
Rethinking Storage I/O for Hybrid
NVMe and DAX Block Devices

Master’s Thesis
submitted by

cand. inform. Daniel Habicht
to the KIT Department of Informatics

Reviewer: Prof. Dr. Frank Bellosa
Second Reviewer: Prof. Dr. Wolfgang Karl
Advisor: Yussuf Khalil, M.Sc.

Lukas Werling, M.Sc.

November 20, 2023 – July 19, 2024

KIT – The Research University in the Helmholtz Association www.kit.edu

I hereby declare that the work presented in this thesis is entirely my own and that I did
not use any source or auxiliary means other than these referenced. This thesis was carried
out in accordance with the Rules for Safeguarding Good Scientific Practice at Karlsruhe
Institute of Technology (KIT).

Karlsruhe, July 19, 2024

iv

Abstract

With recent advances in cache coherent interconnects like Compute Express Link (CXL),
providing low-latency load/store semantics for device-attached memory becomes feasi-
ble in practice. Next to the expansion of main memory, this also opens up the possibility
for a new type of storage product that has been proposed in the past: hybrid storage de-
vices combine a byte-addressable persistent cache accessed through load/store semantics,
with conventional, cost-efficient Flash for bulk storage. Such devices seem especially
promising for providing memory-like storage performance on workloads with strong
persistence requirements and high locality. Storage abstractions in operating systems,
however, have been tailored to asynchronous block interfaces that were used for conven-
tional storage devices over decades. While Direct-Access (DAX) abstractions found in
operating systems like Linux promise to support byte-addressable storage (e.g., Optane
persistent memory), these abstractions are insufficient for hybrid storage because they
assume a different, incompatible device model.

In this thesis, we rethink hybrid storage support from the ground up. We propose
a persistence-aware page cache for seamlessly integrating hybrid storage devices into
the modern I/O stack. Our design aims to provide direct access to storage and optimize
performance-critical operations like synchronous writeback (i.e., fsync). With the lim-
itations of the small-capacity cache in mind, we design a new user space API centered
around fine-granular control over mappings of cache memory. While out-of-scope for
this thesis, our design provides the foundation for building towards transparent use of
hybrid storage devices. We implement our approach in the Linux kernel.

Our evaluation on micro benchmarks shows up to 37 × higher throughput for syn-
chronous writeback. We are able to translate these improvements into up to 4.1× higher
throughput on the key-value datastore Valkey while reducing the per-request CPU and
energy overhead by 78% and 74%.

v

vi CHAPTER 0. ABSTRACT

Contents

Abstract v

Contents 1

1 Introduction 3

2 Background 7
2.1 Compute Express Link (CXL) . 7
2.2 Direct Access (DAX) in Linux . 9
2.3 Hybrid Storage . 10

3 Approach 13
3.1 I/O Interface Characterization . 13
3.2 Hybrid Storage Model . 18
3.3 Software Interface for Hybrid Storage 21

3.3.1 Case Study: Linux’s DAX Subsystem 22
3.3.2 User Space API for Hybrid Storage 23

3.4 Persistence-aware Page Cache . 25

4 Implementation 31
4.1 Kernel Support for Hybrid Storage . 31

4.1.1 Hybrid Storage Representation 32
4.1.2 Memory Management Modifications 32
4.1.3 Persistence-Aware Page Cache 34

4.2 Hybrid Storage Device Emulation . 37
4.3 File System Support for Hybrid Storage 38
4.4 Evaluation Targets . 40

4.4.1 DAX-aware Key-Value Store 40
4.4.2 DAX-aware fio mmap I/O Engine 44

1

2 CONTENTS

5 Evaluation 45
5.1 Methodology and Evaluation Setup . 45
5.2 Synchronous Writeback DAX Optimization 48
5.3 Synthetic I/O Performance . 50
5.4 Real-World Application Performance 53

6 Discussion 59
6.1 Dirty State Tracking . 59
6.2 Data Persistence . 61
6.3 Future Work . 62

7 Conclusion 65

List of Acronyms 67

Bibliography 69

Chapter 1

Introduction

For decades, the gap in performance and latency between main memory and persistent
storage shaped how Operating Systems (OSs) and applications approach storage I/O.
As even modern low-latency Non-volatile Memory Express (NVMe) Solid State Drives
(SSDs) have access latencies of over 10 µs [31], they are at least two orders of magnitude
slower than typical main memory at access latencies in the order of 100 ns [14]. Because
of this, the interaction between OS and storage device centered around asynchronous
block interfaces. Such interfaces use interrupts for signaling completion and Direct
Memory Access (DMA) for efficient data transfer [2]. The asynchronous nature of this
approach enabled the OS to overlap slow media access of larger storage blocks with
running other processes [2].

In recent years, byte-addressable Persistent Memory (PM) technologies became com-
mercially available, e.g., in the form of Intel’s Optane PM [22], driving access latencies
down to a few hundred nanoseconds [23]; albeit at a higher price per gigabyte than con-
ventional SSDs [16]. Contrary to Flash-based persistent storage that uses asynchronous
block I/O (e.g., NVMe [43]) to cope with high access latencies, such devices are directly
attached to the CPU’s memory subsystem, providing synchronous media access through
load/store instructions. Due to this change of the access paradigm, OSs introduced
new storage abstractions, such as Linux’s Direct Access (DAX)[32], for making use of
byte-addressable, low-latency storage.

In order to get the best of both worlds, that is the low-latency access of PM attached
to the CPU’s memory subsystem and the low cost of Flash-based storage, hybrid devices
seem promising. With 2B-SSD, Bae et al. [6] propose the to our knowledge first hybrid
storage architecture that combines a load/store interface with conventional block I/O.
2B-SSD uses a small integrated persistent cache for realizing load/store access over
Peripheral Component Interconnect Express (PCIe) on a large Flash-based storage [6].
For their work, the authors characterize the hybrid storage approach by combining byte-
addressability with conventional block I/O [6], which provides a clear distinction to

3

4 CHAPTER 1. INTRODUCTION

storage devices that just feature multiple memory technologies on the device. Therefore,
conventional NVMe SSDs that feature DRAM caches, regardless of features like power
loss protection that guarantee persistence of buffered contents [61], do not classify as
hybrid storage under this description, as they lack the load/store interface.

Despite promising results on hybrid storage and byte-addressable SSDs [6, 1], hybrid
storage devices did not gain commercial traction for several years due to technological
limitations. PCIe [44], the most widely used interconnect for attaching high-end NVMe
storage, suffers from one major limitation when it comes to byte-addressable storage: as
highlighted by Jung [25] in their work on Compute Express Link (CXL)-based SSDs,
exposing byte-addressable storage through PCIe’s Base Address Registers (BARs) re-
quires uncachable Memory-Mapped I/O (MMIO) from the CPU. As this excludes PCIe-
attached storage from being present in CPU caches, it severely degrades performance
for memory accesses [25].

With the industry-wide push for the cache coherent CXL [7] interconnect, the techni-
cal limitations holding hybrid storage back are a thing of the past. CXL enables memory
semantics for device-attached memory with CPU-side caching [13]. Our own measure-
ments (§ 3.1) show a load latency for CXL-attached DRAM that is approximately 3.3
times higher than CPU-local Dynamic Random Access Memory (DRAM). These mea-
surements fall in line with measurements of CXL memory devices by Sun et al. [54].

While the growing availability of CXL-capable hardware encourages work around
new hybrid storage products [48, 15, 47], current OSs do not seem to be well-prepared
to deal with hybrid storage. Storage abstraction for PM like Linux’s DAX subsystem
build on the assumption that the load/store interface provides low-latency access at
all times [32]. This assumption, however, does not hold for hybrid storage devices as
they provide load/store access to the storage capacity through a much smaller cache.

In this thesis, we present an OS-centric approach for managing hybrid storage de-
vices in modern OSs. For our work, we focus on hybrid storage featuring a persistent
cache, i.e., all writes that make it to the device survive a crash. Our approach is centered
around the concept of a persistence-aware page cache that takes over the management of
the persistent cache featured on hybrid storage devices. By leveraging the persistence of
the cache, our persistence-aware page cache seamlessly enables direct-access to storage
on memory-mapped files, low-latency synchronous writeback, and direct I/O through
the load/store interface. These optimizations specifically target performance-critical
workloads with strong persistence requirements like databases. To cope with the limited
cache capacity of hybrid storage devices, we design a new user space API that enables
fine-granular control over mappings of cache memory, so-called DAX mappings. We
implement our approach in Linux [56] version 6.6. Our current implementation lim-
its hybrid storage support to the ext2 and ext4 file system drivers. For evaluating our
approach, we assess the impact of our synchronous writeback optimizations regarding
performance, CPU efficiency, and power efficiency on an emulated hybrid storage device

5

consisting of a commodity NVMe SSD and a FPGA-based CXL memory expander. We
use micro benchmarks and the key-value datastore Valkey [57] for our evaluation and
show that our implementation provides up to 37 times more performance for fsync()
while also significantly improving the CPU and energy efficiency. We can translate this
improvement for synchronous writeback into up to 4.1× higher throughput in Valkey
when using Valkey’s strongest persistence mode while reducing the per-request CPU
and energy overhead by 78% and 74% of conventional storage under certain conditions.

The remainder of this thesis is structured as follows: First, Chapter 2 provides back-
ground on technologies and related work regarding hybrid storage devices. Then, Chap-
ter 3 motivates the requirement for new hybrid storage abstractions, defines the device
model assumed by our approach, and describes our persistence-aware page cache design
as well as our new user space API. Chapter 4 describes our modifications to the Linux
kernel including file systems and outlines our hybrid storage device emulation. In addi-
tion, Chapter 4 also describes modifications to applications used in our evaluation. After
that, we evaluate our implementation in Chapter 5 and discuss the results of our tests. In
Chapter 6, we discuss limitations of our current implementation and provide an outlook
towards future work on hybrid storage devices and our persistence-aware page cache. In
Chapter 7, we conclude this thesis.

6 CHAPTER 1. INTRODUCTION

Chapter 2

Background

In this chapter, we provide background related to emerging hybrid storage devices and
outline related research. Section 2.1 provides a short introduction to CXL, an intercon-
nect technology that can be used to implement the load/store interface of hybrid
storage devices. In Section 2.2, we discuss direct-access (DAX) for files in Linux. Fi-
nally, Section 2.3 outlines background for hybrid storage.

2.1 Compute Express Link (CXL)

CXL is an open industry standard designed by the CXL consortium that provides a set of
interconnect protocols for connecting CPUs with a wide array of peripheral devices like
accelerators, memory devices, and storage devices [13]. Since the introduction of the
first CXL specification in 2019, CXL has achieved industry-wide support [5], with CXL
3.1 from November 2023 being the latest revision to the CXL specification [10]. With
competing cache coherent interconnects like Gen-Z, CCIX, and OpenCAPI donating
their IP to further advance CXL and concentrate industry efforts [8, 11, 9], CXL turns
out to be the next interconnect powering data centers.

Next to resource sharing in the context of datacenters, CXL aims to meet demand for
further memory scaling and provide coherent access to memory resources [13]. In order
to ease its adoption and improve backwards compatibility, CXL reuses PCIe’s physical
interface by dynamically multiplexing three subprotocols on top of it [13]:

7

8 CHAPTER 2. BACKGROUND

Device Type CXL.io CXL.cache CXL.mem

CXL Type 1 ✓ ✓ ✗

CXL Type 2 ✓ ✓ ✓

CXL Type 3 ✓ ✗ ✓

Table 2.1: CXL device types and the subprotocols that they support. Based on [7].

1. CXL.io implements a non-coherent load/store interface that adopts PCIe’s
transaction layer [7]. This protocol provides fundamental functionality including
device discovery and configuration, virtualization, and DMA [13]. Therefore, it is
required by all CXL-compliant devices.

2. CXL.cache enables CXL devices to cache system memory of the host in a co-
herent fashion [13]. Similar to CPU caches on modern x86 CPUs, CXL.cache
always uses 64B cache lines [7]. The host is responsible for managing cache
coherence [13].

3. CXL.mem provides load/store semantics for device-attached memory [13].
CXL.mem supports a variety of memory types, including volatile memories like
DRAM or PM [7].

For supporting a wide range of applications, the CXL specification defines three device
types that differ in the protocols that they support [7]. Table 2.1 outlines CXL protocol
support for all three device types. While type 1 and type 2 devices have processing
components that require coherent access through CXL.cache, type 3 devices can realize
passive memory expanders that expose device-attached memory to the host [7]. Due to
scaling and performance difficulties, Jung [25] advocates for building byte-addressable
CXL storage with type 3 devices. For this thesis, we assume a hybrid storage device that
does not do any computations and thus is a good candidate for a CXL type 3 device.

Another important feature for building hybrid storage devices concerns persistence
of caches. Starting with CXL 2.0, Global Persistent Flush (GPF) provides a hardware-
based feature that ensures that in-flight changes residing in volatile caches get flushed to
a persistence domain in case of an unexpected shutdown like a power loss [7, § 9.8]. This
includes CPU caches but also caches and memory buffers on CXL devices. GPF follows
a two phase procedure [7, § 9.8.1]: first, devices must abstain from introducing new
changes and write in-flight changes in volatile caches back to persistent memory. Then,
persistent memory devices must flush their write buffers. Conceptually, GPF fulfills a
similar purpose to the extended Asynchronous DRAM Refresh (eADR) feature that Intel
introduced for Optane PM on third-gen Xeon Scalable Processors [20].

2.2. DIRECT ACCESS (DAX) IN LINUX 9

As technologies like GPF or eADR eliminate the need for applications to explic-
itly flush caches, they significantly simplify the programming model for working with
persistent memory [20]. We argue that, because of this, they are crucial for enabling
strong persistence guarantees on emerging hybrid storage devices. Hybrid devices like
Samsung’s CMM-H [48] already offer GPF support. In Section 2.3, we provide further
details on hybrid storage devices such as CMM-H.

2.2 Direct Access (DAX) in Linux

Due to the large performance gap between traditional storage devices and the CPU,
OSs typically employ a page cache for buffering storage contents in main memory [2].
Like many other OSs, Linux, since version 2.4, uses a fully unified page cache for
read/write system calls and memory-mapped I/O alike [46, 52]. For file I/O on PM
with memory semantics and performance similar to system memory (e.g., Intel Optane
PM [22]), this design is obsolete. For one, the page cache introduces an unnecessary
copy of file contents [32]. Secondly, strong persistence guarantees offered by PM are
lost when file contents are buffered in volatile system memory.

In order to solve these problems, Linux introduced DAX for file systems [32]. When
working with memory-mapped files on file systems1 that support DAX, Linux’s DAX
subsystem maps the PM pages directly into user space [32]. For read() and write()
calls that would otherwise go through the page cache, DAX-aware file systems also offer
improvements. Here, read() and write() calls break down to a memcpy between
the I/O buffer in user space and PM [28]. However, Kim et al. [28] show that this I/O
model is not optimal for PM as the memcpy between the I/O buffer and storage can
introduce significant overhead. Werling et al. [62] propose copy offloading for mitigating
the overhead of memcpy in PM file systems.

To control whether file I/O uses DAX or goes through the volatile page cache, Linux
uses a volatile per-inode DAX flag that is stored in the in-memory representation of the
file [32]. This flag is determined by the mount option used for the underlying file system
and an additional persistent DAX file attribute [32]. Depending on the mount option, the
persistent flag might be ignored, i.e., either use DAX always or use it never [32].

In Section 3.3.1, we discuss shortcomings of Linux’s DAX subsystem in supporting
hybrid storage devices. Finally, we want to point out that Linux is not the only OS
that offers DAX support. On NTFS volumes, Windows also offers DAX support that is
similar to Linux’s DAX subsystem [55].

1From the in-tree file systems in Linux 6.6, ext2, ext4, xfs, virtiofs, and erofs support DAX [32].

10 CHAPTER 2. BACKGROUND

2.3 Hybrid Storage
Next up, we discuss three hardware approaches for hybrid storage in more detail.

2B-SSD

With 2B-SSD, Bae et al. [6] introduce the concept of a hybrid store that combines a
load/store interface with a conventional block interface for accessing storage. For
building a hardware prototype, the authors implement memory semantics through PCIe
and use a commodity low-latency NVMe SSD for the backing storage. As NAND flash
does not provide the byte-addressability required for memory semantics, they use a
DRAM cache to buffer flash pages and enable fine-granular access. 2B-SSD stores the
mapping between flash and DRAM cache on the device. In addition, the authors integrate
back-up power on the device to write buffered pages as well as the mapping table to
flash when a power loss is detected. 2B-SSD enforces consistency between both storage
interfaces in hardware. The authors propose a simple ioctl-based interface for managing
the cache and using the device’s DMA engine for bulk reads. While all writes that reach
2B-SSD are guaranteed to persist, the authors note that writes may be buffered in write-
combining caches of the CPU, or in the PCIe root complex. Therefore, 2B-SSD requires
explicit flushes to guarantee persistence of writes. [6]

For this thesis, we adopt the authors’ concept of a hybrid store. What differentiates
our work from 2B-SSD, however, is the focus on suitable OS abstractions for hybrid
storage and our OS-centric approach to managing the cache. By integrating the hybrid
storage’s cache into the page cache, we can avoid calling into the block layer for regular
I/O calls on DAX-mapped files, like write() or fsync(). Further, our persistence-
aware page cache abstracts the cache management, maintains consistency, and provides
virtualization of the cache. This has the benefit that neither the device nor applications
have to implement this functionality themselves and that the OS can control resource
usage, i.e., cache capacity, on a per-task or per-file basis.

CXL Memory Module Hybrid (CMM-H)

Samsung’s CXL Memory Module Hybrid (CMM-H) is a CXL-based SSD (type 3 device)
that combines NAND flash with a DRAM cache for enabling low-latency load/store
access to storage [49]. CMM-H supports two modes of operation: in persistent memory
mode, CMM-H provides byte-addressable persistent memory that is accessed through
CXL.mem [49]. In tiered memory mode, the backing SSD can either be accessed through
CXL.io2 or CXL.mem by going through the DRAM cache [48]. To improve the hit rate
of the on-device cache, CMM-H offers an interface for providing hints to the internal
cache controller [49].

2Based on the available information [49], we expect block-based I/O through NVMe.

2.3. HYBRID STORAGE 11

At the time of writing, CMM-H is not yet commercially available. While Samsung hints
at Linux support [49], we are not aware of any concrete information on how tiered
memory mode slots into the I/O stack of supported OSs. Since we expect that tiered
memory mode offers both I/O interfaces for accessing storage, we think that CMM-H
might be a promising candidate for evaluating our approach. We plan to reevaluate our
approach for CMM-H in the future.

Hybrid Memory Subsystem (HMS)

At Super Computing 2019, IBM introduced the hybrid memory subsystem (HMS), a
hybrid memory expander that combines Samsung zNAND [50] for persistent storage
with Magnetoresistive Random Access Memory (MRAM)3 and DRAM [24]. Similar to
Samsung’s CMM-H, HMS offers load/store semantics on persistent storage through
a DRAM cache, but also includes an additional SRAM cache [24]. In case of HMS, the
coherent OpenCAPI [53] interconnect enables memory semantics [24]. While CMM-H
offers an API for passing hints to the cache controller [49], we are not aware of a similar
mechanism for HMS. Instead, the cache management of HMS seems to rely on hardware
cache prefetching that works best for sequential workloads [24]. For future work, we
plan to investigate whether our approach can be adapted for HMS. As HMS uses an
FPGA in its design and features Arm cores running the firmware [24], there is at least a
theoretical potential for customizations.

3This MRAM is manufactured by Everspin. We do not know the specific MRAM type.

12 CHAPTER 2. BACKGROUND

Chapter 3

Approach

With the rising availability of CXL-capable hardware, hybrid storage devices that com-
bine cost-effective storage technologies, like Flash, with fast and byte-addressable mem-
ory for providing synchronous direct-access to storage, seem like the logical next step
in advancing storage performance. Predominant storage technologies, however, have
shaped the development of OS storage abstraction. While modern OSs, like Linux [56],
do support direct-access storage [32], we argue that current storage abstractions are
inadequate for emerging hybrid storage devices.

In this chapter, we rethink storage I/O for emerging hybrid storage devices from
the ground up. First, we characterize the synchronous and asynchronous I/O interfaces
on the basis of performance, software overhead, and energy efficiency (§ 3.1). Based
on the observations of this analysis, we define an abstract hybrid storage device model
that serves as foundation for building hybrid storage support in OSs (§ 3.2). Next, we
discuss shortcomings of Linux’s storage abstractions in supporting our hybrid storage
model and propose an alternative user-facing API that fits the hybrid storage approach
(§ 3.3). Finally, we outline our persistence-aware page cache design for supporting hybrid
storage devices alongside conventional storage (§ 3.4).

3.1 I/O Interface Characterization

The choice of the I/O interface between the storage device and the OS is a deciding factor
in shaping the performance of a system. Due to the large discrepancy in performance be-
tween the CPU and traditional storage technologies, conventional storage devices feature
an asynchronous block interface. An asynchronous block interface for storage typically
uses interrupts for signaling completions and DMA for efficient transfer of blocks [2].
The key advantage in using such an interface is that the OS can overlap slow I/O with
the execution of tasks not waiting on the completion of outstanding I/O requests [2].
Figure 3.1 shows the interaction between the storage device and the CPU. As polling a

13

14 CHAPTER 3. APPROACH

CPU 0

CPU 0

Storage

Synchronous
I/O Interface

Asynchronous
I/O Interface

Proccess A

Proccess B

Storage

Proccess A

OS

load

schedsetup I/O complete I/O sched

🗲 IRQ

read(O_DIRECT)

Figure 3.1: Simplified interaction between user space, kernel, and storage for the syn-
chronous (top) and the asynchronous (bottom) I/O interface. In the synchronous case,
the application uses memory-mapped I/O (DAX). The asynchronous case shows block-
based direct I/O. Synchronous/asynchronous refers to the interaction between the CPU
and the storage device. The timing is not representative of real-world I/O.

block device for completion also presents a synchronous interface, the characterization
of polled I/O vs. interrupt-driven I/O, as described in [2, §36], is analog to the discussion
around synchronous vs. asynchronous I/O interfaces. As shown in Figure 3.1, while the
asynchronous I/O model helps in better utilizing the CPU on long-running I/O requests,
it also introduces additional overhead for the setup and completion of I/O requests, in-
cluding the tracking of outstanding I/O requests, and for context switching between
tasks.

When memory or storage devices use the memory subsystem for providing direct
media access through load and store instructions, this typically implies synchronous,
blocking access to the resource (see Figure 3.1). In contrast to an asynchronous I/O
interface, the synchronous access paradigm does not introduce additional software over-
head. As frequently accessed resources exposed through the memory subsystem typically
feature small-granular, low-latency access (e.g., DRAM), the additional overhead of an
asynchronous access model would outweigh the benefit of overlapping media accesses
and computations. This assumption, however, does not hold when storage devices expose
comparatively slow memory technologies, like Flash, through the memory subsystem.

3.1. I/O INTERFACE CHARACTERIZATION 15

Here, slow memory accesses would block the CPU for extended amounts of time leading
to an increase in stall cycles.

Observation O 3.1: An asynchronous I/O interface enables overlapping media access
and computation but introduces additional overhead. Resources exposed through a syn-
chronous memory subsystem block the CPU core for the entire media access. Therefore,
only storage with DRAM-like access latencies should be exposed through the memory
subsystem while slow storage should be exposed through an asynchronous interface.

To obtain a better understanding of the strengths and weaknesses of both, the syn-
chronous load/store interface and the asynchronous block interface, we analyze
two technologies that are representative for each interface on a synthetic I/O workload.
In this test we use CXL-attached DRAM for the synchronous load/store interface
and a Flash-based NVMe SSD for the asynchronous block interface. We use a custom
build of fio [3] based on version 3.37 for simulating an I/O workload that randomly
writes into a 8GiB storage block. As our fio modifications (§ 4.4.2) are limited to the
mmap I/O engine, they are irrelevant for this test. For each technology, we repeat our
test with varying block sizes and number of I/O threads.

As we want to characterize the raw I/O interfaces without the file system distorting
our measurements, we run fio on the raw storage device. We use a Samsung 970 PRO
(1TB) as NVMe SSD. To minimize the I/O overhead introduced by Linux’s storage
stack, we use fio’s io_uring I/O engine with a queue depth of 8 and direct I/O. By
setting the queue depth to a higher value, we allow the NVMe device to make use of
parallelism in hardware. Note that a per-thread queue depth of 8 might not necessarily
give the best results for few threads.

For the synchronous load/store interface, we use 16GiB CXL-attached DRAM
featured on an Intel Agilex 7 I-Series Field Programmable Gate Array (FPGA) [18] with
CXL hard IP. Using the daxctl [19] utility, we configure the CXL-attached DRAM as
devdax device. We use fio’s dev-dax I/O engine that memory-maps the devdax device
for direct access from user space. While the CXL-attached DRAM is not a real storage
device, it is perfectly suitable for emulating the synchronous I/O interface of a potential
hybrid storage device because we only use it for modeling performance. Using Intel’s
memory latency checker (MLC) [21], we measure access latencies of about 350 ns for
the CXL-attached DRAM. This is approximately 3.3 times higher than the access latency
(∼105 ns) of CPU-local DRAM on our evaluation platform. In Section 5.1, we provide
a more detailed description of our testing methodology and hardware setup.

We evaluate both interfaces regarding three metrics: sustained write bandwidth, CPU
efficiency, and energy efficiency. For measuring CPU and energy efficiencies, we adopt
the efficiency metric for evaluating PM file systems proposed by Werling et al. [62], as
it not only captures the performance of the storage device but also the impact on the rest
of the system. Analogous to Werling et al. [62], we measure the CPU cost in CPU time

16 CHAPTER 3. APPROACH

0

5

10

15

20

W
rit

e
B

an
dw

id
th

[GiB s

] Number of Threads = 1 Number of Threads = 8

0

5

10

15

C
P

U
C

os
t[s G

iB

]

512 1K 2K 4K 8K 16K 32K 64K 128K

Block Size [B]

0

100

200

300

E
ne

rg
y

C
os

t[J G
iB

]

512 1K 2K 4K 8K 16K 32K 64K 128K

Block Size [B]

0.0

2.5

5.0

7.5

10.0

W
rit

e
B

an
dw

id
th

[GiB s

] Block Size = 512B

5

10

15

20

Block Size = 128KiB

5

10

15

C
P

U
C

os
t[s G

iB

]

0.2

0.4

0.6

0.8

2 4 6 8 10 12

Number of Threads

0

100

200

300

E
ne

rg
y

C
os

t[J G
iB

]

2 4 6 8 10 12

Number of Threads

5

10

15

CXL-attached DRAM NVMe SSD

Figure 3.2: Write bandwidth, CPU efficiency, and energy efficiency of the synchronous
load/store interface (CXL-attached DRAM) and the asynchronous block interface
(NVMe SSD) as a function of the block size (top) and the number of I/O threads (bottom).
The left column shows measurements for a single I/O thread (top left) and a block size
of 512B (bottom left). The right column shows measurements for eight I/O threads (top
right) and a block size of 128KiB (bottom right).

3.1. I/O INTERFACE CHARACTERIZATION 17

(as reported by /proc/stat) per gigabyte written and the energy cost in joules per
gigabyte written. In order to maximize its effectiveness, an I/O interface must maximize
the throughput while minimizing the CPU and energy costs.

Figure 3.2 shows our measurements for all three metrics as a function of the block
size (top) and the number of I/O threads (bottom). Our test shows that the sustained
write bandwidth of the NVMe SSD is sensitive to the block size. For a block size of
512B, we only measure a bandwidth of up to 105MiB/s, even for a high number of
I/O threads. For block sizes of 4KiB and up, even few I/O threads can fully saturate the
write bandwidth at approximately 2.5GiB/s. A single thread is sufficient for reaching
the maximum bandwidth at a block size of 64KiB. The CPU overhead introduced by
the asynchronous block I/O linearly falls off as the block size increases. When fio
fully saturates the write bandwidth of the device, the CPU overhead remains stable at
a low level. The energy cost behaves similar to the CPU overhead for the NVMe SSD.
This shows that block sizes and thread counts that achieve the maximum throughput also
achieve the lowest CPU and energy overhead. Therefore, we do not have to trade off one
metric against the others.

The CXL-attached DRAM always operates on blocks of 64B, i.e., one cache line,
or smaller words when using non-temporal stores. Therefore, the specified block size
only controls the CPU overhead introduced by fio for tracking I/O statistics. When
we increase the pressure on the synchronous interface, i.e., when we increase the block
size or the number of I/O threads, we first observe an increase in the throughput similar
to the NVMe SSD. After reaching a peak bandwidth of approximately 22.6GiB/s, the
bandwidth drops when increasing the pressure even further (below 15GiB/s). We do
not know the root cause for this behavior.

When using a single I/O thread, the bandwidth plateaus at around 14GiB/s but does
not fall off significantly. We expect that the store buffer size of the microarchitecture
in combination with the high access latency of CXL-attached DRAM determine the
maximum per-core write bandwidth. The CPU overhead stays relatively flat when not
going beyond the bandwidth peak. After the bandwidth peak, however, the CPU overhead
significantly increases. The use of multiple I/O thread amplifies the CPU overhead in this
case. For six I/O threads and up, CXL-attached DRAM even consumes more CPU time
per gigabyte than the NVMe SSD at a block size of 128KiB. We assume the increase
in CPU overhead to be caused by an increase in stall cycles due to blocked memory
accesses. This effect is also visible for the energy cost.

Observation O 3.2: CXL-attached DRAM provides better throughput, CPU overhead
and energy cost in almost all scenarios, especially for small blocks where the NVMe
SSD suffers from read and write amplification.

18 CHAPTER 3. APPROACH

Observation O 3.3: The NVMe SSD gracefully handles high loads without sacrificing
CPU or energy efficiency. CXL-attached DRAM, on the other hand, suffers from increas-
ing CPU and energy costs when multiple writers exceed the maximum bandwidth. The
OS does not counteract this overload.

Next to performance and energy consumption, price is another aspect that we want to
compare between both technologies. While conventional DRAM or emerging memory
technologies, like Optane, offer better performance than Flash, they cannot compete on
price per gigabyte. To show this difference, we compare the lowest price per gigabyte for
DDR 5 (4800MT/s) DIMMs and PCIe Gen 4 NVMe SSDs using pricing data obtained
from pcpartpicker.com (US region) [45] at the time of writing. For DRAM, we see
prices of approximately 2.2 $/GiB whereas the price for the NVMe SSD comes down
to 0.052 $/GiB. While these prices give only limited insights into the exact cost of the
memory technology, they clearly show the large price gap between both technologies.

Observation O 3.4: Fast, byte-addressable storage technologies which are suitable for
implementing a synchronous load/store interface, are a major cost driver. Commod-
ity storage technologies that are geared towards an asynchronous block interface, like
Flash, are suitable for providing cost-effective storage solutions.

3.2 Hybrid Storage Model

With our observations from the previous section in mind, we now go on to define a device
model that serves as basis for designing our OS abstractions. For our device model, we
adopt Bae et al.’s concept of a hybrid store that combines a synchronous load/store
interface with a conventional asynchronous block interface [6]. Here, synchronous and
asynchronous refer to the interaction between host and storage, i.e., this classification
is irrespective of the user space API used for I/O. Contrary to the hardware architecture
presented by Bae et al. [6], our hybrid storage model aims to describe such devices
at a much higher level without specifying concrete technologies or hardware details.
With this approach, we aim to build general hybrid storage abstractions that are not
tied to a specific piece of hardware. Similar to 2B-SSD [6] or Samsung’s CMM-H [48],
our device model features two interfaces for accessing storage, a cache for serving the
load/store interface, and a high-capacity backing storage. Figure 3.3 outlines the
hybrid storage model. In the following, we will discuss each component.

The synchronous interface allows for direct access of the storage device using load
and store instructions. While RISC architectures typically use explicit load and
store instructions accessing main memory, some architectures like x86 have no direct
equivalent in their Instruction Set Architecture (ISA). For abstracting this behavior, we
consider all instructions accessing memory to be load/store instructions. Contrary to

pcpartpicker.com

3.2. HYBRID STORAGE MODEL 19

Application

Operating System

Async Block
Interface

Cache
Management

High-capacity
Storage

Persistent Cache

load/store
Interface

Hybrid Storage Device

read/write

load/store on
mmaped file

map file contents
to cache

control pathdata path

data transfer
facilitated by device

Figure 3.3: Overview of our hybrid storage model. The device features a synchronous
and an asynchronous storage interface. Both interfaces provide access the same storage
capacity. The hybrid storage device uses a persistent cache for providing low-latency,
fine-granular access to storage. A cache management component in the OS or the device
handles data movement between the backing storage and the persistent cache and main-
tains coherence. The operating system orchestrates the cache management.

20 CHAPTER 3. APPROACH

the asynchronous block interface that allows the OS to hide long storage access latencies
by scheduling non-blocked processes, the synchronous load/store interface blocks
the executing CPU core for the entirety of the storage access. Therefore, the synchronous
load/store interface must be backed by a storage technology that offers access laten-
cies comparable to DRAM as otherwise I/O through the synchronous interface would
waste CPU time (O 3.1).

In order to implement the synchronous load/store interface on top of cost-effective
storage technologies like Flash, our hybrid storage model incorporates a cache backed
by a byte-addressable memory technology. For our hybrid model, we require a persis-
tence domain that at least includes the persistent cache itself. This means that all writes
that reach the cache persist a crash. The cache’s persistence domain, however, could
go even further, including the CPU caches (see. CXL’s GPF, § 2.1). For our model, we
assume that pushing writes to the persistence domain takes significantly less time than
writing modifications to the backing storage. We leave it up to implementations to define
a concrete persistence domain as well as decide if the cache is written back to persistent
storage in case of a crash or if the cache is backed by a PM medium that allows for recov-
ery of lost writes. Based on CMM-H’s focus on Total Cost of Ownership (TCO) [49], we
expect that cost-effectiveness will be a major component in the rollout of hybrid storage
devices. Therefore, we assume a hybrid storage devices that aims to minimize TCO. As
a low-latency persistent cache drives up the TCO of the hybrid storage device (O 3.4),
we assume a cache-to-storage ratio r ∈ [0.001, 0.01], i.e., few GiB of cache per TiB of
storage, to maintain our goal of optimizing the TCO.

The hybrid storage device further requires a component for managing the persistent
cache. For one, this includes the virtualization of the persistent cache. Similar to the
concept of virtual memory, the cache management creates the illusion of a persistent
cache that is as large as the backing storage. In the virtual memory analogy, the cache
address space represents the physical address space and the storage address space rep-
resents the virtual address space. We assume that the hybrid device uses the same page
size as the host for the management of the persistent cache. i.e., one cache line in the
persistent cache equals one host page. In our model, the OS and the storage device share
the mapping between storage address space and cache address space. The OS can then
use this information to reflect the current cache mapping in its page tables in order to
fault on user space accessing data not present in the persistent cache. This way, the OS
can defer the media access until the requested page is present in the persistent cache
and thus guarantee low-latency synchronous access. Similar to the asynchronous I/O
interface, this allows the OS to overlap the slow aspect of the cache miss, i.e., the access
to the backing storage, with other non-blocked tasks. Further, the cache management
handles the data movement between cache and storage, which includes the swapping of
data blocks and dirty block tracking. In order to achieve a fully virtualized cache, the
cache management needs to implement an allocation and reclaim mechanism.

3.3. SOFTWARE INTERFACE FOR HYBRID STORAGE 21

What sets our hybrid storage model apart from using separate devices for the per-
sistent cache and the backing storage is the data movement between the two. When the
cache management component brings in data from the backing storage into the persistent
cache, the hybrid device facilitates the data movement, not the host system. For one, this
approach cuts the bottom half of the host’s storage stack, namely the block layer and the
device driver, out of the cache management. As we have already discussed before, the
storage stack is a major contributor to the access latency for high-end NVMe drives [31].
Further, only data requested by the host must travel through the interconnect that con-
nects the host and the hybrid storage device. For example, when the host tries to read a
cache line worth of data through the synchronous interface and the data is not present in
the persistent cache, the device brings a full page into the persistent cache but sends just
the cache line off to the host. For workloads that access only a small percentage of each
page, this significantly reduces the amount of data transferred to the host, thus reducing
interconnect traffic. The idea of reduced I/O traffic was previously explored by Abulila
et al. [1].

The last component of our model is the asynchronous block interface. This interface
works similar to traditional storage devices and is accessed through the block storage
stack of the OS. Our hybrid storage model does not mandate the use of the synchronous
load/store interfaces for working with memory-mapped files. It is up to the OS to
decide which interface to use: either direct access to storage through the synchronous
interface or indirect access through volatile pages in the page cache that are periodically
written back using the asynchronous block interface.

Due to the fact that both interfaces provide a view on the same portion of storage,
we need to consider coherence of the storage device. We define our model to provide
a coherent view on the storage device. This means that writes from the synchronous
load/store interface can be observed from the asynchronous block interface and vice
versa. This, however, requires cooperation from the OS when the OS wants to buffer
parts of storage in DRAM. We leave it up to future work to define a consistency model
that specifies when changes from the other interface can be observed and in which order.

3.3 Software Interface for Hybrid Storage
While the hybrid storage model covers what the OS can expect from hardware, a holis-
tic approach must also cover the interaction between the application and the OS. For
this, we first analyze how well storage abstractions of contemporary OSs map to our
hybrid storage model. Section 3.3.1 discusses Linux’s current DAX API and highlights
shortcomings regarding the hybrid storage model. Based on our findings, Section 3.3.2
proposes extensions to the POSIX API [17] which provide applications with direct ac-
cess to storage. Our reimagined API focuses on compatibility with existing OSs and
resource management for the persistent cache featured on the hybrid device.

22 CHAPTER 3. APPROACH

3.3.1 Case Study: Linux’s DAX Subsystem

Linux does support direct access to memory-mapped files through its DAX subsystem
and DAX-aware file systems. While we are not aware of a formal device model for the
DAX subsystem, the kernel documentation establishes two requirements for implement-
ing DAX support in block device drivers [32]. The first requirement is that the entire
storage capacity is accessible through the memory subsystem at all time, meaning that
devices cannot use paging to implement direct access through a small cache [32]. The
second requirement is less precise. It states that the storage device must not stall the
CPU for an extended period [32]. This requirement aligns with our observations from
Section 3.1. In summary, Linux assumes low-latency uniform storage access to the entire
storage device through the memory subsystem. When comparing this implied model to
our hybrid storage device model, it becomes clear that both models are incompatible
due to the use of a persistent cache for implementing the synchronous I/O interface. To
support our hybrid device model, the DAX subsystem would have to relax the blocking
requirements for the direct_access() interface [32] so that storage devices can
bring in pages that are not present in the on-device cache. Relaxing these requirements,
however, would require a significant rework of the DAX subsystem and all its users.

Another major obstacle of supporting our hybrid device model through the DAX
subsystem is resource management. As Linux assumes uniform storage access through
the memory subsystem at all times, there is no use case that requires DAX mappings
while limiting the amount of storage that is DAX mapped at the same time. This is
particularly apparent in the current user space API for working with DAX-aware file
systems as it provides no fine-granular control over DAX usage. Because the DAX
subsystem uses a per-inode flag, all mappings of a particular file must either be fully
backed by the storage (DAX) or by system RAM (page cache). Some DAX-aware file
systems, like ext2, do not even support per-inode DAX control, but require a dax mount
option that sets the flag for all files [32].

To motivate the need for more fine-grained control over DAX mappings, we imagine
the DAX-aware application userfat that implements a simple file allocation table (FAT)-
based file system on top of a regular binary file. In order to ensure that the file system is
crash-consistent, the application calls fsync() [35] for some operations that modify
the FAT (e.g., before reusing a block from a deleted file). userfat leverages a DAX
mapping on the FAT to reduce the cost of frequent calls to fsync() after small writes.
While only the file system metadata, i.e., the FAT, requires the persistence properties of
the DAX mapping, all data must go through the DAX subsystem and therefore through
the synchronous I/O interface. As a result of this, accessing data blocks might displace
metadata pages in the persistent cache, leading to an increase in slow accesses that stall
the CPU.

3.3. SOFTWARE INTERFACE FOR HYBRID STORAGE 23

Even though our example is very basic, we argue that it models a common pattern: a
small amount of data in a file (here metadata) observes many small writes and requires
strong persistence guarantees (frequently flushed). When applications follow this pat-
tern, Linux’s API for DAX does not provide us with the fine-granular control required.
Resource management in the context of hybrid storage devices is not limited to just the
persistent cache capacity, but also requires bandwidth management. As our observations
(O 3.1 and O 3.3) in Section 3.1 show, the CPU efficiency drops when the required
bandwidth exceeds the maximum sustained bandwidth. If future devices also show the
drop in bandwidth when too much load is put on the persistent cache, proper bandwidth
management is not only required for the CPU efficiency but also the I/O performance.
Similar to the management of cache capacity, Linux’s DAX API does not provide a
mechanism for limiting the bandwidth of DAX mappings. We limit the scope of this the-
sis to the management of cache capacity. In future work, we plan to explore approaches
for bandwidth management on DAX mappings.

3.3.2 User Space API for Hybrid Storage
In order to allow applications to directly access parts of our hybrid storage device, we
use memory-mapped storage that is accessible through the synchronous load/store
interface. We refer to these memory mappings as DAX mappings. In the context of this
thesis, a DAX mapping does not imply the use of Linux’s DAX subsystem, but is a
general concept independent of the implementation. We call all pages that back DAX
mappings and provide direct-access to storage through the load/store interface DAX
pages.

For our software interface, we are going to focus on the POSIX API that uses mmap
for establishing memory mappings. While this covers Linux as well as many other
UNIX-like OSs, Windows uses a slightly different API [42]. We argue, however, that our
interface is universal enough to be adapted to other APIs like Windows’ file mappings.

We propose two modifications to the POSIX API with the goal of making the capabil-
ities of our hybrid storage model available to user space in a familiar manner. While the
POSIX API specifies both mmap and mlock [17], our modifications make use of API
extensions only available in Linux, namely the MAP_SHARED_VALIDATE flag [38].
This extension, however, could be ported to other OSs.

mmap() is the primary interface for establishing DAX mappings. Instead of using
the per-inode DAX flag for determining if the OS must establish a DAX or page cache
mapping, we introduce a new mmap flag (MAP_DAX). For now, we limit the use of MAP_-
DAX to shared mappings of files. In addition, we impose the validation of mmap flags
through MAP_SHARED_VALIDATE. We require this flag because the regular mmap
API does not fail on unknown flags [38]. Doing so gives users of our API the guarantee
that they got a DAX mappings in case of a successful mmap call.

24 CHAPTER 3. APPROACH

mlock() is normally used for pinning parts of the virtual address space to main
memory [37]. By using mlock, applications can ensure that the locked address range
is excluded from page reclaim. For our DAX mappings, we define mlock to pin the
given range to the persistent cache. Due to the device model assumed by Linux’s DAX
code, there previously was no need for pinning DAX mappings which resulted in mlock
skipping those pages [56].

Another aspect of mlock’s API are resource limits. While POSIX leaves it up to
concrete implementations to define limits [17], Linux uses per-process resource limits,
so called rlimits, for limiting the amount of pages a process can lock to main memory.
Since main memory and the persistent cache capacity are two distinct resources that
administrators might want to ration separately, we introduce a new rlimit (RLIMIT_-
MEMLOCK_HYBRID) for limiting the amount of pages that can be pinned to the persis-
tent cache.

madvise() provides an interface for passing usage hints for virtual memory ranges
to the kernel [36]. On Linux the MADV_DONTNEED advice flag signals that the kernel
can free resources associated with the given memory range [36]. At first glance this might
look like a good fit for explicitly evicting pages from the persistent cache. However,
MADV_DONTNEED’s semantics for shared mappings are inadequate for this use case.
While MADV_DONTNEED is destructive for anonymous private mappings, i.e., memory
contents are lost, contents of shared mappings must be retained [36]. Therefore, Linux
does not evict file contents from the page cache on MADV_DONTNEED.

As performance-critical applications might not want to rely on the non-deterministic
nature of reclaiming pages of the persistent cache on memory pressure, we provide the
MADV_DROPCACHE advice flag for evicting page cache contents. Contrary to MADV_-
DONTNEED,MADV_DROPCACHE immediately drops the associated pages from the page
cache. For regular system memory pages, MADV_DROPCACHE causes buffered changes
to be lost. For DAX pages, however, we must differentiate between two cases: when
the DAX page is clean or contains changes that have not been synced, we free the page
immediately. When the DAX page contains synced changes that have not been written
to the backing storage, we issue a writeback before freeing the page. This writeback
is necessary to uphold the persistence guarantee provided by sync operations. Since
we write the current page contents to the backing storage, the writeback might include
changes that have not been synced. We argue that this behavior falls in line with regular
memory-mapped file semantics. Due to the destructive effect of MADV_DROPCACHE on
shared mappings, we propose that this operation can only be used on writable mappings.
While POSIX does not specify madvise, we can implement a similar interface on top
of POSIX’s posix_fadvise [17].

3.4. PERSISTENCE-AWARE PAGE CACHE 25

3.4 Persistence-aware Page Cache

For the management the hybrid storage device’s persistent cache, we take an OS-centric
approach that is centered around the concept of a persistence-aware page cache. For this,
the hybrid device must fully expose the persistent cache’s memory to the OS. Contrary to
a traditional page cache design that assumes to exclusively use volatile system memory
for caching file contents, our persistence-aware page cache allows leveraging properties
of the underlying memory technology. In addition, we repurpose the page cache for
establishing DAX mappings to user space. By inserting DAX pages into the page cache,
we implicitly store the mapping from the storage address space to the cache address
space. To obtain this mapping from a page cache page, we require two translations.
First, the page cache maps a DAX page to the file address space. Then, the file system
translates this file offset into a logical device offset from the storage address space.

In order to bring persistence-awareness to the page cache, we introduce two modifi-
cations. The first modification concerns the allocation of pages for caching file contents.
In order to decide if the page cache must allocate a page backed by volatile memory or
the hybrid device’s cache, the OS must track which file ranges are covered by DAX map-
pings. When DAX mappings cover a faulting file range, the page cache allocates memory
from the hybrid device’s persistent cache. Otherwise, the page cache allocates volatile
system memory. In addition to tracking file ranges covered by DAX mappings, the page
cache must store for each cached page whether it is backed by volatile or non-volatile
memory. While this might seem redundant, it is strictly necessary as a non-volatile page
might outlive the last DAX mapping covering its associated file range. When a file range
stops being covered by DAX mappings, the page cache does not remove DAX pages
from the range. Doing so, we can avoid additional page faults on future accesses and
continue to benefit from the persistence of the backing memory. A potential downside
of this approach, however, is that DAX pages linger around non-DAX file ranges, thus
increasing memory pressure on the small persistent cache.

The writeback handling is the second modification of our persistence-aware page
cache. Here, we differentiate between two causes of writebacks: explicit sync operations,
like fsync() [35], and periodic asynchronous writebacks (e.g., Linux’s per-bdi1 write-
back flusher thread [4]). As sync operations must block the calling thread until the OS
can guarantee the persistence of all writes up to the point of the sync, they block the caller
from making further progress, thus reducing overall performance. Therefore, we aim to
minimize the cost of synchronous writeback. To retain the semantic of the sync, we must
ensure that all modifications reach the persistence domain of the storage device. For
traditional storage devices, as well as file contents cached in volatile memory, this comes
down to a full writeback to the backing storage device. Depending on the storage device
and its protocol, an additional flush command might be required to guarantee that the

1struct backing_dev_info (bdi) in backing-dev-defs.h [56]

26 CHAPTER 3. APPROACH

storage device does not buffer some I/O operations in volatile caches. For pages backed
by the persistent cache, however, our model assumes all writes either already reached
the persistence domain or can reach the persistence domain with a comparatively cheap
operation (e.g., flush of CPU cache lines). We refer to this type of sync operation as
lightweight sync to differentiate between a full sync that writes all modifications to the
backing storage.

For lightweight syncs, we propose to keep the dirty state of all page cache entries
backed by the persistent cache intact instead of clearing it. Doing so enables the periodic
asynchronous writeback to still pick up on cached pages that are out-of-sync with the
backing storage capacity. Our evaluation (§ 5.2) indicates that it might be beneficial to
use three dirty states for tracking the writeback status of DAX pages in the page cache:

• The clean state signals that a DAX page is in-sync with the backing storage. All
writes are guaranteed to persist a crash.

• DAX pages in the out-of-sync state are out-of-sync with the backing storage, but all
writes have reached the persistence domain. From a crash-consistency viewpoint,
this state is equivalent to the clean state.

• dirty pages are neither in-sync with the backing storage nor do they guarantee
persistence of all past writes.

On lightweight syncs, DAX pages in the dirty state transition to the out-of-sync state
while volatile pages transition to the clean state. A fourth state that describes a page
that is in-sync with the backing storage but does not guarantee persistence of all writes
cannot exist. Pages backed by volatile system memory only require the clean and dirty
state.

In the case of asynchronous writebacks, we fully write each dirty/out-of-sync page
back to the storage capacity even for pages backed by the hybrid device’s persistent
cache. While this is not strictly necessary for DAX pages, there is no benefit of skipping
the writeback similar to the lightweight sync, because no user task is blocked from
making progress. Additionally, having more pages of the persistent cache be in sync with
the backing flash storage even reduces the cost of reclaiming pages. This is especially
important when the hybrid device runs out of persistent cache capacity during page
allocation. In this case, clean pages can instantly be reclaimed without waiting for their
writeback to the backing storage.

The benefits of lightweight syncs over full syncs on DAX mappings, i.e., all cached
pages are DAX pages, are twofold. For one, lightweight syncs do not access the storage
capacity, thus eliminating the time required waiting for I/O completion. This helps to
reduce the sync latency, but also uses the more energy efficient I/O interface and prolongs
the lifetime of the backing storage. Secondly, lightweight syncs shorten the code path
for sync operations. To complete lightweight syncs, the OS does not need to call into

3.4. PERSISTENCE-AWARE PAGE CACHE 27

the block layer or below as we do not require the asynchronous block interface for
completing the sync. As discussed before, the overhead of the storage stack becomes
increasingly important for high performance I/O when using low-latency storage devices.

In order to provide applications with direct access to the complete storage address
space through the small persistent cache, the OS must multiplex the cache between all
users. For this, we use an approach that is similar to the concept of virtual memory.
File contents are paged into the persistent cache when the persistence-aware page cache
allocates a new DAX page. When the hybrid device runs out of free DAX pages, the OS
must reclaim DAX pages that are currently in use by the page cache. To reclaim a DAX
page, its contents must be written to the backing storage, should the page contents and
the backing storage be out-of-sync. On future buffered I/O on reclaimed file ranges, the
page cache allocates a new page and fetches the file contents from the backing storage.
As the persistence-aware page cache decides on each allocation anew whether it must
allocate a volatile page or a DAX page from the hybrid storage device, the faulting file
range might have different persistence properties after swapping.

Similar to virtual memory, one downside of the cache virtualization is thrashing.
When the I/O workload that requires direct access does have a working set that is sig-
nificantly larger than the persistent cache and the workload does not exhibit temporal
locality, the OS will have to aggressively reclaim DAX pages. Here, thrashing describes
the situation where the application is blocked from making significant progress due to
excessive swapping of file contents between the persistent cache and the backing stor-
age. To mitigate the impact of thrashing on performance-critical tasks whose working
set is comparatively small, tasks can pin DAX pages to the page cache. This excludes
them from the reclaim process. Since pinning DAX pages reduces the amount of cache
available to other tasks as well as the number of reclaim candidates, excessive pinning
can increase thrashing for other tasks. We leave it up to future work to explore more
anti-thrashing mitigations.

The last aspect of the cache management that we need to discuss is the coherence
of both I/O interfaces. As most of the storage I/O, i.e., memory-mapped I/O and regular
read/write calls, go through the page cache, the page cache already provides us with
a coherent view on our hybrid storage device in most situations. One key exception,
however, is direct I/O2 as it intends to bypass the page cache. To work around this
problem, we propose to serve direct I/O requests from the page cache for DAX-mapped
file ranges. While serving direct I/O from the page cache might seem contradictory in
itself, the fact that we provide direct access to the storage device through the page cache
ensures that the OS does not buffer direct I/O. Since our persistence-aware page cache
guarantees that DAX pages in the page cache are always up-to-date, direct I/O requests
cannot read outdated data. When direct I/O is paired with synchronous I/O (e.g., O_-
SYNC or O_DSYNC [40]), the persistence-aware page cache has to uphold persistence

2also called unbuffered I/O

28 CHAPTER 3. APPROACH

guarantees. Users of synchronous I/O expect that completed writes cannot be lost as
they should have reached the storage device and be flushed from volatile caches. This
persistence requirement, however, can also be fulfilled by the persistence-aware page
cache by directly writing into the page cache and issuing a lightweight sync on the file
range before completing the I/O request. When the requested file range is either not
present in the page cache or backed by volatile pages, the handling of direct I/O is left
unchanged, i.e., the storage device serves the request through the asynchronous block
interface.

This approach not only solves the coherency problem, but should improve I/O per-
formance, energy efficiency, and device lifetime by using the synchronous interface over
the asynchronous block interface for DAX-mapped file ranges. In addition, this approach
reduces write amplification when issuing small direct I/O requests on DAX-mapped file
ranges. However, we do not expect to find many workloads that benefit from this because
mixing direct I/O and buffered I/O on the same file range seems counterintuitive. For
future work, we want to explore dynamically upgrading a file range to DAX in order to
speed up direct I/O.

Because DAX mappings assume the strong persistence of DAX pages, volatile pages
must not back a DAX mapping. When the page cache only considers the page placement
during the allocation of page cache entries, the page cache cannot maintain this property.
Assuming an existing file mapping with volatile pages in the page cache, the creation of
a new DAX mapping that intersects with this file range violates the persistence guarantee
of the DAX mapping. To solve this problem, we propose a DAX upgrade mechanism
that restores the persistence guarantee of our persistence-aware page cache. When estab-
lishing a new DAX mapping, the page cache tries to preemptively migrate all volatile
pages covered by the new mapping to the persistent cache. Should the hybrid device run
out of new DAX pages during the DAX upgrade, we propose to truncate volatile page
cache pages that cannot be migrated. In order to not lose any writes buffered in volatile
pages, truncation of dirty pages requires writeback. The page cache re-fetches truncated
parts of the page cache on-demand from the backing storage.

We argue that reclaiming DAX pages during the DAX upgrade can drastically in-
crease the mmap latency due to I/O during writeback. In addition, upgrading more pages
to DAX puts even more pressure on the already heavily utilized persistent cache. As it
is uncertain whether application access preemptively migrated pages in the near future,
we must carefully balance the potential benefit of DAX upgrades against their aforemen-
tioned cost. Here, we decide to truncate the page cache in favor of reclaiming DAX
pages.

3.4. PERSISTENCE-AWARE PAGE CACHE 29

When DAX and non-DAX mappings intersect in the file address space, the intended
behavior of mlock is unclear. On one hand, we expect the OS to charge a mlock call
on a non-DAX region against the rlimit for pinning pages to DRAM. On the other hand,
overlapping mappings with different persistence-requirements imply that all pages must
be backed by the persistent cache. Therefore, we have also good reasons for charging the
mlock against the rlimit for DAX pages. For now, we propose to fail mlock calls on file
ranges that have both, regular and DAX mappings. DAX upgrades weaken the isolation
between processes, because a process can trigger DAX upgrades that happen completely
transparent for other processes and cause mlock to fail under certain conditions.

30 CHAPTER 3. APPROACH

Chapter 4

Implementation

Based on the description of our persistence-aware page cache design from the previous
chapter, we outline the implementation of our hybrid storage support and modifications
to two existing applications in this chapter. First, we present our modifications to the core
memory management code and the page cache of the Linux kernel [56] (§ 4.1). Since we
do not have access to hardware that fits our hybrid storage model, we implement a block
device driver that emulates a hybrid storage device by wrapping a regular block device
and a memory device (§ 4.2). Next, we outline our modifications to the ext2 and ext4
file system drivers (§ 4.3). Finally, we present modifications to fio [3] and Valkey [57]
that make use of the DAX capabilities offered by hybrid storage (§ 4.4).

4.1 Kernel Support for Hybrid Storage

For implementing kernel support for our hybrid storage model, we assume that the hy-
brid storage device exposes its persistent cache as separate memory-only Non-Uniform
Memory Access (NUMA) node. Doing so, we can reuse Linux’s page allocator as well as
its page reclaim mechanism without any additional modifications. In addition, our imple-
mentation assumes that the hybrid storage device’s persistence domain covers the CPU
caches, i.e., no flush of CPU cache lines is required for guaranteeing persistence. Consid-
ering that, as described in Section 2.1, features like CXL GPF [7, § 9.8] or eADR [20]
are available today, we argue that this is a realistic assumption.

For now, our implementation is limited to persistence on the device level. This means
that the device will persist all writes to DAX pages, but on the file system level we might
lose data regardless. This has to do with the handling of file system metadata in our
current implementation of the persistence-aware page cache. Section 6.2 describes this
problem in more detail and outlines a solution. We base our implementation on the Linux
kernel version 6.6 [56]. Overall our kernel modifications, excluding the hybrid device
emulation (§ 4.2), account for approximately 1500 Lines of Code (LoC).

31

32 CHAPTER 4. IMPLEMENTATION

4.1.1 Hybrid Storage Representation
As hybrid storage devices share many properties with conventional storage devices (e.g.,
the asynchronous block interface), we implement them as block devices with extended
capabilities for DAX. For this, we introduce a hybrid device abstraction (see Listing 4.1).
Block devices that feature hybrid storage support include a reference on the hybrid
device. The hybrid block device driver is responsible for allocating and registering the
hybrid device in the block device. File systems and other system code can detect whether
a block device supports hybrid DAX capabilities by checking the reference included in
the block device. Each hybrid device belongs to exactly one block device.

To allow file system and page cache code to allocate pages from the NUMA node
representing the persistent cache, each hybrid device includes the NUMA node identifier
n in addition to a node mask with only the n’th bit set. While this might seem redundant,
the API used for allocating pages in the page cache (__folio_alloc() [56]) requires
a node mask and a preferred node ID within the node mask. In order to not have to
prepare a node mask on each allocation, we include a preallocated node mask in the
hybrid device. In addition, hybrid devices allow the backing block device driver to attach
implementation-specific per-device data to each hybrid device.

s t r u c t h y b r i d _ d e v i c e {
/ * numa node i d f o r page a l l o c a t i o n * /
i n t n i d ;

/ * node mask wi th on ly n i d s e t * /
nodemask_t *nvm_node_mask ;

/ * p r i v a t e d r i v e r d a t a * /
vo id * p r i v a t e ;

/ / . . .
} ;

Listing 4.1: Simplified definition of in-kernel hybrid device representation.

4.1.2 Memory Management Modifications
To support fine-granular control over DAX mappings, we introduce the MAP_DAX flag
for mmap(). As we have already mentioned in Section 3.3.2, MAP_DAX is only valid
in conjunction with the MAP_SHARED_VALIDATE [38] mapping type on memory-
mapped files. For private mappings (MAP_PRIVATE) and regular shared mappings
(MAP_SHARED), mmap silently drops the MAP_DAX flag. When applications success-
fully request a DAX mapping using the MAP_DAX mmap flag, the resulting Virtual
Memory Area (VMA) receives the VM_DAX vm flag.

4.1. KERNEL SUPPORT FOR HYBRID STORAGE 33

When applications memory-map cacheable objects, e.g., regular files or block de-
vices, Linux inserts the resulting VMA into a per-object interval tree that belongs to the
address_space representing the contents of the object [56]. Linux implements this
interval tree as augmented red-black tree that caches the leftmost node [30, 56]. Linux
uses the interval of the logical file range covered by the VMA for insertions into this
interval tree. In order to avoid having to scan the entire tree of VMAs when exclusively
looking for DAX mappings, we add another interval tree that contains all DAX VMAs
(i.e., that have the VM_DAX flag) to each address_space. This interval tree is used in
addition to the tree that contains all mappings, meaning that DAX mappings are present
in both while non-DAX mappings are only present in the full VMA tree. Using the inter-
val tree of DAX mappings, we can determine in O(1) if a file has any DAX mappings,
and efficiently iterate over all of them.

Whenever memory mapping updates cause a DAX mapping to be inserted to the
mapping interval trees, Linux has to ensure that no pages in volatile memory back DAX
mappings. To uphold this invariant for DAX mappings, we proposed DAX upgrades in
Section 3.4. At the time of writing, our prototype does not implement the speculative
migration of pages from volatile system memory to the persistent cache. Instead, our
prototype always truncates all volatile pages from the file range that is DAX mapped. For
future work, we intend to implement the migration of pages through Linux’s in-kernel
migrate_pages() API [29]. The page migration may stop early when the migration
would otherwise cause slow I/O due to memory pressure on the persistent cache or a
source page being under writeback. In case any pages backed by volatile memory remain,
they get truncated from the page cache.

Besides changes to memory mappings, we modify the behavior of mlock() [37]
on DAX mappings. Instead of charging all pages against the RLIMIT_MEMLOCK [37]
rlimit, our prototype introduces the RLIMIT_MEMLOCK_HYBIRD rlimit that limits
the number of locked DAX pages per task. When a call of mlock() exceeds either
RLIMIT_MEMLOCK orRLIMIT_MEMLOCK_HYBRID, the operation fails without lock-
ing any pages. Contrary to mlock(), our implementation does not support locking DAX
pages using the MAP_LOCKED mmap flag as it may silently fail to populate the mapped
range [38]. We argue that the silent failure of locking DAX pages might result in unex-
pected performance, which was the primary reason for locking DAX pages in the first
place. Therefore, we decide to not support MAP_LOCKED over providing watered-down
mlock semantics to user space. As of now, we do not implement per–hybrid device
limits for the number of locked DAX pages across all tasks.

34 CHAPTER 4. IMPLEMENTATION

2. test faulting index for DAX 3. alloc DAX page and insert

per-file rb tree of
DAX VMAs

page cachemmaped
file

Hybrid Storage
Device

allocate
DAX page

mmaped
file

0x0000

0x2000

0x4000

page cache

DAX pagevolatile page

1. page fault on mmaped file

buffered
read()

Figure 4.1: Page fault handling on DAX region for memory-mapped file. The interval
tree of DAX VMAs determines the page type for page cache allocations.

4.1.3 Persistence-Aware Page Cache

In order to decide if our persistence-aware page cache must allocate volatile or DAX
pages, it first looks up whether the backing storage is a hybrid storage device. If this is
the case, the persistence-aware page cache then goes on to check whether the faulting
file range intersects with a DAX mapping using the DAX mapping interval tree (see
Figure 4.1). As this interval tree is associated with the file object and not the current task,
the intersecting DAX mapping can originate from any task. In other words, we look for
intersections in the file address space and not the virtual address space of a particular task.
If such an intersection exists, the persistence-aware page cache allocates the requested
number of physically contiguous pages from the NUMA node that is set in the hybrid
device.

From version 5.18 onwards, Linux’s page cache does support inserting large folios as
single page cache entries [66]. Folios are a new type for memory management that aims
to replace compound pages1 in the Linux kernel [64]. As a result of page cache entries
potentially being larger than the page size, we might encounter the situation where the
page cache allocates a large folio, i.e., with an order > 0, for file contents, but the file
range is only partially covered by DAX mappings. Since our current implementation
only requires an intersection with a DAX mapping, the persistent cache will have to
fulfill the entire allocation regardless.

1In Linux compound pages of order n are a set of physically contiguous pages with 2n pages.

4.1. KERNEL SUPPORT FOR HYBRID STORAGE 35

While this results in some subpages being unnecessarily placed in the persistent
cache, we argue that this is an acceptable trade-off. For one, we expect that partial
overlappings rarely occur because all of the following three conditions must be met: (1)
the file system2 must support large folios [66, PATCH 71/75]. (2) the page cache must
allocate a large folio. This might happen during readahead [66, PATCH 71/75] or on
huge page mappings [66, PATCH 74/75]. And (3), the file range covered by the large
folio must be strictly partially covered by DAX mappings. As the page cache limits
the maximum order used for allocating large folios (2MiB3 on x86 with Transparent
Huge Page (THP) support4), we think that the impact on the allocation granularity of our
approach is manageable for few partial overlappings.

Apart from the expected small impact on the persistent cache, there are also ad-
vantages to not having to break up large folio allocations so that there are no partial
overlappings. For one, it keeps our implementation simple as we do not have to modify
the logic for large folios. Secondly, our implementation only has to find a single intersec-
tion, which is algorithmically less costly than calculating the exact overlappings. Finally,
the page cache benefits from a decrease in individual page cache entries which should
translate to better performance.

In order to differentiate between volatile and DAX pages efficiently, we introduce
an additional page flag, namely PG_hybrid_cache, to the per-page metadata, i.e.,
struct page [56]. As pages in the page cache might be mapped through DAX and
non-DAX VMAs or even no VMAs at all, the VM_DAX vm flag of VMAs is not suitable
for this task. While we could use the NUMA node ID embedded in the per-page metadata
in combination with the hybrid device for this differentiation, we eliminate frequent
lookups of the hybrid device from hot code paths by using a dedicated page flag.

For writeback, Linux uses the struct writeback_control to communicate
what file range needs writeback and various flags that control how writeback is done
(e.g., is the writeback synchronous) [56]. To optimize the synchronous writeback path for
DAX pages, we introduce the skip_nvm flag to the writeback_control. When
this flag is set for a writeback operation, file system code must use a lightweight sync,
as described in Section 3.4, over a full sync for DAX pages. Since we assume that the
hybrid storage device’s persistence domain covers the CPU caches, the lightweight sync
breaks down to a noop. For our implementation, we leave the dirty state of the page
and the associated page cache entry intact so that future asynchronous writebacks pick
up on them. This means that our current implementation does not differentiate between
out-of-sync and dirty pages (cf. dirty states in Section 3.4, Page 26).

2As of Linux version 6.6, we are only aware of large folio support in afs, erofs, xfs, and shmemfs (see
users of mapping_set_large_folios() [56]).

3The allocation size is determined by MAX_PAGECACHE_ORDER in include/pagemap.h [56]
4Large folio support currently relies on THP (see mapping_large_folio_support() [56]).

36 CHAPTER 4. IMPLEMENTATION

As users of the writeback_control ensure that unspecified flags default to
zero [56], the default behavior is not to optimize writeback of DAX pages. Instead of
making all writebacks use the optimized DAX path and specifying exceptions (e.g., for
periodic asynchronous writeback), we opt for selectively choosing writeback code paths
to optimize. We argue that this approach is safer because our writeback optimizations
have side effects that caller should be aware of, e.g., the file range is guaranteed to persist
but remains in the dirty state.

Our implementation currently optimizes three writeback code paths: (1) the code
path of fsync() and fdatasync() [35] for the ext2 and the ext4 file system drivers,
i.e., generic_buffers_fsync() for ext2 and ext4 without journaling and ext4_-
sync_file() for ext4 with journaling. msync() [39] use the same kernel-internal
code path as fsync() but restricts writeback to a given range. (2) the sync_file_-
range() and sync_file_range2() system calls [41]. And (3) the direct I/O code
path for users of Linux’s iomap [33] facilities, namely iomap_dio_rw() [56]. Linux’s
iomap facilities provide a mapping layer abstraction that aims to replace buffer heads.
For more context regarding buffer heads and the efforts behind replacing them, we refer
to Corbet’s “A kernel without buffer heads” [12].

As direct I/O aims to bypass the volatile page cache, Linux must carefully maintain
coherence between buffered and direct I/O. For direct I/O reads, Linux flushes dirty
pages in the file range before serving the direct I/O request [33]. For writes, Linux not
only flushes dirty pages, but also invalidates the file range from the page cache before
and after the I/O request [33]. In order to avoid slow storage I/O due to writebacks
and unnecessary page cache invalidations, we modify the direct I/O path to skip these
operations on DAX pages. For this, the file system must signal hybrid storage support to
iomap_dio_rw() through the newly added IOMAP_DIO_HYBRID direct I/O flag.
When this flag is set, the behavior of direct I/O changes as follows: first, direct I/O
handles writebacks of dirty pages like in the case of fsync(). Secondly, direct I/O
skips the invalidation of page cache entries backed by DAX pages. And finally, direct
I/O serves I/O requests that are backed by DAX pages on the page cache, meaning that
I/O is implemented as memcpy on the CPU. In order to serve the I/O request from the
page cache where possible, the file system must split the requested range into chunks
that are either fully backed by DAX pages or not backed by any DAX page. While those
chunks that are backed by DAX pages can be served from the page cache, all other
chunks are served through the block interface.

4.2. HYBRID STORAGE DEVICE EMULATION 37

Persistance-aware
Page Cache

NVMe Block
Device

CXL Memory
Device

DAX-aware Application

Virtual Hybrid Block Device Driver

User Space

Kernel Space

read/writeload/store

sync I/O
pass through

async I/O
pass through

Figure 4.2: Architecture with virtual hybrid storage device backed by NVMe block
device and CXL-attached memory for emulating the persistent cache. The virtual device
dispatches I/O to the appropriate backing devices depending on the I/O interface used.

4.2 Hybrid Storage Device Emulation
At the time of writing, there is no commercially available storage device that fits our
hybrid storage model. Therefore, we decide to emulate a hybrid storage device for the
evaluation of our implementation. For this, we implement a hybrid block device driver,
namely vhybrid, that allows users to create a virtual hybrid storage device from an
existing block device and a (memory-only) NUMA node for emulating the persistent
cache. Figure 4.2 shows the conceptual I/O flow for our emulated devices. Depending
on the I/O interface used, the virtual hybrid storage device dispatches the request to the
appropriate backing device.

As virtual devices provide a simple wrapper around a block device and a memory
node, we cannot move storage pages into the emulated persistent cache without using
Linux for I/O. This is a fundamental limitation of emulating hybrid storage devices and
limits our ability to faithfully model performance characteristics of real-world hardware.

To create a virtual hybrid device, our kernel module accepts a block device and a
NUMA node ID as optional parameters. While our kernel module does support the
creation and deletion of multiple virtual hybrid storage devices, we currently do not
export this interface to user space. In the future, we intend to support virtual hybrid
device management through a special character device that offers device management
through an ioctl-based interface. To ease the use of this interface, we also intend to
add a user space component that allows to access the management interface through the
command line. The vhybrid block device driver accounts for 320 LoC.

38 CHAPTER 4. IMPLEMENTATION

4.3 File System Support for Hybrid Storage
While most of our modifications concern generic memory management code that is used
throughout the entire kernel, hybrid storage devices also require small changes to file
systems. For our implementation, we currently support the ext2 and ext4 file system
drivers. The scope of our current implementation is limited to ext4 without journaling.
Therefore, journaling does not benefit from any of our DAX optimizations. As some of
our modifications change kernel-internal APIs, various other file systems that use them
require small changes, i.e., less than 5 lines of code, in order to compile. These other file
systems do not use the synchronous interface of the hybrid storage device and rely on
the block interface entirely.

Our modifications to the ext2 and ext4 driver follow a similar pattern. For both, we
add a new mount option, i.e., -o hybrid, that signals the driver to use the kernel’s
hybrid storage support. This mount option requires the underlying device to be a hybrid
storage device and the file system’s block size to match the page size. The requirement
on the file system’s block size simplifies certain aspects of the implementation. Linux’s
DAX subsystem currently suffers from the same limitation [32]. For future work, we
plan to support block sizes that are a multiple of the page size. In addition to the mount
option, we also add the MAP_DAX mmap flag to the bit mask of mmap flags supported
by the file system.

Both file system drivers tag dirty pages for synchronous writeback, e.g., fsync()
or msync() with MS_SYNC. For this, the file system iterates over all page cache entries
marked dirty and tags them with a TOWRITE mark. This approach to tagging dirty page
cache entries for writeback is a mechanism for livelock avoidance [26]. When iterating
over dirty page cache entries, we modify the file system to check whether a page cache
entry is backed by DAX pages. For this, we check the PG_hybrid_cache page flag
of the folio associated with the entry, as introduced in Section 4.1.3, and skip tagging the
page for writeback if the flag is set.

The most intricate modification of each file system is the optimization of direct I/O
on DAX pages. As the generic direct I/O code can only serve file ranges from the page
cache that are fully backed by DAX pages, the file system must split the requested file
range. For file systems that use the iomap framework, the iomap_begin() function
obtains the largest file system mapping that the file system can create for the requested
file range [33]. Since file ranges backed by DAX pages require a different I/O backend
than all other file ranges (memcpy vs. block I/O), the file system must ensure that each
mapping handed out by iomap_begin() has an unambiguous I/O backend. In order
to meet this requirement, we modify iomap_begin() so that it further breaks up the
I/O range depending on DAX pages.

4.3. FILE SYSTEM SUPPORT FOR HYBRID STORAGE 39

Algorithm 1: Pseudocode for splitting direct I/O request into chunks served
through the page cache and chunks served through the block layer.
// range in interval tree

1 struct Span
2 is_hole, // if span is not covered by intervals
3 start, // start of this span
4 end, // end of this span (inclusive)

5 // returns the largest possible span in interval_tree
6 // that fulfills span.start = start ∧ span.end ∈ [start, end].
7 // If start is not covered by any interval in the
8 // interval tree, is_hole is set and the returned
9 // span represents the hole.

10 fn GetSpan(interval_tree, start, end)→ Span

11 // find the first buffered page of file in [start, end]
12 fn FilemapFindPage(file, start, end)→ Page | ⊥

13 // count the number of consecutive pages buffered for
14 // file in the file range [start, end] starting at start
15 fn FilemapCountContig(file, start, end)→ Num

Input: The file under I/O, the index of the first page in the I/O range start, and
the last possible page index in the I/O range max_end.

16 fn NextChunk(file, start, max_end)
17 span := GetSpan(file.dax_vma_tree, start, max_end)
18 chunk_end := span.end
19 from_pagecache := false
20 if ¬span.is_hole then
21 first := FilemapFindPage(file, start, span.end)
22 if first ̸= ⊥ then
23 if first.index ̸= start then
24 chunk_end = first.index− 1

25 else
26 cnt := FilemapCountContig(file, start, span.end)
27 chunk_end = start+ cnt− 1
28 from_pagecache = true

29 return (start, chunk_end, from_pagecache)

40 CHAPTER 4. IMPLEMENTATION

Algorithm 1 outlines our splitting logic for the iomap_begin() function in pseu-
docode. Here, we assume that the file system block size matches the page size of the
host. For each file system mapping, we calculate the largest possible prefix5 p of a file
range that is either fully backed by DAX VMAs or only non-DAX VMAs (Line 17). If
only non-DAX VMAs cover p, the file system tries to obtain a mapping for p and serves
it through the block layer. If, however, p is covered by DAX VMAs (Line 20), p may be
backed by DAX pages. Because the existence of DAX VMAs does not imply that any
DAX pages have been faulted in, we search for the first buffered page in p (Line 21). If
no such page exists in p, we continue as with the non-DAX interval before. If such a
page exists but p does not start with it, the file system continues with the file range just
up to this page (Line 24). When p does start with a DAX page, we count the number of
consecutive DAX pages (Line 26) and pass this sub-range of p to the file system. Only
in this case, we can serve I/O through the page cache.

4.4 Evaluation Targets
For our evaluation, we modify the flexible I/O tester fio [3] and the key-value datastore
Valkey [57], a fork of the popular in-memory key-value store Redis [51]. For Valkey,
we implement a new backend for Valkey’s Append Only File (AOF) [59] that leverages
our hybrid storage API for improving the cost of frequent calls to fsync() (§ 4.4.1).
We use Valkey version 7.2.5 as basis for our modifications (800 LoC). For fio, we
implement a new DAX option for the mmap I/O engine that uses our hybrid storage
API (§ 4.4.2). As basis for our implementation, we build upon fio version 3.37. Our
changes to fio account for 150 LoC.

4.4.1 DAX-aware Key-Value Store

Even though Valkey is an in-memory datastore [57], it provides two mechanisms for
persisting data [59]. The first option is RDB persistence which performs periodic snap-
shots of the dataset [59]. The second option is the AOF persistence mode which writes
out all operations required for reconstructing the dataset, i.e., write operations, into AOF
files [59]. For our hybrid storage optimizations of Valkey, we solely focus on AOF per-
sistence.

For AOF persistence, Valkey uses two types of AOF files [59]: One is the base file
that contains all write operations required for reconstructing the dataset at the time of
the last AOF rewrite. The second type are incremental files that contain write operations
that occurred after the last base AOF file was written. As the AOF grows with each write
operation, Valkey performs AOF rewrites in a forked-off child process when the AOF

5For each closed interval r := [r1, r2] ⊂ R, we call s := [r1, x] ⊂ R prefix of r ⇔ x ≤ r2

4.4. EVALUATION TARGETS 41

size grows too large [59]. During these rewrites, Valkey writes a new AOF base file
that contains a minimal set of operations that result in the datastore state at the time the
rewrite started [59].

To ensure that data written to a AOF file reaches persistent storage, Valkey uses
fsync()6 on the AOF file. To control when Valkey calls fsync(), Valkey offers three
AOF fsync() policies: appendfsync=always calls fsync() after each write to
the AOF, appendfsync=everysec calls fsync() in intervals of one second, and
appendfsync=no never calls fsync() on the AOF [59]. For the latter, Valkey relies
on the OS’s periodic writeback of dirty pages. Valkey only writes to the AOF before
sending out replies and waiting for new events to process (see beforeSleep() in
server.c [57]). In each iteration of its event loop, Valkey might process commands
from multiple clients. A single write to the AOF might contain commands from multiple
clients or even multiple commands from a single client (pipelined execution [60]) [59].

Since Valkey uses a single thread for processing commands, long-blocking calls to
fsync() reduce Valkey’s performance. While Valkey’s documentation suggests that
the everysec policy provides a good trade off between persistence and performance, it
describes the always policy as “Very very slow, very safe” [59]. In order to reduce the
overhead of frequent fsync() calls, we use our hybrid storage API to eliminate slow
I/O from Valkey’s command processing.

As the name of the AOF suggests, Valkey opens AOF files in append mode (i.e.,
O_APPEND [40]) and uses regular write() system calls for appending data. Since
our hybrid storage API requires a DAX mapping for the AOF to exist in order to benefit
from our fsync() optimizations, we use mmap() on the AOF files. While we could
just memory-map the AOF files and leave the use of write() unchanged, thus forcing
write() to access DAX pages, we implement a new mmap backend for AOF persis-
tence instead. By using memory-mapped I/O on hybrid storage devices for writing to
the AOF, Valkey can not only benefit from our fsync() optimizations but also from
the elimination of the syscall overhead introduced by writes to the AOF.

When Valkey uses the AOF mmap backend, it creates a fixed-sized memory-mapping
for the file. We currently use a 1TiB large sparse mapping so that we do not have to
resize the mapping when the AOF grows. The general idea of the mmap backend is to
bring only a small part of the AOF into the page cache just before it is needed. As the
AOF exclusively grows downwards and never re-reads data during normal operation,
Valkey can evict parts of the AOF from the page cache after they have been written.
Figure 4.3 outlines this approach. Here, cur points to the current write position in
the AOF. To write to the AOF, our mmap backend copies the request to the current
write position and increases cur. end marks the End of File (EOF). All bytes between
cur and end must be zero. Should cur ever reach the EOF, Valkey cannot write new
operations to the AOF. Therefore, the mmap backend initiates a resize of the AOF file

6On Linux, Valkey uses fdatasync() [35] in favor of regular fsync() (see config.h [57]).

42 CHAPTER 4. IMPLEMENTATION

Figure 4.3: AOF resize operation for the AOF mmap backend.

4.4. EVALUATION TARGETS 43

as soon as cur reaches the alloc_watermark. We offload this resize operation to
a background thread7 to not block the main thread from processing events. Only when
cur reaches the EOF before the resize completes, the main thread must be blocked.

.
For resizing the AOF file, the background thread uses fallocate() [34]. As

fallocate() requires file system support [34], we mandate fallocate() sup-
port for all users of our mmap backend. After fallocate() succeeds, the background
thread pre-faults the newly allocated blocks for writing, calls fsync() to persist all pre-
viously written operations, and finally drops the AOF contents up to cur from the page
cache. Here, we use the MADV_DROPCACHE advise, that we described in Section 3.3.2,
for evicting AOF contents from page cache and MADV_POPULATE_WRITE [36] for
pre-faulting new blocks. To complete the resize, the background thread sets end to the
new EOF.

The mmap backend has three settings for managing the memory-mapped AOF file:
(1) the CHUNK_SIZE determines the granularity we use for managing the memory-
mapping of the AOF file. When resizing the file or when evicting AOF contents from
the page cache, we always operate in multiples of the CHUNK_SIZE. (2) ALLOC_WM
determines where the mmap backend should place the alloc_watermark. After each
AOF resize, the mmap backend defines a new alloc_watermark as follows:

alloc_watermarknew := endnew − CHUNK_SIZE× ALLOC_WM

And (3), the PRE_ALLOC setting determines the amount of chunks that the mmap back-
end allocates during resize. As we evict written chunks from the page cache during the
resizing process that is only triggered after the allocation watermark is reached, we can
obtain an upper limit on the number of buffered AOF pages in the page cache. This upper
limit is given as follows:

num_live_aof_pages ≤ (2× PRE_ALLOC+ ALLOC_WM)× CHUNK_SIZE
PAGE_SIZE

Because we pre-fault new chunks before evicting written ones, the page cache might
contain newly allocated chunks and to-be-evicted chunks simultaneously. For our evalu-
ation, we define CHUNK_SIZE, ALLOC_WM, and PRE_ALLOC as follows:

CHUNK_SIZE := 2MiB, ALLOC_WM := 4, PRE_ALLOC := 8

7Valkey maintains a pool of worker threads for certain background operations (see bio.c [57])

44 CHAPTER 4. IMPLEMENTATION

During startup, Valkey rebuilds the dataset from the AOF files if they exist [59]. For
this, Valkey reads the AOF files until reaching the EOF. As our new mmap backend
fills unused parts of the AOF, i.e., the parts between cur and end, with null bytes, we
need to modify the AOF parsing to stop when reaching trailing null bytes. Should any
non-null bytes follow after a sequence of null bytes, the AOF is corrupted. We currently
do not implement recovery of a corrupted AOF.

In order to leverage DAX mappings in Valkey, we add a DAX mode to our AOF
mmap backend. When Valkey uses the AOF mmap backend in the DAX mode, AOF
files are memory-mapped with the MAP_DAX mmap flag. Since this should significantly
decrease the overhead of fsync() calls on AOF files, we expect this mode to be
especially beneficial for the AOF fsync() policy that syncs after every write to the
AOF.

While the use of DAX mappings help in removing slow storage I/O from the event
processing, they cannot completely get rid of slow I/O but just defer it to a later point in
time. The persistence-aware page cache writes back AOF contents either during periodic
asynchronous writebacks or when the respective pages are evicted from the page cache.
Since our AOF mmap backend moves the eviction of AOF contents from the page cache
to the background thread that handles the resizing process, the slow I/O during writeback
does not slow down event processing in the main thread. In other words, the majority of
the original fsync() overhead is deferred to one of Valkey’s background workers.

4.4.2 DAX-aware fio mmap I/O Engine
For benchmarking synthetic I/O workloads using our hybrid storage support, we add
two new options to fio’s mmap I/O engine. This I/O engine memory-maps the file
for the given fio job and uses memcpy for implementing read and write. When fio
must sync data after writes, this I/O engine uses msync() on the memory-mapped file.
The first option that we add is the dax option that sets the MAP_DAX mmap flag when
memory-mapping the job file. The second option is dax-pin that allows to pin the
memory-mapped file to the persistence cache by calling mlock().

Chapter 5

Evaluation

To obtain a better understanding of the impact of our hybrid storage optimizations, we
assess our implementation regarding performance, CPU overhead, and energy efficiency.
For this thesis, we focus entirely on our writeback optimizations. For our energy effi-
ciency evaluation, we only consider the active power consumption during write-heavy
I/O workloads. As we are currently limited to our emulated hybrid storage device that
uses a separate CXL memory expander for its persistent cache, we cannot faithfully
model the idle power consumption of real-world hybrid storage devices.

First, we outline our evaluation setup and describe our testing methodology (§ 5.1).
In order to isolate the impact of our writeback optimizations from other aspects of I/O,
we evaluate a micro benchmark which stress tests synchronous writeback (§ 5.2). As
this workload is hardly representative for real-world I/O, we evaluate a synthetic I/O
workload that persists writes in a much coarser granularity in the next step (§ 5.3). Lastly,
we evaluate the use of hybrid storage devices for persistence features in in-memory key-
value datastores as one promising use case of hybrid storage devices (§ 5.4).

5.1 Methodology and Evaluation Setup

For evaluating the CPU and energy efficiency of our implementation on each workload,
we adapt Werling et al.’s efficiency metrics for PM file systems [62]. As stated by Wer-
ling et al., their efficiency metrics are independent of the bandwidth [62]. Therefore,
they allow us to decouple performance from efficiency considerations. Instead of using
the authors’ metrics for their intended purpose, namely comparisons between PM file
systems, we use them to quantify the effectiveness of our fsync() optimizations for
DAX pages.

45

46 CHAPTER 5. EVALUATION

Werling et al. define the CPU cost and the energy cost as follows [62]:

CPU_cost :=
CPU_time

bytes_written
, energy_cost :=

energy_used
bytes_written

with the CPU cost being measured in seconds per gibibyte (s/GiB) and the energy cost
being measured in joules per gibibyte (J/GiB). While these cost functions can be applied
to ourfioworkload (§ 5.3) as is, they are not well-defined for the synchronous writeback
micro benchmark (§ 5.2) and the key-value datastore benchmark (§ 5.4) since these
benchmarks do not quantify progress in number of bytes written. For our synchronous
writeback micro benchmark, we define the CPU cost and energy cost as

CPU_costwb :=
CPU_time

dirty_bytes_fsynced
,

energy_costwb :=
energy_used

dirty_bytes_fsynced

with dirty_bytes_fsynced including all bytes in a dirty page. Therefore, even if we
write to a single byte in a page, the entire page will factor into the CPU and energy
cost. We argue that this approach is more sensible as the OS will put the entire page
under writeback, not just the bytes written. For the CPU and energy cost of the key-value
datastore, we define them as

CPU_costkv :=
CPU_time

requests_processed
, energy_costkv :=

energy_used
requests_processed

For approximating the energy consumption of our benchmarks, we average the power
consumption during the benchmark, subtract the average power consumption during idle,
and multiply by the benchmark runtime. We measure the wall power for the entire system.
Throughout our tests, we measure the power consumption multiple times per second and
average all samples. By measuring the average power consumption over a time span of
three minutes before running our tests, we recalibrate the idle power consumption to the
current system.

Similar to Werling et al. [62], we obtain the CPU time consumed by our benchmarks
from stats reported by Linux’s CPU scheduler through procfs (/proc/stat). As I/O
might cause activity on cores other than the ones running our benchmark, we consider all
cores for this metric. Like in the case of our power measurements (e.g., interrupts of I/O
devices), we subtract the CPU time consumed by an idle system from our measurements
to isolate our benchmark from the rest of the system. The CPU time is defined as

tcpu := (tusr + tsys + tirq + tsoftirq)

with tusr as time in user mode, tsys as time in kernel mode, tirq as time servicing
interrupts, and tsoftirq as time servicing softirqs.

5.1. METHODOLOGY AND EVALUATION SETUP 47

One peculiarity of our approach to measuring CPU and energy efficiency for our
fio benchmark, as well as the writeback micro benchmark, is that we do not capture the
cost of writing out-of-sync pages to the backing storage. As our persistence-aware page
cache will eventually write out-of-sync pages to the backing storage, the actual CPU
and energy overhead should be larger. For the fio and writeback micro benchmark,
we assume that they are long-running and that pages frequently synced remain in the
page cache. Under these assumptions, we argue that the cost of the eventual writeback is
negligible as its being amortized over the runtime. Our key-value store benchmark does
not suffer from this problem as our DAX-aware Valkey implementation explicitly evicts
pages from the page cache.

Component Specification

Mainboard Supermicro X13SEI-F
CPU Intel® Xeon® Silver 4416+ (Sapphire Rapids)*

20 Cores @ 2GHz

Main Memory 128GiB DRAM
8× 16 GiB DDR5 RDIMM @ 4800MT/s

Memory Expander 16GiB CXL-attached DRAM (CXL hard IP)
1× 16 GiB DDR4 RDIMM @ 3200MT/s

Storage Samsung SSD 990 PRO 2TB
Samsung SSD 970 PRO 1TB

* TurboBoost and Simultaneous Multi Threading (SMT) disabled

Table 5.1: Description of evaluation hardware.

As we do not have a storage device which fits our hybrid storage model available
for our evaluation, we must emulate the hybrid storage device. During our testing, we
encountered performance inconsistencies with our block device driver implementation
described in Section 4.2. Instead of wrapping a block device in a virtual hybrid storage
device, we register the hybrid device directly with the backing storage. We use a Samsung
SSD 970 PRO 1TB for the backing storage and 16GiB CXL-attached DRAM for the
persistent cache. A custom memory expander (CXL type 3 device) based on an Intel
Agilex 7 I-Series FPGA [18] provides the CXL-attached DRAM for our device. The
memory expander is connected via 16 PCIe 5 lanes to the host system and features
2× 8 GiB DDR4 RDIMMs @ 3200MT/s.

On our evaluation setup, we measure read latencies of approximately 350 ns using
Intel’s MLC [21] for the memory expander. This is 3.3 times higher than for local
DRAM (∼105 ns) on our evaluation platform. We compare the performance of our

48 CHAPTER 5. EVALUATION

emulated hybrid storage device against the raw NVMe SSD that provides the backing
storage for the emulated device. In this chapter, we denote the measurements using the
raw NVMe SSD with “conventional I/O”. We denote measurements that use our hybrid
storage optimizations with “hybrid storage”.

Table 5.1 describes our evaluation hardware. Our host platform supports CXL 1.1.We
run Fedora 39 Server on our evaluation setup. For all tests, we use our modified Linux
kernel described in Section 4.1. Benchmarks using fio use the modified mmap I/O
engine described in Section 4.4.2. For benchmarking Valkey, we use our modifications
described in Section 4.4.1. Apart from the measurements in Section 3.1 that do not
require a file system, we use our modified ext4 for all other tests. Further, we disable
journaling due to the limited scope of our implementation. In order to minimize noise on
our measurements, we disable TurboBoost as well as SMT. In addition, we reserve phys-
ical cores by using Linux’s isolcpus kernel command-line option and pin benchmark
tasks to the reserved set of cores. Lastly, we also disable THP for the entire system.

5.2 Synchronous Writeback DAX Optimization

In order to better understand the cost of synchronous writeback1, we implement a micro
benchmark that measures the latency of fdatasync() as a function of the amount
of dirty pages d and the amount of virtual memory pages m. Here, we are only inter-
ested in the overhead of writeback for data pages as our optimizations do not affect file
system metadata. For each latency measurement, our micro benchmark dirties the first
d out of m pages by writing a single byte. After dirtying d pages, our benchmark calls
fdatasync() and measures the latency of this call. For each value of d and m, we
repeat this measurement at least 1000 times. Before taking measurements, we run 10
iterations as warm-up.

First, we assess performance for our writeback optimizations as a function of the
mapping size. On the next page, Figure 5.1 shows the writeback bandwidth of dirty
pages as well as the CPU and energy efficiency of the writeback. The “clear dirty” vari-
ant provides a performance projection for three-state dirty track and will be discussed
in more detail below. While our current implementation provides up to 37.1× higher av-
erage writeback bandwidth than conventional I/O (7.2GiB/s vs. 198.6MiB/s at 2MiB
virtual memory), the writeback performance for hybrid storage unexpectedly drops off
on large memory mappings. For memory mappings larger than 2GiB, the writeback
bandwidth, as well as CPU and energy efficiency, fall behind conventional storage I/O.
The writeback performance of conventional I/O, however, remains stable at a level of
approximately 750MiB/s for a virtual memory size larger 4MiB.

1not to be confused with writeback through the synchronous I/O interface.

5.2. SYNCHRONOUS WRITEBACK DAX OPTIMIZATION 49

0

10

20

30

W
rit

eb
ac

k
B

W
[GiB s

] Sync Writeback for Dirty Size of 2MiB

0.0

0.5

1.0

1.5

2.0

Sync Writeback for Virtual Memory Size of 2MiB

0

2

4

C
P

U
C

os
t[s G

iB

]

0

100

200

300

2M 8M 32M 128M 512M 2G

Virtual Memory Size [B]

0

50

100

E
ne

rg
y

C
os

t[J G
iB

]

4K 8K 16K 32K 64K 128K

Dirty Size [B]

0

2500

5000

7500

hybrid storage (clear dirty) hybrid storage conventional I/O

Figure 5.1: Synchronous writeback bandwidth, CPU efficiency, and energy efficiency for
the synchronous writeback micro benchmark as a function of the virtual memory size of
the memory-mapping (left column) and the amount of dirty pages (right column).

By profiling the writeback path for hybrid storage, we observe that the time for iter-
ating over all dirty page cache entries dramatically increases with the memory mapping
size. This is caused by the dirty state tracking of our implementation. As mentioned in
Section 4.1.3, we currently do not differentiate between out-of-sync and dirty pages and
leave DAX pages marked dirty during synchronous writeback. Our micro benchmark,
however, pre-faults the entire memory mapping for write access, thus causing all pages
in the mapping to be marked dirty initially. While the first call to fsync() during the
warm-up phase clears this dirty state for conventional I/O, all pages remain dirty for our
implementation. During synchronous writeback on hybrid storage, this causes the CPU
overhead caused by iterating over all dirty pages to explode. This behavior can also be
observed in the plot of the CPU and energy cost.

In order to predict the performance of a hybrid storage implementation that does not
suffer from this limitation, we implement a writeback mode that clears the dirty mark
on DAX pages during synchronous writeback instead of skipping these pages entirely.
While this approach loses the dirty state required for writing DAX pages back to the

50 CHAPTER 5. EVALUATION

underlying storage, it allows the dirty set to shrink during synchronous writeback, thus
decreasing the CPU overhead required for iterating over dirty pages on consecutive
calls to fdatasync(). Since an implementation that does use the out-of-sync state
should also help in reducing the number of dirty pages during synchronous writeback,
we argue that the writeback performance of the “clear dirty” variant offers a realistic
prediction. Figure 5.1 shows that the modified dirty state tracking solves the performance
shortcomings of our implementation. In Section 6.1, we discuss potential changes to our
implementation that help in reducing the CPU overhead during synchronous writeback.
For the rest of this thesis, we report measurements with and without this modified dirty
state tracking.

Next, we assess how the dirty size impacts the writeback performance. While the
writeback throughput significantly increases with the dirty size for hybrid storage (from
59.5MiB/s to 1887.7MiB/s), conventional I/O only shows a modest increase from
3.6MiB/s to 187.3MiB/s. At a dirty size of 2MiB, hybrid storage reaches the approxi-
mately 30GiB/s shown in the left column of Figure 5.1. Our measurements suggest that
the overhead of writeback to storage dominates the cost of fdatasync() on conven-
tional storage. As the memory mapping size of 2MiB is relatively small, we do not see
a significant difference between the dirty state tracking variants for hybrid storage.

5.3 Synthetic I/O Performance

While the micro benchmark in Section 5.2 shows a drastic increase in synchronous
writeback performance for our hybrid storage optimizations, this workload is hardly rep-
resentative for most I/O workloads. For our next test, we model an I/O-heavy workload
that calls fsync() after writing a large block of memory. We use fio [3] with the
mmap I/O engine for generating random writes on a single memory-mapped file. We
configure fio to sync each written block using fsync(). Before running this test, we
pre-fault the entire file into the page cache. As our current evaluation hardware does not
support the hardware-assisted data movement between backing storage and persistent
cache (see Section 3.2), we do not expect a measurable performance difference for page
cache misses. Similar to our previous test, we measure the throughput as well as the CPU
and energy efficiency. To simulate different loads, we vary the number of I/O threads
and the block size.

5.3. SYNTHETIC I/O PERFORMANCE 51

0.0

0.5

1.0

W
rit

e
B

W
[GiB s

] Number of Threads = 1

0

1

2

Number of Threads = 8

0

100

200

300

C
P

U
C

os
t[s G

iB

]

0

200

400

4K 8K 16K 32K 64K 128K

Block Size [B]

0

2500

5000

7500

E
ne

rg
y

C
os

t[J G
iB

]

4K 8K 16K 32K 64K 128K

Block Size [B]

0

2000

0.000

0.025

0.050

0.075

W
rit

e
B

W
[GiB s

] Block Size = 4KiB

0

1

2

Block Size = 128KiB

0

200

400

C
P

U
C

os
t[s G

iB

]

0

20

40

2 4 6 8

Number of Threads

0

2500

5000

7500

E
ne

rg
y

C
os

t[J G
iB

]

2 4 6 8

Number of Threads

0

200

400

hybrid storage (clear dirty) hybrid storage conventional I/O

Figure 5.2: Write bandwidth, CPU efficiency, and energy efficiency for random write I/O
workload that syncs after each written block. The left column shows measurements for
a single I/O thread (top left) and a block size of 4KiB (bottom left). The right column
shows measurements for eight I/O threads (top right) and a block size of 128KiB (bottom
right).

52 CHAPTER 5. EVALUATION

Figure 5.2 shows the write bandwidth, CPU cost, and energy cost as a function of
either the number of I/O threads or the block size. Similar to our previous test, the hybrid
storage with modified dirty state tracking (i.e., “clear dirty”) performs best in all metrics.
At a block size of 128KiB, the projected hybrid storage’s write bandwidth is 11 to 30
times higher than for conventional storage while also causing only 6% to 15% of its CPU
overhead and using 4% to 10% of its energy. The write bandwidth plateaus at 2.7GiB/s.
Given that our writeback micro benchmark showed that the maximum synchronous
writeback throughput is just under 2GiB, we suspect that fsync() overhead is limiting
the write bandwidth in this test. The fact that the I/O performance does not increase with
the number of I/O threads, even though we measured write bandwidths of approximately
22.6GiB/s for our memory expander in Section 3.1, leads us to the hypothesis that lock
contention on the fsync() path limits further scaling.

Without the modifications to the dirty state tracking, hybrid storage only provides
between 0.6 to 3.3 times the write bandwidth of conventional storage. Similar to the
previous test, our implementation suffers from the dirty set steadily increasing when
using DAX mappings. This causes the synchronous writeback code, that iterates over
all pages, to consume much more CPU time (up to 8.4 times). However, the impact of
the growing dirty set is less severe on the energy consumption. We suspect that the CPU
does not consume as much energy when contending for locks since this type of workload
is not compute-heavy. As the dirty set increases with the ongoing I/O workload, the CPU
overhead steadily grows. Consequently, the write bandwidth continuously drops over the
course of the workload.

As the block size increases, the ratio of fsync() calls to bytes written decreases.
Since each invocation of fsync() implies a switch between user and kernel space as
well as a call into the file system, we can control this fixed cost through the block size.
Due to the large gap in CPU and energy consumption for small block sizes between
hybrid storage with modified dirty state tracking and conventional I/O, we argue that this
fixed cost is negligible for conventional I/O. Here, the overhead of storage I/O through
the asynchronous block interfaces dominates the I/O performance.

5.4. REAL-WORLD APPLICATION PERFORMANCE 53

5.4 Real-World Application Performance

To showcase the potential benefit of hybrid storage devices and our approach to manag-
ing hybrid storage in the OS, we assess our implementation for the in-memory key-value
datastore Valkey [57]. This last test focuses on our AOF mmap backend (§ 4.4.1) for im-
proving the performance of Valkey’s AOF persistence mode. We compare four different
configurations for the AOF backend:

1. mmap backend with hybrid storage,

2. mmap backend with hybrid storage and modified dirty state tracking,

3. mmap backend with conventional I/O,

4. default AOF backend using write() with conventional I/O.

We pin Valkey’s main thread and all background worker threads each to a reserved
CPU core. In addition, we disable AOF rewrites. For benchmarking Valkey, we use
the valkey-benchmark utility [58]. As only write operations cause writes to the
AOF, we use workloads that only issue write commands to the server, namely the SET,
HSET, and INCR tests included in valkey-benchmark. We found that all tested
write benchmarks provide similar results. Therefore, we only report results for the SET
benchmark. We configure valkey-benchmark to send one million requests per run.
We repeat each test five times and average the results over all runs.

In order to achieve high throughput with Valkey, clients can use pipelining. Pipelining
allows clients to send multiple commands to the Valkey server at once [60]. The server,
on the other hand, can read multiple commands from the network socket with a single
call to read(), process the entire batch of commands, and respond with a single call to
write() [60]. This helps to reduce the number of context switches between user and
kernel space and eliminates the time required waiting for a response before sending the
next command [60]. When processing a batch of pipelined commands, Valkey issues a
single AOF write for the entire batch [59].

54 CHAPTER 5. EVALUATION

always everysec never

AOF fsync() Policy

0

100K

200K

300K

400K

500K

600K

700K
Th

ro
ug

hp
ut

[re
qu

es
ts

s

]

51
6K

59
6K

59
6K

47
8K

60
1K 61

1K

14
4K

58
9K

58
7K

14
2K

60
4K

60
4K

Request Throughput for SET Benchmark (pipeline=10)

mmap on hybrid storage (clear dirty)
mmap on hybrid storage

mmap on conventional I/O
default on conventional I/O

Figure 5.3: Request throughput on SET benchmark for all AOF fsync(). The always
and never policies offer similar performance. Hybrid storage mitigates the impact of the
always policy.

Figure 5.3 shows Valkey’s request throughput on the SET benchmark for all AOF
fsync() policies. When not using hybrid storage optimizations, our AOF mmap back-
end provides similar, albeit slightly lower, performance than the default AOF backend
that uses write system calls for appending the AOF. While the AOF fsync() policy
to periodically sync, namely everysec, and the policy to never sync show identical per-
formance for all configurations, performance for the always policy takes a steep hit for
conventional I/O (approx. 25% of never’s throughput). Hybrid storage helps in reducing
the performance gap between the fsync() policies. It provides up to 3.64 times higher
throughput than conventional storage I/O (87% of never for the “clear dirty” variant).

Compared to our previous tests using fio and our writeback micro benchmark, our
hybrid storage optimizations on Valkey are not susceptible to the lack of proper dirty state
tracking in our implementation. Across all Valkey benchmarks, the modified dirty state
tracking performs at most 10% better than our current implementation. This behavior,
however, is expected as our Valkey mmap backend keeps the number of AOF pages in the
page cache small. For our parameters of CHUNK_SIZE, ALLOC_WM, and PRE_ALLOC
(§ 4.4.1), we obtain an upper bound of 40MiB of buffered AOF contents in the page
cache. Therefore, the dirty set size of the AOF file also has an upper bound of 40MiB,
which is small enough to not impact the fsync() performance too much.

5.4. REAL-WORLD APPLICATION PERFORMANCE 55

50th percentile 95th percentile 99th percentile max

0

5

10

15

20

25

R
eq

ue
st

La
te

nc
y
[m

s]

0.9 1.1 1.8

5.6

0.9 1.2 1.9

4.3
3.2

4.9

9.2

25.5

3.2
5.1

8.4

13.3

SET Request Latency Distribution (appendfsync=always, pipeline=10)

mmap on hybrid storage (clear dirty)
mmap on hybrid storage
mmap on conventional I/O
default on conventional I/O

Figure 5.4: Request Latency Distribution for SET benchmark. Hybrid storage reduces
request latencies significantly. The mmap AOF backend suffers from high worst case
latencies.

Figure 5.4 shows the request latency distribution for the always AOF fsync()
policy on the SET benchmark. As hybrid storage allows us to defer the expensive part
of fsync() to a background worker thread, the request latency for hybrid storage is
significantly shorter. For the 99th percentile latency, hybrid storage achieves a latency
reduction of 77.8% compared to the default AOF backend on conventional storage.
Further, hybrid storage not only reduces the latency but also provides more stable request
latency.

One striking property of the request latency distribution is the worst-case latency for
the mmap backend with conventional storage I/O. While the request latency is similar
between the mmap backend and the default AOF backend for the 99th percentile, there
is a large difference of 12.2ms for the maximum latency. For hybrid storage, the rel-
ative latency gap between the 99th percentile and the maximum latency is even more
pronounced. We suspect that a long-running fsync() call during a rewrite in a back-
ground worker causes the main thread to also block on a fsync() call for flushing the
AOF. This causes the fsync() call in the main thread to sync more than just the previ-
ously written AOF content. If our suspicion is correct, we should be able to mitigate this
problem by using more fine-granular writeback in the main thread, e.g., use msync()
on the AOF range that we want to persist. Investigating this possibility, however, remains
as future work.

56 CHAPTER 5. EVALUATION

1 10 100 1000

Pipeline Length [#commands]

0

200K

400K

600K

800K
Th

ro
ug

hp
ut

[re
qu

es
ts

s

]

1 10 100 1000

Pipeline Length [#commands]

0

1

2

3

4

S
pe

ed
up

Fa
ct

or

mmap on hybrid storage (clear dirty)
mmap on hybrid storage

mmap on conventional I/O
default on conventional I/O

Figure 5.5: Throughput and speedup as a function of the pipeline length on SET bench-
mark. This test uses the always AOF fsync() policy. The speedup is relative to the
default AOF backend on conventional storage. The request throughput speedup falls off
for large pipeline lengths.

Figure 5.5 shows the request throughput and the resulting speedup relative to the
default AOF backend with conventional storage as a function of the pipeline length. Here,
we can observe that our hybrid storage optimization provides the most benefit for short
pipeline lengths. This is expected because long command pipelines cause fewer AOF
writes, and thus also fewer fsync() calls for the always policy. For 1000 pipelined SET
commands, hybrid storage only provides a marginal speed up of 21% over conventional
I/O as command processing dominates the request. At a pipeline length of 1, hybrid
storage reaches a speedup of up to 4.5 with modified dirty state tracking and 4.1 with
the limited dirty state tracking of our current implementation.

5.4. REAL-WORLD APPLICATION PERFORMANCE 57

1 10 100 1000

Pipeline Length [#commands]

0

20

40

60

80

100

R
el

at
iv

e
Pe

r-
R

eq
ue

st
C

P
U

C
os

t[
%
]

1 10 100 1000

Pipeline Length [#commands]

0

20

40

60

80

100

R
el

at
iv

e
Pe

r-
R

eq
ue

st
E

ne
rg

y
C

os
t[
%
]

mmap on hybrid storage (clear dirty) mmap on hybrid storage mmap on conventional I/O

Figure 5.6: Per-SET-request CPU and energy cost relative to the default AOF backend
on conventional storage. This test uses the always AOF fsync() policy. CPU and
energy cost reductions fall off for large pipeline lengths.

As shown in Figure 5.6, the per-request CPU overhead and energy consumption
relative to the default AOF backend on conventional I/O increase for a larger number of
pipelined commands. Since our mmap backend keeps the number of dirty pages small,
there is no large difference between the CPU and energy savings of our hybrid storage
variants. Even though the “clear dirty” variant should cause no I/O on the backing storage
at all, it does not provide better energy efficiency than our implementation which does
access the backing storage during AOF resizing. This shows us that, in this workload,
the energy consumption is not dominated by I/O caused by the AOF resize, but by the
main thread.

58 CHAPTER 5. EVALUATION

Chapter 6

Discussion

In this chapter we discuss the results of our evaluation and outline future work. First,
we discuss shortcomings of our dirty state tracking found during our evaluation (§ 6.1).
Next, we examine data persistence guarantees of the persistence-aware page cache (§ 6.2).
Finally, we outline cache resource management, transparent use of hybrid storage, and
hardware-assisted data movement as subjects of future work (§ 6.3).

6.1 Dirty State Tracking

As shown in Chapter 5, our current implementation suffers from high CPU overhead
on workloads where the number of dirty pages in the page cache grows too large. Like
previously mentioned, this has to do with how our persistence-aware page cache handles
the dirty state of buffered pages. In Section 3.4, we introduced the notion of out-of-sync
pages. This dirty state describes a page whose up-to-date contents are only present in
the persistent cache and not the backing storage. As our hybrid storage model assumes
that the persistent cache guarantees all writes to persist a crash, the out-of-sync state is
different from the dirty state in regard to persistence. Namely, all writes to a dirty page
that were not synced to the backing storage, will be lost upon a crash.

Our current implementation does not differentiate between out-of-sync and dirty
pages. Instead, it uses a generic dirty state that describes both types of pages whose up-
to-date content is only present in the page cache. Since our optimizations to synchronous
writeback aim to avoid writes to the backing storage, DAX pages under synchronous
writeback must remain in this generic dirty state. The page cache cannot mark them
clean as this would violate the invariant of the clean state, namely that the page contents
in the page cache and on the backing storage are both up-to-date and in-sync.

59

60 CHAPTER 6. DISCUSSION

When an application, like in the case of the fio benchmark (§ 5.3) or the writeback
micro benchmark (§ 5.2), writes to a large file chunk and frequently calls fsync() be-
tween writes, the dirty set grows over time. While an unmodified writeback would clean
all previously dirtied pages, thus reducing the number of pages that must be considered
during the next writeback, our implementation must consider all dirty pages. Only in the
case where the OS asynchronously writes dirty DAX pages back to storage or where the
application explicitly manages the page cache, e.g., MADV_DROPCACHE, the dirty set
shrinks.

To understand why having many dirty pages in the page cache causes performance
problems, we need to take a closer look at how file systems implement fsync() and
Linux’s page cache internals. During synchronous writeback, file systems like ext4 tag
all dirty pages buffered for the file under writeback with a TOWRITE mark. Like previ-
ously mentioned, this writeback tagging aims to avoid livelocks [26]. For implementing
writeback, the file system iterates over all page cache entries in the file range that is
under writeback and sets the TOWRITE mark if the page cache entry is dirty. Linux’s
XArray [65, 63] data structure that is, among other things, used for mapping file chunks
to page cache entries [56], allows for efficiently iterating over dirty pages even when
the page cache is large. For implementing our writeback optimizations, we skip DAX
pages during writeback tagging. We have to iterate over all dirty pages in the file range
regardless.

Under normal circumstances, the CPU does not spend much time in this loop, as
typically only a small portion of buffered pages are marked dirty. Even if a large share of
buffered pages is dirty, this increases the tagging cost just for the next writeback. Since
our modifications lead to a steadily increasing dirty set size under certain conditions,
the overhead of writeback page tagging becomes increasingly noticeable. This is further
aggravated by having multiple threads doing writeback on the same file because the file
system holds a spinlock that protects the XArray during writeback tagging. Combined
with the already high cost for writeback tagging on our implementation, this leads to a
highly contended spinlock that further wastes CPU time and thus also energy.

To reduce the cost of frequent writeback tagging on DAX-mapped files, our imple-
mentation must provide a mechanism for efficiently iterating over just the pages in the
page cache that are either in the dirty or the out-of-sync dirty state. Here, we could poten-
tially leverage Linux’s XArrays similar to how iteration over dirty pages is implemented.
Each entry in Xarrays contain a small number of bits, so called search marks, that asso-
ciate the entry with a number of groups (one per bit) [65]. These search marks allow for
efficient iteration over a specific group of entries in the Xarray [65]. Currently, XArrays
offer three marks that users of the data structure can use [65]. The page cache, however,
already uses all three search marks for tagging page cache entries as: (1) dirty, (2) under
writeback, and (3) marked for writeback (i.e., TOWRITE) [56].

6.2. DATA PERSISTENCE 61

While we are not aware of a limitation that prevents additional search marks, more
search marks will lead to increased memory consumption for all users of XArrays. On
64-bit systems, adding a fourth search mark increases the memory consumption of the
XArray’s internal tree nodes by approximately 1%. Given that XArrays have many users
throughout the kernel, we speculate that even a small increase in memory consump-
tion might have unforeseen regressions regarding the overall system performance and
memory consumption. We intend to investigate this moving forward.

6.2 Data Persistence
Currently, our implementation limits persistence to the block device-level, meaning that
all writes to DAX-mapped storage will reach the device and survive a crash1. What our
implementation does not guarantee, however, is data persistence on the file system–level.
Here, we define data persistence on the file system–level to guarantee the persistence of
all writes to DAX-mapped files. While it might seem like persistence on the device-level
implies persistence on the file system–level, this is not the case because the latter not
only requires the data to persist but also file system metadata required for retrieving the
data written.

This can, for example, lead to data loss on sparse files. When an application writes
to a hole2 in the sparse file by using a DAX mapping, the file system allocates a free
block on the storage device and maps it into the process. While writes to this mapping
will persist in that they reach the storage device, the metadata that maps this file range
to the newly allocated block might not. If, however, metadata is lost after a crash, the
written data is also lost from the viewpoint of the application.

The problem of achieving file system–level data persistence on storage exposed
through a load/store interface is not unique to hybrid storage devices. Linux’s DAX
subsystem solves this problem through synchronous page faults [27] which are accessible
through Linux’s MAP_SYNC [38] mmap flag. When a page fault occurs due to a write
on a memory mapping established with this flag, the DAX fault handler checks if there
is any file system metadata that needs to be flushed in order to guarantee persistence of
writes [27]. Should this be the case, the DAX fault handler does not insert the page into
the page table but returns the faulting page with the additional information that the file
system needs to flush metadata [27]. The file system’s fault handler is then responsible
for flushing required metadata, i.e., similar to how fdatasync() [35] works, for the
faulting range, and finally inserting the DAX page writable into the page table [27]. This
approach guarantees that a DAX page cannot be inserted writable into a MAP_SYNC
mapping while there is unflushed metadata required for persisting the associated file
range.

1Our emulated hybrid storage device does not guarantee persistence.
2A part of the sparse file without any backing storage blocks.

62 CHAPTER 6. DISCUSSION

As of now, synchronous page faults are only supported for Linux’s DAX subsystem.
For implementing file system–level data persistence for hybrid storage, we intend to
reuse Linux’s synchronous page fault mechanism. This requires modifications to the
page fault handling of supported file systems and the page cache itself. Analogous to
the DAX subsystem, users would be required to use the MAP_SYNC flag in conjunction
with our MAP_DAX flag to get the persistence guarantees of synchronous page faults.

6.3 Future Work

While our evaluation in Chapter 5 shows promising improvements of up to 37.1× for
synchronous writeback and up to 4.1× more throughput for Valkey’s AOF persistence,
there are more facets to hybrid storage than what we can cover in this thesis. Next up,
we discuss challenges and opportunities of our hybrid storage approach that we need to
tackle moving forward.

Cache Resource Management

One of the most important challenges in using hybrid storage to its full potential is
resource management. For our approach, we assume a hybrid storage device that offers
only few gigabytes of persistent cache for terabytes of backing storage. As we cannot
access the backing storage directly through load and store instructions but must go
through the persistent cache, the OS has to carefully manage the cache capacity in order
to optimize performance and provide fairness. The use of fine-granular DAX mappings
and pinned DAX pages are two concepts used in our approach that aim to tackle this
problem.

One area that we think needs further investigation is thrashing on the persistent
cache. This occurs when the size of DAX-mapped file contents that are accessed in a
short time span exceeds the persistent cache capacity. When thrashing occurs, we expect
degraded I/O performance and increased CPU overhead as a significant amount of time
will be spent with paging data between the persistent cache and the backing storage.
Currently, our implementation does not offer any mechanism to counteract thrashing
on the persistent cache. We leave it up to future work to explore thrashing mitigation
techniques that fit our hybrid storage approach.

6.3. FUTURE WORK 63

Managing the capacity of the persistent cache is only one piece of a holistic solu-
tion. The second dimension of resource management for hybrid storage that we need to
consider is bandwidth management. As demonstrated in Section 3.1, the CPU efficiency
for the synchronous load/store interface drops off when saturating the bandwidth
in write-heavy workloads. Therefore, we argue that hybrid storage support in the kernel
should strive to keep the bandwidth on the hybrid device’s load/store interface be-
low this critical level. Further, our measurements on our custom CXL memory expander
show a decrease in bandwidth when too much pressure is applied. Prior work from Yang
et al. [67] shows similar behavior on Optane PM. To what extent these observations on
Optane PM translate to upcoming CXL hardware is currently unclear. If this behavior
is also present in upcoming commercial CXL memory expanders and hybrid storage
devices, we have an even stronger case for introducing bandwidth management to hybrid
storage.

For managing bandwidth for hybrid storage, we plan to investigate per-process band-
width monitoring. We argue that bandwidth management on process granularity helps in
increasing fairness between tasks and allows the implementation of Quality of Service
(QoS) features. This, for example, could be helpful for guaranteeing low tail latencies
for performance-critical services like key-value stores.

Transparent Use of Hybrid Storage

Even though our writeback optimizations require little modifications in applications,
they do require DAX mappings, which our current implementation does not employ
transparently. To ease the adoption of hybrid storage, we intend to investigate transparent
use of hybrid storage so that a wide range of unmodified applications can benefit. In
the following, we want to outline one approach for transparently using our writeback
optimizations.

First, the OS needs to identify file ranges that can benefit from fast synchronous write-
back. Here, we expect all sufficiently small file ranges that show heavy use of fsync()
to be suitable candidates. For identifying such file ranges, the OS accounts calls to
fsync() on a coarse granularity (e.g., 2MiB). In order to maintain acceptable memory
overhead, we propose to only engage this accounting for files that exceed a static limit
of fsync() calls in a predefined time frame. As soon as a file chunk exceeds a static
limit of fsync() calls, the OS checks if there is enough free persistent cache capacity
available. If this is the case, the OS engages the DAX upgrade mechanism proposed in
Section 3.4. In addition, the OS must ensure that future page cache allocations for this
file range allocate DAX pages. In order to revert this DAX upgrade when the hybrid
device runs out of free DAX pages, the OS must track transparently upgraded file ranges.
Before evicting DAX pages of applications that make explicit use of our hybrid storage
API, the OS reclaims DAX pages from file ranges that use DAX transparently.

64 CHAPTER 6. DISCUSSION

Hardware-Assisted Data Movement

As discussed in Section 3.2, hardware-assisted data movement between the persistent
cache and the backing storage is one crucial feature of our hybrid storage model that
distinguishes it from using a PM product in combination with a high-end NVMe SSD.
Our evaluation, however, is limited to emulated hybrid storage that does not offer this
feature. To showcase the full potential of our approach to hybrid storage, the access to a
fully-capable hybrid storage device is essential. For future work, we set out to investigate
the use of memory expansion hybrids, like Samsung’s CMM-H [48] or IBM’s Hybrid
Memory Subsystem (HMS) [24], for our approach. Additionally, we intend to explore
the hardware design space of hybrid storage with a FPGA-based prototype.

Chapter 7

Conclusion

Emerging hybrid storage devices path the way for bringing cost-effective and byte-
addressable storage to the masses. By combining a persistent cache accessed through
load/store semantics with cost-effective Flash storage, they enable low-latency stor-
age I/O with strong persistence guarantees, something that was previously only attainable
through expensive PM technologies such as Intel Optane.

In this thesis, we described our OS-centric approach for supporting emerging hybrid
storage devices. Based on our analysis of both storage interfaces regarding performance,
CPU overhead, and energy efficiency, we proposed a high-level hybrid storage model
that enables persistent cache management through the OS. Further, we have shown that
this device model cannot be supported by Linux’s DAX subsystem without making
significant compromises. To address the problem of resource management for hybrid
storage in Linux, we introduced the persistence-aware page cache that focuses on fine-
granular control over mappings of cache memory. The DAX and resource management
features of our design are exposed to user space through a slim extension to the POSIX
API. Applications only require minimal changes to benefit from direct access to storage
and fast synchronous writeback when already using memory-mapped I/O.

We evaluated our Linux-based prototype on writeback-heavy micro benchmarks and
a modified build of the key-value datastore Valkey with AOF persistence. Due to the
lack of available hybrid storage hardware, we emulated the device using CXL-attached
DRAM and a NVMe SSD. For fsync(), we achieved up to 37 × higher throughput.
Using our new AOF mmap backend, we translated the speedup on fsync() into 4.1×
higher request throughput on Valkey for non-pipelined write requests. In addition, tail
latencies (99th percentile) are reduced by up to 77.8%, and CPU and energy overhead
by 78% and 74%. While our current implementation suffers from high CPU overhead
in workloads with large working sets, we showcased the potential of improved dirty state
tracking to solve this problem and further improve performance.

65

66 CHAPTER 7. CONCLUSION

List of Acronyms

Notation Description

AOF Append Only File.
BAR Base Address Register.
CXL Compute Express Link.
DAX Direct Access.
DMA Direct Memory Access.
DRAM Dynamic Random Access Memory.
eADR extended Asynchronous DRAM Refresh.
EOF End of File.
FPGA Field Programmable Gate Array.
GPF Global Persistent Flush.
ISA Instruction Set Architecture.
LoC Lines of Code.
MMIO Memory-Mapped I/O.
MRAM Magnetoresistive Random Access Memory.
NUMA Non-Uniform Memory Access.
NVMe Non-volatile Memory Express.
OS Operating System.
PCIe Peripheral Component Interconnect Express.
PM Persistent Memory.
QoS Quality of Service.
SMT Simultaneous Multi Threading.
SSD Solid State Drive.
TCO Total Cost of Ownership.
THP Transparent Huge Page.
VMA Virtual Memory Area.

67

68 List of Acronyms

Bibliography

[1] A. Abulila, V. S. Mailthody, Z. Qureshi, J. Huang, N. S. Kim, J. Xiong, and W.-m.
Hwu. “FlatFlash: Exploiting the Byte-Accessibility of SSDs within a Unified
Memory-Storage Hierarchy.” In: Proceedings of the Twenty-Fourth International
Conference on Architectural Support for Programming Languages and Operat-
ing Systems. ASPLOS ’19. New York, NY, USA: Association for Computing
Machinery, Apr. 4, 2019, pp. 971–985.

[2] R. H. Arpaci-Dusseau and A. C. Arpaci-Dusseau. Operating Systems: Three Easy
Pieces. 1.10. Arpaci-Dusseau Books, Nov. 2023.

[3] J. Axboe. Flexible I/O Tester. Version 3.37. 2022. U R L: https://github.
com/axboe/fio.

[4] J. Axboe. Per-Bdi Writeback Flusher Threads. Patch Series, v20. Linux Kernel
Mailing List (LKML). Sept. 11, 2009. U R L: https://lore.kernel.org/
all/1252654450- 25721- 1- git- send- email- jens.axboe@
oracle.com/.

[5] M. C. Baca. CXL Picks Up Steam In Data Centers. Semiconductor Engineering.
Jan. 26, 2023. U R L: https://semiengineering.com/cxl-picks-
up-steam-in-data-centers/ (visited on July 17, 2024).

[6] D.-H. Bae, I. Jo, Y. A. Choi, J.-Y. Hwang, S. Cho, D.-G. Lee, and J. Jeong. “2B-
SSD: The Case for Dual, Byte- and Block-Addressable Solid-State Drives.” In:
2018 ACM/IEEE 45th Annual International Symposium on Computer Architecture
(ISCA). 2018 ACM/IEEE 45th Annual International Symposium on Computer
Architecture (ISCA). Los Angeles, CA: IEEE, June 2018, pp. 425–438.

[7] Compute Express Link Consortium, Inc. Compute Express Link (CXL) Specifica-
tion 3.0. Version 1.0. 2022.

[8] Compute Express Link Consortium, Inc. Compute Express Link Consortium, Inc.
and CCIX Consortium, Inc. Announce Agreement for Consortium to Receive CCIX
Consortium Specifications and Other CCIX Consortium Assets. Press Release.
Aug. 6, 2023. U R L: https://computeexpresslink.org/blog/com
pute-express-link-consortium-inc-and-ccix-consortium-

69

https://github.com/axboe/fio
https://github.com/axboe/fio
https://lore.kernel.org/all/1252654450-25721-1-git-send-email-jens.axboe@oracle.com/
https://lore.kernel.org/all/1252654450-25721-1-git-send-email-jens.axboe@oracle.com/
https://lore.kernel.org/all/1252654450-25721-1-git-send-email-jens.axboe@oracle.com/
https://semiengineering.com/cxl-picks-up-steam-in-data-centers/
https://semiengineering.com/cxl-picks-up-steam-in-data-centers/
https://computeexpresslink.org/blog/compute-express-link-consortium-inc-and-ccix-consortium-inc-announce-agreement-for-consortium-to-receive-ccix-consortium-specifications-and-other-ccix-consortium-assets-1052/
https://computeexpresslink.org/blog/compute-express-link-consortium-inc-and-ccix-consortium-inc-announce-agreement-for-consortium-to-receive-ccix-consortium-specifications-and-other-ccix-consortium-assets-1052/
https://computeexpresslink.org/blog/compute-express-link-consortium-inc-and-ccix-consortium-inc-announce-agreement-for-consortium-to-receive-ccix-consortium-specifications-and-other-ccix-consortium-assets-1052/
https://computeexpresslink.org/blog/compute-express-link-consortium-inc-and-ccix-consortium-inc-announce-agreement-for-consortium-to-receive-ccix-consortium-specifications-and-other-ccix-consortium-assets-1052/

70 BIBLIOGRAPHY

inc-announce-agreement-for-consortium-to-receive-ccix
-consortium-specifications-and-other-ccix-consortium-
assets-1052/ (visited on July 17, 2024).

[9] Compute Express Link Consortium, Inc. CXL Consortium and OpenCAPI Con-
sortium Sign Letter of Intent to Transfer OpenCAPI Specifications to CXL. Press
Release. Aug. 1, 2022. U R L: https://computeexpresslink.org/wp-
content/uploads/2024/01/OCC_CXL-Announcement_FINAL.
pdf (visited on July 17, 2024).

[10] Compute Express Link Consortium, Inc. CXL Consortium Announces Compute
Express Link 3.1 Specification Release. Press Release. Nov. 14, 2023. U R L: ht
tps://computeexpresslink.org/wp-content/uploads/2024/
01/CXL_3.1- Specification- Release_FINAL.pdf (visited on
July 17, 2024).

[11] Compute Express Link Consortium, Inc. CXL Consortium Signs Agreement with
Gen-Z Consortium to Accept Transfer of Gen-Z Specifications and Assets. Press
Release. Feb. 10, 2022. U R L: https://computeexpresslink.org/wp-
content/uploads/2024/01/CXL_GenZ-Agreement-Release_v3.
pdf (visited on July 17, 2024).

[12] J. Corbet. “A Kernel without Buffer Heads.” In: LWN.net (May 1, 2023). U R L:
https://lwn.net/Articles/930173/ (visited on Apr. 3, 2024).

[13] D. Das Sharma, R. Blankenship, and D. Berger. “An Introduction to the Com-
pute Express Link (CXL) Interconnect.” In: ACM Computing Surveys 56.11 (July
2024).

[14] P. Esmaili-Dokht, F. Sgherzi, V. S. Girelli, I. Boixaderas, M. Carmin, A. Momeni,
A. Armejach, E. Mercadal, G. Llort, P. Radojkovic, M. Moreto, J. Gimenez, X.
Martorell, E. Ayguade, J. Labarta, E. Confalonieri, R. Dubey, and J. Adlard. A
Mess of Memory System Benchmarking, Simulation and Application Profiling.
Version 1. May 16, 2024. arXiv: 2405.10170 [cs]. Pre-published.

[15] B. Gervasi and S. Chang. NVMe Over CXL™ Defines Memory Class Storage to
Improve System Performance. White Paper. 2024.

[16] J. Handy. Intel’s Optane DIMM Price Model - The Memory Guy Blog. May 31,
2019. U R L: https://TheMemoryGuy.com/intels-optane-dimm-
price-model/ (visited on July 14, 2024).

[17] IEEE and The Open Group. The Open Group Base Specifications Issue 7, 2018
edition. Jan. 2018. U R L: https://pubs.opengroup.org/onlinepub
s/9699919799/mindex.html.

https://computeexpresslink.org/blog/compute-express-link-consortium-inc-and-ccix-consortium-inc-announce-agreement-for-consortium-to-receive-ccix-consortium-specifications-and-other-ccix-consortium-assets-1052/
https://computeexpresslink.org/blog/compute-express-link-consortium-inc-and-ccix-consortium-inc-announce-agreement-for-consortium-to-receive-ccix-consortium-specifications-and-other-ccix-consortium-assets-1052/
https://computeexpresslink.org/blog/compute-express-link-consortium-inc-and-ccix-consortium-inc-announce-agreement-for-consortium-to-receive-ccix-consortium-specifications-and-other-ccix-consortium-assets-1052/
https://computeexpresslink.org/blog/compute-express-link-consortium-inc-and-ccix-consortium-inc-announce-agreement-for-consortium-to-receive-ccix-consortium-specifications-and-other-ccix-consortium-assets-1052/
https://computeexpresslink.org/blog/compute-express-link-consortium-inc-and-ccix-consortium-inc-announce-agreement-for-consortium-to-receive-ccix-consortium-specifications-and-other-ccix-consortium-assets-1052/
https://computeexpresslink.org/blog/compute-express-link-consortium-inc-and-ccix-consortium-inc-announce-agreement-for-consortium-to-receive-ccix-consortium-specifications-and-other-ccix-consortium-assets-1052/
https://computeexpresslink.org/wp-content/uploads/2024/01/OCC_CXL-Announcement_FINAL.pdf
https://computeexpresslink.org/wp-content/uploads/2024/01/OCC_CXL-Announcement_FINAL.pdf
https://computeexpresslink.org/wp-content/uploads/2024/01/OCC_CXL-Announcement_FINAL.pdf
https://computeexpresslink.org/wp-content/uploads/2024/01/CXL_3.1-Specification-Release_FINAL.pdf
https://computeexpresslink.org/wp-content/uploads/2024/01/CXL_3.1-Specification-Release_FINAL.pdf
https://computeexpresslink.org/wp-content/uploads/2024/01/CXL_3.1-Specification-Release_FINAL.pdf
https://computeexpresslink.org/wp-content/uploads/2024/01/CXL_GenZ-Agreement-Release_v3.pdf
https://computeexpresslink.org/wp-content/uploads/2024/01/CXL_GenZ-Agreement-Release_v3.pdf
https://computeexpresslink.org/wp-content/uploads/2024/01/CXL_GenZ-Agreement-Release_v3.pdf
https://lwn.net/Articles/930173/
https://arxiv.org/abs/2405.10170
https://TheMemoryGuy.com/intels-optane-dimm-price-model/
https://TheMemoryGuy.com/intels-optane-dimm-price-model/
https://pubs.opengroup.org/onlinepubs/9699919799/mindex.html
https://pubs.opengroup.org/onlinepubs/9699919799/mindex.html

BIBLIOGRAPHY 71

[18] Intel Corporation. Agilex™ 7 FPGA and SoC FPGA I-Series. U R L: https:
//www.intel.com/content/www/us/en/products/details/
fpga/agilex/7/i-series.html (visited on July 4, 2024).

[19] Intel Corporation. daxctl. Version 78. U R L: https://github.com/pmem/
ndctl.

[20] Intel Corporation. eADR: New Opportunities for Persistent Memory Applications.
Jan. 15, 2021. U R L: https://www.intel.com/content/www/us/en/
developer/articles/technical/eadr-new-opportunities-
for-persistent-memory-applications.html (visited on July 16,
2024).

[21] Intel Corporation. Intel® Memory Latency Checker. Version 3.11a. U R L: https:
//www.intel.com/content/www/us/en/developer/articles/
tool/intelr-memory-latency-checker.html.

[22] Intel Corporation. Intel® Optane™ DC Persistent Memory Product Brief. 2019.
U R L: https://www.intel.com/content/www/us/en/products/
docs/memory-storage/optane-persistent-memory/optane-
dc-persistent-memory-brief.html.

[23] J. Izraelevitz, J. Yang, L. Zhang, J. Kim, X. Liu, A. Memaripour, Y. J. Soh, Z.
Wang, Y. Xu, S. R. Dulloor, J. Zhao, and S. Swanson. Basic Performance Mea-
surements of the Intel Optane DC Persistent Memory Module. 2019. arXiv: 1903.
05714 [cs.DC].

[24] D. Jamsek and A. McPadden. “An Innovative Persistent Memory Solution with
Today’s Memory.” Conference session. Presented at SC’19. Nov. 20, 2019. U R L:
https://sc19.supercomputing.org/presentation/index-
id=exforum148&sess=sess373.html.

[25] M. Jung. “Hello Bytes, Bye Blocks: PCIe Storage Meets Compute Express Link
for Memory Expansion (CXL-SSD).” In: Proceedings of the 14th ACM Workshop
on Hot Topics in Storage and File Systems. HotStorage ’22. New York, NY, USA:
Association for Computing Machinery, June 27, 2022, pp. 45–51.

[26] J. Kara. Implement Writeback Livelock Avoidance Using Page Tagging. Patch.
Linux Kernel Mailing List (LKML). Feb. 12, 2010. U R L: https://lore.
kernel.org/all/1265929584-5080-3-git-send-email-jack@
suse.cz/.

[27] J. Kara. Synchronous Page Faults. Patch Series, v6. Linux Kernel Mailing List
(LKML). Nov. 1, 2017. U R L: https://lore.kernel.org/all/20171
101153648.30166-1-jack@suse.cz/.

https://www.intel.com/content/www/us/en/products/details/fpga/agilex/7/i-series.html
https://www.intel.com/content/www/us/en/products/details/fpga/agilex/7/i-series.html
https://www.intel.com/content/www/us/en/products/details/fpga/agilex/7/i-series.html
https://github.com/pmem/ndctl
https://github.com/pmem/ndctl
https://www.intel.com/content/www/us/en/developer/articles/technical/eadr-new-opportunities-for-persistent-memory-applications.html
https://www.intel.com/content/www/us/en/developer/articles/technical/eadr-new-opportunities-for-persistent-memory-applications.html
https://www.intel.com/content/www/us/en/developer/articles/technical/eadr-new-opportunities-for-persistent-memory-applications.html
https://www.intel.com/content/www/us/en/developer/articles/tool/intelr-memory-latency-checker.html
https://www.intel.com/content/www/us/en/developer/articles/tool/intelr-memory-latency-checker.html
https://www.intel.com/content/www/us/en/developer/articles/tool/intelr-memory-latency-checker.html
https://www.intel.com/content/www/us/en/products/docs/memory-storage/optane-persistent-memory/optane-dc-persistent-memory-brief.html
https://www.intel.com/content/www/us/en/products/docs/memory-storage/optane-persistent-memory/optane-dc-persistent-memory-brief.html
https://www.intel.com/content/www/us/en/products/docs/memory-storage/optane-persistent-memory/optane-dc-persistent-memory-brief.html
https://arxiv.org/abs/1903.05714
https://arxiv.org/abs/1903.05714
https://sc19.supercomputing.org/presentation/index-id=exforum148&sess=sess373.html
https://sc19.supercomputing.org/presentation/index-id=exforum148&sess=sess373.html
https://lore.kernel.org/all/1265929584-5080-3-git-send-email-jack@suse.cz/
https://lore.kernel.org/all/1265929584-5080-3-git-send-email-jack@suse.cz/
https://lore.kernel.org/all/1265929584-5080-3-git-send-email-jack@suse.cz/
https://lore.kernel.org/all/20171101153648.30166-1-jack@suse.cz/
https://lore.kernel.org/all/20171101153648.30166-1-jack@suse.cz/

72 BIBLIOGRAPHY

[28] J. Kim, Y. J. Soh, J. Izraelevitz, J. Zhao, and S. Swanson. “SubZero: Zero-Copy
IO for Persistent Main Memory File Systems.” In: Proceedings of the 11th ACM
SIGOPS Asia-Pacific Workshop on Systems. APSys ’20. New York, NY, USA:
Association for Computing Machinery, Aug. 24, 2020, pp. 1–8.

[29] C. Lameter and M. Kim. “Page Migration.” In: The Linux Kernel Documentation.
v6.6.0. U R L: https://www.kernel.org/doc/html/v6.6/mm/
page_migration.html.

[30] R. Landley. “Red-Black Trees (Rbtree) in Linux.” In: The Linux Kernel Docu-
mentation. v6.6.0. U R L: https://docs.kernel.org/6.6/core-
api/rbtree.html.

[31] G. Lee, S. Shin, W. Song, T. J. Ham, J. W. Lee, and J. Jeong. “Asynchronous I/O
Stack: A Low-latency Kernel I/O Stack for Ultra-Low Latency SSDs.” In: 2019
USENIX Annual Technical Conference (USENIX ATC 19). 2019, pp. 603–616.

[32] Linux kernel contributors. “Direct Access for Files.” In: The Linux Kernel Docu-
mentation. v6.6.0. U R L: https://docs.kernel.org/6.6/filesyste
ms/dax.html.

[33] Linux kernel contributors. “VFS iomap Documentation.” In: The Linux Kernel
Documentation. next-20240621. June 21, 2024. U R L: https://www.kerne
l.org/doc/html/next/filesystems/iomap/index.html (visited
on June 24, 2024).

[34] Linux man-pages project. fallocate(2) — Linux System Call Manual. Version 6.8.
May 2, 2024.

[35] Linux man-pages project. fsync(2) — Linux System Call Manual. Version 6.8.
May 2, 2024.

[36] Linux man-pages project. madvise(2) — Linux System Call Manual. Version 6.8.
May 2, 2024.

[37] Linux man-pages project. mlock(2) — Linux System Call Manual. Version 6.8.
May 2, 2024.

[38] Linux man-pages project. mmap(2) — Linux System Call Manual. Version 6.8.
May 2, 2024.

[39] Linux man-pages project. msync(2) — Linux System Call Manual. Version 6.8.
May 2, 2024.

[40] Linux man-pages project. open(2) — Linux System Call Manual. Version 6.8.
May 2, 2024.

[41] Linux man-pages project. sync_file_range(2) — Linux System Call Manual. Ver-
sion 6.8. May 2, 2024.

https://www.kernel.org/doc/html/v6.6/mm/page_migration.html
https://www.kernel.org/doc/html/v6.6/mm/page_migration.html
https://docs.kernel.org/6.6/core-api/rbtree.html
https://docs.kernel.org/6.6/core-api/rbtree.html
https://docs.kernel.org/6.6/filesystems/dax.html
https://docs.kernel.org/6.6/filesystems/dax.html
https://www.kernel.org/doc/html/next/filesystems/iomap/index.html
https://www.kernel.org/doc/html/next/filesystems/iomap/index.html

BIBLIOGRAPHY 73

[42] Microsoft. Win32 File Mapping Documentation. U R L: https://learn.m
icrosoft.com/en-us/windows/win32/memory/file-mapping
(visited on June 3, 2024).

[43] NVM Express, Inc. NVM Express® Base Specification, Revision 2.0c. 2022.

[44] PCI-SIG®. PCI Express® Base Specification Revision 4.0 Version 1.0. Version 1.0.
2017.

[45] PCPartPicker. U R L: https://pcpartpicker.com (visited on June 12,
2024).

[46] R. van Riel. “Page Replacement in Linux 2.4 Memory Management.” In: 2001
USENIX Annual Technical Conference (USENIX ATC 01). 2001.

[47] C. Robinson. Kioxia CXL and BiCS Flash SSD Shown at FMS 2023. ServeThe-
Home. Aug. 10, 2023. U R L: https://www.servethehome.com/kiox
ia-cxl-and-bics-flash-ssd-shown-at-fms-2023/ (visited on
July 14, 2024).

[48] Samsung. CXL Memory Module Hybrid (CMM-H). 2023. U R L: https://
samsungmsl.com/cmmh/ (visited on Mar. 23, 2024).

[49] Samsung. Samsung CXL Solutions – CMM-H. July 9, 2024. U R L: https://se
miconductor.samsung.com/news-events/tech-blog/samsung-
cxl-solutions-cmm-h (visited on July 18, 2024).

[50] Samsung. Ultra-Low Latency with Samsung Z-NAND SSD. 2017. U R L: https:
//download.semiconductor.samsung.com/resources/broc
hure/Ultra-Low%20Latency%20with%20Samsung%20Z-NAND%
20SSD.pdf (visited on July 19, 2024).

[51] S. Sanfilippo. Redis. U R L: https://github.com/redis/redis.

[52] C. Siebenmann. What the Unified Buffer Cache Is Unifying. July 2, 2007. U R L:
https://utcc.utoronto.ca/~cks/space/blog/unix/Unified
BufferCache (visited on July 18, 2024).

[53] J. Stuecheli. “Open Coherent Accelerator Processor Interface (OpenCAPI) for
Advanced Storage.” Presented at SNIA Developer Conference 2018. Sept. 26,
2018. U R L: https://www.snia.org/sites/default/files/SDC/
2018/presentations/General_Session/Jeff_Stuechelli_
OpenCAPI.pdf (visited on July 18, 2024).

[54] Y. Sun, Y. Yuan, Z. Yu, R. Kuper, C. Song, J. Huang, H. Ji, S. Agarwal, J. Lou,
I. Jeong, R. Wang, J. H. Ahn, T. Xu, and N. S. Kim. “Demystifying CXL Memory
with Genuine CXL-ready Systems and Devices.” In: Proceedings of the 56th
Annual IEEE/ACM International Symposium on Microarchitecture. Micro ’23.
New York, NY, USA: Association for Computing Machinery, 2023, pp. 105–121.

https://learn.microsoft.com/en-us/windows/win32/memory/file-mapping
https://learn.microsoft.com/en-us/windows/win32/memory/file-mapping
https://pcpartpicker.com
https://www.servethehome.com/kioxia-cxl-and-bics-flash-ssd-shown-at-fms-2023/
https://www.servethehome.com/kioxia-cxl-and-bics-flash-ssd-shown-at-fms-2023/
https://samsungmsl.com/cmmh/
https://samsungmsl.com/cmmh/
https://semiconductor.samsung.com/news-events/tech-blog/samsung-cxl-solutions-cmm-h
https://semiconductor.samsung.com/news-events/tech-blog/samsung-cxl-solutions-cmm-h
https://semiconductor.samsung.com/news-events/tech-blog/samsung-cxl-solutions-cmm-h
https://download.semiconductor.samsung.com/resources/brochure/Ultra-Low%20Latency%20with%20Samsung%20Z-NAND%20SSD.pdf
https://download.semiconductor.samsung.com/resources/brochure/Ultra-Low%20Latency%20with%20Samsung%20Z-NAND%20SSD.pdf
https://download.semiconductor.samsung.com/resources/brochure/Ultra-Low%20Latency%20with%20Samsung%20Z-NAND%20SSD.pdf
https://download.semiconductor.samsung.com/resources/brochure/Ultra-Low%20Latency%20with%20Samsung%20Z-NAND%20SSD.pdf
https://github.com/redis/redis
https://utcc.utoronto.ca/~cks/space/blog/unix/UnifiedBufferCache
https://utcc.utoronto.ca/~cks/space/blog/unix/UnifiedBufferCache
https://www.snia.org/sites/default/files/SDC/2018/presentations/General_Session/Jeff_Stuechelli_OpenCAPI.pdf
https://www.snia.org/sites/default/files/SDC/2018/presentations/General_Session/Jeff_Stuechelli_OpenCAPI.pdf
https://www.snia.org/sites/default/files/SDC/2018/presentations/General_Session/Jeff_Stuechelli_OpenCAPI.pdf

74 BIBLIOGRAPHY

[55] T. Talpey. “Persistent Memory in Windows Server 2016.” Persistent Memory
Summit 2017. Presented at Persistent Memory Summit 2017. 2017. U R L: ht
tps://www.snia.org/sites/default/files/PM- Summit/
2017/presentations/Tom_Talpey_Persistent_Memory_in_
Windows_Server_2016.pdf.

[56] L. Torvalds. Linux Kernel. Version 6.6. U R L: https://www.kernel.org/.

[57] Valkey contributors. Valkey. Version 7.2.5. 2024. U R L: https://valkey.
io/.

[58] Valkey contributors. Valkey Benchmark. U R L: https://valkey.io/docs/
topics/benchmark/ (visited on July 7, 2024).

[59] Valkey contributors. Valkey Persistence. U R L: https://valkey.io/docs/
topics/persistence/ (visited on June 28, 2024).

[60] Valkey contributors. Valkey Pipelining. U R L: https://valkey.io/docs/
topics/pipelining/ (visited on July 7, 2024).

[61] K. Vättö. Power Loss Protection: How SSDs Are Protecting Data Integrity. White
Paper. Mar. 22, 2016. U R L: https://insights.samsung.com/2016/
03/22/power-loss-protection-how-ssds-are-protecting-
data-integrity-white-paper/ (visited on July 14, 2024).

[62] L. Werling, Y. Khalil, P. Maucher, T. Gröninger, and F. Bellosa. “Analyzing and
Improving CPU and Energy Efficiency of PM File Systems.” In: Proceedings of
the 1st Workshop on Disruptive Memory Systems. DIMES ’23. New York, NY,
USA: Association for Computing Machinery, Oct. 2023, pp. 31–37.

[63] M. Wilcox. Introducing the eXtensible Array (Xarray). Patch Series. Linux Kernel
Mailing List (LKML). Feb. 28, 2017. U R L: https://lore.kernel.org/
all/20170228181343.16588-1-willy@infradead.org/.

[64] M. Wilcox. Memory Folios. Patch Series. Linux Kernel Mailing List (LKML).
July 15, 2021. U R L: https://lore.kernel.org/all/20210715033
704.692967-1-willy@infradead.org/.

[65] M. Wilcox. “XArray.” In: The Linux Kernel Documentation. v6.6.0. U R L: http
s://docs.kernel.org/6.6/core-api/xarray.html.

[66] M. Wilcox and W. Kucharski. MM Folio Patches for 5.18. Patch Series. Linux
Kernel Mailing List (LKML). Feb. 4, 2022. U R L: https://lore.kernel.
org/linux-mm/20220204195852.1751729-1-willy@infradead.
org/.

[67] J. Yang, J. Kim, M. Hoseinzadeh, J. Izraelevitz, and S. Swanson. “An Empirical
Guide to the Behavior and Use of Scalable Persistent Memory.” In: 18th USENIX
Conference on File and Storage Technologies (FAST 20). 2020, pp. 169–182.

https://www.snia.org/sites/default/files/PM-Summit/2017/presentations/Tom_Talpey_Persistent_Memory_in_Windows_Server_2016.pdf
https://www.snia.org/sites/default/files/PM-Summit/2017/presentations/Tom_Talpey_Persistent_Memory_in_Windows_Server_2016.pdf
https://www.snia.org/sites/default/files/PM-Summit/2017/presentations/Tom_Talpey_Persistent_Memory_in_Windows_Server_2016.pdf
https://www.snia.org/sites/default/files/PM-Summit/2017/presentations/Tom_Talpey_Persistent_Memory_in_Windows_Server_2016.pdf
https://www.kernel.org/
https://valkey.io/
https://valkey.io/
https://valkey.io/docs/topics/benchmark/
https://valkey.io/docs/topics/benchmark/
https://valkey.io/docs/topics/persistence/
https://valkey.io/docs/topics/persistence/
https://valkey.io/docs/topics/pipelining/
https://valkey.io/docs/topics/pipelining/
https://insights.samsung.com/2016/03/22/power-loss-protection-how-ssds-are-protecting-data-integrity-white-paper/
https://insights.samsung.com/2016/03/22/power-loss-protection-how-ssds-are-protecting-data-integrity-white-paper/
https://insights.samsung.com/2016/03/22/power-loss-protection-how-ssds-are-protecting-data-integrity-white-paper/
https://lore.kernel.org/all/20170228181343.16588-1-willy@infradead.org/
https://lore.kernel.org/all/20170228181343.16588-1-willy@infradead.org/
https://lore.kernel.org/all/20210715033704.692967-1-willy@infradead.org/
https://lore.kernel.org/all/20210715033704.692967-1-willy@infradead.org/
https://docs.kernel.org/6.6/core-api/xarray.html
https://docs.kernel.org/6.6/core-api/xarray.html
https://lore.kernel.org/linux-mm/20220204195852.1751729-1-willy@infradead.org/
https://lore.kernel.org/linux-mm/20220204195852.1751729-1-willy@infradead.org/
https://lore.kernel.org/linux-mm/20220204195852.1751729-1-willy@infradead.org/

	Abstract
	Contents
	Introduction
	Background
	Compute Express Link (CXL)
	Direct Access (DAX) in Linux
	Hybrid Storage

	Approach
	I/O Interface Characterization
	Hybrid Storage Model
	Software Interface for Hybrid Storage
	Case Study: Linux's DAX Subsystem
	User Space API for Hybrid Storage

	Persistence-aware Page Cache

	Implementation
	Kernel Support for Hybrid Storage
	Hybrid Storage Representation
	Memory Management Modifications
	Persistence-Aware Page Cache

	Hybrid Storage Device Emulation
	File System Support for Hybrid Storage
	Evaluation Targets
	DAX-aware Key-Value Store
	DAX-aware fio mmap I/O Engine

	Evaluation
	Methodology and Evaluation Setup
	Synchronous Writeback DAX Optimization
	Synthetic I/O Performance
	Real-World Application Performance

	Discussion
	Dirty State Tracking
	Data Persistence
	Future Work

	Conclusion
	List of Acronyms
	Bibliography

