
File Deletion and File Movement for
GPU4Fs

Bachelor’s Thesis
submitted by

cand. inform. Leoluca Tinzmann
to the KIT Department of Informatics

Reviewer: Prof. Dr. Frank Bellosa
Second Reviewer: Prof. Dr. Wolfgang Karl
Advisor: M. Sc. Peter Maucher

24. Juni 2024 – 24. October 2024

KIT – The Research University in the Helmholtz Association www.kit.edu





I hereby declare that the work presented in this thesis is entirely my own and that I
did not use any source or auxiliary means other than these referenced. This thesis
was carried out in accordance with the Rules for Safeguarding Good Scientific
Practice at Karlsruhe Institute of Technology (KIT).

Karlsruhe, October 24, 2024



iv



Abstract

Persistent memory, like Intel Optane, is a step to narrow the performance gap
between non-volatile Solid State Drives (SSDs) and volatile Dynamic Random
Access Memory (DRAM). However, file systems backed by Intel Optane cause
disproportionate CPU usage when compared to file systems backed by SSDs.
GPU4FS intends to solve that problem by offloading all file system operations
to the GPU. We extend the limited feature set of GPU4FS to include file deletions
and moves. In our evaluation, we compare our implementation to the CPU file
system ext4. We conclude that GPU file deletions can at least be four times faster
than its CPU counterpart, depending on the number of files and structure of direc-
tories that contain the files. However, GPU file moves are slower than CPU file
moves due to the transfer time of file paths from DRAM to VRAM.
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Chapter 1

Introduction

High-Performance Computing (HPC) requires fast access to memory and ever
greater memory capacity [11]. Dynamic Random Access Memory (DRAM) is a
volatile storage medium, capable of a lower latency per memory access than Solid
State Drives (SSDs) or Hard Drive Disks (HDDs) [14]. However, DRAM’s mem-
ory capacity is constrained by power consumption or limited storage board area
[30]. In contrast, SSDs are a non-volatile storage medium with a larger capacity
than DRAM but also higher latency [14].

Intel Optane is a persistent storage medium and an attempt to combine the low
latency of DRAM with the non-volatility of SSDs [19].

However, according to Werling et al. [40], random writes by multiple threads
to an Optane-backed ext4 file system (FS) cause disproportionate Central Pro-
cessing Unit (CPU) utilization compared to ext4 file systems backed by HDDs or
SSDs.

To decrease the workload of the CPU when interacting with Intel Optane,
Maucher et al. [25] proposed a new file system called GPU4FS. In GPU4FS, a
process accesses memory on Intel Optane by making a request to the GPU using
a shared buffer. The GPU then processes the request and accesses the memory on
Intel Optane. In case of a read request, the GPU deposits the requested data in the
shared buffer.

Currently, GPU4FS is not a fully functional file system. Instead, GPU4FS
is a testbed for certain file system operations. Our goal is to extend the limited
feature set of GPU4FS by adding file moves and file deletions to it, thereby further
reducing the load on the CPU. By doing so, we also examine the feasibility and
efficacy of parallelizing file moves and file deletions in an Intel Optane-backed
and GPU-accelerated file system.

To examine the feasibility and efficacy of parallelizing file deletions and moves,
we start in Chapter 2 by introducing information about file systems, file system
operations and data structures, and storage media. Chapter 3 then explores cur-
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6 CHAPTER 1. INTRODUCTION

rent work in the field of (parallel) file systems, load balancing algorithms, and
General Purpose Computation on Graphics Processing Units (GPGPU). Chapters
4 and 5 contain the design and implementation of file deletions and file moves
in GPU4FS. In chapter 6 we evaluate our design before we draw conclusions in
chapters 7 and 8.



Chapter 2

Background

This chapter is a summary of background information necessary to understanding
file systems (FS), Intel Optane, and Graphics Processing Units (GPUs). Section
2.1 is a quick summary of file systems. In section 2.2, we introduce the H-Tree
of GPU4FS, an important data structure to accelerate file lookups in directories.
We continue by explaining in section 2.3 why persistent storage media like Intel
Optane are desirable for file systems. We conclude this chapter in section 2.4 by
breaking down the inner workings of Graphics Processing Units (GPUs).

2.1 File Systems
A file system manages accesses by processes to one or more storage media by
abstracting the flat physical address space of a storage medium into a directed
mostly acyclic graph through the abstraction mechanisms of files and directories.
The only circles in a file system structure are the references of directories to them-
selves and their parents. These references in Linux are represented by the “.” and
“..” entries, respectively [36].

“Mostly treelike structure” is an equally valid term for the structure of a file
system. The term highlights the tendency of the file system structure to grow
“wide” rather than “tall” which is important when we present the design of file
deletions in chapter 4. Going forth, we will use “mostly treelike structure” instead
of “directed mostly acyclic graph structure”.

2.1.1 Files and Directories

A central task of file systems is to allocate memory space on a storage medium to
file names [36]. ext4 and GPU4FS use a data structure called an “inode” (index-
node) to do this [25, 4]. We will got into more detail about the design of GPU4FS

7
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in chapter 3.1. This section introduces common concepts of file systems.

Inodes, Files & Directories

An inode is a collection of metadata as it contains pointers to memory regions of
fixed size on a storage medium that store the data of a file. Inodes are used for
both directories and files [36]. Going forth, the term “file” will be used for both
regular files and directories, except when the difference matters.

GPU4FS and ext4 implement directories as special files that each hold a list of
file name inode ID pairs that map file names to inodes. ext4 and GPU4FS allow
for multiple file names to map to the same inode, if that inode represents a regular
file and not a directory, as referencing directories by more than one file name can
create unwanted ambiguities. An exception to this are the “.” and “..” entries,
which we explained in the introduction of section 2.1. The number of references
to an inode is called the “hard link count” and it is stored in the inode’s hard link
counter [25, 4].

Beyond directories and regular files

In Linux, files can not only be used to store data but also to communicate with
other IO devices like directly connected printers or special storage media like Intel
Optane. Writing data to or reading data from such a device file causes the kernel
to use the device drivers associated with the file instead of regular file system
operations [39].

2.1.2 File Moves and Deletions
In this section we describe how to move and delete files.

Moving a File

Moving a file from directory A to directory B is done by removing the directory
entry for the file from A and adding it to B. The process of removing a file entry
is called “unlinking”. Equally, the process of adding a file entry to a directory is
called “linking” [36].

Deleting a File

To delete a file A contained in directory B, A must be unlinked from B. The
following behavior now depends on whether the file is a regular file or a directory.
If A is a regular file, then the hard link count is decreased by 1. Should the hard
link count reach 0, then the memory areas occupied by the file can be reused by
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giving them to the garbage collector. The garbage collector will be explained in
section 2.1.4. If A is a directory, then all files in the subtree of the file system
structure which has the directory as its root must be deleted as well. We call that
“recursive hard link counter decrementation”. Unlinking can be skipped, as the
root is already unlinked and therefore inaccessible through the file system, as a
directory can only ever have one file name mapped to it. Again, the memory areas
occupied by all directories in the subtree and all regular files whose hard link
count reaches 0 can be given to the garbage collector [36].

2.1.3 Crash Consistency and Journaling
Interrupting a file system operation may lead to an inconsistent file system state.
A possible solution is “Journaling”, which allows the file system to repair the
inconsistent state by re-executing the interrupted operation [36].

A file system implementing Journaling first writes down what operation will
be performed before then executing the operation. The entry for the operation is
removed from the journal after the execution of the operation ends. In case of
a crash, the file system can read the operation from the journal and perform it
again. Important for this kind of file system is that all steps of an operation are
“idempotent”, meaning each step can be repeated endlessly without changing the
result, compared to performing the step only once. Otherwise, re-executing the
operation may lead to even more inconsistencies [36].

We will not cover Journaling as it is outside the scope of this thesis, and we
will also not consider it when designing file deletions and moves in chapter 4.

2.1.4 Garbage Collection
“Garbage Collection” is the process of making previously used memory areas
available again to the file system allocator [6]. For example, the garbage collector
allows the file system to reuse the memory areas of deleted files.

Implementing garbage collection lies outside the scope of this thesis. We will
only implement a stub function, which we use to indicate that a memory area can
be processed by the garbage collection.

2.2 H-Tree of GPU4FS
The H-Tree was originally developed by Phillips [31] for Ext2 to speedup file
lookups in directories. Kittner [20] transferred the concept of the H-Tree from
Ext2 to GPU4FS. This section is dedicated to the H-Tree, as both file deletions
and file moves modify the parent directory and therefore its H-Tree.
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2.2.1 Structure

The core idea of the H-Tree is to add a balanced tree using hash values as keys
to the linked list of directory entries to decrease the lookup time in directories.
In GPU4FS, H-Trees are added to directories that have more than 255 entries.
Directories with less than or equal to 255 entries effectively use a simple linked
list instead [20].

Figure 2.1: The structure of an H-Tree. To keep the illustration comprehensible,
an H-Tree-Block can only hold up to 2 pointers in this illustration. The leaf level
contains leaf blocks that hold the linked list of directory entries. A leaf block
may contain more than one dummy entry. The first entry of the first leaf block is
always a dummy entry. H-Tree-Blocks in the first level point to dummy entries in
the leaf level. The root block points to the H-Tree-Blocks of the first level. It is
noteworthy, that an H-Tree may also have 2 levels instead of 3. In that case, the
root block would be located on the first level and points directly to dummy entries.

Figure 2.1 shows the structure of an H-Tree. The leaf level contains the linked
list of directory entries, which is split into different hash regions. Each hash region
begins with a “dummy entry”, which holds the lowest hash value of the hashed file
names of the region. The hash regions are sorted from lowest to highest value in
the linked list of directory entries, therefore making it split-ordered. Hash regions
can hold up to 255 directory entries [20].

All levels, except the leaf level, contain so-called “H-Tree-Blocks”. An H-
Tree-Block holds an array of pointers, each pointing to either a dummy entry or
an H-Tree-Block. A hash value in an H-Tree block entry is either the hash value
of a hash region or the lowest hash value of the array of another H-Tree-Block.
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Currently, an H-Tree can only have up to three levels. Each H-Tree-Block can
only hold up to 255 hash values[20].

Originally, Kittner [20] proposed 255∗255∗256 = 16646400 as the maximum
number of directory entries with the hash region size being 256 and not 255. This
seems to have changed as the development of GPU4FS progressed. In the version
of GPU4FS we use, the hash region size is 255. Therefore, a directory can store
up to 2553 = 16581375 directory entries.

A key difference to the original H-Tree by Phillips is that the blocks of the leaf
level in GPU4FS are mere storage containers for the linked list of directory entries.
A leaf block contains an allocator to allocate space inside the block for directory
entries and dummy entries. Within the original H-Tree by Phillips, H-Tree-Blocks
point directly toward leaf block which contain an array to hold directory entries
only [20, 31].

2.2.2 H-Tree Operations
This section covers how to find a directory entry in an H-Tree and how to add an
entry to the H-Tree.

File Lookup

The algorithm to find a file F in a directory is as follows:

1. Find the largest entry in the root block of the H-tree that still has a lower
hash value than the hash value of the file name of F . Follow the pointer p1
of that entry to the first-level block I .

2. Repeat the previous step for I until you get to the leaf level.

3. Search the linked list of the hash region to find the directory entry for F
[20].

The parallel nature of GPUs speeds up the search in the root block and first-
level blocks as the entries are of fixed size and stored in an array. There is no such
speed up for the search in the linked list of entries as it is a list and not an array
[20].

Entry Insertion

The algorithm to insert a file F into a directory D is as follows:

1. Perform a file lookup to determine the hash region H for F .



12 CHAPTER 2. BACKGROUND

2. Check if a file entry can be added to one of the leaf blocks that contain the
hash region H . If there is enough space in the leaf blocks, add the entry to
them. Otherwise, add a new leaf block to the linked list of leaf blocks and
add the entry to that leaf block.

3. Check if the size of the hash region exceeds 255. If so, then split the hash
region by adding another dummy entry. The entries of the hash region are
divided equally among the two new hash regions. A new entry for the new
hash region is added to the H-tree. Depending on how much space there is
left in the H-tree, either a new level is added if the H-tree does not have a
depth of three or a block is split [20].

We do not cover what happens when there are more files than the maximum num-
ber of files in an H-Tree directory, and consider that subject to be future work.

2.3 Persistent Storage
This section motivates the use of Intel Optane as a storage medium and presents
the performance characteristics of Intel Optane. In section 2.3.1, we begin by
explaining the problem of the “memory wall” and its solution, the “memory hi-
erarchy”. We continue in section 2.3.2 with placing Intel Optane in the memory
hierarchy. We then analyze the performance characteristics of Intel Optane that
might be of interest to our implementation of file deletions and file moves.

2.3.1 Memory Hierarchy and Memory Wall
Since the 1980s, the gap between the speed at which processors can request mem-
ory and the speed of main memory to cope with such requests increases [14]. This
problem is called the “memory wall” [41].

To alleviate this issue, computers utilize different kinds of memory which form
a memory hierarchy. Solving the problem of the memory wall with a memory
hierarchy is most suited for programs which access memory with temporal or
spacial locality. At the top of the memory hierarchy are registers of processors.
Next in the hierarchy are caches, which are further divided into L1, L2, and L3
caches. Latency and storage capacity increase from L1 to L3. Caches are followed
by main memory in the hierarchy. Further down the hierarchy are storage devices
like SSDs, HDDs or magnetic tapes. Latency and memory capacity increase from
the top to the bottom of the hierarchy. The differences in these characteristics are
the result of different construction methods and components [14].

Despite the memory hierarchy, it would be ideal if computers had vast amounts
of memory with low latency and high bandwidth [14].
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2.3.2 Intel Optane

Intel Optane is an attempt at merging or at least narrowing the gap between main
memory and storage media like an SSD in the memory hierarchy. Effectively,
Optane tried to combine the low latency of DRAM with the large storage capacity
and non-volatility of SSDs [17].

Flavors and Modes of Intel Optane

Intel Optane is available as an SSD which can be connected to the computer via
Peripheral Component Interconnect Express (PCIe) or as Intel Optane Persistent
Memory Modules (Intel Optane DC PMMs), which, like DRAM, can be con-
nected to the computer via a motherboard’s memory channels. We only use Intel
Optane DC PMMs [17].

Intel Optane DC PMM can be used as the system’s main memory in the “mem-
ory mode”, optionally with DRAM as a cache, or as a separate storage device in
the “App Direct Mode” which can either be used by filesystems or mapped into
an address space using a device file. Intel Optane only stores data persistently in
the App Direct Mode and not in the memory mode [19].

We use both options of the App Direct Mode as we map Intel Optane into
the GPU4FS address space using a device file and make it visible to the GPU,
so that the GPU can then access it. We also install ext4 on Intel Optane to com-
pare the runtime of our file deletions and file moves commands with their ext4
counterparts. ext4 and GPU4FS are strictly separated on Intel Optane.

Performance Characteristics of Intel Optane

Yang et al. [19] analyze the performance of Intel Optane and compare it with
DRAM. This section is a brief summary of their conclusions that may be relevant
to the implementation of file deletions and file moves in chapter 4. Knowing
the performance characteristics and quirks of Intel Optane is important when we
evaluate file deletions and file moves of GPU4FS.

The authors of [19] assume that Intel Optane merges adjacent memory ac-
cesses into single 256 byte accesses. Reading Intel Optane memory sequentially
has an up to two times lower latency than reading it randomly and an up to four
times higher bandwidth. Yeng et al. also note that it requires more threads to
saturate Intel Optane read bandwidth than write bandwidth (17 vs. 4 for 6 Intel
Optane DC PMMs) and that accesses of 256 Bytes seem to be the best size to fully
saturate the bandwidth.
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2.4 GPU Architecture and Programming Models
The final section of the chapter is dedicated to GPU architecture and GPU pro-
gramming models. Understanding both is critical to creating efficient and fast file
system operations in chapter 4.

Unfortunately, there is no standardized terminology for GPU terms yet. NVIDIA,
Advanced Micro Devices (AMD) and OpenCL each have their own terms for the
same GPU components. A fourth terminology was proposed by Patterson and
Hennessy [14]. We will use NVIDIA’s terminology, as we use NVIDIA’s pro-
gramming model Compute Unified Device Architecture (CUDA).

2.4.1 Heterogeneous-Compute Interface for Portability
In addition to CUDA, we also use an API called Heterogeneous-Compute Inter-
face for Portability (HIP) [38], which facilitates the porting of code from NVIDIA
to AMD GPUs and back. HIP achieves this by presenting a unified interface for
both NVIDIA and AMD GPUs to the programmer, which is linked during com-
pilation to the corresponding libraries for the GPU. The portability of the code
comes at the cost of missing features, as not all features of CUDA, like for exam-
ple dynamic parallelism, are supported by HIP [3].

2.4.2 NVIDIA GPU Architecture
The remaining sections of this chapter are a summary of Hennessy’s and Patter-
son’s “Computer Architecture: A Quantitative Approach” [14] about GPUs.

The information presented in this section represents a greatly simplified view
on GPUs as it leaves out many features such as Tensor Cores, Streaming Multipro-
cessor (SM) partitions or datapaths [28]. While such features can greatly improve
the performance of programs running on the GPU, they are not necessary to un-
derstanding the common performance pitfalls when programming GPUs.

In essence, a GPU is a collection of so-called “Streaming Multiprocessors”
(SM), which work in parallel and are similar to vector processors. Each Single
Instruction Multiple Data (SIMD) lane of every SM has its own Load store unit
and complement of registers. SIMD lanes can access “local memory”, which is
unique per SM, and Video Random Access Memory (VRAM), which is accessible
by all lanes of a GPU [14].

Conditional Branching and Coalescent Memory Access

SMs, like vector processors, handle conditional branching through the use of mask
registers, although there are significant differences in how the mask registers are
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managed. We will not go into detail on how mask registers are managed. The
important takeaway is that if only some, not all, SIMD lanes of an SM execute
a branch, then all SIMD lanes of the SM execute both branches with those not
participating in a branch turned off. Split execution of conditional branches by
SIMD lanes degrades performance and should be avoided [14].

A significant difference to vector processors is how SMs access VRAM. SMs
exclusively use gather/scatter instructions to access memory. An “address coalesc-
ing unit” then tries to unify the individual memory accesses. Unifying memory
accesses can be done if the memory accesses try to access neighboring mem-
ory. The result is fewer memory accesses which can be processed faster. For this
reason, the programmer should always try to access memory in such a way that
memory accesses can be unified [14].

2.4.3 CUDA

Figure 2.2: Simplified structure of a GPU. The Thread Block Scheduler schedules
Thread Blocks for the different Streaming Multiprocessors. Each Thread Sched-
uler schedules Warps for the SIMD lanes of a SM. All lanes within an SM have
access to local memory. All lanes of all SMs have access to Video Random Ac-
cess Memory (VRAM). [14]

Figure 2.2 summarizes the interaction of GPU architecture and CUDA. CUDA
for the most part hides the structure of the GPU. The smallest programmable unit
in CUDA is the CUDA Thread. 32 consecutive CUDA Threads, called a “Warp”,‘
are mapped to the SIMD lanes of an SM by the Thread Scheduler. Up to a 1024
CUDA Threads form a “Thread Block”, which is assigned by the Thread Block
Scheduler to an SM. The number of CUDA Threads per Thread Block can exceed
the number of SIMD lanes per SM. To execute all CUDA Threads, GPUs multi-
plex the execution of CUDA Threads on SIMD lanes. This has the added benefit
that branch divergence does not affect performance if the divergence is between
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Warps. A GPU program in execution is called a “Grid” and is made up of all
Thread Blocks.

CUDA Threads have access to several kinds of memory, which abstract VRAM,
local memory, and registers of a GPU. “Global memory” is accessible by all
CUDA Threads. “Shared Memory” is unique to every Thread Block and can
only be accessed by the CUDA Threads that make up the block. Every CUDA
Thread also has its own local variables. CUDA does not map these abstractions
directly to hardware components, as for example shared memory can consist of
both registers and local memory [28]. In general, we can say that shared memory
is faster but also smaller than global memory [13].



Chapter 3

Related Work

This chapter explores current work in the field of GPU4FS, parallel file systems,
General Purpose Computation on Graphics Processing Units (GPGPU), and load
balancing. All works related to GPU4FS [25, 23, 32, 20], share similarities to file
systems, parallel file systems, and file system accelerators in particular. As we
will see in chapter 4, the algorithm used there to delete files and repair H-Trees is
inspired by parallel algorithms to traverse graphs and rebalancing algorithms.

3.1 GPU4FS

3.1.1 The original GPU4FS
GPU4FS aims to be a POSIX-compliant file system demonstrator which tries to
accelerate file system operations using a GPU. GPU4FS was developed with Intel
Optane as the storage medium in mind [25].

Motivation for GPU4FS

Werling et al. [40] showed that Intel Optane causes disproportionate Central Pro-
cessing Unit (CPU) usage when used as the storage medium for a file system.
A possible cause could be synchronous accesses of CPU cores to Intel Optane.
These cores stall in the time it takes Intel Optane to execute the requested op-
erations, wasting valuable CPU time. Werling et al.s’ solution is to use a Di-
rect Memory Access (DMA) engine like Intel IO Acceleration Technology (Intel
IOAT) for low demand memory accesses and only use the CPU for high demand
accesses. While this approach looks promising, Werling et al. suggests further
research with other DMA devices like GPUs leading to GPU4FS.

Figure 3.1 describes the principle architecture of GPU4FS. A process wishing
to access data on Intel Optane makes a request via a shared buffer with the GPU.

17
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Figure 3.1: The principle architecture of GPU4FS - Processes communicate with
the GPU via shared buffers which are setup by a trusted user level process of
GPU4FS using the operating system kernel. The GPU communicates with the
processes using these buffers. Every buffer contains a command queue for com-
mands to the file system. Only the GPU has access to the storage medium.

The GPU then executes the request and deposits any requested data or operation
result in the shared buffer [25]. Currently, GPU4FS does not fully implement
this architecture. It is instead a testbed for executing file system operations on
the GPU. There is only a user-level process and no buffers that are shared with
other processes. Instead, commands are scheduled using a CUDA feature called
“streams”.

Data Structures of GPU4FS

As is mentioned in chapter 2.1.1, GPU4FS uses inodes to organize data [4, 25].
Figure 3.2 shows the structure of a GPU4FS inode. It is noteworthy, that 2 Bytes
after “mode” are unused. Allocating memory in GPU4FS is done by allocating
“pages” of sizes of 256 B, 4 kB, 2 MB, and 1 GB similarly to how memory is
allocated in DRAM. This is due to the byte addressable nature of Intel Optane in
contrast to the block addressable of SSDs and HDDs [25]. The pointer size of
GPU4FS is 64 bits, 57 bits are used to point to a location in memory. Three bits
are unused. The remaining four bits are used for tagging. Going forth, we will call
GPU4FS pointers “block pointers”. In GPU4FS, a block pointer is in practice an
offset from the storage medium’s base [25]. The reason for using offsets as block
pointers is that Intel Optane is mapped to a random point in the virtual address
space of the process. Therefore, the pointer of the virtual address space to Intel
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Figure 3.2: This figure shows the structure of a GPU4FS inode. Data structure
size is measured in bytes. 2 bytes after “mode” are unused.

Figure 3.3: Bit distribution of a block pointer - 57 bits are used as an offset to
point to a location on the storage medium. 3 bits are unused. The remaining bits
are used for tagging (specifying the size of the block the block pointer points to)
and to indicate if the block pointer is valid and / or indirect.

Optane is only constant during the lifetime of the process. Figure 3.3 shows the
structure of a block pointer of GPU4FS [25].

3.1.2 Previous Work on GPU4FS

The original version of GPU4FS was written in Vulkan [16] and only supported
three file system operations: Setting bytes to a specific value, copying bytes and
creating files [24]. Since then, GPU4FS has been rewritten using Heterogeneous-
Compute Interface for Portability (HIP) [38] and been extended with directories,
Redundant Array of Inexpensive Disks (RAID), checksumming, and deduplica-
tion. We describe directories by Kittner [20] in chapter 2.2 as we actively use
Kittner’s implementation of the H-Tree to modify directories. The remaining fea-
tures are described in this section, as they are important to GPU4FS, but not file
deletions and file moves.
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Redundant Array of Inexpensive Disks

Redundant Array of Inexpensive Disks (RAID) describes a system of storage me-
dia linked together to increase read and write speeds and make disks more reliable.
RAID comes in different flavors which increase either read and write speeds or re-
liability of data or both [1].

Lucka [23] adds RAID to GPU4FS. To support RAID on GPU4FS, Lucka has
to modify the block pointer and superblock of GPU4FS. In his evaluation, Lucka
comes to the conclusion that RAID on GPU4FS outperforms competitors like
ext4 and BTRFS in certain configurations of RAID, while simultaneously greatly
decreasing CPU usage.

We will not use Luckas modified version of GPU4FS, as that version is based
on OpenGL Shading Language (GLSL) and not Heterogeneous-Compute Inter-
face for Portability (HIP) [23].

Checksumming and Deduplication

Checksum functions take an input of arbitrary length and output a bit pattern of
fixed size [1]. Checksums are for example used in BTRFS to verify the integrity
of data [33].

Deduplication is a file system feature used to save storage space by detecting
redundant data and replacing it with a link to a single instance of that data [26].

Rath [32] implements both checksumming and deduplication in GPU4FS.
Rath’s implementation is independent of the choice of the checksumming algo-
rithm. Building upon checksumming, Rath implements inline deduplication. Rath
comes to the conclusion that checksumming and deduplication on the GPU is best
suited for many large pages. Fewer and smaller pages should be done by the CPU.

Again, we will not use the modified version of GPU4FS by Rath as his version
of GPU4FS was written in Vulkan [32].

3.2 Parallel File Systems
In a parallel file system, multiple processors can try to access data in parallel,
which may be spread across multiple locations. The interactions of the proces-
sors are managed by the file system. Figure 3.4 shows the common structure of
such a file system with processors dedicated to IO tasks or computational tasks
[7]. While GPU4FS is no cluster or distributed file system, as the examples in the
following paragraph, the relationship of CPU and GPU Streaming Multiproces-
sors (SMs) shares some similarities with parallel file systems. The CPU can be
seen as a computation processor that communicates with the GPU as a multicore
IO processor. The communication medium are the shared buffers each process
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shares with the GPU in GPU4FS. Notable parallel file systems are Galley [27],
Vesta [7], Lustre [29] and Parallel Virtual File System (PVFS) [12].

Galley [27] is an attempt at optimizing a parallel file system for access pat-
terns specific to scientific computing. Galley divides processors strictly into IO
processors and calculation processors. This is similar to the relationship between
CPU and GPU in GPU4FS. However, GPU4FS is not optimized for specific ac-
cess patterns.

In Vesta [7] calculation processors do not communicate directly with IO pro-
cessors but instead over an abstraction mechanism called “cells”. Cells represent
IO tasks which are distributed to different IO processors. Another feature of Vesta
is that a single file can be processed by multiple calculation processors working
in parallel to achieve a single goal. This is exemplified in a sorting algorithm
“FastMeshSort” based on bitonic sort. While in GPU4FS, the different SMs can
work together on one file, there is no abstraction mechanism like in Vesta to coor-
dinate the different processors.

In contrast to Galley and Vesta, PVFS [12] and Lustre [29] both aim to be
commercially usable parallel file systems. In PVFS, processors can be both IO
processors and calculation processors. Lustre aims to be usable by thousands of
nodes of a cluster. GPU4FS was developed for scientific purposes and does not
operate on the same scale as PVFS or Lustre.

Figure 3.4: Generic parallel file system Structure - n IO processors handle IO
requests by m computational processors. Depending on the implementation, it is
possible for a processor to be both an IO processor and a computational processor.
The figure is inspired by [7].
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3.3 GPUs and File Systems
GPU4FS is not the only work that combines file systems and the GPU in some
manner.

GPUfs by Silberstein et al. [35] is a POSIX like API which exposes the
host’s file system to the GPU. The most significant difference between GPUfs
and GPU4FS is that GPUfs makes the host’s file system available to the GPU,
while GPU4FS is an entirely new file system for both the host and the GPU.

In 2015 Zhang et al. [42] made Solid State Drives (SSDs) accessible to the
GPU. NVIDIA has incorporated the ability to access storage media into CUDA
with Heterogeneous Memory Management [15]. GPU4FS uses Heterogeneous
Memory Management to access Intel Optane.

3.4 Load Balancing Algorithms
In chapter 4, we will describe the deletion and rebuilding algorithms, which must
traverse parts of the mostly treelike structure of the file system. The irregularity
of the file system structure necessitates the use of load balancing algorithms.

Load balancing algorithms can be divided into static load balancing, which
divides the load at compile time, and dynamic load balancing, which divides the
load at runtime [34]. For the irregular tree-like structure of file systems, we believe
dynamic load balancing to be more effective. Due to a lack of time, we implement
only a basic static load balancing algorithm, which has to be replaced in future
work with dynamic load balancing. That is why we explore the field of dynamic
load balancing in this section. Dynamic load balancing is widely used in parallel
calculations with irregular spaces. For example, Bian et al. [2] use load balancing
to optimize the calculation of matrix-vector product of sparse matrices.

Kohring [21] uses the CPU time that has elapsed since the last load balancing
step as a measure to determine if a processor should execute a load balancing
algorithm. This is not applicable to the GPU, as time measurement on the GPU is
difficult. We further discuss the problem in chapter 6.1.2.

Tomboulian [37] implements load balancing for Single Instruction Multiple
Data (SIMD). We considered using a SIMD approach to implement file deletion,
but ultimately rejected the idea because of the cost of synchronizing the Streaming
Multiprocessors (SMs) and Warps. We go into more detail about our decision not
use SIMD in chapter 4.1.3.

Lin et al. [22] present a dynamic load balancing algorithm that redistributes
load only among neighboring processors. While the algorithm is easy to imple-
ment and effective at distributing the load, it also requires global synchronization,
making it unsuitable for file deletion.
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Particularly interesting for GPU4FS is [5] by Chen et al. who implement a
task queue and load balancing for single and multi GPU systems. We did not
use [5] as the approach is too comprehensive for our purposes. However, future
implementations of GPU4FS might want to adopt the design in some manner, as
the task queue paradigm in [5] is similar to how GPU4FS in [25] is designed to
process requests of user processes.
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Chapter 4

Design

In this chapter, we present our design of file deletions and file moves for GPU4FS.
Sections 4.1.1 and 4.1.2 are about how to parallelize file deletions and file moves.
We argue that a producer-consumer pattern is necessary to parallelize file dele-
tions but is not required to parallelize file moves. In sections 4.1.3, 4.1.4, 4.1.5,
and 4.1.6, we describe desirable properties for the shared buffer of the producer-
consumer pattern and how to realize them. File deletions and file moves damage
the H-Tree of the parent directory. Therefore, section 4.2 describes how to repair
the H-Tree, again using a producer-consumer pattern.

4.1 File Deletions and File Moves

This section describes how we design our file deletion and file move algorithms.
We will first explain how to unlink files from an H-Tree before we analyze how to
parallelize file deletion and file moves.

4.1.1 Unlinking a File from an H-Tree

Chapter 2.2.2 explains how to insert entries into an H-Tree, thereby linking a file
name to an inode. Unlinking a file is similar to linking a file in that first, a file
lookup is performed to determine the hash region a directory entry is located in.
Then, the algorithm removes the directory entry for the file from the linked list of
directory entries.

Removing a directory entry like that does not update the allocation table of
the affected leaf block, thereby creating a memory leak. More memory space is
wasted by not merging hash regions or reducing the size of the tree if possible.
We will go into more depth about how to repair an H-Tree in chapter 4.2.

25
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4.1.2 Parallelizing File Deletion and File Movement
As explained in Chapter 2.1.2, the building blocks of file deletions and moves are
unlinking and linking files, and recursive decrementation of hard link counters.

Unlinking and linking files consist of file lookups and operations to add or re-
move entries from an H-Tree. A file lookup is a mostly sequential operation. The
only aspect of file lookups that can be effectively parallelized is the calculation of
hash values for the search for directory entries in H-Trees [20]. Therefore, linking
and unlinking are operations that can only be effectively parallelized if there are
more than one operation.

Recursive decrementation of hard link counters can be parallelized to an ex-
tent as to decrease the hard link counter of a file, an algorithm needs to know the
position of the file’s inode in memory. Directories store the position of their chil-
dren’s inodes in the directory’s linked list of directory entries. Therefore, once the
content of a directory is read from memory, the hard link counters of the directory
children can be decremented in parallel.

The Need for Producer-Consumer-Pattern for File Deletion

To avoid synchronization, parallel algorithms usually divide resources in time or
space. This can only be done effectively if the amount of resources is known in
advance.

The nature of recursive decrementation means we do not know how many
hard link counters will have to be processed when we delete a file, unless we
spend additional processing time or memory space. However, there are several
problems with such an approach.

Storing Directory Entry Count reduces Parallelism

One way to determine how many hard link count decrementations a file deletion
would entail is to store a count of how many files a directory and all its chil-
dren contain. Storing the directory entry count for a directory and all its children
would be inefficient. A change in the number of directory entries in a child direc-
tory would also lead to a change in the number of entries in the parent directory.
Ultimately, storing such a count would greatly increase the number of accesses to
the storage medium.

Prior knowledge about Directory State reduces Parallelism

Another issue is, the file system’s state might change in the time between reading
the state of the file system and the beginning of the execution. As a result, a file
deletion algorithm that is supposed to delete a directory might have an inaccurate
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hard link count if, in the meantime, another worker adds a file to the directory. A
solution would be to sequentialize the access to the file system. Sequential access
to the file system is not desirable for performance reasons.

Consumer-Producer-Pattern for File Deletions

Since storing the number of files a directory and all its children have is not feasi-
ble, a parallel algorithm to delete files must be able to handle the unknown number
of child files a directory might contain. A solution to the problem of not knowing
how many hard link count decrementations a file deletion entails is the producer-
consumer pattern with an unbounded shared buffer.

A task in this buffer represents a hard link counter decrementation of a regular
file or the deletion of a directory, as a directory, unlike a regular file, can only ever
have one file name mapped to it. The deletion of a directory spawns new tasks, as
the content of the directory is added to the shared buffer.

4.1.3 Characteristics of Consumer-Producer-Pattern for File
Deletions

In this section, we explain how tasks are processed, what a worker in the context
of file deletions is, and how we implement the shared buffer of the producer-
consumer pattern.

MIMD and SIMD for Consumer-Producer-Pattern

The character of the producer-consumer pattern naturally lends itself to a MIMD
approach, as multiple workers (processors) process different tasks (data). Still,
GPUs can also work in a SIMD fashion, which is why we also considered pro-
cessing the content of the shared buffer in a such a way. The following paragraph
describes how tasks might be processed in a SIMD fashion.

Suppose we have a non-empty buffer of the producer-consumer-pattern. The
first step would be to divide all tasks equally among all workers. The second step
would be to process the tasks. Newly spawned tasks are stored in a private buffer
of each worker. Once all workers have added all newly spawned tasks to their
private buffers, they are transferred from the private buffers to the shared buffer in
parallel. The processing would then begin anew.

The main problem with this approach would be that the time required to pro-
cess a task fluctuates because directories can have varying amounts of children.
The synchronization between the different steps of the algorithm means that work-
ers would idle until every worker would be done processing. We therefore choose
a MIMD approach to the producer-consumer pattern of file deletions.
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Definition of a Worker

A worker can be implemented on the GPU by grouping CUDA Threads together.
We considered two possible group sizes: 32 CUDA Threads, which constitutes a
single Warp, or up to 1024 CUDA Threads, which form an entire Thread Block.
More CUDA Threads per worker mean more parallel processing power per task,
but this comes at the cost of fewer workers. We selected a group size of 32 CUDA
Threads, as the amount of parallelism in tasks is low.

In the future, the group size may change when encryption is added to the
feature set of the current version of GPU4FS. Part of the reason we choose a group
size of 32 CUDA Threads is to evaluate if there is a significant performance gain
when executing tasks using Warps and not Thread Blocks. Should there indeed
be a significant performance gain, then it might be better to implement encryption
on a Warp level rather than a Thread Block level.

4.1.4 Characteristics of the Shared Buffer

In this section, we explain what properties are desirable for the shared buffer of
the producer-consumer pattern.

Quick Task Insertion

The nature of file systems as mostly tree-like structures leads to a specific access
pattern to the shared buffer of the producer-consumer pattern: Workers will only
ever retrieve one task at a time from the shared buffer, as a worker can only effec-
tively process one task at once. However, a worker might add several new tasks
to the buffer after processing a single task, leading to a sharp rise in the fill level
of the shared buffer. Therefore, the shared buffer should be optimized for quickly
adding new tasks.

Unbounded Array

During the execution of the file deletion algorithm, the buffer might run out of
space, as we do not know how many tasks have to be processed. The algorithm
would then have to allocate additional memory, either in VRAM or on Intel Op-
tane. Going forth, we assume that the shared buffer has enough memory. A single
entry in the shared buffer only occupies 128 bits of memory. GPUs usually have
several GBs of VRAM. The GPU we use, an RTX 4070, has 12 GBs of VRAM.
That means that we can store about 93 million entries. We will not exceed that
number during our tests in the evaluation. Therefore, we consider how to handle
a buffer overflow of the shared buffer in VRAM to be future work.
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Low Amount of Lock Contention

As the shared buffer is used by all workers simultaneously, hence the name shared
buffer, access to individual tasks of the buffer must be locked. To avoid time-
consuming lock contention, the shared buffer should implement some kind of
policy.

4.1.5 Shared Buffer as Collection of Arrays

We choose to implement the shared buffer as an array in VRAM and several
smaller buffers in shared memory.

Quick Task Insertion

To facilitate the quick insertion of new tasks, we complement the shared buffer
in VRAM with shared buffers located in CUDA’s shared memory, as accesses to
shared memory are faster than accesses to global memory. Unlike, the buffer in
VRAM, we assume that the buffers in shared memory can overflow, as they are
much smaller. Another issue is that tasks might be unevenly distributed among
the shared buffers, which is why we need to implement load balancing.

We cover a range of load-balancing algorithms in chapter 3.4. Due to a lack of
time, we only implement a rudimentary load-balancing algorithm, that, once there
are a certain amount of tasks in a shared buffer in shared memory, transfers all new
tasks to the shared buffer in VRAM. If a worker cannot acquire a task in shared
memory, the worker will try to transfer tasks from the shared buffer in VRAM
to the buffer in shared memory. The exact number of tasks will be described in
chapter 5.3, as they are experimentally determined.

Low Amount of Lock Contention

To reduce the amount of lock contention in a shared buffer, we try to keep workers
apart from one another. Our first idea was to randomly determine the start position
of a worker with equal distribution in an interval of indices which are guaranteed
to contain all tasks and some free space. The complement of the interval would
only contain free space. The interval’s boundaries would be updated after each
insertion. We partially abandoned the idea as randomness on a GPU comes with a
relatively large overhead for the developer, and therefore a lot of time fixing bugs,
compared to CPU randomness.

Instead, we modified the approach by not choosing starting positions at ran-
dom, but simply dividing the interval into equal pieces that serve as starting posi-
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tions. A worker wishing to acquire a task calculates a start index with

warp_id ∗ (upper − lower)

num_workers

A worker wishing to acquire a free entry in the buffer calculates an index using

warp_id ∗ free_space_size
num_workers

That index is then mapped to the interval(s) of free space, which may be discon-
tinuous, depending on whether a boundary of the marked interval is the same as a
boundary of the shared buffer.

Maintaining the invariant of the interval comes at the cost of sequential access
to the lower and upper bounds. In chapter 5.4, we will show runtime measure-
ments which indicate that the use of boundaries can improve the runtime.

An alternative to using an interval would be to use a histogram, which would
represent the task distribution inside the shared buffer more accurately and could
guide the search in it. The intervals would have to be large enough to avoid lock
contention. The starting positions inside an interval would be equally distributed
for all workers. We did not implement this approach due to a lack of time. Fu-
ture work might reveal if a histogram performs better than the solution we imple-
mented.

4.1.6 Alternative Data Structures
The design as presented in the previous section does not enforce a specific search
pattern in the file system structure. This reduces access time to the buffer. Still, a
depth-first-search (DFS) for example might reduce the maximum number of tasks
in the shared buffer due to the mostly tree-like structure of file systems. A DFS
needs a last-in-first-out (LIFO) queue. One might also implement a breadth-first-
search using a first-in-first-out queue. However, doing so would likely increase
the number of tasks in the shared buffer, which would only be advantageous if
workers are task starved.

As limited memory space is no concern to us, we do not implement a LIFO
queue.

4.1.7 Summary of File Deletions and File Moves
We start by analyzing how file deletions and file moves can be parallelized. We
come to the conclusion that file moves can only be parallelized by performing
multiple moves in parallel. A file deletion can be partially parallelized if the file is
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a directory with at least two entries, as the children of a directory are independent
of each other. File deletions must be able to handle an unknown number of files,
as we do not know how many files are stored in a directory. We achieve this by
using a producer-consumer pattern. We implement a worker in that pattern as a
Warp of the GPU. Every worker should be able to quickly add new tasks to the
buffer, which we bring about by complementing the buffer in the comparatively
slow global memory with smaller buffers in fast shared memory. There should
also be a low amount of lock contention, which we try to realize by using a policy
for the calculation of start indices in the shared buffer, that tries to keep workers
apart. We reduce the impact of that policy on the search times in the shared buffer
by maintaining an interval of indices that highlight areas of interest.

4.2 Repairing the H-Tree

Chapter 4.1.1 describes how to unlink a file from a directory with an H-Tree.
In this chapter, we present two feasible approaches to repairing the H-Tree.

The first approach allows us to quickly repair the H-Tree after an unlinking op-
eration, but this comes at the cost of additional pointers that have to be added to
the H-Tree. That is why we choose the second option, which has no need of addi-
tional pointers. Instead, the H-Tree is reconstructed. The cost of reconstructing is
amortized over successive unlinking operations.

4.2.1 Repairing from Leafs to Root

To repair the H-Tree, an algorithm first has to update the allocation table of the
leaf block that contained the directory entry. Then, the algorithm has to potentially
remove the dummy entry of the hash region and the H-Tree-Block entry from
the corresponding H-Tree-Block if the hash region has become empty. There is
also the possibility that the leaf block no longer contains any directory entries or
dummy entries, making it advantageous to give it to the garbage collector.

The H-Tree needs additional pointers to implement the algorithm of the pre-
vious paragraph, that allow it to move through the H-Tree from leafs to the root.
The additional pointers can be seen in figures 4.1b and 4.1c. Every dummy entry
is given a pointer to its previous directory entry, the leaf block that contains it and
the root block that points to it. Every directory entry is given a pointer to the leaf
block that contains it. All leaf blocks receive a pointer to the previous leaf block.
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(a) Dummy entry with additional pointers

(b) Directory entry with additional pointers

(c) Leaf Block with additional pointers

Figure 4.1: Data structures that have to be modified to allow repairing the H-Tree
from leafs to the root. Blue arrows indicate pointers we add. Black arrows indicate
pointers that are present in the unmodified version by Kittner [20].

Future Considerations

If the maximum number of levels increases in the future, then every H-Tree-Block
will also need a pointer that points to the H-Tree-Block that contains a pointer to
it, except for the root block. With only three levels, every H-Tree-Block that is
not the root block must automatically be an H-Tree-Block of the first level.

Algorithm to Repair H-Tree

An algorithm to repair the H-Tree therefore looks as follows:
Let d be the directory entry for the file we want to unlink. After unlinking, d

is no longer part of the linked list of directory entries. Follow the newly added
pointer of d to its leaf block and update the bitmap of the leaf block. Then check
if the hash region of d is now empty. If so, then also remove the dummy entry
for the hash region from the linked list of directory entries. Now check if the
leaf blocks that contained d and if applicable the dummy entry are now empty,
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again using newly added pointers. Should that be the case, then remove the leaf
blocks from the linked list of leaf blocks. If a dummy entry was removed, then
also remove the H-Tree-Block entry that contained it. Again, dummy entries have
a newly added pointer to access the H-Tree-Block that points to them. The H-
Tree-Block should then be merged with another H-Tree-Block of the same level,
if it has sufficiently few elements. Blocks of the same level can be accessed by
accessing the H-Tree-Block entries of the “parent” H-Tree-Block that points to
the H-Tree-Block. Similarly, the depth of the H-Tree can be reduced if there are
sufficiently few H-Tree-Block entries.

4.2.2 Repairing by Reconstructing
The previous algorithm repairs the H-Tree after each unlinking operation. This
comes at the cost of additional pointers. An alternative is to reconstruct the H-
Tree. Reconstructing the H-Tree would be inefficient if it was done after every
unlinking operation. That is why we perform reconstruction only after a certain
amount of unlinking operations to amortize the costs.

Storing the Number of Unlinking Operations

This requires that we store the number of unlinking operations that have been
performed on a directory somewhere in the inode or the H-Tree. As seen in figure
3.2 of chapter 3.1, the inode currently has two bytes that are unused. 22·8 = 65536
should be large enough to store the number of unlinking operations. Figure 4.2
shows the modified inode.

Producer-Consumer Pattern for reading Directory Entries

To reconstruct an H-Tree, all directory entries of the linked list of directory entries
must be read and added to a new H-Tree. Reading entries in parallel from a
linked list is not possible, as knowledge of the location of an entry is dependent
on knowledge about the location of the previous entry. We make use of the H-Tree
to speed up the process of reading the directory entries.

We again use the producer-consumer pattern to process the tree-like structure
of the H-Tree. A task in the shared buffer is an H-Tree-Block entry which either
points to an H-Tree-Block or a dummy entry. If an H-Tree-Block entry points to
an H-Tree-Block, then all H-Tree-Block entries of that H-Tree-Block are added
as new tasks. If the H-Tree-Block entry instead points to a dummy entry, then all
directory entries of the corresponding hash region are added to the new H-Tree.

We also modify the concept of a worker for this buffer to be a Thread Block
with at 256 CUDA Threads. This is because H-Tree-Blocks contain at most 255
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Figure 4.2: Modified inode - Two bytes after mode are now used to store the
number of unlink operations that have been performed on a directory without
rebuilding the H-Tree

H-Tree-Block entries, and 256 is a multiple of 32. These entries are stored in an
array, making it possible to access them in parallel. Adding elements to the shared
buffer is still done by individual Warps. This is due to the fact that we only have an
upper bound for the number of H-Tree-Block entries in an H-Tree-Block. So there
might be less than 256 H-Tree-Block entries in an H-Tree-Block. The unknown
number of H-Tree-Block entries in an H-Tree-Block leads to a situation in which
we either add elements to the shared buffer only at intervals of 255 elements, or
every Warp search for an empty space for itself to not waste memory space.

Due to a lack of time, we do not complement the shared buffer in VRAM with
shared buffers in shared memory, and instead just use the shared buffer in VRAM.

4.2.3 Summary
To conclude, we choose to reconstruct H-Trees after a certain amount of unlink-
ing operations rather than adding new pointers to the H-Tree to repair the data
structure after each unlinking operation. The cost of reconstructing the H-Tree is
amortized over successive unlinking operations. We read the directory entries of
a directory by traversing the tree-like structure of the H-Tree using the producer-
consumer pattern. A worker in this instance of the producer-consumer pattern is
a Thread Block not a Warp, though Warps are still used to insert elements into the
shared buffer.
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Implementation

In this chapter, we present details of our implementation that can have a large
impact on the evaluation, but are too specific to be included in chapter 4. Section
5.1 describes how we implement locking for H-Trees and elements of the shared
buffers of the producer-consumer patterns. Section 5.2 contains the command
descriptors for the file deletions, moves, and rebuild H-Tree commands. In section
5.3, we present our choice of parameters for the load balancing mechanism for file
deletions. We conclude this chapter in section 5.4 by showcasing how we optimize
the start index calculation by allowing the boundaries to be cached.

5.1 Locking
We use locking during unlinking to manage access to the H-Tree and in the file
deletions algorithm to manage access to elements of the shared buffers.

5.1.1 Locking for Unlinking

During unlinking, the algorithm modifies the linked list of directory entries and
possibly the H-Tree of the parent directory. To maintain the invariants of the
linked list of directory entries and the H-Tree, access to the directory is locked.
Kittner [20] implements locking of directories by locking the first block of the
directory if the directory does not use an H-Tree, or by locking the root block of
the H-Tree, if the directory has one. Determining if a directory has an H-Tree
can only be done reliably after locking the first block of the directory. Should it
turn out that the directory uses an H-Tree, then the first block is unlocked, and the
algorithm tries to lock the root block. A modified version of Kittners directories
is part of the GPU4FS we use, which locks the first dummy entry instead of the
first block. The H-Tree is still locked using the root.
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Locking of the entire parent directory can have a negative impact on the per-
formance if many files in a shared parent directory are unlinked in parallel, as
access to the parent directory is sequentialized. Due to a lack of time, we do not
improve the locking mechanism to reduce the impact on performance. However,
in our evaluation we will present a test scenario in which each file has its own
parent directory, thereby reducing the impact of locking on runtime and showing
how fast file moves could be with improved locking.

5.1.2 Locking Elements of Shared Buffers
Structure of a Lock

We implement locks of the shared buffers as mutexes rather than read-write locks
because every worker intends to change the state of an entry, either to add a task
to the entry or process the task contained in the entry. We implement the mutexes
using an atomic compare-and-switch operating on a 64 bit variable. The lower 32
bits are either 0, unlocked, or 1, locked. We initially considered using a read-write
lock, which is why we only use 32 of the 64 bits, but quickly abandoned the idea
because of the stated reason.

Locks can be used by both Warps and Thread Blocks

Our locks are designed to be accessible by both Warps and Thread Blocks. This
is necessary because the file deletions and the rebuilding commands for H-Trees
use Warps and Thread Blocks as workers, respectively. The atomic compare-and-
switch operation is executed by the first CUDA Thread of the Warp or Thread
Block. The result of that operation is then shared with the rest of the CUDA
Threads. In case of a Thread Block, this is done by storing the result in shared
memory. Warps on the other hand use the Warp function shfl_sync() to share
the result. Thread Blocks synchronize after sharing the result using
__syncthreads(). Warps automatically synchronize using shfl_sync().

5.2 Command Descriptors
Figure 5.1 shows the command descriptors for deleting and moving files, and re-
building H-Trees. Variables which are declared as volatile are not cached,
as preventing caching is important for synchronization. The move command re-
ceives two arrays of char pointers, which point to the source and destination paths
for the files to be moved, and two pointers to two arrays containing the lengths
of those paths. Finally, the move command is given the number of files to move.
The delete command receives a pointer to the path that leads to the file that is to
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(a) File Move

path_to_dir : char*

path_length : uint64_t

rebuild_h_tree_cmd

buffer : reconstruction_buffer*

num_warps : uint64_t

buffer_size : uint64_t

(b) Rebuild H-Tree

(c) File Deletion

Figure 5.1: Command Descriptors - Pointers and uint64_t are of size 64 bits.
uint32_t is made up of 32 bits. The move command receives the source and desti-
nation paths, their lengths, and the number of paths. The delete command receives
a path to the file to be deleted, its length, a pointer to the shared buffer in global
memory, values to initialize the buffer, and a pointer to a boolean array used to
communicate if a worker has tasks. The rebuild command receives a path to the
directory it is supposed to repair, its length, a pointer to the shared buffer, and
values to initialize it.

be deleted, the length of the path, the size of the buffer and the number of Warps,
which it uses to initialize the shared buffer in global memory. Additionally, the
command also has a pointer to an array, whose entries indicate if the individual
workers still have tasks or not. If all entries in that array are false, then the com-
mand finishes. The rebuild H-Tree command is given a path to the directory and
its length that the command it is supposed to repair. Like with the deletion com-
mand, the rebuild command also receives the number of Warps and the buffer size
to initialize the shared buffer.
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5.3 Load Balancing

In chapter 3.4, we explain that we would like to use dynamic load balancing but
choose static load balancing instead due to a lack of time. We implement static
load balancing by storing tasks in the buffer in global memory once the buffer in
shared memory is half full, which happens at 500 elements. If a worker notices,
that the buffer in shared memory is empty, then the worker tries to transfer up to
50 tasks from the buffer in global memory to the buffer in shared memory. We
determine these values experimentally with the goal of minimizing the runtime
for the test scenarios “Mix” and “Wide”, which contain 1000 and 10000 tasks
respectively, in the evaluation in chapter 6. These values should not be assumed
to be universally valid for every possible scenario, which is why in future work,
the static load balancing should be replaced by dynamic load balancing.

Transferring a task from one buffer to the other is done by locking the task and
searching for an empty entry in the destination buffer. Once found, the worker
locks the empty entry and inserts the task. After that, the worker first releases the
lock in the destination buffer and then the lock in the origin buffer.

5.4 Start Index for Search in Shared Buffer

In chapter 4.1.5, we explain, how workers calculate start indices for their searches
in shared buffers by using an interval that marks the region in a shared buffer that
contains all tasks. That approach seems to be about 7 ms faster than hard-coding
the start index to be 0 in a test scenario in which a directory containing 100 direc-
tories containing 100 files each is deleted. We will later call that scenario “Mix”.
The runtime value is the average of ten repetitions. Caching the boundaries again
improves the runtime by 3 ms, although caching weakens the invariant of the in-
terval, that it contains all tasks in the shared buffer. This is likely because the
algorithm saves more time by performing less atomic operations, even though it
has to search longer.

5.5 Summary

To summarize, we use locking to manage access to directories and access to ele-
ments of the shared buffers of the producer-consumer patterns of the file deletions
and rebuilding H-Tree commands. Parallel access to a directory is sequentialized
through locking, which can have a negative impact on performance. We do not
improve the locking due to a lack of time and consider improvement to directory
locking to be future work. The locks of the elements of the shared buffers are
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mutexes, as every worker seeks to change the state of an element in the buffer by
either removing or adding a task. These locks can be used by both Warps and
Thread Blocks.

The commands receive data, which is partly directly in their algorithms and
partly to initialize helper data structures.

We experimentally determine that transferring tasks from the buffer in shared
memory to the buffer in global memory for deleting a directory with 100 directo-
ries containing 100 files should be done after the buffer in shared memory contains
500 tasks. Similarly, we determine the number of tasks that should be transferred
by a single worker from the global buffer to the buffer in shared memory is 50.
These values are fine-tuned for our evaluation, which is why this static load bal-
ancing should in the future be replaced by dynamic load balancing.

Finally, we show that using an interval, as described in chapter 4.1.5, improves
the runtime of file deletions by about 7 ms. The runtime value can be further
improved by 3 ms if caching of the boundaries is enabled.
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Chapter 6

Evaluation

In this chapter, we evaluate our implementation in terms of speedup compared to
the CPU file system ext4. Section 6.1 presents the configuration of our testing
machine and how we measure the runtime of our implementation. In sections
6.2, 6.3, and 6.4 we evaluate the rebuilding H-Tree, file deletions, and file moves
commands, respectively.

6.1 Configuration and Methodology

In this section, we look at the specifications of our testing machine and how we
measure on it.

6.1.1 Testbed Configuration

Our machine uses an Intel Xeon Silver 4215 CPU @ 2,5 GHz [18] with two
sockets, 8 cores per socket and two threads per core together with 128 GB of
DDR4 DRAM in total, one 128 GB Intel Optane DC PMM and an NVIDIA RTX
4070. An NVIDIA RTX 4070 has 46 Streaming Multiprocessors (SM), a base
clock of 1.92 GHz, a boost clock of 2.48 GHz, and 12 GBs of VRAM [10]. We
use Fedora Linux 40 Server Edition as our operating system and Linux 6.10.7-
200.fc40.x86_64 as the kernel.

6.1.2 Measurement Tools

CUDA offers cudaEvents, clock(), and clock64() functions to measure
how much time passes during an execution of a Grid.
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CUDA Events

CUDA Events can be inserted before and after a Grid launch by the CPU into the
CUDA stream that contains the Grid. The host function
cudaEventElapsedTime() then calculates how much time in milliseconds
passed between the two events. This function is useful for measuring how much
time one or more Grids need to execute.

Clock Cycle Count

A different method of measurement are the device functions clock() and
clock64(), which return the clock cycle count of the Streaming Multiproces-
sor that executes them. They differ merely in which format that data is returned.
Therefore, we will only use clock64(). The difference between two samples
of clock64() is an indicator of how many cycles passed in the time between
[8]. A drawback of measuring with clock64() is that clock cycle counts can-
not reliably be converted to milliseconds because the clock speed of the GPU
changes dynamically during execution. However, clock64() can be used to
get an estimate of how long individual components of a Grid take to execute com-
pared to all other components, as long as the components contain enough instruc-
tions. We came to this conclusion early on during our evaluation as we tried to
measure how much time a Grid spends on accessing Intel Optane. We inserted
clock64() instructions directly before and after memory instructions that ac-
cessed Intel Optane. The measured differences were erratic and nonsensical, as
they were sometimes larger than the overall clock cycle count. We believe, this
is caused by instruction reordering. Therefore, taking the difference between two
clock64() instructions is only useful when there are enough instructions in be-
tween the two clock64()s to mitigate the effects of instruction reordering and
hidden memory latency.

We further examined the problem in a dedicated GPU program which was ex-
ecuted on an NVIDIA GTX 1070 [9] to determine how many instructions have to
be in between two clock64()s for their sample to be usable. In that program,
each CUDA Thread calculates a certain number of iterations of the Fibonacci se-
ries, and writes the value of each iteration into global memory. The code can be
seen in listing 1. We compiled the program using NVCC with optimization dis-
abled and launched the Grid using a single Warp. On the one hand, the grid uses
clock64() instructions to store the aggregated clock cycle count differences of
x iterations each. On the other hand, the grid measures how many clock cycles
it needs in total to execute. Figure 6.1 shows how the difference between these
two values shrinks with an increasing number of iterations between two measure-
ments. The two graphs converge after about 200 to 300 iterations of the Fibonacci
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series. The graph for the clock cycle difference between 10000 iterations is not
flat. This is because the smaller the number of iterations between measurements,
the more frequently measurements are taken, leading to more time spent on mea-
suring. Even so, the difference in precision between the two measurements is
clearly visible. We repeated the experiment, but this time stored the results of
the Fibonacci series in a local variable. The shape of the graphs remained the
same. Only the convergence clock cycle count changed from 1.39403 · 108 to
1.37181 ·108 which indicates that the GPU amortizes the costs of accessing global
memory. Furthermore, it means that 200 to 300 instructions seem to be enough to
effectively use clock64(). We recommend those values for anyone who wants
to measure using clock64().

We use cudaEvents for the measurements in the following sections, as we
are mainly interested in how long the commands take compared to their CPU
counterparts.
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Figure 6.1: Measuring the time to calculate the Fibonacci series with 10000 el-
ements. Line 1 is the result of aggregating the clock cycle differences after x
iterations of the Fibonacci series over 10000 iterations of the Fibonacci series.
Line 2 is the clock cycle differences after 10000 iterations. The curvature of the
graph is the result of the overhead necessary to storing the clock cycle differences.
The overhead is larger the more often the measurements are taken. Line 3 repre-
sents the number of clock cycles necessary to calculating 10000 iterations of the
Fibonacci series with the overhead removed.
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1 __global__ void test_kernel(
2 uint64_t num_iterations, volatile uint64_t* data,
3 uint64_t* overall_time, uint64_t* fine_measured_time,
4 uint64_t interval) {
5

6 auto thread_id = blockDim.x * blockIdx.x + threadIdx.x;
7 uint64_t c0 = 0;
8 uint64_t c1 = 1;
9 uint64_t r;

10

11 auto overall_clock = get_clock();
12 uint64_t fine_clock = 0;
13 uint64_t temp;
14 for (auto i = 0; i < num_iterations; i++) {
15 if (i % interval == 0) temp = get_clock();
16 r = (c0 + c1);
17 c0 = c1;
18 c1 = r;
19 data[i] = r;
20 if ((i % interval) == (interval - 1)) {
21 fine_clock += get_clock() - temp;
22 }
23 }
24 __syncthreads();
25 overall_time[thread_id] = get_clock() - overall_clock;
26 fine_measured_time[thread_id] = fine_clock;
27 }

Listing 1: Code to measure the differences between clock64()s between x itera-
tions of the Fibonacci series and 10000 iterations

6.2 Measurements for Rebuilding

In chapter 4, we start with file deletions and file moves, before we explain our de-
sign for rebuilding H-Trees. In this chapter, we evaluate the commands in the re-
verse order, as the results of the evaluation of the rebuilding H-Tree command are
a deciding factor for our conclusions about file deletions and file moves. Unfortu-
nately, we are not able to properly evaluate our implementation of the rebuilding
command, as we encounter an illegal memory access, when more than one worker
tries to modify an H-Tree. The algorithm seems to work with just one worker. We
believe the illegal memory access is caused by a race condition, as it does not
occur, when we use printf() statements to print the values of variables during
file lookups. We only describe how we think the rebuilding command would per-
form and how that might differ from how it actually performs, as we lack the time
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to measure the rebuilding command with just one worker.

6.2.1 Testing Scenarios

With the testing scenarios in the following sections, we aim to determine optimal
configurations of the number of Thread Blocks and Warps per Thread Block and to
measure the runtimes of the commands to compare them to their CPU counterparts
and decide whether to use their CPU or GPU versions. The scenarios are defined
by the number of file originally present in the directory and the number of file
unlinked from it. The former is identified by an “F” in the scenario name, the
latter by a “U”. For example, in scenario F100U10, we unlink 10 files from a
directory of 100. Our scenarios are F100U10, F100U50, F100U100, F1000U100,
F1000U500, and F1000U1000.

For scenarios F100U10, F100U50, and F100U100, we expect to see the run-
time linearly decreasing with the number of files unlinked, as there should only be
one hash region which can only be linearly searched. We expect that the runtime
decreases exponentially and not linearly for scenarios F1000U100, F1000U500,
and F1000U1000, as a directory with 1000 files uses an H-Tree and not just a
linked list.

Regarding the number of Thread Blocks and Warps per Thread Block, we
expect the runtime to decrease with an increasing number of Warps in scenarios
F1000U100, F1000U500, and F1000U1000 until the number of Warps reach 8. 8
Warps consist of 256 CUDA Threads in total, which is one CUDA Thread more
than the maximum number of H-Tree block entries in an H-Tree block and is
therefore the maximum number of tasks that can be processed in parallel.

There should be no speedup with an increasing number of Thread Blocks and
Warps per Thread Block in scenarios F100U10, F100U50, and F100U100, as all
entries are stored in a linked list which can only be read linearly.

6.2.2 Considerations regarding File Deletions and File Moves

The performance behavior of the rebuilding command plays a critical role when
deciding whether file deletions and file moves are best done using the CPU or
GPU. We consider the GPU implementation to be superior if the amortized costs
for the GPU operation are smaller than for the CPU operation.

Therefore, the cost for an individual file deletion or file move must be smaller
than their CPU counterpart. As we will see in the following sections, that can be
true for file deletions, but is never true for our implementation of file moves.
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6.3 Evaluation of File Deletion

In this section, we evaluate our implementation of file deletions. We begin by
introducing the different testing scenarios we use. We then present the measure-
ments and draw conclusions from them.

6.3.1 Testing Scenarios

In scenario “Deep” we nest 1000 directories inside each other, effectively creating
a chain of child directories. In scenario “Wide” we store 1000 directories in a
single parent directory. Scenario “Mix” is a combination of scenarios “Deep” and
“Wide”, as 100 directories are nested in 100 parent directories each. Scenario
“Single File” is a base case scenario, where we only delete a single file.

6.3.2 Measurements

We execute file deletion with up to 46 Thread Blocks and 19 Warps. An RTX
4070 only has 46 Streaming Multiprocessors. Therefore, we can only use 46
Thread Blocks in parallel. We only use up to 19 Warps, because any more Warps
cause a compilation error. We suspect that the compiler runs out of registers it can
use.
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Figure 6.2: Runtime of the file deletion algorithm for scenario “Deep” - The min-
imal runtime of 17.39772 ms is achieved with 1 Thread Blocks and 1 Warp. The
runtime decreases with an increasing number of Warps per Thread Block starting
at 2 Warps per Thread Block. There is also an increase in the runtime from 23 to
24 Thread Blocks, and an increase by a factor of 5 from 1 Warp per Thread Block
to 2 Warps.

Figure 6.2 shows the runtime measurements for the scenario “Deep”. The file
deletion algorithm takes the least amount of time, 17.39772 ms, when executed
with 1 Thread Block and 1 Warp per Thread Block compared to 21.873 ms in ext4
on the CPU. This is a speedup of about 1.26. Launching the Grid with 2 Warps
per Thread Block increases the runtime by a factor of up to 5 when compared
to 1 Warp per Thread Block. There is also an increase in the runtime from 23
Thread Blocks to 24 Thread Blocks. The runtime of the file deletion algorithm
is primarily influenced by the number of Warps per Thread Blocks and not the
number of Thread Blocks: The maximum difference between runtimes with the
same number of Warps per Thread Block is 10.045 ms. In contrast, the maximum
difference between runtimes with the same number of Thread Blocks is 70.788
ms.
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Wide

1 2 3 4 5 6 7 8 9 10111213141516171819202122232425262728293031323334353637383940414243444546
#Thread Blocks

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19

#W
ar
ps

Execution Time in ms for Deletion Scenario "WIDE"

14.732 ms

41.486 ms

68.241 ms

94.995 ms

121.75 ms

148.504 ms

175.259 ms

202.013 ms

228.768 ms

255.522 ms

Figure 6.3: Runtime of file deletion algorithm for scenario “Wide” - The minimum
of 14.73195 ms is at 17 Thread Blocks and 19 Warps. The runtimes at 1 Warp per
Thread Block are larger by a factor of 2.7 to 18 than the runtimes at 2 Warps per
Thread Block. The runtimes at 12 Thread Blocks and 2 Warps, 14 Thread Blocks
and 5 Warps, and 2 Thread Blocks and 13 Warps are larger by a factor of 3 to 8.6.

Figures 6.3 and 6.4 show the runtime measurements for the scenario “Wide”. The
minimum of 14.73195 ms is achieved at 17 Thread Blocks and 19 Warps. This is
about as fast as ext4, with a runtime of 15.104 ms. Launching the Grid with only
one Warp per Thread Block causes an up to 17 times higher runtime compared to
the minimum. Figure 6.4 also shows that the runtime increases from 23 Thread
Blocks to 24 Thread Blocks, like in scenario “Deep”. The runtimes seem to be
influenced more by the number of Warps per Thread Block rather than the number
of Thread Blocks, as the maximum difference in runtime between differing num-
bers of Warps is 240.355 ms, whereas for Thread Blocks that number is 122.419
ms.
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Figure 6.4: Runtime of file deletion algorithm for scenario “Wide” starting at 2
Warps per Thread Block clipped at 30ms - The runtime decreases with an increas-
ing number of Warps per Thread Block. Like in scenario “Deep”, the runtime
increases from 23 Thread Blocks to 24 Thread Blocks.
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Figure 6.5: Runtime of file deletion algorithm for scenario “Mix” - The maximum
of 16676.9 ms at one Thread Block and 18 Warps is 445 times greater than the
minimum of 37.5015 at 45 Thread Blocks and 12 Warps.
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Figure 6.6: Runtime of file deletion algorithm for scenario “Mix” capped at 1000
ms - The minimum of 37.5015 ms is achieved at 45 Thread Blocks and 12 Warps.
The runtime decreases with an increasing number of Thread Blocks and Warps.
The runtimes for low numbers of Warps per Thread Block or Thread Blocks are
up to 27 times greater than the minimum.

The runtime measurements for scenario “Mix” can be seen in figures 6.5 and 6.6.
The minimum of 37.5015 ms can be found at 45 Thread Blocks and 12 Warps
per Thread Block. This is about 4 times better than ext4. For comparison, Ext4
needs 149.413 ms. The runtime of our implementation of file deletion decreases
with an increasing number of Thread Blocks and Warps. The runtime is about 445
times greater than the minimum when the scenario is executed with low numbers
of Thread Blocks and high of Warps.
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Figure 6.7: Runtime of File Deletion Algorithm for Scenario “Single File” - The
minimum of 10.783224 ms is at 2 Thread Block and 9 Warps. The runtime in-
creases with the number of Thread Blocks and Warps and is up to 1.4 times greater
at 10 Thread Blocks and 7 Warps, 18 Thread Blocks and 4 Warps, and 40 Thread
Blocks and 9 Warps than the minimum.

The runtime measurements for deleting a single file can be seen in figure 6.7.
Deleting a single file takes the least amount of time, with 2 Thread Blocks and 9
Warps (10.783224 ms). This is about 513.5 times slower than ext4, with 0.021 ms.
The runtime of our implementation increases with the number of Thread Blocks
and Warps seems to be equally influenced by both. The runtime is up to 1.4 times
higher in 10 Thread Blocks and 7 Warps, 18 Thread Blocks and 4 Warps, and 40
Thread Blocks and 9 Warps than the minimum.

6.3.3 Discussion
The central question of the evaluation is whether parallelizing file deletions and
file moves using the GPU is sensible and faster than their CPU counterparts.

Scenario “Single File” shows that deleting few files should be done using the
CPU and not the GPU, as the GPU implementation is 514 times slower than the
CPU implementation and fastest when executed with few workers. The runtime
grows with an increasing number of Thread Blocks and Warps, possibly because
the workers require more and more time to realize that no worker has any tasks
anymore. The runtimes in scenario “Single File” at 10 Thread Blocks and 7
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Warps, 18 Thread Blocks and 4 Warps, and 40 Thread Blocks and 9 Warps are
due to increased transfer times. We do not know why the transfer time increases,
as the same amount of data is transferred as in every other configuration. We
observe similar behavior in scenario “Wide” at 12 Thread Blocks and 2 Warps,
14 Thread Blocks and 5 Warps, and 2 Thread Blocks and 13 Warps. We suspect
these increases to be random. Extrapolating from scenario “Single File” to sce-
nario “Wide” supports the hypothesis that GPU file deletion can be faster than
CPU file deletion, if there are many files to delete. That hypothesis is supported
by the scenario “Mix” and, curiously, also by the scenario “Deep”. The results
of scenario “Deep” are surprising to us, because, while there are many files to
delete, the amount of parallelism inherent in that scenario is low. Nonetheless, the
file deletion algorithm in scenario “Deep” is faster than its CPU counterpart. The
algorithm is even then still faster if the Grid is launched with only a single worker,
which takes 17.39772 ms to execute. We do not know why scenario “Deep” is
faster on the GPU than on the CPU. One possible reason is that directories in that
scenario are stored in neighboring addresses on Intel Optane in GPU4FS. That
makes it possible to load several directories at once. If that is the case, then mod-
ifying the block allocator to spread blocks apart in Intel Optane would greatly in-
crease the runtime of the file deletion algorithm in scenario “Deep”. ext4 possibly
arranges directories differently on Intel Optane which would explain the speedup.

Another oddity is the increase of the runtime in scenarios “Deep” and “Wide”
from 23 Thread Blocks to 24 Thread Blocks. We have no explanation for this.
However, as 23 is exactly half the number of Streaming Multiprocessors an RTX
4070 is equipped with, we assume there to be a hardware related explanation.

Another observation in scenario “Deep” is the increase from one Warp per
Thread Block to two Warps, which can be explained by the low amount of par-
allelism in that scenario and the increased amount of lock contention compared
to one Warp per Thread Block. The runtime decreases again with an increasing
number of Warps, likely because more workers trying to acquire tasks mitigate
the effects of lock contention by just two Warps.

Finally, the maximum runtime of 16 seconds in scenario “Mix” may be ex-
plained by many disparate small memory accesses of a single Streaming Multi-
processor (SM) as the result of the directory structure of the scenario.

Choosing an Optimal Grid Configuration

As can be seen in figure 6.8, the optimal configurations of the number of Thread
Blocks and number of Warps per Thread Block vary from scenario to scenario.
Determining an optimal configuration for all scenarios is difficult, as determining
one that suits all scenarios is an optimization task with many goal functions, one
for each possible scenario. One possible solution is to define a new goal function
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as the weighted sum of all goal functions, and then select the configuration that
is lowest for that goal function. Given the data of the four scenarios and equally
distributed weights, the optimal configuration would be 22 Thread Blocks and
19 Warps per Thread Block. With that configuration, the runtimes in the differ-
ent scenarios are only up to 2.3 times worse than their respective minima. The
runtimes for scenarios “Mix”, “Wide”, and “Deep” for this configuration are still
lower than their CPU counterparts. Deleting a single file using the GPU is still
about 514 times slower than its CPU counterpart.

Single File Mix Wide Deep
Optimal Number of Thread
Block 2 45 17 1
Optimal Number of
Warps per Thread Blocks 9 12 19 1
Runtime in ms 10.783224 37.5015 14.73195 17.39772

Figure 6.8: Optimal configurations of number of Thread Blocks and Warps per
Thread Blocks for the different scenarios

Conclusion

The scenarios showcase that GPU file deletion is only then faster than CPU file
deletion, when there are enough files to delete, even with the optimal configuration
of 22 Thread Blocks and 19 Warps per Thread Block of the previous section.
For that reason, we recommend that GPU file deletion does not replace CPU file
deletion, but instead supplements it to be used when there are guarantees by the
user that a directory contains enough files. For an RTX 4070, 1000 is a lower
bound for the number of files.
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6.4 Evaluation of File Moves

In this section, we evaluate our implementation of file moves. Again, we use
different test scenarios.

6.4.1 Testing Scenaros

The scenarios differ in how many files are moved and whether these file share a
common parent directory or have their own parent directories. The latter prop-
erty should have a large impact on the runtime, as many unlinking and linking
operations have to be performed on the same directory. Access to a directory is
locked. Therefore, having a shared parent directory should increase the runtime of
the algorithm compared to each file having its own unique parent directory. The
numbers of files that are moved are 10, 50, 100, 500, and 1000 files.

6.4.2 Measurements
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Figure 6.9: File Moves on CPU and GPU - The Shared-Dir-GPU graph represents
measurements for directories that share a parent directory. In the Unique-Dir-GPU
graph, every file has its own unique parent directory.

Figure 6.9 shows the runtime measurements for file moves. The three graphs are
the result of measuring the runtimes of file moves on the CPU, on the GPU with
a shared parent directory, and on the GPU with each file having its own parent
directory. The figure shows that CPU file moves are consistently faster than their
GPU counterparts. Also, file moves of files with a shared parent directories are
slower than file moves with their own parent directories.
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(a) Measurements for Unique-Dir Scenario
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(b) Measurements for Shared-Dir Scenario

Figure 6.10: Execution and transfer time of file moves compared to the runtime
of CPU.

While we expect the CPU implementation to be faster when moving only
dozens of files, we are surprised that it is also the case with larger numbers of files.
In fact, the margin in runtime between CPU and GPU implementation grows with
an increasing number of files. One reason for that seems to be that an increasing
number of file paths have to be copied from DRAM to VRAM. Figure 6.10 shows
the time it takes to allocate memory for the file paths and to transfer the file paths.
The figure show, the time to allocate memory and transfer the file paths grows with
an increasing number of files. The transfer time is greater than the time the CPU
takes to move the files for up to about 750 files, where the CPU time outgrows the
transfer time.

Another reason is, that the time it takes to execute the Grid also grows with an
increasing number of files, as can be seen in figure 6.10.
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6.4.3 Discussion
File moves on the GPU are not faster than on the CPU, as the durations to transfer
the file paths from DRAM to VRAM and execute the algorithm are larger than the
duration of the corresponding CPU algorithm. GPU file moves must be improved
to be faster than CPU file moves. One way, that may improve GPU file moves, is
to change the worker size from a Thread Block to a Warp, which could increase
the throughput of the algorithm. This hypothesis is supported by the evaluation
result for file deletions, which are faster with an increasing number of Warps. We
do not change the size of a worker due to a lack of time.

6.5 Summary
File deletions, in general, should not be done using the GPU. Instead, GPU file
deletions can supplement CPU file deletions to be used when the user guarantees
that there are enough files to delete. The lower bound for the number of files for an
RTX 4070 is 1000 files. GPU file moves in its current implementation should not
be used under any circumstances, as it is slower than its CPU counterpart. That
may change, if the worker size is reduced from a Thread Block to a Warp. We do
not change the worker size due to a lack of time.
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Future Work

This chapter lists aspects of the implementation we did not finish due to a lack of
time, unanswered questions, and new questions that arise from our evaluation.

7.1 Separate Research Topics

In chapter 6.3, we observe that scenario “Deep” is faster on the GPU than on
the CPU, even though the amount of parallelism is low in that scenario. We sus-
pect the cause of this behavior to be the different organization of directories in
GPU4FS and ext4. Future research has to verify that suspicion. Furthermore, fu-
ture research may include how to optimize the arrangement of regular files and
directories in GPU4FS to minimize runtimes.

In scenarios “Deep” and “Wide”, we see an increase in the runtime from 23
Thread Blocks to 24 Thread Blocks. We have no explanation for this behavior.
However, 23 Thread Blocks is exactly half the number of Streaming Multiproces-
sors (SM) an RTX 4070 contains. Therefore, we believe the reason to be hardware
related. Future work has to find explanations for this behavior, which may help
to avoid performance pitfalls when implementing producer-consumer patterns on
the GPU, due to the increased work load generated by multiple computational
processors.

As we mentioned in chapter 3.4, GPU4FS might want to adopt the design of
[5], especially if GPU4FS is extended to use multiple GPUs and implements a
proper command buffer. Furthermore, developing GPU4FS into a truly parallel
file system in the sense of chapter 3.2 might be help to avoid situations in which
GPU4FS is slower than CPU based file systems like ext4.
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7.2 Further Implementation
In chapters 2.2 and 4.1.4 both, we assume that directories of GPU4FS and the
shared buffer in global memory do not overflow. Future research has to address
how to handle these situations, possibly by extending the buffers into Intel Optane.

Due to a lack of time, we do not implement dynamic load balancing in chapter
3.4 and do not fix the illegal memory access in the rebuild H-Tree command. Both
problems must be solved to determine precisely how many files are necessary for
GPU file deletions to be faster than CPU file deletions.

Future research has to examine how to optimize GPU file moves to be faster
than CPU file moves, once the rebuild H-Tree command is fixed, so that GPU
file moves can be properly evaluated. Part of such research would be to improve
the locking mechanism of directories, possibly by replacing it with locks locking
smaller parts of the tree, to allow multiple workers to use it simultaneously.



Chapter 8

Conclusion

Our goal was to determine the feasibility and efficacy of parallelizing file deletions
and file moves. We implemented file deletions as a producer-consumer pattern.
We optimized the buffer of the pattern to handle multiple rapid task insertions by
complementing the buffer in global memory with smaller buffers in shared mem-
ory. Furthermore, we reduced lock contention by trying to keep worker apart. File
moves do not need a producer-consumer pattern, as the amount of files is known
in advance. Both file deletions and file moves modify the H-Tree of directories,
which is why the tree must be repaired afterward. We repair the H-Tree by recon-
structing it and amortize the costs over successive file deletions and file moves.

In our evaluation, we tested file deletions and file moves in scenarios, which
differ in the number of files deleted or moved and the structure of the directories
that contain the files. We were not able to properly test the command to rebuild an
H-Tree, as the command crashes due to an illegal memory access. We conclude
that file deletions can be faster than their CPU counterpart if there are enough files
to delete. For an RTX 4070, 1000 is a lower bound for that number. The current
implementation of file moves is slower in every possible scenario than its CPU
counterpart. That may change if the worker size is reduced from a Thread Block
to a Warp, which may increase the throughput of files moved.

Future work includes fixing the command to rebuild an H-Tree and changing
the worker size of file moves, to analyze precisely under what conditions GPU file
deletions and GPU file moves are faster than their CPU counterparts. Furthermore,
examining the likely hardware related quirks of file deletion scenarios “Wide” and
“Deep” may yield valuable insight for implementing producer-consumer patterns
on the GPU. Finally, implementing a multi-GPU command buffer like Chen et
al. [5], would expand GPU4FS to multi-GPU systems and replace the limiting
cudaStreams which currently serve as command buffers.
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