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Abstract

Distributed systems primitives, such as consensus, play an important role in cur-
rent software deployments. Especially in datacenters, where applications are split
between different servers, mechanisms for coordination are required. The libraries
and applications which provide such functionality currently execute alongside
other applications and the operating system on the host. As a consequence of
task switching and system calls, they are subject to unpredictable spikes in la-
tency, which adversely affects performance. Recent integrations of FPGAs into
PCIe networking cards present an opportunity in this respect. Due to increased
proximity to the network transceivers and operational model of FPGAs, they ex-
perience lower and more stable latencies. To leverage this advantage, distributed
systems primitives must be located on the FPGA itself.

This thesis analyses the communication latency and bandwidth characteristics
provided by these accelerators in a datacenter setting. It then develops and imple-
ments an abstraction for synchronous algorithms to be implemented against. To
show the viability of the framework and determine its performance characteristics,
this thesis further implements a consensus primitive based on existing algorithms
to leverage the developed abstraction. In order to evaluate the performance of the
algorithm, as well as the framework components, a number of micro-benchmarks
as well as full-system experiments are run. Results show that the framework is
able to saturate 100G links while introducing minimal overhead, both in latency
as well as required FPGA resources. This enables a new class of synchronous al-
gorithms to be implemented with both reduced effort and a lower barrier to entry.

German version

Primitive aus dem Feld der Verteilten Systeme wie Konsensus spielen eine wichtige
Rolle im heutigem Einsatz von Applikationen. Koordinationsmechanismen sind
besonders in Datenzentren vonnöten, da Anwendungen dort oft über mehrere
Server verteilt ausgeführt werden. Die Bibliotheken und bestehende Anwendun-
gen, welche solche Dienste bereitstellen, teilen sich Prozessorzeit mit anderen
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Programmen und dem Betriebssystem. Damit sind sie unvorhersehbaren Laten-
zspitzen ausgesetzt, was sich meist in schlechterer Leistung niederschlägt. Um
diesen Effekten entgegenzutreten ist eine Implementierung dieser auf FPGAs na-
heliegend FPGAs sind eine Art von Recheneinheit welche durch ihr besonderes
Rechenmodell und ihrer Nähe zu Netzwerkadaptern extrem schnelle und stabile
Kommunikation erreichen. Dies wird durch die Integration von FPGAs in netzw-
erkfähigen PCIe-Erweiterungskarten ermöglicht.

Diese Masterarbeit analysiert die Latenz und Bandbreite dieser Beschleuniger
in einer Datenzentren ähnlichen Umgebung. In dieser Arbeit wird zusätzlich eine
Abstraktion zur vereinfachten Implementierung von verteilten, synchronen Al-
gorithmen geschaffen. Darauf basierend wird ein existierender Konsensalgorith-
mus implementiert, und mit Bezug auf bereits bestehende Werke evaluiert und
verglichen. Um dies Umzusetzen werden mehrere, kleinere, Versuche durchge-
führt, sowie das Gesamtsystem gemessen. Die Ergebnisse zeigen die Fähigkeit
der entwickelten Abstraktionen, die 100 Gigabit/s Netzwerkverbindungen auszu-
lasten. Dies wird mit sehr geringen zusätzlichen Latenzen und extrem geringer
Implementierungskosten auf dem FPGA umgesetzt. Hiermit eröffnet sich die
Möglichkeit, bisher kaum genutzte, synchrone, verteile Algorithmen zu imple-
mentieren. Zusätzlich wird hierbei der Implementierungsaufwand erheblich re-
duziert.
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Chapter 1

Introduction

Datacenters (DCs), often via cloud providers, are the primary deployment op-
tion for the majority of user-facing application, such as streaming providers [27],
social networks [11], and more recently, large language models [26]. These instal-
lations are characterized by a high number of individual machines, densely con-
nected to each other and organized into racks. In order to fully leverage the perfor-
mance provided by such installations, applications must utilize multiple machines
at the same time. A single server is constraint in its networking, computational
performance and available storage, due to cost and hardware capabilities. This
is best exemplified by databases, which need to scale with the number of users
as well as the complexity of the interaction, and thus quickly reach the limits of
individual servers. Another benefit of DCs and their high number of individual
machines is the possibility for replication. This technique enables a level of fault
tolerance [16, 28], resulting in reduced down times for services, a critical aspect
for businesses with service level agreements. These goals can often be achieved
in tandem by splitting an application into multiple processes.

To form a cohesive system from these individual processes, they must interact
with each other. The field of distributed systems (DSs) strives to define, character-
ize and develop primitives and algorithms to that extend [9]. Providing coordina-
tion between processes is a common task, solved by many different abstractions,
e.g. consensus. The protocols which reach consensus decide on common value,
formed or chosen from a set of propositions. Most importantly, they enforce that
all nodes decide the same value, eliminating discrepancies in the overall system.
DCs offer an interesting environment for consensus implementations in this con-
text. Servers have extremely low latency between one another, depending on the
configuration, they might even sit in the same rack. Inside a rack, servers are
commonly connected to a single switch, which is located in the highest slot, the
top-of-rack-switch (TOR-switch) [19]. This physical and topological proximity to
each other results in low transmission latency and switching delays respectively.
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4 CHAPTER 1. INTRODUCTION

Yet, the operating system (OS) running on the servers creates additional latencies
for applications [10], which are often highly unpredictable.

This jitter can be reduced when leveraging FPGAs. Field programmable gate
arrays (FPGAs) are a type of compute element which can be programmed to
mimic digital circuits. These circuits exhibit a highly predictable behavior and
can be accurately simulated. More recently, FPGAs have been integrated into PCI
Express (PCIe) expansion cards and include network ports [3]. Such an arrange-
ment results in an accelerator which can operate in tandem with the host central
processing unit (CPU), commonly referred to as a smart network interface card
(SmartNIC). Since FPGAs do not have an OS layer between their network con-
nection and their computational elements, they introduce little and highly stable
processing delays to their network data path. Many distributed systems primitives
can benefit from reduced latencies provided by DCs and FPGAs. Synchronous
algorithms in particular, since outliers traditionally force the use of timeouts and
round periods which far exceed the average case. Especially in the case of logi-
cal dependencies between consensus decisions, a reduction in decision time can
speed up the overall system.

This thesis designs and implements a framework for synchronous algorithms
against FPGA-equipped network accelerator cards, specifically the AMD Alveo™
U50. To structure the exploration of the topic, this thesis tackles the following
research questions:

RQ1 What characterizes the latency of interactions and transmissions
from and to FPGA based SmartNICs, especially w.r.t. stability?

RQ2 How can synchronous distributed systems primitives be more
easily implemented on FPGA based SmartNICs?

RQ3 Can our synchronous consensus implementation outperform state
of the art when leveraging FPGAs?

Results show that the FPGA experiences very stable network latency, even at
higher utilization rates. This enables a number of abstractions to be designed,
simplifying the implementation effort for synchronous DS algorithms. The syn-
chronous consensus primitive implemented using these abstractions holds the po-
tential to outperform state-of-the-art solutions.

This thesis is structured into 5 further chapters. Immediately following this
chapter is the Background 2. It introduces a number of concepts and technolo-
gies employed in this thesis. Chapter 3 expands on how the algorithms can be
embedded into the execution environment of FPGAs. Implementation 4 explores
the details of how the systems presented in 3 are implemented in the accelerator.
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After that, chapter 5 evaluates the system and the implementation and compares
them to existing solutions. Finally, chapter 6 ends the thesis, covering a number
of possible expansions and improvements for further study.
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Chapter 2

Background

This chapter serves to introduce a number of topics which are required to under-
stand the contributions of this thesis. It will cover distributed systems, FPGAs, as
well as their related technologies and finally, related work.

2.1 Distributed systems

Distributed systems are a field of computer science which, as the name implies,
tackles systems consisting of more than a singular process. To this end, mod-
els are needed to represent the behavior of actual hardware and software. One
such model is the link model, which represents the assumptions placed on a link
between processes. A perfect link is expected to never loose, duplicate or fabri-
cate a packet, while a fair loss link can drop and/or fabricate a finite number of
packets [9, p. 34-37]. How the behavior of a model is ultimately achieved, either
through implementation in hardware or by building on top of another model, is not
defined by the model. Another important model is the failure model, describing
how a process behaves, especially when it fails. While this might not be intuitive,
how a process fails can be important since other processes might not be aware that
a failure occurred. A process based on the fail-stop failure model, where a failure
results in stoppage of all actions and computations, would not expect a process to
return malicious data. There are a number of models governing failure, link, and
timing behavior.

On top of the assumptions and guarantees of a model, distributed abstractions
can be built. Given a fair-loss-link, a perfect link can be created by layering
abstractions, each working to provide stronger guarantees [9, p. 36, 38]. This
is also the case for more complex abstractions, e.g. broadcast, which deals with
dissemination of information.

Many of the algorithms which achieve distributed abstractions are built on

7



8 CHAPTER 2. BACKGROUND

the partially synchronous model. This model assumes that timing assumptions
are achieved eventually, but may not be achieved for arbitrarily long, but finite
amounts of time [9, p. 47]. The algorithms in this thesis assume a different timing
model, so called synchronous systems, motivated especially by the nature of the
underlying hardware as covered in section 2.2. This thesis will cover the consen-
sus abstraction, which takes in propositions and decides on a single value, that
being the same for all correct processes. An implication of “regular” consen-
sus, which may not be readily apparent, is that a process which fails is allowed
to decide on a different, wrong, value, and return it to other abstractions. When
enforcing that faulty processes are not allowed to return faulty values, the ab-
straction is called Uniform Consensus [9, p. 204-212]. Consensus and its other
variants, of which there are many, are one of, if not the most important abstraction
in distributed systems. The coordination which is enabled by agreement between
processes is the basis for other abstractions, such as group membership. Thinking
about the correctness of algorithms in the field of DS can be quite difficult. This is
partially a result of the sheer number of possible states a system may experience.
Formal proofs are the most rigorous answer to these questions but themselves are
hard to construct and validate. For this reason, this thesis uses a variation [31] on
an already proven algorithm [29]. Section 3.1 explores the workings and implica-
tions when using this particular uniform consensus protocol.

2.2 FPGAs

An FPGA is a type of integrated circuit (IC) which can be altered after produc-
tion to mimic arbitrary1 digital circuits. Its name, field programmable gate array
(FPGA), hints at its inner workings. To better understand how FPGAs operate, it
is best to start with one of its smallest components, the lookup table (LUT). At its
core, LUTs are memory [17, p. 270]. Interpreting the input values of a boolean
function as an address highlights the logical equivalence of a function evaluation
and a memory access. In essence, it stores the truth table for that function. The
obvious drawback is the increased size of the implementation. Implementing the
boolean function (a ∧ b ∧ c ∧ d) requires a single 4-NAND gate, but 24 memory
cells when realized as a LUT.

The power of LUTs lies in their ability to be reconfigured, sometimes even
at runtime. Any N-input boolean function can be loaded into an N-input LUT.
Packaging one or multiple LUTs with registers, as well as some additional logic
such as multiplexers or full adders, results in a configurable logic block (CLB).
Sequential or combinatorial functions can then be constructed by connecting and

1With some limitations.
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wire clk, a, b;
reg output;
always @(posedge clk) begin

output <= a & b;
end

D Q

clk

a
b output

Figure 2.1: D-flipflop with operation in Verilog code (left) and in gate form (right)

configuring a number of CLBs accordingly. An FPGA usually consists of a array
of these CLBs. Connections between these CLBs is done via routing channels
whose connections can also be reconfigured at certain interconnect points [17, p.
274].

Implementing circuits through the use of CLBs is less efficient than imple-
menting them directly in silicon. This results in increased space and power usage,
as well as decreased clock speeds due to propagation delays. To lessen this im-
pact, companies creating FPGAs include additional resources on or next to their
silicon. AMD includes memory, memory controllers, I/O transceivers, and even
entire GPU blocks in some of their products [3]. The Alveo product family by
AMD goes a step further and integrates FPGAs with network transceivers on a
PCIe expansion card. Overall, there are a number of companies creating FPGAs
and derived products, ranging from very small devices targeting embedded sys-
tems to high performance devices with impressive compute capabilities.

2.3 HDL and RTL
Hardware description languages (HDLs) are employed to design digital circuits.
These languages usually operate on the level of wires, registers and gates, a level
of abstraction called register transfer level (RTL). While these languages do allow
for circuits to be defined by connecting wires to gates explicitly, this is not the
preferred method. Hardware description languages (HDLs) can be transformed,
synthesized, to gate level by defining the behavior on a slightly higher level. Sys-
temVerilog and Verilog are the HDLs used in this thesis.

Figure 2.1 shows a snippet of Verilog HDL code and an associated gate rep-
resentation to illustrate basic synthesis. In the figure, the Verilog block uses 3
wires clk, a, b, and the register output. The always block is executed every time
a positive edge is detected on the wire clk. Only when this condition is met, do
the contents of the block take effect. Once a block executes, all operations take
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place in parallel, which is the biggest difference from sequential languages. The
definition of output as a register and the assignment inside an always block with
a trigger condition of a rising clock implies a D-flip-flop. A D-flip-flop will save
the value at its input D internally and output that value on its output Q whenever
a rising edge is applied to its clock input. Because the value of the assignment is
an AND operation on a and b, the & gets synthesized into an actual AND gate.
When targeting FPGAs, the AND gate would most likely be realized in a LUT.
The AND gate would be called the combinatorial path, since its output, D, is only
dependent on its inputs and no previous state. More complex functions can also
be defined. An addition operand in the HDL code would synthesize into an adder.
These functions usually operate on bit-vectors, which represent an ordered group
of individual wires or registers.

Still, operating on basic or built-in functions would be overwhelming when
designing larger circuits. In order to create a hierarchy and enable reuse, these
circuits can be organized into modules, which define a set of connections, usually
either an input or an output. These are often referred to as intellectual property
(IP) modules. In the context of FPGAs, modules which contain registers usually
need at least a clock input. Adding a reset signal is also a good design choice
since the data stored in registers is usually unknown at startup.

To test the circuit before deploying it to an FPGA or manufacturing the cir-
cuit, Verilog and SystemVerilog contain extra functionality to simulate the circuit.
Testing on the FPGA would be difficult as FPGAs usually do not offer much de-
bugging support without introducing overhead. Coming from software develop-
ment, the lack of observability for a running application requires a shift in attitude
towards tests. Simulations are the only reliable and efficient tool to test HDL
designs, as well as identify and correct mistakes. This is usually done by individ-
ually, or through the use of verification IP (VIP) collectively, defining the input
signals with special HDL code. The output can then be observed and checked
against expected values.

Using these tools, more complex circuits can be created. From simple logic
gates to full adders, from full adders to Arithmetic Logic Units, from Arithmetic
Logic Units to CPUs. The book “Digital Design and Computer Architecture” by
Harris & Harris [17] is a good resource for further study on the subject.

2.4 FPGA interfaces
To connect different IP modules together, a common interface or rather, a set of
common interfaces is needed. There are already a number of interface standards
in use like Avalon by Intel/Altera [21] or the Wishbone bus. However, since this
thesis is using AMD Alveo U50 FPGAs, as well as the AMD Vivado IDE, the



2.4. FPGA INTERFACES 11

Advanced eXtensible Interface (AXI) by ARM is used.
AXI is part of the Advanced Microcontroller Bus Architecture (AMBA) and

defines three interfaces in its fourth iteration: AXI-Stream, AXI4, and AXI4-Lite.
It is extensively used in the Xilinx Runtime Environment (XRT), the execution
environment natively supported by the Xilinx FPGA accelerators. The following
sections will illustrate these interfaces and their general use cases.

2.4.1 AXI-Stream

master slave

TVALID

ACLK

ARESETn

TDATA

TKEEP

TREADY

TSTRB

TLAST

TID

TDEST

TUSER

8*n

n

n

i

d

u

Figure 2.2: Signals in use by AXI-Stream with width parameters n, i, d, and u

AXI-Stream is an interface for transferring data between a data emitting source,
the master, and a data consuming drain, the slave [8]. While the interface def-
inition contains a total of 11 signals, shown in figure 2.2, this can be reduced to
6 types of signals, shown in Table 2.1. To better illustrate the function of these
signals, we will focus on four signals, ACLK, TDATA, TVALID, and TREADY.

ACLK is the global clock and all signals should be sampled on its rising edge.
The AXI-Stream protocol does not directly support the use of different clocks
between the master and slave but there exist clock domain crossing modules for
AXI-Streams. The master drives the TDATA signal to its proper value and indi-
cates this by also driving the TVALID signal HIGH. This signals to the slave that
there is data to be consumed. The slave indicates that it is able to receive data by
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Type Associated signals Direction
Clock ACLK Global
Reset ARESETn Global
Data TDATA master to slave

Data valid TVALID master to slave
Slave ready TREADY slave to master
Metadata TKEEP, TSTRB, TLAST, TID, TDEST, TUSER, master to slave

Table 2.1: Types of signals in use by AXI-Stream

Figure A3-2 VALID before READY handshake

READY

VALID

INFORMATION

ACLK

T1 T2 T3

Figure 2.3: Excerpt from [8, p.39], showing a transmission where the master waits
for the slave to acknowledge the transmission

driving the TREADY signal HIGH. A transfer occurs when, and only when both
TVALID and TREADY are HIGH.

During that cycle, the slave must consume the value currently applied to TDATA
since the master can, and probably will, change the value of TDATA, TVALID,
or both. It is important to note that the slave is allowed to wait for the master
to drive TVALID HIGH, as shown in figure 2.3, but the reverse case is not al-
lowed. Not only can a master never wait for a slave to be ready, once it has driven
TVALID HIGH, both TVALID and TDATA are not allowed to change until a
transfer occurs. This rule does not imply that a slave cannot wait for a master to
start a transaction while TREADY is asserted. Such a case can be seen in figure
2.4. Depending on the design of a circuit, it is also possible that a transfer can
occur during a single cycle. Figure 2.5 depicts this case.

When talking about AXI-Streams, there is an associated terminology. If TVALID
is driven HIGH but the slave has driven TREADY LOW, the stream is stalled.
Such an event can be seen in figure 2.3. In this context, the slave has applied
backpressure to the stream since the master cannot advance to the next data trans-
fer. Conversely, if TVALID is LOW, the stream is considered idle. Figure 2.4
shows a handshake where the stream is initially idle.

There is a special case to this since the TREADY signal is optional, meaning
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Figure A3-3 READY before VALID handshake

READY

VALID

INFORMATION

ACLK

T1 T2 T3

Figure 2.4: Excerpt from [8, p.39], showing a transmission where the slave waits
for the master to initiate a transmission

Figure A3-4 VALID with READY handshake

READY

VALID

INFORMATION

ACLK

T1 T2

Figure 2.5: Excerpt from [8, p.40]. Sometimes, a master and slave drive both
TVALID and TREADY high in the same cycle. In this case, the transfer com-
pletes in a single cycle.
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it can be omitted. When the TREADY signal is omitted, the master assumes
that the slave is always ready to consume the data and a transfer takes place on
every cycle that TVALID is HIGH. The remaining signals are all generated by the
master and read by the slave, and have the following functions:

ARESETn is a global reset signal used to reset all or some components to a known
configuration, usually their intended initial state. It is active-LOW, meaning that
a logical 0 is used to indicate that a component should reset.

TKEEP is a bit array containing “byte qualifiers”, meaning that the interpretation
of a single bit should be applied to a whole byte in TDATA. A logical 1 implies
that the associated data byte does indeed contain valid data and cannot be dis-
carded from the stream. This can happen either when the stream is sparse, e.g.
only some of the data bytes contain valid data per transfer, or when the stream
is unaligned, meaning that either the start, end, or both of the data is not aligned
with the width of TDATA. The latter case is often unavoidable when sending data
whose length is not a multiple of the stream data width, e.g. sending 48 bits of
information over a 32 bit wide stream necessitates at least 2 transfers. Suppose the
first 32 bits are transmitted in the first transfer, TKEEP would contain the value
11112. If the last 16 bits are transmitted in the 2 lower data bytes, TKEEP would
contain the value 00112. The specification does not require transfers to be packed
but a more sparse stream will, of course, decrease throughput. TKEEP is an op-
tional signal, meaning that it does not need to be implemented by all instances of
AXI-Stream. If TKEEP is not defined, it is assumed that all bits are a logical 1,
and all TDATA bytes contain data.

TSTRB is a bit array containing byte qualifiers equivalent to TKEEP. This signal
identifies so-called “position bytes”. This marks a data byte to contain position
data on following bytes rather than data itself. The specification does not mention
specific use cases but the transmission of a sparse matrix can be sped up this way.
Following a non-zero value, transmit the number of zero-values until the next non-
zero value and mark the bytes containing this number as a position byte. Caution
must be taken with such a use of TSTRB since the specification also explicitly
states: “Since the data associated with a position byte is not valid, an intercon-
nect need not transmit the TDATA associated with a byte for which TSTRB is
deasserted LOW.” [8, p. 21]. TSTRB is also an optional signal and its default
value for all bits is logical 1.

TID is a signal of variable bit width i which differentiates logical streams from
each other. This can be used to transmit data to different parts of a component or
to different components entirely when using an interconnect. In the same vein,
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TDEST is a signal with variable bit width d which is used to carry routing in-
formation on the specific stream. The specification contains a number of require-
ments when interleaving, packing, and up- or down-sizing streams with TID and
TDEST signals but these are not required in the context of this thesis. Both TID
and TDEST are optional signals and their absence implies that all data transferred
on a stream interface belongs to the same logical stream.

TLAST allows for the discretization of the stream into packets of variable length
by marking the final transfer of a packet with a logical 1. This can be used in
conjunction with TID and TDEST to implement more complex networks but is
primarily used in this thesis to indicate packet boundaries in a stream w.r.t. their
transmission over the network. The absence of this optional signal implies that
there are no packets. Different logic on this signal, e.g. driving TLAST to a
logical 1 every x cycles or every x transfers can influence arbitration decisions
when using interconnects.

TUSER is a signal which can be used to transfer out-of-band information. It has
a variable bit width u and can either hold general or byte-qualifier information.
Since the specification does not enforce a particular handling of this signal, care
must be taken when using interconnect components since these might interpret the
user signal as byte-qualifiers and split them up when up- or down-sizing streams.

When talking about a named AXI-Stream, stream NAME_AXIS will have the
signals NAME_AXIS_TVALID, NAME_AXIS_TREADY, etc.. For brevity,
especially in figures, the AXIS_ part will be omitted, resulting in NAME_TVALID.

2.4.2 AXI4 & AXI4-Lite
AXI4 full (AXI4) is a complex interface, defined by the AMBA AXI Proto-
col Specification [7]. Its focus is on providing address-based reading and writ-
ing functionality, with the master initiating every transfer. While it focuses on
throughput, just like AXI-Stream, the use of addresses always breaks down the
data flow into discrete transactions. It can be split in two sections, the read and
the write section, which can be broken down further into 2 and 3 channels respec-
tively. Figure 2.6 shows the channels and their data flow direction. A channel in
this context is akin to a AXI-Stream interface and follows the same handshaking
rules. Each channel has a VALID and READY signal to facilitate this handshake.
The read and write portions of a AXI4 interface can act completely independently
and parallel to each other. If read/write ordering is desired, the master must ensure
ordering of such transaction itself. Ordering of read/read and write/write instruc-
tion is part of the specification, with the included option of dropping the ordering
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Figure 2.6: AXI4 channels as defined in the Protocol Specification [7, p. 29-35]

requirement for some or all transactions [7, p. 82].
A full read transaction begins with the master setting the appropriate signals

on the read address channel and signaling this to the slave via ARVALID2. The
slave should then acknowledge the address reception and internally retrieve the
data associated with the received address. Once it does, or was unable to retrieve
the data, it drives the appropriate signals on the read data channel and indicates
this by setting RDVALID3 HIGH. Depending on the read response included in
the read data channel, the master can determine if the data transmitted is correct
or wether an error has occurred. The specification calls for four different read
response options, to indicate two cases denoting success, one with exclusive ac-
cess, and two cases denoting failure, depending on whether an error occurred in
the slave or an interposed interconnect module [7, p. 57]. To optimize transac-
tions, AXI4 defines a burst mechanic to group multiple accesses together. Three
schemes for address behavior in bursts are defined: fix address, incrementing ad-
dress, wrapping address [7, p. 46]. Not only is the read address channel affected
by burst, the read data channel must also signal the end of data associated with
a burst. The AXI4 protocol further defines behavior pertaining to caching, qual-
ity of service, privileged access, reduced bus width and splitting the address space
into regions. The protocol also mentions support for locked transactions but AXI4
has rescinded support for this feature over AXI3. All channels additionally define
a USER signal which enables more custom data transmission.

The write section of an AXI4 interface differs from the read section through
the addition of an additional channel from master to slave, the write data channel.
Another channel enables the write section to transfer data in parallel or concur-

2AR stands for Address Read
3RD stands for Read Data
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rently to the address. Equivalent to the read channel, a slave must acknowledge
transfers from the master on the write address and write data channel. Once both
the address and write data have been received, the slave must pass its write re-
sponse back to the master. Signaling of write responses is the same as signaling
of read responses and the write section supports the same features as the read
section.

The AXI4-Lite interface is, as the name implies, a reduced version of the
AXI4 interface. Quoting the AXI specification directly: “transactions are of burst
length 1 [and] all data accesses use the full width of the data bus [...] of 32-bit or
64-bit” [7, p. 126]. Not only does a reduction of the feature set cut the required
signals down to 21 from 47 signals4, it also reduces the number of possible states
a master and slave can inhibit. Additionally, AXI4-Lite allows slave components
to ignore write strobes [7, p. 127].

A consequence of removing bursts is a reduced throughput in most cases. This
is also acknowledged in the specification: “AXI4-Lite is suitable for simpler con-
trol register-style interfaces [...]” [7, p. 125]. XRT uses the AXI4-Lite interface to
control kernel execution and provides the user application access to this interface,
as well as parsing register addresses to register objects if the adresses are provided
by the kernel developer. The v++ compiler automatically connects these control
interfaces with an AXI interconnect by Xilinx and maps their address range into
the address space accessible from the CPU via the XRT shell.

2.5 XRT

The Xilinx Runtime (XRT) is a set of components developed by AMD/Xilinx
to manage devices with FPGA components. The following section is a non-
exhaustive summary of the official XRT documentation [6] and will focus on its
use with Alveo Cards, specifically the Alveo U50, which use PCIe to communi-
cate with a host. As the name implies, XRT strives to create a runtime environment
and standardize system development around it. To illustrate this further, figure 2.7
shows where XRT components are located in a system.

XRT manages kernels, a type of RTL module, executing on the FPGA. These
modules follow a number of additional requirements when compared to generic
RTL modules. It is possible to define these kernels in higher level languages
which are compiled by high level synthesis (HLS) tools into RTL representation.
However, this thesis mainly uses HDL to define kernels.

Modules are considered kernels if they meet the following requirements: At

450 when including the optional low-power interface
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Figure 2.7: Block diagram representing example configuration of host and FPGA
accelerator, XRT components marked red, kernels marked blue.

least one clock and an active-low reset input must be present. Depending on the
execution model, which will be explained shortly, an interrupt and/or an AXI4-
Lite control interface may be present. Additionally, the module may expose any
number of AXI4 and AXI-Stream interfaces to communicate with other kernels
or special components exposed by XRT on the FPGA.

XRT handles kernel management based on the execution model of the ker-
nel. Kernels which take arguments, operate on them and return a result have the
most software support. XRT automatically creates a function representation for
them on the host when a binary containing them is loaded through the userspace
library. In this case, XRT manages the complete execution, starting at the in-
vocation from application software running on the host system. This execution
flow can optionally be pipelined to increase throughput. Another execution model
is the unmanaged execution model where a kernel only operates on AXI-Stream
data. Because the kernels developed in this thesis require more complex execu-
tion handling, XRT consideres them as “user-managed” kernels. Control of such
kernels is achieved by a user application writing and reading to and from registers
via the AXI4-Lite interface. Compilation of the kernels into a binary is performed
by the the v++ compiler.

To facilitate loading and execution of kernels, regardless of the execution
model, the FPGA is divided into two partitions: Shell and User. The Shell han-
dles PCIe communication and provides the environment for kernels to function.
It is loaded from onboard flash memory at boot time and includes some runtime
management functions. Xilinx calls this execution management inside the shell
Embedded runtime (ERT). In contrast to other FPGAs, loading a compiled binary
onto the User partition is done via the XRT driver on the host via PCIe, as opposed
to a separate out-of-band programming interface.
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Access from software to the kernels included in an XRT binary is done via the
XRT drivers, which are split between two kernel drivers, xocl and xmgmt, and an
user application library. Xilinx provides libraries for both Python and C++, both
of which are used in this thesis depending on the performance requirements.

2.6 Related Work
Related works can be broadly categorized into two categories: FPGA networking,
and consensus services.

2.6.1 FPGA networking
Characterizing Off-path SmartNICs for Accelerating Distributed Systems by Wei
et al. [38] analyses the architecture and performance implications of SmartNICs,
specifically Off-path SmartNICs and the NVIDIA Bluefield-2 data processing unit
(DPU). Off-path SmartNICs are network interface cards (NICs) wherein the com-
putational elements, most commonly a standalone system on chip (SoC), are not
located on the critical path. A result of Off-path architectures is that three com-
munication paths exist: Network-Host, Network-SoC, and SoC-Host. The Alveo
U50, as well as the other products in the Alveo U family are, however, On-path
SmartNICs. This implies that there may be a slightly higher base latency when
no compute units are involved, but the data path is shorter when compute units
are in use compared with Off-path SmartNICs. Additionally, the paper has a fo-
cus on remote direct memory access (RDMA) as the underlying communication
primitive whereas this thesis focuses on user datagram protocol (UDP)/internet
protocol v4 (IPv4) over Ethernet.

ACCL+ by He et al. [18] propose an FPGA-based communication layer for
collective operations such as Broadcast, Scatter, Gather, and Reduce. They outper-
form classical message passing interface (MPI) RDMA communication in which
FPGA-based services communicate over a seperate NIC and the host CPU. An-
other feature of ACCL+ is support for different transport protocols and a micro-
controller in the control plane. As a consequence, their design is flexible and can
be tuned to different collective programming without recompiling the FPGA bit-
stream. ACCL+ is similar to the work presented in this thesis, though it targets
MPI-like primitives. MPI primitives have different communication patterns and
optimization targets than the primitives addressed in this thesis.

nanoPU by Ibanez et al. [20] attempts to minimize network latency and over-
head for CPUs by directly pushing socket data to a new CPU register. Their work
derives from a RISC-V CPU and expands it by including a hardware scheduler
to minimize overhead when switching between processes. Since a tape-out for
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their modified architecture would be extremely expensive and time consuming,
Ibanez et al. simulate their design on AWS FPGAs. They achieve a wire-to-wire
latency of 69 ns in this scenario, assuming a 3.2 GHz clock. However, Ibanez
et al. assume a direct link between their NIC, bypassing typical PCIe latency,
and run their benchmark on bare metal without an OS, which typically introduces
additional jitter. The only major similarity between nanoPU and this thesis is the
attempt to reduce processing latency in the network context and the use of FPGAs,
though nanoPU does not target FPGAs directly.

FPsPIN by Schneider et al. [33] implements the sPIN machine model on an
FPGA to evaluate it on actual Hardware. The sPIN machine model consists of
compiled handler functions which are executed on independent cores at packet
reception. FPsPIN is thus an implementation of the sPIN framework for the design
of algorithms and packet processing at a higher level. It might be possible to
implement the algorithms used in this thesis using the sPIN machine model, but
this amounts to a different architecture.

Corundum by Forencich et al. [12] is an FPGA-based SmartNIC. Its open
source architecture and integration into the Linux kernel networking stack present
a potential framework for this thesis. The complexity of integration into the
project is a major reason why this thesis elects not to use Corundum. It may very
well be possible to integrate the work presented in this thesis into the Corundum
framework since it too uses packet based AXI-Stream primitives. Further study is
required to definitively assert such a compatibility.

2.6.2 Coordination services

A seminal work in the field of DSs is the Paxos algorithm by Lamport [23, 24]. It
introduces 3 roles which together arrive at a decision after two phases. The paper
itself proves safety of the algorithm and introduces the assumptions under which
it can make progress.

Raft by Ongaro & Ousterhout [28] is a consensus algorithm inspired by Paxos.
A main motivation of Raft is the need for a simplified algorithm. To that end, raft
splits consensus into three components: leader election, log replication and safety.

High-Performance Byzantine Fault Tolerant Consensus is a master thesis by
Gebauer [13]. In his thesis, Gebauer implements a BFT consensus algorithm in C,
designed with future offloading in mind. Profiling his implementation, Gebauer
shows that the cryptographic functions heavily contribute to execution time.

RACS and SADL by Tennage et al. [37] propose splitting consensus meta-
data and data. Consensus rounds operate only on metadata referencing previously
asynchronously distributed data. The focus of Tennage et al. is on their algorithm
and its performance in a WAN setting and is implemented entirely in Software.
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uKharon by Guerraoui et al. [15] is a Membership Service which uses RDMA
semantics to detect application and OS failures, as well as a 1ms timeout to detect
network failures. It uses a modified version of Paxos to provide user nodes a lease
on membership. This lease is renewed periodically in the background while other
user apps get membership status from that lease. uKharon algorithm and network
primitive differ from this thesis and achieves the best performance known to date.

Consensus in a Box by István et al. [22] is an implementation of Zookeepers
atomic broadcast [25] on an FPGA. It is a seminal work in the field of consensus
implementations by leveraging the highly predictable execution of FPGAs and
their networking capability. Their results are bottle-necked by the available band-
width of the 10G network stack by the ETH Zürich Systems Group [34] and the
FPGA used. This thesis uses a newer 100G network stack [35], of which the ETH
Zürich Systems Group is also a contributor.

Waverunner by Alimadadi et al. [1] adapts the Raft [28] consensus algorithm
by moving 3 functions of the Raft algorithm into an FPGA accelerator. These 3
functions allow their system to respond to client requests, log append messages,
and the corresponding ACK on the FPGA during stable operation. Failure and
recovery, as well as other states are handled entirely in software. In this sense if
follows the general concept of Consensis in a Box [22] by leveraging the potential
performance improvements of FPGAs. This allows Waverunner to achieve request
rates of up to 26 mega packets per second (Mpps), bounded by the 100G FPGA
Network connection. Waverunner is similar to the work in this thesis, though this
approach differs by choice of algorithm. Due to the leader-based algorithm of
Waverunner, it is limited by the bandwidth of the leader, a fact Alimadadi et al.
already notice in their work. This thesis also expands on the scope by enabling
FPGA based applications to leverage DS primitives.



22 CHAPTER 2. BACKGROUND



Chapter 3

Design

Since this work implements a uniform consensus algorithm in the Crash Stop with
Omission (CS+O) failure model with assumed synchrony [29, 31], we provide a
brief overview below.

Synchronous physical clocks [9, p.46] assume a clock at every process with
a bounded clock drift from a global clock. As long as a node operates without
failure, it can execute a process in a bounded time, i.e. assuming synchronous
computation [9, p.46]. Message transmission is also assumed synchronous with
regard to omission failures [29, p. 3]. A message is either not delivered at all
or has a bounded transmission delay. Omission occurs if a process A sends a
message m along a link to process B but m is never delivered to process B. Such
an omission failure can be transient as opposed to a process failure. This neatly
translates to the use of UDP/IPv4 over ethernet.

This chapter first explains the algorithm, based off the algorithm by Parvédy
and Raynal [29] and the changes by Rovelli [31]. After that, the design of an
implementation framework is addressed as part of RQ2.

3.1 Consensus

To simplify consensus algorithms, they can be split into an ordered sequence of
rounds, each consisting of phases. Parvédy and Raynal [29] describe an algorithm,
henceforth called Parvédy & Raynal Algorithm (PR-Alg) which does exactly that.
It separates a single round into three phases: send, receive and computation, as
shown in figure 3.1.

During the send phase, every node sends information about its current state
to all other nodes. Every node then waits to receive the packets from the remote
nodes. Finally, the computation phase decides whether to continue or a decision
has been reached. The algorithm does not require the packets to either arrive in

23



24 CHAPTER 3. DESIGN
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Figure 3.1: Round chaining for PR-Alg

some order or be processed in some order. Each node keeps a set of proposed val-
ues V , a set of suspected dead nodes suspected, a set of locked nodes locked, and
the current round number r. The locking condition for nodes is highly intertwined
with the theoretical proof of PR-Alg and will not be repeated here. Conceptually,
a locked node has learned every value it expects to ever know, no matter how many
more rounds follow this point. Once the number of locked nodes exceeds a sep-
arately defined quorum, the algorithm decides on the smallest value in the set V
and terminates. The control flow of this algorithm is captured in figure 3.2. Their
algorithm is also considered uniform, which implies no two processes decide on
different values.

SETUP
(1-3)

SEND
(4-5)

RECEIVE
(6-12)

COMPUTATION
(13-17)

DECIDE
(19)

QUORUM
FAULT
(13)

Figure 3.2: Control phases of the PR-Alg [29]

Rovelli modifies PR-Alg to create cool kids club (CKC) [31]1, shown in the
appendix under 2. The biggest change in the behavior of CKC as opposed to PR-
Alg is the value being decided. PR-Alg decides on the smallest value from V ,
while CKC decides upon V itself. Rovelli further changes the locking criterion
as outlined in his work. As part of this, he changes the algorithm to operate on
sets of live nodes instead of suspected faulty nodes. To facilitate a continuous
operation, he also pipelines the algorithm to run repeatedly. Once a decision has

1Paper pending
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Figure 3.3: Round phases of the reduced CKC algorithm

been reached, the processes advance to the next consensus instance and reset the
round structures. This change to execution flow is is illustrated in figure 3.3.
There are also a number of changes introduced by Rovelli in regards to group
membership. Since the logic underlying them is rather complex, we will focus
on a simplified mode of operation first. This simplified version can be seen in
algorithm 3 in the appendix.

3.2 Implementation abstraction
Observing the consensus algorithm presented in the preceding section, there are
5 interactions which represent interaction with outside components. Namely, this
comes down to these main tasks:

1. Input (i.e. proposing a value)

2. Output (i.e. deciding on a value)

3. Message emission

4. Message reception

5. Time indication

Figure 3.4 shows the completed layout and modules which are required to perform
these core tasks.

In our use case, proposition of values, as well as the decisions should be accessible
for both applications running on the FPGA as well as applications running in
software. AXI-Stream seems to best match this requirement since it is sequential,
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has a performance focus and is limited in its complexity. Additionally, an instance
can detect if the input does not have any data if there is no data pending on the
input bus as explained in section 2.4.1.

If the output is not consumed fast enough, this can stall execution, which
presents an issue. Hence we include the timely consumption of data as a require-
ment for services which leverage the framework. Consequently, an algorithm can
assume failure of the local process if the output is stalled for too long.

The UDP/IPv4 layer described in 4.1.2 together with the packet injector mod-
ule described in 4.3.3 provide a rudimentary primitive. UDP best represents the
communication model in use by PR-Alg and CKC, since it does not contain im-
plicit retransmission logic like transmission control protocol (TCP) which could
incur additional delays, hampering the synchronous communication required by
the algorithm. To provide a more elegant approach, the broadcaster module bun-
dles a packet injector with an encoding module and emission logic.

By defining the encoding and decoding of full packets as separate modules,
the encoder and decoder, we attain multiple benefits. The broadcast module can
focus entirely on managing message targets and output semantics like backpres-
sure, achieving modularity. Taking a number of inputs as bit vectors or arrays
and packing them into a full packet can be error-prone. By defining the encoder
and decoder together, ensuring that data is transmitted correctly becomes easier.
Especially when verilog arrays are packed into a single bit vector, endianness can
be a source of errors. Endianness describes the ordering of bits in a bit vector,
i.e. whether the bit at index 0 is the highest valued or lowest valued bit. Addi-
tionally, the encoder can include, and the decoder can check for, identification of
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a message.
The broadcaster simply takes a number of input variables, encodes them using

the encoder and links the resulting packet into the packet injector. It then au-
tonomously queues the packets to the UDP/IPv4 layer. The main algorithm is free
to continue execution without having to immediately handle backpressure from
the network. If the algorithm queues packets faster than the broadcaster can emit
them, the algorithm can either slow down or fail.

Message reception logic also relies on the UDP/IPv4 and the CMAC as de-
scribed in 4.1.2. Analogous to the broadcaster, packet reception logic can be
greatly simplified if the algorithm only operates on information extracted from
complete packets. To achieve this, we can wrap the decoder module with a sepa-
rate state machine. This results in a parser module. It listens on an AXI-Stream
for packets and either drops them if they do not match in length or the decoder
deems them outside the message defintion. The parser only requires a simple
handshake from the algorithm, akin to AXI-Stream as explained in 2.4.1, to indi-
cate the algorithm has seen and processed the message before the next message
can be received and decoded.

The final module consists of two somewhat separate components. If we look
at the concept of a round indication mechanism, it must satisfy three requirements:

1. Provide a periodic and stable indication to the algorithm that a new round
should begin

2. Ensure that nodes in a cluster do not drift too far apart

3. Start the cluster in sync to bootstrap cluster operation

The first requirement can be easily implemented using a counter, relying on the
system clock to increment it periodically. This counter needs to be adjustable
in order to vary the actual frequency of indication events. Algorithms can often
discern if the local node is receiving messages from a subsequent round by con-
sensus instance number and round number. If we provide a signal to indicate such
a condition, the node can compensate by resetting the timer early. This can hap-
pen if the timer is not in phase with the other nodes or it experiences larger clock
drift than anticipated. To counter this, the counter will adjust its period on such a
signal, a trim which decays over subsequent rounds. While there are more elabo-
rate methods to ensure little clock drift such as precision time protocol (PTP), this
mechanism is simple and provides some stability.
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Starting the cluster in a (somewhat) synchronous manner could also rely on
PTP, but PTP is a complex protocol. The first attempt at implementing a boot-
strapper module involved a packet injector and a receiver which listens for a de-
fined packet. A single node is designated as the bootstrapper and must be started
as the last node in the cluster. It then emits a special packet to all nodes, including
itself. Once the packet is received, a node will start its timer and indicate this
to the algorithm as a round change indication. Since the setup involves a single
TOR-switch, the latency experienced by each node should be very close, as can
be seen in the latency evaluations. There is, however an issue with the current
setup. Some component filters out the packet that the bootstrapper sends to it-
self. It is not entirely clear whether this is caused by a lower level function of
the 100G MAC (CMAC) or the filter rules of the switch employed in the cluster.
The CMAC shows the correct number of emitted packets. The switch does not
register a packet drop and exhibits this behavior even with the corresponding filter
rule disabled. Since observing transmission on the wire is prohibitively complex
and expensive, this problem is more easily solved by designing around it. Since
the latency is extremely stable, the local node can be started by setting a timeout
equivalent to 1

2
of the round trip time (RTT).

Since the network is being used both by the algorihm and the bootstrapper,
two additional modules are required. An AXI-Stream Broadcaster and a AXI-
Stream switch to duplicate and merge the network streams respectively. Finally,
the wrapper includes an AXI4-Lite control slave in order to manage the system
from software.

These design choices result in the design as visible in in figure 3.4. To an-
swer RQ2, by providing I/O abstractions to applications and the network, as well
as a round indication mechanism with feedback, a synchronous distributed sys-
tem protocol can be implemented by transforming the control flow into a state
machine. The abstraction of I/O to simple events especially reduces the states re-
quired as all message data is presented during one cycle. Defining the encoding
and decoding of information into the message together, yet as separate modules,
increases modularity and decreases susceptibility to parsing errors.



Chapter 4

Implementation

The implementation of FPGA functionality is directly based on the Github project
xup_vitis_network_example [30]. It is provided by Xilinx as an entry point and
example for leveraging the networking functionality of their Alveo FPGA accel-
erator cards. Naturally, it is built in the Xilinx Runtime. Since it was developed
withing the Xilinx University Program, there are a number of different contribu-
tors outside Xilinx. Namely, these are the Systems Group of ETH Zürich, Switzer-
land and HPCN Group of UAM, Spain [32,35]. There are three licenses covering
the whole repository, all of them BSD 3-Clause Licenses.

The chapter is structured as follows: First, the network stack inside the FPGA
is addressed, followed by considerations for the design of modules. Following
that, a number of modules whose functionality is not directly tied to the CKC
implementation, but are used as components, are introduced. Finally, the imple-
mentation of CKC is covered.

4.1 Network stack

Networking functionality is split between two distinct units, the CMAC kernel
and the UDP/IPv4 kernel. This split occurs between OSI layers 2 and 3, the
Data Link layer and the Network layer respectively. In this case, the UDP/IPv4
kernel handles both the network and transport layer, effectively merging layer 3
and 4. Since this implementation only uses UDP as a transport protocol, a merging
of multiple layers is possible. On a higher abstraction level, the whole network
stack provides packet based network input and output to and from a set of pre-
determined targets. Any other network implementation that implements such an
abstraction can also be employed as an underlying network primitive for this work.

29
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4.1.1 CMAC
Media access control (MAC) is handled by the UltraScale+ Devices Integrated
100G Ethernet Subsystem by AMD/Xilinx [2]. It requires a license to be installed
in the compiling system which is provided free of charge by AMD/Xilinx. It
connects directly to the network transceiver wires and exposes two AXI-Stream
interfaces as well as an AXI4-Lite interface for statistics and control register ac-
cess. One AXI-Stream interface is a TX slave and the other is a RX master.

The Ethernet subsystem is encapsulated in the 100G MAC (CMAC)1 kernel
to provide further functionality. This Kernel is provided as part of the xup_-
vitis_network_example [30]. It includes frame padding and clock do-
main crossing for the stream interfaces since the Ethernet subsystem is clocked
at 322.265 MHz, while other kernels are clocked at the standard 300 Mhz. Both
the TX and RX AXI-Stream interfaces have a data width of 512 bits. Actual data
transfer to and from this kernel is in the form of raw Ethernet frames.

4.1.2 UDP/IPv4 layer
Operating on raw Ethernet packets coming and going from and to the CMAC
kernel can become exceedingly complex. The project 100G-fpga-network-
stack-core [36], by Sutter et.al. [35] and Ruiz et.al. [32], provide further ab-
straction. It implements UDP/IPv4 functionality and exposes this to other kernels
through two 512-bit AXI-Stream interfaces, one for TX and one for RX. The the-
oretical maximum bandwidth of these internal interfaces at clock frequency of
300MHz is given below.

512bit ∗ 300Mhz = 153.6Gbps

The payload interface bandwidth of the UDP/IPv4 layer is thus sufficient to sat-
urate the 100 Gigabit/s network bandwidth. How long the bus can be stalled is
directly dependent on the packet size. Taking a 64 byte payload (I) and a 1408
byte payload (II) as worst- and best-case, the AXI-Stream interface is at the fol-
lowing utilization:

100 Gbps
(64 + 8 + 20 + 38) byte ∗ 8 bit

byte

/
153.6Gbps
64 byte ∗ 8 bit

byte

= 32.05% (4.1)

100 Gbps
(1408 + 8 + 20 + 38) byte ∗ 8 bit

byte

/
153.6Gbps

1408 byte ∗ 8 bit
byte

= 62.20% (4.2)

This assumes a UDP header of 8 bytes, an IPv4 header of 20 bytes, and an
Ethernet overhead of 38 bytes per packet, as well as a 100 Gbps physical link.

1The roman numeral C to indicate 100Gbps.
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Broken down into its components, Ethernet includes a 8 byte preamble and start
of packet sequence, 14 byte header, 4 byte frame check sequence, and 12 byte
interpacket gap.

The UDP/IPv4 layer further includes an ICMP echo block which greatly sim-
plifies network configuration and associated debugging. ICMP echo is more com-
monly known as a simple ping message. Since the UDP functionality is based
on IPv4 addresses as opposed to MAC addresses, an address resolution proto-
col (ARP) translation block is included as well. It is possible to both insert
up to 256 entries manually and use automatic ARP discovery. [30, /NetLayer-
s/README.md].

Actual UDP sockets are defined by their entry in the socket table and consist
of 3 entries and a valid bit. The 3 entries are the remote IPv4 address, the remote
port, and the local port. The local IPv4 address must be set separately and is the
same for all sockets. All received messages belonging to a socket are stripped of
the Ethernet, IPv4 and UDP header and only the UDP payload is pushed to the RX
stream. To distinguish between the different sockets on the RX and TX stream,
the TDEST value of the stream is used to identify the socket.

The project includes a minimum viable configuration to send and receive data
from the host CPU. This is accomplished by two kernels, mm2s and s2mm, which
bridge the stream-oriented nature of the UDP/IPv4 layer and the memory-oriented
structure of Host-FPGA transfers. The mm2s kernel takes a buffer handle, size
of the handle, and a destination socket number. It then sequentially reads from
that buffer and outputs the data to its AXI-Stream master interface. Since the
UDP/IPv4 layer requires packet separation, it marks every transfer including the
1408th byte with TLAST to indicate the end of a packet. A packet size of 1408
bytes is close to the maximum transmission unit (MTU) of UDP over IPv4 over
Ethernet, yet cleanly divides by up to 128 without remainder. This simplifies
packetization in the mm2s kernel since it would need to account packet bound-
aries not being aligned with AXI-Stream transfers. In the case of 512-bit wide
streams, this constitutes a packet transmission every 22 cycles. Reception is even
simpler. The s2mm kernel writes all incoming data to a buffer until the buffer
is full. In cases where the buffer is not fully filled, the s2mm kernel stalls but it
is still possible to read the partially filled buffer from software. The kernel does
not have its own timeout mechanism to indicate this, and calling the appropriate
wait function never returns until the buffer is filled completely or the thread is
interrupted otherwise.
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Figure 4.1: Kernel design with wrapper, control slave and core IP

4.2 Modular kernel design
Kernels, like all modules, need to be tested via simulation, which entails input sim-
ulation. XRT requires their control and status registers to be accessible through
an AXI4-Lite interface. Since AXI-Stream is complex, both in design and simu-
lation, even when employing the associated VIP, it makes sense to separate core
functionality from the AXI4-Lite control interface. This separation is shown in
figure 4.1 and enables simplified development and simulation of the core IP mod-
ule. The wrapper module can focus on conforming to the XRT specification, while
the core module does not need to implement any AXI4-Lite logic. In general, the
design flow for a kernel becomes twofold:

First the core module is created without any regard to the XRT environment.
The core module definition can include singular wires and normal bit-vector in-
puts and outputs. Linking these is not directly supported by the v++ compiler
in an XRT-based project and would need to be done with tcl scripts. Doing so
fragments linking information and complicates the project setup significantly.

Once the core module is implemented and simulated, a wrapper module is
created which joins the core module with an AXI4-Lite slave module and exposes
the required ports. In the beginning, an existing AXI4-Lite slave from the wb2axip
project was used [14]. Since this code is licenced under the Apache-2 Licence, a
new, but slightly less performant AXI4-Lite slave was created. This slave (axi_-
lite_control_slave_base) was implemented against the official AXI4-
Lite specification [7] and simplifies adding new registers. The wrapper module
also ensures that only XRT-compliant ports are exposed.

Using this hierarchy enables faster development, since the core module itself
can input and output from and to simple bit-vectors. Designing simulations which
directly operate on bit-vectors is syntactically shorter and more precise than using
an AXI4-Lite bus. The wrapper can also be tested in simulations but the interac-
tion through AXI4-Lite interfaces requires the use of AXI VIP provided in each
installation of Vitis. The AXI4-Lite VIP provided by Vitis does have some draw-
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backs. There is a significant lag between issuing a transaction in the simulation
and the transaction occurring on the bus. Simulating with direct access to input
and output registers is therefore preferred over the use of VIPs. Lastly, the separa-
tion of core module functionality and XRT compliance also enables much easier
reuse of existing modules. If all modules were to use AXI4-Lite exclusively for
control, each parent module that intends to use a child module would need to have
their own AXI4-Lite logic, complicating the design.

4.3 Utility modules

4.3.1 Timestamping

To assess the latency characteristics of the network layer, two kernels were im-
plemented to handle timestamping, shown in figure 4.2. The first kernel is called
the time generator (time_gen) and consists of a counter whose value is simply
exposed on a number of 64-bit AXI-Stream interfaces. These interfaces do not
implement the TREADY signal as their sole use is to transmit the current time to
timestamping blocks. Adding the capability of back-pressure in this case is not
necessary, since the value of the counter changes every clock. Both stopping the
clock and transmitting outdated timing information is antithetical to the purpose
of these kernels. As a consequence, the bus value needs to be sampled in one
clock cycle, since reading the bus in two cycles would introduce race conditions.

The only block to consume this AXI-Stream is the timestamping block (time_-
inserter_adjustable). It combines two modules, a skidbuffer and an AXI4-
Lite control slave. The timestamping block modifies the skidbuffer to take the
time information from the time generator and inserts the value at a given byte off-
set into each packet. Any data at this position is simply overwritten. This offset
is adjustable via two control registers, accessible through the AXI4-Lite control
slave. The advantage of this approach is that the length of the packet is not altered.
Since this operation is performed in a cut-through manner, the latency introduced
by the timestamping module is between 1 and 2 clock cycles, depending on the
state of the skidbuffer. Internally, the offset calculation is performed by counting
the number of transfers and calculating the offset into a 512-bit transfer. To reduce
design complexity, this block does not support sparse transactions, meaning that it
assumes that TSTRB and TKEEP are all HIGH, except for the end of the packet.
It also does not have support for timestamp insertion which crosses transfers. A
timestamp starting at byte 62 and ending at byte 70 is thus not supported.

Since the clock frequency of the design is known at compile time and can also
be roughly inferred from software, this enables timestamping of packets. This
includes incoming and outgoing packets. Stream routing and UDP socket infor-
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Figure 4.2: Clock diagram of timestamp inserter and time generator, additional
/64 AXI-Stream interfaces omitted.

mation is not disturbed as all, signals besides TDATA are passed through the block
unmodified, be it delayed by one to two clock cylces.

One critical aspect of this design is that the inserted timestamp value for a
given packet slightly varies by its insertion offset. Since only 512 bits are trans-
ferred at a time, the value inserted increases for every 64 increments of the offset
variable. If the bus is stalled during a packet transfer, this time difference will
increase even further. Since the kernels are clocked at 300Mhz by default, this
means that during ideal conditions, the timestamp will be inaccurate w.r.t. the
begining of a 1536 byte packet transmission by up to 160ns as calculated below.

Inaccuracy =
(1536 ∗ 8)bit

512bit
∗ 1

300Mhz
=

48

300Mhz
= 160ns

As long as timestamps are inserted in the same 512-bit aligned block, there
is no inaccuracy when comparing them. Since a single cycle at 300Mhz takes
3.3̄ns, inaccuracies do not grow very quickly, given that the offsets are close to
each other.

For this reason, the timestamping block also technically violates the AXI-
Stream specification. If a slave stalls the bus while the master has TVALID HIGH,
TDATA is not allowed to change. Since the timestamping block inserts the time
of the actual transfer, TDATA changes every clock. This has not posed a problem
in the current designs but should be taken into consideration when using other
AXI-Stream IP.

4.3.2 Control slave
A very common use case in the design of XRT kernels is reading and writing to
single registers for control purposes. During development, an open-source tem-
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plate by Gisselquist Technology, LLC [14] was employed. Due to license con-
cerns, the axi_lite_control_slave_base module was developed by ad-
hering to the official AXI4-Lite specification [7]. The module code makes it sim-
ple to add new registers by separating all control signals from the actual data trans-
fer. For reads, this means that it saves the incoming address in outstanding_-

read_adress and sets the flag outstanding_read. The rdata output register
must be set to the correct data in the following cycle if the outstanding_read
flag is set. Similarly, during an incoming write request, both the write address and
the write data are saved and acknowledged on their respective sub-bus. Once the
flag outstanding_write_both is set, implying both an address and it’s asso-
ciated write data are present, the module can simply save the value in a register or
perform arbitrary actions. It is thus possible to implement logic other than simple
reads and writes, such as a single cycle trigger whenever a read or write to a par-
ticular address occurs. Care should be taken when implementing special behavior
as this might break expected behavior for some registers, e.g. a read after a write
returning unexpected data.

This particular implementation has the drawback that a transfer can take mul-
tiple cycles. Since the module is only employed for low-throughput control sig-
naling, this limitation does not influence performance of the overall system.

To further simplify the design, the module chooses to ignore all write strobes
and assumes that all writes use the full data bus. This behavior is permitted by the
standard [7, p. 127]. The module can be customized to any AXI4-Lite address
width bigger than 2. An address width less or equal to 2 would clash with the
decision to ignore all write strobes. Another simplification is that the standard
behavior for non-implemented addresses is to treat them as 0-read-only registers.
If such an address is accessed, the module responds normally with an OKAY re-
sponse on both the read and write channel. The XRT API is aware of the custom
registers, given that their addresses and widths are entered under the “Addressing
and Memory” tab when packaging the module in Vivado. Even when the XRT
API is not directly aware of which registers exist, entering raw addresses is still
supported in software.

4.3.3 Packet injector
Since the network stack and most other kernels transfer packet data with 512-bit
wide AXI-Stream interfaces, injecting a packet into an AXI-Stream is a recurring
task. Since packets are usually longer than 64 byte, they require multiple cycles
to be transmitted over an 512-bit AXI-Stream interface. The packet injector im-
plements the logic needed to sequentially transmit the 512-bit chunks of a packet.
Figure 4.3 depicts a schematic representation of the module. It is parametrized in
the number of 512 bit chunks of a packet, a design decision which has not posed a
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Figure 4.3: Schematic showing the packet injector IP module.

limitation for this thesis, but reduced complexity. The data that is to be transmitted
in the packet can be set in a simple bitvector which defines the entire packet.

set M_AXIS 
interface
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ack send via
DEST_TREADY

register packet data

M_TVALID 
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  M_TREADY
sending transfer #0
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Figure 4.4: State machine of the Packet Injector module. N being the number of
64 byte chunks making up the packet. X ∈ [1, N − 2] to represent variable

number of states, shown in brackets. Note that in the case of N = 1, there is only
one transmission state, which sets M_TLAST to HIGH.

The state machine which defines the Packet Injector module can be seen in
Figure 4.4. Triggering a packet transfer and defining the target socket are highly
coupled in the TDES_AXIS AXI-Stream interface. This stream has a 16 bit
width, the same as TDEST of the Network layer. Once a transfer occurs on this
bus, the Packet Injector starts the injection process to the socket specified in the
transfer and does not acknowledge any subsequent transfers on that bus until a
packet has been sent out the main AXI-Stream interface. If no backpressure on a
send event is desired, a module using the packet injector must simply add a FIFO
of sufficient depth on the DEST_AXIS.

Once a transfer on the destination port is acknowledged, the packet data input
is saved in an internal register. Not registering the packet data could lead to race
conditions where a send event is acknowledged on the DEST_AXIS interface but
actual transmission on the main bus stalls. If the module then changes the packet
data to a subsequent send event, the injector would sample this data instead of the
proper payload.
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A minor deficiency of this module is the fact that it idles the main output for
2 cycles between packet transmission. To facilitate testing and debugging some
components on the FPGA, there is a kernel which wraps the packet injector. This
enables setting packet data and triggering the injection of a packet from the host
via XRT.

4.3.4 Xilinx IPs
Since the AXI-Stream specification has been adapted in the Xilinx FPGA ecosys-
tem, Xilinx provides a number of AXI-Stream infrastructure IP modules. This
thesis uses a number of these IP modules. Namely, the AXI-Stream Data FIFO,
the AXI-Stream Broadcaster, the AXI-Stream Switch and VIPs for AXI-Stream
and AXI4-Lite. These cores can be instantiated in a Vivado project by TCL script-
ing or using the Vivado GUI. Their behavior is defined in the AXI-Stream Infras-
tructure IP Suite [4].

The AXI-Stream Data FIFO is a first-in-first-out buffer for AXI-Stream inter-
faces. It can be configured to different interface setups, clock domains and buffer
depths of powers of 2. The fill level of the FIFO needs to be read from different
interfaces, depending on whether data should be enqueued or dequeued. This is
because the internals of this module require a number of cycles to propagate trans-
fers from the input to the output stream. A central fill level indicator could cause
race conditions when a core writing to the FIFO expects a level of backpressure.
This IP is used to buffer send requests, as well as input and output data in the CKC
implementation.

The AXI-Stream Broadcaster is a very simple module. It has a single input
stream and a variable number of output streams. Its main feature is the replication
of stream data. As a consequence, the input stream can only advance once a
transfer has been acknowledged by all attached slaves. If continued data flow is
desired in the case of an error condition, slaves attached to this module core should
continue acknowledging transfers even if they discard the data. This is important
when multiple modules are monitoring a stream for particular data, e.g. a special
packet as in the case of the bootstrapper module.

The AXI-Stream Switch is a generic interconnect IP module. As such, it has
a variable number of input interfaces, as well as a variable number of output in-
terfaces. Routing of data from an input to an output interface can be done with
registers or by leveraging the TDEST signal of the input. The specification does
mention that there is a limitation to this module regarding throughput. When
an input stream continuously writes to an output, it gets stalled after each trans-
fer [4, sec. Data Flow Properties]. It follows that setups in which this property
constitutes a bottleneck must either design their own switching solution or rethink
the datapath. The module is also used in simulations to mirror the functionality



38 CHAPTER 4. IMPLEMENTATION

of an Ethernet switch without simulating the entire network stack. This is partic-
ularly convenient as cores using the socket abstraction provided by the UDP/IPv4
layer already tag their traffic with a TDEST signal.

Verification and driving of AXI-Stream and especially AXI4-Lite interfaces
from scratch is complex and error-prone. Xilinx provides the axi4stream_-
vip and axi_lite_vip VIP to support the development of such simulations.
Some of the functionality is documented in the AXI Verification IP LogiCORE IP
Product Guide [5]. Both VIPs are able to act as a master, slave, or pass-through
and warn the user when violations of the respective interface specifications are
detected. When acting as a master, both VIPs can generate transfers on the bus.
The documentation on the API used to initiate transfers is somewhat sparse for
both the AXI-Stream and AXI4-Lite VIPs. Additionally, the Vivado IDE does
not recognize the package imports required for the VIP drivers and flags them as
errors. When issuing a transfer from the simulation, the actual queuing behavior
of that command inside the VIP drivers, as well as the latency of that command is,
again, somewhat nebulous. For AXI4-Lite transactions, this is not an issue for this
thesis as the interface is lower speed by design. When looking at AXI-Stream in-
terfaces, this can result in simulations with higher backpressure and idle times. In
these cases, the AXI-Stream transfers are generated by driving the signals directly.

4.4 CKC - Consensus
Taking the graph representation of the CKC algorithm from section 3.1, we can
expand it to include the operations needed in each state. The resulting graph
can be seen in figure 4.5. Shifting the computation to the beginning of a round
simplifies round timing. A round change indication during the listen state is the
most appropriate since it is the only phase whose length should vary with different
round periods. As implemented, computation and broadcasting always take a
fixed time, depending only on wether the round transition includes a consensus
instance transition.

Representing the receive logic as a control graph is cumbersome due to its
nested clauses. It is shown in pseudo code in Algorithm 1 and is encapsulated in
a single state. There are essentially 8 cases, leading to 3 different state transitions,
forcing a round transition (A), forcing an early consensus transition (B) or indicat-
ing an error (C). It is also important to understand that a round change indication
forgoes the receive logic entirely and directly forces transition A. In essence, the
state machine processes packets up to the point when it receives the round change
indication.

The implementation is parametrized on the number of nodes. When more than
8 nodes are required, some changes to the packet structure might be required. To
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Figure 4.5: CKC control graph implemented in ckc_core

represent sets containing per-node data, a bitmap is employed. This bitmap has a
fixed width of 8 bits in packets. When expanding to more nodes, those fields must
grow together with the number of nodes.

As implemented, values are 64-Byte values. This greatly simplifies handling
and parsing since a value can be completely transmitted or ingested in a single
cycle over a 512-bit AXI-Stream. Expanding this to larger values is possible,
however, there is a limit to individual packet size because of the underlying data
link layer. Taking a the MTU of Ethernet II, this limits the UDP payload to 1472
bytes.

The scalar inputs like the local node id and the required quorum are exposed
as bit-vector inputs. These, along with indicators about current liveset and cur-
rent consensus instance are available to read and write through the wrapper as
explained in chapter 3.2.
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Algorithm 1: Receive logic with regard to figure 4.5
1 upon RECV(pinc, rinc, cinc, lockedinc, Vinc):
2 if pinc /∈ prev_liveset then
3 NEXT_PACKET // drop packet

else
if c > cinc or r > rinc then

4 NEXT_PACKET // drop packet, it is outdated

else if c+ 1 == cinc then
5 FORCE_ROUND_INDICATION

6 TRANSITION(B) // pkt retained for c+ 1

else if c+ 1 < cinc or r + 1 < rinc then
7 TRANSITION(C) // Error out, local node too far

behind cluster

else if c == cinc then
if r + 1 == rinc then

8 FORCE_ROUND_INDICATION

9 TRANSITION(A) // pkt retained for r + 1

else if c == cinc then
10 V ← V ∪ Vinc

11 locked← locked ∪ lockedinc

12 liveset← liveset ∪ {pinc}



Chapter 5

Evaluation

RQ1 and RQ3 require evaulation of the FPGA, as well as the CKC implementa-
tion. An answer to RQ1 consists of an evaluation of the three main cmmunication
methods from host to card and vice versa, as well as the network latency. RQ3 re-
quires an understanding of the processing latency and stability of the algorithm at
different round periods. With this information, the data rates associated with the
CKC implementation are calculated and comparisons to Conensus in a Box [22]
and Waverunner [1] are drawn.

Evaluation was performed on a 3-Server cluster at USI. All three are Su-
permicro SYS-120U-TNR systems with Dual Xeon Gold 5315Y processors and
190GiB DDR4 RAM. They are connected to an Edgecore Wedge100BF-32X-
O-AC-F tofino switch via Mellanox 100GbE ConnectX-7 SmartNICs and 100G
DAC QSFP28 cables. Each server contains an AMD Xilinx Alveo U50 which
is also connected to the switch via a 100G DAC QSFP28 cable. The Alveo U50
card is equipped with 8 GiB of high bandwidth memory (HBM) memory, split
into 32 256MiB chunks or partitions. Remote access to the servers is achieved
via a separate switch using the inbuilt RJ45 connectors. Linux 5.15.0-125 is em-
ployed on all host systems, together with XRT version 2.16.204, which constitutes
the 2023.2 branch. The xocl and xclmgmt drivers are also using version 2.16.204.
Vitis 2023.2, which includes Vivado and the v++ compiler, is used to compile and
package all binary images targeting the FPGA.

The switch is configured to treat all connections as belonging to the same vir-
tual local area network (VLAN), in particular a /24 subnet. Low power mode
and Reed Solomon Forward Error Correction (RS-FEC) is disabled for all inter-
faces. Autonegotiation must be turned off for the interfaces with FPGA connec-
tions since the free license of the Ethernet Subsystem does not include link speed
negotiation.

Scripts to perform experiments and gather data are written in Python and lever-
age Ansible to manage multiple nodes. If not specified otherwise, the evaluation

41
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of generated data is done in Python using Jupyter-lab. The matplotlib, pandas, and
numpy libraries are used for plotting and data analysis during evaluation. This
chapter initially covers system latency and its constituent components. After that,
the CKC implementation is tested and performance bottlenecks are determined.

5.1 System latency
The overall system latency can be split into 3 parts: The software processing and
Host-FPGA latency, the FPGA processing latency, and network latency. Software
processing and Host-FPGA latency are grouped together since much of their jitter
is incurred on the CPU. It is also the latency limiting software interactions with
the FPGA-based services. FPGA processing latency depends on the system be-
ing tested, and is highly predictable through simulation. Network latency is the
same for all FPGA services and is tested independently from them. The following
sections therefore look at Host-FPGA latency and Network Latency while FPGA
processing latency is addressed in the sections respective to the tested systems.

5.1.1 Host - FPGA
An important aspect is the interaction of the FPGA and the Host system since this
can stall input and output pipelines, affecting the correct behavior of the consensus
service. We analyze three different interactions provided by XRT: singular AXI4-
Lite transactions, XRT kernel executions, and buffer syncing. Understanding the
performance characteristics of these interactions is critical when attempting to
answer RQ1.

AXI4-Lite transactions

Simple reads and writes to single AXI4-Lite registers are atomic on an RTL level.
To measure the read and write latency, an image consisting of a single kernel
is used. This kernel implements a 32-bit counter which is incremented every
clock cycle. At a clock speed of 500MHz and 300MHz, this counter overflows
in 8.6 seconds and 14.3 seconds respectively. The kernel exposes this counter
on address 0x0004, an internal r/w register on address 0x0000, and a magic
number, in this case 0xeeffaabb, on all other addresses. To measure the latency
of the AXI4-Lite transfers, a simple C++ program was written using the C++ XRT
application programming interface (API). Measuring the latency is also possible
using the python API, but C++ was preferred due to the interpreted nature of
Python, which can introduce overhead and timing inaccuracies. The chrono
library, which is part of the C++ standard library, allows for reads and writes to be



5.1. SYSTEM LATENCY 43

timestamped with nanosecond resolution. In order to limit pipelining and batching
inside the XRT API, a delay of 100 milliseconds between accesses is employed.
To ensure the XRT API does not return cached data, an internal counter is used.
An increment on each access ensures the data is actually read from the kernel. As
long as subsequent accesses to the counter are more frequent than the overflow
interval, the overflow can be accounted for in software trivially.

The first access to a kernel, whether a read or a write access always takes 54µs.
Since this heavily skews the data, the first sample point has been excluded in all
calculations and graphs. Between experiments, this initial delay only fluctuates
by around 1 µs. Such a pattern suggests that either the XRT library, its kernel
drivers, or the shell are initializing data or control structures.
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Figure 5.1: Plot of access latencies for write and read operation, first entry omit-
ted. Mean shown in red, ±σ in green.
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Figure 5.2: Histogram of access latencies for write and read operation, first entry
omitted. Mean shown in red, ±σ in green.

All latency plots shown in Figure 5.1 exhibit outliers with multiple times the
mean value. Since the mean and standard deviation are hard to set in context at
this scale, mean, standard deviation, as well as skewness and curtosis are shown
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— Write Read fixed value Read Counter
mean 89.91 ns 872.60 ns 809.48 ns
σ 24.13 ns 57.64 ns 84.56 ns

skewness 25.83 26.37 35.54
kurtosis 1665.2 1115.0 1495.8

Table 5.1: Statistical variables for Host - FPGA AXI4-Lite transaction latency

in table 5.1. Looking at the histograms in figure 5.2, this is reflected in the ob-
served distribution exhibiting long tails and high kurtosis. This makes AXI4-Lite
operations unsuitable when stable, low-latency access is required.

AXI4-Lite-writes seemingly outperform reads in overall performance. Since
a mean latency of 89 nanoseconds seems unlikely, we should assume that the
XRT library features an early return model. A write transaction is queued and the
library call returns immediately. While this invalidates the results for writes, they
give an insight into the library overhead. Since AXI4-Lite-writes are subject to
the same latency spikes as reads, a likely assumption is that these are caused by
the XRT library performing syscalls which can be delayed by the OS.

With the early-return functionality for writes, a write latency cannot be deter-
mined directly. Logically, the actual write latency should be somewhere around
half of the read latency since only 1 PCIe Transfer is required in this context, as
opposed to 2 for a read. Taking PCIe latency from literature as a guideline, a
transfer takes a minimum of 552 ns [39, p. 7]. Assuming an identical library and
FPGA management overhead for reads and writes leads to a theoretical minimum
write latency of around 544 ns.

820 ns− 552 ns

2
= 544 ns

It is however important to keep in mind that this number is a rough lower bound
at best.

Buffer objects operate under a different model. Once a buffer is created through
the XRT API, two objects interact. The buffer object in the host, and the buffer
on the card. The sync function transfers the buffer with the help of the xocl
driver. To evaluate the latency and achieved bandwidth, buffers of each size will
be written to and from memory 1000 times. The upper limit of buffer objects is
currently 256 MiB since the 8 GiB of HBM memory on the card are fragmented
into 32 equally sized partitions.

Interestingly, the first synchronization of buffer objects takes an additional 2
to 10 microseconds. Since this holds true even with larger buffers, the first data
point of each run is removed to better reflect continuous performance.
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Figure 5.3: Transfer time for buffer syncing, left: host to fpga, right: fpga to host.
Red line extrapolates linearly from 256MiB sized buffer to 0.
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Figure 5.4: Achieved bandwidth during buffer syncing, shown: host to card. Red
line indicates maximum PCIe Gen3 x16 goodput bandwidth.

In figure 5.3, the transmission latency for the buffer objects is shown in a box
plot. This shows that there are a number of outliers, implying that this latency is
not very stable. Latency has an overall upwards trend with increasing buffer sizes
picking up at a buffer size of 1024 bytes. Up to this point, the median sync time is
fairly constant between 10 and 30 µs, with outliers from 1-byte buffers surpassing
the median of 512 byte buffers. When looking at the resulting bandwidth for this
in figure 5.4, the effects can be seen more clearly. The achieved bandwidth is
extremely low for buffers below 1024 bytes, rises asymptotically, resembling an
arc-tangent, up until a buffer size of 1 MiB, from which bandwidth plateaus, up to
the maximum buffer size of 256 MiB. This final range of buffers achieves speeds
of just under 100 Gibit per second. As an absolute limit, the graph shows the
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maximum achievable goodput via the PCIe gen3 x16 connection of the card.
These results show that XRT buffers are sufficient to communicate with ser-

vices on the FPGA at speeds close to the network line-rate. It certainly reaches
the maximum goodput possible with UDP over IPv4 without Jumbo packets. This
allows us to partially answer RQ1: Interactions with the host machine are possible
at speeds capable of saturating line rate. However, since buffers of at least 1 MiB
are required to reach such data rates, the latency for these transactions can be as
high as 100 µs. This latency can be addressed by a simple ring-buffer.

Finally, XRT kernel executions are benchmarked in a similar fashion. A mm2s
kernel takes a buffer object and writes it out on its AXI-Stream interface. By
adding a second, free-running kernel which simply consumes the stream, this
combination forms a predictable duo. The mm2s kernel will run for exactly 16
cycles, 52.8 ns, when supplied with a 1024 byte buffer, since it transfers 64 byte
on every cylce over its 512 bit AXI-Stream interface. The time from kernel invo-
cation to notification by the XRT api can be benchmarked. The results of this can
be seen in figure 5.5.
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Figure 5.5: Kernel execution overhead latency, runtime of 53 ns subtracted. Mean
shown in red, ±σ in green.

The results show a mean value of 14.9 µs, with a standard deviation of 0.59
µs. As can be seen by the outliers in both the plot and histogram, the distribution
is heavy-tailed. The outliers appear to only sporadically cross 20µs, with only
2 instances surpassing it during 100,000 executions. There appears to be some
overhead associated with kernel execution. According to the XRT API specifica-
tion, a kernel execution should involve only a small number of reads and writes.
Compared to the actual execution time of short-run kernels, the overall execution
time is dominated almost completely by the XRT API overhead.

This leads to the following implication regarding RQ1: AXI4-Lite accesses are
the most timely communication options, allowing for fast signaling. For higher
bandwidth applications, buffer objects provide sufficient bandwidth to saturate
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the 100G network bandwidth. Kernel execution is inferior as a communication
device from host to FPGA and back, both when compared to simple AXI4-Lite
interactions and buffer object transfers.

5.1.2 Network
Testing the network proved to be a bit more tricky. To evaluate the latency of the
network, a loopback and an active FPGA image is employed. The active image
sends and receives packets to and from the loopback device. They each have
their own non-synchronised clock which makes evaluation of the timestamps a bit
more difficult. Figure 5.6 shows how and where timestamp insertion modules are
distributed. The time generator block is omitted for brevity.
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Figure 5.6: Layout of network latency test setup.

There is another aspect that needs to be considered for the timestamp modules
between the CMAC and the UDP/IPv4 layer and vice versa. These AXI-Stream
interfaces transfer entire Ethernet packets. Since this includes the media access
control (MAC) address, IPv4 address, and the UDP port information, a change of
these values will lead to the packet being dropped on the receiving end. In order
to compensate for the 3 headers, the insertion offset must be incremented by 42.
This breaks down to 14 bytes for the Ethernet header, 20 bytes for the IPv4 header
and 8 bytes for the UDP header. Ethernets interframe gap, preamble and start
frame delimiter (SFD) are removed by the CMAC, and are not accounted for in
the offset.

The FPGA is running the design at 300Mhz. Time will be given primarily in
cylces since this more accurately reflects sources of delay outside actual transmis-
sion time. At 300Mhz, a clock cycles has a period of 3.3ns.

The following evaluation takes a total of 50 million packets. The most im-
portant metric for an application using the current networking stack is the total
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Figure 5.7: Total roundtrip time from insertion at MM2S kernel to reception at
S2MM kernel.

network roundtrip time. Figure 5.7 depicts that roundtrip time, defined as the la-
tency between packet emission and reception. The first thing to notice is the lower
bound of 1041 cycles, which equates to a RTT of 3.47 µs. The highest recorded
latency at 1323 cycles equates to a RTT of 4.41 µs. While such a transmission
latency is low, the fact that no significant outliers are recorded is very good. This
is in stark contrast to even AXI4-Lite accesses from the host, which while faster
on average, do experience a much higher variance.

In order to understand the latency introduced by the network transmission it-
self, we must first examine the loopback latency, seen on the left side of figure
5.8. While this could be split further into ingress and egress latency, this makes
little sense. Any packet will experience ingress and egress latency along the way.
When looking at the histogram of the loopback time, it takes between 80 and 88
cycles for a packet to be routed back to the CMAC through the UDP/IPv4 layer.
Interestingly, it seems like the distribution is made up of a bulk between 80 and
84 cycles and a small fraction which takes up to 4 more cycles. Such behavior is
likely a result of different states within the UDP/IPv4 layer.

By subtracting the loopback delay, which is calculated per-packet from the
RTT from the sending CMAC stream to the receiving CMAC stream of the send-
ing FPGA, the network induced latency can be estimated. For simplicity, we will
assume a bounded clock drift. The resulting network delay can be seen on the
right in figure 5.8. Dividing the measured network RTT by two implies a one-
way-latency of between 416 and 423 cycles, translating to a latency of between
1.387 and 1.410 µs. This should be seen only as a very rough guideline. In prac-
tice, it is extremely hard to measure the one-way latency, even with high precision
clocks.

Overall, the FPGA achieves RTTs between 3.47 and 4.41 µs, though process-
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Figure 5.8: Histogram showing the loopback time and total delay introduced by
the network

ing induced RTT still makes up 40% in the worst case. By designing against
the CMAC, the application RTT could be as low as 832 cycles or 2.773 µs. The
biggest source of jitter seems to be the UDP/IPv4 network layer.

5.1.3 Discussion

The preceding section allows RQ1: “What characterizes the latency of interac-
tions and transmissions from and to FPGA based SmartNICs, especially w.r.t.
stability?” to be answered. Applications on the FPGA can reach RTTs consis-
tently below 4.5 µs, with some as low as 3.47 µs. Interacting with the CMAC
directly brings this range down to between 2.77 and 2.82 µs. Depending on the
switch, even lower RTTs may be possible. The AXI4-Lite read/write primitives
provided by XRT can reach latencies as low as 809 ns, but are subject to long tail
latencies, most likely induced by the host itself. Further, they are limited by the
32 bit width of the bus, which limits their viability to low-bandwidth applications.
To saturate the 100G network, XRT buffers are a good solution though the buffers
should be larger than 1 MiByte, as smaller buffers quickly degrade the data rate
of the transfers.

5.2 CKC - Consensus
The current implementation requires 1629 CLBs and 8 block random access mem-
ory (RAM) tiles on the FPGA. This equates to 1.50% and 0.56% of the Alveo
U50s capacity. The complete system takes up 19.0% of CLBs ans well as 18.0%
of block RAM, mainly due to PCIe communication as well as the UDP/IPv4 and
CMAC modules. Clearly, there is still headroom for further logic, as well as accel-
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erators from the same product family with more available resources. Furthermore,
the CKC implementation satisfies all timing requirements to run at 300 Mhz, and
expected power sits at 20.0 W. The XRT utilities report a power use of 18.8 W
during stable operation. Again, the FPGA is clocked at 300Mhz, resulting in a
clock cycle of 3.3ns.

To answer RQ3, three aspects must be considered: processing latency, mini-
mum stable round period, and finally throughput. The processing latency gives an
absolute lower bound for round periods and will be covered first in 5.2.1. Since
this does not factor in the timing intricacies of actual implementation, the lowest
stable round period is determined experimentally in 5.2.2. To this end, subsec-
tion 5.2.3 will cover the performance and implications, given the lower bounds
for round period λ. Finally, subsection 5.2.4 will summarize the findings.

5.2.1 Processing Latency
Processing latency of the CKC implementation is best evaluated using simulation.
As explained in 2.3, the simulators are cycle accurate. Vivado includes a simula-
tor, waveform viewer and VIP to use AXI4-Lite as a control interface. This makes
it possible to simulate almost the entire design. The network stack, the mm2s, and
the s2mm kernels are abstracted and the AXI-Stream interfaces are driven by the
simulation. Due to a shortcoming in the Xilinx VIP, these are not appropriate
for this evaluation. They struggle to maintain a high throughput level, reaching
around 12% utilization, a transfer on every 8th cycle. Since both the mm2s and
s2mm kernels, as well as the network layer can, and do stress the AXI-Stream
more, they will be emulated directly. AXI4-Lite is a bigger hurdle. Since the con-
trol signals accessed by the AXI4-Lite control slave do not require such timing,
the appropriate AXI4-Lite VIP can be employed.

There are essentially 3 events which define the overall processing latency of
the CKC implementation. A round change as part of a consensus instance and a
round change which results in a consensus instance change, as well as processing
time for a single packet.

A round transition is a very straightforward event as it involves only 4 cycles
until the listen state is reached once again. This can be seen in figure 5.9. Only
the round_advance, round_begin and broadcast states need to be inhabited. Of
course, the actual transmission of the packets will be determined by the broad-
caster module of the framework.

Figure 5.10 depicts the transition of a consensus instance. The CKC imple-
mentation takes 11 cycles, 33.33 ns at 300Mhz, to transition from its Listen state
to the Listen state of the next round. This is dominated by the DECIDE state
which needs 5 cycles to push out the 3 values, as well as validity information out
through the decision stream. It is also the only state which is inhibited for more
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Figure 5.9: Waveform depicting round change, screenshot of Vivado.

Figure 5.10: Waveform depicting consensus instance transition, screenshot of Vi-
vado.

than 1 cycle. This is, of course assuming no backpressure on the decision stream.
The processing time for a single packet is exactly 2 cycles, since the packet

is read, and the following cycle is required to acknowledge the transfer. When
taking into account the broadcaster module as well as the the parser, the lowest
stable period for consensus is 40 cycles, resulting in a theoretical maximum round
frequency of 7.5 Mhz. This assumes a 0 latency connection between all nodes
through a single AXI-Stream-switch and will most likely not be reached in hard-
ware. The actual round period needs to be chosen such that it is larger than the
total network RTT of the environment. This is further explored in the following
chapter.

5.2.2 Stability
The implementation was evaluated by continuously running a 3-node configura-
tion for 5 minutes, and repeating this setup 10 times for each round period. To
record potential dropouts, the required quorum for CKC is set at 3. For periods of
960 cycles, 3.2µs and higher, no issues where recorded over all runs. To confirm
this lower bound another run was conducted, showing stable operation over a 10
hour interval. This equates to a round period of 3.3µs and a round frequency of
312.5 Khz. Consensus is reached at half that, resulting in a decision frequency of
156.3 Khz.
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Figure 5.11: Consensus rounds before failure, average over 10 runs per round
period λ.

When targeting round periods of 610 cycles, 2.3µs, and below, the cluster fails
before deciding once. This is very close to the expected behavior since for round
periods near half the RTT, messages from round 0 do not have sufficient time
to reach the other nodes. As such, all nodes advance to the next round, notice
that they have not received any packet and quit operation while indicating that no
qourum can be reached.

For periods of 620 to 950 cycles, 2.07µs and 3.17µs respectively, the behavior
is quite unexpected. CKC drops out of normal operation after between 1.45 and
1.03 million consensus instances due to message loss. This equates to an average
runtime of 9.2 and 2.1 s before package loss occurs. Almost all experiments
terminate within this range, shown in figure 5.11, indicating a causal relationship.
The exception are runs with periods of 630 and below, where some immediately
fail due to packets arriving late, as explained above. This result is perplexing since
such behavior was not recorded during the network evaluation, where throughput
spiked even higher. Due to time constraints, the investigation into this did not
provide an explanation for this behavior. The employed Tofino switch does record
reception errors and package drops for some, but not all of the experiment runs.
In one case with λ <= 950 cycles, the switch inexplicably dropped a bootstrapper
packet, preventing cluster operation. As the Tofino line has not been developed
further since 2023 and has been discontinued recently, support and documentation
on the switch configuration is somewhat sparse.
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This leaves a period of 960 cycles, 3.2µs, as the lowest bound for stable operation
for CKC. This bound was confirmed over the span of 10 hours and results in a
round frequency of 312.5 Khz, as well as a consensus frequency of 156.25 Khz
under stable operation. Due to the behavior of the system for periods of between X
and 950 cycles indicating a systematic problem, lower periods and by associated
round frequencies may be achievable if this problem is addressed. A different
network setup resulting in a lower RTT would equally improve the lower bound
for round periods which achieve stable operation.

5.2.3 Throughput
Throughput of the CKC is directly linked to the round period λ and the associated
round frequency Fr. During stable operation, i.e. no failures, the frequency of
decisions reached by CKC is simply half of Fr. For 3-node operation, the rate
of packet emission is Femission = Fr ∗ 2 since every round involves transmitting a
message to the other 2 nodes. Package size is currently fixed at a 256 byte UDP
payload, equating to to physical transfer of 256 + 8 + 20 + 18 + 20 = 322 bytes.
The required data rate dr is therefor given by the following equation:

dr = 322 byte ∗ 8 bit
byte

∗ 2 ∗ Fr

Taking the lowest stable round period of 960 cycles, 3.2µs and Fr = 312.5
Khz, directly translates to these performance figures: Decision frequency sits at
165.6 Khz with a decision data rate of 240 Megabit/s, and the network data rate at
1.61 Gigabit/s. This results in a network overhead of 6.7 when comparing network
and decision data rate.

Figure 5.13 shows the network overhead for different value widths. Increas-
ing the width of consensus values to 448 bytes each is feasible and would affect
decision- as well as network data rate. With 448 byte values, the messages would
contain a UDP payload of 1408 bytes, 1474 at the wire. Any further increases
would necessitate increased parsing complexity as the values would not be trans-
mitted AXI-Stream-transer-aligned. This would result in a decision data rate of
1.68 Gigabit/s and a network data rate of 7.37 Gigabit/s, as shown in 5.12. The
network overhead in this case drops to 4.4, closer to the theoretical limit. There
are higher MTU, a common one being 9000 bytes for Ethernet, though support for
this standard is not included in all network equipment. At such large packet sizes,
the actual transmission time needs to be factored into the latency and stability
considerations. Just transferring a 9000 byte packet over an 512-bit AXI-Stream
takes 141 cycles, or 470 ns. Overall, increasing the byte width of individual values
does impact timing since the FPGA and the network require longer to transfer and
process these values.
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Figure 5.12: Data rates of CKC both network and decision output, given different
value widths.

The CKC implementation can be replicated on the FPGA up to 128 times, at
which point it reaches the socket limit of the UDP/IPv4 network layer. To achieve
link saturation with the enhancement of 448 byte wide values, 13 replicas are re-
quired to reach a network data rate of 95.81 Gigabit/s. The decision data rate totals
21.84 Gigabit/s, with the network overhead remaining at 4.39. If maintaining 64
byte values is preferred, 62 replicas are required to reach a network data rate of
99.82 Gigabit/s. Since the network overhead remains constant with replication,
the decision data rate only grows to 14.88 Gigabit/s in this case. The concept of
decision frequency cannot be fully extended to replicated consensus instances as
these decide, and very importantly fail, separately. Replicating CKC instances
has other consequences, such as loss of ordering between instances and the need
to handle failures of single or multiple instances at once.

5.2.4 Discussion
To address RQ3, we will compare the performance of CKCs implementation with
the performance of Consensus in a Box [22] and Waverunner [1]. Since it was
not feasible to recreate their experiments on our setup, we must first examine their
respective evaluation environment. Next, we will compare the decision frequency,
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Figure 5.13: Network overhead when comparing network data rate to decision
data rate, dependent on width of singular values.

after that the decision data rate and finally, the network utilization. After that, we
will reason about the differences in results.

Consensus in a Box uses 10 Gigabit/s links with the Xilinx VC709 board [22].
While this constitutes a lower individual link speed, the board features four links
as opposed to one on the Alveo U50. Interestingly, the RTT of their setup is
lower than in our setup, reaching 1.4µs at around 512 byte message length. Two
connection topologies are evaluated, one being point-to-point links between the
FPGAs, the other being a traditional star with a switch. Waverunner emloys the
Alveo U280, equipped with two 100 Gigabit/s links, connected through a switch
[1]. Network RTT is only given for minimum sized packets, and sits at 1.68µs,
again lower than our setup.

Consensus in a Box is able to reach a peak of around 4 Million writes per
second over direct links with a decision size of 32 bytes. When expanding this
to to 256 Bytes, the number of writes, or decisions, drops to 1.4 Million writes
per second, reaching a decision data rate of around 2.9 Gigabit/s. At this point,
Conensus in a Box is bandwidth limited. Yet, Consensus in a Box outperforms
our CKC implementation, likely because of the pipelined nature of zookeepers
atomic broadcast.

Waverunner reaches an even higher frequency of consensus, handling up to
26 Million decisions per second with a value size of 50 bytes. At that rate, Wa-
verunner reaches a decision data rate of 10.4 Gigabit/s and a reported network
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data rate of 100 Gigabit/s. The decision frequency for values is not given, but a
linear approximation can give a lower bound. Extrapolating to 256 byte values,
Waverunner should reach at least 7 Million decisions per second. This should also
increase the decision data rate since the protocol overhead reduces with increasing
value size.

Overall, both networks experience an around 50% to 66% lower RTT than our
setup. Since the CKC algorithm in a non-pipelined form is directly limited by the
RTT1, performance of CKC suffers from the setup itself. At half the current stable
sending period λ, the CKC implementaton with 448 byte values would achieve
0.63 million decisions per second, reaching 3.36 Gigabit/s throughput and 14.7
Gigabit/s network utilization. At this point it is clear that pipelining or replication
of CKC is required to reach the performance of related works.

The answer to RQ3 is a bit more nuanced than a definitive yes or no. With
the changes proposed near the end of section 5.2.3, CKC have the potential to
outperform both Consensus in a Box and Waverunner in decision data rate, though
Consensus in a Box employs a slower link. With all improvements, i.e. larger
values and pipelining, implemented, CKC can reach a theoretical decision data
rate of around 21.8 Gigabit/s, as opposed to 2.9 Gigabit/s for Consensus in a Box
and 10.4 Gigabit/s for Waverunner. However, the current implementation still
suffers from the small value width, higher RTT and by extension round period λ
and thus falls short of reaching such performance.

1technically the expected one-way latency which is RTT
2



Chapter 6

Conclusion

This thesis centered around the use of FPGAs as network accelerators in a DC
setting. While this technology offers benefits, the increased implementation effort
still proves a barrier to entry. In the previous chapters, the FPGA was evaluated
on the latency characteristics of its communication. Abstractions were designed
to more efficiently implement synchronous distributed algorithms on that FPGA.
Finally, an existing algorithm was implemented and evaluated for viability against
existing implementation works.

Concerning RQ1: “What characterizes the latency of interactions and trans-
missions from and to FPGA based SmartNICs, especially w.r.t. stability?”. Net-
work latency between FPGAs is stable, with jitter only in the range of 46 ns,
but still sits at 2.7 µs. The employed network stack does add significantly on
top of this latency, up to 1.5 µs. Interacting with the host is not a bottleneck in
terms of data rate, but introduces latency, which is dependent on the transfer buffer
sizes.Since the communication with user applications still relies on kernel drivers
and system calls, the host-FPGA communication is subject to the same latency
spikes as traditional networking.

RQ2: “How can synchronous Distributed Systems primitives be more easily
implemented on FPGA based SmartNICs?”. The exploration of RQ2 in chap-
ter 3.2 results in the layout in use by the CKC implementation as seen in chapter
4.4. It presents an effective tool for the implementation of synchronous distributed
algorithms. By transforming algorithms into their control graph, structured imple-
mentation on the FPGA is enabled. The modules allow for easy output dispatch-
ing and input ingestion, with communication being explicitly structured and the
ability to saturate the network.

As for RQ3: “Can our synchronous consensus implementation outperform
state of the art when leveraging FPGAs?” Currently, the CKC implementation
does not reach the performance presented in similar works. This is not due to the
implementation environment reaching design limits, but has another reason. The
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sequential nature of the round-based synchronous algorithm cannot make progress
quickly enough, since only one consensus instance can be outstanding. If it this
drawback is eliminated, the system has the potential to outperform waverunner [1]
and scaled1 consensus in a box [22] in the decision data rate. To that end, the
following section on future work serves as an overview of possible improvements
and additions.

6.1 Future Work
While the abstraction provided by the Xilinx University Programm network exam-
ple [30] provides a simple network abstraction, it limits FPGA applications. The
ability to issue interrupts to the host and the use of XRT do impose performance
penalties, as can be seen in 5.1. UDP sockets must be declared in advance, limit-
ing the possibility of joining existing clusters. To tackle these drawbacks, porting
the implementation of CKC in this paper to a different network stack is a viable
option. Especially Corrundum [12] is a potential target for such work. Changing
the network stack also opens the door to the use of software defined network-
ing (SDN). This necessitates the use of more specialized network equipment, in
particular SDN switches and routers.

In a similar vein, the transfer of data to and from the FPGA is done with XRT
buffer objects. XRT also offers the use of direct memory access (DMA) primi-
tives. This allows the kernels to directly access host memory. Since AXI4 must
be used, this complicates the interaction somewhat. Using DMA also increases
risk of race conditions and host memory corruption.

Since the current HDL code only implements the consensus logic of CKC,
adding group membership functionality is a natural next step. This is best done
in tandem with an expanded UDP/IPv4 layer, as explained above. Adding further
abstractions on top of CKC is also a possible avenue. State machine replication
(SMR) is a somewhat viable extension, since the Alveo U50 accelerator includes
8 GiB of HBM. The problems in this context are the volatile nature of HBM, as
well as the small size when compared to host RAM.

The CKC algorithm is also limited by the fact that a round cannot be shorter
than the longest RTT between all nodes. Pipelining or replicating the consensus
instances could alleviate this problem. Such a change does increase the complex-
ity of the design. It may be worth exploring a soft-CPU, which only executes in
error states, to manage the complexity of fail-over handling. The work by Ibanez
et al. [20] can help to optimize such a design.

110x to account for lower networking speed of the publication.
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70 CHAPTER 6. APPENDIX

Algorithm 2: CKC uniform consensus block. Executes for every pro-
cess pi. To be published by Davide Rovelli, SWYSTEMS USI

1 Vi ← ∅, liveseti ← Π, prevLiveseti ← Π, lockedi ← ∅, ri = 0
2 ci = 0 // current consensus instance
3 lastDecided = ⊥
4 MMi ← ∅
5 to PROPOSE(cnext, Mi, Mnext, v):
6 if ci < cnext then
7 ci = cnext
8 Vi ← Vi ∪ v
9 liveset←Mi

10 MMi ←MMi ∪Mnext

11 START-ROUNDS(0)

12 upon ROUND-NEXT(r):
13 ri = r
14 if |liveset| < Q then
15 DECIDE(⊥, ⊥, ⊥) // pi is faulty, decide empty set =

quit

16 prevLiveset← liveset
17 MULTICAST( ci, ri, Vi, lockedi, MMi, lastDecidedi) to

prevLiveset
18 liveset← ∅
19 upon RECV(cj, rj, Vj, lockedj, MMj, lastDecidedj) from

pj | pj ∈ prevLiveset:
20 if ci = cj − 1 then
21 // we are behind, decide, reset state and advance
22 DECIDE(lastDecidedj)
23 lastDecided← {Vi, MMi, prevLiveset}
24 ci = cj , ri = rj , Vi ← ∅, MMi ← ∅, lockedi ← ∅
25 if ci = cj + 1 then
26 // we are ahead, ignore payload just update liveset
27 Vj ← ∅, MMj ← ∅, lockedj ← ∅
28 if ri > rj then
29 // do nothing (filter out async msgs)

else
30 if ri < rj then
31 START-ROUNDS(rj)

32 liveseti ← liveseti ∪ pj
33 Vi ← Vi ∪ Vj

34 MMi ←MMi ∪MMj

35 lockedi ← lockedi ∪ lockedj
36 if liveseti = prevLiveseti or lockedj ̸= ∅ then
37 lockedi ← lockedi ∪ pi

38 if |lockedi| ≥ |Q| then
39 DECIDE(Vi, MMi, prevLiveset)
40 lastDecided← {Vi, MMi, prevLiveset}
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Algorithm 3: CKC uniform consensus algorithm adapted from algo-
rithm 2. Executes for every process pi.

1 Vi ← ∅, liveseti ← Π, prevLiveseti ← Π, lockedi ← ∅, ri = 0
2 ci = 0 // current consensus instance

3 to PROPOSE(cnext, v):
4 if ci < cnext then
5 ci = cnext
6 Vi ← Vi ∪ v
7 START-ROUNDS(0)

8 upon ROUND-NEXT(r):
9 ri = r

10 if |liveset| < Q then
11 DECIDE(⊥, ⊥, ⊥) // pi is faulty, decide empty set =

quit

12 prevLiveset← liveset
13 MULTICAST(ci, ri, Vi, lockedi) to prevLiveset
14 liveset← ∅
15 upon RECV(cj, rj, Vj, lockedj) from pj | pj ∈ prevLiveset:
16 if ci == cj and ri == rj then
17 liveseti ← liveseti ∪ pj
18 Vi ← Vi ∪ Vj

19 lockedi ← lockedi ∪ lockedj
20 if liveseti = prevLiveseti or lockedj ̸= ∅ then
21 lockedi ← lockedi ∪ pi

22 if |lockedi| ≥ |Q| then
23 DECIDE(Vi)
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