Check for
Updates

Transparent DAX Mappings: Towards Automatic
Kernel Bypass with CXL-Based Hybrid SSDs

Yussuf Khalil Daniel Habicht
Samsung Karlsruhe Institute of
Copenhagen, Denmark Technology

Karlsruhe Institute of
Technology
Karlsruhe, Germany

Karlsruhe, Germany

Javier Gonzalez
Samsung
Copenhagen, Denmark

Abstract

Upcoming CXL-based hybrid SSDs offer a persistent memory
interface in addition to traditional block-based communica-
tion. Previous research argued that the non-uniform access
latencies (on-device DRAM cache hits vs. misses) of these
devices call for new OS-based resource management strate-
gies as existing DAX mechanisms were not built with this
device model in mind. In this work, we sketch Transparent
DAX Mappings, a novel approach to enable a broad range
of applications to benefit from hybrid SSDs. By opportunis-
tically handing out DAX mappings to processes through a
collaboration between the kernel and the C standard library,
we aim to achieve automatic kernel bypass for unmodified
I/O-heavy applications. We evaluate a preliminary imple-
mentation of our design on a Samsung CMM-H prototype
and demonstrate up to 96.2 % increased throughput in Valkey.
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1 Introduction

Compute Express Link (CXL) [7] is a recent interconnect stan-
dard that offers memory semantics (i.e., byte addressing and
cacheability) for accessing attached devices. Several vendors
have announced CXL-based persistent memory technolo-
gies, e.g., Samsung [45] and Wolley [37, 38]. These devices
combine NAND flash with a DRAM cache and guarantee
persistence for cache contents via CXL’s Global Persistent
Flush (GPF) [5] feature. Generally, these devices are expected
to offer a NVMe-like (i.e., block-granular and asynchronous)
interface in addition to memory semantics, hence we call
them hybrid SSDs.

Intel Optane DCPMM [8, 14] is an earlier technology that
offered persistent memory semantics as well. While its lower
price compared to DRAM [14] made it an interesting candi-
date for system memory, it was also much more expensive
than NAND-based SSDs [12]. In contrast, hybrid SSDs are
expected to be at a similar price point as NVMe SSDs ($0.23
vs. $0.20 per GB for Samsung CMM-H and NVMe, respec-
tively [45]) because they also use cost-effective NAND flash
for providing storage. Further, Optane competed with DRAM-
based memory for the same DIMM slot capacity, while being
unable to fully replace DRAM due to its performance char-
acteristics [35, 39, 41]. In the context of Optane as a storage
solution, this presented a trade-off between system memory
and storage capacity. Hybrid SSDs, on the other hand, can
potentially fulfill the same purpose as NVMe-based SSDs
with similar baseline performance while also not competing
with system memory for DIMM slots.

For these reasons, we advocate for exploring how CXL-
based hybrid SSDs can serve in a general-purpose storage
setting while leveraging their persistent memory properties.
Whereas Optane was considered an additional tier in the
memory hierarchy [14], we aim for a solution where hy-
brid SSDs can be a drop-in replacement for traditional NVMe
SSDs. As conjectured by Habicht et al. [11] using an emu-
lated device, and as we will empirically demonstrate with
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real hardware in § 2, memory accesses to a hybrid SSD pro-
vide strong performance guarantees only when served by its
DRAM cache. Hence, it is mandatory to design new resource
management strategies for exploiting the scarce persistent
cache.

We propose Transparent DAX Mappings (TDMs) as a novel
approach to deliver the advantages of employing storage
with memory semantics to unmodified applications using
the traditional POSIX file interface. By extending the existing
DAX mechanism in Linux with profiling-guided device cache
management for hybrid SSDs and automatic distribution
of cache resources, TDMs enable read()/write() calls to
entirely bypass the kernel. Our contributions are as follows:

o We define a set of requirements for broad applicability
of hybrid SSDs (§ 4)

e We propose TDMs to automatically enable kernel by-
pass for unmodified applications with POSIX /O (§ 4.2)

e We sketch a lightweight profiling-guided policy to
select candidates for TDMs (§ 4.3)

e We outline how TDMs can be extended for file append
operations (§ 4.4)

e We implement a simple prototype to test the viability
of our design (§ 5)

e We evaluate our prototype on real hardware using the
Valkey datastore (§ 6)

2 Samsung CMM-H

We employ a Samsung CMM-H (CXL Memory Module — Hy-
brid) [30] prototype as the foundation for our design. Zeng
et al. [45] provide an overview of the performance charac-
teristics of an earlier prototype. The prototype they used for
their evaluation was based on an AMD Versal FPGA with
a 1 TB NVMe SSD as backing storage and 16 GiB of DRAM.
In their work, they argue that a more specifically tailored
NAND architecture may benefit the achievable performance.

We use a more recent prototype [30] that has its digital
logic implemented in an Altera Agilex 7 FPGA and features
48 GiB of DRAM with a CXL 2.0 x8 interface. However, it
still employs an internal PCIe 4.0 X4 bus to communicate
with a commodity Samsung PM9A3 960 GB NVMe SSD [29]
as its backing storage. From the host perspective, CMM-
H presents itself as a Type 3 device according to the CXL
nomenclature [5]. In turn, the entire storage capacity, i.e.,
960 GB, is exposed as a memory-only NUMA node and can
be accessed via CXL . mem transactions. CXL’s Global Persistent
Flush (GPF) feature [5] is available to guarantee persistence
for data stored in on-device DRAM and in CPU caches. The
prototype features an internal cache manager that performs
LRU-style evictions from the device’s DRAM cache. However,
the host may also perform explicit prefetch and evict opera-
tions via a CXL . io-based API to manage the cache. Support
for DMA-based block-granular asynchronous transfers via
CXL.1iois expected in a future version of the prototype. With
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Figure 1. Latency percentiles from a 100 % SET Memtier [27]
benchmark. CMM-H exhibits worst-case latencies two orders
of magnitude higher than CPU-local DDR5 memory.

a DMA protocol, it should generally be possible to build a
block device driver that allows to use the device as if it were
a traditional SSD. Lin et al. [23] provide an analysis of the
performance characteristics of this prototype.
Conceptually, CMM-H could also be used as system or
application memory. Its reliance on NAND flash as back-
ing storage, however, can create prolonged access latencies
that lead to potentially intolerable CPU stalls. To assess its
suitability as memory, we perform a benchmark that aims
for a worst-case scenario. Figure 1 shows the latency distri-
bution when executing 3.5 billion SET operations across 24
threads on pairwise distinct keys with 8 byte values using
Memtier [27] on an empty Valkey [33] in-memory database
with persistence disabled. This configuration results in a
working set size of 189 GiB. When using CMM-H as the sole
memory for Valkey, latencies are up to two orders of magni-
tude higher than when using CPU-local DDR5 memory.

3 Related Work

Early works by Bae et al. [3] initially explored the idea of
SSDs with byte-granular access interfaces. Abulila et al. [1]
suggested FlatFlash, a solution for embedding hybrid SSDs
in a tiered memory/storage hierarchy. Jung [15] proposed
using CXL for hybrid SSDs. Kwon et al. [19] present Ex-
PAND as a design to perform last-level cache prefetching
on a CXL-enabled SSD. SkyByte [47] divides a hybrid SSD’s
DRAM into a write log with cacheline-sized entries and a
page-granular data cache. Yang et al. [43] further explore the
design space for CXL-based hybrid SSDs and the potential of
caching and prefetching techniques. Lee et al. [20] analyze
TRIM commands in the context of CXL-attached flash stor-
age. Lim et al. [22] propose data structure optimizations for
databases employing CMM-H. Song [31] suggests that CMM-
H could be used in conjunction with GPUs for Al workloads.
Soltaniyeh et al. [30] explore its feasibility as large, but cheap
memory expansion given the low cost of NAND vs. DRAM.

Operating system-level works on hybrid SSDs have pri-
marily focused on the area of file systems so far. DJFS [44]
enables file system journaling on a directory-granular level,
tailored for CMM-H’s limited cache capacity. Zhan et al. [46]
propose RomeFS, a file system that utilizes both the block
and the byte-granular interfaces on hybrid SSDs. For this,
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they partition the available storage space into different zones
according to latency requirements. ByteFS [21] is another
approach that employs the SSD’s DRAM for log-structured
writes at cacheline granularity and instead refrains from
caching page data on the device.

Habicht et al. [11] have shown that careful management of
the device’s DRAM cache is necessary to profit from having
a synchronous byte-addressable interface on an SSD. They
propose to extend the existing DAX interfaces in commodity
operating systems with more fine-granular mapping capa-
bilities in contrast to their current file-level (Linux) or file
system-level (Windows) granularity. Further, their design
includes the device’s persistent DRAM cache into the oper-
ating system’s page cache (persistence-aware page cache) to
eliminate block layer operations for writing back file con-
tents while maintaining a coherent view between memory-
mapped I/O and POSIX I/O.

Kernel bypass for file operations on persistent memory
was previously proposed in SplitFS [16], FLEX [40], and
MadFS [49]. However, these approaches were designed in
the context of Optane and lack the resource management
capabilities necessary for CXL-based hybrid SSDs.

Wolley is another vendor that has announced CXL-enabled
hybrid SSDs, dubbed NVMe-over-CXL [38]. Their design re-
lies on the traditional NVMe standard for communicating
with SSDs, however, they propose exposing NVMe’s Con-
troller Memory Buffer (CMB) [26] via CXL [9].

4 Approach

As described in § 1, we aim at building an operating system
mechanism that makes CXL-based hybrid SSDs employable
in a general-purpose fashion as a drop-in replacement for
traditional NVMe SSDs. Hence, we assume a simple system
architecture that has no constraints other than having a
CXL-capable CPU and at least one NVMe SSD with an OS-
managed file system and OS-managed CPU applications. We
define the following requirements for our mechanism:

R1 A performance and/or energy benefit must be achieved
in a broad range of scenarios.

R2 Performance must never be worse than with NVMe.

R3 Must be simple to use, i.e., not require additional de-
veloper or operator effort.

In alignment with requirement R3, we replace the NVMe
SSDs in the aforementioned architecture with CXL-based
SSDs. The amount of consumed CPU interconnect resources
(i-e., PCIe/CXL lanes) stays thereby unchanged, which is a
subtle, yet important difference to Optane-based persistent
memory from a deployment perspective as outlined in § 1.

In the next subsection, we start by reviewing Linux’s cur-
rent DAX interface for persistent memory and how previous
work has proposed to adapt it for hybrid SSDs. Then, we
iterate over the components of our approach and describe
how they align with the established requirements.
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Figure 2. Overview over our proposed design. The hybrid
SSD can be accessed asynchronously via CXL.io or syn-
chronously via CXL.mem. The TDM Manager collects profil-
ing data (A) for each file descriptor (fd) provided by libc in
user-space (§ 4.3). Then, it uses the data to select files that
are promoted to transparent DAX and communicates these
to libc (B) (§ 4.2). POSIX I/O can then be

, whereas other file handles continue
using the traditional . The page cache
contains both volatile (v) and persistent (p) memory pages
to guarantee coherence between the various I/O paths (E).

4.1 Direct Access (DAX) for Hybrid SSDs

Linux’s current Direct Access (DAX) interface for persistent
memory comes in two flavors: devdax and fsdax [17]. fsdax
is used to bypass the operating system’s page cache when
calling mmap() on a file descriptor, whereas devdax is used
for raw device access without a file system. To use fsdax,
system operators set a specific per-file flag in the file system.
As per the system architecture defined in § 4, we focus solely
on fsdax, i.e., a traditional file-based storage abstraction. In
this case, virtual mappings in a process point directly to the
physical pages belonging to a file on persistent memory.
Habicht et al. [11] showed that the DAX interface has sev-
eral shortcomings that make it unsuitable for hybrid SSDs, as
it was designed with Optane in mind. More precisely, the non-
uniform access latencies caused by the difference between
DRAM cache hits and misses may cause prolonged CPU stalls
since CXL.mem accesses are synchronous (as shown in § 2).
Therefore, it is prohibitive to blindly map arbitrary device ad-
dresses into user space. Instead, they propose adding a new
MAP_DAX flag to mmap() to give applications fine-granular
control about whether to use DAX. Via mlock(), applica-
tions can then request pinning DAX-mapped pages to the
device’s persistent cache. CXL . mem transactions are thereby
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guaranteed to have predictable latencies. Non-DAX opera-
tions can be handled via the traditional block layer with a
CXL.io-based DMA protocol.

Arguably, this concept introduces a new burden on appli-
cation developers, violating requirement R3 of being simple
to use. Explicit DAX in applications can undoubtedly yield
the best performance. In light of requirement R1 of broad
applicability, however, we argue with the 80/20 principle [18]
of achieving most of the potential result with only little work.

4.2 Transparent DAX Mappings

Transparent DAX Mappings (TDMs) aim to provide unmodi-
fied applications with the benefits of persistent caches and
bypassing the kernel for I/O on hybrid SSDs. Figure 2 pro-
vides an overview of our design. While keeping it possible
for applications to explicitly claim DRAM space on the hy-
brid SSD device in the way described in § 4.1, our approach
further distributes unclaimed space to DAX-unaware appli-
cations. For this purpose, we introduce a new TDM Manager
into the OS kernel for centralized resource management. The
TDM manager keeps track of available device DRAM space
and selects files for promotion and demotion. POSIX 1/0 on
promoted files can leverage direct access to the device’s per-
sistent DRAM capacity in a manner that is transparent to the
application. We begin by explaining the promotion scheme
and sketch the selection policy in more detail in § 4.3.

When a file is promoted, the TDM manager determines
the physical addresses belonging to this file on the device.
These address ranges are then pinned into the hybrid SSD’s
DRAM in order to provide strong access latency guarantees.
Next, it establishes mappings in the virtual address spaces of
all processes referring to that file. Finally, it communicates
these mappings to the 1ibc via shared memory (B). The 1ibc
can then transparently handle read()/write() POSIX calls
using memcpy () operations (C) instead of going through the
system call path (D). This enables a broad range of applica-
tions to potentially benefit from kernel bypass (R1) without
application developer effort (R3).

Demotion becomes necessary whenever an application
explicitly requests a DAX mapping (as in § 4.1) and device
DRAM space needs to be reclaimed to serve the request.
Further, the TDM selection mechanism (§ 4.3) may choose to
promote another file instead at any time. For demotion, the
operations described in the previous paragraph are rolled
back so that operations are handled via system calls again.

To ensure coherence between TDMs, explicit DAX map-
pings, traditional mmap (), and traditional POSIX I/O, we in-
sert persistent pages from the device’s cache into the oper-
ating system’s page cache (E). This is compatible with the
design for explicit DAX proposed by Habicht et al. [11] and
further eliminates the need for explicit synchronization dur-
ing promotion. When promoting a file already present in the
volatile page cache with dirty contents, it can be migrated
into the device cache synchronously via memcpy ().
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4.3 Profiling-Guided Selection

How to choose files for TDM promotion? is a crucial question
for fulfilling requirements R1 and R2, i.e., general-purpose
performance benefits and no performance penalty compared
to NVMe. The performance benefit we aim for stems from
handling as many file operations as possible via CXL.mem
without system calls (R1), but with strong latency guar-
antees (R2) through limiting CXL . mem to the device DRAM.
Operations on non-promoted files continue to be handled via
a CXL. io-based block-granular and asynchronous interface.
We generally assume that operations on these files achieve
similar performance as with NVMe over PCle given similar
SSD controllers. However, management overhead for TDMs,
including file promotion or demotion, or unnecessary CXL
bus traffic may be detrimental for the overall performance.

To perform promotion candidate selection, we hence pro-
pose a lightweight profiling mechanism built around libc.
libc as a central intermediary on the function call path for
all POSIX I/O has full knowledge of all operations performed
both via system calls and via transparent DAX. Hence, it can
easily keep track of the total read and write bandwidths per
file descriptor over a sliding window with O(1) space and
time overhead. This bandwidth data can serve as a prediction
for future file requests. By using a sliding window, we aim
to avoid being influenced by large one-off events to make
the prediction more robust. In addition, we plan to evaluate
whether other metrics are also worthwhile to track for profil-
ing. For example, monitoring fsync() calls was previously
proposed by Ziggurat [48] in the context of tiered storage.
We communicate the gathered information to the in-kernel
TDM manager via shared memory (A).

The TDM manager is responsible for deciding the set of
files for transparent DAX. To that end, we aim for finding a
set that maximizes the expected bandwidth across files while
keeping the total size of DAX-mapped files below the on-
device DRAM size (i.e., to achieve strong latency guarantees).
We propose sorting the list of files by bandwidth (as reported
by libc) and greedily filling the set starting from the largest.
This approximation requires O(n log n) time and O(n) space
overhead [25] and should therefore be reasonably fast (R2).
To further reduce practical runtime overhead, we suggest
ignoring file descriptors with bandwidth predictions below a
certain threshold during file set calculation. Recalculating the
set is only necessary upon significant bandwidth changes.
Files added to the set get promoted, while those removed
from the set are demoted (§ 4.2).

4.4 File Append Operations

Supporting file append operations without involving the file
system driver (i.e., maintaining kernel bypass) is a challeng-
ing endeavor, yet mandated by requirement R1 of cover-
ing many use cases. Some applications, e.g., Valkey with its



Transparent DAX Mappings: Towards Automatic Kernel Bypass with CXL-Based Hybrid SSDs

append-only file (AOF) persistence mode [34], create signifi-
cant bandwidth solely through append operations. Due to
their bandwidth, we consider these interesting candidates
for TDMs and hence want to extend TDM support to append-
heavy scenarios. SplitFS [16], an earlier Optane-focused ap-
proach, implements file appends in user space by introduc-
ing a temporary file for applications to write append data
into. New data is then integrated into the file system asyn-
chronously by the kernel through swapping extents.

We propose an approach with a similar concept, how-
ever, the resource management necessary for hybrid SSDs
makes this significantly more complicated. To avoid intoler-
able CXL . mem latencies, newly appended data must be stored
in the device DRAM, i.e., it competes for the scarce DRAM
space with other (explicit or transparent) DAX mappings to
existing file blocks. For this reason, we suggest monitoring
for append bandwidth separately from (non-append) write
bandwidth during profiling. Predictions based on this infor-
mation can be used to reserve buffer space for append data
in device DRAM if the file selection policy considers the
append bandwidth high enough (§ 4.3).

5 Implementation

To assess the viability of our approach, we implement a
simplified prototype that focuses on providing kernel by-
pass for write() operations on TDM-enabled files (§ 4.2) as
well as support for append operations (§ 4.4). Currently, our
early-stage prototype does not employ profiling-guided TDM
selection (§ 4.3) but instead relies on manual, application-
specific configuration. In order to support writes, we use a
write-allocate block cache (managed by a user space library)
that serves them via memcpy (). Our final implementation
plans to use this cache primarily for appends (as described in
§ 4.4), however, we currently also use it for non-appending
writes as it provides similar kernel bypass capabilities as
our proposed design for these, thus allowing us to focus on
evaluating the potential benefit of TDMs.

The current prototype consists of two main components:
libtdm, the first component, is loaded into processes via
LD_PRELOAD and hooks into open(), read(), and write()
calls. The library manages the aforementioned block cache
entirely in user space. Due to the write-allocate policy, read-
only data does not engage the kernel bypass. While this
does not matter for writes, it presents a deviation from our
intended design that also considers TDMs for read(). On
process startup, a fixed-size cache on the hybrid SSD is allo-
cated and prefetched into its on-device DRAM cache using
the API provided by the device (§ 2). Our open() implementa-
tion decides whether to enable kernel bypass when the path
matches a manually pre-configured one. write() operations
are then served via the cache, whereas cache misses during
read() calls are handled via the system call path. When
using TDMs, we can bypass the kernel on fdatasync() as
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Figure 3. Request latency percentiles during YCSB [6] ini-
tialization with Valkey [33] (fsync=always). Our prototype
improves 99'" percentile latencies by 67.5 %.

all file blocks are in the device’s persistent cache already.
We employ the S3-FIFO [42] algorithm for cache eviction. A
background thread writes evicted blocks back by calling into
the file system. In order to avoid stalling block allocations
due to outstanding write-backs, 1ibtdm maintains a small
pool of free blocks.

The second component is ktdm, a kernel module that keeps
track of all block cache instances. When a process exits with
dirty blocks in its block cache, ktdm synchronizes all dirty
contents with the backing file. This avoids data loss when
a process crashes. In case the file saw append operations
(§ 4.4), ktdm further handles resizing the file to the new size.

Other than lacking automatic TDM selection and full ker-
nel bypass for read () operations, our current prototype is
further incapable of maintaining coherence across processes.
In turn, concurrent processes may not access the same file
if it was configured for TDM. As described in § 4.2, we plan
to alleviate this issue by employing the page cache for guar-
anteeing a coherent view on TDM-enabled files between
multiple processes. Nonetheless, our prototype allows us to
evaluate the effectiveness of bypassing the kernel particu-
larly for write(). A full implementation of our approach
will further allow us to assess the impact of kernel bypass for
read() as well as the quality of our TDM selection policy.

In our evaluation (§ 6), we configure TDMs to be enabled
for files we consider hot. We expect that a full implementa-
tion of our proposed automatic selection mechanism (§ 4.3)
would make the same choices.

6 Evaluation

We perform an evaluation of our prototype described in § 5
using the core workloads of the Yahoo! Cloud Serving Bench-
mark (YCSB) [6] with the key-value datastore Valkey [33].
Our test system is equipped with two AMD EPYC 9454 (48
cores @2.75 GHz) CPUs [2] with 256 GiB of DDR5-4800 mem-
ory each and a Samsung CMM-H prototype as described in
§ 2. A Samsung PM9A3 960 GB NVMe SSD [29] serves as a
baseline to compare storage performance. We run Ubuntu
24.04 [4] with Linux 6.16-rc4 [32] on our test system. All
results presented in this section are averaged over 30 runs.
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Figure 4. Request throughput for YCSB [6] workloads A — F with Valkey [33] (fsync=always). Percentages indicate ratio
between read and write operations for each workload. Write-heavy scenarios (e.g., A) are up to 96.2 % faster with our prototype.

In contrast to § 2, where we benchmarked Valkey us-
ing a purely in-memory configuration, we employ Valkey’s
append-only file (AOF) persistence mode here [34]. In this
mode, all write operations are appended to a file (i.e., the
AOF) such that the dataset can be recovered by replaying
writes from this file. Valkey allows configuring the frequency
of fsync() calls to cater to the user’s requirements. For our
evaluation, we configure fsync=always, i.e., every single
AOF write is synchronized immediately *. As our current pro-
totype does not support sharing TDM-enabled files between
processes, we disable Valkey’s AOF rewrite and snapshotting
features as they run in forked-off processes. We configure
libtdm (§ 5) to select all files in the AOF directory and set
the cache size to either 0 B (no TDM), 4 MiB, or 1 GiB. With
TDMs disabled, all file operations are handled via the kernel
path using Linux’s traditional page cache implementation.
In this case, given the lack of a DMA interface in the current
prototype revision (§ 2), fsync() calls lead to flushing the
page cache via memory operations instead of DMA.

Figure 3 shows latency percentiles for insert operations
during the loading (i.e., write-only) phase of YCSB work-
load A. Even without our TDM prototype, CMM-H’s large
hardware-managed cache enables latency improvements up
to 91.0 % compared to the NVMe SSD in our system with-
out any changes to Valkey or the operating system. With
TDMs enabled, we can further improve median latencies by
60.0 % and by 67.5 % in the 99" percentile. Notably, despite
the AOF reaching a size of 116 MiB, there is no significant
difference in latencies between 4 MiB and 1 GiB cache sizes.
This demonstrates that keeping a small number of blocks
for append operations is sufficient to achieve the maximum
performance benefit.

Figure 4 depicts the request throughput across the various
YCSB workloads as well as their respective read/write ratios.
Similar to the latencies in Figure 3, throughput is already
increased by up to 89.3 % in these workloads without TDMs
thanks to the device’s large cache without software changes.

1A single write to the AOF may contain multiple write operations from
different clients or pipelined execution [34]. YCSB does not make use of
pipelining. We employ two threads for requests.
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fsync TDM Geometric Mean
always Disabled 21239
always 4 MiB cache 27686

no Disabled 27499

Table 1. Geometric mean throughput across all YCSB [6]
workloads for different configurations. With TDMs,
fsync=alyways achieves similar performance as fsync=no.

With TDMs, write-heavy workloads such as A or F show a
further improvement of 96.2 % and 65.1 %, respectively. How-
ever, even read-dominated workloads with only few write
operations show a large increase of 20.8 % (B) and 31.2 % (D)
with TDMs which we attribute to the large performance
burden imposed by fsync() calls otherwise. Unsurprisingly,
read-only workloads (C) do not show a significant difference.

Although our implementation is in an early stage, we
believe the demonstrated results show the viability of our
proposed approach. Table 1 compares the geometric means
across all YCSB [6] workloads with weak (fsync=no) and
strong persistence (fsync=always) on CMM-H. With TDMs,
the overhead for strong persistence guarantees diminishes,
without requiring any changes to Valkey. We attribute the mi-
nor increase of 0.6 % seen with TDMs compared to fsync=no
to measurement inaccuracies.

7 Future Work

The design presented in this work is still in an early stage and
not yet complete. Most obviously, an implementation and
evaluation of our proposed kernel-based profiling-guided
resource management as described in § 4.3 is still missing.
Other than that, we plan to implement support for ad-
ditional OS features such as mmap() and inotify. The lat-
ter can be solved by asynchronously notifying the kernel
about write operations, which further allows it to perform
metadata updates during runtime. mmap (), however, makes
profiling more complicated. To this end, we aim to explore a
performance counter-based profiling approach.
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Remodeling Linux’s read() and write() semantics for
TDMs without breaking existing applications is challenging.
For example, many applications rely on sector atomicity
of writes [28], which our current implementation does not
provide.

Another challenge regarding TDMs concerns file system-
level persistence. While mechanisms like GPF can guarantee
that writes are persisted on the hybrid SSD in case of a
power outage, users might still not be able to recover the
written data from a file due to file metadata being lost. Linux
provides a solution for this issue by offering the MAP_SYNC
flag that is part of the synchronous page faults mechanism.
For shared DAX mappings, MAP_SYNC guarantees that while
file contents are mapped writable into user space, these file
contents are accessible at the same position even after a crash
or reboot [24], meaning that metadata required for reading
from this file offset is persisted. If file metadata required for
retrieving writes is still unstable, MAP_SYNC forces a flush of
this metadata when writing to the DAX mapping [36]. For
TDM:s we intend to reuse this mechanism for ensuring file
system-level persistence of writes.

Lin et al. [23] show that the current CMM-H prototype
(§ 2) can reach up to 25 GB/s read bandwidth when hitting the
on-device cache, while the write bandwidth is significantly
lower. Based on this data, we suggest that the TDM manager
should consider CXL . mem bandwidth as another constrained
resource in addition to cache capacity. When the TDM man-
ager does not account for bandwidth consumed by TDMs,
applications explicitly using DAX via mmap() could suffer
from a decrease in quality of service. This, however, contra-
dicts the idea of using TDMs on otherwise unused resources.
With upcoming features in Intel’s Memory Bandwidth Moni-
toring (MBM) [13, §3.1.4.2] and Memory Bandwidth Alloca-
tion (MBA) [13, §3.2.4.4] technologies, we aim to build an
accounting scheme that measures per-task CXL.mem band-
width. Then, to counteract an overload caused by deploying
TDMs too aggressively, the TDM manager can either disen-
gage certain TDMs or use a mechanism like MBA to throttle
the TDM bandwidth on a per-task basis.

As an additional enhancement, we want to investigate
how to extend our approach to partial files while keeping the
profiling overhead low. This may be useful, e.g., for database
applications that store all tables in a single file as opposed
to creating one file per table.

This work has focused on writes, however, TDMs may also
be useful for reads. Previous works argued for serving reads
via CXL .mem, based on the observation that some workloads
typically only need small portions of a block [10]. In turn,
TDMs could help to reduce read amplification and bus traffic.

Several other open questions remain that touch hybrid
SSDs in a more general sense. For example, How to efficiently
virtualize hybrid SSDs for multiple tenants?, or How to build
a RAID out of hybrid SSDs with two different interfaces?
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8 Conclusion

In this work, we proposed the concept of Transparent DAX
Mappings (TDMs) as a mechanism to automatically manage
and distribute the scarce persistent DRAM capacity of CXL-
based hybrid SSDs. Only the DRAM can be accessed with
low enough latency via CXL.mem to prevent CPU stalls and
hence justifies careful and centralized resource management.
With TDMs, the kernel identifies file handles that benefit
the most from kernel bypass and feeds unmodified applica-
tions with direct access mappings during runtime. While
our implementation is not yet complete, preliminary results
show up to 96.2 % increased throughput in Valkey. Our work
makes the case for managing the device’s persistent cache
entirely within the operating system. We hence argue that
hybrid SSDs should feature an API that allows the host to
pin pages in the device’s cache. However, more work is nec-
essary to answer whether hybrid SSDs can fully serve as a
drop-in replacement for traditional NVMe drives.
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