernel-control over the UINTR feature is nec-
essary, for the following reasons:

1. Setting up UIN completely hides any events on the selected IV from the
kernel. The kernel should not be circumvented for UINTR setup, as a user-
process could then simply “steal” critical IVs, such as the regular timer
interrupt, and therefore cripple the OS’s abilities, which is in this case the
ability to preempt and reschedule tasks.

2. The UPID contains a notification vector field, which determines the IV used
by processes when executing the SENDUIPI instruction. Since this field is
decoupled from the MSR that determines which interrupts are forwarded
to user-space, free control over this field could be used by nefarious pro-
cesses to send any IV they want, potentially messing with OS-systems or
introducing live-locks.

3. Freely controlling the UITT can be used to create false entries pointing
to user-owned memory. Since every UITTe contains a UPID address to
consult when executing SENDUIPI, free control over UI'TTes would lead to
the same situation as seen with free control over the UPID.

In addition to these concerns, UINTR should only be used between trusted cor-
respondents if the “Flexible Updates of UIF by UIRET” extension is unavailable,
due to the concern for potential live-locks caused by malicious senders of UIPIs.
Despite exceptions triggering interrupts, UINTR does not support handling of
exceptions in user-space, although there have been discussions about potential
use-cases of such a feature [39, 40].

2.4.6 User-Wait Extension

The user-wait extension was introduced around the same time as UINTR, with
it first appearing on Intel Xeon processors together with UINTR on Sapphire

2.5. INTRODUCTION TO SEL4 21

Rapids [36]. It expands the already existing wait instructions MWAIT and MONITOR—
which allow the processor to enter an implementation-dependent optimized state
upon executing MWAIT until an event or store occurs on the address range previ-
ously specified by MONITOR [9, sec. 4.3, MWAIT]—with user-mode equivalents
UMWAIT and UMONITOR. MWAIT is allowed to switch to any C-State, while UMWAIT is
limited to just C0.1 and C0.2. We will call these optimized states “sleep states”
after this point.

In contrast to the privileged counterpart, UMWAIT has an immediate argument,
which sets the time stamp counter (TSC) timestamp after which the processor
exits the sleep state even if no event occurs. This means that programs wanting
to use UMWAIT first need to read the TSC, then add their desired deadline offset,
then execute UMWAIT. In addition to this argument, there is an additional deadline,
usually set by the OS, called the OS deadline. It determines the maximum time in
TSC units that UMWAIT is allowed to wait for. Note that the OS deadline is an offset
instead of a timestamp. The OS deadline is set with a new MSR, called IA32_-
UMWAIT_CONTROL, which also controls the maximum sleep state UMWAIT is allowed
to enter [25, sec. 4.3, UMWAIT]. The extension also adds the TPAUSE instruction,
which acts like UMWAIT but without a monitored address range. TPAUSE therefore
only waits for the deadlines, while UMWAIT can also exit the sleep states earlier
due to memory events [9, sec. 4.3, TPAUSE]. The user-mode sleep states are also
exited upon receiving an interrupt, with Intel’s manuals specifically mentioning
that user-interrupts also cause this behavior [25, sec. 8.4.2].

Due to issues with how MONITOR and UMONITOR reclaim addresses, processors
that repeatedly execute these instructions may suffer from performance loss or
an inability to enter sleep states on some affected architectures [41].

2.5 Introduction to selL4

This section introduces some technical details of the non-mixed-criticality sys-
tem (MCS) seL4 pkernel on x86/64. As part of this, we first introduce the limited
number of system calls in §2.5.1, describe what selL4’s capability-based access-
control entails and how it is implemented in §2.5.2. After this, we focus on exist-
ing IPC paths for seL4 in §2.5.3 and finally explain existing methods for interrupt
handling in §2.5.4.

2.5.1 System Calls
seL4, being an L4 pkernel, implements only three basic system calls [42, sec. 2.2]:

1. Yield, which returns control to the kernel and invokes the scheduler. This
is the only system call that does not require a capability to invoke.

22 CHAPTER 2. BACKGROUND

2. Send, which sends data via a capability and performs capability-specific
actions.

3. Recv, which receives data via a capability.

While these calls are enough to provide all required functionality, seL4 further
implements six more system calls [42, sec. 2.2], which are mostly simple variants
of the previously mentioned calls. For our purposes, we only focus the following
three:

+ Call, which combines Send and Recv into a single system call.

+ NBSend, which is Send, but does not ensure delivery and returns immedi-
ately if the message could not be delivered.

« NBRecv, which polls for a new message and returns immediately if none are
available. Otherwise it acts like Recv.

Call specifically implements some additional functionality, which will be further
elaborated in §2.5.3 after capabilities have been introduced in the following sec-
tions. The Send and Recv system calls and variants use thread-specific message
registers to pass data and are invoked with user-space stubs. The signature for
the Send-stub is void selL4_Send(selL4_CPtr dest, selL4_MessageInfo_t msgInfo),
where dest is the invoked capability and msgInfo is a struct that holds a label
and the message_length, among other fields [42, sec. 4.1]. The amount of message
registers used is determined by the message_length field.

2.5.2 Capabilities

seL4 uses capability-based access-control to hardware features. Capabilities are
kernel-controlled objects that can be invoked, created, shared, and revoked [42,
sec. 2.1]. Some capabilities have a guard or badge value, which is a simple word
of varying length associated with the capability. In addition to this, rights fields
are also held by some capabilities, which allow or disallow certain methods to
be invoked. After introducing a capability of a certain name, we will refer to a
[NAME] capability simply as [NAME].

Addressing Capabilities

Since capabilities are kernel-controlled objects, user-space tasks cannot interact
with them directly. Therefore, tasks need a way to address them. These addresses
are called capablitiy pointers (CPtrs) and are derived from a guarded page-table
constructed by nested CNode capabilities. A CNode holds a list of capabilities,

2.5. INTRODUCTION TO SEL4 23

which can again contain another CNode, which holds another list of capabilities.
Every thread has a root CNode, which determines the set of all capabilities a
thread can invoke, which is called the capability space (CSpace). It is used as the
starting point when resolving CPtrs when no other root CNode is given for the
invocation. A CNode capability c has a length [, a guard word w, and a guard
length g., which are used during the translation process.

The translation process also uses a depth d, which determines the bit position
at which to start translating, starting from the least significant bit. The default
value for d is the machine word size s, meaning the translation process starts with
the sth least significant bit, which is the most significant bit. To resolve a CPtr
for a given root CNode, the first g, bits of the CPtr are checked against w,t,
after which the next [, bits are used to determine the index into the CNode’s
list. If the reached capability is another CNode and d > ¢;40¢ + 001, the process is
repeated with the next CNode’s gext, lnext, Wnest until, for the set C of traversed
CNodes, either

t=d—> gi+1li=0
ieC
and a capability is found and returned, a guard mismatch occurs, or a non-CNode
capability is reached while ¢ # 0, which is called a depth mismatch [4, secs. 3.3-
3.4]. A visual example of the translation process can be seen in Figure 2.3.

Creating Capabilities

In order to create a new capability, a thread must invoke a capability-creating
method. The initial task is given several capabilities for that purpose. The most
common of these is the Retype method of the Untyped capability, which controls
a portion of untyped physical memory. Retype can be used to create most ca-
pabilities, including memory-managing capabilities to frames or other memory-
management structures.

As of sel4 13.0.0, capabilities on x86/64 have 128 bits of storage, some of
which are reserved for shared fields, that can be used for rights managed and
state-keeping. If a capability requires further memory, for example because it is
managing a physical structure (e.g. paging structures), it is designated as a phys-
ical capability with an object of a certain size and consumes additional memory
upon creation, which it needs to track by storing a pointer in the aforementioned
storage bits. Physical capabilities need to be created via Untyped’s Retype and
consume part of the Untyped’s memory.

Other capabilities, like the root-owned IRQControl capability, are used as
rights-managers and can only be used to create new sub-capabilities to specific
entities in the managed space. The sub-capabilities cannot have any memory

24 CHAPTER 2. BACKGROUND

Root CNode

l=2,9g=2w=01,
0boo CNode 400000100
0bo! NullCap 010000
eb10 CNode 400000110
ob11 Endpoint 0b01110000

l=1,9g=2w=11,

260 NullCap 0b01101100

ob Frame ;,.15:110

Figure 2.3: An example capability guarded page-table with word size s = 8.
Capabilities have their simplest CPtr in their box on the right and the index for
their containing list on the left. Values in gray are ignored. It is assumed that the
proper depth is used for CNode addressing. Since CPtr translation follows loops,
given the example that the CNode 0b00OO00100 has the same guard word and
guard size as the root CNode, Endpoint can also be addressed with Ob0O1000111.

2.5. INTRODUCTION TO SEL4 25

associated with them, since the managing capabilities do not have associated
memory to hand out and cannot be created via Untyped’s Retype.

Invoking Capability Methods

To invoke a capability, a thread has to set its message registers, which are housed
in a special thread-local memory region, to contain the capability’s CPtr, method
ID, and further arguments. After which it invokes the Call system call and con-
trol is handed over to the kernel. The kernel then retrieves the actual capability
object and performs the method-specific actions, checking if the thread passed
a correct capability with the appropriate rights along with other sanity checks.
Return values are then passed back via the thread’s message registers and can
then be decoded in user-space.

Deriving Capabilities

Many capabilities can be derived, meaning a new capability is created from the
original capability, either with different rights, a different badge or guard, which
is called minting or simply copied. If the capability is a physical capability, derived
capabilities refer to the same object. This is how shared memory can be imple-
mented in sel4 [42, sec. 7.3], since a Frame capability can only be Mapped once.
The Frame is then derived and either placed directly in the recipient’s CSpace,
or transferred via capability transfer, which we explain in §2.5.3, and then the
derived capability is mapped into the recipient’s virtual address space (VSpace).
Or the sender can map the capability directly into the recipient’s VSpace if they
have access to their PML4 capability, which is the VSpace root. Internally, seL4
keeps track of the derivation tree [42, sec. 3.1.5], so that when a capability is
revoked or deleted, the derived capabilities (as well as the original capability in
case of Delete) and the referenced object are deleted properly.

2.5.3 IPC Capabilities

IPC on sel4 is handled similarly to capability invocation. In fact, IPC is han-
dled via capability invocation [42, chpts. 4, 5]. seL4 offers a capability for mes-
sage passing and signals each, called Endpoint and Notification capability re-
spectively. Endpoints are discussed in §2.5.3, while Notifications are touched on
in §2.5.3.

26 CHAPTER 2. BACKGROUND

Endpoints

In seL4 an Endpoint represents the right to send or receive messages to and from
the specific endpoint represented by the capability. An Endpoint has four differ-
ent rights [42, sec. 3.1.4]:

+ Send, which allows the holder to send data via the Endpoint
« Receive, which allows the holder to receive data via the Endpoint
« Grant, which allows the holder of the Endpoint to transfer capabilities

« GrantReply, which allows the holder of the Endpoint to transfer a Reply
capability.

A Reply is a special kind of capability that is granted to the receiver of an End-
point message and can only be used once. It is only used when the sender in-
vokes Call with the Endpoint, which blocks the sender until the receiver sends
a message on the received Reply. If an Endpoint does not have the Grant or
GrantReply rights, the calling thread is simply suspended and needs to be man-
ually restarted [4, sec. 4.2.4].

An Endpoint with Grant can also transfer other capabilities. For this, the re-
ceiver simply sets the CNode slot to save the new capability to and calls Recv.
The sender places the CPtr in the designated array and calls Send. After a suc-
cessful rendezvous, the receiver owns a copy of the original capability. For sake
of scope we will not describe capability unwrapping, which is the mechanism
used when sending more than one capability [4, sec. 4.2.2].

Since seL4 has no kernel-housed message buffer, both the sender and a re-
ceiver need to be waiting on the Endpoint at the same time. This means either
the receiver must already be waiting with Recv when the sender uses (NB)Send, or
the sender must already be waiting for the receiver with Send for a message to be
successfully delivered. NBSend fails quietly if the message could not be delivered.
In addition to the normal communication pathway, Endpoints also supports the
fast-path, which is a highly optimized path through the kernel [43]. The fast-
path is invoked if the following conditions hold true: 1. Endpoint was invoked
with either Call or ReplyRecv 2. No thread with a higher priority is waiting to be
scheduled 3. The message consists only of regular data and fits into the message
registers. We categorize Endpoint messages as synchronous, with both blocking
and non-blocking variants for Send and Recv [42, sec. 4.2].

Notifications

A Notification represents an asynchronous signaling mechanism [42, chpt. 5].
The transmitted signal is the badge value of the Notification, which is saved

2.5. INTRODUCTION TO SEL4 27

by the kernel until retrieved. Additionally, if a thread is already Waiting on the
Notification, the first waiting thread is unblocked. There are three invocations
for Notifications [42, sec. 5.3]:

« Signal, which sends a signal with the badge value
« Wait, which waits until a signal is received

« Poll, which maps directly to NBRecv and checks if a signal is pending and
simply returns if none exist.

A single Notification can also be bound to a thread’s TCB, which allows the
thread to also receive a signal any time it calls Recv on an Endpoint. It is up
to user-space to determine whether the message was a signal to the bound No-
tification or a message on the Endpoint. We categorize Notification messages
as asynchronous, with both blocking and non-blocking variants for the receiver
and only non-blocking Signal for the sender.

2.5.4 Interrupt Handling

seL4 specifically uses two capabilities to control access to interrupt request lines
(IRQs). The IRQControl capability is handed to the initial task and can then be
used to create new IRQHandler capabilities. An IRQHandler can control legacy
interrupts, IOAPIC interrupts, or MSI interrupts [42]. Which type of IRQHan-
dler is created depends on the specific invocation used on IRQControl, which
each type using a different method and parameters. Once an IRQHandler capa-
bility is created, SetNotifcation can be used to register a Notification to the IRQ,
which can then be used to receive interrupts by calling Wait or Poll. Therefore,
forwarding an interrupt to user-space is done via an asynchronous IPC mech-
anism and is not preemptive. Interrupts are acknowledged with IRQHandler’s
Ack, after which the next interrupt can be received with Wait.

28

CHAPTER 2. BACKGROUND

Chapter 3

Related Work

In this chapter, we first provide a comprehensive overview of analyses on Intel’s
UINTR feature (§3.1) to gauge its viability for use in pkernels as well as shed
some light on potential limitations. The following section explores further work
on applications of UINTR, most of which are user-level preemption. Lastly, we
explore work related to IPC on pkernels as a potential sources for comparison
and inspiration for our design (§3.3).

3.1 User-Level-Interrupts

This section takes a look at recent work on UINTR to provide a better under-
standing of its benefits and limitations. We first dive into some introductory
work (§3.1.1), look at a security analysis (§3.1.2) and lastly into technical analy-
ses of Intel’s UINTR (§3.1.3).

3.1.1 Introductory Work

One of the first scientific works to use UINTR was an effort to replace the polling-
based receive-mechanism of NewMadeleine, an event-driven communication li-
brary that allows asynchronous communication, with notifications based on UIPIs.
For this, Goedefroit [44] uses Intel’s Linux patch to compare UIPIs and OSS and
found that UIPIs have a lower and more consistent delivery latency than OSS,
with a roughly 3x advantage. Goedefroit also finds that UIPIs is not unaffected
by the non-uniform memory access (NUMA) layout, with UIPIs between distant
cores being ~1.5x slower, however, OSS are also affected by this, as mentioned in
§3.3.4. In NewMadeleine, Goedefroit prepares both a notification mechanism for
a shared-memory IPC system based on OSSs and UIPIs and shows that the UIPI
driver has a slightly higher latency than a busy-waiting variant, but performs bet-

29

30 CHAPTER 3. RELATED WORK

ter than OSS. These results are reflected in the new driver’s throughput, which is
slightly lower than busy-waiting but still massively outperforms OSS. In essence,
Goedefroit demonstrates that UINTR can provide tangible performance benefits
compared to OSS while reducing the overhead ratio compared to busy-waiting.
Goedefroit also submitted a pull request for a bug in Intel’s kernel patch related
to the alt-stack feature.

3.1.2 Security Aspects

The first security analysis of UINTR provides insight into the characteristics of
UINTR and IPI virtualization (IPIv), both features were introduced with Sapphire
Rapids. Rauscher and Gruss [45] confirm the comparatively low latency of UIPI
and use these characteristics to construct a covert channel, a keystroke detection
mechanism and a website fingerprinting mechanism, all of which work under
virtualization due to the new IPIv feature, which allows virtual machines (VMs)
to send IPIs without supervisor intervention. Rauscher and Gruss highlight both
the potential benefits and security risks of these new features, if used without
mitigations. UINTR also need to be considered when implementing sandboxing
mechanisms, as shown with Erebor [46].

3.1.3 Technical Analyses

Using reverse-engineering and fine-grained benchmarks, Aydogmus et al. [47]
analyzed the detailed performance characteristics of UIPIs from the sender, re-
ceiver, and round-trip perspective. They find that receiving UIPIs flushes the
instruction pipeline, which leads to a loss of throughput, according to them, un-
necessary latency. Aydogmus et al. propose extended user-interrupts (xUI), with
4 aspects: 1. Tracked interrupts, 2. hardware safepoints, 3. kernel-bypass timers,
4. interrupt forwarding, all of which they implement and evaluate on simulated
hardware. The most interesting to us are tracked interrupts, which promise to
reduce UIPI latency by using draining instead of flushing together with branch
mispredictions to dynamically inject UIPI micro-ops into the instruction stream
at a potentially earlier point in time. Hardware safepoints would automatically
enable or disable UINTR for applications instead of explicitly requiring the use of
SETUI and CLUI instructions, while interrupt forwarding extends the UIN mecha-
nism already provided by UINTR with dedicated support for multiple UDIs using
two new 256 bit fields [47]. Kernel-bypass timers are also of interest to Intel, who
have proposed their own user-timer system using UINTR which might be intro-
duced with Clearwater Forest processors [34], potentially to mitigate the need
for manual solutions such as the ones found in Skyloft [38].

3.2. APPLICATIONS OF UINTR 31

The most recent technical analysis characterizes UINTR with a focus on vir-
tualization. Kone et al. [48] look at UINTR’s general capabilities, trade-offs for
potential software wanting to use UINTR and offer a unique perspective on the
performance characteristics in a virtualized environment, both with IPIv enabled
and disabled. For this, Kone et al. build a new set of benchmarks to compare UIPIs
to OSS, with a custom function to read the TSC, readtsc(). In line with other
previous work, Kone et al. find an increased delivery latency (~1.3x) depending
on the physical placement of the sender and receiver threads for both native and
IPIv-enabled systems, as well as a severe (up to ~2.6x) delivery latency degra-
dation under IPIv compared to a native system. However, they still prove that
UINTR is a viable alternative to OSS in any case, as every UINTR operation out-
performs its OSS counterpart, especially the sending operation, which is up to
~25x faster and scales exponentially better under contention.

As a potential use-case for UINTRs, Kone et al. develop a user-level scheduler,
Christine, which will be further discussed as part of section (§3.2.1).

3.2 Applications of UINTR

Following the technical aspects of Intel’s UINTR, we introduce literature that
focuses on analyzing UINTR in different use-cases. The most common use-case
is user-level preemption to implement user-level schedulers. Work focusing on
this is discussed in §3.2.1, while §3.2.2 touches on work focusing on other appli-
cations.

3.2.1 User-level Preemption with UINTR

An early work using UINTR is a user-level threading library for cloud applica-
tions by Li et al., called LibPreemptible [49]. Li et al. use UINTR to construct
a user-level timer — their implementation of which is called LibUtimer — that
provides regular interrupts to threads by having a dedicated timer thread poll
on thread-based deadline set in memory. Once a deadline is reached, LibUtimer
sends a UIPI to the offending thread, which triggers a context switch via the in-
terrupt handler. LibPreemptible can implement various scheduling policies and
dynamically change time-slice quanta. This results in a flexible scheduler that
can achieve better tail-latency and higher throughput than the state-of-the-art
scheduling system of the time, Shinjuku [50].

Shortly after, Fried et al. present junction [51], a kernel-bypass system for
the cloud. Similar to LibPreemptible, Junction also uses UIPIs from a separate
scheduler core to preempt its user-level threads and provide an equal workload
distribution. They find that UIPIs reduce the timeslicing overhead by ~2x when

32 CHAPTER 3. RELATED WORK

compared to OSS, which allows for higher time slice granularity, which in turn
provides a potential avenue for reducing tail latency in psecond scale workloads,
as demonstrated with LibPreemptible. In addition Fried et al. find that, for saving
the extended processor state in the interrupt handler, the XSAVEC instruction is as
fast as XSAVEOPT, while being easier to use correctly.

SkyLoft [38] is a user-level scheduling framework, which can support multi-
ple applications, instead of just threads within the same application. Its use of
UINTR differs to previous work by being the first published work to enable UINs
for hardware timers. As native support for user-space timers and proper hard-
ware interrupt notifications are still in development [34, 52], this is not entirely
trivial and requires manually setting a bit in the PIR field of the UPID, so the
hardware interrupt actually triggers UID. Jia et al. solve this by sending a self-
UIPI while UINs are suppressed in the interrupt-handler and at setup, setting the
bit without causing UID until the next hardware timer interrupt arrives. Even
with this additional overhead, Jia et al. find that hardware timer notification are
still faster than dedicated user-level timer cores sending UIPIs.

While UINTR is not the main focus of their publication, Lin et al. [53] use
UINTRs in combination with MPKs to create a user-space core scheduler, called
Vessel, which uses a user-level privileged mode to separate address spaces be-
tween threads in user-space, called a uProcess. Lin et al. use UINTRs to preempt
different uProcesses, which then transition into the user-space privileged mode
via protected call gates. Once the core is in the privileged state, it switches its ad-
dress space, scheduling a new uProcess Vessel is used to co-locate different types
of applications to the same core, while providing an increased throughput for
both latency-critical and best-effort applications when compared to contempo-
rary solutions, with UINTRs being a key technology for these results.

Guo et al. [54] compare OSSs to UINTR as a preemption mechanism in two
different user-level schedulers, one based on Caladan, a kernel-bypass system,
and another based on the Go runtime. They compare UINTR-based and OSS-
based preemption to compiler instrumentation, with which a compiler inserts
regular yield checks for cooperative scheduling, and find that the decreased over-
head with UINTR is inconsequential for application performance with larger
time quanta, while being at least on-par with compiler instrumentation for a
10ps quantum. OSS, as also shown in previous work, perform less favourably.
However, the schedulers’ average preemption cost with UINTR is significantly
lower than that of compiler-instrumentation. Guo et al. find UINTR “are not a
panacea”, but have some useful applications, such as psecond scale preemption.
In addition, they find that, compared to OSSs, using UINTRs leads to fewer L1
cache misses and branch mispredictions. In regard to context switches, Guo et
al. find that saving the AVX-512 registers with XSAVEC incurs a ~10-30 X overhead
compared to saving the registers one-by-one.

3.2. APPLICATIONS OF UINTR 33

As a further application of user-level preemption, Huang et al. [55] introduce
UINTR to database engines with PreemptDB and compare UINTR-based user-
level preemption to waiting, hand-crafted, and automatic cooperative schedul-
ing. PreemptDB uses preemption to suspend low-priority transactions when new
high-priority transactions are queued. While doing so, Huang et al. recognize the
need for atomicity in their context switch routine, which can be called outside of
interrupt handlers. To achieve this, the context switch routine temporarily dis-
ables UID and includes instruction pointer checks to ensure that the currently
handled interrupt was not delivered while inside the context switch. PreemptDB
with UINTR provides lower latency for high-priority tasks while maintaining
throughput and requires no specific tuning.

Finally, the user-level scheduler by Kone et al. [48] — Christine — is used to
compare and document differences between UINTR and OSSs in both native and
virtualized systems to document the extent to which UINTR can reduce tail la-
tencies. Similarly to LibPreemtpible, Kone et al. use a dedicated timer thread to
busy-spin and call their custom rdtsc() function. Kone et al. additionally imple-
ment worker synchronization to ensure workers are not spending their entire
time in the scheduling routine due to an insufficient time quantum. Christine pre-
dictably has degraded performance in every metric under virtualization, while
showing that UINTRs are capable of supporting a more precise, stable and fo-
cused scheduler at smaller timer quantum sizes than OSSs.

3.2.2 Other Applications of UINTR

Lietal. [56], similar to Jia et al. use self-UIPIs to receive hardware interrupts over
the UINTR mechanism. They use this to modify SPDK, a I/O storage software,
which can either use a polling thread to check for hardware availability or re-
ceive and handle MSI-X interrupts via the kernel. Their modifications result in
a two-thread user-level threading framework, which switches between an idle-
thread executing TPAUSE and the actual worker thread, depending on whether
the thread is waiting for the I/O operation interrupt, redirected via the IOMMU
to the UINV, or not. SPDK+ achieves a similar latency to the original polling
method, while also achieving slightly better power efficiency than both the orig-
inal polling and interrupt method. Li et al. predict even higher efficiency for
increased core counts.

Goedefroit continued their work on applying UINTR to the BXI network [57].
Most importantly for us, Goedefroit et al. found a way to trigger a UINTR directly
from a PCle device by combining the posted interrupt descriptor (PID) structure
of IOMMU interrupt redirection with the UPID. While useful for avoiding unnec-
essary interrupt-management via self-UIPIs, it requires mapping the UPID/PID-
union to user-space, which would allow malicious software to trigger arbitrary

34 CHAPTER 3. RELATED WORK

interrupts using SENDUIPI, as we already discussed in §2.4.5. Goedefroit et al.
find that UINTR are slower than polling but provide a decent communication/-
computation overlap, which makes it a good tool for use in high performance
computing applications, in line with Goedefroit’s previous findings [44].

Similar to Goedefroit et al., Li et al. [58] found their own way to circumvent
the self-UIPI in order to receive hardware interrupts in their UINTR-based stor-
age system Aeolia. Instead of having hardware set the required PIR field, they
set the PIR field themselves by mapping the UPID into their user-space driver’s
memory, effectively emulating the mechanism self-UIPIs are used for in previ-
ously presented work. Aeolia therefore suffers from the similar security issues
as Goedefroit et al. when it comes to the triggering of arbitrary interrupts.

3.3 IPC on Microkernels

With the clear potential of UINTR in pkernel IPC highlighted in the previous
sections, we look at some other recent work in this field. We take a closer look
at the “Bridge”-family of IPC mechanisms, starting with SkyBridge (§3.3.1) and
continuing along the line of advancements with UnderBridge (§3.3.2) to the most
recent representative, HyBridge (§3.3.3). We end the section with a short look at
other IPC-related work (§3.3.4).

3.3.1 SkyBridge

SkyBridge is another new IPC mechanism, this time specifically designed for
pkernels. It uses the VMFUNC instruction to bypass the kernel and directly call code
from other processes by switching the extended page tables (EPTs) of the client
and server when the client wants to invoke a server function. For this, servers
register with the kernel to map function entry points to a table, which a regis-
tered client can then use to call server functions via a library call. To keep unau-
thorized processes from executing VMFUNCs, switching EPTs and calling server
functions without permission, SkyBridge utilizes binary rewriting when map-
ping code pages. For actual message passing, SkyBridge uses shared buffers for
large messages and registers, complying with the x86/64 calling convention, for
small messages. SkyBridge achieves a ~2-10x round-trip-time advantage com-
pared to the default IPC methods [59].

3.3.2 UnderBridge

The successor to SkyBridge, UnderBridge, instead circumvents cross-server IPC
overhead entirely by moving system servers back into the kernel. Since the

3.3. IPC ON MICROKERNELS 35

kernel has a shared state, cross-server IPC skips context switches and kernel-
controlled argument validation. UnderBridge can therefore be seen as a new
form of kernel-bypass, but communication between servers needs new isolation
and protection mechanisms to remain secure. In addition to this, servers can
now execute privileged instructions, potentially endangering the entire system
if faulty. UnderBridge achieves isolation via MPKs, which creates isolated ex-
ecution domains for each server in kernel mode. Execution domains consist of
code segments, stored in the core kernel protection domain with read-only ac-
cess, and data segments, stored in their own protection domain to which they
have full access. Cross-server communication is handled via IPC-gates installed
in the code-domain and a shared memory domain for each communication chan-
nel, other channels are handled via shared memory pages with the core kernel or
client. Since MPKs only support 16 different protection domains, servers are dy-
namically migrated between user- and kernel-space as needed if the maximum
amount of protection domains is reached. Privileged instructions are removed
via binary rewriting and trapped by introducing a hypervisor which ensures
privileged instructions are only executed by the core kernel. These measures
prevent malicious system servers from intentionally modifying or compromis-
ing the core kernel. UnderBridge, despite having a worse base-case of 0 cross-
server IPC on client-server IPC, scales much better and therefore reaches parity
and even surpasses SkyBridge at 1-2 cross-server IPCs per client-server call. This
leads to a ~1.5x throughput advantage in the SQLite3 benchmark compared to
SkyBridge [6].

3.3.3 HyBridge

HyBridge further enhances UnderBridge by increasing the amount of available
isolation domains by combining MPKs with EPTs, calling the combined mech-
anism extended protection keys (EPKs). By observing that MPKs and EPTs are
both thread-specific values, it assigns each of the 512 EPT the 15 available do-
mains with MPKs, leading to 7680 possible memory protection domains. This
allows EPKs to massively outperform software-based multiplexing solutions for
EPKs on Linux and eliminates one of the major downsides of UnderBridge by
allowing HyBridge to move every system server into kernel space instead of just
a few. Cross-Server communication is unchanged from UnderBridge, but client-
server communication now utilizes a EPT switch via VMFUNC instead of a regular
context switch to kernel. This allows HyBridge to achieve throughput parity in
the SQLite3 benchmark with UnderBridge, while surpassing it in most cases [7].

36 CHAPTER 3. RELATED WORK

3.3.4 Other work

We end this section with a draft on IPC benchmarking, which finds, by test-
ing IPC latencies on different OS’s in virtualized and native environments, that
an observable part of IPC latency is affected by the NUMA layout [60], which
will be relevant for later sections and would also affects a new IPC implementa-
tion for multi-core systems on pkernels, which uses shared memory and regular
IPIs on ARM to implement a inter-core IPC and notification utility on its own
pkernel [61].

Chapter 4

Design

This chapter details the design for our implemented system, which is a new IPC
facility on L4 pkernels using the new UINTR feature in conjunction with the user-
wait extension. Given that previous research on UINTR proved its usefulness as
a replacement for OSS on Linux, we intend to see if UINTR may also have a place
in the realm of pkernels. Due to the differences between L4 and Linux, we first
introduce our design for UINTR on our chosen kernel in §4.1, as we could not
simply port Intel’s Linux patch.

If this kernel-bypass mechanism can be used to implement most IPC facilities
with potentially improved performance compared to already existing facilities,
introducing UINTR as a core of modern pkernels design could align the next gen-
eration of pkernels to have an even smaller TCB, further reinforcing the tenets
mentioned in §2.1.3. With this in mind, we explain our design for our IPC library
in §4.2.

4.1 Capability-based User-level Interrupts

We first explain some of our initial thoughts and approach in §4.1.1, after which
we illustrate our capability-based designs for UINTR objects in §4.1.2.

4.1.1 Initial Approach

We initially intended user-interrupts to be configured by a server, which receives
requests from clients to establish UINTR-based connections between server-clients
and client-clients to allow for RPCs. Server-clients would advertise their API via
the server, where client-clients would then request access. They would then
be handed the appropriate permissions or tokens and the server would set the

37

38 CHAPTER 4. DESIGN

client’s MSRs and map the appropriate memory to open the communication path-
way. Ideally this system would be kernel-agnostic, to allow for easy portability.

Given the impossibility to control MSRs from user-space (at least for now,
future plans from Intel lay out plans to control some MSRs from user-space [34],
however, none of these are UINTR MSRs), we instead switched to a capability-
based approach. This massively decreased portability. However, we were instead
able to observe how well UINTR fit into a capability-based design, instead of
Intel’s file-based approach on Linux.

4.1.2 Capability-based User-level Interrupts

Since sel4 is uses capabilities to control access to hardware features, we decided
it would be fitting to design our implementation UINTR support around this.
Therefore, we decided to control UINTR objects via capability invocations in-
stead of normal system calls. As there are two physical objects, the UPID and the
UITT, we decided to introduce two new capabilities, UINTRNotif and UIPICap
to control the UPID and UITT, respectively. Design details for the UINTRNotif
are discussed in §4.1.2, while the UIPICap is introduced in §4.1.2.

User-Interrupt Notifications

There are four aspects of a UPID that need to be controlled:
1. The user-interrupt notification vector UINV
2. The handler UIlHandler
3. The stack adjust UlStackadjust
4. Mapping of the UPID into both the sender’s and receiver’s address spaces
5. The user-interrupt vector UIV
These were initially set as follows:
1. Set during capability creation, by deriving from IRQHandler
2,3 SetHandler, which sets the UIHandler and UlStackadjust at the same time
4. InstallUPID, which maps and installs the UPID

5. Intended to be freely-chosen by the sender

4.1. CAPABILITY-BASED USER-LEVEL INTERRUPTS 39

Aside from necessary adjustments that came up during the implementation and
will be discussed in §5.2, our design was later expanded to also use a badge value
for the UINTRNotif to set the allowed user vectors, which allows the deriving
thread to “lock” a UIV. UINTRNotifs with a badge value b € [0, 63] have a fixed
badge value, meaning they cannot be derived if the deriving thread intends to
change the badge.

In addition to this, we also split InstallUPID into MapUPID and InstallUPID,
since not every thread that wants to map a UPID wants to install it. MapUPID maps
the UPID into a given VSpace, once per capability. If a UPID needs to be mapped
into multiple address spaces, the UINTRNotif needs to be derived first. The new
InstallUPID now only installs the UPID into a given TCB and sets the appropriate
MSRs. This split allowed us to designate two rights states for UINTRNotif:

1. Map, which only allows the holder of the capability to map the UPID to an
address space

2. Modify, which allows the holder of the capability to modify the UPID’s
fields in addition to mapping, as well as install it in a TCB

These are useful when establishing a UINTR connection, since SENDUIPI requires
the sender to also have the UPID mapped into their address space. A receiver
might want the sender to have free control over the address the UPID is mapped
to in the sender’s VSpace, while only wanting the receiver to be able to modify
it. UINTRNotifs are unable to derive new UINTRNotifs with higher rights for
obvious reasons. The steps required to create a new UINTRNotif can be observed
in Figure 4.1.

User Interprocessor Interrupts

As mentioned in §2.4, SENDUIPI uses the UITT to look up where to send the
UIPI to. This leads to the second capability of our design, the UIPICap, which
controls a UITT and its entries. For SENDUIPI to work, a UITT needs to be mapped
into the sender’s VSpace and contain valid UITTes. Additionally, the related
MSRs must be set. We therefore arrive at our first invocation, InstallUITT, which
controls two of these aspects: It maps the UITT and sets the related MSRs, which
associates the UITT with a TCB.

40 CHAPTER 4. DESIGN

Boot |

Created during Boot

IRQControl

Requested for IRQ

IRQHandler

Requested
UINTRNotif

Derived

UINTRNotif
(badged)

Figure 4.1: Relationships for UINTRNotif and related capabilities for UINTRNotif
creation

Start (Receiver) Start (Sender)
Create UINTRNotif Create UIPICap
InstallHandler InstallUITT

>
Transfer UINTRNotif
MapUPID MapUPID
InstallUPID RequestUITTe
Ready Ready

Figure 4.2: Example flow for setting up a connection using our capability design

4.2. IPC LIBRARY WITH UINTR SUPPORT 41

The second invocation consequently needs to control the third aspect: Creat-
ing valid UI'TTes. A valid UI'TTe consists of an address to a UPID and a UIV. We
control these by using a CPtr to a UINTRNotif and a desired UIV as parameters
to our invocation, RequestUITTe. The invocation fails if the passed UINTRNotif
is not already mapped. As previously mentioned, UINTRNotif can have a locked
UIV. If the UIV is locked, the UINTRNotif’s UIV is chosen for the entry, instead
of the passed parameter. RequestUITTe returns the index n of the new UITTe,
which can then be used by applications as the argument to SENDUIPI n. We pro-
vide a flow-chart for the required invocations necessary to be able to send and
receive UIPIs in Figure 4.2. We also have a rights field for the UIPICap, which
sets the capability to one of two states:

 Request, which only allows the holder of the capability to request new
UITTes with RequestUITTe

« Map, which allows the holder of the capability to map and install the UITT
in addition to the rights granted by Request

Our design allows us to employ three different UINTR usage scenarios:

« UINTR-director: A single thread holds all capabilities. It alone installs
UITTs and UPIDs into threads and requests new UITTe on behalf of send-
ing threads. The capabilities are never passed to the controlled threads.

« UINTR-setup thread: A single thread creates all capabilities. It installs the
UITTs and UPIDs and passes reduced-rights versions of these to the man-
aged threads. Sender threads are then free to request UITTes, while re-
ceiver threads can decide how to share their UINTRNotifs and which UIVs
to distribute to which sender.

+ Self-Managed: Threads manage the UINTR capabilities themselves. How-
ever, receiver threads still need to be handed the appropriate IRQHandler
capabilities to create UINTRNotif’s.

4.2 IPC Library with UINTR support

This section details the design of our IPC library—ulntercom (ulcom)—which
uses UINTR and the user-wait extension to provide every type of IPC mentioned
in §2.2, along with some additional functionality. Since our design employs vari-
ables to poll on, the reasons of which will be explained in the appropriate sec-
tions, we use the user-wait extension to design different types of polling, ex-
plained in §4.2.1. For our library’s design, we first explain our approach to sig-
nals in §4.2.2, after which we go on to message passing in §4.2.3 and finally RPC
in §4.2.4.

42 CHAPTER 4. DESIGN

4.2.1 Wait Types

For our library we would like to offer as much flexibility as possible and have
therefore chosen four different wait types:

« Poll, which simply polls on the variable
« TPAUSE, which uses the new TPAUSE instruction while polling
+ UMWAIT, which uses the new UMWAIT instruction on the variable while polling

« Yield, which yields the thread while polling

These should be able to be chosen on a per-call basis instead of a per-connection
basis, to provide further flexibility.

4.2.2 Signals

Signals, as defined in §2.2.3, are event notifications combined with a data word.
The astute reader might have noticed that user-interrupts are already a full-
fledged asynchronous-preemptive signaling mechanism, with the UIV being the
data word. Therefore, our design for the asynchronous-preemptive signals con-
sists only of the method uIcom_Signal(), which simply sends a user-interrupt in
a non-blocking manner. In order to have the receiver handle the preemptive sig-
nal, our design lets the receiver associate a handler function with the connection
during setup, which is then called when a signal is received.

If the connection is instead marked as not asynchronous-preemptive, this
mechanism should either be disabled or ignored, with the signal handler instead
setting a flag, which can then be polled on. Our non-asynchronous-preemptive
signals therefore add two additional methods:

« uIcom_Poll(), which checks if the flag is set, possibly resets it and returns
the flag’s state before the reset

+ ulcom_Wait(wait_type), which continuously polls on the flag with a dedi-
cated wait_type as listed in §4.2.1

The signal can then be handled once uIcom_Poll or uIcom_Wait return. A se-
quence diagram for both the asynchronous-preemptive and asynchronous vari-
ants are available in Figure 4.3.

Our design for signals offers near-parity with seL4’s Notification capability.
While our design has a new asynchronous-preemptive mechanism, which is en-
tirely unexplored on seL4, using the UIV as the signal type limits us to a single bit
of data per signal, whereas seL4’s Notification can update multiple bits of the no-
tification word by having a badge with multiple set bits [42, sec. 5.2.]. However,
we believe this does not limit our design’s potential in any significant way.

4.2. IPC LIBRARY WITH UINTR SUPPORT 43

Receiver Inter rupt Handler Sender

UIPI
.

’handle_signal()‘

(a) A thread does work, gets preempted and auto-handles the sig-
nal, then continues to do work

Receiver Interrupt Handler Sender

|

’uIcom_Poll()‘

’ UIPI
L

|

’uIcom_Poll()‘

|

’ handle_signal () ‘

\

(b) A thread calls uIcom_Poll() until a signal is received and after-
wards handles the signal

Figure 4.3: Sequence diagrams for receiving a signal with ulcom for both the
asynchronous-preemptive and manually synchronous paths

44 CHAPTER 4. DESIGN

4.2.3 Message Passing

As mentioned in §2.2.3, signals can be used in combination with a transport layer
to create a message passing system, which is exactly how we designed ours to
function. Since other experimental IPC systems on seL4 have used shared mem-
ory as a transport layer [6, 7, 59], our design intends to do the same. Therefore,
every connection also needs a region of shared memory to pass data.

In terms of methods, we introduce uIcom_SendNB(data), which combines a call
to uIcom_Signal() with a data copy to the shared region. The receiver can then
use ulcom_RecvNB(data_destination) or ulcom_Recv(data_dest, wait_type) to
copy the data to a destination after an underlying uIcom_Poll() or uIcom_Wait()
has succeeded. Alternatively, in case of an asynchronous-preemptive method,
the receiver can again register the handler to deal with the data directly in the
signal handler.

In order to have a blocking uIcom_Send(), we design our uIcom_Recv(NB) to
also send a non-blocking signal back to the sender. This way our sender can
wait in uIcom_Send() until the data has been received. Finally, to offer full parity
with seL4’s IPC capabilities, our design also has simple combinations of uIcom_-
Send() and uIcom_Recv() with uIcom_SendRecv(input, output) and its counter-
part uIcom_RecvSend(input, output). This introduces an issue with UINTR-
based connections, they are one-way. To enable two-way connections, our de-
sign introduces two-way connections with an in-subconnection and an out-sub-
connection, with uIcom_Send and related calls using the out and uIcom_Recv, re-
lated calls, and the signal handler using the in-subconnection.

In summary our message passing design consists of our signal design com-
bined with a transport layer for additional data. This decision was made to al-
low for an easier implementation, allowing us to potentially reuse the signal-
ing components with only minor additions. The decision to have both block-
ing and non-blocking variants for the Send and Recv methods was made to have
functional parity with seL4’s already existing Endpoint message passing system,
excluding capability transfer, since that would require entering the kernel. In
addition to functional parity, we also want to explore new communication pos-
sibilities offered by UINTR, which is why we also thought of a mechanism for
asynchronous-preemptive message passing.

4.2.4 Remote Procedure Calls

Since RPC is little more than structured message passing, as already seen in
§2.2.4, our design essentially already provides methods for RPC. However, we
still introduce two dedicated methods for synchronous RPC:

4.2. IPC LIBRARY WITH UINTR SUPPORT 45

« ulcom_Call(input, output), which is nothing more than a simple alias
of uIcom_SendRecv(input, output) that sends procedure arguments to the
out-subconnections and receives return values from the in-subconnection

« ulcom_Await(handler), which first receives procedure arguments, then op-
erates on these using the handler, then sends a reply with return values
provided by the handler

In case of asynchronous-preemptive communication, the registered handler is
used to transform received parameters into return values inside the signal han-
dler and also trigger a reply with the non-blocking uIcom_SendNB on the out-sub-
connection Our design does not include dedicated methods for asynchronous
RPC. However, these can be easily constructed by combining the existing uIcom_-
RecvNB() and uIcom_SendNB calls.

4.2.5 Final Overview

In total, our design encompasses 9 different methods, some of which provide
similar functionality. Each of these methods operates on a connection, combined
with function values. A connection consists of two one-way subconnections,
resulting in the following fields:

« out-subconnection

— UITTe index for SENDUIPI

— Shared memory
« in-subconnection

— Registered handler for asynchronous-preemptive communication
— Shared memory
— A flag to poll on for asynchronous and synchronous methods

A table of every “real” method, aliases, and their existing seL4 equivalents is
available in Table 4.1.

46 CHAPTER 4. DESIGN
Method ‘ List of aliases ‘ Equivalent seL.4 methods ‘ Blocking?
ulcom_Send Endpoint.Send

uIcom_SendNB
ulcom_Recv
ulcom_RecvNB
ulcom_SendRecv
ulcom_RecvSend
ulcom_Await

ulcom_Signal
ulcom_Wait
uIcom_Poll
ulcom_Call

Notification.Signal, Endpoint.NBSend
Endpoint.Recv, Notification.Wait
Notification.Poll, Endpoint.NBRecv
Endpoint.Call
Endpoint.RecvSend

Table 4.1: Table of overy ulcom method

2 2

Chapter 5

Implementation

In this chapter we present our implementation, which we group into three parts.
We first worked UINTR into kernel-based virtual machine (KVM) and quick em-
ulator (QEMU) and performed initial testing, which we describe in §5.1. After
this, we added support for UINTR on seL4, decribed in §5.2, which we then used
to implement our IPC library in §5.3. All of our additions and modifications were
made with C, which is the language seL.4, KVM and QEMU are written in. While
doing so we also made sure UINTR could be turned off, which would allow us to
measure the potentially added overhead, which we will examine in Chapter 6.

5.1 User-Interrupts on KVM/QEMU

This section describes our implementation process for getting UINTR to work on
QEMU. Our goal was to run a Linux kernel with the Intel patch-set [62] on a VM,
to confirm that we could virtualize the UINTR feature and use this virtualized
environment for implementing the feature on an L4 pkernel. In order to use
UINTR in a virtualized environment, we need to pass the following conditions
on to the VM in order to enable and control the new instructions [9, chpt. 4,
SENDUIPI]:

« The appropriate CR4 feature bit needs to be set
« CPUID needs to enumerate the UINTR
« The UINTR-specific MSRs need to be passed through

We ported the Intel patch-set to the—at the time—current version of Ubuntu’s
kernel, v6.14. Despite the patch being developed for mainline kernel v6.0, the
porting process was quick and relatively easy, taking only a few hours to com-
plete. We skipped porting changes to io_uring, however, this did not cause any

47

48 CHAPIER 5. IMPLEMENTATION

issues. After this we moved on to enabling CR4, MSR and CPUID pass-through on
the modified kernel’s KVM (§5.1.1) during which it became apparent we also had
to add support for UINTR’s XState component information pass-through (§5.1.2).

5.1.1 CR4 and CPUID pass-through

As previously mentioned, the first element that needs to be passed to the VM to
be able to use and control UINTR is the CR4 bit together with the proper CPUID
sections. We immediately ran into the problem that Intel’s patch-set relies on a
working XSAVES setup. We were able to disable these checks to boot the VM, how-
ever, if we wanted a fully-working UINTR implementation we would also need to
implement support for this enumeration. There are facilities in KVM that allow
for a quick addition of pass-throughs for CR4 bits and CPUID leafs, however, de-
spite having modified KVM, CPUID inside QEMU did not emit support for UINTR
or its XSAVE region. Eventually we noticed that we also had to modify QEMU
to allow for proper pass-through. Once this was established, we further added
the necessary MSRs to the pass-through list and soon after that it was possible to
successfully boot a VM with working UINTR instructions, after which we shifted
on to re-enabling the XState-related sections of the Intel’s UINTR code.

5.1.2 UINTR-XState support

While, as mentioned in §2.4.4, enabling the UINTR-XState is not technically nec-
essary for using user-interrupts, it is still helpful for managing UINTR-enabled
threads and should be part of a fully-featured implementation. When enabling
the check for the UINTR-XState we encountered two main issues:

« CPUID’s XSS enumeration was not properly set

+ The size calculation of the XState produced wrong results

XSS enumeration was simply cleared at multiple points in both KVM and QEMU,
where we then had to forcibly set the UINTR-XState bit again. In addition to this,
the XState save region size calculation both in QEMU and KVM did not properly
consider the size of XSAVES-managed XStates when passing the required size to
the intercepted CPUID output, with KVM not even passing the enumerated XSS to
the calculation function, despite previous commits declaring they “fixed” support
for enumeration XSAVES-managed features [63].

With these feature implemented and tested using the Intel patch-set, we were
confident in our ability to properly test and implement every aspect of our future
modified pkernel’s UINTR support. While initially scheduled to be implemented
in two or three days, this whole process took nearly twice that amount of time,
due to the many issues with KVM and QEMU.

5.2. USER-INTERRUPTS ON SEL4 49

5.2 User-Interrupts on sel.4

After establishing that seL4 could, in theory, support UINTR when run on QEMU,
we implemented this support in the kernel. In order to test this support, we also
had to implement a user-space runtime, for which we used the “sel4test” runtime
as a starting point, which is a test suite for seL4 [64]. By regularly switching back
to the unmodified test suite we were also able to ensure our implementation did
not break the kernel or required functionality in unforeseen ways.

5.2.1 Additional Background

seL4 uses a custom bit-field generator with its own language specification for
its structures and capabilities, since C’s own bit-field definitions are too under-
specified for use in formal verification [65]. These specifications are then turned
into accessor functions for the fields, while the structure itself is simply defined
a multi-word array'. The generator outputs C code, which are then fed into the
compiler during compilation. Capabilities are a union type, where every capabil-
ity has the same size—128 bits for x86/64, as mentioned in §2.5.2—and a shared
capType field, which is then used to determine the validity of a field access. These
generated bit-fields are also used to model MSRs, various registers and other ob-
jects, like paging structures. For defining capability invocations sel.4 instead uses
extensible markup language (XML) files which are then converted to user-space
stubs by another tool. These stubs, when called, then marshal the invocation
arguments into message registers, call syscall with the correct arguments, and
also unmarshal an invocation’s return values the same way, significantly simpli-
fying the process for creating and modifying invocations. The invocation format
defines the name and return type of an invocation and its arguments, documen-
tation, and configuration dependencies. The generated code is also fed into the
kernel to provide enums that can be used to determine the current invocation
and call the correct implementation.

5.2.2 Initial Steps and UINTR Capabilities

We started implementing kernel support by first activating the required bit in the
CR4 register. This was comparatively simple, as we only had to find the section
that already set the CR4, expand the CPUID output structure to contain the bit that
indicates support for UINTR, which is then checked to set the appropriate CR4
bit. After this we shifted to implementing the desired capabilities.

The accessors follow the pattern
<[union_name]_>[struct_name]_<ptr_>[get/set]_[field_name](), where parts inside <> are op-
tional

50 CHAPIER 5. IMPLEMENTATION

Our inital UINTR capability was a precursor to UINTRNotif. We implemented
SetHandler and InstallUPID, initially with a fixed UINV and capability creation
via Untyped’s Retype. At this point these methods were little more than wrappers
around wrmsr. We then added DebugTrigger, which triggers UID by writing the
desired UIV directly to TA32_UINTR_RR for testing purposes without first having to
implement the setting and generation of UITTs. Finally, UlStackadjust was then
moved from InstallUPID to its final location, InstallHandler, which also took on
the functionality of SetHandler. The process of creating a new capability and its
invocation was surprisingly straightforward and simple, due to seL4’s extensive
tooling for this purpose.

5.2.3 Issues Encountered

During testing and implementation of the UINTR capabilities, we often ran into
issues of random failures. There were two major types of these, which we discuss
in the following sections.

Memory Access Fault

Apart from the “expected” access faults coming from an incorrect implementa-
tion of UITTs and UPIDs configuration, we also encountered unexpected mem-
ory access faults after exiting a system call or an invocation. Believing this to be
an issue with how registers are saved and restored in the UIHandler or a related
issue, perhaps some register was clobbered and caused erroneous memory ac-
cesses, we added every general purpose register to the list of registers saved by
the UIHandler. After the issue kept appearing anyways, we concluded the issue
was something else and added guards around every system call and invocation
by modifying the appropriate tooling to emit CLUI and STUI instructions in the
user-space stubs, which did solve the issue.

Unsatisfied with our solution, we later revisited this and found that the selL4
kernel sets RSP to 0 before calling sysexit to avoid leaking information [64],
while the user-space code saves and restores the register before and after syscall.
When combined with the use of UlStackadjust[e] = 0, which sets the new RSP
value by subtracting UlStackadjust from the current RSP, the CPU issues mem-
ory accesses at RSP = —8 if UID occurs between sysexit and the user-space RSP
restore. We therefore arrive at the first limitation imposed on us by using sel4
as our platform:

UlStackadjust is limited to the jumping behavior and must have a valid ad-
dress as its value.

While this could be fixed by leaving kernel-space with a non-zero RSP—either
by setting it to a fixed memory region for this specific case or by saving and

5.2. USER-INTERRUPTS ON SEL4 51

restoring RSP on kernel entry and exit instead of doing so in user-space—any such
modifications must be done with great care to not break existing functionality
and is outside of the scope of this thesis. Therefore, every user-space application
must provide an alt-stack when using UINTRNotif. Our implementation was
adjusted to automatically set this bit in the MSR and the user-space invocation
stub was changed to disallow selecting whether to use the alt-stack behavior or
not.

Stop of User-Interrupt Delivery

We encountered our second recurring issue while running self-UIPI in an infinite
loop. Eventually, our system would crash, because the intended user-interrupt
was delivered to the kernel instead?. Since we had not registered the UINV with
the IRQControl, this caused our kernel to fail. However, once we had modified
IRQControl to allow the creation of non-IOAPIC IRQHandlers for UDIs and re-
quested the offending UINV, the issue continued in a different form.

Instead of causing a kernel panic, we instead did not receive any more user-
interrupts. This was caused by a lack of UIN processing for this interrupt, which
in turn resulted in the UPID’s ON bit never getting cleared. With a set ON, SENDUIPI
would never send an IPI, which would therefore not trigger UIN processing, caus-
ing the UPID to become “stuck”. We ultimately solved the issue by manually per-
forming UIN processing when returning to user-space by adding a return hook
which moves and clears the PIR manually. To make this possible, we also had
to add a direct association between a thread’s TCB and a UPID, for which we
took inspiration from a similar mechanism with Notification capabilities, later
expanded to also include the UITT. This finally resolved the issue. Furthermore,
we were able to use the association to correctly clear and set MSRs for both the
UPID and UITT, to fix crashes caused by “leaking” these MSRs, as well as dynam-
ically updating the UPID’s NDST when rescheduling. Usually clearing and setting
the MSRs would be done by XSAVES and XRSTORS, however, the seL4’s use of lazy
XRSTORS makes these unviable without major kernel modifications that would be
outside the scope of this thesis®. Unfortunately, this manual clear and restora-
tion causes significant overhead, as we will see when we evaluate our results in
Chapter 6.

“This is to be expected, if a UIPI is sent but the thread is rescheduled before the sent interrupt
is recognized, the interrupt ends up in the kernel.

3 Around the time we finalized our implementation, an RFC for seL4 was released and imple-
mented that added support for eager XRSTOR(S). This will be touched upon in §7.2

52 CHAPIER 5. IMPLEMENTATION

5.2.4 Finalizing our Capabilities

Once we had resolved all important issues, we set out to implement UINTRNotif
creation via a IRQHandler invocation, as the design in §4.1.2 intends. Unfortu-
nately, we were unable to do this, due to the associated UPID requiring physical
memory, which we could only provide with Untyped’s Retype. While this change
does not change the capability’s necessity when setting up UINTRNotif, it does
change our intended creation path, the final version of which is available in Fig-
ure 5.1. After this we set out to add the SetVector invocation to UINTRNotif,
which sets the UINV used when targeting its UPID with SENDUIPI. SetVector
uses a IRQHandler capability as its argument and extracts its IV, which is then
stored in the UPID.

Following this, we added support for OSS-emulating UINTR (OSSeUINTR),
which is what we call the behavior caused by not setting the UINV in IA32_-
UINTR_MISC but setting all other UPID fields and MSRs correctly. Any UIPI sent
to the receiver are not directly received in user-space, but are instead sent to the
kernel, essentially allowing applications to send signals via the kernel without
executing a system call. We believe this has potential applications, which we
again mention in §7.2, after a preliminary analysis in Chapter 6. As our final steps
we also implemented UIV locking and fields for our designed rights states, as well
as adding support for checks and conditions when deriving the capabilities with
these rights. Unfortunately, we were unable to add checks for these rights in our
invocation code and, due to time constraints, we leave them for future work.

5.2.5 Summary

In summary, we added capability-based UINTR support to seL4. While doing so,
we encountered both expected and unexpected issues, which changed our initial
design plans in various ways. The most important aspects of our implementation
and differences to our design are:

Manually saving and restoring the UINTR MSRs

UlStackadjust is limited to jumping behavior

UINTRNotif is created from Untyped instead of IRQHandler, which neces-
sitates the SetVector invocation

Added the DebugTrigger invocation

5.2. USER-INTERRUPTS ON SEL4 53

Created during Boot Created during Boot

4 Boot F

Retyped Untyped IRQControl
Retyped Get
UIPICap UINTRNotif | Setvector < IRQHandler
***** Argument to
| | Derived
RequesAtUITTe
UINTRNotif
Argument to (badged)

Figure 5.1: Relationship diagram ofUINTR capabilities

54 CHAPIER 5. IMPLEMENTATION

5.3 libUIntercom

After implementing the UINTRNotif and UIPICap, we went on to implement
our IPC library, ulcom. We begin by describing how we expanded ulcom to sup-
port more capabilities (§5.3.1), then describe the connection setup (§5.3.2), how
we implemented our UIHandler (§5.3.3), how we implemented uIcom_Send and
ulcom_Recv and their variants (§5.3.4), and finally provide a short summary in
§5.3.5.

5.3.1 More than just UINTR

To allow for an evaluation with more comparable results, we also conceptualized
ulcom to support more than just our UINTR capabilities. The following is a list
of supported capabilities and the reason for their inclusion:

1. UINTRNotif and UIPICap to test both regular UINTR and OSSeUINTR

2. Frame, for shared variable polling, which is a common point of comparison
in work on user-interrupts [47, 56, 57]

3. Notification, which is seL4’s existing signaling mechanism

4. Endpoints, which supports the fast-path, the supposedly fastest communi-
cation pathway in seL4

In order to keep code-complexity under control we decided to use these capabili-
ties only as the signaling mechanism and keep data for message passing in shared
memory. Unfortunately, while synchronous and asynchronous mechanisms can
be constructed from asynchronous-preemptive IPC, this is only one way. Mean-
ing these additional capabilities can only be used to implement ulcom’s asyn-
chronous IPC at best and only synchronous IPC at worst, This is simply a limi-
tation of the capabilities which we cannot overcome.

5.3.2 Connection Setup

The setup is a synchronized process between two threads, both of which control
how their in-subconnection is structured.

Requirements

Ideally, our connection setup would have a unified interface for signaling, mes-
sage passing, and RPC for ease-of-development. It also needs to perform the
following actions: 1. Create the required capabilities, based on a given pathway

5.3. LIBUINTERCOM 55

type. 2. Setup the required capabilities. 3. Setup shared memory for message
passing. 4. Setup both the in and out subconnections. 5. Test both subconnec-
tions. To do this, the setup functions also need access to both a thread’s CSpace
and VSpace. Our setup function is based on the assumption that both connection
partners have access to these, as well as their respective UINTR capabilities.

Implementation

The arguments to our setup are:

1. tcb, the calling thread’s user-space TCB, which contains both the CSpace
and VSpace.

2. setup_endpoint, a pre-shared Endpoint for sharing capabilities with.

3. in_type, the pathway type of in (§5.3.1).

4. in_cap, the capability to use for in setup (optional).

5. additional_out_cap, a capability to use during the out setup (optional).
6. in_handler, a pointer to a handler function (optional).

7. mode, a reply mode, which determines the mechanism by which asynchronous-
preemptive receivers process messages (see §5.3.3)

8. wait_type the wait type (§4.2.1), which is used when calling uIcom_Wait or
similar functions.

It starts by setting up in, followed by out. There is a partner function that first sets
up out and then in, which is also non-blocking, to allow a server to occasionally
poll for new connections from clients.

In each subconnection, the receiver’s in_cap is first created if it does not al-
ready exist, then sent to the sender via the setup_endpoint, together with a data
word to help the sender determine what capability was sent. After this, a page of
shared memory is created and mapped, which is also sent to the sender via the
setup_endpoint. If in_type is UINTR or OSSeUINTR, the receiver must provide
a pre-installed UINTRNotif in_cap and ulcom invokes InstallHandler to install a
pointer to ulcom’s handler function, which is further discussed in §5.3.3. Every
connection has a connection ID, which is simply an index into the thread-local
list of connections, and reserved at setup function-entry. It is used for connection
identification during uIcom_Send and uIcom_Recv and also determines the UIV the
transferred UINTRNotif is locked to, to allow the receiver to uniquely associate
each connection with a UIV in the handler. However, this limits the amount of

56 CHAPIER 5. IMPLEMENTATION

possible (UINTR-based) ulcom connections to 64, as well as disallowing the re-
ceiver to have any other UINTR-based connections outside of the ones managed
by ulcom, to avoid unexpected behavior. Once all the capabilities are transferred
and set up, the receiver waits for a confirmation from the sender.

Meanwhile, the sender installs the transferred capabilities into its CSpace and
VSpace and, if needed, performs addition setup for the transferred UINTRNotif
by mapping it into its VSpace and invoking RequestUITTe on its additional_-
out_cap. The sender then saves the returned UITT index for the connection.
This also leaks the receiver’s connection ID to the sender, which might be a se-
curity concern if a similar mechanism were to be employed in a real-life appli-
cation. Another side-effect of this is that the receiver favors connections that
were established later, since UID occurs for the highest UIV first, we leave the
implications of this to future work.

Once both subconnections are set up and tested, the setup function returns
the connection ID to be used for future operation on the connection.

5.3.3 User-Interrupt and Connection Handlers

ulcom uses a custom UIHandler when operating on UINTR-based connections,
a slightly modified version of which is available for examination in Listing 5.1.
As we can see from this listing, the in_handler from our setup is called when re-
ceiving a user-interrupt with any mode other than NOMODE and has two arguments:
data_in and data_out, which determine the location of the input-data and where
the handler function should output its data to. An example of a handler func-
tion can be observed in Listing 6.2, where we ignore the data_in and data_out
arguments while collecting TSC values, demonstrating some of the possibilities
of our approach. When operating in NOMODE, the UIHandler exits with data_-
received set, which can then be polled on in uIcom_Recv(NB).

5.3.4 Sending and Receiving

We quickly realized that it was much easier to implement ulcom when view-
ing signals as null-messages sent via the message-passing mechanism, instead of
viewing the message-passing pathway as an extension to signals. We therefore
only had to implement four functions, with a few more or less minimal wrappers.
These are:

e void uIcom_Send(uIcom_id_t id, selL4_Word* data, selL4_Wordx data_len)

e void uIcom_Recv(uIcom_id_t id, seL4_Word* data, seL4_Wordx* data_len)

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34

5.3. LIBUINTERCOM

57

void UINTR_HANDLER_ATTRIBUTES
uIcom_UIHandler (struct __uintr_frame *ui_frame,

{

unsigned long long vector)

// Vector determines the ulIcom ID
ulcom_id_t id = vector;

// Fetch the connection using the ID
ulcom_con_t*x con = &connections[id];

// Set the data_received bit to use in Poll/Wait

con->in.memory->data_received = 1;

// If no mode is set, return (used for Poll/Wait, etc)

if (con->mode == NOMODE) {
return;

// It's not NOMODE therefore it's either REPLY or AUTO_HANDLE

// Both of which execute the handler
if (con->handler != NULL) {

con->handler (con->in.memory, con->out.memory);

// Mark the connection as ready for new data

con->in.memory->data_received = 0;
con->in.memory->data_sent = 0;

// If the mode is REPLY, auto-send a reply
// If data is NULL in uIcom_Send, the data
// and data outputted by con->handler(_,_)
if (con->mode == REPLY) {

ulcom_Send(id, NULL, 0);
3

return;

with no new data
is not copied
will be preserved

Listing 5.1: ulcom’s UIHandler

58 CHAPIER 5. IMPLEMENTATION

e void uIcom_SendNB(uIcom_id_t id, selL4_Word* data, selL4_Wordx data_-
len)

e seL4_Word uIcom_RecvNB(uIcom_id_t id, selL4_Word* data, selL4_Wordx
data_len)

uIcom_RecvNB returns a seL4_Word, which is 1 if data was received and 0 if not.

ulcom_Send

Sending performs the following actions:
« Transfer data to shared memory if data # NULL
+ Send signal
« Wait for receive confirmation (uIcom_Send only)

As described in §4.2.3, for our blocking Send, we wait for a receive-confirmation
signal from the receiving function until we exit. Our receive confirmations are
sent via a shared variable (data_sent), which we take from the previously shared
memory page. It is set before the signal is sent (in case of Notification, Endpoint,
and UINTRNotif) and cleared by the receiver once the data has been copied to
the output buffer. data_sent functions as our signal variable when using Frame
as the signaling mechanism and is polled on with the wait_type set during setup,
which is where we decided to make wait_type connection-specific instead of
call-specific, as originally planned in §4.2.1.

For Endpoint and Notification, we decided to use the next-closest invocations
for blocking and non-blocking purposes. Specifically, we used Call and Send
for Endpoint and Signal for Notification. Call was chosen as it is required to
invoke sel4’s fast-path* but introduced the need to call Reply in the receiver.
Since Endpoints represent synchronous IPC we cannot use them to implement
asynchronous communication. Therefore, we had to use Send in uIcom_SendNB
instead of NBSend in order to be able to send any data at all, due to us choosing
to use NBRecv for Endpoint in uIcom_RecvNB.

ulcom_Recv

uIcom_Recv performs the reciprocal actions to uIcom_Send, namely:

« Poll or Wait for a signal

“It was later revealed that the fast-path is only provided for same-core communication, how-
ever, we kept the use of Call to have different mechanisms for both uIcom_Send and uIcom_SendNB.

1
2
3
4
5
6
7
8
9

10
11
12
13

5.3. LIBUINTERCOM 59

while (con->memory->data_received == 0) {
switch(main_con->wait_type) {
case POLL: break;
case TPAUSE: {
RDTSC(selL4_Word temp);
TPAUSE (@, temp + TIME_SLICE);
break;
}
case YIELD: {
seL4_Yield();

3

Listing 5.2: uIcom_Recv: Waiting for signal variables

« Transfer data from shared memory to output data region if data # NULL

+ Send confirm signal

UINTRNOotif and Frame use a while loop to poll on their signal variables, which
can be seen in Listing 5.2. Since our machine was affected by the UMWAIT is-
sue [41], we decided to only implement the TPAUSE wait-type instead of both
TPAUSE and UMWAIT. For TPAUSE, we decided on a TIME_SLICE of 1.25x the TSC
units polling takes to receive the value for Frame and an infinite time for UIN-
TRNotif, since user-interrupts cause TPAUSE to abort. For Notification we use the
Wait invocation, while we employ Recv for Endpoint. Endpoint also has to invoke
a Reply if the sender used Call, which is determined by an additional word sent
with the Endpoint and set to two different magic values, depending on whether
the sender used uIcom_Send or uIcom_SendNB. After the signal has been received,
data is transferred to the output data region and the return signal is sent by set-
ting the data_sent variable to o.

For the non-blocking uIcom_RecvNB, UINTRNotif and Frame signals check
their respective signal variables data_received—which is set in the UIHandler—
and data_sent—which is set by the sender—once, Endpoint uses NBRecv to check
for a pending message, and Notification calls Poll. If no signals are pending, the
function simply returns 0. Otherwise, it performs the same actions as uIcom_Recv
after it received a signal.

Gl W N =

60 CHAPIER 5. IMPLEMENTATION

void ulIcom_RecvHandleReply (ulIcom_id_t id) {
ulcom_Recv(id, NULL, NULL);
uIcom_Handler (id);
ulcom_Send(id, NULL, 0);

}

Listing 5.3: uIcom_RecvHandleReply simply wraps the listed functions

5.3.5 Summary

To summarize, we managed to implement the functionality of our design from
§4.2. While slight changes were made, such as wait_type instead being imple-
mented as connection-specific instead of call-specific, in total our implementa-
tion offers signals, message passing, and RPC using our UINTR capabilities in
every designed sub-variant. Additionally, ulcom offers similar functionality for
additional capabilities as a point for comparison using only four functions and
wrappers, an example of which can be seen in Listing 5.3, to provide an appro-
priate starting point for our evaluation.

Chapter 6

Evaluation

Our initial goals from Chapter 4 were to implement a new IPC facility using
UINTR as its basis and compare it to existing methods on sel4 in various sce-
narios. At the same time, we want to observe behavior of UINTR on our system,
given that previous work only examined UINTR on Linux systems. Our imple-
mentation allows us to disable our UINTR-related code by simply disabling the
corresponding compile flag, which enables us to also observe and analyze the
overhead added by our implementation.

In this chapter, we describe the data we collected and derived metrics (§6.1),
how we designed and implemented our benchmarks to collect data (§6.2), and
finally discuss the results from our benchmarks (§6.3).

6.1 Methodology

Since it is not a given that user-interrupts might perform better from a time
perspective than selL4’s native IPC pathways, we also evaluate how they fare
from a power-management perspective, which was also still unevaluated in any
scenario when we conceptualized this thesis.

In this section, we give an overview over what data we collected, how it was
collected and determine the metrics we calculate from said data. Namely, we
collected data in regards to time characteristics (§6.1.1), energy characteristics
(§6.1.2), efficiency indicators (§6.1.3), and further performance indicators (§6.1.4).
Most of this data is only available from kernel-mode. We therefore added another
capability to seL4—BenchCap—whose invocations simply measure the requested
data with a timestamp and then return said data to user-space.

We collected our data on a single Intel(R) Xeon(R) Silver 4410Y with 320 GB
of main memory. For our evaluation runs we disabled Intel SpeedStep, which
should ensure our machine runs at its base frequency of 2.00 GHz and constant

61

62 CHAPTER 6. EVALUATION

CPU ‘ Intel Xeon Silver 4410Y
Cores 12 (24 Threads)
Frequency 2.0 GHz (max Turbo: 3.9 GHz)
L1 90 KB (32 KB instruction + 48 KB data)
L2 2 MB per core
L3 30 MB (shared)
TDP 150 W
DRAM \ 4x 16 GB DDR5-4800
Motherboard \ Supermicro X13SEI-F
CPU Features:
Hyperthreading enabled
Speedstep disabled
Turboboost disabled
seL4 Configuration Changes:
Meltdown Mitigations disabled

Table 6.1: Description of our evaluation system

#define RDTSC_BENCH(var) \

__asm__ __volatile__("mfence\n"); \
__asm__ __volatile__("1fence\n"); \
var = __builtin_ia32_rdtsc(); \
__asm__ __volatile__("1fence\n");

Listing 6.1: The macro used to collect TSC values

voltage. Unless otherwise specified, our evaluation threads run on cores #2 and
#4. A more detailed description of our system can be seen in Table 6.1.

6.1.1 Measuring Time

In order to determine the one-way delay (OWD) and round trip time (RTT) of
various configurations of ulcom, we used RDTSC to read the TSC. The TSC is a
constantly-incrementing counter and can be used to determine the time between
events on a processor. RDTSC is non-serializing and can therefore be reordered
around previous and following instructions. We added LFence and MFence in-
structions around RDTSC to prevent these reorderings, as also used by Kone et
al. [48] and recommended by Intel[9, sec. 4.1, RDTSC]. We then insert this
RDTSC_FENCE macro (see Listing 6.1) around ulcom calls to collect TSC values.
TSC data collection is further described in §6.2.

6.1. METHODOLOGY 63

6.1.2 Measuring Energy Consumption

Since we also wanted to evaluate the energy consumption characteristics of UINTR
and, by extension, ulcom, we needed to find a way to measure these. Modern In-
tel processors expose running average power limit (RAPL) MSRs, which can be
used to determine these characteristics in various domains, as well as set energy
limits [25, sec. 16.10.1]. We used BenchCap to collect RAPL data for four different
domains:

« PPo, which measures power consumption of the cores [25, sec. 16.10.4]

+ PKG, which measures power consumption of the entire package

DRAM, which measures power consumption for main memory

PLATFORM, which is vendor-specific and measures power consumption ev-
ery device that is supplied by the integrated power delivery mechanism

This selection allows us to decently analyze the energy characteristics of our
implementation. Unfortunately, our test machine is affected by RAPL filtering,
which was introduced to mitigate a hardware vulnerability [66]. We were unable
to enable unfiltered values and are therefore limited to only the DRAM and PKG do-
mains for our evaluation. Nonetheless, we use the gathered data to calculate the
following metrics: 1. Total power consumption. 2. Average power consumption
over execution time

RAPL values are collected at the start and end of benchmark runs.

6.1.3 Measuring Efficiency

In addition to energy data, Intel also provides counters to evaluate power effi-
ciency with. The IA32_APERF MSR counts at the current clock frequency when
the processor is in the Co power state, while IA32_MPERF counts at the reference
clock frequency when the processor is in the Co power state. When combined,
these two can be used to calculate the effective frequency of the processor over
a given time frame [67, Table 2-2].

There is also the IA32_PPERF counter, which increments at the same frequency
as IA32_APERF, but only if the current cycle is perceived to have contributed to
instruction execution [25, sec. 16.4.5.1]. When combined with IA32_APERF, this
can be used to determine workload scalability as a metric to determine how fre-
quency changes would affect software performance.

PERF counter values are collected at the start and end of benchmark runs.

64 CHAPTER 6. EVALUATION

6.1.4 Further Performance Indicators

We also collected data from three of Intel’s fixed performance counters [25, Table
21-1]. They behave as follows:

+ CTR1: Counts the amount of retired instructions
+ CTR2: Counts the amount of unhalted clock cycles
« CTR3: Counts the amount of reference clock cycles

The counters can be used to calculate the ratio of halted to reference clock cycles—
an indicator of how much time was spent in the halt state—and the ratio of retired
instructions to reference clock cycles, which we call instruction density.

These miscellaneous indicators are collected at the start and end of benchmark
runs.

6.2 Benchmarking

Our benchmarks were initially intended to evaluate all three implemented IPC
types, each in every variation of IPC category seen in §2.2.1. The initial plans
envisioned us to write a simple benchmark for the signal facility, evaluate differ-
ent combinations for message passing, and also introduce a “real-life” scenario
in the form of an in-memory database to evaluate RPC with, as seen in previous
work [59]. Unfortunately, our scope proved to be too ambitious, which forced us
to delegate evaluation of our RPC facility to future work. We begin this section
by describing how our benchmarks were set up in and how we transferred our
data in §6.2.1, after which we further describe our benchmark design in §6.2.2

6.2.1 Setup

Since we are evaluating on sel4, we had to write a custom benchmark facil-
ity to handle resources and also find a way to transfer data from our test sys-
tem to our actual system to process collected data. Setup for our benchmarks
is handled by the initial thread, which runs our custom benchmarking facility.
Every benchmark had a specific combination of (shared) memory, (shared) capa-
bilities, and functions with initial arguments, which we defined statically with
auto-generated definitions. Benchmark threads are created, their capabilities and
memory assigned and mapped, and finally started. Once a benchmark finishes
execution, its memory and capabilities are freed and ready to be re-used in the
next benchmark. Since every benchmark thread has its memory pre-installed,

6.2. BENCHMARKING 65

no page faults can occur during the benchmark runs themselves. If they do, the
affected thread terminates.

We were unable to find working device drivers for network devices, mass-
storage, or file-systems for seL.4. While we considered writing these ourselves,
we ultimately settled on using serial over LAN (SoL) for data-transfer, due to
seL4’s standard library already providing a serial driver. However, the standard
driver was not compatible with non-initial threads—presumably because of in-
ternal assumptions about CSpace layout that we were unable to reconcile—and
we had to introduce a proxy-printf, which could be called from benchmark-
ing threads to send data to the initial thread, which would then print this data
to serial. Transferring data over SoL was also limited to a maximum of around
12.5KB/s, which drastically reduced the amount of data we could collect in a re-
alistic time-frame. In addition to this, we had to send all of our data twice to
have a reasonable chance of ensuring our data would not get corrupted due to
transmission errors, halving our effective transfer speed. We were able to con-
firm that our final data showed no signs of corruption after recombining these
duplicates.

6.2.2 Benchmark Design

Our benchmark for signaling performance consists of two threads running sim-
ple loops, where with our RDTSC_BENCH macro before the sender’s uIcom_Signal
call and another after the receiver’s uIcom_Wait call, allowing us to measure the
OWD of uIcom_Signal. We synchronize both threads after the receiver is done
measuring their TSC, to ensure our results are as close to the actual OWD as
possible. For our “Signal” benchmark, we vary the following factors:

« Capabilities used for ulcom

e ulcom_Poll vs ulcom_Wait

+ Wait-types for uIcom_Wait

« Thread affinity of the receiver

If the receiver is configured to call uIcom_Poll instead, it does so in a loop and
the macro is called after uIcom_Poll returns successfully.

Our second benchmark concerns message passing performance and again
consists of two threads—here called the producer and consumer instead of sender
and receiver—that call uIcom_SendRecv and uIcom_RecvReply in a loop. We mea-
sure TSC timestamps before and after both threads call their respective func-
tions, which allows us to measure the RTT of ulcom. Therefore, we name this
benchmark “Roundtrip”. Since both uIcom_RecvReply use the blocking variant of

O 0 I N A W N

66 CHAPTER 6. EVALUATION

void roundtrip_consumer_auto_handler (ulcom_mem_t =*d_in,
ulcom_mem_t *d_out) {
RDTSC_BENCH(seL4_Word temp1);
consumer_before_time[consumer_run] = templ;
consumer_run += 1;
if (consumer_run >= RUNS) {
bench_running = 0;

Listing 6.2: Connection handler for collecting TSC values

uIcom_Recv, we additionally evaluate using the asynchronous-preemptive vari-
ants of ulcom with UINTR and OSSeUINTR. This allows us to measure the OWD
from producer to consumer in addition to the RTT, with the handler function we
used for these cases listed in Listing 6.2. “Roundtrip” also allows us to test various
combinations of capabilities in ulcom and might highlight potential “ideal” com-
binations of IPC pathways. We only vary the capabilities used for ulcom in these
benchmarks, to keep the amount of collected data reasonable. For asynchronous-
preemptive cases, the program calculates consecutive Fibonacci numbers to demon-
strate the scenario of a busy thread occasionally serving requests.

Both our “Signal” and “Roundtrip” benchmarks run for 131 072 iterations be-
fore ending. With 68 benchmarks we collected more than 200MB of raw data,
which took 15 hours to transfer with SoL.

6.3 Results

In this section we present, analyze, and compare our results from the bench-
marks described in the previous sections. We begin by first introducing the
time-wise performance of ulcom in various aspects (§6.3.1), continue with power
performance in §6.3.2, and evaluate further performance indicators in §6.3.3. Fi-
nally, we compare ulcom to previous work in §6.3.4, where we take a look at
the “Brdige”-family of IPC mechanisms, previously introduced in §3.3. All of the
discussed figures are available in Appendix A, while figures for remaining data
are in Appendix B, even if not explicitly mentioned.

6.3.1 Time Performance

Before we begin with our comparison of UINTR-based ulcom to other capabili-
ties, we first compare UINTR and OSSeUINTR under varying affinities and wait

6.3. RESULTS 67

types, while using Frame-based ulcom as a point of reference to characterize
these different mechanism.

Varying Affinity

In Figure A.1, we present cumulative distributions of UINTR-, OSSeUINTR, and
Frame-based ulcom in the “Signal” benchmark. The receiver uses uIcom_Recv
with the Poll wait type to receive signals. In Figure A.1a, we observe that the
OWD is offset by up to 100 TSC units with varying core affinity for regular
UINTR. Similarly, OSSeUINTR Figure A.1b have a comparable offset in the 0th
to 25th percentile, however, the OWD converges around the 75th percentile. It
then slowly tails off in the 95th with a much higher tail latency than can be ob-
served for UINTR. We expect this convergence around the tail to be due to the
kernel-entry associated latencies introduced by OSSeUINTR’s nature. In contrast
to this, Frame-based ulcom, as seen in Figure A.1c, shows very similar behavior
to UINTR, with the distribution function having a similar shape among its vari-
ants but with a much smaller offset for the different affinities when compared to
UINTR.

The graph seen in Figure A.1c is a clear indicator for memory layout being a
factor for all of these mechanisms, as UINTR accesses memory to deliver UIPIs,
however, since UINTR-based appears to have a much wider offset distribution
than Frame-based ulcom, we expect that the second factor is core distance in-
creasing the IPI latency, as seen in previous work [60]. However, due to only
collecting data on a limited number of core combinations and a lack of data about
the actual internal layout and interrupt routing behavior of our test machine’s
processor, we cannot draw any definitive conclusions.

Varying Wait Types

Figure A.2 shows the same “Signal” benchmarks under varying wait types for
fixed affinities, this time as simple histograms instead of cumulative distribution
graphs. We begin our analysis with a focus on UINTR, whose histogram can
be observed in Figure A.2a and shows a large peak at approximately 1400 TSC
units with three minor peaks in the tail for UINTR. We believe these minor peaks
are caused by the stepping warm-up behavior of UINTR, as can be observed in
Figure A.3a, which shows a filtered scatter plot of every 17th iteration’s data
for the Poll and TPause variants of UINTR-based ulcom. Interestingly enough,
Frame-based ulcom also shows this stepping behavior during warm-up, which
takes roughly 30000 iterations for UINTR and twice that amount for Frame-
based ulcom, as can be seen in Figure A.3b. Presumably some element of caching
is causing this, as both the UPID, UITT, and the polled variable live in memory,

68 CHAPTER 6. EVALUATION

which might be moved to different shared cache levels. We leave further analysis
of this behavior to future work, which could test and potentially influence this
behavior with explicit pre-fetching.

While TPause and Poll show a similar distribution for UINTR, with TPause
being shifted by around 350 TSC units, Yield shows a much more distributed
two-peak structure. Contrasting this to Frame-based ulcom’s single peak (seen
in Figure A.2c) for Yield, we presume this difference might come from two dif-
ferent execution paths in the kernel based on the timing of interrupt delivery and
processing. We theorize that the first peak is caused by kernel entries that imme-
diately process the caused IPI in the kernel, while the second tapered-out peak
might be caused by kernel re-entries while seL4 is restoring the user context.
The function that restores the user-context has a section to recognize pending
interrupts and re-enters the kernel if needed, which we hypothesize is the reason
for the existence of the second peak.

Alternatively, since a less balanced form of the two-peak structure exists for
OSSeUINTR, as can be seen in Figure A.2b, perhaps this pattern is caused by
the triggering and processing of a different interrupt’ in the kernel, which per-
haps becomes more likely with an increased OWD, shifting the bulk of the OWD
from the first peak to the second. We consider this more likely, as the results for
Yielding Frame-based ulcom also appear to have a very minor second peak. Since
the sender does not enter the kernel in these cases, we can exclude kernel-lock
contention as a possible reason for this distribution.

Overhead Analysis

Before we finally compare different capabilities against each other, we perform
an overhead analysis of our implementation by disabling UINTR in the seL4 con-
figuration, which we ensured completely removes any of our UINTR-based mod-
ifications. Figure A.4 shows the cumulative distributions for Frame, Endpoint,
and Notification-based ulcom, in every configuration that entails a kernel-entry
while receiving data. As we can see in Figure A.4c for Notification and Fig-
ure A.4a for Endpoint, the added overhead for uIcom_RecvNB, which in this case
means the added overhead for Poll and NBRecv, respectively, is similar for both
capabilities, shifting the respective distributions by roughly 2 500 TSC units.
Given that uIcom_Wait with Frame set to Yield only has a curve offset of about
1000 TSC units, as can be seen in Figure A.4b, we expect this overhead to be a
result of uIcom_RecvNB being called at least two additional times, with the first call
being too early to receive the signal or message sent by the sender, and the second
kernel-entry usually receiving it. We believe this to be a plausible explanation

'For example a regular timer interrupt

6.3. RESULTS 69

for the doubled offset of the cumulative distribution curve when compared to
Frame, with the overhead itself being caused by MSR writes that were added to
the kernel entry hook to clear the UINTR-MSRs to prevent erroneous UID, as
explained in §5.2.3.

Similarly to uIcom_RecvNB, both Endpoint and Notification again show the
same behavior for uIcom_Recv, which calls Recv and Wait for the respective capa-
bilities. Since Wait is nothing more than a convenience wrapper of Recv [42, sec.
10.2.1.10], this is expected. The cumulative distribution shows two steep slopes
for the UINTR-disabled case, one around 6 500 TSC units and another around
11500 TSC units. The entire distribution is offset by around 2 000 TSC units this
time, with the first slope significantly reduced in favor of the second. Apart from
this, the general shape of the distribution stays the same. This represents a shift
from a first peak of the paired histogram distribution to the second. As we have
already seen this two-peak structure in Figure A.2, we suppose this might sim-
ply be the shape for kernel-entry based IPC mechanisms on seL4 and refer to the
previously proposed reasons, in a addition to potential kernel-lock contention,
as possible reasons for this distribution shift. While certainly interesting, fully
characterizing and analyzing the reasons for the two-peak structure of sel4’s
system calls is left to future work.

Varying Capabilities - Signal

As a final evaluation of the time aspects of our “Signal” benchmark, we present
the best cases in terms of OWD for every capability, which were the UINTR-
disabled runs for Notification and Endpoints as discussed above, as both cumu-
lative distributions and cumulative sums in Figure A.5.

First, we take a look at Figure A.5a, which shows the cumulative distributions
for the OWD of different capabilities for uIcom_Recv. As the scale of the graph is
rather large, we refer to previous sections for a detailed view of each capability’s
distributions. It is quite apparent that the best capability in terms of time for
ulcom is the Frame capability with Poll, as the bulk of its OWD distribution is
around 500 TSC units. This is followed by UINTR with Poll, at around 1300
TSC units, and OSSeUINTR at roughly 3 700. Both the blocking variants for
Endpoint and Notification perform rather poorly in this case, both following a
two-peak structure at around 6 500 and 11 500 TSC units. This is also reflected in
the cumulative sum graph for all of these capabilities, seen in Figure A.5¢c, with
no unexpected switch-up in the order from best to worst in terms of OWD.

In contrast to this, the cumulative distribution for uIcom_RecvNB, which is
available in Figure A.5b, shows two distinct overlaps for UINTR and Notifica-
tion-based ulcom, and OSSeUINTR and Endpoint-based ulcom. While Notifica-
tion offers better performance starting at 1 200 up to the 70th percentile, which

70 CHAPTER 6. EVALUATION

can be observed more closely in Figure A.5e, UINTR’s cumulative distribution
has a much steeper slope that continues at 1 300 and ends below 1 500 TSC units
up until the 99th percentile, while Notifications tail slowly tapers off around the
80th. Similar behavior can be seen with Endpoint and OSSeUINTR, albeit with
a more gradual slope for both and only meeting in the 80th percentile, where
Endpoint tapers off, with OSSeUINTR also tail also tapering off by the 97th per-
centile. At this point we would like to remind the reader that Frame is still far
ahead with both a better starting point of about 400 TSC units and a steeper slope
than even UINTR.

Nonetheless, while both pairs cross in their cumulative distributions, only
UINTR surpasses its counterpart when it comes to the average case, as can be
seen by the cumulative sum graph observable in Figure A.5d, offering slightly
better OWD performance when compared to Notification-based ulcom, with
OSSeUINTR being worse than Endpoint in this regard.

Varying Capabilities - Roundtrip

Unfortunately our data for “Roundtrip” on the UINTR-disabled kernel was unus-
able due to an error in the benchmark itself that we were only able to correct for
the UINTR-enabled case within the time-frame. We therefore cannot reference
this data for an overhead analysis, refer to the sections above as an approxima-
tion of the potentially observable overhead, and move on to comparing the, to us,
most interesting RTT of various capability combinations. Fortunately, none of
the best cases—from a time perspective—involve Notification or Endpoint-based
ulcom and we deduce from Figure A.4, which shows the cumulative distribution
for uIcom_Recv for every capability, that even in the UINTR-disabled case none of
the overhead-affected configurations would be fast enough to be covered here.
However, that is no more than an educated guess.

Figure A.6 shows both the cumulative distributions (Figure A.6a) and his-
tograms (Figure A.6b) for RTT data collected using variants of the “Roundtrip”
benchmark. All of the shown variants are eiher Frame-based, UINTR-based, or
a combination of the two. The UINTR-based ulcom variants keep their distinct
histogram shape with three minor peaks, which indicates the three-step warm-
up pattern, while the first peak for every variant is less tall than what was seen
in Figure A.2.

Frame-UINTR and UINTR-Frame follow the same distribution, while both of
the asynchronous-preemptive combinations of UINTR-based and UINTR and
Frame-based ulcom perform worse than their polling counterparts, which goes
against our initial assumption that asynchronous-preemptive cases do not have
the polling overhead and therefore would perform marginally better than the
synchronous counterparts. Perhaps this is caused by the uIcom_Recv already

6.3. RESULTS 71

being near the uIcom_Send code-path in uIcom_RecvReply, which would allow
the processor to pre-fetch some instructions or perform other optimizations,
whereas the asynchronous-preemptive case is preempted from its calculation
of Fibonacci numbers, where the processor cannot expect to have to call the
uIcom_Send function in advance.

We believe this to also be a potential performance indicator for the unex-
amined asynchronous-preemptive RPC case, which would, as it is based on the
same combination of functions, also perform worse than in the synchronous case.
However, the trade-off of having slightly higher RTT but being able to perform
background work is interesting, might be required in some applications, and is
worth considering in future work.

6.3.2 Power Performance

Presumably due to RAPL filtering?, we were only able to observe two of four
intended domains, which were PKG and DRAM. Graphs for the total power con-
sumption and average power consumption over execution time (represented by
TSC differences), can be seen in Figure A.7. While the distribution of average
power consumption over time

B A Power
a9 = TATSC

does show a pattern of memory-based signaling having a consistently lower val-
ues, for all other variants of the “Signal” benchmark there appears to be no clear
correlation between any of the varying factors for neither the PKG nor the DRAM
domain, as can be seen in Figures A.7c and A.7d. We therefore do not believe
that our collected energy consumption data shows any significant results besides
more time taken — more power consumed. The same applies to RAPL data col-
lected for the “Roundtrip” series of benchmarks, which we do not fully discuss
here but are available in Appendix B. Perhaps these results could display more
meaningful correlations if SpeedStep and Turboboost were enabled, however, we
leave the evaluation of this possibility to future work.

As other work has previously achieved a roughly 20% increase in power-
efficiency by using TPAUSE opposed to “pure” polling in other applications [56],
we present two possible explanations for these results:

1. Disabling SpeedStep resulted in 24 threads running at the same frequency
and power consumption and simply drowned any power-efficiency gains
provided by one thread occasionally lowering its power state.

2Or perhaps PLATFORM is simply missing in addition to PP@ being filtered

72 CHAPTER 6. EVALUATION

2. Unlikely but possible benchmarking issues, either in design or in imple-
mentation

However, we do believe TPAUSE successfully transitions into a sleep state, due to
the increase in OWD observable in Figures A.2a and A.2b.

6.3.3 Further Performance Indicators

Below we describe and analyze our results based on further performance indica-
tors, such as the efficiency metrics from §6.1.3 and §6.1.4.

Instruction Density

Instruction density d, whose formula is

B ARetired Instructions
N ATSC Values

can be seen in Figure A.8a for different configurations of the “Signal” bench-
marks. There appears to be a clear correlation between the wait type, used ca-
pability, and instruction density, with the graph showing that, regardless of used
capability, uIcom_Recv with TPause resulted in a very low instruction density,
which is further evidence for an entered sleep state. In contrast to this, bench-
mark variants that rely on Poll have a very high instruction density, as expected.
Also of note are the lowered instruction density of variants relying on kernel-
entry for waiting, such as any uIcom_Recv variant with Yield and both variations
of ulcom with Endpoint and Notification, which have a much higher instruction
density on the UINTR-disabled runs that can be seen in Figure A.8b. We believe
this to be an indicator of the high cycle cost per WRMSR and RDMSR instructions that
were introduced due to the issues encountered in §5.2.3.

We would expect to also see some reflection of instruction density in the col-
lected data for energy consumption. The absence of such a correlation® is pre-
sumed to either be the cause of the reasons already mentioned in §6.3.2, or the
different instructions that were executed in the low instruction density variants
simply consumed more energy. However, we believe the second reason to be
unlikely, since we expect the best and worst performing Frame-based variants
to execute the same instructions except for TPAUSE. Unless TPAUSE has an absurd
power cost, which related work does not mention and in fact does seem to show
the opposite results [56], we believe this to, again, simply be an issue with our

3The color pattern observable in Figure A.8a does not correspond to any pattern observed in
Figure A.7 in any way

6.3. RESULTS 73

RAPL data. At this point it would also be interesting to analyze various types of
NOP-like instructions, such PAUSE instead of TPAUSE. We leave this to future work.

Figure A.8 also shows that uIcom_RecvNB has a consistently lower instruction
density than uIcom_Recv with Poll. This is expected due to uIcom_RecvNB being
called in a loop, which checks the polled variable once, while uIcom_Recv checks
the polled variable in a loop directly. For variants with uIcom_RecvNB, the JMP
instruction of the Pol1-loop is effectively switched out for CALL instruction, which
we presume has a higher cycle cost due to higher instruction complexity [9, sec.
3.3, CALL, JMP]. However, further measurements would be required to fully
confirm this assumption.

Unbhalted Cycles and Effective Frequency
To confirm that disabling SpeedStep did indeed ensure our machine runs at its
base frequency, we calculate the unhalted cycle ratio u as follows:

_ AUnhalted Cycles
~ AReference Cycles

u

And compare it to the effective frequency derived from IA32_APERF and IA32_-
MPERF in Figure A.9. If our machine were to run in an unhalted state at the base
frequency, we would expect both of these values to be at 100 % for every bench-
mark variant. Unfortunately, the effective frequency for Endpoint and Notifica-
tion-based ulcom is around 80-95 %, as can be seen in Figure A.9a, which indi-
cates the processor had a lower effective frequency than expected. This can be
explained by the ratio of unhalted cycles to reference cycles seen in Figure A.9b,
whose entries with lower than 100 % match the entries from Figure A.9a.

We expect this is due to seL4 running its idle thread when no other thread
is currently ready to be scheduled, which simply consists of a HLT instruction,
halting the processor until an interrupt arrives. Threads that invoke the Recv
and Wait methods of Endpoint and Notifications are unable to be scheduled un-
til a message or signal has arrived. Therefore this anomaly is not an indicator
of P-State shifting despite SpeedStep begin disabled but instead intended behav-
ior. Similar behavior of effective frequency and the unhalted cycle ratio were
observed for the remaining benchmark variants and are available to view in Ap-
pendix B.

Workload Scalability

Finally, we analyze the hardware-perceived scalability of ulcom. As mentioned
in §6.1.3, workload scalability s is calculated as follows:
ATA32_PPERF
S=———
ATA32_APERF

74 CHAPTER 6. EVALUATION

And is the ratio of cycles that have contributed to instruction execution to un-
halted cycles. It is effectively a measurement of how much of the passed time was
spent actually performing work, with the assumption that this is a metric that
can be used to assess the scalability of a workload with increased clock speeds.

In the “Signal” benchmark we first examine the workload scalability for the
sender, which is visible in Figure A.10a. Is is ordered as follows: Frame — End-
point and Notification — UINTR—OSSeUINTR, with a higher workload scal-
ability for the Yield and TPause variants for each. On the receiver side, whose
graph is shown in Figure A.10b, the scalability values are also mostly grouped by
used capability, with the Yield wait type variants instead offer the lowest scala-
bility within the respective variant groups. TPause variants boast 5 — 20% higher
scalability than the variant norms, with UINTR with TPause having the highest
workload scalability of roughly 85%, with the next highest being a plateau of
UINTR with Poll.

The variants using uIcom_Poll appear to have a lower scalability than the
blocking uIcom_Wait variants. We expect the increase in workload scalability for
TPause is due to a decrease in IA32_APERF counting frequency when entering the
sleep state. However, unless IA32_MPERF frequency also has a proportional de-
crease, which it cannot [25, sec. 21.7.2], this should also be reflected in the effec-
tive frequency, which, as can be seen in Figure A.9, it is not. We leave the further
analysis of the effects of TPAUSE on hardware-perceived workload scalability and
the discussion of the remaining benchmark variants to future work.

6.3.4 Comparison to Related Work

In this section we compare ulcom to different IPC libraries from previous work
in terms of relative and total time performance differences where possible.

SkyBridge

As already mentioned in §3.3.1, SkyBridge uses EPT switching via the VMFUNC
instruction to bypass the kernel and directly call code from other processes as
a form of PPC. By its nature as a PPC mechanism, SkyBridge does not provide
a mechanism for the cross-core case [59] and is therefore difficult to compare
to ulcom, which focuses exclusively on this. For the same-core case, SkyBridge
provides a speed-up of around 3 x on selL4, at around 400 TSC units for its RTT,
which is around 6 — 7 better RTT performance than ulcom using UINTR. How-
ever, comparing TSC units between systems must be done with caution and may
have little practical implications, as these units can have wildly different mean-
ings depending both on clock-speed and underlying architecture.

6.3. RESULTS 75

UnderBridge and HyBridge

Both UnderBridge and HyBridge move system servers into the kernel to avoid
IPC overhead in cross-server communication and therefore do not offer a new
user-space IPC pathway directly. In addition to this, our source for HyBridge
does not contain any data for RTT and instead focuses on throughput [7], as
their primary metric for comparisons. However, their throughput metrics sug-
gest equivalent or only slightly better performance than UnderBridge, which
does contain a table for RTT times [6]. UnderBridge has a RTT performance of
around 800 TSC units [6], which is roughly 3x better than ulcom with UINTR.
All in all, comparing ulcom to these existing technologies is tricky, due to
differences in testing system, methodology, and benchmarks. Nonetheless, our
work appears to be the only one to improve the cross-core case for communi-
cation between active IPC partners and can offer potential OWD speed-ups of
1.1 — 5.5x when compared to existing selL4 capabilities, excepting shared mem-
ory, with similar results assumed for the RTT case. We anticipate future work
will shed more light on the differences and similarities to other technologies by
evaluating them and UINTR on similar applications now that a base-line has been

established.

76

CHAPTER 6. EVALUATION

Chapter 7

Conclusion

For our final chapter, we first draw our final conclusions in §7.1 and ultimately
give suggestions for avenues for future work in §7.2.

7.1 Conclusion

Our initial goal was to design, implement, and evaluate a new IPC library that
uses modern processor features on a modern representative of the L4 pkernel
family. We chose sel4 as this representative and were able to be, to our knowl-
edge, the first to produce a design for a capability-based integration of UINTR—
a kernel-bypass mechanism for sending and receiving interrupts—on any OS.
UINTR, in our opinion, suits itself quite well to a capability-based management
and posit that this design could be used to add UINTR to other capability-based
pkernels, such as Fiasco, in the future. To use this new capability-based design in
practice, we also designed ulcom, an IPC library that provides functions for ev-
ery type of IPC, with synchronous, asynchronous, and asynchronous-preemptive
variants. Where reasonably applicable, we integrated the new user-wait exten-
sion into our design.

We were able to implement both our capability design and the IPC library
on a recent version of sel4, albeit with some changes and additions. While im-
plementing the UINTR capabilities, we conceptualized and implemented support
for OSSeUINTR on selL4, which allows the kernel to have some control over UIPI
delivery, while still bypassing the kernel from a sender’s perspective. By modi-
fying our design for ulcom, we were able to implement it to be able to use any of
the seL.4 IPC-capable capabilities as the underlying mechanism, which allowed
for easier comparison of the UINTR mechanism to the existing suite.

In our evaluation, we characterize aspects of ulcom in terms of time and hard-
ware efficiency indicator. We show that the UINTR-based approach is faster than

77

78 CHAPTER 7. CONCLUSION

the existing suite of seL4 IPC capabilities in both the blocking and non-blocking
cross-core case and also offered preliminary insights into time characteristics
of OSSeUINTR. The overhead added to the pre-existing IPC capabilities by our
implementation is significant, however, we believe future work will be able to
greatly reduce this, which we will again discuss in §7.2. While we were unfor-
tunately unable to offer any insights into energy efficiency, which we initially
believed to be one of the key advantages of UINTR when compared to shared-
variable-based polling, data for workload scalability and instruction density from
a hardware perspective showed that UINTR is perceived to be much more scal-
able than its counterparts and also that TPAUSE drastically decreases instruction
density, albeit doubling the OWD of ulcom. We believe that both metrics might
be indicators of potential gains in energy efficiency.

Except for the energy measurements, our results were within the expected
frame set by previous work and we believe to have shown multiple new avenues
for future research to take in regard to seL4, UINTR, and the user-wait extension,
while presenting UINTR as a viable alternative for user-space IPC in selL4, with
1.1 — 5.5x speed-ups for OWD.

While asynchronous-preemptive UINTR with active background work does
not perform as well from a RTT perspective as UINTR that is actively being
waited for, we believe the existence of a fast user-space asynchronous-preemptive
communication pathway can offer many new possibilities for both IPC and soft-
ware design, with the background work vs. speed trade-off certainly being worth
considering.

7.2 Future Work

Finally, we describe avenues for potential future work on seL4, UINTR, the user-
wait extension, ulcom and our implementation of capability-based UINTR. We
begin with a list of suggestions on how to expand the implemented designs in
§7.2.1 and conclude this thesis with suggestions for further evaluations §7.2.2

7.2.1 Expanding ulntercom

We see four immediate avenues for expanding the work presented in this thesis.
For one, we did not implement checks for the rights we added to UINTRNotif and
UIPICap. Future work could implement these and implement different scenarios
in which these rights are used, as well as (a) analyze the design of these rights and
(b) potentially expand on them, to then apply these to real world applications.
In the spirit of real-life applicability, future work could also try to minimize the
overhead added by our implementation of capability-based UINTR. We believe

7.2. FUTURE WORK 79

that, with the recent implementation of an RFC related to XState-management
on seL4 to allow for eager XState restoration [68], future work could port or re-
implement our design to a newer version of seL4 and examine how these changes
affect general latencies for kernel entry, as well as the added overhead with
XSAVES-managed UINTR when compared to the current implementation. We be-
lieve ulcom could be expanded with more wait-types to test different kinds of
NOP-like instructions, as already mentioned in §6.3.3. Research on more modern
platforms might be able to integrate UMONITOR/UMWAIT without the potential for
performance degradation as well. Perhaps different combinations of these wait-
types might provide a substantial difference in energy efficiency, which would
have to be analyzed. Finally, while we believe UINTRNotif should in theory al-
ready be able to receive hardware interrupts, confirming this support, adding a
mechanism for interacting with devices, and exploring new systems for bypass-
ing self-UIPIs are all potential tasks for future work wanting to evaluate whether
UINTR could sensibly replace Notification polling for IRQ handling.

7.2.2 Expanded Evaluation

For further evaluation of ulcom, we enumerate the following new paths: First,
our RPC facility is not evaluated at all and, while the “Roundtrip” benchmark
did test the functions under 0-length messages, the message passing facility is,
in our opinion, in further need of evaluation. In both of these cases metrics
like total throughput, among others, are a crucial indicators of IPC and server
performance, which have yet to be measured or assessed. In addition to this, re-
evaluating ulcom with SpeedStep and/or Turboboost enabled might offer a differ-
ent perspective into the power efficiency of our implementation, which we were
unfortunately unable to infer much about in §6.3.2. Furthermore, UINTR itself
is still under-evaluated under varying clock speeds or different combinations of
both E- and P-Cores for the different IPC partners, which was not possible on
our platform. We believe that all of these factors deserve further examination,
both on our existing test system, as well as on other systems to also uncover
micro-architectural influences in all metrics.

In conclusion, seL4’s two-peak structure for system calls, the stepping warm-
up behavior of Frame and UINTRNotif on our machine, the effects of TPAUSE and
UMONITOR on hardware-perceived workload scalability, OSSeUINTR on Linux, and
finally expanding our UINTR capabilities to receive hardware interrupts on selL4,
are all research avenues that are of high interest to us and we believe make great
material for future work.

80

CHAPTER 7. CONCLUSION

Bibliography

[1]

[4]

M. Young, A. Tevanian, R. Rashid, D. Golub, and J. Eppinger, “The duality
of memory and communication in the implementation of a multiproces-
sor operating system,” SIGOPS Oper. Syst. Rev., vol. 21, no. 5, pp. 63-76,
1987-11, 1SSN: 0163-5980. DOI: 10.1145/37499.37507. Accessed: 2025-06-11.
[Online]. Available: https://dl.acm.org/doi/10.1145/37499.37507.

J. Liedtke, “On micro-kernel construction,” in Proceedings of the fifteenth
ACM symposium on Operating systems principles, ser. SOSP ’95, New York,
NY, USA: Association for Computing Machinery, 1995-12, pp. 237-250,
ISBN: 978-0-89791-715-5. DOI: 10.1145/224056.224075. Accessed: 2025-05-
27. [Online]. Available: https://d1l.acm.org/doi/10.1145/224056.224075.

Q. Ge, Y. Yarom, T. Chothia, and G. Heiser, “Time Protection: The Missing
OS Abstraction,” en, in Proceedings of the Fourteenth EuroSys Conference
2019, Dresden Germany: ACM, 2019-03, pp. 1-17, IsBN: 978-1-4503-6281-8.
DOI: 10.1145/3302424.3303976. Accessed: 2025-05-29. [Online]. Available:
https://dl.acm.org/doi/10.1145/3302424.3303976.

G. Klein et al., “seL4: Formal verification of an operating-system kernel,”
Commun. ACM, vol. 53, no. 6, pp. 107-115, 2010-06, 1ssN: 0001-0782. DOTI:
10.1145/1743546.1743574. Accessed: 2025-05-14. [Online]. Available: http
s://dl.acm.org/doi/10.1145/1743546.1743574.

S. A. G. University of Karlsruhe, L4Ka:Pistachio Microkernel white paper,
2003-05. [Online]. Available: http://14ka.org/l4ka/pistachio-whitepape
r.pdf.

J. Gu et al., “Harmonizing Performance and Isolation in Microkernels with
Efficient Intra-kernel Isolation and Communication,” en, 2020, pp. 401-417,
ISBN: 978-1-939133-14-4. Accessed: 2025-05-03. [Online]. Available: https:
//www.usenix.org/conference/atc20/presentation/gu.

J. Gu, H. Li, W. Li, Y. Xia, and H. Chen, “{EPK}: Scalable and Efficient Mem-
ory Protection Keys,” en, 2022, pp. 609-624. Accessed: 2025-05-03. [On-

81

https://doi.org/10.1145/37499.37507
https://dl.acm.org/doi/10.1145/37499.37507
https://doi.org/10.1145/224056.224075
https://dl.acm.org/doi/10.1145/224056.224075
https://doi.org/10.1145/3302424.3303976
https://dl.acm.org/doi/10.1145/3302424.3303976
https://doi.org/10.1145/1743546.1743574
https://dl.acm.org/doi/10.1145/1743546.1743574
https://dl.acm.org/doi/10.1145/1743546.1743574
http://l4ka.org/l4ka/pistachio-whitepaper.pdf
http://l4ka.org/l4ka/pistachio-whitepaper.pdf
https://www.usenix.org/conference/atc20/presentation/gu
https://www.usenix.org/conference/atc20/presentation/gu

82

(8]

[10]

[11]

[12]
[13]

BIBLIOGRAPHY

line]. Available: https://www.usenix.org/conference/atc22/presentatio
n/gu-jinyu.

J. Liedtke, “Toward real microkernels,” Commun. ACM, vol. 39, no. 9, pp. 70—
77, 1996-09, 1ssN: 0001-0782. DOI: 10.1145/234215.234473. Accessed: 2025-
05-27. [Online]. Available: https://dl.acm.org/doi/10.1145/234215.

234473.

Intel® 64 and IA-32 Architectures Software Developers Manual, Volume 2 (2A,
2B, 2C & 2D): Instruction Set Reference, A-Z, en, 2025-03. [Online]. Avail-
able: https://cdrdv2.intel.com/v1/dl/getContent/671110.

A. S. Tanenbaum and H. Bos, Modern operating systems, en, 4. ed. Boston:
Prentice Hall, 2015, 1sBN: 978-0-13-359162-0 978-1-292-06142-9.

R. H. Arpaci-Dusseau and A. C. Arpaci-Dusseau, Operating systems: Three
easy pieces, 1.00. Arpaci-Dusseau Books, 2018-08.

G. Heiser, “The selL.4 Microkernel — An Introduction,” en, 2025-01.

J. Liedtke, “Improving IPC by kernel design,” in Proceedings of the four-
teenth ACM symposium on Operating systems principles, ser. SOSP ’93, New
York, NY, USA: Association for Computing Machinery, 1993-12, pp. 175-
188, 1SBN: 978-0-89791-632-5. DOI: 10.1145/168619.168633. Accessed: 2025-
05-02. [Online]. Available: https://dl.acm.org/doi/10.1145/168619.
168633.

M. Hohmuth and H. Hartig, “Pragmatic nonblocking synchronization for
real-time systems,” en, [Online]. Available: https://os.inf. tu-dresden.
de/~hohmuth/prj/usenix2001.pdf.

J. Liedtke et al., The L4Ka Vision, 2001-04. [Online]. Available: http://
l4ka.org/publications/.

K. Elphinstone and G. Heiser, “From L3 to seL4 what have we learnt in
20 years of L4 microkernels?” In Proceedings of the Twenty-Fourth ACM
Symposium on Operating Systems Principles, ser. SOSP °13, New York, NY,
USA: Association for Computing Machinery, 2013-11, pp. 133-150, ISBN:
978-1-4503-2388-8. DOI: 10.1145/2517349.2522720. Accessed: 2025-05-15.
[Online]. Available: https://d1l.acm.org/doi/10.1145/2517349.2522720.

M. Hohmuth, H. Tews, and S. G. Stephens, “Applying source-code verifi-
cation to a microkernel: The VFiasco project,” in Proceedings of the 10th
workshop on ACM SIGOPS European workshop, ser. EW 10, New York, NY,
USA: Association for Computing Machinery, 2002-07, pp. 165-169, 1SBN:
978-1-4503-7806-2. DOI: 10.1145/1133373.1133405. Accessed: 2025-06-02.
[Online]. Available: https://d1l.acm.org/doi/10.1145/1133373.1133405.

https://www.usenix.org/conference/atc22/presentation/gu-jinyu
https://www.usenix.org/conference/atc22/presentation/gu-jinyu
https://doi.org/10.1145/234215.234473
https://dl.acm.org/doi/10.1145/234215.234473
https://dl.acm.org/doi/10.1145/234215.234473
https://cdrdv2.intel.com/v1/dl/getContent/671110
https://doi.org/10.1145/168619.168633
https://dl.acm.org/doi/10.1145/168619.168633
https://dl.acm.org/doi/10.1145/168619.168633
https://os.inf.tu-dresden.de/~hohmuth/prj/usenix2001.pdf
https://os.inf.tu-dresden.de/~hohmuth/prj/usenix2001.pdf
http://l4ka.org/publications/
http://l4ka.org/publications/
https://doi.org/10.1145/2517349.2522720
https://dl.acm.org/doi/10.1145/2517349.2522720
https://doi.org/10.1145/1133373.1133405
https://dl.acm.org/doi/10.1145/1133373.1133405

BIBLIOGRAPHY 83

[18]

[19]

[25]

[26]

P. Derrin, K. Elphinstone, G. Klein, D. Cock, and M. M. T. Chakravarty,
“Running the manual: An approach to high-assurance microkernel devel-
opment,” in Proceedings of the 2006 ACM SIGPLAN workshop on Haskell,
ser. Haskell '06, New York, NY, USA: Association for Computing Machin-
ery, 2006-09, pp. 60-71, 1SBN: 978-1-59593-489-5. DOI: 10.1145/1159842.
1159850. Accessed: 2025-06-02. [Online]. Available: https://dl.acm.org/
doi/10.1145/1159842.1159850

M. Paturel, I. Subasinghe, and G. Heiser, “First steps in verifying the seL4
Core Platform,” in Proceedings of the 14th ACM SIGOPS Asia-Pacific Work-
shop on Systems, ser. APSys ’23, New York, NY, USA: Association for Com-
puting Machinery, 2023-08, pp. 9-15, 1SBN: 979-8-4007-0305-8. DOI: 10 .
1145/3609510.3609821. Accessed: 2025-06-02. [Online]. Available: https:
//dl.acm.org/doi/10.1145/3609510.3609821.

jwmsft, SendMessage function (winuser.h) - Win32 apps, en-us. Accessed:
2025-09-26. [Online]. Available: https://learn.microsoft.com/en-us/
windows/win32/api/winuser/nf-winuser-sendmessage.

Pipe(2) - Linux manual page. Accessed: 2025-09-26. [Online]. Available: ht
tps://www.man7.org/linux/man-pages/man2/pipe.2.html.

Signal(7) - Linux manual page. Accessed: 2025-09-26. [Online]. Available:
https://www.man7.org/linux/man-pages/man7/signal.7.html.

A. Silberschatz, P. B. Galvin, and G. Gagne, “Operating System Concepts,’

B. Gamsa, O. Krieger, and M. Stumm, “Optimizing IPC Performance for
Shared-Memory Multiprocessors,” in 1994 International Conference on Par-
allel Processing Vol. 1, vol. 1, 1994-08, pp. 208-211. DOI: 10.1109/ICPP.1994.
144. Accessed: 2025-05-16. [Online]. Available: https://ieeexplore.ieee.
org/abstract/document/4115718.

Intel® 64 and IA-32 Architectures Software Developers Manual, Volume 3 (3A,
3B, 3C & 3D): System Programming Guide, en, 2025-03. [Online]. Available:
https://cdrdv2.intel.com/v1/dl/getContent/671447.

P. Mejia-Alvarez, L. E. Leyva-del-Foyo, and A. Diaz-Ramirez, Interrupt Han-
dling Schemes in Operating Systems (SpringerBriefs in Computer Science),
en. Cham: Springer International Publishing, 2018, 1SBN: 978-3-319-94492-
0 978-3-319-94493-7. Accessed: 2025-06-11. [Online]. Available: http: //
link.springer.com/10.1007/978-3-319-94493-7.

Archive repository - intel/uintr-linux-kernel@0ee776b. Accessed: 2025-06-
04. [Online]. Available: https://github.com/intel/uintr-linux-kernel/
commit/@ee776bd38532358159013ed0188693b34c46cf5.

https://doi.org/10.1145/1159842.1159850
https://doi.org/10.1145/1159842.1159850
https://dl.acm.org/doi/10.1145/1159842.1159850
https://dl.acm.org/doi/10.1145/1159842.1159850
https://doi.org/10.1145/3609510.3609821
https://doi.org/10.1145/3609510.3609821
https://dl.acm.org/doi/10.1145/3609510.3609821
https://dl.acm.org/doi/10.1145/3609510.3609821
https://learn.microsoft.com/en-us/windows/win32/api/winuser/nf-winuser-sendmessage
https://learn.microsoft.com/en-us/windows/win32/api/winuser/nf-winuser-sendmessage
https://www.man7.org/linux/man-pages/man2/pipe.2.html
https://www.man7.org/linux/man-pages/man2/pipe.2.html
https://www.man7.org/linux/man-pages/man7/signal.7.html
https://doi.org/10.1109/ICPP.1994.144
https://doi.org/10.1109/ICPP.1994.144
https://ieeexplore.ieee.org/abstract/document/4115718
https://ieeexplore.ieee.org/abstract/document/4115718
https://cdrdv2.intel.com/v1/dl/getContent/671447
http://link.springer.com/10.1007/978-3-319-94493-7
http://link.springer.com/10.1007/978-3-319-94493-7
https://github.com/intel/uintr-linux-kernel/commit/0ee776bd38532358159013ed0188693b34c46cf5
https://github.com/intel/uintr-linux-kernel/commit/0ee776bd38532358159013ed0188693b34c46cf5

84

(28]

[38]

BIBLIOGRAPHY

The Userspace I/O HOWTO — The Linux Kernel documentation. Accessed:
2025-06-14. [Online]. Available: https: / /www . kernel . org/ doc / html /
latest/driver-api/uio-howto.html.

L. Torvalds, Linux Kernel, 2025. Accessed: 2025-09-28. [Online]. Available:
https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.
git/tree/?h=v6.14&id=38fec10eb60d687e30c8c6b5420d86e8149f7557.

M. Parker, “A case for user-level interrupts,” SIGARCH Comput. Archit.
News, vol. 30, no. 3, pp. 17-18, 2002-06, 1SsN: 0163-5964. DOI: 10 . 1145/
571666 . 571675. Accessed: 2025-05-26. [Online]. Available: https: //dl.
acm.org/doi/10.1145/571666.571675.

K. Asanovi¢, Presentation on Risc-V Interrupts, 2016-07.

Remove N extension chapter for now - riscv/riscv-isa-manual@bécade0, en.
Accessed: 2025-06-02. [Online]. Available: https: //github.com/riscv/
riscv-isa-manual/commit/b6cade@7034d39e65134a879a5c3369d50e0dfde.

S. Pinto and C. Garlati, “A Must for Securing Embedded Systems,” en,

Intel® Architecture Instruction Set Extensions and Future Features, 2025-03.
[Online]. Available: https://cdrdv2.intel.com/v1/d1/getContent/671368.

[RFC PATCH 00/13] x86 User Interrupts support. Accessed: 2025-05-26. [On-
line]. Available: https://lore.kernel.org/1kml/20210913200132.3396598-
1-sohil.mehta@intel.com/T/#m@a43e921aele8eb6aal1b8a51380ef2ff3a87fb
4a.

Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 1:
Basic Architecture, en, 2025-06. [Online]. Available: https://cdrdv2.intel.
com/v1/dl/getContent/671436.

HJ. Lu, Michael Matz, Milind Girkar, Jan Hubicka, Andreas Jaeger, and
Mark Mitchell, System V Application Binary Interface AMD64 Architecture
Processor Supplement (With LP64 and ILP32 Programming Models), 2025-
12. Accessed: 2025-10-01. [Online]. Available: https://gitlab.com/x86-
pSABIs/x86-64-ABI.

Y. Jia, K. Tian, Y. You, Y. Chen, and K. Chen, “Skyloft: A General High-
Efficient Scheduling Framework in User Space,” in Proceedings of the ACM
SIGOPS 30th Symposium on Operating Systems Principles, ser. SOSP ’24,
New York, NY, USA: Association for Computing Machinery, 2024-11, pp. 265—
279, 1SBN: 979-8-4007-1251-7. DOI: 10 . 1145/3694715 . 3695973. Accessed:
2025-04-27. [Online]. Available: https: //dl . acm. org/doi/10. 1145/
3694715.3695973.

https://www.kernel.org/doc/html/latest/driver-api/uio-howto.html
https://www.kernel.org/doc/html/latest/driver-api/uio-howto.html
https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/tree/?h=v6.14&id=38fec10eb60d687e30c8c6b5420d86e8149f7557
https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/tree/?h=v6.14&id=38fec10eb60d687e30c8c6b5420d86e8149f7557
https://doi.org/10.1145/571666.571675
https://doi.org/10.1145/571666.571675
https://dl.acm.org/doi/10.1145/571666.571675
https://dl.acm.org/doi/10.1145/571666.571675
https://github.com/riscv/riscv-isa-manual/commit/b6cade07034d39e65134a879a5c3369d50e0df0e
https://github.com/riscv/riscv-isa-manual/commit/b6cade07034d39e65134a879a5c3369d50e0df0e
https://cdrdv2.intel.com/v1/dl/getContent/671368
https://lore.kernel.org/lkml/20210913200132.3396598-1-sohil.mehta@intel.com/T/#m0a43e921ae1e8e6aa11b8a51380ef2ff3a87fb4a
https://lore.kernel.org/lkml/20210913200132.3396598-1-sohil.mehta@intel.com/T/#m0a43e921ae1e8e6aa11b8a51380ef2ff3a87fb4a
https://lore.kernel.org/lkml/20210913200132.3396598-1-sohil.mehta@intel.com/T/#m0a43e921ae1e8e6aa11b8a51380ef2ff3a87fb4a
https://cdrdv2.intel.com/v1/dl/getContent/671436
https://cdrdv2.intel.com/v1/dl/getContent/671436
https://gitlab.com/x86-psABIs/x86-64-ABI
https://gitlab.com/x86-psABIs/x86-64-ABI
https://doi.org/10.1145/3694715.3695973
https://dl.acm.org/doi/10.1145/3694715.3695973
https://dl.acm.org/doi/10.1145/3694715.3695973

BIBLIOGRAPHY 85

[39]

[46]

[47]

C. A. Thekkath and H. M. Levy, “Hardware and software support for effi-
cient exception handling,” SIGOPS Oper. Syst. Rev., vol. 28, no. 5, pp. 110-
119, 1994-11, 1sSN: 0163-5980. DOI: 10 . 1145/ 381792 . 195515. Accessed:
2025-05-26. [Online]. Available: https://dl . acm.org/doi/10. 1145/
381792.195515.

Re: [RFC PATCH 00/13] x86 User Interrupts support - Chrisma Pakha. Ac-
cessed: 2025-05-18. [Online]. Available: https://lore.kernel.org/all/
3d8d8dd7-deb4-f5c4-c7c5-e1d5972c71f4@andrew.cmu.edu/.

MONITOR and UMONITOR Performance Guidance, en. Accessed: 2025-09-
28. [Online]. Available: https: //www. intel . com/content /www/us/en/
developer/articles/technical/software-security-guidance/technical-
documentation/monitor-umonitor-performance-guidance.html.

seL4 Reference Manual Version 13.0.0. Accessed: 2025-07-13. [Online]. Avail-
able: http://sel4.systems/Info/Docs/selL4-manual-13.0.90.pdf.

IPC | seL4 docs. Accessed: 2025-10-09. [Online]. Available: https://docs.
sel4.systems/Tutorials/ipc.html.

C. Goedefroit, “Interruptions en espace utilisateur pour le réseau BXI, fr,
other, Université de bordeaux, 2023-08. Accessed: 2025-05-03. [Online].
Available: https://inria.hal.science/hal-04693787.

F.Rauscher and D. Gruss, “Cross-Core Interrupt Detection: Exploiting User
and Virtualized IPIs,” in Proceedings of the 2024 on ACM SIGSAC Conference
on Computer and Communications Security, ser. CCS ’24, New York, NY,
USA: Association for Computing Machinery, 2024-12, pp. 94-108, I1SBN:
979-8-4007-0636-3. DOI: 10.1145/3658644.3690242. Accessed: 2025-04-27.
[Online]. Available: https://dl.acm.org/doi/10.1145/3658644.3690242.

C. Zhang et al., “Erebor: A Drop-In Sandbox Solution for Private Data Pro-
cessing in Untrusted Confidential Virtual Machines,” in Proceedings of the
Twentieth European Conference on Computer Systems, ser. EuroSys "25, New
York, NY, USA: Association for Computing Machinery, 2025-03, pp. 1210-
1228, 1SBN: 979-8-4007-1196-1. DOI: 10.1145/3689031.3717464. Accessed:
2025-05-21. [Online]. Available: https: //dl . acm.org/doi/10. 1145/
3689031.3717464.

B. Aydogmus et al., “Extended User Interrupts (xUI): Fast and Flexible No-
tification without Polling,” en, in Proceedings of the 30th ACM International
Conference on Architectural Support for Programming Languages and Oper-
ating Systems, Volume 2, Rotterdam Netherlands: ACM, 2025-03, pp. 373—
389, 1SBN: 979-8-4007-1079-7. DOI: 10 . 1145/3676641 . 3716028. Accessed:

https://doi.org/10.1145/381792.195515
https://dl.acm.org/doi/10.1145/381792.195515
https://dl.acm.org/doi/10.1145/381792.195515
https://lore.kernel.org/all/3d8d8dd7-deb4-f5c4-c7c5-e1d5972c71f4@andrew.cmu.edu/
https://lore.kernel.org/all/3d8d8dd7-deb4-f5c4-c7c5-e1d5972c71f4@andrew.cmu.edu/
https://www.intel.com/content/www/us/en/developer/articles/technical/software-security-guidance/technical-documentation/monitor-umonitor-performance-guidance.html
https://www.intel.com/content/www/us/en/developer/articles/technical/software-security-guidance/technical-documentation/monitor-umonitor-performance-guidance.html
https://www.intel.com/content/www/us/en/developer/articles/technical/software-security-guidance/technical-documentation/monitor-umonitor-performance-guidance.html
http://sel4.systems/Info/Docs/seL4-manual-13.0.0.pdf
https://docs.sel4.systems/Tutorials/ipc.html
https://docs.sel4.systems/Tutorials/ipc.html
https://inria.hal.science/hal-04693787
https://doi.org/10.1145/3658644.3690242
https://dl.acm.org/doi/10.1145/3658644.3690242
https://doi.org/10.1145/3689031.3717464
https://dl.acm.org/doi/10.1145/3689031.3717464
https://dl.acm.org/doi/10.1145/3689031.3717464
https://doi.org/10.1145/3676641.3716028

86

[48]

[51]

BIBLIOGRAPHY

2025-04-27. [Online]. Available: https://dl.acm.org/doi/10.1145/
3676641.3716028.

Y. Kone, L. Duval, R. Lachaize, P. Felber, D. Hagimont, and A. Tchana, “Un-
derstanding Intel User Interrupts,” Proc. ACM Meas. Anal. Comput. Syst.,
vol. 9, no. 2, 40:1-40:32, 2025-06. DOI: 10.1145/3727132. Accessed: 2025-
06-04. [Online]. Available: https://dl.acm.org/doi/10.1145/3727132.

Y. Lietal., “LibPreemptible: Enabling Fast, Adaptive, and Hardware-Assisted
User-Space Scheduling,” en, in 2024 IEEE International Symposium on High-
Performance Computer Architecture (HPCA), Edinburgh, United Kingdom:
IEEE, 2024-03, pp. 922-936, 1SBN: 979-8-3503-9313-2. DOI: 10. 1109 /HPCA
57654 . 2024 . 00075. Accessed: 2025-04-27. [Online]. Available: https: //
ieeexplore.ieee.org/document/10476424/.

K.Kaffes, T. Chong, J. T. Humphries, A. Belay, D. Mazieres, and C. Kozyrakis,
“Shinjuku: Preemptive Scheduling for {;isecond-scale} Tail Latency,” in 16th
USENIX Symposium on Networked Systems Design and Implementation (NSDI
19), 2019, pp. 345-360, 1SBN: 978-1-931971-49-2. Accessed: 2025-06-10.

J. Fried et al., “Making Kernel Bypass Practical for the Cloud with Junc-
tion,” en, 2024, pp. 55-73, 1SBN: 978-1-939133-39-7. Accessed: 2025-04-27.
[Online]. Available: https://www.usenix.org/conference/nsdi24/present
ation/fried.

Re: [RFC PATCH 00/13] x86 User Interrupts support - Sohil Mehta. Accessed:
2025-06-04. [Online]. Available: https://lore.kernel.org/1lkml/7c1038de
-Qbae-3b87-d4e4-8a30a910ebdd@intel . com/.

J. Lin, Y. Chen, S. Gao, and Y. Lu, “Fast Core Scheduling with Userspace
Process Abstraction,” in Proceedings of the ACM SIGOPS 30th Symposium
on Operating Systems Principles, ser. SOSP ’24, New York, NY, USA: Asso-
ciation for Computing Machinery, 2024-11, pp. 280-295, 1SBN: 979-8-4007-
1251-7. DOI: 10 . 1145/ 3694715 . 3695976. Accessed: 2025-05-02. [Online].
Available: https://dl.acm.org/doi/10.1145/3694715.3695976.

L. Guo, D. Zuberi, T. Garfinkel, and A. Ousterhout, “The Benefits and Limi-
tations of User Interrupts for Preemptive Userspace Scheduling,” en, 2025-
04, pp. 1015-1032, 1sBN: 978-1-939133-46-5. Accessed: 2025-04-27. [On-
line]. Available: https: //www. usenix . org/conference/nsdi25/present
ation/guo.

K.Huang,J. Zhou, Z. Zhao, D. Xie, and T. Wang, “Low-Latency Transaction
Scheduling via Userspace Interrupts: Why Wait or Yield When You Can
Preempt?” en, vol. 3, no. 3, 2025-06.

https://dl.acm.org/doi/10.1145/3676641.3716028
https://dl.acm.org/doi/10.1145/3676641.3716028
https://doi.org/10.1145/3727132
https://dl.acm.org/doi/10.1145/3727132
https://doi.org/10.1109/HPCA57654.2024.00075
https://doi.org/10.1109/HPCA57654.2024.00075
https://ieeexplore.ieee.org/document/10476424/
https://ieeexplore.ieee.org/document/10476424/
https://www.usenix.org/conference/nsdi24/presentation/fried
https://www.usenix.org/conference/nsdi24/presentation/fried
https://lore.kernel.org/lkml/7c1038de-0bae-3b87-d4e4-8a30a910ebdd@intel.com/
https://lore.kernel.org/lkml/7c1038de-0bae-3b87-d4e4-8a30a910ebdd@intel.com/
https://doi.org/10.1145/3694715.3695976
https://dl.acm.org/doi/10.1145/3694715.3695976
https://www.usenix.org/conference/nsdi25/presentation/guo
https://www.usenix.org/conference/nsdi25/presentation/guo

BIBLIOGRAPHY 87

[56]

E. Li et al., “SPDK+: Low Latency or High Power Efficiency? We Take
Both,” in Proceedings of the 17th ACM Workshop on Hot Topics in Storage
and File Systems, ser. HotStorage ’25, New York, NY, USA: Association
for Computing Machinery, 2025-07, pp. 17-23, 1SBN: 979-8-4007-1947-9.
DOI: 10.1145/3736548.3737824. Accessed: 2025-07-10. [Online]. Available:
https://doi.org/10.1145/3736548.3737824.

C. Goedefroit, A. Denis, M. Barbe, B. Goglin, and G. Pichon, “Communica-
tion Notification through User-Level Interrupts for the BXI Network,” en,
2025-09. Accessed: 2025-09-18. [Online]. Available: https://inria.hal.
science/hal-05150209.

C. Li et al,, “Aeolia: A Fast and Secure Userspace Interrupt-Based Stor-
age Stack,” in Proceedings of the ACM SIGOPS 31st Symposium on Oper-
ating Systems Principles, ser. SOSP ’25, New York, NY, USA: Association
for Computing Machinery, 2025-10, pp. 479-495, 1sBN: 979-8-4007-1870-0.
DOI: 10.1145/3731569.3764816. Accessed: 2025-10-13. [Online]. Available:
https://doi.org/10.1145/3731569.3764816

Z. Mi, D. Li, Z. Yang, X. Wang, and H. Chen, “SkyBridge: Fast and Se-
cure Inter-Process Communication for Microkernels,” in Proceedings of the
Fourteenth EuroSys Conference 2019, Dresden Germany: ACM, 2019-03-25,
pp- 1-15, 1SBN: 978-1-4503-6281-8. DOI: 10 . 1145/ 3302424 . 3303946. Ac-
cessed: 2025-05-14. [Online]. Available: https://dl.acm. org/doi/10.
1145/3302424.3303946.

S. Smith et al.,, “Draft: Have you checked your IPC performance lately?”
en,

C. Liu, L. Luo, M. Li, P. Lei, L. Chen, and K. Xiao, “Inter-Core Commu-
nication Mechanisms for Microkernel Operating System based on Signal
Transmission and Shared Memory,” in 2021 7th International Symposium
on System and Software Reliability (ISSSR), 2021-09, pp. 188-197. DOI: 10.
1109/ISSSR53171.2021.00031. Accessed: 2025-05-02. [Online]. Available:
https://ieeexplore.ieee.org/abstract/document/9626422.

Intel/uintr-linux-kernel, 2025-09. Accessed: 2025-10-08. [Online]. Available:
https://github.com/intel/uintr-1linux-kernel.

[v8,1/7] KVM: CPUID: Fix IA32_xss support in CPUID(0xd,i) enumeration -
Patchwork. Accessed: 2025-10-09. [Online]. Available: https://patchwork.
kernel.org/project/kvm/patch/20191101085222.27997-2-weijiang.yang@
intel.com/.

seL4Test | seL4 docs. Accessed: 2025-10-07. [Online]. Available: https: //
docs.sel4.systems/projects/seldtest/.

https://doi.org/10.1145/3736548.3737824
https://doi.org/10.1145/3736548.3737824
https://inria.hal.science/hal-05150209
https://inria.hal.science/hal-05150209
https://doi.org/10.1145/3731569.3764816
https://doi.org/10.1145/3731569.3764816
https://doi.org/10.1145/3302424.3303946
https://dl.acm.org/doi/10.1145/3302424.3303946
https://dl.acm.org/doi/10.1145/3302424.3303946
https://doi.org/10.1109/ISSSR53171.2021.00031
https://doi.org/10.1109/ISSSR53171.2021.00031
https://ieeexplore.ieee.org/abstract/document/9626422
https://github.com/intel/uintr-linux-kernel
https://patchwork.kernel.org/project/kvm/patch/20191101085222.27997-2-weijiang.yang@intel.com/
https://patchwork.kernel.org/project/kvm/patch/20191101085222.27997-2-weijiang.yang@intel.com/
https://patchwork.kernel.org/project/kvm/patch/20191101085222.27997-2-weijiang.yang@intel.com/
https://docs.sel4.systems/projects/sel4test/
https://docs.sel4.systems/projects/sel4test/

88
[65]

[66]

BIBLIOGRAPHY

The seL4 Bitfield Generator | seL4 docs. Accessed: 2025-10-07. [Online]. Avail-
able: https://docs.sel4.systems/projects/sel4/bfgen.html.

Running Average Power Limit Energy Reporting CVE-2020-8694,... Accessed:
2025-10-11. [Online]. Available: https://www. intel. com/content /www/
us/en/developer/articles/technical / software - security-guidance/
advisory-guidance/running-average-power-1limit-energy-reporting.
html.

Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 4:
Model-Specific Registers, en, 2025-06. [Online]. Available: https://cdrdv2.
intel.com/v1/dl/getContent/671098.

seL4, Sel4 rfc-18: Fpu context switching, en. Accessed: 2025-09-27. [Online].
Available: https://github.com/selL4/rfcs/blob/746b98b282c280545cf85d
3efae98aab1155e7cf/src/implemented/0180-fpu-switching.md.

https://docs.sel4.systems/projects/sel4/bfgen.html
https://www.intel.com/content/www/us/en/developer/articles/technical/software-security-guidance/advisory-guidance/running-average-power-limit-energy-reporting.html
https://www.intel.com/content/www/us/en/developer/articles/technical/software-security-guidance/advisory-guidance/running-average-power-limit-energy-reporting.html
https://www.intel.com/content/www/us/en/developer/articles/technical/software-security-guidance/advisory-guidance/running-average-power-limit-energy-reporting.html
https://www.intel.com/content/www/us/en/developer/articles/technical/software-security-guidance/advisory-guidance/running-average-power-limit-energy-reporting.html
https://cdrdv2.intel.com/v1/dl/getContent/671098
https://cdrdv2.intel.com/v1/dl/getContent/671098
https://github.com/seL4/rfcs/blob/746b98b282c280545cf85d3efae98aab1155e7cf/src/implemented/0180-fpu-switching.md
https://github.com/seL4/rfcs/blob/746b98b282c280545cf85d3efae98aab1155e7cf/src/implemented/0180-fpu-switching.md

Appendix A

Discussed Data

89

90

Cumulative Probal
NWWwa AT

+4 — Cores 2-3
1 — Cores 2-4
1 — Cores 2-10
T — Cores 2-11
] — Cores 2-23

ErEN]
womowomohom

0 T T T T T T T T
1325 1350 1375 1400 1425 1450 1475 1500 1525 1550

TSC Units

(a) Results for UINTR

PUUVOONN®OOO
Gouvwouwouowmouw

S 35

mulative Probability (%)

APPENDIX A. DISCUSSED DATA

Cores 2-3
Cores 2-4
Cores 2-10
Cores 2-11
Cores 2-23

f T T T T
3600 3800 4000 4200 4400
TSC Units

b) Results for OSSeUINTR

—— Cores 2-3
—— Cores 2-4
851 —— Cores 2-10
—— Cores 2-11
—— Cores 2-23

2 70
265
%6(%
.gSS‘
£ 50
245
§40<
S 35
E 304
025<
20 4
15 4
10 4
5
0 f 7 T T

T

T
360 380 400

440

TSC Units

460 480 500

(c) Results for Frame

Figure A.1: Cumulative distributions for OWD under varying affinities for UIN-

TRNotif-based ulcom and Frame-based ulcom

91

14000 1 —— POLL, 99.95% visible 3000 | —— POLL, 99.85% visible
TPAUSE, 99.83% visible TPAUSE, 99.56% visible
12000 | —— YIELD, 98.56% visible —— YIELD, 97.07% visible
2500
10000 { ‘
g T 2000 A
€ 8000 e
I >
5] £ 1500 A
S 6000 g
g g \
& |
4000 1000 ' \
2000 1 ‘\ 500 1 “ j;f‘
i e |\ Ny
0 AN 0! IIAN S S N
1500 2000 2500 3000 3500 4000 4500 5000 5500 6000
TSC Units TSC Units
(a) Results for UINTR (b) Results for OSSeUINTR
14000 1 —— POLL, 99.97% visible
TPAUSE, 99.95% visible
12000 4 —— YIELD, 97.13% visible
10000 +
z
£ 80001
IS
2
g
$ 6000 u
=
g
=
4000 + L
A

2000 1 ‘m /‘ {
ol I ‘\—ﬁ \Vw_,

400 600 800 1000 1200 1400 1600
TSC Units

(c) Results for Frame

Figure A.2: Histograms for OWD under varying wait-types for UINTRNotif-
based ulcom and Frame-based ulcom

92 APPENDIX A. DISCUSSED DATA

560 A
N « POLL, 99.80% visible
1900 “. - 540 4
1800 T R IR A e e e .
500 A
2 E : 0
5 1700 - POLL, 99.80% visible ‘é 480
g - TPAUSE, 99.60% visible 8
F 1600 v
1500 4%
1400 A
0 17000 34000 Slooolte?:t?g: 85000 102000 119000 0 17000 34000 51000 68000 85000 102000 119000
Iteration

(a) Results for UINTR (b) Results for Frame

Figure A.3: Scatter plot for UINTR and Frame-based ulcom that shows the step-
ping warm-up behavior. Filtered to results within shown region, with only every

17th result shown to decrease plot complexity

93

ulcom_Recv (Yield)
UINTR enabled
ulcom_Recv (Yield)
UINTR disabled

95 1 95 4
90+ 90+
851 85+
80 80

= 751 = 751
£ 70 £ 704
265+ 265+
% 60 % 60
2 551 2 551
& 504 & 50
g 45 A .g 45 4
& 407 ulcom_Recv & 407
S 354 UINTR enabled g 354
301 ulcom_Recv 5 30

© 254 UINTR disabled © 254
20+ ulcom_RecvNB 20+
154 UINTR enabled 154
104 ulcom_RecvNB 104
5 UINTR disabled 5

T T T T 0 T T
2000 4000 6000 8000 10000 12000 14000 16000 400 600
TSC Units

(a) Overhead for Endpoint

T
800

95 4
90

)
~
&

40 4 ulcom_Recv
354 7 UINTR enabled

5 304 ulcom_Recv
O 254 UINTR disabled
201 ulcom_RecvNB

15 UINTR enabled
101 ulcom_RecvNB

54 UINTR disabled

mulative Probability (%.
w
vl

I
2000 4000 6000 8000 10000 12000 14000
TSC Units

(c) Overhead for Notification

16000

T T
1000 1200
TSC Units

T
1400

(b) Overhead for Frame

T
1600

Figure A.4: OWD overhead for every non-UINTR-based ulcom variant that relies
on kernel entry. Other variants are unaffected and therefore not shown

94 APPENDIX A. DISCUSSED DATA

95 —T 95 1
90 Kf 4 90 1
85 85
80 80 1
= 75 5751
£ 70+ £ 704
265 2651
S 60 f 3 60 4 —— Endpoint w/ UINTR disabled
§ 55 8 55 Notification w/ UINTR disabled
£ 50 a_c-’ 50 4 —— Frame
g 451 @ 451 — UINTR
£ 40 1 ’__/ £ 404 —— 0SSeUINTR
S 35 S 35
£ 304 E 301
3 254 Endpoint w/ UINTR disabled 3
201 Notification w/ UINTR disabled ﬁg 1
154 Frame w/ Poll 154
104 UINTR w/ Poll o]
54 0SSeUINTR w/ Poll 54
0 T T T T T T T 0
0 2000 4000 6000 8000 10000 12000 14000 16000 0 1000 2000 3000 4000 5000 6000 7000 8000
TSC Units TSC Units
(a) Cumulative distribution for uIcom_- (b) Cumulative distribution for uIcom_-
Recv RecvNB
1e9 le8
—— Endpoint w/ UINTR disabled e —— Endpoint w/ UINTR disabled /
1.24 Notification w/ UINTR disabled A~ 54 Notification w/ UINTR disabled
—— Frame w/ Poll — Frame
—— UINTR w/ Poll . —— UINTR
109 0sSeUINTR w/ Poll it 4] — osseunTr
/,/'
CER —
g ju)
H £ 34
2061 o
:
5]
0.4
0.2 11
0.0
T T T T T T T 01
° 20000 40000 etl)t(l(:gtionaoooo 100000 120000 0 20000 40000 60000 80000 100000 120000

Iteration

(c) Cumulative sum for ulcom_Recv (d) Cumulative sum for uIcom_RecvNB

951
90 1
85 1
80 1
754
701
65 1
60
551
50 1
45 A
40 A
351
301
251
201
15 4 —— UINTR
10 4 Notification (poll)
5 (disabled UINTR)

Cumulative Probability (%)

T T T T T T T
1200 1400 1600 1800 2000 2200 2400
TSC Units

(e) Detailed view of the cumulative dis-
tribution for UINTR and Notification for
uIcom_RecvNB

Figure A.5: The best cases for every capability ulcom can be configured with for
both uIcom_RecvNB and uIcom_Recv

Cumulative Probability (%)

95+
90+
851
80+
754
70
65
60
551
50 1
45+
40+
354
30+
254
201

154

104
5
0 L

Frame-Frame
UINTR-Frame
UINTR-(auto)-Frame
UINTR-(auto)-UINTR
UINTR-UINTR
Frame-UINTR

J

500

T T
1000 1500

T
2000
TSC Units

T
2500

(a) Cumulative distribution

T
3000

Frequency (Total)

95

8000
6000 4 — |
Frame-Frame, 99.96% visible
UINTR-Frame, 99.80% visible ‘
UINTR-(auto)-Frame, 99.77% visible ‘
4000 4 UINTR-(auto)-UINTR, 99.55% visible ‘
UINTR-UINTR, 99.61% visible ‘
Frame-UINTR, 99.79% visible ‘
| |
2000 4 ‘ ‘
ol M Wb
500 1000 1500 2000 2500 3000

TSC Units

(b) Histogram

Figure A.6: Views of the fastest RTTs of the “Roundtrip” benchmark

APPENDIX A. DISCUSSED DATA

96

0.0020 1
.0015
0010 1
.0005

0.0000 -

S S S
(1un 2SL+s9IN0fM) DSLY+(INVHA) SUOD JaMOdY

=)

ANAISY Swely
(asned1) A9y sweld
A3y UOIIDYIION

FNAI9Y UONEILION
(PISIA) Ad2Y aulely

1T 910D A3y Swelq
(9sned1) Ad2Y YLININDSSO
(llod) A39Y YININSSSO

GNA33Y jutodpug
(PI2IA) A22Y YLNINBSSO

£ 8103 A3y YININSSO
T# dnp gNA3Y YININSSSO
d) A29Y YININ

914) A23Y YININ

T# dnp gNA23Y YLNIN
(9snedL) Aday YININ

£ 2107 AD9Y BWely

Z# dnp gNA23Y HININ

0T 310 A3 HININ3SSO
Aday julodpul

Z# dnp gNAI3Y HININ3SSO
€T 310) A23Y HININ

1T 310 Ad3Y YININISSO
ANAI9Y YININ

€7 210D Ad3Y swely

TT 340D A23Y YININ

€ 940D AJ3Y HIN|

(llod) Aoy awely
T# dnp gNAd9Y dwely

(PIIA) AD3Y YLININ

33y U01IeIYION

(PI2IA) AJ9Y YININISSO
€ 210) AJ3Y YLNINISSO
GNA23Y YININ3SSO

€2 310D A9y WININSSSO
AJ3y julodpul

z# dnp gNAISY WININ
(PIBIA) AJ3Y dwie]

€ 910D A29Y WININ

T# dnp GNA23Y YININ3SSO

=3 =) o =)
(3uN DS1+s3InofM) DS1V+(WVYA) SUOD JaMOdY

0T 240D AJ9Y swely

z# dnp gNAYY YININASSO
T# dnp gNAdY YININ

€ 940D AD3Y dwelq

(@sned]) AJay awelq
gNADSY awely

Z# dnp gNAD9y awely
T1I 340D A3Y WININ
QT @40 A3Y WININ
(l10d) o9y awely

TT 940D AJ9Y dweld

(b) SE2eer (DraM)

() S& (PKo)

le6

le7

w9 w9

o ~ -

o N
(sa|nofrl) uondwnsuo) 1amod |e30L

<
—

gNAJY julodpug

GNAISY UONESUNON
(esned1) 59y ¥ININASSO

€ 10 A29Y YININISSO
0T 240) AJ9Y YININSSSO
(llod) A9y HLININSSSO
(PIIA) A23Y WININ
(9snedy) AJ3Y YININ

€2 2107 A4 WININ

TT 210 A23Y ¥ININ

0T 240J A2y ¥LNIN
(lod) A994 HININ

€ 210 A23Y WININ
(pPI2IA) AD9y 2wely

T# dnp gNA29Y YININ
¢# dnp gNAISY YININ

gNAJSY awely
Z# dnp gNAddY awely
T# dnp gNAdRY aweld

gNAdDY Julodpug

AJ3Y UOIIRdUNON

Ad3Y julodpu3

(PIRIA) Ad9Y HLNINSSO
ANAJSY UoleILION
(3sned1) A28y YININ3SSO
GNAJRY YININSSSO

T# dnp gNAJ3Y YLNINISSO
2# dnp gNAY2Y YININSSSO
€T 910) AI3Y YININSSSO
TT 10D A3y YININSSSO

€ 9103 Nd3Y YININSSSO

€7 2100 A23Y HININ
TT 10D A3y YININ

€ 910D A33Y WININ
(llod) A29Y YININ

0T 340D A23Y YLININ
(PISIA) AI9Y Buiely

C# dnp gNA23Y YININ
T# dnp aNA23Y YLNIN
ANAISY YININ
(asnedl) AJsYy awelq
£¢ 9105 Ad9Y swely
0T 940D AJ9Y Sweiy

€ 210D Aday awely

TT 940D AJ9Y Swely
(l10d) A29Y Swiely
ANAJDY sweld

z# dnp gNAdSY Bwely
T# dnp gNAJay swely

wn < m
(saynofrl) uondwnsuo) Jai

~
MOd |ejoL

-

(d) Total Power Consumption (DRAM)

(c) Total Power Consumption (PKG)

RAPL data for all the “Signal” benchmarks. Bars are color-coded to

group different IPC pathways together

Figure A.7

97

2.5

N

~
OS1V=+s

n o
- -
UoI31dNIISU| palllayvy

\n
S

0.0

T

T

T

2.5

N

N
OS1V=+s

) o
— -
U0112NIISU| PRINRYY

n
=)

0.0 -—=H§

€ 210D AJ3Y dwely
(l10d) Ad9Y Bwely

0T 310D A3y dwelq
1T 210D AJ9Y dweld
£2 210D Ad3Y Bwiely
Z# dnp gNAdey swely
ANADSY dwely

T# dnp gNAdaY awely
(PIRIA) Ay Bweld
GNAI3Y UOIREILIION

gNAJ9Y julodpug

(b) UINTR disabled

A29Y Julodpug
A29Y UONEdINON

(3sned]) Aday awely

€ 940D AJ3Y swely
(l10d) AdaY dwely
€7 210D AdY duiely
0T 40D Ad3Y aweuq
TT 210D Ad9Yy swely
£ 2100 AJ3Y YWININ
(jlod) A22Y MININ
0T 210D A2y ¥ININ
1 210 AJ3Y YL
€ 9103 A>3y YININ

T# dnp aNAdRY YININ
NA2Y UININ

¢# dnp gNAJSY YININ
ANAJDY dwely

T# dnp gNAdSY swely

z# dnp gNAd9Y swely

11 10D AJ3Y YININSSO
£ 210 A2y YININSSSO

€ 310D AJ3Y YININSSSO

0T 240 AJ9Y YLNINSSSO
(llod) A524 YININ3SSO

¢# dnp gNAS3Y YININSSSO
T# dnp gNA22Y YININSSSO

NAISY UOIeDION
ANA23Y Juiodpul

(PI2IA) AJ3Y HLNIN

(PI2IA) AJ9Y HININSSSO
(asned1) Ad9Y HININSSSO
A28y julodpuy

A3y uonedyIloN
(@sned1) Aday awely
(9sned1) Ad9Y YININ

(a) UINTR enabled

1”

igna

for “S

1018

figurat

g receiver con

Instruction density for vary

Figure A.8

APPENDIX A. DISCUSSED DATA

98

 ——
o o o o o o
S ® © < «

(%) DSLV+S3124D payeyuny

%877665544332
(%) Aduanbaug annday3

T# dnp gNAJSY awely

T 940D AJ9Y dWwely

210D AJ9Y Swely

dnp gNAJRY YININ

dnp gNAIRY HININ
INAD3Y YLININ

10D A3y YLNINSSSO
9sned) AJ9Y YININ
(l1od) Aday awelq

0T 3103 A23Y YLNINISSO
PIBIA) Ad2Y YLININSSSO
INAJ3Y UOljedIIoN
NA23Y julodpul

910D A23Y WININ

T 910D AJ3Y WININ
INAS3Y YLNINSSSO
19103 AJ3Y WININ

T 910D AJ3Y WININ
DPISIA) AJ9Y Dwely
gNAJSY dweld

9sned) Ad3Y YININSSSO
110d) A9 YLININSSSO
PI3IA) A23Y YWLNIN

T 910D AJ9Y swield

dnp gNAJSY awiely

dnp gNAJRY YLININISSO
dnp gNAJRY YININISSO
Z 910D AJ3Y YLININSSSO
110d) A2 YININ

1T 210D A23Y YLININISSO

(@sned]) Aday awelq
AJ9Y UGHEOLION
Ad3Y julodpul

T# dnp gNAdDY swely
0T 940D AJ9Y sweld

€ 910D AJ9Y duiely

T# dnp GNAJRY WININ
2# dnp gNAdaY HININ

ANAJSY Swiely
T# dnp gNAISY YININISSO
€2 210D NJ3Y ¥ININ3SSO

TT 240D Ad3Y swielq
2# dnp gNAJDY HININDSSO
£7 910D AD3Y dweld
(9snedl) Adsy swely

A3y UoledyoN

A2y julodpul

OMNMOMONOWONOINOIN OO
N

(b) Ratio of Unhalted Cycles to Reference

Cycles

(a) Effective Frequency

Effective frequency and ratio of unhalted to reference cycles for the

Receiver in the “Signal” benchmark

Figure A.9

99

(9sned1) AI3Y YININ
(11od) A534 YININ

€ 210D A3y WININ
0T 210D AJ9Y ¥LININ

gNAJ3Y Julodpu3
GNAJ3Y awelq

T# dnp gNADSY swely
Z# dnp gNAdaY sweld
(PISIA) AD9Y Bwiely

(3sned1) A9y HININISSO
ENAIRY YLININISSO

T# dnp GNAI3Y YININISSO
z# dnp gNAISY HININISSO
(PIRIA) A99Y HININSSSO
(/10d) A23Y ¥ININSSSO

0T 9103 A3y YININ
T 2103 AJ3Y WININ
£ 910D A3 YININ
GNAORY YININ

ENAJRY UOREILRON
ANAD3Y Julodpu3
(]1od) A9y swely
0T 210D Ad9Y dwielq
€ 910D AJ3Y dweld

1ver

(b) Rece

(a) Sender

View of the workload scalability (3ot) for every benchmark run

Figure A.10

100 APPENDIX A. DISCUSSED DATA

Appendix B

Further Data

101

APPENDIX B. FURTHER DATA

dweld-dININ
WLNIN-YLNIN3SSO
SWeld-yININSSSO
YININ-(0INe)-HININ
YLNIN3SSO-dweld
Y.LNIN3SSO-Uolesl130N
auweld-(0Ine)-Y1NINSSSO
YLNIN-YLNIN

WLNIN- AE:E dLNINSSSO

3luel4-UoIIeoyoN
aweld-(0Ine)-YININ

U0IREOLRON-HLININ
juiodpu3-uonediinoN

uonedloN-julodpuz
swiel4-juiodpuz

uonEdLON-BWEely
Y1ININ-YLININ3SSO
SWeld-yININSSSO
YININ-(0INe)-HININ
Y1ININ3SSO-awely

E:E dLNIN3SSO

1JON-HLININSSSO
JION-(0INe)-YININ
(01n€)-YININ3SSO

0Ine)-d1ININ
NINSSSO-YLNIN

UOI3eI 130N Aou:mv YLININ3SSO

(%) Aouanbaig 3,

> 404

12943

EDwmmO.MB:m -41NIN3SSO

(b) “Roundtrip” Producer

»

(a) “Roundtrip” Consumer

L

°n
o<
anbai4 aA119)3

::604
$ 554

omomnomowmno
STOMNN A A

(110d) A9y swelq
ANAIDY UOREdUIION
TT 210D Ad9Y awely
A23Y UONEdYNON
(PISIA) Ad3Y Dwely

Z4# dnp g@NAdRY Bwely
T# dnp gNAd9Y swely
GNAD3Y swely

€ 240D AJ9Y dwely
(9sned|) Aday awely
0T 240D AJ3Y dweld
€2 210D A9y dwely
A2y Julodpuz

ANAD3Y Julodpul

(110d) A2y Bwiely

€2 210D Aday Swely
TT 240D Ad3Y dwely
(PIBIA) N3y Bwely
aNAd3Y Julodpuz

z# dnp gnAdayY Bwely
T# dnp gNAdaY Swely
ANADSY Bwely

€ 910D AJ9Y dwely

0T 940D A28y dwely
(9snedl) Aday awelq
@NAI3Y uoledHIION
A9y julodpul

A23Y UOIEILION

Sender (UINTR disabled)

(d) “Signal”

Receiver (UINTR disabled)

«

(c) “Signal”

MOWNMOMOWMONOWMONOINOINOINO

OO~ NOOINNEETMMANNAA
(%) Aduanbaug annday3

€ 910D A3 YININ

(3sned1) A23Y YININ

T# dnp GNAI3Y YLNINSSSO

(PI3IA) AJ9Y YLNINSSSO

ENAIRY UOHBILIION
ANASY duleld
€£¢ 9107 A3Y YLNINISSO

53

(e) “Signal” Sender

Remaining data for effective frequency

Figure B.1

103

dweld-¥1ININSSSO
swe-sweld
YLNIN3SSO-YININASSO
auwiel4-(03ne)-Y1ININ3SSO
julodpugz-awely
YLNINSSSO-awely
Jutodpu3-yININ
WYLNIN-(0INB)-YLININ3SSO

3mwm0 (0INe)-4ININSSO
MININ-SueL

=_nwEmLm
HININS5S0-3 lodpug
sleld-(0Ine)-yININ
juiodpu3- uohe:

o n P n °
I — =1 o o
o o o S S
= S S < <
] o o o]
(3un DS1+s3|nofr) DSLV+(IWvYA) SUoD Jamodv

S 1w o w o m
) o I — = o
S o o o o S

o S S

o o =]
(un 251+53In0fr) DSLV+(WVYA) SUOD JoMOdV

YLNINSSSO-UuoledlON
1uiodpu3-(03ne)-4 ININ3SSO
YLNIN-(03N)-YLININ

awelud-(0Ine)-YININ
awel4-(0Ine)-YIN|NSSSO
Y1ININ3SSO-(0INe)-YININSSSO
m._. IN-(0Ine)- m._.z_DmmmO
©O1J1J0N-!
m._.z_:mmmo Ui
ON - m._.z_DwmmO

-4 ININ

-4 1NINSSSO
-(03Ne)-YININSSSO
-(0Ine)-y1ININ
x._.z_DwmwO aulely
YLNINSSSO-YININ
Y1ININ-Swely
YLNIN3SSO-YLININISSO
awiel4-sely
uonedIyoN-dwely

-Uo1led1JIION
Ez_: u___o%__m
1N35S0-juiodpul
J-awely
ON-(01Ne)-YLNIN3SSO
uszmv.ﬁz_:
N3sso
-juiodpu3
odpu3
HLNIN35S0- (oIne)-yININ
YINI Hsse wNID

awel4-uo3ed|13oN

(b) “Roundtrip” (DRAM)

(a) “Roundtrip” (PKG)

0.0020
0.0015
= 0.0010 A
0.0005
0.0000 -

EED Uw._.lmw_:oiv OSLV+(WvYa) m_._ou 1amodv

0T 240D AJ9Y dwely
(110d) A2oy dwely
ANADY dwely

T# dnp gNAd9Y awely
A23Y Julodpug

TT 210D A2y dwely
GNAD3Y uonedlIIoN
€ 910D AJDY Bwely
AJ3Y uoledyON
(@sned) Aday awelq
gNA23Y julodpul

£2 210D NIy dwely
(PIRIA) A9y dwield

Z# dnp gnAday awely

0.030 1
0.025 1
0.020 1
= 0.015 1
0.010 1
0.005 1

O__._D Um._.lmm_:o—_.: OSLV+(INvYQ) SU0D Jamodv

A9y UONEdUIION

A9y julodpug

0T 210D Ad9Y dwely
ANAd2Y Julodpul
gNAIDY dwely

€ 210D A9y Bwely

z# dnp gNAdDY Bwely
(110d) AJ9Y Swely
(9sned) AJ9Y sweld
T# dnp gNAdDY Bwely
£ 910D A2y dweld
(PIBIA) A2y dwely

TT 940D AJ3Y dweld

0.000 -

(d) “Signal” (UINTR disabled) (DRAM)

(c) “Signal” (UINTR disabled) (PKG)

APower
ATSC

Remaining data for

Figure B.2

APPENDIX B. FURTHER DATA

104

le6

le8

juiodpu3-jutodpu3y

—_—————— Ez_: -uiodpu3

95S0-juiodpuz
-4 LNIN
-HLNIN3SSO
-(0INe)-YININ
-(0Ine)-41NINSSSO
-Uo11ed11I0N
13ed1j0N-1ulodpul
awiel4-juiodpuy
dpu3-sweiy
uonedloN-(0INe)-4ININSSSO
H1ININSSSO-UOHEILION
HININISS0-(03N8)-YININSSSO
¥ININOSSO-YLNINGSSO

e N-4LNIN3SSO
-U0I3EDLIION
-(03N€)-HININ

YININ-(03Ne)-ULNINBSSO
YININISSO-(03Ne)-4LNIN
¥ININ-UohesunoN

suiely- :o_umUc_qu
aweld-y4ININ3SSO
YLNIN3SSO-swely
YLNIN-(0INe)-HININ
YININ-YLNIN
sweld-(one)-yININ
YLNIN-swely
aweld-yININ
swelj-alleld

(b) “Roundtrip” (DRAM)

© wn < m o~
(sa|nofrl) uondwinsuo) Jamod (e30L

1

04

1.0

* @ h
o o o
(sa|nofrl) uondwnsuo) Jamod |e30L

0.2

0.0-

julodpuz-julodpug

4 E_o%:m
95S0-juiodpuz
-4 LININ
-dININ3SSO
0INe)-¥Y1NIN3SSO
031Ne)-YININ
-juiodpul
julodpu3-uoiesyoN
auwielg-jurodpul
julodpuz-awesy
YLNIN3SSO-uoieslnoN
uo umuc_uoZ.ME:mW.m._.Z_DwmmO
Y.LNIN3SSO-(0INe)-Y1ININ3SSO
YLNINSSSO-YLNINSSSO

2 ON-UOI1eO}130N

ON-4LNIN3SSO

©3iJIJ0N-(0INe)-YININ

N-(01Ne)-¥ININ3SSO
YLININSSSO-YLNIN

N3SSO-(0INe)-Y1ININ

alel4-(03ne)-YININISSO
uonedON-aWely

YININ9SSO-aWely
SUWRIININGSSO
WININ-(0INe)-4ININ
WININ-YININ
Sie.-(0Ine)-yLNIN
YINIA-Swely
SRy ININ
dweuq-awelq

(a) “Roundtrip” (PKG)

le6

5 < 0 < il
N N - - =]
Amw_:o:::o_un__t:m_._ou‘_w\son__Eo._.

3.0

gNAd3Y Jutodpug
A3y julodpul

A23Y UonedoN
GNAJ3Y UoedYION
(9snedL) Aoy swely
0T 240D AJ9Y dwiely
(PISIA) A29Y Bwely
TT 240D AJ9Y dwiely
(110d) A2y dwely

€2 210D NO9Y dwiely
€ 910D Ad9Y dwely
gNASY dwely

T# dnp gNAdDY swely

Z# dnp gNAdRY swely

0.0-

le7

ANAD3Y jJulodpuz
A3y UO[eOIIION
A23Yy julodpu3
GNAIDY UOIIEIYION
(8snedl) AdeyY awely
0T 940D AJ9Y dwely
(PISIA) A2y dwely
£2 940D AD9Y dwely
TT 940D AJ9Y dwely
€ 210D Ad9Y dweld
(110d) AdayY swe.q
ANADDY dwely

Z# dnp gNAdaY swely

T# dnp gNAdaY awely

< m o~ —
(saynofrl) uondwnsuo) Jamod |e3oL

04

(d) “Signal” (UINTR disabled) (DRAM)

(c) “Signal” (UINTR disabled) (PKG)

0on

data for total power consumpti

ining

Rema

Figure B.3

105

awel4-YININ3SSO
awel3-(0INe)-4LNINSSSO
YININ-YLININSSSO
YLNIN-(0INe)-4ININSSSO
ulodpu3-(0Ine)-Y1NINBSSO
juiodpu3-(0Ine)-yININ
uiodpu3-¥LNINSSSO
uiodpu3-yININ
YLNINSSSO-YLNINSSSO
awel4-(0Ine)-y1ININ
Y.LNINSSSO-(0INe)-4LNINSSSO
sweli-yININ
jujodpu3-awely
u

ON-UOIje
WY1ININ3SSO-(0Ine)-HININ
YLNINSSSO-YLNIN
odpu3-uoije:
-(01ne)-4ININ
. -YLNIN
SSO-awely
JON-dWely
-yulodpul

dpu3

\n
)

<
o

w9 w9 o0
N N A 4 o

DSLV-+SUORINISU| PRIIIOYY

0.0 —HH

awe.g-juiodpug
WINIA-uiodpu3
WY1ININ3SSO-uiodpu3

YININASSO-dwWely
YININSSSO-HLININ
YININ3SSO-(0INe)-yLININ
YININ-1uiodpu3
YININSS0-1uiodpug
YININ3SSO-HLNINSSO
YLININ2SS0-(0IN.)-UININ3SSO
-(0Ine)-yININ

YLNIN-dwely
YLNINSSSO-UoleI4IION

-(03ne)-YININ
ulodpu3

YLININ-YLNINSSSO
swel4-(03ne)-4NIN3SSO
dLNIN-U0iIeIRIION
dwelj-41NIN3SSO

3.5

<
o

n o n o n
~ N - - S

DSLV-+SUORINISU| PRIIOYY

0.0

-4 LNINSSSO
-(03Ne)-YININ
3-(0Ine)-4LININ3SSO

(b) “Roundtrip” Producer

»

(a) “Roundtrip” Consumer

D3y jutodpul
(@snedl) AdayY awelq
A29Y UOPEOYNON

[(PIBIA) A2y dwiely

TT 240D AJ9Y awlely

€7 910D Ad3Y swelq

0T 240D AJ3Y awely

(l1od) A2y Swiely

£ 910D AJ9Y dwiely

GNAdDY dwely

T# dnp gNAdRY Bwely

Z# dnp gNAdaY swely

ANAJ3Y uoned!.

ON

ANAd3Y jutodpuz

(d) “Signal” Sender (UINTR disabled)

< m ~ — o
OS1V+Suoidnisul palisyv

e e s e m- (PIDIA) AJ9Y ¥ININSSSO
e s e s p— (951124 |) A23Y HININISSO
T# dnp gNA2SY YININSSSO
e e e e - ¢# AN ANAD9Y YININASSO
gNAI3Y YININ3SSO
e e s s et (110d) AJ9Y YININSSSO
0T 210D A23Y YININSSO

— o BACSEERC R

e e e - 1T 810D A23Y YLNIN3SSO
[— Mw_m_: A4 YININ
(@sned]) Aday awely
e (9sned 1) A3 YININ
S ESSSSS==- 0T 210) AJ3Y HININ
(l1od) 524 YININ

TT 910D AJ9Y aweiy
0T 940D AJ9Y Sweiy
(llod) A29Y awely
ANA23Y ¥ININ

T# dnp aNAJ3Y YLNIN
z# dnp gNAdSY HININ
€ 210D Ad9Y swely
ANAJSY wely

T# dnp gNAJSY swelq
Z# dnp gNAdSY swely
A3y UOEILIION

D3y julodpu3

[NAISY UOIREILIION

k k k ._ gNAdRY Julodpu3

T T

DS1V-+SU0IIINIISU| PRIRRYV

(c) “Signal” Sender

instruction density

Remaining data for

Figure B.4

106

Cumulative Probability (%)

Cumulative Probability (%)

95 1

80 1

Endpoint-Endpoint
Notification-Endpoint
Frame-Endpoint
UINTR-Endpoint
0SSeUINTR-Endpoint
UINTR-(auto)-Endpoint

/ 0SSeUINTR-(auto)-Endpoint

0 T T
10000 12500 15000

= = T
17500 20000
TSC Units

(a) Producer: Endpoint

T T T
22500 25000 27500 30000

95 4
90 4
85
80 1
754
704
65 1
60 1
55 4
50 4
451
40 4
354
30 1
254
20 4
15
104
5

Cumulative Probability (%)

95 1
90 1
851
80 1
754
704
65 1
60 1
554
50 1
451
40 1
354
304
254
204
154
10+

Endpoint-UINTR

Notification-UINTR

Frame-UINTR

UINTR-UINTR

0SSeUINTR-UINTR
UINTR-(auto)-UINTR

} 0SSeUINTR-(auto)-UINTR

15000
TSC Units

5000 10000 20000

(c) Producer: UINTR

25000

APPENDIX B. FURTHER DATA

Endpoint-Notification
Notification-Notification
Frame-Notification
UINTR-Notification
0SSeUINTR-Notification
UINTR-(auto)-Notification
0SSeUINTR-(auto)-Notification

0 T v T T T T T T
4000 6000 8000 10000 12000 14000 16000 18000 20000 22000

TSC Units

(b) Producer: Notification

95 4
90 1
85
80
754
704
65
60 1
55
50 1
454
40 4
354
30 4
254
20 4
154

Cumulative Probability (%)

-

\

—_

Endpoint-OSSeUINTR
Notification-OSSeUINTR
Frame-OSSeUINTR
UINTR-OSSeUINTR
0SSeUINTR-0OSSeUINTR
UINTR-(auto)-OSSeUINTR

0SSeUINTR-(auto)-OSSeUINTR

10
5
0

5000

10000 12500 15000 17500 20000 22500 25000
TSC Units

7500

(d) Producer: OSSeUINTR

95 4
90 4
85
80
754
704
65 1
60 1
554
50 1
451
40 4
354
301
254
20 4
154
104

|

Cumulative Probability (%)

Endpoint-Frame
Notification-Frame
Frame-Frame
UINTR-Frame
0SSeUINTR-Frame
UINTR-(auto)-Frame
0SSeUINTR-(auto)-Frame

T T
2500 5000

(e) Producer: Frame

T
7500

T T
10000 12500
TSC Units

T
15000

T
17500 20000

Figure B.5: Remaining data for “Roundtrip” RTTs. Grouped by capability used
for producer’s in-subconnection

107

%)

0
©
A

H|!qe|eds peo oM

Juiodpu3-y1ININ
uiodpu3-¥ININISSO
juiodpu3- Esmw.EzS
uiodpu3-(0Ine)-41ININSSO
YININHLNINGSSO
HININ-(0IN8)-YININ3SSO

JON-UOeILION
JON-YLNIN
SSO-Y.ININ
IN3SSO-(0INe)-Y1NIN
IN-YLNIN
1N3SSO-dwely

juiodpug-y pu3
auie.4-UoedLIIoN
dilNIn-swely
auwield-(0Ine)-y1ININ
Sweld-dLININ
swe.3-sllely

Juiodpuz-(0Ine)-y1NIn

SS0-ULl
ON-(0INe)-yININ
30N-julodpu3
0:(01ne)-¥ININ3SSO

dpug

-4LNIN3SSO
INe)-HININ

UOIEDIION-SWely
Sweld-dLNIN
dLNIN-dwely
slueid-swety

(b) “Roundtrip” Producer

(a) “Roundtrip” Consumer

I ——

T — T
MOWNMONMOWMONMONMOWMOWOINOINO
NHOONNOOINNTITMNMONN A
(%) Angejess peopriom
MONMONMOWMONMONMOWMOOINOINO
NHOONRNOOINNTITMNMNN A

(%)

n
©
A

JI1ge(eds Peopom

A28y Julodpug

A29Y UOREIYION
(asned1) Aday awelq
(PIBIA) A29Y Bwely

TT 240D AdaY dwely
£2 940D AJ3Y dweld
ANy Julodpu3

£ 210D ADBY Bwiely
(l1od) A3y swelq

0T 940D AJ9Y dweld
ANADRY Bwiely

T# dnp gNAdDY Swely
Z# dnp gNAdaY awely

SNA23Y UOHEIION

(110d) Ad9Y dwelq

€ 940D AD9Y swely
29y julodpul

AJ9Y UOREJYION

0T 240D Ad3Y swely
€7 910D Ad3Y dwely
11T 240D AJ9Y dwely
(asned|) Aday aweld
ANAD3Y Julodpuz
ANA9Y dwelq

T# Q:ﬁ GNAI9Y swely
Z# Q:u GNAJ9Y swely
(PIBIA) A29Y Bwely

SNA23Y UOHEIION

Sender(UINTR disabled)

(d) “Signal”

(c) “Signal” Receiver (UINTR disabled)

Remaining data for workload scalability

Figure B.6

APPENDIX B. FURTHER DATA

108

o
S ®© © < «
-

(%) DSLV+S3124D pajjeyuny

o4

o o =3 o
® © < «

(%) DSLV+S3124D pajjeyuny

100

dwelj-yININ
YLININSSSO-awely
YININ-YLNIN
sweld-41NINSSSO

Y.ININ3SSO- z.rz_:wmwo
awel4-(0INe)-YININ
YLNIN-(03Ne)-HININ
Y.LNIN-uonesSyioN
YLNINSSSO-YLININ
YININSSO-(0INe)-HININ
swel4-(03ne)-YLNINSSSO
Y1NIN3SSO-(0INe)-YININSSSO
Y1NIN-(0INe)-YININISSO
awield-uoediloN
YiNIN-swely
swelj-awely
UoneILNON-YININSSSO

©51J30N-(0INE) U LNINISSO
dpu3-yININ

I-(03Ne)-Y ININ
03ne)-4 ININ
03ne)-4ININSSSO

juiodpu3-juiodpug
HININ3SSO-uiodpug
¥INIn-uiodpu3
udiedON-UodpUT
sweig-juiodpuz

uonedyoN-sWely
dWel4-¥ININISSO
YININ-(0INe)-HININ
YLININSSSO-dwely
YININ-YLNINISSO
swel4-(0INe)-YIN|N3SSO
Y1NIN3SSO-(0INe)-YININ3SSO
YLNINSSSO-YLININ
U013EdLION-Y1ININSSSO
ON-YLNIN
0N-(03N€)-Y1NIN3SSO
auiel4-(03ne)-YININ
YLININ-YLININ
YLNIN-(0INe)-HININISSO
uonesHnoN-(0Ine)-YININ
YLNIN3SSO-(0Ine)-YININ
YLININ-dwely
YLNIN3SSO-YLNIN3SSO

-(01ne)-41NINSSSO
awely

(b) “Roundtrip” Producer

»

(a) “Roundtrip” Consumer

(l10d) A29Y dwely

0
0
0
0
04

(%) DSLV+S32AD payjeyuny

o4

=3 o o o
@ © < ~

(%) DSLV+S32AD payjeyuny

100

TT 210D Ad9Y awely
(PISIA) Ad2Y Bwely

Z# dnp gNAdsY swely
T# dnp gNAdSY Swely
ANAD3Y awely
(esned) Adsy awely
0T ®40D AJ9Y sweld

€ 940D AJ9Y swelq

€T 940D AJ9Y sweld
Ad3Yy Julodpul

ANAd3Y Julodpul

£2 210D AJ9Y dwely
(l10d) A29Y dwely
(PI3IA) A22Y Bwely

ANAD3Y uoped:

ANAd3Y Jutodpul

0T 210D AJ3Y awelq
ANADDY dwelq

Z# dnp gNAdSY swely
1T 240D Ad3Y awely

€ 210D AJ9Y dwely

T# dnp gNAJSY swely
(asned) Aday sweld
A2y julodpu3

A29Y UOIEDNION

Sender (UINTR disabled)

1”

(d) “Signa

(c) “Signal” Receiver (UINTR disabled)

(%) DSLV+S3]2AD paieyuny

€ 210D A29Y YININ
€ 910D AJ3Y 2welq

ENAISY WININ

T# dnp gNAISY HININ

0T 240D AJ2Y YININ
(3sned1) A23Y YININISSO
¢# dnp gNAISY HININ

€ 2107 A29Y YININISSO

Z# dnp gNAJSY YININISSO
(PI2IA) AJ9Y awelq

A3y uolled|loN

(asneq) A9y YININ

TT 2100 A9Y YININSSSO
(I1od) A>3y YININ3SSO

11 240D A9y ¥ININ

T# dnp gNAI3Y YININASSO
(110d) AdaY sweld

G_m_t A23Y ¥LNIN3SSO

ANAd3Y ulodpug

«

(e) “Signal” Sender

Remaining data for ratio of unhalted cycles to reference cycles

Figure B.7

Appendix C

Glossary

advanced programmable interrupt controller (APIC) 12, 15, 17

application binary interface (ABI) How functions are called and how their
parameters are passed. 9, 16

application programming interface (API) Set of available functions with pa-
rameter definitions that can be called by an application. 9

binary rewriting Technique by which a compiled binary is scanned for for-
bidden instructions and dynamically rewritten at load-time to replace or
remove the offending instructions. 34

capability pointer (CPtr) seL4-specific data type, which describes how a spe-
cific capability is stored in the thread’s CSpace. Implemented as a simple
word. 22-26, 41

capability space (CSpace) The set of capabilities available to a thread in seL4.
The CSpace root is the CNode capability located in the thread’s TCB. 23,
25, 55, 56, 65, 109

extended page table (EPT) Intel’s hardware virtualization uses EPTs to map
physical addresses of the guest, to physical addresses of the host. Com-
bined with the guest page table this maps guest virtual addresses to host
physical addresses. The EPT can be switched using VMFUNC by the guest
from a list configured by the host. 34, 35, 74, 109

extended protection key (EPK) Mechanism that combines EPTs and MPKs to
provide more memory protection domains [7]. 35

extended state (XState) 19, 48, 79

109

110 APPENDIX C. GLOSSARY

extended user-interrupts (xUI) 30

extensible markup language (XML) A common markup language 49

general protection fault (GP fault) A type of fault, that can be raised a vari-
ety of different reasons. Used as a catch-all for access-violations without
dedicated faults [25, sec. 7.15 - Interrupt 13]. 19

input/output (I/0) 12, 13, 33, 114

interprocess communication (IPC) v, 5, 7-11, 13, 21, 25, 27, 29, 34-37, 41, 44,
47, 54, 58, 61, 64, 66, 69, 74, 75, 77-79, 96

interprocessor interrupt (IPI) An interrupt that was triggered by a different
processor. 12, 15, 17, 19, 30, 36, 51, 67, 68, 110

interrupt request line (IRQ) Hardware mechanism by which devices send in-
terrupts to the processor. Sometimes used to denote system dealing with
this mechanism. 27, 79

interrupt service routine (ISR) Routine that is called by a processor on the
receipt of an interrupt with the associated IV. 12, 110

interrupt vector (IV) An integer between 0-255, which is associated with an
interrupt. The interrupt vector determines how the processor handles the
interrupt by being the index into a table used to determine the address of
the ISR. 12, 13, 15-17, 20, 52, 110, 112

IOAPIC 12, 27,51
IOMMU 33

IPI virtualization (IPIv) Intel hardware feature that allows IPIs to be processed
by the underlying hardware on virtualized systems. 30, 31

kernel-based virtual machine (KVM) Kernel-based virtualization environment
that allows Linux to act as a hypervisor. 47, 48

memory protection key (MPK) Intel x86/64 feature from 2019, introduces mem-
ory protection keys to the page table, allowing up to 16 different isolated
memory domains on the same page table. Applications can switch between
MPKs using 2 new user-space instructions, which can enable or disable
read/write access to these memory domains. 5, 32, 35, 109

111

microkernel (pkernel) A minimal kernel with only basic functionality and a
small trusted codebase optimized for speed and/or security. v, 5, 7-9, 11,
13, 21, 29, 34, 36, 37,47, 48, 77

mixed-criticality system (MCS) An extention of seL4’s main kernel which
provides scheduling contexts and cpu-time-based scheduling 21

model-specific register (MSR) A set of special registers that hold a variety of
processor functions (debugging, features, power-management) [25, Chap-
ter 11]. Can only be written to and read by spececial priviledged instruc-
tions. 14-17, 19-21, 38, 39, 47-49, 51, 52, 63, 69

monolithic kernel v, 7, 8,13
MSI 27

MSI-X 33

non-uniform memory access (NUMA) Computer memory design in which
different logical processors are connected to different parts of memory,
affecting memory access time depending on the physical location of the
core. 29, 36

one-way delay (OWD) Time taken for a message to be sent and received. 62,
65-70, 72, 75, 78, 90, 91, 93

operating system (OS) 5, 7-10, 12, 14, 20, 21, 36, 77

operating system signal (OSS) 10, 13, 29-33, 37, 52, 54, 55, 66-70, 74, 77-79,
90, 91, 106, 111

0SS-emulating UINTR (OSSeUINTR) 52, 54, 55, 6670, 74, 77-79, 90, 91, 106

PCle 33

posted interrupt descriptor (PID) A structure used for interrupt virtualiza-
tion. 33

protected procedure call (PPC) Form of RPC on systems with passive servers.In
this case the clients thread switches to the server’s address space and exe-
cutes the procedure itself, similar to a library call. 11, 74

quick emulator (QEMU) “A generic and open source machine emulator and
virtualizer’-Qemu Website 47-49

112 APPENDIX C. GLOSSARY

remote procedure call (RPC) 11, 37, 41, 44, 45, 54, 60, 64, 71, 79, 111

round trip time (RTT) Time taken for a message to be sent, received, and con-
firmed. 62, 65, 66, 70, 71, 74, 75, 78, 95, 106

running average power limit (RAPL) Interface for reporting accumulated power
consumption of various domains 63, 71, 73, 96

selL4 v,7,21-23,25-27, 38, 42, 44-47, 49-52, 54, 58, 61, 62, 64, 65, 68, 69, 73-75,
77-79, 109, 111, 114

serial over LAN (SoL) 65, 66

thread control block (TCB) Datastructure that holds per-thread control data.
9, 27, 39, 51, 55, 109, 114

time stamp counter (TSC) Register on Intel’s x86/64 platform which counts
the number of cycles since the last reset. 21, 31, 56, 59, 62, 65-71, 74, 75

trusted codebase (TCB) 8, 37

ulntercom (ulcom) v, 41, 43, 46, 54-57, 60, 62, 63, 65-70, 72—75, 77-79, 90-94

user interprocessor interrupt (UIPI) Aninterprocessor interrupt that was trig-
gered by the SENDUIPI instruction. 14, 17, 20, 29-34, 39, 41, 43, 51, 52, 67,
77,79, 113

user posted-interrupt descriptor (UPID) Thread-specific descriptor for user-
interrupts, used by a receiver to hold a state and senders to determine tar-
get and used IV. 15, 17, 20, 32-34, 38, 39, 41, 50-52, 67, 113

user-defined interrupt (UDI) List of interrupt vectors (integers between 32-
255) that don’t have a architecture defined cause 12, 30, 51

user-interrupt (UINTR) Name of the architectural feature which allows user
processes (software operating with CPL=3) to receive and process inter-
rupts and send send user interprocessor interrupts to negotiated targets.
v, 5,7,12-17, 19, 20, 29-34, 37-39, 41, 44, 47-50, 52-56, 60, 61, 63, 66-70,
72,74, 75,77-79, 90-94, 97, 102-108, 111, 112

user-interrupt delivery (UID) Process by which a recognized UINTR is deliv-
ered to user-space. Calls the interrupt handler. 14-19, 32, 33, 50, 56, 69,
113

113

user-interrupt flag (UIF) Flag used to determine if UID is enabled or not. 15,
19, 20

user-interrupt handler (UIHandler) The linear address of the function that’s
called on a successful user-interrupt notification. 16, 19, 38, 50, 54, 56, 57,
59

user-interrupt notification (UIN) When an ordinary interrupt is sent and the
target is configured to receive this interrupt in user-space it’s called a user-
interrupt notification. 14-17, 19, 20, 30, 32, 51

user-interrupt recognition (UIR) Process by which a user-interrupt is recog-
nized. The following reasons cause a user-interrupt to be recognized [25,
sec. 8.4.1]:

« WRMSR to the IA32_UINTR_RR MSR

XRSTORS of the user-interrupt state component.

User-interrupt delivery

User-interrupt notification processing

« VMX transitions that load the IA32_UINTR_RR MSR.
16

user-interrupt request register (UIRR) Core-specific bitmap that holds in-
formation on which UINVs are currently pending processing. 16

user-interrupt stack adjustment (UIStackadjust) Adjustment by which to
move the stack during user-interrupt notification processing. Can either
be set to be a strict adjustment, moving the stack pointer by x bytes, or an
address, moving the stack pointer to x 16, 38, 50, 52

user-interrupt target table (UITT) Sender-managed table of UPID pointers
and associated user-interrupt vectors. 17, 19, 20, 38, 39, 41, 50, 51, 56, 67

user-interrupt target table entry (UI'TTe) Data structure containing a pointer
to a UPID, a valid bit and the UV field, which contains the UIV used when
sending UIPIs. 17, 20, 39, 41, 45

user-interrupt vector (UIV) AnInteger between 0-64 used in the user-interrupt
target table entries and is forwarded to the user-interrupt handler. 16, 17,
38, 39, 41, 42, 50, 52, 55, 56, 113

114 APPENDIX C. GLOSSARY

user-interrupts notification vector (UINV) The interrupt vector that is for-
warded to the user as a user-interrupt notification. 15, 16, 19, 33, 38, 50-52,
113

userspace I/0 (UIO) Linux system that allows user-space applications, among
other things, to read from and write to device-specific files to handle inter-
rupts from that device. 13, 14

virtual address space (VSpace) The set of virtual memory available to a thread
in seL4. The VSpace root is the PML4 capability located in the thread’s
TCB. 25, 39, 55, 56

virtual machine (VM) 30, 47, 48

	Abstract
	Contents
	Introduction
	Background
	Microkernels
	What is a Kernel?
	Micro- & Monolithic Kernels
	Historical and Modern L4 Microkernels

	Interprocess Communication
	IPC Categories
	Message Passing
	Signals
	Remote Procedure Calls

	Interrupts
	Mechanism
	Advanced Programmable Interrupt Controller
	Exceptions
	Interrupt Handling

	Modern Processor Features
	UINTR Feature Background
	Receiving User-Interrupt Notifications
	Sending User Interprocessor Interrupts
	UINTR-XState
	Limitations of UINTR
	User-Wait Extension

	Introduction to seL4
	System Calls
	Capabilities
	IPC Capabilities
	Interrupt Handling

	Related Work
	User-Level-Interrupts
	Introductory Work
	Security Aspects
	Technical Analyses

	Applications of UINTR
	User-level Preemption with UINTR
	Other Applications of UINTR

	IPC on Microkernels
	SkyBridge
	UnderBridge
	HyBridge
	Other work

	Design
	Capability-based User-level Interrupts
	Initial Approach
	Capability-based User-level Interrupts

	IPC Library with UINTR support
	Wait Types
	Signals
	Message Passing
	Remote Procedure Calls
	Final Overview

	Implementation
	User-Interrupts on KVM/QEMU
	CR4 and CPUID pass-through
	UINTR-XState support

	User-Interrupts on seL4
	Additional Background
	Initial Steps and UINTR Capabilities
	Issues Encountered
	Finalizing our Capabilities
	Summary

	libUIntercom
	More than just UINTR
	Connection Setup
	User-Interrupt and Connection Handlers
	Sending and Receiving
	Summary

	Evaluation
	Methodology
	Measuring Time
	Measuring Energy Consumption
	Measuring Efficiency
	Further Performance Indicators

	Benchmarking
	Setup
	Benchmark Design

	Results
	Time Performance
	Power Performance
	Further Performance Indicators
	Comparison to Related Work

	Conclusion
	Conclusion
	Future Work
	Expanding uIntercom
	Expanded Evaluation

	Bibliography
	Discussed Data
	Further Data
	Glossary

