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Abstract

Modern filesystems and storage media put a heavy load on CPU resources, espe-
cially in servers and high performance environments containing many storage de-
vices in one system. Advanced filesystem features such as software-level RAID,
compression, encryption, and deduplication require a lot of computing power,
leaving less CPU resources for other processes running on the system. To com-
bat this issue, Maucher et al. propose GPU4FS, a novel GPU-based userspace
filesystem. GPU4FS moves all filesystem-related tasks onto the GPU, including
transferring data to and from the storage device. GPU4FS currently only supports
byte-addressable non-volatile memory using Intel Optane. Our thesis aims to pro-
vide the foundation for supporting block-based storage media in GPU4FS using
the NVMe protocol. To this end, we design and implement a general purpose
NVMe driver and software cache, intended to run solely on the GPU. We base
our driver on previous work by Qureshi et al. with their novel storage architecture
Big accelerator Memory (BaM). BaM provides direct access to storage media for
GPU applications through an array-like abstraction layer.

Our demonstrator proves to be competitive with CPU-based approaches in
terms of both bandwidth and I/O operations per second. We achieve between
60 % and 90 % of the bandwidth of the Linux I/O stack in random read and write
benchmarks on a consumer-grade SSD. However, our demonstrator exhibits ab-
normally high latency of around 290 µs in microbenchmarks and up to 10 s using
a synthetic workload.

We conclude that GPU-based NVMe drivers are feasible compared to tradi-
tional CPU-based approaches. However, further research is necessary, especially
towards reducing the latency of our demonstrator, to make this approach suitable
in high performance environments.
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Chapter 1

Introduction

As our storage and computation demands increase, storage devices become faster,
with larger capacities, and filesystems become more advanced, with features such
as software-level RAID, compression, and deduplication. In contrast, CPU per-
formance improves more slowly, which leads to increased CPU utilization during
filesystem-related tasks. This issue is especially prevalent in servers and high
performance environments, which contain many storage devices in one system.

Maucher et al. [42] address this issue with GPU4FS, a GPU-based filesys-
tem. GPU4FS is a filesystem designed to run fully on the GPU, only requiring a
management process running on the CPU for initialization, teardown, and to set
up inter-process communication between processes and the GPU. It aims to pro-
vide a POSIX-like filesystem API for userspace processes running on the CPU.
Currently, the GPU4FS demonstrator only supports byte-addressable non-volatile
memory (NVM) through Intel Optane [25] and a limited feature set.

On the other hand, Qureshi et al. [38,69,70] solve this issue for specific work-
loads by enabling direct storage access for GPU kernels using their novel stor-
age architecture Big accelerator Memory (BaM). BaM differs from GPU4FS as it
does not aim to implement a full filesystem on the GPU. Instead, BaM provides an
array-like interface to storage devices, which GPU developers can access similarly
to memory, hence the name Big accelerator Memory.

While both works aim to solve this issue for different workloads, they share
the same basic principle. That is, both aim to alleviate the CPU by offloading
computation to the GPU and enabling direct access to storage media on the GPU,
without needing the CPU to orchestrate memory transfers.

In this thesis, we aim to prove the feasibility of a general purpose NVMe driver
fully implemented on the GPU. To this end, we design an NVMe driver based on
design principles of previous works [17,38,69,70,75] to make full use of the par-
allelism available on GPUs. We intend to develop a prototype implementation of
our driver design and integrate it into the current GPU4FS [41] demonstrator. With
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4 CHAPTER 1. INTRODUCTION

block-based storage, a suitable filesystem cache becomes necessary for GPU4FS
to guarantee data consistency. For this reason, we aim to design a filesystem cache
tailored for GPU applications and block devices to integrate into GPU4FS, or to
replace an existing cache implementation in the GPU4FS demonstrator.

We will evaluate our prototype implementation in comparison to common
CPU-based approaches and BaM [38, 69, 70] and aim to answer how competitive
our implementation is regarding bandwidth utilization, I/O operations per second,
and latency.

Due to the high degree of parallelization available to GPUs and possible with
the NVMe protocol, we expect to see high bandwidth utilization comparable to
CPU-based approaches while maintaining low CPU usage. We expect similar
results to those shown in previous works on GPU4FS [33, 37, 41, 42, 71].



Chapter 2

Background

This chapter provides useful background on the technologies used in this thesis.
We explain the basics of the Peripheral Component Interconnect Express (PCIe)
[67] bus, as modern GPUs and storage devices mainly communicate over PCIe
with the CPU and other devices. Next, we explain how modern storage devices
and GPUs function and how they are programmed. Last, we introduce GPU4FS
[42] in its current form.

2.1 PCIe
The Peripheral Component Interconnect Express (PCIe) [67] bus is a high-speed
bus commonly used to connect third party devices to the CPU. Today, many de-
vices such as graphics cards, USB controllers, storage devices, and network de-
vices use PCIe [8].

In the following, we provide a general overview of the PCIe bus and details on
specific parts of the PCIe specification relevant to the NVMe protocol and to the
use of peer-to-peer direct memory access (P2PDMA).

2.1.1 Topology
The PCIe bus connects devices in a tree-like hierarchy with three major compo-
nents. The Root Complex denotes the root of the hierarchy and connects it to
the CPU and memory. It exposes multiple ports—each with its own hierarchy
domain—and may optionally route transactions between them. Note, the PCIe
specification also calls these ports Host Bridges [67].

A Switch functions similarly to a regular network switch, as it exposes multi-
ple ports for additional PCIe devices and routes transactions between them. End-
points represent single functions that can either request or service transactions.

5



6 CHAPTER 2. BACKGROUND

Figure 2.1: An example of a PCIe topology. The Root Complex connects the CPU
and memory to its underlying PCIe bus. The Switch provides four additional
Endpoints and is directly connected to the Root Complex. The topology also
features legacy Endpoints to connect to older hardware using the now obsolete
PCI or PCI-X standard. This figure is taken from [67].

A PCIe device may expose multiple Endpoints for different uses [67]. For
instance, an Ethernet card may expose one Endpoint for every Ethernet port to
allow the host to configure and use them separately. Figure 2.1 shows an example
of a PCIe topology including the host system, the root complex, switches, and
endpoints.

PCIe topology is relevant when the input-output memory management unit
(IOMMU) handles DMA requests. The IOMMU is an abstraction layer between
DMA-capable I/O devices and main memory. It intercepts and translates memory
requests from I/O devices directed at main memory, providing similar services as
the processor’s MMU, including page-level protection [10].

Previous works [38, 69, 70] utilizing GPUDirect RDMA state, that the use
of the IOMMU may massively degrade performance of peer-to-peer DMA ac-
cesses. Furthermore, previous works recommend installing devices participating
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in peer-to-peer DMA under the same PCIe switch and not across hierarchy do-
mains of a Root Complex, as this may further degrade performance. Our NVMe
driver already reaches the maximum bandwidth capable on our test system without
disabling the IOMMU. Therefore, we choose not to evaluate the difference in per-
formance when disabling the IOMMU. Still, as we only use one consumer-grade
SSD for our benchmarks, our maximum achievable bandwidth is less than the
achievable PCIe bandwidth. As such, the effects of the IOMMU on performance
require further research, as the performance degradation mentioned by Qureshi et
al. may only take effect at a higher bandwidth.

2.1.2 Device Enumeration and Configuration

The PCIe specification provides the Enhanced Configuration Access Mechanism
(ECAM) to enumerate and configure devices and their device functions on the
PCIe bus. With ECAM, each device function has an associated 4 KiB page of
memory-mapped I/O called the Configuration Space. The host can use the Con-
figuration Space to gather information about the device and to interact with the
device. For instance, the Configuration Space contains a class code, which the
host can use to search for a specific device type [67].

ECAM uses a hierarchical addressing scheme for PCIe devices. The address
for a device function is split into a segment number, a bus number, a device num-
ber, and a function number. The bus, device, and function numbers give an offset
into a memory mapped I/O (MMIO) region, specified by the segment number, at
which the Configuration Space for a particular device function resides [67]. Get-
ting the base address for a specific segment number varies across platforms and
will not be discussed in this thesis for the sake of brevity.

Given the base address for a specific PCIe segment, the host can enumerate
all devices by simply checking the device class for each possible bus, device, and
function number. The device class specifies the type of function the device per-
forms and is stored in the Configuration Space. As invalid reads return values
with all bits set and FFFFh is an invalid device class, the host can ignore all de-
vice functions with invalid device classes to filter out valid devices [67, 80]. For
example, Linux version 3.19.8 uses this approach on x86 platforms to enumerate
PCIe devices in the early boot stages [81].1

There are more optimized methods to enumerate the PCIe bus. For instance,
recent Linux versions use the Advanced Configuration and Power Interface (ACPI)
to enumerate PCIe devices [67, 80].2

1See file /arch/x86/pci/early.c
2See file /arch/x86/pci/acpi.c

https://elixir.bootlin.com/linux/v3.19.8/source/arch/x86/pci/early.c#L81
https://elixir.bootlin.com/linux/v6.8.9/source/arch/x86/pci/acpi.c
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2.1.3 Base Address Registers

Base Address Registers (BARs) are a mechanism for a device to expose internal
memory to the host or other devices on the same PCIe bus. BARs are 32-bit
wide addresses inside the Configuration Space of a device function, which the
host can use as pointers to other regions of MMIO. Devices often use BARs to
expose internal I/O registers or buffers for faster and more direct communication
using DMA between the host and the device. A device function can use up to six
32-bit BARs or combine them into three 64-bit BARs, each describing memory
regions of varying sizes. Regions can be up to 512 GiB in size if the device and
the underlying BIOS support larger BAR sizes [67].

For instance, GPUs use BARs to expose parts of their internal VRAM, en-
abling technologies such as Unified Virtual Memory [48] or GPUDirect RDMA
[52]. On the other hand, NVMe SSDs expose their Controller Properties including
doorbell registers using BARs [62, 63].

2.1.4 Link Width and Speed

A PCIe link consists of multiple lanes. Each lane consists of two signaling pairs,
one for transmission and one for reception, establishing a bidirectional serial con-
nection. With each generation of the PCIe standard, transfer rates per lane and
data direction roughly doubles, starting with 2.5 GT/s for the first generation, fol-
lowed by 5 GT/s, 8 GT/s, 16 GT/s, and 32 GT/s for the following generations. For
PCIe, a transfer consists of a single bit transferred over the serial connection.
As such, a transfer rate of 2.5 GT/s directly corresponds to a raw bandwidth of
2.5 Gbit/s. Due to signal encoding, the useable data bandwidth is slightly lower
than the transfer rate. For instance, a PCIe 4.0 link operating at 16 GT/s only has
an effective bandwidth of around 1.969 GB/s instead of 2 GB/s [67, 74].

A PCIe link’s width is the number of lanes used and is denoted by xN where
N is the number of lanes. The PCIe specification restricts lane width to powers of
two up to 32 lanes. As lanes work independently, the bandwidth scales linearly
with the number of lanes. For example, a x4 PCIe 4.0 link has a combined transfer
rate of 64 GT/s [67].

2.2 Solid State Drives
Flash-based solid state drives (SSDs) have become an increasingly popular choice
in both the consumer and the enterprise market. As they have no moving parts,
they exhibit a high degree of parallelism and high speeds in both sequential and
random accesses with lower latency compared to hard disk drives (HDDs) [66].
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Initially, SSDs used the Serial ATA (SATA) protocol, similarly to HDDs. Over
time, the SATA protocol could no longer keep up as SSD bandwidth increased.
Consequently, recent SSDs switched to the newer Non-Volatile Memory Express
(NVMe) protocol based on the PCIe bus [63, 66].

The NVMe protocol is designed with high parallelism in mind, using multi-
ple independent command queues and allowing SSD controllers to reorder and
execute commands for better performance. As such, NVMe SSDs have become
a popular choice in both consumer-grade systems and high-performance servers
[41, 66].

This section explains select components of the NVMe protocol useful for the
development of our NVMe driver. In addition to the fundamentals of the protocol,
we focus on atomic operations to guarantee crash consistency for the filesystem
and on performance optimizations the protocol offers.

2.2.1 NVMe Concepts

NVMe controllers are the interface the host uses to interact with the underlying
storage medium. The NVMe specification differentiates between two major types
of controllers for PCIe-based communication. I/O controllers support commands
used to access the data stored on the storage medium and optionally support man-
agement commands. Administrative controllers only support management com-
mands. For PCIe-based NVMe devices, controllers expose their Controller Prop-
erties in an MMIO regions used for configuration and enumeration. The host can
access these properties using the address provided by the PCIe BAR0 and BAR1
registers [62, 63].

Note, in addition to the memory-based PCIe transport model, the NVMe speci-
fication also defines a message-based transport model, which can be used to access
NVMe devices over a TCP connection. Additionally, it defines a mixed transport
model which uses Remote Direct Memory Access (RDMA) to access the NVMe
device over the network. The message-based transport model encapsulates com-
mands in Capsules containing both the command and the data, while the mixed
transport model uses Capsules for commands and memory for data [63].

The NVMe specification provides a hierarchical view on the underlying stor-
age medium. An example of which can be seen in Figure 2.2. At the bottom of the
hierarchy, namespaces are formatted areas of NVM storage, which the host can ac-
cess directly through attached NVMe controllers. The controllers use Namespace
IDs (NSIDs) to identify and access specific namespaces in the system. Names-
paces can be thought of as the actual storage devices the host reads and writes
from.
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Figure 2.2: An example of a complex NVMe subsystem. It contains multiple con-
trollers across multiple domains, each individually connected to possibly distinct
PCIe busses through ports. The domains contain multiple namespaces, of which
namespaces B, D, and E are shared across multiple domains. This figure is taken
from [63].

Multiple controllers may share namespaces using an optional capability called
multi-path I/O. With multi-path I/O multiple controllers can simultaneously and
independently access data on the same namespace. Note, concurrent accesses of
the same namespace require manual coordination by the hosts [39, 63].

Next, NVM Sets are logically and potentially physically separate collections
of NVM storage. NVM Sets may contain one or more namespaces, which inherit
attributes from the NVM Set. Most notably, these attributes include an optimal
write size for which the storage device operates most efficiently [63].

Further up, Endurance Groups are collections of NVM Sets, which share en-
durance information. Collected information includes the number of bytes written
and read from the group and an endurance estimate, which estimates the number
of bytes that may be written to the group over its lifetime [63].

Next up, domains are the smallest indivisible units containing zero or more
Endurance Groups and controllers. Domains are independent, but may cooper-
ate using communication boundaries between them. For instance, namespaces in
one domain can be shared across multiple domains and accessed from multiple
controllers. If a domain fails to communicate with other domains, the system be-
comes divided, which may affect access to namespaces and system information.
For instance, if the first domain in Figure 2.2 fails, the shared namespace B will
no longer be visible to the controllers in the other two domains. Note, NVM
Sets, Endurance Groups, and domains all have unique identifiers used in specific
commands [63].
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At the top, an NVM subsystem consists of one or more controllers and PCIe
ports used to communicate with different hosts. Additionally, an NVM subsystem
may contain an NVM storage medium with associated domains and an interface
between the controllers and the storage medium [39, 63].

While the NVMe specification mandates support for multiple namespaces,
support for multiple NVM sets, Endurance Groups, and domains is optional.
NVMe devices with only a single domain, a single Endurance group, or a sin-
gle NVM set may not support commands specific to these concepts [63].

2.2.2 NVMe Protocol Basics

At its core, the NVMe protocol uses multiple pairs of Submission and Completion
Queues (SQ, CQ) to process commands. The controller processes these queues
independently of each other, providing a highly parallelized interface to the SSD.
The NVMe specification models queues as circular buffers with head and tail
pointers that wrap around to zero if they move past the end of the queue. Submit-
ters write entries at the tail of the queue and consumers take entries from the head
of the queue. The driver notifies the controller of updated head and tail pointers by
writing their addresses to the corresponding doorbell registers in the controller’s
Controller Properties [62, 63].

Each NVMe controller exposes an admin queue pair for the driver to manage
the underlying namespaces. The driver can enqueue special commands on the
Admin Submission Queue to create and delete I/O queue pairs and namespaces.
Furthermore, the driver can request useful information about namespaces, such
as their logical block size and overall capacity, along with supported optional
features [60, 62, 63].

To interact with the data stored on disk, the driver issues commands to the I/O
Submission Queues. I/O commands can only target contiguous ranges on the disk,
specified by a starting linear block address (LBA) and the number of logical blocks
to access. The source or destination buffer in host memory, on the other hand, can
be non-contiguous as described by one of the two following formats [60, 63].

Physical Region Page Lists. A physical region page (PRP) entry describes a
single contiguous physical memory page in host memory. PRP lists are sets of
PRP entries stored in a single physical memory page, similar to common page
address translation models. For larger data transfers, these lists form a linked list
where the last entry in a PRP list points to the next PRP list in the chain [63].
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Scatter Gather Lists. A Scatter Gather List (SGL) consists of one or more SGL
segments forming a linked list. Each SGL segment holds one or more SGL de-
scriptors which describe an arbitrary contiguous memory region using an address
and a length in bytes. In contrast to PRP lists, SGLs have less strict alignment
requirements, as the starting address and length of an SGL descriptor only require
at most four byte alignment. While the NVMe specification mandates support for
PRP lists, SGLs are an optional feature [63].

Discussion. SGLs provide better flexibility in many cases, as they permit four
byte alignment for both the address and the size, while PRP lists only allow page
aligned memory addresses after the first PRP entry. PRP lists incur a large over-
head for large contiguous transfers, as they require a PRP entry for every memory
page. In contrast, most large contiguous transfers can be described by a single
SGL descriptor as the length field is 32 bits wide [60, 63].

We choose to use PRP lists for our demonstrator for two reasons. First, as we
use a software cache with a fixed page size, it is preferable to restrict the page
size to a multiple of the NVMe controller’s page size. If we use at most two
controller pages per transfer, we can describe the region using both PRP entries in
the NVMe command data structure, without using additional PRP lists. Second,
SGL support is optional and the SSDs in our test system do not support SGLs. As
such, we need to support PRP lists regardless [60, 63].

We aim to implement support for SGLs in future iterations of our NVMe
driver. SGL support enables us to use larger software cache lines with only a
single SGL entry embedded into the NVMe command data structure [60, 63].

2.2.3 Atomic Operations

Atomic operations on block devices are essential to efficiently ensure crash con-
sistency of a filesystem, as they ensure the device does not partially overwrite im-
portant metadata, potentially invalidating filesystem invariants [18]. The NVMe
protocol provides information on the requirements for commands to be executed
atomically by the NVMe controller [60].

For instance, namespaces expose three values called Namespace Atomic Write
Unit Power Fail (NAWUPF), Namespace Atomic Boundary Size Power Fail (NAB-
SPF), and Namespace Atomic Boundary Offset (NABO) through the Identify
Namespace command. The combination of these three values indicate whether
the controller guarantees a write operation to be written atomically to NVM even
during a power fail or error condition. The controller atomically executes write
operations whose sizes are at most NAWUPF logical blocks large and which do
not cross atomic boundaries as specified by NABSPF and NABO [60].
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Figure 2.3: An example of the weighted round-robin arbitration mechanism with
three weighted priority classes. The controller processes commands in the Admin
and Urgent classes before any lower priority commands. Classes with multiple
attached queues are processed using the standard round-robin arbitration mech-
anism (RR). The resulting commands are interleaved using the weighted round-
robin arbitration mechanism (WRR) with the specified weights to determine the
number of commands to process for each priority. This figure is taken from [63].

2.2.4 Performance Characteristics

The NVMe protocol provides useful ways to optimize the NVMe controller and
the driver for higher throughput and lower latency.

Command Arbitration. Traditionally, NVMe controllers execute commands
using a round-robin arbitration mechanism, where the controller fetches a fixed
number of commands from every Submission Queue each time [63].

More modern NVMe controllers optionally support a more sophisticated arbi-
tration mechanism with weighted round-robin queues and an urgent priority class.
Figure 2.3 shows an example of the weighted round-robin arbitration mechanism.
With the weighted round-robin arbitration mechanism, commands fall into three
strict priority classes: the Admin class, the Urgent class, and the Weighted Round-
Robin class [63].
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The Admin Submission Queue falls into the Admin class, which the controller
processes before all lower priority classes. The driver can assign I/O Submission
Queues either to the Urgent class or to the Weighted Round-Robin class with spec-
ified priority. The controller processes commands in the Urgent class before any
lower priority commands, which may lead to starvation if not configured properly.
Finally, the controller chooses commands from the Weighted Round-Robin class
according to weights specified by the driver in a round-robin manner [39, 63].

Preferred Values. As the internals of NVMe devices can vary greatly between
different manufacturers and generations, their performance also varies under dif-
ferent modes of operation. The NVMe protocol provides a way for the NVMe
controller to inform the driver of its preferred configuration. For instance, names-
paces can expose preferred size and alignment values for write operations using
the Identify Namespace command. Additionally, NVMe controllers can provide
a recommended arbitration burst size for which command arbitration is most effi-
cient [60, 63].

LBA formats. The NVMe protocol provides a list of LBA formats with varying
logical block sizes to pick from when formatting a namespace. The driver can
query available LBA formats with additional information on their relative perfor-
mance to another and select the best format accordingly [60, 63].

Dataset Management. The driver can provide the NVMe controller with in-
formation on how it intends to use specific data ranges on the disk, which the
controller may use for optimization internally. For example, when the driver en-
queues read or write commands, it can mark the operation as part of a sequential
access or as a single access. Additionally, the driver can set latency requirements
for commands, allowing the controller to reorder commands more effectively. The
driver can also explicitly mark regions for better read or write performance using
the Dataset Management command [60].

Discussion. The weighted round-robin arbitration mechanism allows for more
sophisticated mapping of commands to I/O queues. For instance, we could prior-
itize writing metadata or journal entries to service filesystem requests faster and
use the lower priority queues to copy data from the journal to its destination.

The preferred value reporting feature allows us to optimize setting up our
NVMe driver. For example, we can use the preferred write granularity and align-
ment to calculate an optimal page size for our software cache at startup. Addi-
tionally, this feature is easy to implement, as all necessary information is either in
one of the Identify command data structures or in the Controller Properties.
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The command arbitration setting and the preferred value reporting are both
optional features. As such, an NVMe device may not support these, in which case
we fall back to round-robin scheduling and a predetermined configuration for our
driver and software cache [60, 63].

Dataset Management is difficult to implement, as it requires knowledge or
heuristics on access patterns. This, in turn, adds complexity to our software cache,
as metadata about the filesystem commands needs to be preserved when fetching
or evicting cache lines. Additionally, as our cache is not fully-associative, a cache
set contains multiple blocks. This requires us to store metadata for every block in
the set, as any block may get evicted by an arbitrary thread.

As LBA formats can only be configured when formatting an NVMe names-
pace, this feature is out of scope for our NVMe driver. In particular, our driver
may only have access to a partition of a lager namespace and should not have
authority over the namespace, as namespace formatting is a destructive operation.

2.2.5 SSD Trimming
The “Trim” operation was first introduced for the AT Attachment (ATA) inter-
face as a Dataset Management command. The operation marks the specified re-
gion on the storage device as unallocated, for which the device can optimize read
commands [21]. The NVMe protocol includes this operation as the “Deallocate”
Dataset Management command. Reading unallocated logical blocks on an NVMe
device yields either all bytes cleared to zero or all bytes set to FFh [60]. It is impor-
tant to know which parts of the NVMe namespace are unallocated when running
benchmarks, as the performance varies between allocated and unallocated blocks.

2.3 GPUs
Originally, the main tasks of Graphics Processing Units (GPUs) are processing
and displaying graphics. They are responsible for tasks such as assembling prim-
itives, calculating projections from 3D to 2D, shading, and clipping, which are all
highly parallelizable tasks. This resulted in GPUs becoming highly parallel vector
processors. Today, GPUs can be freely programmed and used for general purpose
computation using modern APIs like CUDA [51], OpenCL [86], or HIP [13].

2.3.1 Execution Model
Modern GPUs are highly parallel processors following the single instruction, mul-
tiple data (SIMD) model, sometimes also called the single instruction, multiple
threads (SIMT) model [34].
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Term AMD equivalent NVIDIA equivalent
Multithreaded SIMD

processor Compute unit (CU)
Streaming

multiprocessor (SM)
Thread block Work-group Thread block
SIMD thread Wavefront Warp

SIMD lane SIMD lane
CUDA core or CUDA

thread

Table 2.1: Equivalent GPU terms used by AMD and NVIDIA [9, 35].

GPUs group SIMD lanes together in a tree-like hierarchy. At the bottom of
the hierarchy, SIMD threads commonly group 32 to 64 SIMD lanes together to
execute the same instruction. Next up, thread blocks group multiple SIMD threads
together with shared memory to allow communication between threads. Lastly, a
multithreaded SIMD processor executes multiple thread blocks and is responsible
for scheduling [23, 34].

Note, the terminology introduced here is a combination of the terms intro-
duced by Hennessy et al. [23] and by NVIDIA [35]. Table 2.1 shows equivalent
terms for AMD and NVIDIA.

2.3.2 Memory Model

The memory hierarchy of NVIDIA GPUs closely matches their execution model
and fits into three categories, private, shared, and global memory. Each SIMD lane
has a private memory region in off-chip DRAM to store stack frames and private
variables that do not fit into registers. SIMD lanes do not share private memory,
but the GPU may cache private memory in its L1 or L2 cache to speed up accesses.
Each SIMD processor has local on-chip memory—often called shared memory—
which is partitioned and shared between thread blocks executing on the SIMD
processor. Global memory is the remaining off-chip DRAM shared by all SIMD
lanes on the GPU [23, 35].

Traditionally, programmers had to explicitly manage GPU memory, managing
memory allocations and synchronization between the GPU and CPU. With the
introduction of Unified Memory on modern NVIDIA GPUs and Shared Virtual
Addressing (SVA) in recent Linux version, the driver does most of the memory
management. Unified memory provides a unified virtual address space for all
virtual memory across all GPUs and CPUs in a system, allowing for zero-copy
semantics by accessing host or device memory directly via PCIe. Additionally,
the driver provides managed memory, which can be used both by the GPU and
CPU, with the driver automatically migrating between the two. Today, Unified
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Memory supports page faulting which allows the driver to automatically migrate
non-resident memory pages on access [28, 48].

SVA allows Linux to share process address spaces with devices, simplifying
the use of DMA, as applications can use the same core memory management
provided by the kernel. For instance, applications can simply instruct a device to
perform DMA on a buffer allocated using malloc [28].

2.3.3 Programming Model
Traditionally, programmers used shaders written in high-level languages like GLSL
[65] or HLSL [47] to program GPUs. Shaders are usually compiled at runtime by
graphics drivers like OpenGL [87] or DirectX [45] directly from source or using
SPIR-V [85] or DXIL [46] as an intermediate representation. Shaders do not offer
much insight on the underlying GPU architecture, providing only coarse synchro-
nization primitives for thread blocks and fast shared memory [41, 64, 84].

With the rise of high performance computation (HPC) and general purpose
computation on GPUs (GPGPU), new APIs such as CUDA [51], OpenCL [86],
and HIP [13] emerged, which provide APIs for general purpose processing. These
APIs provide interoperability between host and device code, allowing program-
mers to directly include GPU kernels written in a C or C++ dialect alongside host
C/C++ code. Modern APIs, such as Vulkan [88], DirectX 12 [45], and Metal [16]
provide unified APIs, which can be used for both compute and graphics-related
tasks. Additionally, these APIs offer a low level view on GPU architecture, pro-
viding fine-grained synchronization primitives at the thread level and ways to
group and regroup SIMD lanes to fit the application’s needs [49, 64].

2.3.4 NVIDIA’s GPUDirect RDMA
NVIDIA’s GPUDirect RDMA [52] is a technology that enables direct memory
access (DMA) between third party devices and the GPU via PCIe. It is part of
NVIDIA’s GPUDirect [53] family of technologies, offering different ways for the
GPU to directly interact with other devices. Common uses for this technology
include storage and network acceleration, and recent works such as BaM [38, 69,
70] primarily rely on it.

GPUDirect RDMA uses standard PCIe features to transfer data between the
physical memory of devices under the same PCIe Root Complex. To make use
of this technology, device drivers must use NVIDIA’s kernel driver to pin GPU
memory to the PCIe BAR space of the GPU. The device driver can then use the
returned page table to transfer data to or from the GPU. Note, pinning GPU mem-
ory is an expensive operation, so optimizations to reduce the amount of pinning
and unpinning are important [52].
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2.3.5 Peer-to-Peer Direct Memory Access on AMD GPUs

Whereas NVIDIA provides extensive documentation on GPUDirect RDMA and
its API, AMD’s documentation on the matter is lacking. Recent versions of the
AMDgpu [12] kernel driver include the include/drm/amd_rdma.h header,
which provides an API remarkably similar to the GPUDirect RDMA API [14].3

Unfortunately, to our knowledge other works using AMD GPUs to acceler-
ate storage or network tasks exclusively use AMD DirectGMA [15], a now likely
discontinued technology introduced with the AMD FirePro™ series of GPUs. At
least, new GPU models do not advertise support for DirectGMA and documenta-
tion on the technology is no longer readily available [11].

Another possibility is to use the P2PDMA API the Linux kernel offers, but
the client-provider model requires modification of the AMDgpu kernel driver to
function as a provider for its GPU memory [83].

2.3.6 NVIDIA’s GPUDirect Async

NVIDIA introduced GPUDirect Async in CUDA version 8.0 to provide GPUs
with access to memory mapped I/O of third party devices. By flagging memory as
memory-mapped I/O using the cudaHostRegisterIoMemory flag, the GPU
issues memory requests directly to the third party device instead of relying on the
CPU to do so [50]. Other works use this feature to map NVMe doorbell registers
into the GPUs memory space, bypassing the CPU [38, 69, 70]. Unfortunately, the
HIP platform does not officially support this flag currently [13].

2.4 GPU4FS

As filesystems grow more complex with advanced features such as deduplica-
tion, journaling, software-based RAID, and compression, the amount of CPU time
spent on filesystem management increases drastically. As a result, researchers
[17, 38, 42, 69, 70] have found interest in the use of GPUs as filesystem accelera-
tors, including Maucher et al. with GPU4FS [42].

Whereas previous works only move parts of the filesystem onto the GPU and
reuse the existing Linux virtual filesystem (VFS), GPU4FS focuses on fully of-
floading the filesystem onto the GPU, minimizing CPU usage in the process [41].

3See file /include/drm/amd_rdma.h:62

https://github.com/ROCm/ROCK-Kernel-Driver/blob/roc-6.0.x/include/drm/amd_rdma.h#L62
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2.4.1 Basic structure

As an userspace filesystem, the design of GPU4FS [41] includes a management
process which configures the GPU, sets up the CPU command buffers and filesys-
tem caches, and communicates with other processes using GPU4FS. A process
wishing to use GPU4FS requests access from the management process, which
then sets up a shared memory region for the process. Afterward, the process can
directly communicate with the GPU and issue filesystem commands. Figure 2.4
provides an overview of GPU4FS.

GPU4FS [41] handles commands using command ring buffers in shared mem-
ory regions. The process enqueues commands alongside required data by updating
the ‘next’ pointer of the last command in the buffer. The GPU threads repeatedly
poll the ‘next’ pointer to wait for the next command and atomically acquire it
using an atomic counter in the command data structure. After the GPU has pro-
cessed the command, it signals completion by incrementing the atomic comple-
tion counter. The process may poll on this completion counter or do other work
in parallel.

On-disk data structures of GPU4FS [41] are similar to those found in Ext4 [79]
with inodes representing files, directories as special files, a superblock containing
general metadata about the GPU4FS partition, and with data organized in blocks.

As GPU4FS [41] is designed with byte-addressable NVM in mind, blocks
are either 1 GiB, 2 MiB, or 4 KiB large to reflect the page sizes used on x86-64
systems. Additionally, inodes can either be 128 B or 256 B large, depending on the
configuration at build time. GPU4FS uses a single block pointer format to address
both inodes and blocks. Hence, block pointers encode the size of the region they
are pointing at using two bits in the seven unused lower bits. GPU4FS supports
indirect blocks using a bit flag in the block pointer format. A block pointer marked
as ‘indirect’ points to a block containing additional block pointers.

GPU4FS [41] has a block allocator, which exploits the recursive block split-
ting mechanism to parallelize allocation across many GPU threads. If a larger
free block gets split into smaller blocks, the allocator sequentially allocates these
blocks efficiently using an atomic counter. The block allocator requires locking
only when all free pages run out, requiring the allocator to allocate a new list.
GPU4FS handles garbage collection using a stop-the-world mechanism. It sends
a stop signal to all other threads if the allocator runs out of memory and reclaims
unused pages before allowing the other threads to continue.

Directories use linked lists in the original design of GPU4FS [41]. Directory
entries contain a block pointer to the referenced inode, an offset to the next entry
in the directory, the length of the filename, and the file name string itself [41].
Kittner [33] extended directories with a tree structure for their entries to speed up
file lookup and path traversals.
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Figure 2.4: A design overview of GPU4FS. Processes write commands in GPU-
accessible command buffers inside their address space. The GPU executes these
commands, reading or writing from the shared filesystem caches and interacting
with the storage medium. For commands requiring OS support—such as mmap—
the GPU forwards the command to a trusted component running on the CPU,
which interacts with the kernel to fulfill the requests. After a command completes,
the GPU signals completion by incrementing an atomic completion counter inside
the command data structure. This figure is taken from [41].

The authors of GPU4FS [41] plan to extend GPU4FS with a filesystem cache
to hide the higher write latency of Intel Optane [25] memory. This is also to
provide an easier way to implement the mmap call correctly, as defined by the
Portable Operating System Interface (POSIX) [24] standard. The management
process is responsible for the allocation and management of the filesystem caches
[41].

2.4.2 Extended functionality
Recent works [33, 37, 71] have extended the original GPU4FS [41] demonstra-
tor with advanced filesystem functionalities such as tree-based directories, RAID,
checksumming, and deduplication.

Kittner [33] extends directories in GPU4FS with H-Trees of fixed height to
speed up directory traversals. Furthermore, Kittner introduced a lookup cache cor-
relating filename hashes with their corresponding filename, containing directory,
and inode to further improve traversal. Finally, Kittner introduced full path reso-
lution and nested directories, which the original GPU4FS demonstrator lacked.

Lucka [37] introduces filesystem-level RAID to GPU4FS. The RAID subsys-
tem introduces a logical address space, containing logical chunks managed by the
filesystem. The logical chunks inside this address space contain a list of physi-
cal chunks across multiple disks, alongside the RAID level used. This allows for
different redundancy requirements on a file or block level. Lucka extended block
pointers with logical and physical block pointers differentiated by a bit flag in the
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lower unused bits. The RAID subsystem catches reads and writes to logical block
pointers and accesses the corresponding physical blocks across multiple disks to
check and preserve parity information.

Rath [71] adds checksumming and deduplication to GPU4FS. Rath imple-
mented checksums by adding a bit flag to block pointers, denoting a block of
checksums. Files include checksum blocks interspersed between data blocks,
storing the checksums of said data blocks. The GPU can then independently
compute and check these checksum blocks in parallel. With this checksumming
functionality, Rath proposes an inline deduplication design similar to ZFS [27].
GPU4FS maintains a deduplication tree (DDT), mapping file data to deduplicated
data blocks on disk. Before any data is written to disk, GPU4FS calculates a
checksum and walks the DDT to check if the data is already present on disk.

2.4.3 Discussion
As GPU4FS [41] was initially designed with byte-addressable NVM storage in
mind, two issues come to mind when designing an NVMe storage backend for
GPU4FS.

Keeping data consistent. In its current form, the GPU4FS [41] demonstrator
depends on the byte-addressable nature of NVM storage. Integrating a block-
based storage backend with command arbitration into the demonstrator may pose
consistency problems. Multiple GPU threads may interact with one block of the
storage medium simultaneously, as GPU4FS allows and uses block sizes smaller
than 512 B. This can be mitigated by exclusively working on data already loaded
into the filesystem cache and choosing a single thread to enqueue a write com-
mand into the NVMe queue. A system similar to BaM’s [38, 69, 70] thread coa-
lescing may be sufficient for this problem.

Integration into GPU4FS. Integrating block-based storage into GPU4FS [41]
requires an abstraction layer between the filesystem cache and the storage back-
end. This abstraction layer abstracts both byte-addressable NVM storage and
block-based NVMe storage behind a common interface, as both are accessed in
different ways with different behavior. Whereas NVM storage acts as normal
DRAM, the NVMe protocol is asynchronous in nature, making use of command
arbitration mechanisms. Similarly to BaM [38,69,70], we envision a synchronous
API where threads requesting cache lines from the filesystem cache are responsi-
ble for loading the data from the storage medium into the cache.
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Chapter 3

Related Work

This chapter provides background on other works in the field of GPU-based filesys-
tems. Specifically, we provide detailed information on the design of BaM [38,69,
70], as we believe it is highly applicable for our design. Additionally, we provide
an overview over other works such as GPUfs [75] and SPIN [17], which make use
of GPUs to accelerate filesystem-related tasks.

3.1 BaM

Big accelerator Memory (BaM) [38,69,70] is a system architecture utilizing novel
GPU technologies such as GPUDirect RDMA [52] and GPUDirect Async [50]
to provide GPU applications direct access to storage devices. BaM’s goal is to
alleviate the complexity and overhead that big datasets, used in AI and data sci-
ence workloads today, entail. It achieves this by providing a simple array-like
abstraction of storage that developers can use similarly to GPU memory, hence
the name Big accelerator Memory. The abstraction hides novel access coalesc-
ing and caching techniques tailored towards the degree of parallelism GPUs pro-
vide [38, 69, 70].

In this section, we provide insight on the design and implementation of BaM.
Specifically, we discuss the libnvm [40] library and its role in providing GPUs
access to NVMe SSDs. Next, we give an overview of BaM’s design, focussing
on its command queuing, thread coalescing, and caching technology. Finally, we
explore BaMs’ API design and conclude this section with a discussion on how
BaM’s design is helpful in designing our NVMe driver.

23
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3.1.1 libnvm Kernel Module
The libnvm [40] kernel module provides userspace programs with a way to pin
NVMe queues to GPU memory and map them for DMA access from other PCIe
devices. Additionally, it allows userspace programs to map the Controller Proper-
ties into memory to configure the NVMe controllers manually [38, 69, 70].

To achieve this, the module allocates character devices for each attached NVMe
controller and provides ioctl commands for configuration. On request, the
module uses NVIDIA’s GPUDirect API to pin and map GPU memory for DMA
access and the Linux memory management API to map the controller properties
into userspace memory [38, 69, 70].

3.1.2 libnvm Userspace Library
The libnvm [40] userspace library abstracts away most of the interaction with
the character devices created by the kernel module. It provides useful abstractions
for different components of the NVMe protocol such as namespaces, controllers,
and queues. These abstractions include methods to allocate queues and to query
information about the controller and its namespaces. Furthermore, it handles the
allocation and mapping of GPU memory for the NVMe queues using the kernel
module [38, 69, 70].

3.1.3 Virtual Queues
BaM [38, 69, 70] hides the latency and out-of-order execution of NVMe com-
mands by mapping physical queue pairs onto large virtual queues. Each virtual
queue has some additional associated metadata, including a global ticket counter,
a turn counter array, a tail marker bit set, and a head marker bit set. BaM uses
the global ticket counter to give each SIMD lane accessing the storage a unique
ticket. The SIMD lane uses this unique ticket to calculate its turn and position in
the queue. The turn counter array sequentially orders SIMD lanes accessing the
same position in the queue. The tail marker bit set denotes which positions in the
Submission Queue have valid commands ready to be submitted to the controller.
Conversely, the head marker bit set denotes which positions in the Completion
Queue are ready to be freed by updating the head pointer on the controller. The
virtual queue uses this metadata to sequentially order SIMD lanes issuing I/O
commands in parallel with minimal critical sections [38, 69, 70].

To issue an I/O command, a SIMD lane atomically reads and increments the
global ticket counter to acquire a unique ticket. This ticket determines the po-
sition in the physical queue, as well as the order in which SIMD lanes enqueue
commands at said position. More specifically, each SIMD lane divides its ticket
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by the size of the physical queue and uses the remainder as the position in the
queue and the quotient as the turn value, determining the order of SIMD lanes.
Note, the quotient is multiplied by two to order both enqueuing and dequeuing on
the Submission and Completion Queue, respectively [38, 69, 70].

Each position in the physical queue has an associated turn counter in the turn
counter array. When this turn counter reaches the turn value of the SIMD lane, all
commands of previous SIMD lanes using the same position have completed. The
SIMD lane can then safely write its I/O command into the position and set the tail
marker bit of this position in the bit set [38, 69, 70].

Afterward, all SIMD lanes that enqueued I/O commands alternate between
polling their position’s tail marker bit and trying to acquire the tail lock. The
SIMD lane that acquired the lock iterates through the enqueued commands from
the current Submission Queue tail pointer. It clears the tail marker bits and in-
crements the tail counters by one until it either hits the end of the queue, or a
position with a still unset tail marker bit. Then, the SIMD lane updates the tail
pointer, rings the Submission Queue doorbell register of the NVMe controller,
and releases the lock. The other SIMD lanes either continue, if their tail marker
bit is cleared, or they keep trying to acquire the tail lock. This effectively com-
mits as many I/O commands as possible, reducing unnecessary slow writes to the
doorbell register [38, 69, 70].

After the I/O command is committed to the NVMe controller, the SIMD lane
iterates through the Completion Queue from the current head to search for its cor-
responding completion entry with the correct phase bit and command ID. It then
locks the lock associated with the position and sets the associated head marker bit
in the bit set [38, 69, 70].

All SIMD lanes that try to dequeue their completion entries alternate between
polling the head marker bit and trying to acquire the head lock, similarly to the
enqueuing algorithm. Once a SIMD lane acquires the lock, it iterates through
the completion entries from the current head, resetting the head marker bits and
incrementing the turn counters by one. Once it encounters the end of the queue
indicated by an invalid entry, it updates both the Submission Queue head using the
head pointer provided by the NVMe controller in the entry and the Completion
Queue head. Finally, it writes the updated head to the Completion Queue doorbell
register and releases the lock. The other SIMD lanes continue once their head
marker bit is unset and the Completion Queue head is moved past their entry, or
when they successfully acquire the lock [38, 69, 70].

This algorithm minimizes both critical sections and redundant writes to the
doorbell registers, while avoiding possible race conditions further detailed in the
BaM paper and associated dissertations [38, 69, 70].
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3.1.4 Caching

BaM [38, 69, 70] minimizes I/O requests using a reference count based write-
back cache design. The design minimizes critical sections by preallocating all
required memory for the cache on startup, and only requires locks when changing
cache-line mappings. Furthermore, the design enforces two important invariants.
First, at most one copy of a cache-line is present in the cache, maintaining data
consistency. Second, if multiple SIMD lanes request a cache-line, only one SIMD
lane makes the necessary I/O request, minimizing I/O requests [38, 69, 70].

The BaM cache maintains two data structures, an array of cache-lines and an
array of cache-slots. A cache-line describes a contiguous region in the storage
medium and consists of an index into the cache-slot array, a state containing three
bit flags—‘Valid’, ‘Busy’, and ‘Dirty’—and a 29-bit reference count.

A cache-slot describes a contiguous region in the cache to load a cache-line
into, and consists of a cache-line tag and a lock used for insertion and eviction.
This design provides constant lookup times at the cost of space efficiency, as the
array of cache-lines grows with larger datasets [38, 69, 70].

When a SIMD lane requests a cache-line, it atomically fetches and increments
the state of the cache-line, thereby simultaneously incrementing the reference
count. If the ‘Valid’-bit is set, the SIMD lane can immediately access the data
in the cache using the cache-slot index. Otherwise, the SIMD lane atomically
fetches and sets the ‘Busy’-bit and proceeds to load the cache-line from the stor-
age medium, if the ‘Busy’-bit was not already set by another SIMD lane. If a
SIMD lane writes to the cache-line, it sets the ‘Dirty’-bit, marking the cache-line
to be written back on eviction. Finally, if the SIMD lane finishes its work on the
cache-line, it decrements the state of the cache-line, decrementing the reference
count [38, 69, 70].

Cache-slot eviction uses a clock replacement algorithm with a global counter.
Each SIMD lane chooses a cache-slot by fetching and incrementing the global
counter and acquiring the cache-slot’s lock. Afterward, the SIMD lane tries to
set the ‘Busy’-bit of the associated cache-line and optionally writes the modified
data back to the storage medium. Then, the SIMD lane loads the new cache-
line from the storage medium, updates the cache-slot and releases the lock. If
the SIMD lane fails at any time, i.e., it fails to acquire the lock or to set the
‘Busy’-bit, it tries another cache-slot using the global counter. Note, the clock
replacement algorithm with locking allows multiple SIMD lanes to concurrently
evict and insert different cache-slots [38, 69, 70].
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Figure 3.1: An overview of the BaM stack. BaM first coalesces SIMD lanes
accessing the same cache line before reading the cache. If the data is not present
in the cache, the SIMD lane goes through the I/O stack. It prepares and submits
a command to the Submission Queue, polls for its completion and updates both
the cache and the Submission and Completion Queue head pointers. This figure
is taken from [70].

3.1.5 Abstraction

The BaM [38, 69, 70] API aims to minimize required code changes for common
GPU kernels. To this end, BaM provides an array-like API with overloaded sub-
script operators that coalesce SIMD lanes in a thread, access the cache, and per-
form I/O request on behalf of the developer. Figure 3.1 provides an overview of
the complete BaM I/O stack.

BaM coalesces SIMD lanes in a thread accessing the same cache-line simul-
taneously by computing a mask using the __match_any_sync primitive. Af-
terward, BaM determines a leader among these SIMD lanes, which performs the
cache lookup and broadcasts the result using the __shfl_sync primitive. BaM
proceeds similarly with SIMD lanes releasing the same cache-line [38, 69, 70].

The __shfl_sync primitive simultaneously exchanges a value between all
SIMD lanes in a thread. Each lane receives and returns the value the specified
source lane passes into the primitive. The __match_any_sync primitive com-
pares a value across SIMD lanes in a thread. For each lane, it returns a mask
of lanes that have the same value. This mask can then be used to synchronize
only a specific subset of lanes in other synchronization primitives. The primitives
__match_any_sync and __shfl_sync both act as barriers, which all SIMD
lanes specified in the mask must reach before continuing [49].
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To minimize cache lookups for consecutive accesses of the same cache-line,
BaM provides a wrapper that only releases the cache-line if the SIMD lane ac-
cesses another cache-line, or if the wrapper goes out of scope [38, 69, 70].

In the optimal case, this reduces cache lookups to a single acquire and release
if all SIMD lanes in a thread access the same cache-line throughout the entire
GPU kernel execution [38, 69, 70].

3.1.6 Discussion

BaM’s [38, 69, 70] virtual queue and cache designs are a helpful basis for our
NVMe driver design. The virtual queue algorithm, in particular, fits well into a
general purpose NVMe driver for the management of single queues, as it caters
towards the highly parallel execution model of GPUs. However, we may extend
the algorithm to manage multiple queues efficiently with weighted round-robin
command arbitration provided by the NVMe protocol and stricter requirements to
facilitate crash consistency.

BaM’s [38,69,70] cache design, however, requires more adaption to be useful
for our filesystem cache. Specifically, the high space requirements would have
the cache take up most of the available VRAM. For example, a 2 TiB NVMe SSD
with a cache-line size of 4 KiB would require 4 GiB of VRAM for the cache-line
lookup table alone, as each entry takes up eight bytes. A design suitable for our
filesystem cache should instead use linear search, a hash table, or a search tree to
search for the correct cache-line. Still, BaM’s design requirements align with our
own, requiring fast lookups, minimal locking, and minimal I/O requests.

3.2 SPIN

SPIN [17] integrates peer-to-peer DMA between GPUs and SSDs into the exist-
ing Linux VFS. It uses a shim library, loaded using LD_PRELOAD, to intercept
filesystem calls and forward them to the P-router. The P-router then determines if
the request is already in the cache or if peer-to-peer DMA should be used to handle
the request. To be able to perform peer-to-peer DMA requests, SPIN implements
an address tunneling mechanism to transport the GPU address to the Linux NVMe
driver, as the Linux VFS stack fails to correctly pin GPU memory for DMA ac-
cess. SPIN uses a modified NVMe driver with additional code to unpack tunneled
GPU addresses for the DMA request [17].
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3.3 GPUfs
GPUfs [75] is a software stack providing a POSIX-like API for GPUs to access
files through the existing Linux VFS layer. In contrast to BaM [38, 69, 70], GPUs
do not access the underlying storage devices themselves with GPUfs. Instead, they
request the CPU to perform the access using the standard Linux VFS through an
RPC protocol [75].

To allow for more advanced filesystem and POSIX features such as read-ahead
and mmap, GPUfs employs a distributed buffer cache, accessible from the CPU,
as well as from the GPU. The cache functions similarly to the Linux filesystem
cache, where each page has an associated ‘pframe’ metadata structure with data
pertaining to the cached file region. GPUfs manages the cached pages of a file in
a dynamic radix tree designed for lockless traversal, only using a lock for updates
or when traversals repeatedly fail [75].
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Chapter 4

Design

This chapter introduces the design of our NVMe driver, explaining and discussing
our design decisions and data structures used. Specifically, we will discuss queue
management as well as concurrent and consistent access through software caches.

The goal of our NVMe driver is to provide GPU4FS [42] with a high-level
interface to SSD hardware, designed with GPU parallelism in mind. Our design
takes inspiration from BaM [38,69,70] for their virtual queue and software cache
design and from Adas et al. [2] for their set-associative parallel software cache
design.

4.1 Queue Management

Our I/O queue management system uses BaM’s [38,69,70] virtual queues with an
additional abstraction layer on top to allow for more dynamic arbitration between
multiple virtual queues. While BaM uses a round-robin scheme to map SIMD
lanes onto virtual queues, we use a system more akin to the weighted round-
robin arbitration mechanism introduced in Section 2.2.4. We use heuristics to
approximate the number of outstanding commands per virtual queue to achieve a
load-balancing effect with our virtual queue mapper.

4.1.1 Virtual Queues

Our virtual queue design directly copies BaM’s [38, 69, 70] virtual queue design
with minor optimizations and changes in implementation. A virtual queue is an in-
finitely large queue, used to sequentially order SIMD lanes enqueuing commands
and to map them onto a slot in the underlying physical queue.

31
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(a) Infinite virtual queue for a physical queue of size 8.

(b) Mapping virtual queue slots onto the underlying physical queue.

Figure 4.1: A visualization of the infinitely large virtual queue and how it maps
onto a physical queue. This figure is taken from [69].

As the NVMe protocol uses circular command queues, mapping a slot from
the virtual queue onto the physical queue can be done by dividing the slot’s index
by the physical queue’s size and taking the remainder. Additionally, the result of
the division can be used to sequentially order SIMD lanes waiting on the same
physical slot. Figure 4.1 visualizes how we map the infinite virtual queue onto the
physical queue.

For each slot in the physical queue, locks and markers ensure that no other
SIMD lanes overwrite commands not yet submitted or completions not yet pro-
cessed. Each SIMD lane synchronously enqueues its command and waits for its
completion before returning to the caller.

Data Structure

We simulate an infinitely large virtual queue using a global ticket counter. Every
SIMD lane atomically fetches and increments this counter to acquire a ticket. The
SIMD lanes divides this ticket by the physical queue’s size to calculate a position
in the physical queue and a turn value.

Note, using a global counter forces the physical queue size to be a divisor
of the total number of counter values. Using either a 32-bit or 64-bit unsigned
integer for the counter forces us to use powers of two as our physical queue size.
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Figure 4.2: A visualization of the virtual queue data structure. The virtual queue
on the left holds information about the underlying physical queue, in addition
to different locks and atomic counters. Information on the physical queue in-
cludes its size (qs), its memory addresses (sq_vaddr, cq_vaddr), the door-
bell registers (sqdb, cqdb), and its head and tail pointers (cq_head, sq_tail,
sq_head). The remaining metadata includes atomic counters, locks, and mark-
ers used in the enqueueing and dequeueing algorithms. Most of the metadata is
stored for every slot in the physical queue in additional arrays on the right. Addi-
tionally, the data structure uses an array of locks for each available command ID.

Otherwise, an integer overflow would skip entries in the physical queue. Still,
for 64-bit counters this is only a theoretical issue, as it would take around half
a million years operating at one million I/O operations per second to cause an
integer overflow with a 64-bit counter.

The virtual queue holds metadata for every slot in the physical queue, con-
sisting of turn counters, tail and head markers, and locks. The turn counters se-
quentially order SIMD lanes waiting on the same slot. The tail and head markers
mark entries for submission and deletion, respectively, and the locks avoid race
conditions when polling for the correct completion entry.

To prevent multiple SIMD lanes from using the same command ID, the virtual
queue holds a global command ID counter similar to the global ticket counter
and an array of locks for each command ID. Every SIMD lane acquires a unique
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command ID by atomically fetching and incrementing the global command ID
counter and locking the command ID in an array of locks.

Lastly, the virtual queue holds the state of the tail and head pointers to update
the doorbell registers correctly and to handle the phase bit of completion entries
correctly. The phase bit is a bit inside completion entries that the NVMe con-
troller flips on each pass. We can calculate the expected phase bit by taking the
least significant bit of the CQ head pointer stored in the virtual queue. Note, we
implement both the SQ tail pointer and CQ head pointer similarly to the global
ticket counter. That is, we only increment the pointers and calculate the real SQ
tail and CQ head pointers in the physical queue through division by the physical
queue’s size.

Each virtual queue has its own set of global atomic counters, markers, and
locks. This ensures that virtual queues can work completely independently of
each other, providing better concurrency with more virtual queues. The only syn-
chronization between most SIMD lanes on different queues is an atomic operation
inside the virtual queue mapper to determine the virtual queue to use. A visual-
ization of the complete data structure can be seen in Figure 4.2.

Enqueueing Commands

When a SIMD lane wants to enqueue a command into the virtual queue, it first
acquires a unique ticket by atomically fetching and incrementing the global ticket
counter of the virtual queue. The SIMD lane uses this ticket to calculate its posi-
tion in the physical queue and a turn value on that position. Afterward, the SIMD
lane waits for the turn counter for its position to equal the turn value, indicating
that previous commands have been processed and dequeued from the completion
queue [69].

Then, to get a unique command ID, the SIMD lane atomically fetches and
increments the global command ID counter and tries to acquire the lock associated
with the command ID. This is done in a loop until the SIMD lane successfully
acquires one of the command ID locks. Without locking, the pseudo random order
in which the GPU schedules atomic instructions between SIMD lanes may result
in multiple SIMD lanes picking the same command ID on the same turn [69].

Note, locking command IDs is only necessary for sufficiently large physical
queues and SIMD lane counts. It may be advisable to omit command ID locking
and use smaller physical queues, depending on the capabilities of the NVMe SSD
used. With smaller physical queues, unique command IDs can be calculated from
the ticket without collisions on the same turn. Specifically, if the physical queue
size is less than 215, half the size of the command ID space, we can assign a unique
command ID for every combination of position and phase.
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Figure 4.3: A visualization of the enqueueing algorithm using two SIMD lanes
and a physical queue with four slots. After the lanes acquire their tickets (0), they
wait for their turn counter (1), write their commands into their slot (2), and set their
tail marker (3). Next, the lanes race to acquire the tail lock (4). The successful
lane resets the tail markers from the current tail pointer (5,6) until it hits an unset
marker (7). Afterward, it rings the doorbell register (8) and updates the local copy
of the tail pointer (9). The other lane waits for their tail marker to reset while
trying to acquire the lock (4,5). This visualization is adapted from [69].

Next, the SIMD lane copies its I/O command into its assigned position in
the physical queue and marks it for submission in the tail marker array. While
waiting for their tail markers to be cleared, SIMD lanes race to acquire the tail
lock. The successful SIMD lane iterates from the current SQ tail pointer through
the tail marker array, clearing the tail markers and incrementing the tail pointer
until it either hits an unset marker or the end of the queue. Afterward, if the SQ
tail pointer has changed, it writes the new value to the SQ doorbell register and
releases the tail lock. This ensures, that writes to the doorbell register happen in
order and only complete commands are submitted [69]. Figure 4.3 visualizes the
enqueueing algorithm for two SIMD lanes.

Dequeuing Completions

SIMD lanes can poll on the Completion Queue without any locks to find the com-
pletion entry corresponding to their command. The correct completion entry can
be identified by the unique command ID and the phase bit set by the controller.
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Figure 4.4: A visualization of the dequeueing algorithm using two SIMD lanes
and a physical queue with four slots. After the treads find their completion entry
(0), they lock the slot (1), read the command status (2), and set their head marker
(3). Next, the lanes race to acquire the head lock (4). The successful lane resets
the head markers (5,6) until it hits an unset marker (7) and increments the tail
counters based on the SQ head stored in the completion entry (8,9). Afterward,
it rings the doorbell register (10) and updates the local copy of the head pointer
(11). Finally, both lanes check if the head pointer has passed their entry (12) and
unlock the slots again (13). This visualization is adapted from [69].

Polling is necessary as the NVMe controller may process commands out of order.
SIMD lanes poll on the Completion Queue by repeatedly iterating from the cur-
rent CQ head pointer to the end of the queue. For each position, the SIMD lane
calculates the expected phase bit by dividing the index by the physical queue size
and taking the least significant bit. Locking is not necessary here, as completions
can be uniquely identified by the unique command ID and phase bit [69].

After the SIMD lane found the completion entry for its command, it acquires
a lock for the position from the CQ lock array. Locking individual CQ entries
achieves the same effect as the turn counter array for the Submission Queue. It
orders dequeue operations between multiple SIMD lanes on the same position in
the Completion Queue, preventing them from simultaneously dequeueing entries
or dequeuing entries out of order [69].
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Next, the SIMD lane saves the status of the completion to return to the caller
later and marks the completion entry for dequeueing in the head marker array.
Similarly to the enqueueing algorithm, SIMD lanes race to acquire the CQ head
lock while waiting for their head marker to reset. The successful SIMD lane
iterates from the CQ head pointer, clearing head markers and incrementing the
head pointer until it encounters an unset head marker. If the CQ head pointer has
changed, the SIMD lane writes the new value to the CQ doorbell register. This
orders writes to the doorbell register, similarly to the enqueueing algorithm [69].

The NVMe protocol includes an SQ head pointer field in completion entries
to allow controllers to read and cache multiple commands and to notify the host
how far the controller has read into the Submission Queue. The SIMD lane with
the CQ head lock uses this field to free up slots in the Submission Queue for new
incoming commands. It does so, by iterating from the current SQ head pointer
to the head pointer stored in the completion entry last dequeued, incrementing
the tail counters for each position. Incrementing the tail counters allows waiting
SIMD lanes to enqueue their commands into the Submission Queue. Afterward,
the SIMD lane releases the CQ head lock [69].

Finally, the SIMD lane waits for the CQ head to move past its position in
the Completion Queue before releasing both the CQ lock on that position and
the command ID lock for its command ID. SIMD lanes may only release the
command ID lock after the CQ head has moved past its position. This ensures,
that the next SIMD lane using the same command ID polls for its completion entry
strictly after the completion entry of the previous SIMD lane [69]. Figure 4.4
shows the dequeuing algorithm using two SIMD lanes.

The CQ locks prevent a potential race condition when waiting for the head
marker to be cleared. For instance, a SIMD lane, ti, may be scheduled out right
after setting the head marker for its completion entry at position p. Then, another
SIMD lane acquires the head lock, resets the head marker for position p, and
moves the CQ head pointer past it. Now the Controller enqueues a new comple-
tion entry on position p and a different SIMD lane, tk, can read the new completion
entry and mark the head marker bit for position p again. This leads to a contra-
dictory state, as after ti resumes execution, it sees the head marker bit is still set,
but the CQ head pointer is already past its entry. The CQ locks order the dequeue
operations, which prevents this race condition from happening [69].

Differences to BaM

Our design differs from BaM’s [38,69,70] design in the use of turn counters. BaM
increments the turn counter two times in the algorithm, once after a command
is submitted and the tail marker is cleared and once when moving the SQ head
pointer past the respective position. Therefore, BaM doubles the turn value SIMD
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lanes calculate after acquiring a ticket, resulting in SIMD lanes waiting for two
increments to the respective turn counter.

In contrast, our design omits the first increment to the turn counter, only in-
crementing them when moving the SQ head pointer past their position. As SIMD
lanes always wait for the turn counter to equal their turn value, the next SIMD lane
only continues after the second increment in BaM’s design. Omitting the first in-
crement and omitting to double the turn values does not change the behavior, as
the next SIMD lane still waits for the later increment before continuing.

4.1.2 Queue Arbitration
To allow the use of multiple I/O queues per controller, we propose a virtual queue
mapper, an abstraction layer mapping SIMD lanes onto virtual queues. The virtual
queue mapper consists of an array of queue indices, a global ticket counter and
virtual queues. The array of queue indices can be larger than the number of virtual
queues to allow dynamic mapping of multiple slots to a single virtual queue.

To enqueue a command, a SIMD lane atomically fetches and increments the
global ticket counter. The SIMD lane then divides the ticket by the length of the
index array in the virtual queue mapper and uses the remainder as its index in
the index array. Afterward, the SIMD lane reads the queue index from the index
array and uses the specified virtual queue to enqueue its command. Figure 4.5
visualizes the mapping between the virtual queue mapper and the virtual queues.

As NVMe controllers may process commands out of order, the number of
outstanding commands can differ per queue when using multiple queues. Our
virtual queue mapper aims to alleviate this imbalance with dynamic remapping.
Given a suitable heuristic, we can dynamically adjust the mapping between the
index array and the virtual queue array, prioritizing less overloaded queues. A
precise heuristic is to take the difference between a SIMD lane’s ticket and the
current SQ tail pointer after acquiring the ticket. As the SQ tail pointer starts
at zero and gets incremented for every command, it directly correlates with the
ticket counter. As such, the difference between the two indicates the number of
outstanding commands the SIMD lane has to wait for. This heuristic can be stored
on the virtual queue with an atomic maximum operation.

After a SIMD lane has executed its command on the virtual queue, it checks
if the given heuristic has surpassed a threshold value chosen beforehand. In that
case, the SIMD lane resets the stored heuristic value, selects a virtual queue to mi-
grate to and tries to change the mapping using an atomic compare-and-swap op-
eration with the old value. Preferably, the SIMD lane picks the virtual queue with
the best—or in our case lowest—heuristic value. We use a compare-and-swap
operation to allow only a single SIMD lane to change the mapping, as multiple
SIMD lanes might try to change the mapping at the same time.
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Figure 4.5: A visualization of the virtual queue mapper. The virtual queue mapper
maps N slots onto K virtual queues with N ≥ K. Each slot holds an index into
the virtual queue array. A SIMD lane uses its ticket t mod N as an index into
the index array to get the virtual queue to insert a command into.

4.2 Software Cache
Our software cache design adapts BaM’s [38, 69, 70] software cache to reduce its
memory footprint, by applying ideas from Adas et al. [2] with their set-associative
parallel software cache implementation. At its core, our software cache uses the
same data structures as BaM, but drops the cache line array allocated for all blocks
on the storage medium. Instead, our software cache moves this information into
the cache slot array to save memory, with additional logic to evict and replace
cache lines correctly. With this change, our software cache no longer supports
constant time lookups. As such, we further change the design from a fully-
associative cache to a set-associative cache to shorten lookup times. To access
the cache, we implement the same thread coalescing interface as BaM.

4.2.1 Basic Structure

Our software cache consists of two separate contiguous memory regions for cache
line data and metadata, respectively. Given a cache with N cache sets and K cache
lines per set, both memory regions resemble a two-dimensional rectangular N×K
array. This memory layout enables easy access for both metadata and data given
the cache set index n and cache line index k, as presented in Figure 4.6.

We use state management similar to BaM [38, 69, 70] for our cache sets and
cache lines. Our cache lines contain a state value identical to BaM, with a 29-bit
reference counter and three state bits—a Valid-bit, a Busy-bit, and a Dirty-bit—to
manage the state of the cache line. First, the reference counter ensures the cache
only evicts cache lines which are no longer referenced. Next, the Valid-bit signals
that the cache line currently contains a valid block. Then, the Busy-bit signals
that a SIMD lane is currently evicting or inserting a block into the cache line.
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Figure 4.6: A visualization of the software cache’s memory layout. The cache
resembles a two-dimensional N × K array, stored contiguously in memory. We
access the kth cache line of the nth cache set by converting the two-dimensional
index (n, k) to a linear index i := n ∗K + k.

Valid Busy Dirty Definition
0 0 0 Not in cache
0 0 1 Impossible configuration
0 1 0 Being inserted into cache
0 1 1 Being inserted into cache, marked dirty for next eviction
1 0 0 In cache
1 0 1 In cache, marked dirty for next eviction
1 1 0 Being evicted
1 1 1 Being evicted and written back

Table 4.1: Definitions for possible cache line states. This table is taken from [69].

Finally, the Dirty-bit signals that the cache line is dirty and has to be written back
to disk on eviction. Table 4.1 gives a more detailed explanation for each combi-
nation of state bits. The reference count together with the Busy-bit resembles a
readers-writer lock. They allow multiple SIMD lanes to acquire the same cache
line, but permit only one SIMD lane to evict or insert a block into the cache line
when the reference count is zero.

Similarly to BaM [38, 69, 70], we use a clock replacement algorithm [19] to
evict and replace cache lines in a set. We use a lock on the cache set to allow only
a single SIMD lane at a time to evict and replace cache lines in a cache set. This
ensures our software cache stays consistent and does not contain multiple copies
of the same block in a set.
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Figure 4.7: A visualization of the cache data structures and how they relate to each
other. The top-level cache contains information on the NVMe namespace (ns)
and a pointer to the virtual queue map (vq_map). It holds pointers to the cache
line data (data) and cache line metadata (state). Additionally, it holds infor-
mation on the cache layout (block_size, num_sets, num_lines). Cache
sets hold a lock and the eviction index (evict_index) for the evict-and-replace
algorithm, as well as an array of cache lines (lines). Cache lines hold the state
value and the currently stored LBA address.

4.2.2 Data Structures

We split our software cache into three data structures, as presented in Figure 4.7.
First, the top-level cache data structure holds information about the cache layout
and about the NVMe namespace on which the cache operates. It holds a reference
to the virtual queue map associated with the NVMe drive to read from and write
to. To access the cache, the data structure holds pointers to the start of the cache
line array and to the start of the metadata array, composed of cache set and cache
line metadata. We can fully determine the cache layout in memory through the
number of cache sets, the number of cache lines per cache set, and the cache line
size stored in the top-level data structure. We use these values to calculate the
offset in memory for both the cache line data and its metadata, as stated before.

Next, the cache set data structure holds information necessary for the evict-
and-replace algorithm, as well as the cache line metadata for each cache line in
the cache set. For the evict-and-replace algorithm, it stores a lock to allow only
one SIMD lane to evict and replace cache lines and an atomic counter to choose a
victim cache line to evict through the clock replacement algorithm [19].
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(a) Successful acquire operation.
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(b) Failed acquire operation. The SIMD
lane decreases the reference count again, as
another SIMD lane changed the mapping.

Figure 4.8: A visualization of the acquire algorithm on a cache line. It depicts
the atomic operations on the state value and stored LBA address of the cache line.
We depict the state using the Valid-bit (V), the Busy-bit (B), the Dirty-bit (D),
and the reference count (CNT). Letters (X, A, B) represent unknown values. This
visualization is adapted from [69].

Last, the cache line data structure holds the LBA address of the block currently
stored in the cache line and a state value. Again, the state value consists of a 29-bit
reference counter and three state bits, a Valid-bit, a Busy-bit, and a Dirty-bit.

4.2.3 Acquire and Release Algorithms

To acquire a block from the storage medium through the cache, a SIMD lane
first calculates the cache set the block should reside in. In our demonstrator, we
calculate the cache set by taking the remainder of the division of the block’s index
in the storage medium by the number of cache sets in the cache. This ensures
neighboring cache lines fall into different cache sets.

After calculating the cache set, the SIMD lane iterates through the set’s cache
lines to find the cache line with the correct LBA address. If none of the cache lines
have the right LBA address, the SIMD lane continues with the evict-and-replace
algorithm. Otherwise, it atomically fetches and increments the state value of the
cache line to simultaneously increase the reference count and fetch the state bits.
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Figure 4.9: A visualization of the release algorithm on a cache line. This visual-
ization is adapted from [69].

If the cache line currently has its Busy-bit set, the SIMD lane waits in a busy loop
for the Busy-bit to reset or for the mapping to change to a different LBA address.

Afterward, if the cache line’s Valid-bit is set and the mapped LBA address
is still correct, the SIMD lane successfully acquired the cache line, as it already
incremented the reference count beforehand. Before returning, the SIMD lane
optionally dirties the cache line by setting the Dirty-bit using an atomic fetch-
and-or operation and calculates the pointer to the cache line data using the cache
set index and cache line index. Figure 4.8 presents a visualization of the acquire
algorithm.

If the mapped LBA address changes at any point in the algorithm, the SIMD
lane continues with the evict-and-replace algorithm instead, as another SIMD lane
evicted the block in this case.

To release the cache line, the SIMD lane, again, calculates the cache set the
block resides in and searches for the cache line with the correct LBA address
through a linear search. After finding the correct cache line, the SIMD lane de-
creases the reference count with an atomic fetch-and-subtract operation to release
the cache line. As the SIMD lane acquired the cache line beforehand, it is guaran-
teed to find the correct cache line in the set, because the non-zero reference count
prevents the block from being evicted. Figure 4.9 shows a visualization of this
algorithm.

4.2.4 Evict-and-Replace Algorithm

To evict and replace a cache line, the SIMD lane first locks the cache set. Before
evicting a cache line, the SIMD lane searches the cache set for the correct block
one more time, as another SIMD lane may have inserted the correct block into the
cache already. If the correct block is still not present in the cache, the SIMD lane
determines a victim cache line through a clock replacement algorithm [19]. It cal-
culates the victim’s index in the cache set by atomically fetching and incrementing
the atomic counter of the set.
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(a) Successful evict-and-replace operation.
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evict another cache line because the refer-
ence count was not zero.

Figure 4.10: A visualization of the evict-and-replace algorithm. This visualization
is adapted from [69].

Next, the SIMD lane simultaneously fetches the state of the cache line and
sets the Busy-bit using an atomic fetch-and-or operation. If the cache line has
a non-zero reference count or if the Busy-bit is already set, the SIMD lane tries
another cache line, resetting the Busy-bit if it was not already set. Otherwise, the
SIMD lane is safe to evict the cache line as other SIMD lanes trying to acquire the
cache line now see that the Busy-bit is set.

To evict the cache line, the SIMD lane first resets the Valid-bit and Dirty-bit
using an atomic fetch-and-and operation and writes the data back to disk, if the
Dirty-bit was set.

Afterward, the SIMD lane replaces the cache line by storing the new LBA
address in the cache line and loading the data into the cache line using the queue
management system.
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Finally, the SIMD lane increases the reference counter to acquire the cache
line, simultaneously sets the Valid-bit and resets the Busy-bit using an atomic xor
operation, and unlocks the cache set. Figure 4.10 visualizes evicting and replacing
a cache line after selecting a victim.

4.2.5 Thread Coalescing
To reduce stress on our software cache, we implement BaM’s [38, 69, 70] thread
coalescing interface. Note, we use the term ‘SIMD thread’ instead of the term
‘warp’ used by NVIDIA and BaM. The thread coalescing interface groups SIMD
lanes in a thread accessing the same block together to reduce the number of ac-
quire and release operations on the software cache.

For both the acquire and the release operation, we coalesce SIMD lanes in
a thread in the same way. We first split the SIMD thread into groups of SIMD
lanes accessing the same block using the __match_any_sync intrinsic. The
intrinsic calculates the mask of SIMD lanes with the same LBA address for every
SIMD lane in the thread. Then, we calculate the number of SIMD lanes in a group
by counting the number of bits set in the mask using the __popcll intrinsic.
Finally, we elect a leader as the SIMD lane corresponding to the lowest bit set in
the mask using the __ffsll intrinsic.

For the acquire operation, we check if any SIMD lane in the mask wants
to dirty the cache line using the __any_sync intrinsic. Afterward, the leader
SIMD lane acquires the cache line and broadcasts the resulting pointer to the
cache line data using the __shfl_sync intrinsic. For the release operation, the
leader SIMD lane simply releases the cache line.

In both cases, the leader SIMD lane increases or decreases the reference count
by the number of SIMD lanes in the mask. This ensures that the reference count
stays consistent with the number of SIMD lanes. Figure 4.11 presents the steps of
this algorithm for the acquire operation.

4.2.6 Discussion
This section highlights the differences between our software cache design and
BaM’s [38,69,70] software cache. Additionally, we discuss areas where our soft-
ware cache design requires further development to support important filesystem
features such as software RAID and mmap.

Our software cache differs from BaM’s [38,69,70] software cache in its mem-
ory layout. BaM splits the metadata into a cache slot array to store information
about the blocks in the cache and a cache line array to store the state of every
block on the storage medium. We omit the cache line array and instead store both
the block and its state in the same array and only for blocks currently in the cache.
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mask=0b10110110 count=5
leader=1 dirty=true
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mask=0b10110110 count=5
leader=1 dirty=true
address=0x1234

mask = __match_any_sync(mask, A)

count = __popcll(mask)

leader = __ffsll(mask) - 1

dirty = __any_sync(mask, dirty)

if (id == leader) address = aqcuire(lba, count, dirty)

address = __shfl_sync(mask, address, leader)

Figure 4.11: A visualization of the thread coalescing interface for the acquire op-
eration for LBA address ‘A’. First, we create a mask of the SIMD lanes acquiring
LBA address ‘A’. Next, we calculate the number of SIMD lanes in the mask and
a leader SIMD lane. Afterward, we check if any SIMD lane dirties (v) the cache
line. Finally, the leader acquires the cache line and broadcasts the address.

With this change, our software cache requires a linear search to find the correct
cache line instead of a constant time lookup as with BaM’s software cache. As
such, we implement a set-associative cache instead of a fully-associative cache to
shorten lookup times.

In its current form, our software cache cannot support important filesystem
features like software RAID and mmap, as it only stores data in GPU memory
and uses only the LBA address of the block as the cache line tag. We propose
adding additional metadata to the cache line tag to support these features in future
iterations of our software cache. To support software RAID, we can include the
NVMe device identifier and namespace ID in the cache line tag and have the
cache use the different virtual queues associated with different NVMe devices
accordingly.

To enable support for mmap, we include residency information in the cache
line tag. Residency information can include the memory address of the block as
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well as an identifier whether the block is stored in GPU memory or host memory.
Supporting mmap is more complicated, as we also have to manage pinning and
unpinning cache memory for individual processes running on the system. Instead
of using the cache line tag for residency information, we can integrate our software
cache into a multi-level cache hierarchy with separate caches for GPU memory
and host memory.
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Chapter 5

Implementation

This chapter introduces the implementation of our NVMe driver and software
cache. First, we configure our test system to allow the NVMe SSD and the GPU to
interact over P2PDMA in a containerized environment. Next, we build and test a
wrapper around libnvm, focussed on GPU-initiated SSD access. Afterward, we
implement our queue management subsystem introduced in Section 4.1. Finally,
we implement our software cache introduced in Section 4.2.

Our implementation targets x86-64 Linux systems with modern NVMe SSDs
and GPUs capable of P2PDMA. While our implementation targets both NVIDIA
and AMD GPUs, our demonstrator only supports NVIDIA and is not tested on
AMD GPUs. We use HIP [13] as our graphics API targeting C++20 [26]. Our
implementation is compiled using HIPCC [5], which in turn either uses clang [36]
or NVCC [55] for AMD and NVIDIA GPUs, respectively.

We test our demonstrator on a modern system equipped with

• a Supermicro H13SSL-N motherboard [77] with support for DDR5, PCIe
5.0 and PCIe 4.0 M.2 slots,

• an AMD EPYC 9124 16-core processor [4] operating at 3 GHz,

• four Kingston 16 GB DDR5 ECC memory modules [32] operating at 4800 MT/s,

• a 1 TB Samsung 980 PRO SSD [73] on which we perform our tests,

• a 1 TB Samsung 980 SSD [72] boot drive,

• an NVIDIA RTX A4500 [59] with 20 GB of GDDR6 VRAM on a x16 PCIe
4.0 connection,

• and an AMD RX 6950 XT [7] with 16 GB of GDDR6 VRAM on a x16
PCIe 4.0 connection.

49
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1 $ echo -n "0000:42:00.0" >
"/sys/bus/pci/devices/0000:42:00.0/driver/unbind"↪→

2 $ echo -n "0000:42:00.0" > "/sys/bus/pci/drivers/libnvm
helper/bind"↪→

Listing 5.1: Unbinding the default NVMe driver and binding the libnvm [40]
driver. In this example, the SSD has the address 0000:42:00.0.

5.1 Demonstrator

Our demonstrator uses Docker [20] for reproducible builds on different systems.
This requires us to expose both the GPU and the SSD device to the containerized
application. For the SSD, we use the --device flag to expose the libnvm [40]
device file to the container. To expose NVIDIA GPUs to the container, we install
the NVIDIA Container Toolkit [57] and configure Docker to use the NVIDIA
runtime.

Both the SSD and the NVIDIA GPU require some configuration to make full
use of libnvm [40] and P2PDMA. We configure Linux to use the libnvm driver
provided by the libnvm kernel module for our SSD. To do this, we unbind the
default NVMe driver for the SSD device and bind the libnvm driver using spe-
cial files in the sysfs [44] pseudo-filesystem. This allows us to use the libnvm
device file to map the Controller Properties into our memory space to access the
doorbell registers, for example. Listing 5.1 provides the commands to bind the
libnvm driver to the SSD device.

To allow for multiple large I/O queues and DMA buffers, we require the
GPU to expose much of its internal VRAM in its PCIe BAR space, as only
memory exposed in PCIe BAR spaces can be accessed using P2PDMA. On sys-
tems and GPUs which support the Resizable BAR Capability [67], the amount
of VRAM exposed in PCIe BAR space can be configured using the sysfs [44]
pseudo-filesystem. On our system, the NVIDIA GPU only exposes 256 MB of
VRAM by default. We configured our GPU to instead expose 16 GB of VRAM.
The commands to configure the GPU’s PCIe BAR space can be seen in Listing 5.2.

Both of these methods of configuring the SSD and GPU are not persistent.
The NVIDIA kernel module has a parameter NVreg_EnableResizableBar,
which resolves this issue for the GPU, allowing it to resize its BAR space itself on
startup [56]. Binding the libnvm [40] driver for specific devices is more difficult,
as it likely requires blacklisting devices for the default NVMe driver. Instead, we
suggest integrating the process of rebinding the SSD to libnvm into GPU4FS.
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1 $ lspci -vvvs 0000:41:00.0 | grep BAR
2 $ cat

"/sys/bus/pci/devices/0000:41:00.0/resource1_resize"↪→

3 $ echo -n "0000:41:00.0" >
"/sys/bus/pci/devices/0000:41:00.0/driver/unbind"↪→

4 $ echo 14 >
"/sys/bus/pci/devices/0000:41:00.0/resource1_resize"↪→

5 $ echo 1 > "/sys/bus/pci/devices/0000:41:00.0/remove"
6 $ echo 1 > /sys/bus/pci/rescan

Listing 5.2: Exposing more VRAM in the GPU’s PCIe BAR space. In this exam-
ple, the GPU has the address 0000:41:00.0. We use lspci to find out, if our
GPU supports Resizable BAR and which sizes each BAR space supports. Reading
the resource1_resize file provides a bitmap corresponding to the supported
sizes of the BAR space for BAR1. We unbind the driver associated with the GPU
and resize the BAR space for BAR1 by writing to the resource1_resize file.
Then, we remove the device from the device list to force the scan to reinitialize
the GPU device.

5.2 NVMe SSD Peer Access

We implemented wrapper classes around libnvm [40] focussed on GPU ac-
cess. These wrapper classes mainly handle setting up DMA buffers for P2PDMA
using libnvm and mapping Controller Properties to be GPU-accessible. To
allocate peer-accessible DMA memory on the GPU, libnvm uses GPUDirect
RDMA [61] internally in its kernel driver. As such, our implementation only
works on NVIDIA GPUs in its current form. We aim to port libnvm to work with
AMD GPUs in future iterations of our NVMe driver. Additionally, we use an of-
ficially unsupported flag hipHostRegisterIoMemory when mapping Con-
troller Properties to be GPU-accessible. This flag works when targeting NVIDIA
GPUs, as HIP is a thin wrapper1 around CUDA calls in this case, though this flag
might not work when targeting AMD GPUs [6]. The flag marks the memory as
I/O memory of a third-party PCIe device and marks it as non cache-coherent and
contiguous [50].

Using libnvm [40] we see long startup times of around one to two seconds.
Due to time constraints, we have not investigated the cause of the long startup
time. However, we suspect the initialization of the NVMe device to be the culprit,
as libnvm fully resets the NVMe controller on startup.

1See file include/hip/nvidia_detail/nvidia_hip_runtime_api.h

https://github.com/ROCm/hipother/blob/rocm-6.1.2/hipnv/include/hip/nvidia_detail/nvidia_hip_runtime_api.h#L1825
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5.3 Queue Management

BaM [38, 69, 70] uses a wrapper class around atomic values similar to the struct
std::atomic<T> from the C++ STL [26]. Internally, this wrapper class uses
an internal header2 of the CUDA C++ Core Libraries (CCCL) [54]. This inter-
nal header uses inline assembly to directly write atomic operations using Parallel
Thread Execution (PTX) [58] instructions. PTX is an intermediate language sim-
ilar to assembly which is directly translated to the target hardware instruction set.
BaM uses this wrapper class to provide exact memory ordering semantics for each
atomic operation in the algorithm. Additionally, BaM uses a special MMIO store
instruction through PTX inline assembly to write to the doorbell registers. This
instruction forces a non-cacheable non-combinable write to the desired memory
location, which ensures the GPU writes to the doorbell register when we expect it
to do so [58].

Our implementation includes a similar wrapper class and uses the same MMIO
store PTX [58] instruction to write to the doorbell registers. We have tried to
use standard atomic intrinsics present on both NVIDIA and AMD targets instead.
These intrinsics have std::memory_order_relaxed [26] semantics, which
is the weakest ordering requirement, providing no ordering or synchronization
constraints between atomic operations [50]. Therefore, using atomic intrinsics
weakens the ordering constraints imposed in BaM’s [38, 69, 70] implementation.
Using atomic intrinsics, we run into issues where our demonstrator fails to commit
commands correctly to the NVMe controller and therefore waits for command
completions indefinitely. We suspect that only the special MMIO store instruction
is necessary to ensure our demonstrator commits commands correctly, however
this requires further testing in future iterations of our software cache.

BaM [38, 69, 70] aligns each atomic value in their virtual queue data structure
to a 32-byte boundary. The reasoning behind this decision is that NVIDIA GPUs
access memory in 32-, 64-, or 128-byte memory transactions [50]. The padding
ensures each atomic can be accessed using an independent memory transaction
with the goal of increasing memory throughput despite high contention on the
atomics. We omitted to implement this padding in our demonstrator, though we
seek to test the performance difference between both implementations in future
iterations of our NVMe driver.

We encountered issues with balancing while implementing the dynamic remap-
ping feature of our virtual queue mapper. Initially, we have let SIMD lanes pick
the virtual queue with the lowest number of outstanding commands as the victim
for remapping. Using this scheme, we find that the system slows down after a

2See file
/include/cuda/std/__atomic/functions/cuda_ptx_generated.h

https://github.com/NVIDIA/cccl/blob/v2.5.0/libcudacxx/include/cuda/std/__atomic/functions/cuda_ptx_generated.h
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short amount of time. We assume our dynamic remapping scheme causes our vir-
tual queue map to concentrate around a small subset of virtual queues at any given
time. The virtual queue map likely maps many slots at a time onto the same vir-
tual queue until it no longer has the lowest number of outstanding commands. Due
to time constraints, we instead let SIMD lanes pseudo-randomly choose a victim
using the command ID of the commands the SIMD lanes executed beforehand.

5.4 Software Cache

Implementing the thread coalescing interface for our software cache requires us
to know the lane ID of each SIMD lane relative to its thread. We use this value to
allow only the leader SIMD lane to acquire or release a cache line. Unfortunately,
HIP does not include an intrinsic to retrieve this value. For NVIDIA GPUs, we can
retrieve the lane ID using the %laneid PTX [58] register. BaM [38, 69, 70] also
uses this register for the same purpose. On AMD GPUs, we can use special GCN
[3] instructions for the same purpose according to the AMD implementation3 of
the HIP API. However, we have not tested this way of calculating the lane ID on
AMD GPUs.

5.5 Discussion

This section discusses the problems we encountered implementing our demon-
strator, as well as the parts where our implementation deviates from our design.

A common source of problems was our use of atomics and synchronization.
Initially, we tried to use only atomic intrinsics available on both NVIDIA and
AMD platforms. However, this resulted in race conditions where our demonstra-
tor would fail to correctly commit commands to the NVMe controller through the
doorbell registers. We invested a lot of time into trying to fix these issues, but ul-
timately decided to use the same PTX [58] inline assembly BaM [38, 69, 70] uses
for their atomics and for writing to the doorbell registers.

In its current form, our demonstrator makes use of features only supported by
NVIDIA GPUs in four occasions. First, we use GPUDirect RDMA [52] through
libnvm [40] to allocate peer-accessible DMA buffers on the GPU. Second, we
write to the doorbell registers using a special PTX [58] MMIO store instruction.
Next, we use PTX inline assembly to achieve specific memory ordering require-
ments for our atomics. Finally, we use the %laneid PTX register to acquire the
lane ID of SIMD lanes relative to their thread in our thread coalescing interface.

3See file hipamd/include/hip/amd_detail/amd_warp_functions.h

https://github.com/ROCm/clr/blob/rocm-6.2.0/hipamd/include/hip/amd_detail/amd_warp_functions.h#L117
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To support AMD GPUs, we require GPU-agnostic alternatives or AMD-specific
implementations for these features.

Our demonstrator deviates from our design in two parts. First, our demonstra-
tor uses a pseudo-random value calculated from the command ID to dynamically
remap virtual queues in our virtual queue mapper. However, according to our de-
sign the demonstrator should pick the victim virtual queue based on the number
of outstanding commands of each virtual queue. Next, our demonstrator does not
allocate physical queues with sizes equal to a power of two, which causes issues
when the ticket counter of the associated virtual queue overflows. We omitted to
fix this issue, as our benchmarks are short enough to not cause the ticket counter
to overflow.



Chapter 6

Evaluation

This thesis aims to evaluate the bandwidth and latency of our GPU-based NVMe
driver in comparison to conventional CPU-based NVMe drivers and BaM [38,69,
70]. To this end, we evaluate our NVMe driver in three ways. First, we evaluate
raw performance when directly using I/O queues on the GPU without using our
general-purpose data structures. Next, we evaluate our driver using only our queue
management system without using our software cache, focussing on the added
latency and increased noise the system introduces. Finally, we evaluate our full
NVMe driver and software cache, focussing on cache hit rates and latency in
different conditions and using different working sets. We compare our results to
the results presented by Qureshi et al. for BaM and to performance benchmarks
on Linux using fio [29] and the default I/O stack.

We evaluate our approach on the same system as outlined in Chapter 5. Al-
though we have an AMD GPU installed, our demonstrator only supports NVIDIA
in its current form. As such, all GPU benchmarks shown use only the NVIDIA
GPU and the Samsung 980 PRO SSD.

6.1 Baseline Performance

To put our demonstrator’s performance into perspective, we conducted four base-
line performance benchmarks, both on the CPU and the GPU. These benchmarks
purely aim to evaluate the raw performance our test system is capable of. As such,
the benchmarks do not use any of our data structures on the GPU and bypass the
filesystem cache using direct I/O on the CPU. The results of these benchmarks
serve as a baseline for further benchmarks using our data structures to evaluate
how they affect performance. The CPU benchmarks use fio [29], a general pur-
pose I/O tester, while the GPU benchmarks use libnvm [40] to directly read
from and write to the I/O queues.
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Figure 6.1: GPU read performance with random reads on a trimmed partition. The
GPU achieves the advertised performance of one million IOPs and 7 GB/s band-
width. Bandwidth increases linearly until reaching a constant 7 GB/s. Conversely,
IOPs stay constant until the bandwidth reaches 7 GB/s, linearly decreasing after-
ward. Block sizes slightly less than 8 KiB show the highest IOPs and bandwidth.

The first benchmark—presented in Figure 6.1—aims to test the limits of the
P2PDMA transfer system on our test system. In contrast to all other benchmarks
in this thesis, this benchmark uses a fully trimmed partition to achieve the highest
possible performance. The other three benchmarks—presented in Figures 6.2, 6.3,
and 6.4—as well as all remaining benchmarks use an SSD partition fully filled
with random data. This ensures that our results stay consistent across multiple
benchmark runs and that they more closely reflect real-world performance.

Performance on a trimmed partition. We test random reads on a 428 GiB par-
tition, spanning around half the available storage on the test SSD. We choose this
size as a compromise between preserving another partition already present on the
SSD and allocating enough storage with enough unique LBA addresses. Specifi-
cally, the 428 GiB partition has around 900 million sectors of 512 B. Accessing the
partition with 8 KiB granularity leaves around 56 million unique LBA addresses
for our benchmarks.

In contrast to other benchmarks in this thesis, we trimmed the partition before-
hand. This ensures we get the best possible performance from of our SSD, such
that we measure the limits of the P2PDMA transfer system on our test system.

The benchmark uses multiple blocks with up to 256 SIMD lanes, each fill-
ing one I/O queue with an effective queue depth of 369 for multiple iterations.
In NVMe SSD benchmarks, queue depth defines how often the process waits for
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the command to complete. For instance, a queue depth of 256 means the process
waits on every 256th command completion, while a queue depth of one means the
process waits on every command. The queue depth of 369 is a result of how we
allocate and use the I/O queues. libnvm [40] allocates GPU memory in 64 KiB
pages for DMA buffers, as GPUDirect RDMA [52] enforces 64 KiB aligned vir-
tual addresses. A 64 KiB page can hold an I/O queue pair with exactly 738 entries.
As we cannot submit 738 commands at once, we instead alternate between sub-
mitting 737 commands and a single command. As such, we call this an effective
queue depth of 369.

Each SIMD lane reads a fixed size block with every command at a pseudo-
randomly generated LBA address. The SIMD lanes read the blocks into an output
buffer allocated on the host system. We choose to use host memory for the output
buffers, as future use of our NVMe driver in GPU4FS [42] will likely be optimized
for direct transfer of user data to or from host memory where the data is needed.
Our read and write benchmarks using only our queue management system also
use buffers allocated on the host.

To generate the pseudo-random LBA addresses from which the SIMD lanes
read, we initially choose a seed value for each SIMD lane individually on the host
with rand() [43] seeded with the current time. On the GPU, we use a 63-bit
linear-feedback shift register (LFSR) [68] to generate additional random numbers
when needed. We use this random number generator in all benchmarks presented
in this thesis.

We measure both bandwidth in bytes per second and I/O operations per sec-
ond (IOPs) across varying block sizes from 512 B up to 64 KiB. During each
benchmark run, the GPU only uses a fixed block size for every command.

Figure 6.1 shows that the GPU is capable of fully utilizing the advertised per-
formance of the SSD. For smaller block sizes, the GPU fully saturates the ad-
vertised one million IOPs possible on our SSD until the bandwidth reaches the
advertised 7 GB/s, after which IOPs steadily decrease while maintaining the max-
imum bandwidth. For block sizes slightly less than 8 KiB, the SSD performs most
efficiently, providing both the highest bandwidth and IOPs.

Using 8 KiB blocks has another advantage over other block sizes on our test
SSD. It is the largest size representable with only two PRP entries without using
additional PRP lists. This is due to our test SSD using 4 KiB pages. Other SSDs
may use a different page size or allow configuring the page size. The NVMe
command data structure uses two PRP entries to describe the data region. The first
always points to the first page of the region, and the second points either to the
second page or to a PRP list if the command transfers more than two pages [63].
As we want to avoid allocating a PRP list for every SIMD lane operating on the
SSD, we use 8 KiB blocks in future benchmarks evaluating the software cache.
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Figure 6.2: Random and sequential read benchmarks both on the GPU and CPU,
measuring bandwidth and IOPs. Bandwidth generally increases with larger block
sizes, though we see a noticeable drop in performance at 8 KiB blocks on the
CPU and at 64 KiB blocks on the GPU during sequential reads. IOPs decrease
with larger block sizes during random reads. For sequential reads, however, IOPs
first increase until reaching 4 KiB blocks, decreasing afterward.

Read performance. We test both random and sequential reads on the same par-
tition, similarly to the trimmed partition benchmark, measuring both bandwidth
in bytes per second and IOPs across varying block sizes from 512 B up to 64 KiB.

For the CPU benchmarks, we configure fio to use 64 jobs, a queue depth
of 256, and direct I/O to directly measure the performance of the I/O stack with-
out using the filesystem cache on Linux. We use the libaio engine to enable
asynchronous I/O for parallel execution of I/O commands. As we conducted the
CPU benchmarks before developing the GPU benchmarks, we initially chose a
queue depth of 256 instead of choosing the same queue depth as the GPU bench-
mark. Due to time constraints, we choose not to rerun the CPU benchmarks with
a different queue depth.

On the GPU we use multiple thread blocks of up to 256 SIMD lanes with each
thread block filling an I/O queue with 738 entries in the same way as in the read
benchmarks. Each SIMD lane reads either a pseudo-randomly generated LBA
address or a sequential LBA address calculated from the SIMD lane’s index into
the output buffer allocated on the host.

Figure 6.2 shows that the GPU generally performs between 5 % and 20 %
worse than the CPU during random reads, with a few exceptions. During se-
quential reads, we see a larger spread, with the GPU showing between 17 % and
194 % of the CPU’s performance. Additionally, both the GPU and CPU fail to



6.1. BASELINE PERFORMANCE 59

achieve the advertised 7 GB/s read bandwidth and one million IOPs. We assume
the slightly worse performance of the GPU benchmark is due to inefficiencies in
either our benchmark code or in the P2PDMA transfer mechanism. However, we
have not investigated this discrepancy further, as these benchmarks only serve as a
baseline for further benchmarks using our queue and cache subsystems. We see a
steep drop in performance going from 4 KiB to 8 KiB blocks on the CPU, with the
GPU showing higher performance than the CPU. This steep drop in performance
may be caused by the host system and the SSD using 4 KiB memory pages. As
such, using block sizes larger than 4 KiB incurs a performance penalty as transfers
use two memory pages.

The noise in the CPU benchmark is small, with a standard deviation of less
than 0.1 % of the mean in both bandwidth and IOPs across all configurations.
In contrast, the GPU benchmarks show more noise, with a standard deviation of
around 1 % of the mean for block sizes less than 64 KiB. Interestingly, the GPU
shows a lot of noise for 64 KiB blocks, with a standard deviation of around 12.8 %
of the mean. We have no plausible explanation for this discrepancy other than our
output buffers not being aligned to 64 KiB boundaries. However, this is unlikely
the cause of this discrepancy as the output buffers lie in host memory and not in
GPU memory where GPUDirect RDMA [52] enforces 64 KiB alignment.

Due to time constraints we have not investigated the distribution of bandwidth,
IOPs, and latency. As such, all benchmarks in this thesis present noise as the
standard deviation of the dataset. We encourage further analysis of the results of
our benchmarks in future work.

Write performance. We test both random and sequential writes on the 428 GiB
partition similarly to the read benchmarks, measuring both bandwidth in bytes per
second and IOPs across varying block sizes from 512 B up to 64 KiB. On the CPU
we use fio [29] with 64 jobs, a queue depth of 256, and direct I/O. On the GPU
we use multiple thread blocks of up to 256 SIMD lanes with each thread block
filling an I/O queue with 738 entries. The SIMD lanes on the GPU write data
from an input buffer allocated on the host. To preserve the untrimmed state of
the SSD partition, we filled the input buffer on the host with pseudo-random data
generated using rand().

Figure 6.3 shows that the GPU performs between 20 % and 40 % better than
the CPU using block sizes larger than 4 KiB with sequential writes. In contrast,
the GPU generally performs between 10 % and 30 % worse than the CPU with
random writes. For 4 KiB blocks the CPU massively outperforms all other con-
figurations, reaching the advertised one million IOPs. This spike in performance
may be due to the SSD and the host system using 4 KiB pages, leading to opti-
mized transfers between the host and SSD, though this requires further research.
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Figure 6.3: Random and sequential write benchmarks both on the GPU and CPU,
measuring bandwidth and IOPs. Both benchmarks on the CPU and the sequential
write GPU benchmark show a steep increase in both bandwidth and IOPs using
4 KiB blocks, with the CPU outperforming all other configurations at this block
size. In contrast, the random write GPU benchmark shows a more gradual increase
in bandwidth with increasing block sizes and a gradual decrease in IOPs. The
GPU outperforms the CPU in sequential writes at block sizes above 4 KiB, while
the CPU shows higher performance than random writes on the GPU.

Still, both the GPU and CPU fail to reach the advertised 5 GB/s write bandwidth.
Noise in both bandwidth and IOPs is similar to the read benchmark on the CPU
with a standard deviation of less than 0.1 % of the mean, while the GPU, again,
shows more noise with a standard deviation of around 3 % of the mean. However,
in contrast to the read benchmark, we do not see a spike in standard deviation for
64 KiB blocks, suggesting that this discrepancy only occurs in one transfer direc-
tion, going from the SSD to the host. Still, further research is required to fully
explain this discrepancy.

Latency. We test random reads and writes on the same partition as the read
and write benchmarks. For the CPU benchmark, we use fio [29] with a single
job and a queue depth of one to measure the latency of single I/O commands.
fio [29] measures latency as the time from the creation of an I/O command to
the completion of the command. As fio uses libaio internally, the measured
latency includes overhead introduced by libaio and the Linux I/O stack.
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Figure 6.4: Random read and write benchmarks on the GPU and CPU, measuring
latency per I/O command across different block sizes. The GPU and CPU follow
the same curve for read and write latency, with the GPU showing lower latency
than the CPU. Additionally, the CPU shows a lot of noise in latency, especially for
larger block sizes during write commands. The error bars on the CPU benchmarks
mark one standard deviation from the mean.

The GPU benchmark uses a single SIMD lane, repeatedly submitting a single
command and waiting for its completion until it has filled the queue once. As
such, the benchmark submits 738 commands in total in a run, which is the size of
the I/O queue pair we allocate. We use GPU events with a resolution of 0.5 µs on
the host to measure the total time spent executing the GPU kernel. As such, this
time includes startup and teardown latency of the GPU kernel [50]. We approx-
imate the latency of each command by dividing the total time by the number of
commands executed during the benchmark. Amortizing the latency across multi-
ple commands per run reduces the effects of startup and teardown latency and the
low resolution of GPU events. Inevitably, this approach of measuring latency has
the undesirable effect of hiding the variance between individual commands.

Figure 6.4 shows that the GPU has slightly lower latency than the CPU in
both read and write benchmarks, both showing low latencies around 100 µs, which
corresponds to the typical latency of SSDs [66]. We assume the higher latency of
the CPU benchmark is due to the overhead introduced by libaio, which fio
uses internally, and the kernel. Additionally, the CPU benchmark shows a lot of
noise with standard deviation up to 26 % of the mean in the read benchmark and up
to 186 % of the mean in the write benchmark at the largest block size. A possible
source of this latency may be the Linux I/O scheduler reordering commands [82].
In contrast, the GPU benchmark has less noise with a standard deviation on the
order of 0.1 % of the mean in the read benchmark and up to 6 % of the mean in the
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write benchmark at the largest block size. However, the actual noise of the GPU
benchmark is likely higher due to our method of measuring latency.

Our comparison between the CPU and GPU is mismatched in two regards.
First, fio [29] has an advantage as it times individual commands and does not
include startup and shutdown latency. In contrast, the GPU has an advantage as it
directly uses the I/O queues, while I/O commands from fio go through libaio
and the Linux I/O scheduler before reaching the I/O queues of the SSD. However,
these unfair advantages do not detract from the purpose of this benchmark as a
baseline for further comparison.

Discussion. The baseline performance benchmarks show that our approach is
competitive with CPU-based approaches, with only a slight degradation in per-
formance, possibly due to inefficiencies in our benchmark code. We achieve the
maximum bandwidth and IOPs possible on our test SSD with a trimmed parti-
tion. BaM [38, 69, 70] achieves similar results, reaching maximum IOPs on their
test SSDs, even with multiple SSDs in parallel. However, it is unclear whether
Qureshi et al. trimmed the SSDs before their benchmarks.

While BaM successfully saturates the available PCIe bandwidth of an x16
PCIe 4.0 link, our demonstrator is bounded by the limits of our test SSD. Further
research using multiple faster SSDs in parallel is necessary to test the limits of the
P2PDMA transfer system.

6.2 Queue Management Performance
We evaluate our queue management system similarly to the baseline performance
benchmarks to allow for comparison between our system and raw queue manage-
ment. We focus on the added overhead our system introduces, especially regard-
ing latency as the system uses locks and atomics on global memory. Additionally,
we test latency under a synthetic workload using multiple SIMD lanes to see the
effects of contention on locks, atomics, and global memory on latency.

The first three benchmarks—presented in Figures 6.5, 6.6, and 6.7—are sim-
ilar to the baseline performance benchmarks. These benchmarks serve as a com-
parison between our queue management system and raw queue management. The
last benchmark—presented in Figure 6.8—uses a synthetic workload to show how
contention on locks and atomics affects latency.

Read performance. We evaluate read bandwidth and IOPs similarly to the base-
line performance benchmarks on a 428 GiB partition. We allocate 24 virtual
queues and a virtual queue map with 48 entries for this benchmark to allow dy-
namic remapping of virtual queues.
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Figure 6.5: Random and sequential read benchmarks using raw queues and our
queue management system, measuring bandwidth and IOPs across different block
sizes. The queue management system shows results more in line with the random
read benchmarks using raw I/O queues with sequential read bandwidth dropping
significantly with block sizes larger than 4 KiB. The measured IOPs follow a
similar trend for our queue management system.

We only allocate 24 virtual queues due to a bug in libnvm [40] misconfig-
uring the Admin queue and causing Admin commands to fail unexpectedly. Even
though we fixed the bug in libnvm, we choose not to revise the benchmarks to
use more queues due to time constraints. The underlying physical queues have
738 entries each as we allocate one 64 KiB page per physical queue similarly to
the baseline performance benchmarks.

Each SIMD lane uses our virtual queue map to execute multiple I/O commands
in a loop. Queue depth does not apply here, as the virtual queue system processes
commands and completions in parallel, with each SIMD lane only waiting for its
own completion entry. The SIMD lanes read a fixed size block from the SSD
either at a pseudo-randomly generated LBA for the random read benchmark or at
an LBA calculated from the lane’s index for the sequential read benchmark. The
SIMD lanes read into an output buffer allocated on the host for similar reasons to
the baseline performance benchmarks.

Figure 6.5 shows that our queue management system’s performance is similar
to the baseline performance, with the peak bandwidth dropping from 3.75 GiB/s to
around 3.25 GiB/s. While random reads show results nearly identical to the base-
line performance, sequential reads show a drop in performance for larger blocks
and an increase in performance for smaller blocks, approaching the performance
seen in the random read benchmarks. A possible explanation for this behavior
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is, that our queue management system introduces noise in the order SIMD lanes
commit commands. As our virtual queues use a global ticket counter accessed
using an atomic fetch-and-add operation, GPU scheduling and contention on the
atomic counter introduces randomness in the order of threads acquiring tickets.
As such, the sequential read benchmark shows results similar to the random read
benchmark.

Noise using our queue management system is generally lower than during
the baseline performance benchmark. The queue management system shows a
standard deviation of around 0.1 % of the mean in both bandwidth and IOPs for
all block sizes except 64 KiB. For 64 KiB blocks, random reads using our queue
management system show a standard deviation of around 18.8 % of the mean and
sequential reads around 12.9 %. Similar discrepancies for our queue management
system and raw queue management suggest the cause for these discrepancies lies
in our hardware configuration and is likely not an effect of our benchmark code.
However, further research is required to prove this theory.

Write performance. We evaluate write bandwidth and IOPs similarly to the
read benchmarks with 24 virtual queues and 48 entries in the virtual queue map.
The SIMD lanes write pseudo-random data from an input buffer on the host to
pseudo-random or sequential LBA addresses on the SSD.

Figure 6.6 shows results similar to the read benchmarks. For sequential writes
we see a drop in performance for larger blocks, with the peak bandwidth drop-
ping from 2.2 GiB/s to 2 GiB/s, though the bandwidth drops less sharply than in
the read benchmark. This suggests, that the introduced randomness of the virtual
queues affects writes less than reads. However, it is still unclear why the random-
ness impacts writes less.

The queue management system shows similar noise to the baseline perfor-
mance benchmarks for most configurations, with a standard deviation of around
3 % of the mean. In contrast to the baseline performance benchmarks, however,
we see a spike in noise again at a large block size. In these benchmarks, the
standard deviation spikes to around 17 % of the mean at 32 KiB blocks and drops
back down to around 3 % at 64 KiB blocks. As these spikes in noise happen ir-
regularly but always late into the benchmark at high block sizes, we suspect that
an issue such as thermal throttling during longer repeated benchmark runs may
be the cause of these spikes. Further analysis using longer benchmark runs with
additional measurements of SSD and GPU temperature is necessary to confirm
this theory.
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Figure 6.6: Random and sequential write benchmarks using raw queues and our
queue management system, measuring bandwidth and IOPs across multiple block
sizes. The queue management system shows a slight decrease in performance,
especially during sequential writes. Still, the results generally follow the same
curve as the raw I/O queue benchmarks.

Latency. We measure latency compared to the baseline latency benchmark on
the same partition as the read and write benchmarks using randomized read and
write commands. We use a single SIMD lane to submit 8192 read commands
with a pseudo-randomly generated LBA on a single virtual queue. Afterward, we
calculate an amortized latency per command by dividing the total runtime of the
GPU kernel by the number of commands executed. Similarly to the baseline per-
formance benchmarks, we use GPU events with a resolution of 0.5 µs to measure
execution time.

Figure 6.7 shows a constant latency of 290 µs for both read and write com-
mands using our queue management system. This is higher than we expect at
around three to thirty times larger than the baseline latency benchmark. Instead,
we expect a small increase in latency due to the added latency of atomics and
global memory accesses, which both add up to 300 clock cycles or around 175 ns
of latency each at our GPU’s core frequency according to recent microbench-
marks [1, 30]. Still, the added latency of atomics and global memory does not
explain why our system’s latency is three times larger than the baseline latency.
Note, this benchmark only uses a single SIMD lane and therefore does not intro-
duce contention among atomics or on global memory.
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Figure 6.7: Random read and write benchmarks using our queue management
system and raw I/O queues, measuring latency across varying block sizes. The
queue management system shows a significant increase in latency going up to
290 µs of latency. Both read and write latency are nearly constant and identical
across all block sizes.

Another reason for this discrepancy could be the use of the MMIO store in-
struction through PTX [58] inline assembly. This instruction and its memory con-
sistency guarantees are not necessary in the baseline performance benchmarks, as
only one thread writes to the doorbell registers and polls for command comple-
tions. However, BaM [38, 69, 70] achieves low latencies around 25 µs using an
SSD with a latency around 10 µs using the same PTX instruction in their virtual
queues. As such, this still does not fully explain the cause of this discrepancy.

Both read and write benchmarks show similar noise with a standard deviation
of around 1 % of the mean for small block sizes, decreasing down to 0.1 % of the
mean with growing block sizes.

Latency under load. To further demonstrate the noise introduced by our virtual
queues, we evaluate latency under a heavy synthetic workload. We use 8912
SIMD lanes executing either random read or random write commands in a loop
to simulate a large I/O workload. Similarly to the read and write benchmarks, we
again use 24 virtual queues and a virtual queue map with 48 entries.

Instead of calculating an amortized latency using GPU events, we use an in-
ternal GPU register %globaltimer to measure the time for each command and
SIMD lane individually. The %globaltimer register returns a time value in
nanoseconds global to the GPU. While the PTX ISA [58] discourages the use of
this register, the CCCL [54] libraries use the register as a system clock to im-
plement std::chrono::system_clock::now [26]. As such, we choose
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to use the internal register similarly to measure the execution time of individual
I/O commands. We calculate execution time by taking the difference between
the time retrieved from %globaltimer before setting up the I/O command and
after returning from our queue management system.

This method of measuring latency on the GPU is preferable as it does not
include startup and shutdown latency and does not hide noise as when averaging
the latency of multiple commands. Due to time constraints, we did not rework
previous latency benchmarks to use this method of measuring latency over the
method using GPU events.

Figures 6.8 and 6.9 show boxplots of the collected datasets. The edges of the
boxes denote the upper and lower quartile of the dataset. The whiskers denote the
highest or lowest value still inside 1.5 ∗ IQR above or below of the relevant quar-
tile, where IQR is the interquartile range, i.e., the interval between the upper and
lower quartile. The marks above and below denote the minimum and maximum
of the dataset. The line inside the boxes denotes the median of the dataset.

Figure 6.8 shows read latency on the order of 1 ms to 100 ms and write latency
on the order of 100 ms to 1 s for the respective interquartile ranges. The read
benchmark shows a lot of noise with the interquartile range spanning multiple
orders of magnitude. In contrast, the write benchmark shows less noise with the
interquartile range contained within one order of magnitude. This likely has the
same cause as the effects on bandwidth and IOPs we see between read and write
benchmarks, with write benchmarks showing results more close to the baseline
performance. Both benchmarks generally show low minimum latency less than
1 ms around the average latency of 290 µs measured in the latency benchmark,
with a few exceptions for the write benchmark.

We expect a larger spread for the latency of individual commands under load
due to the effects of GPU scheduling and contention on the atomics and global
memory. However, the measured spread, median and maximum latencies are
larger than anticipated, suggesting that the SIMD lanes experience a form of
thread starvation in our implementation. Poor use of atomics and an inefficient
memory layout may be the cause for the apparent thread starvation.

6.3 Software Cache Performance

Our evaluation of our software cache focuses on the latency this abstraction adds
for different kinds of cache hits and misses, as well as the ratio between cache
hits and misses for different cache sizes and under different loads. To this end, we
conducted two types of benchmarks.
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(b) Latency during write benchmark.

Figure 6.8: Random read and write benchmarks using multiple SIMD lanes and
our queue management system, measuring latency per I/O operation. Both bench-
marks show increasing latency with larger block sizes and a minimum latency of
around 200 µs. The read benchmark shows a lot of noise with the boxes spanning
multiple orders of magnitude, while the write benchmark shows less noise.

For the first benchmark—presented in Figure 6.9—we measured the latency
of the different cache operations using a synthetic workload. This allows us to
evaluate the overhead introduced by our software cache in comparison to using
only the queue management system under load, as we use the same configuration
of SIMD lanes for both benchmarks. Additionally, we can compare the latency of
different types of cache hits and misses.

There are two types of cache hits for our software cache. First, a normal cache
hit occurs when a SIMD lane successfully acquires a valid cache line already
present in the cache. In contrast, a locked cache hit occurs when a SIMD lane finds
and acquires a valid cache line only after locking the cache set for eviction. This
differs from a normal cache hit in terms of latency, as the SIMD lane generally
has to wait for the lock to be released in this case.

We can categorize cache misses into three categories for our software cache. A
normal cache miss happens when a SIMD lane evicts a valid and clean cache line
after locking the cache set. This differs from a write-back cache miss, for which
the evicted cache line has its dirty bit set and the SIMD lane has to write the data
to the SSD. Lastly, a cold cache miss happens when the cache line chosen for
eviction does not have its Valid-bit set. This is only the case, when the cache line
is cold, i.e., the cache line has never had data stored in it before. This type differs
from the other types in latency, as this case does not require multiple rounds of
our clock replacement algorithm.



6.3. SOFTWARE CACHE PERFORMANCE 69

The second benchmark—presented in Figures 6.10 and 6.11—uses an idea
adapted from Traeger et al. [90] using traces of NVMe commands captured using
ftrace [76] on Linux. We stripped the traces of commands not yet supported by
our software cache, such as the flush command, which flushes the volatile write
cache present on many SSDs to non-volatile memory. By replaying these traces
on the GPU using our software cache, we can evaluate the cache hit rates across
different cache configurations.

Latency evaluation. We measure latency under load using 8192 SIMD lanes
repeatedly acquiring and releasing pseudo-random cache lines. Each SIMD lane
decides whether to dirty the cache line based on a pseudo-random value. To
measure the latency of each individual acquire operation, we use the internal
%globaltimer register and calculate the difference in its value captured before
and after the acquire operation. Then, we store the measured time value based on
the type of cache hit or miss reported by our cache API.

We use an 8 GiB large cache split into 4096 sets of 256 cache lines with a
cache line size of 8 KiB. We use 8 KiB cache lines as it is the largest size on our
test SSD that does not require additional PRP lists. Furthermore, we choose an
8 GiB large cache as the largest cache size that still fits in GPU memory alongside
the latency measurements. Then, we decided to split this cache into sets of 256
cache lines as a multiple of the SIMD thread size of 32 SIMD lanes.

Figure 6.9 shows that the normal cache hit latency is multiple orders of magni-
tude lower than the latency of locked hits or cache misses, with an average latency
of around 1 ms and going as low as 2 µs. For all types of misses, the interquartile
range lies between 10 ms and 100 ms of latency, with minimum latencies around
1 ms. Cold misses incur the lowest latency, as they do not include the latency
of the clock replacement algorithm and the second I/O command for write-back
misses. Normal misses and write-back misses show similar latency, with write-
back latency being slightly higher as it necessitates a second I/O command.

Interestingly, locked hits incur the highest latency of all types with a median
latency above 100 ms and a minimum latency of around 5 ms, though this type of
cache hit only happens in an edge case. If a SIMD lane finds the correct valid
cache line only after locking the cache set for eviction, one of the previous SIMD
lanes that held the lock must have evicted a cache line from the set and loaded the
correct block in the time the SIMD lane was waiting for the lock to be released.
As such, this type of cache hit contains both the latency from the cache miss that
happened before and the latency from waiting for the lock to be released. For all
type of cache hits and misses, the maximum latency is high, going up to 10 s for
locked hits and misses.
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Figure 6.9: Cache latency benchmark using multiple SIMD lanes during different
types of cache hits and misses. A normal hit shows the lowest latency around
1 ms with a minimum of 2 µs. The different types of misses all fall around 10 ms
to 100 ms and a locked hit shows the largest latency of around 100 ms to 500 ms.
All types show large maximum values up to 10 s of latency.

The software cache amplifies the effects of GPU scheduling, lock contention,
and contention on atomics seen in Figure 6.8. We see maximum latencies of
more than one second for acquiring a single cache line even though the NVMe
command itself only takes around 100 µs. We suggest implementing some form
of realtime constraints in further iterations of our NVMe driver and software cache
to mitigate these effects and reduce the maximum latency under load.

Replaying captured I/O traces. We measure cache hit ratios using traces of
NVMe commands captured beforehand. Similarly to previous benchmarks, we
use 8192 SIMD lanes to replay the commands on our demonstrator. We use a
global atomic counter to step through the captured traces, with each thread of
SIMD lanes atomically fetching and increasing the counter to acquire a unique
command from the trace. This sacrifices some accuracy of the replay for in-
creased throughput, as SIMD threads may execute commands from the trace in
parallel and out of order. Then, each SIMD thread acquires the relevant cache
lines and simulates work on them by calculating the XOR between the data and
a pseudo-random key. If the replayed command is a write command, the SIMD
thread marks the cache line as dirty when acquiring the cache line. We use atomic
counters for the different kinds of cache hits and misses to accurately calculate the
ratio between cache hits and misses. We evaluate different cache configurations
with cache sizes ranging from 512 MiB up to 8 GiB using 4 KiB and 8 KiB cache
line sizes.
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Figure 6.10: Cache hit and miss ratios across varying cache sizes replaying a trace
of compiling a freestanding gcc [22] C/C++ toolchain. The ratio of cache hits
increases up to 2048 or 1024 cache sets at which point it stays constant. Cold
cache misses increase with larger caches and locked hits are rare making up less
than 1 % of cache operations.

We captured two traces using ftrace [76] on Linux. First, we captured
a trace while compiling a freestanding gcc [22] C/C++ toolchain on a newly
formatted Ext4 [79] partition on our test system. This trace emulates a workload
mostly composed of write commands. Second, we captured a trace while running
a system update of an Arch Linux [31] installation on a laptop used for personal
use formatted with a Btrfs [78] partition. This trace captures a more balanced
workload comprised of both read and write commands.

For the gcc compilation trace, Figure 6.10 shows larger hit rates with larger
cache sizes up to 2 GiB, afterward hit rates stay constant. This is expected, as the
trace accesses only 2153 LBA addresses of the 48865 unique addresses multiple
times. Cache hit and miss rates show similar values for the same cache sizes,
independent of cache line size.

For the system update trace, Figure 6.11 shows larger hit rates with larger
cache sizes, similarly to Figure 6.10. At the largest cache size, normal cache hits
make up 33 % of all cache operations. As opposed to the gcc compilation trace,
cache hits do not stay constant at some cache size and instead keep increasing.
Still, we see diminishing returns when doubling the cache size from 4 GiB to
8 GiB only yields a 5 % increase in cache hits. This is expected with only a limited
number of commands in the trace because any working set has a maximum cache
hit rate, as each accessed cache line incurs at least one cache miss on a cold cache.
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Figure 6.11: Cache hit and miss ratio across varying cache sizes replaying a trace
of a system update on a laptop used for personal use. The cache hit ratio and cold
cache miss ratio increases with larger block sizes, while locked hits make up less
than 1 % of cache operations.

Specifically, this trace contains 336789 unique starting LBA addresses of which
69038 appear multiple times and a total of around 503022 commands. As such,
the theoretical maximum cache hit rate is also approximately 33 %. This is only an
approximation, as the calculation does not include the number of blocks read per
command and aligning the starting LBA to a cache line. Both benchmarks show
that locked hits make up less than 1 % of the total number of cache operations,
suggesting that this edge case is uncommon even under heavy load.

While the benchmarks give some insight into the efficiency of our software
cache, the traces used are too short for the chosen cache sizes. In both bench-
marks, we hit the theoretical maximum cache hit rate, suggesting the software
caches evaluated are too large to sufficiently evaluate the cache hit ratio. Addi-
tionally, we captured the traces on CPU-based filesystems such as Ext4 [79] and
Btrfs [78]. We suggest reevaluating our software cache using longer traces cap-
tured on a GPU4FS [42] partition after integrating our NVMe driver into GPU4FS.

We cannot compare our results directly to BaM’s [38, 69, 70] software cache,
as Qureshi et al. use different workloads for their evaluation. Depending on the
workload, BaM achieves cache hit ratios above 90 % with a 64 GiB large software
cache. However, we see that our results roughly follow the same patterns, with
the cache hit ratio increasing more steeply at lower cache sizes and flattening out
towards some limiting cache hit ratio for large cache sizes.
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6.4 Discussion
This section discusses our results in a broader context, providing more detailed
explanations of the results and details on theoretical limits, specifically for our
software cache. We mainly compare our results to BaM [38, 69, 70] where appli-
cable, as BaM serves as a basis for our NVMe driver design.

Our queue management system shows an unexpectedly high increase in la-
tency, up to 290 µs. It is possible our demonstrator uses atomics poorly, which
introduces a lot of contention on the atomics and global memory. The most likely
culprit is not using padding to pad our atomics to 128 B boundaries. As NVIDIA
GPUs process memory in 32 B, 64 B, and 128 B transactions, having multiple
atomics tightly packed amplifies contention on global memory [49]. Accessing
multiple atomic simultaneously in a 128 B memory region likely generates multi-
ple transactions to global memory for each group of successfully executed atomic
instructions. High contention on the atomics amplifies this effect, as SIMD lanes
might have to retry the atomic instruction multiple times. This explains the appar-
ent thread starvation we see using a synthetic workload, as unlucky SIMD lanes
may take a long time to successfully execute an atomic instruction under con-
tention. However, this is only a guess and further research into this possibility is
required.

The software cache seems to amplify these effects, showing higher latency
under load than with only our queue management system. It adds another layer of
atomics and locks, which likely increases the latency for the same reasons as with
the queue management system. A notable difference, however, is the presumably
high contention on the locks for each cache set, higher than the contention on
the locks used in our queue management system. While our queue management
system uses locks for small resources such as single command IDs or single slots
in the physical queue, the software cache uses a lock for a complete cache set
and for a large section of the evict-and-replace algorithm. Our demonstrator cur-
rently uses a simple but likely inefficient spinlock implementation for all locks in
our software cache and queue management system. These spinlocks likely cause
thread starvation, especially in our software cache implementation. Replacing
these locks with fair locks where possible acts as a form of soft realtime con-
straint, as the latency of these locks is bounded by the number of SIMD lanes.

Our software cache design differs greatly from BaM’s software cache, espe-
cially in its memory footprint. BaM [38, 69, 70] incurs a constant overhead for
the amount of storage accessible as its software cache uses a fixed size array of
cache line metadata preallocated for the entirety of the accessible storage media.
For instance, a 1 TiB SSD split into 4 KiB cache lines would require 2 GiB of
memory for the cache line metadata. In contrast, our approach only stores cache
line metadata for cache lines present in the cache, thereby reducing the memory
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footprint used for an 8 GiB cache with 4 KiB cache lines to around 32 MiB. Still,
this change comes at the cost of performance as our approach now requires a
linear search to find the correct cache line, while BaM achieves constant time
lookups. We mitigate this issue by using a set-associative cache instead of a
fully-associative cache, reducing the linear search to a constant factor k. BaM’s
software cache would introduce a large memory overhead with large capacity
enterprise-grade SSDs and software RAID, rendering it unusable for our usecase.
As such, we see the tradeoff in lookup performance for a smaller memory foot-
print as beneficial.

Even though our software cache is not fully-associative, we achieve the theo-
retical maximum cache hit rates of around 33 % replaying our traces. In theory,
any set-associative cache can simulate a smaller fully-associative cache. Take for
instance an 8 GiB cache split into 4 KiB cache lines with 8192 cache sets of 256
cache lines. The cache can store a total of 221 or around two million cache lines.
From the theorem presented by Adas et al. [2] it follows that the cache can store
around 1.5 million cache lines with a probability of at least 50 % without requir-
ing to evict a cache line. Additionally, the cache can store one million cache lines
with a probability greater than 99 %. However, the theorem assumes cache lines
stored in the cache are fully independent, which is unrealistic in real workloads.

In conclusion, our demonstrator successfully proves the feasibility of a general-
purpose NVMe driver fully running on the GPU, providing both bandwidth and
IOPs comparable to CPU-based approaches. However, the demonstrator has is-
sues, especially regarding latency, which require further research and develop-
ment. In its current form, we deem the demonstrator unfit for usage under heavy
load, as unlucky applications may have to wait multiple seconds for individual
filesystem commands to complete due to the thread starvation issues outlined
above.



Chapter 7

Future Work

The results of this thesis show different areas where our approach needs improve-
ment and leaves some open questions for further research:

Integrate our driver into GPU4FS. The goal of this thesis is to design and
develop an NVMe driver and software cache suitable for use in GPU4FS [42].
Integrating our demonstrator into GPU4FS is the next step in this process and en-
ables more sophisticated filesystem benchmarks for our NVMe driver. GPU4FS
already provides a layer of abstraction under which we can integrate our demon-
strator. This abstraction layer includes wrapper functions to transfer data to and
from a storage medium using an opaque storage base pointer. We can point this
storage base pointer to a wrapper around our NVMe driver to translate the read
and write operations into cache operations.

Port our driver to AMD GPUs. In its current form, our demonstrator only
supports NVIDIA GPUs. Most notably, it is necessary to port our use of PTX [58]
inline assembly to either Graphics Core Next (GCN) [3] inline assembly for AMD
or generic atomic intrinsics usable on both platforms.

Additionally, our demonstrator currently uses a special MMIO store instruc-
tion using PTX [58] inline assembly to write to the doorbell registers. It is neces-
sary to port this instruction to AMD using either a comparable GCN [3] instruc-
tion or a combination of atomic intrinsics and memory fences if it is possible to
achieve similar semantics in this way.

Finally, libnvm [40] currently only supports NVIDIA GPUs through GPUDi-
rect RDMA [52] to map GPU memory for P2PDMA. We suggest testing out the
undocumented API of the include/drm/amd_rdma.h header in the AMDgpu
[12] kernel driver we discussed in Section 2.3.5 to see if it provides similar capa-
bilities to GPUDirect RDMA. If this fails, the P2PDMA API [83] on Linux could
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work as an alternative, but it would require access to the pci_dev structure as-
sociated with the AMD GPU, which may require modifying the ADMgpu kernel
driver.

Investigate the high latency of our approach. Our evaluation shows that our
queue management and software cache adds a large amount of latency to I/O oper-
ations, especially if the system is under heavy load. Further research is necessary
to find and mitigate the source of the added latency.

We suspect our use of atomics producing inefficient memory transactions on
global memory to be a major source of latency for our demonstrator. Optimizing
the memory layout of atomics by adding padding as it is used in BaM [38, 69,
70] likely improves the latency, as it ensures operations on separate atomics use
separate memory transactions.

Reducing the latency of single I/O operations with a more optimized memory
layout likely also reduces the average latency under load. Still, we suggest extend-
ing or redesigning parts of our NVMe driver and software cache to implement soft
realtime constraints on latency as to reduce the likelihood of I/O commands taking
a large amount of time to complete.

The locks our demonstrator uses are an area in which we can introduce real-
time constraints. In its current form, our demonstrator only uses simple spinlocks
using an atomic fetch-and-or operation. Spinlocks do not provide fairness, as any
SIMD lane may have to wait arbitrarily long to acquire a lock. Using fair locks
instead, such as a ticket-based lock, would guarantee that SIMD lanes acquire a
lock in the order they arrive at the lock operation. This serves as an upper bound
for the latency added by a lock, proportional to the number of SIMD lanes.

Find the bandwidth limit using this approach. The SSD we use for bench-
marks limits the bandwidth and IOPs we can achieve. As the read benchmark on
the trimmed partition in Figure 6.1 shows, we are capable of reaching the adver-
tised bandwidth and IOPs with our approach.

This limit is less than the maximum theoretical bandwidth achievable on a x4
PCIe 4.0 link and less than the results Qureshi et al. [38, 69, 70] present for BaM.
Further research could evaluate the theoretical limits of our approach on modern
GPUs using more modern SSDs with support for PCIe 5.0 and multiple SSDs
simultaneously until the SSDs are no longer the bottleneck.

Additionally, research on the bandwidth of our software cache design is nec-
essary, especially for different types of cache hits and misses and under different
workloads. Our benchmarks only evaluate latency and cache hit rates for our soft-
ware cache. We suggest conducting additional microbenchmarks on latency and
bandwidth, as well as more long term benchmarks on cache hit rates.
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Extend our NVMe driver. Currently, our demonstrator only makes use of basic
NVMe features mandatory for all SSDs. Supporting and using SGLs enables
larger block sizes for our software cache without additional PRP lists allocated
per SIMD lane. However, as SGLs are intended for the message-based transport
model, SGL support is rare for the PCIe-based transport model, with only a few
manufacturers advertising the feature for their datacenter SSDs [63,89,91]. Next,
we can use the weighted round-robin arbitration mechanism to prioritize metadata
and journal updates, for example. Furthermore, our demonstrator only uses basic
NVMe read and write commands. We suggest using more specialized commands
for better performance where applicable. Most notably, the trim command can be
used on file deletion to efficiently free up the blocks used by the file.

Furthermore, our demonstrator requires better memory management. Cur-
rently, our demonstrator wastes memory when allocating buffers for the physical
I/O queues, as we allocate memory for each queue individually in 64 KiB chunks.
Preallocating all memory necessary for the I/O queues in one call allows us to
more tightly pack the I/O queues in memory.

Extend our software cache. The current design of our software cache only
supports a single NVMe namespace and only GPU memory. This prevents us
from implementing more advanced filesystem features such as software RAID
and mmap. Extending our software cache design with more metadata in the cache
line tag or integrating our cache into a multi-level cache hierarchy is necessary
to support these features. For instance, including the NVMe device identifier and
the namespace identifier in the cache line tag allows us to store blocks from mul-
tiple devices in the same cache. Furthermore, including residency information on
where the data is stored in memory allows the cache to store data in both host
memory and GPU memory depending on its usage.
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Chapter 8

Conclusion

In this thesis, we aimed to test the feasibility of an NVMe driver and software
cache fully implemented on the GPU, with the goal of integrating our design into
GPU4FS [42] in future work. Currently, GPU4FS only supports byte-addressable
NVM storage with Intel Optane [25]. Integrating our NVMe driver and software
cache into GPU4FS enables the use of common block-addressable storage devices
using the NVMe protocol.

In our work, we designed an NVMe driver and software cache with the par-
allelism of modern GPUs in mind, taking BaM’s [38, 69, 70] design as the basis
for our design. We implemented a demonstrator based on our design and evalu-
ated our NVMe driver using microbenchmarks, measuring bandwidth, IOPs, and
latency. We evaluated our software cache with synthetic workloads and traces of
NVMe commands captured during real-world workloads.

Our results show that our demonstrator is competitive with CPU-based NVMe
drivers. We achieve between 70 % and 90 % of the bandwidth of the Linux I/O
stack using random reads and between 60 % and 90 % of the bandwidth using
random writes for most configurations. However, we see that the CPU-based ap-
proach massively outperforms our approach using 4 KiB random writes, with our
approach only achieving 11.4 % of the bandwidth. Furthermore, our approach in-
troduces an unusually large amount of latency of up to 290 µs in microbenchmarks
and between 1 s and 10 s using a synthetic workload.

We conclude that our demonstrator is competitive with CPU-based approaches
regarding bandwidth and IOPs, yet requires further optimization to reduce the la-
tency of individual commands. The abnormally high latency makes our demon-
strator unusable for high performance applications, but it still successfully demon-
strates that GPU-based NVMe drivers are a viable alternative to traditional CPU-
based approaches.

Our work presents possibilities for future work into GPU-based NVMe drivers.
We propose further research into lowering the latency of our approach, as well as
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porting our demonstrator to AMD GPUs. Additionally, we suggest extending our
demonstrator with support for more advanced NVMe features and with support
for both GPU and host memory in our software cache. Lastly, we recommend
running additional benchmarks on our demonstrator with multiple faster SSDs to
evaluate the limits of our approach.
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