
Improvements in Crash Consistency Testing for
Persistent Memory File Systems

Lukas Werling
Karlsruhe Institute of Technology

Germany

Thomas-Christian Oder
Karlsruhe Institute of Technology

Germany

Lucas Wäldele
Karlsruhe Institute of Technology

Germany

Daniel Ritz
Karlsruhe Institute of Technology

Germany

Frank Bellosa
Karlsruhe Institute of Technology

Germany

ABSTRACT
Achieving crash consistency in persistent memory (PM) ap-
plications is difficult due to the need for fine-granular cache
flushes and memory fences. File systems are no exception.
Previous works have found numerous bugs in PM file sys-
tems, but crash consistency testing as part of file system
development is still rare. With this paper, we make crash
consistency testing easier by improving Vinter, a crash con-
sistency testing tool for file systems based on virtual ma-
chines. We introduce support for cross-media file systems
with NVMe and PM that are not covered by other testing
tools. To speed up testing, we add an alternative algorithm
for simulating crashes that focuses on logic bugs rather than
misuse of PM primitives.

KEYWORDS
crash consistency, file systems, persistent memory, NVMe,
cross-media, bug detection, testing

1 INTRODUCTION
Persistent memory (PM) allows direct access to storage with
load and store instructions. Due to volatile caches and out-
of-order execution, special care is needed to ensure that PM
contents are consistent at all times. Otherwise, a crash (e.g.,
after a power failure) could lead to data loss. Applications use
special persistency primitives such as non-temporal stores,
cache flushes, and memory fences to control the order in
which modifications reach PM. Consequently, applications
need adaptation to work correctly with directly-accessed
PM.

As an alternative, PM file systems can provide access to
PM over the traditional file system interface. They thus allow
high-performance PM access for unmodified applications.

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0
International License. DOI: https://doi.org/10.18420/fgbs2024f-01. FGBS ’24,
March 14-15, 2024, Bochum, Germany

Kernel

Cross-
Media

Userspace

for File
Systems

Other

Fi
le

 S
ys

te
m

s
CC

 T
oo

ls

year2014 15 16 17 18 19 20 21 22 23 24

PMFS

Yat

NOVA
N.-Fortis

Strata

SplitFS

Assise

PMTest

XFDetector
Witcher

Vinter
Chipmunk

Mumak

WineFS

ZIL-PMEM

OdinFS

Trio

this work

Figure 1: A timeline of selected PM file systems and
crash consistency testing tools.The underlines indicate
which file systems were tested by the respective tools.

Starting with PMFS in 2014, a large number of PM file sys-
tems have appeared over the last years [5, 9, 12, 13, 15, 23–
29].

Since the PM persistency primitives do not change the
visible runtime behavior of the application, we need tools
to verify their correct use. Previous works have proposed a
variety of such tools [7, 10, 11, 14, 16–19, 21]. Due to chal-
lenges in tracing kernel code, only a small subset of these
tools (Yat [16], PMTest [19], Vinter [14], and Chipmunk [17])
target PM file systems. All of these tools found several bugs
in the file systems they tested. This highlights the impor-
tance of automated crash consistency testing to verify crash
consistency behavior.

Figure 1 shows an overview of crash consistency testing
tools and the file systems they analyzed. We have a good
understanding of the crash consistency behavior of these
tested file systems. However, we observe that crash consis-
tency testing as part of file system development is still rare.
Given that recent crash consistency testing tools found a
multitude of issues in the file systems they tested, there is
a high likelihood of undiscovered bugs in newly developed
systems. Possible reasons for reluctance to use crash consis-
tency testing tools are the large time investment necessary

https://creativecommons.org/licenses/by-sa/4.0/legalcode
https://creativecommons.org/licenses/by-sa/4.0/legalcode
https://creativecommons.org/licenses/by-sa/4.0/legalcode
https://doi.org/10.18420/fgbs2024f-01


L. Werling et al.

Tracer Crash Image
Generator Tester

VM Test

Tr
ac

e

Cr
as

h 
 Im

ag
es

Semantic States
CC Properties

Figure 2: Overview of Vinter’s crash consistency testing
pipeline.

due to slow analysis tools, as well as missing features for
analyzing specialized systems.

With our work, we make crash consistency testing easier
by introducing improvements to Vinter [14]. We add support
for cross-media file systems that store data on NVMe in
addition to PM (Section 3), andwe improve the overall testing
speed (Section 4).

2 BACKGROUND AND RELATEDWORK
Since our work in this paper builds on top of Vinter, we first
take a closer look at it. We then compare Vinter to newer
crash consistency testing tools.

2.1 Vinter
Vinter [14] is a crash consistency testing tool for PM file sys-
tems. It performs black-box testing of full systems running
in a virtual machine and can automatically detect crash con-
sistency properties including single final state and atomicity.
Its crash consistency testing pipeline has three stages, as
shown in Figure 2: tracer, crash image generator, and tester.

Vinter’s tracer uses PANDA [8], a platform for dynamic
analysis based on QEMU with binary translation. It runs a
test in a virtual machine and configures PANDA to hook
all memory accesses as well as PM persistence primitives
such as cache flush and memory fence instructions. After
filtering relevant events, a thread asynchronously serializes
and compresses these events into a trace file.

After tracing finishes, the crash image generator reads
the trace, simulating PM and cache contents. At every mem-
ory fence with active writes, the crash image generator stores
possible contents of PM as if the virtual machine would crash
at that point. The images include one with no in-flight writes,
another with all writes, and more images with subsets of
writes. Since applications can perform an arbitrary amount
of writes between memory fences, this can easily lead to a
combinatorial explosion of possible states. Vinter employs a
heuristic based on read accesses by the recovery to reduce
this search space.

Finally, the tester loads each crash image into a new vir-
tual machine, runs the recovery process, and extracts the

semantic state from the image. For a file system, the semantic
state is a dump of all files and directories with their meta-
data and contents. From the semantic states, the tester can
automatically derive two crash consistency properties. First,
single final state means that at the end of the test case, there
is only one unique semantic state. Second, an operation is
atomic if there are exactly two unique semantic states in
total.

2.2 Newer Crash Consistency Testing Tools
We now take a short look at Chipmunk [17] and Mumak [11],
two crash consistency testing tools for PM that were pub-
lished after Vinter. Both tools use a similar testing pipeline.
Rather than using manually-written file system test cases as
in Vinter, Chipmunk can dynamically generate them [17].

Mumak’s tracer uses binary instrumentation, allowing
black box testing similar to Vinter, but only with user space
binaries [11]. Chipmunk opts for manual instrumentation of
relevant function calls using Linux Kprobes and Uprobes [17].
It thus requires detailed knowledge of the tested application
to instrument the correct functions.

Crash image generation in Chipmunk is comparable to
Vinter. Instead of a heuristic based on recovery read accesses,
Chipmunk coalesces stores performed by one function call
(e.g., a memcpy function) to a single write [17]. Mumak’s
crash image generation is focused on low analysis time by
reducing the amount of images. We take a closer look at it
in Section 4.

Chipmunk is based on CrashMonkey [20], a crash consis-
tency testing tool for block-based file systems. However, it
is not clear whether Chipmunk retains the ability to trace
block devices in addition to PM for testing cross-media file
systems, since none of their tested file systems require block
devices.

3 TESTING CROSS-MEDIA PM FILE
SYSTEMS

Cross-media PM file systems are file systems that use addi-
tional types of storage devices such as SSDs and hard disks.
The different storage media are usually arranged in tiers,
with fast but small PM serving latency-critical accesses and
block device tiers providing capacity for long-term storage
at higher latency.

For cross-media file systems, analyzing just the PMportion
with a tool like Vinter is not sufficient. Crash images need
to include the full state of the file system, including PM
and block devices. The access mode and crash consistency
semantics of block devices are very different from PM. Access
to block devices happens over asynchronous interfaces such
as NVMe. Instead of cache line flushes and memory barriers,



Improvements in Crash Consistency Testing for Persistent Memory File Systems

NVMe specifies a flush command that commits previous
writes to non-volatile memory [4].

In this section, we extend Vinter to support cross-media
PM file systems. The resulting tool Permanent is capable of
testing cross-media file systems that use PM and an NVMe
block device.

3.1 Approach
To enable testing cross-media file systems, we need to modify
all Vinter components. We discuss changes to the tracer, the
crash image generator, and the tester in sequence.

The tracer needs to provide an NVMe device to the virtual
machine, and trace all relevant commands issued to it. Rele-
vant commands are the NVMe write command that instructs
the SSD to write one or more blocks [2], and the NVMe flush
command that flushes all preceding write commands from
any volatile on-device buffers to persistent storage [4]. The
NVMe flush thus acts similar to a global cache line flush and
a memory fence for PM. We assume an atomic block size of
512 bytes and split larger write commands to that size. The
tracer captures a combined trace with PM and NVMe events
in order.

The crash image generator receives the trace and pro-
duces combined crash images (PM, NVMe). Cross-device
reordering is the primary challenge. Figure 3 shows an exam-
ple trace with two PM events and one NVMe event. If we do
not allow reordering between devices, we end up with the
three crash images as shown.With cross-device reordering, a
fourth image ({ }, {1}) would appear. Unrestricted cross-device
reordering leads to an explosion of possible states and thus
is not feasable. We argue that disallowing such reordering
better matches the behavior of the hardware, and thus imple-
ment this model in Permanent. NVMe command submission
on x86 involves a store to uncacheable (UC)memory-mapped
I/O addresses, and command completion is signalled with
an interrupt. Since both of these are serializing events [1],
reordering PM accesses across them is not possible.

To generate combined crash images, we first consider each
device independently. Crash image generation for both de-
vices happens at each PM fence with pending PM cache
line flushes, and at each NVMe flush with pending NVMe
writes. PM crash image generation then works like in Vinter.
For NVMe crash images, we allow arbitrary reordering of all
NVMewrites since the previous flush.We found that Vinter’s
heuristic does not sufficiently reduce the search space for file
systems such as ext4. We thus only use random combinations
of NVMe writes with a cutoff.

To combine the crash images from the two device types,
Permanent stores an index containing the set of PM crash
images and the set of NVMe crash images generated at that
point. Again, this combination could lead to a combinatorial

explosion of possible states, so we use a limited number of
random subsets.

Finally, the tester loads combined crash images to recover
their semantic state. Other than the combined loading, its
functionality stays the same as in Vinter.

3.2 Implementation
We implemented Permanent based on Vinter’s Rust imple-
mentation. Its source code is available at https://github.com/
KIT-OSGroup/permanent.

The main challenge was the tracer, which required a full
rewrite. Vinter’s tracer is based on PANDA [8], which itself
is based on an older QEMU version that does not include
a virtual NVMe device. For this reason, we reimplemented
PM tracing on top of vanilla QEMU with its TCG plugin
capabilities [6]. TCG plugins allow registering callbacks for
certain instructions, including memory accesses. To work
around some limitations in TCG plugins, we had to patch
QEMU to provide functions for reading guest memory to
our TCG plugin. Since register values are only available at
the end of basic blocks, we additionally patched the code
generation to pass the address of memory flush instructions
via a memory access callback. Similarly, we implemented
hypercalls as a memory access combined with a signalling
mov instruction with a special immediate value.

We implemented NVMe tracing by introducing callbacks
at relevant points in the NVMe emulation code. A single
NVMe command triggers multiple callbacks with a subset of
the information such as the command’s type and the data to
be written. All events from these NVMe and PM callbacks are
inserted into a queue. A worker thread then asynchronously
reassembles NVMe events to full commands, serializes the
NVMe commands and PM events, and writes them out to
the trace file.

3.3 Evaluation
To demonstrate Permanent’s functionality, we use it to ana-
lyze ZIL-PMEM [22]. ZIL-PMEM is an extension to OpenZFS,
a file system for block devices. ZIL-PMEM stores synchro-
nous file system accesses in a ring buffer structure on PM,
allowing acknowledgement of such accesses with low la-
tency. Once ZFS asynchronously commits the access to block
storage, the corresponding entry may be removed from PM.

We use Vinter’s test cases for our analysis. The result-
ing semantic states mostly meet our expectations for the
respective tests. Some of the tests yielded unexpected states
because ZFS updates timestamps on files that it modifies
during recovery, which we do not consider a problem. We
therefore did not discover any bugs in ZIL-PMEM or ZFS.

https://github.com/KIT-OSGroup/permanent
https://github.com/KIT-OSGroup/permanent


L. Werling et al.

PM write 0

PM flush 0

NVMe write 1

{0}, { }

Sequential
Execution

Caches
(PM,NVMe) Possible Crash Images

{ }, { }

{ }, {1}

{ }, { } {0}, { }

{0}, { }

{0}, { } {0}, {1}

Guaranteed
Persisted

{ }, { }

{0}, { }

{0}, { }

PM write 0

PM flush 0

NVMe write 1

Trace

no cross-device
reordering:

3 images

Figure 3: Example for crash image generation without cross-device reordering, as implemented by Permanent.

3.4 Discussion
Our current prototype of Permanent has a number of limita-
tions. A couple of features from Vinter are missing, including
stack traces for trace entries, evaluating the heuristic for PM
crash image generation, and speeding up state extraction in
the tester using VM snapshots. We do not expect obstacles
in adding these features.

Permanent’s PM tracing is significantly slower than Vin-
ter’s tracer. We expect a large potential for improvement by
adopting PANDA’s approach to memory access tracing [8].

We only applied Permanent to ZIL-PMEM so far. This is
partly because there is no source code available to other
cross-media file systems. For Strata [15] and Assise [5], two
user space cross-media file systems, LeBlanc et al. note that
the prototypes of these file systems do not currently support
recovery from arbitrary crashes [17].

Finally, Permanent can only test file system interaction
with QEMU’s NVMe implementation. Since the NVMe stan-
dard leaves some freedom to implementations, the behavior
of real SSDs might differ. In particular, the virtual NVMe
device always signals completion immediately and in order
of submission. Permanent thus cannot detect bugs from file
systems that do not handle delayed or reordered completions
correctly.

4 FAST TESTING FOR LOGIC BUGS
A core problem with crash consistency testing is the amount
of crash images generated from the trace. Programs can
write an arbitrary amount of data between memory fences,
leading to an explosion of possible crash images. Vinter uses
a heuristic based on read accesses done by the recovery
routine [14]. Tracing the recovery routine for the heuristic
takes additional time, though, and might not sufficiently cut
down the number of writes.

Mumak [11] takes an approach that prioritizes speed of
the analysis over coverage of possible crash states. By gener-
ating crash images without considering partial cache flushes
and deduplicating crash image generation points by stack
trace, Mumak can find logic bugs very quickly. Misuse of PM
primitives (e.g., missing cache line flushes) cannot reliably
be detected with such crash images. However, LeBlanc et al.

Vinter Mumak

where memory fences cache flushes and
memory fences

when always once per unique
stack trace

contents no in-flight stores,
all stores, subset of
stores with heuristic

all stores

Figure 4: Differences in the crash image generation
algorithms of Vinter [14] and Mumak [11].

have shown that logic bugs make up the majority of all bugs
they detected in PM file systems [17]. Thus, fast analysis for
logic bugs is a useful capability for a file system crash consis-
tency testing tool. Since Mumak can only analyze user space
software, it cannot analyze most file systems with kernel
components.

In this section, we describe our work of bringing fast
Mumak-style analysis to Vinter. We design and implement
Vinter-FPT, which replaces Vinter’s crash image generation
algorithm. Additionally, we bring Mumak’s trace analysis to
Vinter which provides hints for certain types of PM primi-
tives misuse that Vinter-FPT cannot otherwise detect. Vinter-
FPT’s source code is available at https://github.com/KIT-
OSGroup/Vinter-FPT.

4.1 Crash Image Generation
As outlined in Section 2, the testing pipelines of Mumak and
Vinter are very similar. We can thus keep Vinter’s tracer and
tester components in Vinter-FPT without modifications and
only need to introduce a new algorithm to the crash image
generator.

The main differences from Vinter’s original algorithm are
where and when crash images are generated and their con-
tents, summarized in Figure 4. Consequently, we modified
Vinter to also generate crash images at cache flushes with
unpersisted stores. Instead of using Vinter’s heuristic to gen-
erate multiple images with a subset of all unpersisted stores,

https://github.com/KIT-OSGroup/Vinter-FPT
https://github.com/KIT-OSGroup/Vinter-FPT


Improvements in Crash Consistency Testing for Persistent Memory File Systems

Vinter-FPT always generates exactly two images: one that
includes all stores up to this point (like Mumak), and another
that only includes stores that are fully persisted (i.e., after a
flush and fence).

Finally, Vinter-FPT only generates crash images once per
unique stack trace at a particular cache flush or memory
fence instruction with unpersisted stores. We ported Mu-
mak’s failure point tree [11] for this purpose. The tree effi-
ciently stores the stack traces at each crash image generation
point. We skip crash image generation if the stack trace we
try to insert is already present. This strategy of building and
querying the failure point tree simultaneously differs slightly
from Mumak, which builds the tree during tracing [11]. We
combine these steps during crash image generation to avoid
modifying Vinter’s tracer.

Note that the tracer in Vinter collects stack traces only
as optional metadata for debugging, since Vinter’s original
crash image generator does not require stack traces. Stack
traces must be captured for deduplication with the failure
point tree, resulting in some overhead during tracing com-
pared to original Vinter.

4.2 Trace Analysis
As an addition to crash image generation, Mumak imple-
ments a trace analyzer that searches the trace for patterns
that indicate misuse of PM persistency primitives [11]. Al-
though trace analysis cannot confirm bugs at the same level
as the testing pipeline, it can hint at some problems such as
ommitted cache flush instructions that the fast crash image
generation algorithm misses.

Our implementation of trace analysis closely follows Mu-
mak’s design [11]. In order to reduce the amount of reported
problems, we introduce a variant of the failure point tree for
deduplication. Using a flag for each problem in the leaves of
the tree, we only output a report the first time we encounter
it for a particular stack trace.

4.3 Results
We repeat the analysis of PMFS [9], NOVA [24], and NOVA-
Fortis [25] with Vinter’s 16 original test cases [14]. We an-
swer the following questions: Does the new crash image
generation algorithm result in a faster overall analysis? Are
we able to find the same bugs as original Vinter?

4.3.1 Performance. We run all tests on the three file systems
and track the runtime of the three components tracer, crash
image generator, and tester. Our test system has an AMD
RyzenThreadripper 3970X CPU running at 4.1 GHz. We com-
pare three configurations. Vinter is the original crash image
generation. No dedup generates crash images as described
above, but does not deduplicate by stack traces. Full includes
deduplication.

Vinter

full

no dedup

Tracer Crash Image Generator Tester

0 5 10 15 20 25 30 35
average runtime [s]

Figure 5: Average runtime of Vinter over all file system
tests compared with Vinter-FPT in two variants.

Vinter

full

no dedup

0 10 20 30 40 50 60 70
average number of unique crash images

Figure 6: Average number of unique crash images gen-
erated by Vinter and Vinter-FPT variants over all file
system tests.

Figure 5 shows the average runtime over all tests, and
Figure 6 the average number of generated crash images. We
can see an overall reduction of runtime from Vinter to full of
64.5%. The biggest relative reduction is from the crash image
generator that takes less than 10% of the original runtime.
This result is expected, since original Vinter spends more
than half of the crash image generator runtime evaluating
its heuristic [14] and generates more than three times the
amount of crash images.

The runtime of the tracer increases by 28.1% on average
when capturing stack traces. For some tests with very few
(< 5) crash images, this leads to a small increase in overall run-
time. Additionally, we observe some tests where the number
of crash images and thus time spent in the tracer increases,
as Vinter-FPT generates crash images at more trace entries
than original Vinter.

Deduplication with the failure point tree yields an overall
runtime improvement of 18.3% on average. The crash image
generator spends 15.6% less time generating and then dedu-
plicating images. The number of unique images decreases
by around 4 on average, improving runtime of the tester by
19.6%.

4.3.2 Completeness. We now compare the test results from
original Vinter with those from Vinter-FPT. We summarize
our observations in Figure 7. In more than half of the tests,
the resulting states are identical. Although Vinter-FPT finds
fewer states than Vinter in 14 tests, the resulting properties



L. Werling et al.

Observation # tests

Identical states in both 25

Failed recovery in Vinter, but not Vinter-FPT 3

Fewer states in Vinter-FPT, same result 14

Fewer states, wrongly assumed atomic 6

Figure 7: Evaluation of test results from Vinter and
Vinter-FPT. Vinter-FPT misses atomicity bugs in 6 out
of 48 tests.

(single final state, atomicity) match. In three tests, Vinter-
FPT does not find states whose recovery fails, which Vinter
considers a separate type of bug. However, Vinter-FPT still
flags these tests due to atomicity violations.

Finally, six tests remain where Vinter-FPT finds fewer
semantic states than Vinter and thus wrongly considers the
operation atomic. For these tests, we take a look at the output
of the trace analyzer. It reports unordered flushes for three
tests, and a missing flush for two other tests. Only for one
remaining test, there is no hint at any problem.

4.4 Discussion
Vinter-FPT meets expectations. It significantly reduces anal-
ysis time for most test cases. Only in very short tests where
Vinter already generates few crash images, runtime increases
slightly from capturing stack traces or generating more im-
ages. The generated crash images allowed reproduction of
the bugs that Vinter found in 39 of 48 test cases, and found
less severe issues than Vinter in three more test cases. This
is close to Mumak’s claim of a 90% bug coverage [11].

Although we could see that trace analysis can help to close
some gaps of the fast crash image generator, we found that
its reports are generally less helpful than reports from crash
images. For some test cases, it generated a large amount
of reports, even after deduplication. Reports of unordered
flushes (i.e., a fence acting on multiple flush instructions)
were the only hints at problems for three tests where Vinter-
FPT’s crash image generation failed. This pattern does not
necessarily indicate a bug, so confirmation with slower, but
more comprehensive crash image generation like Vinter’s is
necessary.

5 FUTUREWORK
Improving tracing. As we have seen in Figure 5, Vinter’s
tracing step makes up a large portion of the analysis time.
Function-based tracing as in Chipmunk [17] is significantly
faster, but requires manual, error-prone input. The primary
issue is that dynamic binary translation needs to translate
all instructions and hook all memory accesses, even though

only a small subset of them access PM. As an alternative,
we are investigating patching only relevant memory access
instruction at runtime. Using memory protection keys (e.g.,
Intel MPK [1]), selectively trapping access to PM is possible.
We can then patch the trapping instruction, trace the access,
and repeat the original instruction with adjusted memory
protection keys to allow access. Further executions of the
patched instructions will not trap, allowing fast tracing.

CXLmemory crash consistency.Compute Express Link
(CXL) [3] allows devices to provide persistent memory to
the system. CXL provides a unique opportunity to gain more
insight into the system’s crash consistency semantics. With a
custom CXL device (e.g., an FPGA), we can trace PM accesses
at the device. By cross-referencing the device trace with a
CPU trace, we can verify the accuracy of the underlying
models of crash consistency testing tools.

6 CONCLUSION
Crash consistency testing, especially for file systems, is an
important tool for writing correct PM software. We have
introduced two improvements to Vinter, a crash consistency
testing tool based on virtual machines.

Permanent extends Vinter to support cross-media file sys-
tems that store data on NVMe in addition to PM. It traces
accesses to a virtual NVMe device and creates combined (PM,
NVMe) crash images. We have successfully used Permanent
to test the cross-media file system ZFS with ZIL-PMEM.

Vinter-FPT speeds up Vinter’s crash image generation by
focusing on logic bugs. We have demonstrated that Vinter-
FPT can reduce the runtime by more than half while still
finding most of the bugs in the tested file systems.

REFERENCES
[1] 2016. Intel® 64 and IA-32 Architectures Software Developer’s Manual,

Combined Volumes: 1, 2A, 2B, 2C, 2D, 3A, 3B, 3C and 3D. Technical
Report. 4670 pages.

[2] 2023. NVM Express NVM Command Set Specification.
https://nvmexpress.org/wp-content/uploads/NVM-Express-NVM-
Command-Set-Specification-1.0d-2023.12.28-Ratified.pdf

[3] 2024. Compute Express Link™: The Breakthrough CPU-to-Device
Interconnect. https://computeexpresslink.org

[4] 2024. NVM Express Base Specification. https://nvmexpress.org/wp-
content/uploads/NVM-Express-Base-Specification-2.0d-2024.01.11-
Ratified.pdf

[5] Thomas E Anderson, Simon Peter, Marco Canini, Jongyul Kim, Dejan
Kostic, Youngjin Kwon, Waleed Reda, Henry N Schuh, and Emmett
Witchel. 2022. Assise: Performance and Availability via Client-local
NVM in a Distributed File System. 14th USENIX Symposium on Op-
erating Systems Design and Implementation (OSDI 20) (Nov. 2022),
1011–1027. https://www.usenix.org/conference/osdi20/presentation/
anderson

[6] The QEMU Project Developers. 2023. QEMU TCG Plugins. https:
//www.qemu.org/docs/master/devel/tcg-plugins.html

[7] Bang Di, Jiawen Liu, Hao Chen, and Dong Li. 2021. Fast, flexible, and
comprehensive bug detection for persistent memory programs. In

https://nvmexpress.org/wp-content/uploads/NVM-Express-NVM-Command-Set-Specification-1.0d-2023.12.28-Ratified.pdf
https://nvmexpress.org/wp-content/uploads/NVM-Express-NVM-Command-Set-Specification-1.0d-2023.12.28-Ratified.pdf
https://computeexpresslink.org
https://nvmexpress.org/wp-content/uploads/NVM-Express-Base-Specification-2.0d-2024.01.11-Ratified.pdf
https://nvmexpress.org/wp-content/uploads/NVM-Express-Base-Specification-2.0d-2024.01.11-Ratified.pdf
https://nvmexpress.org/wp-content/uploads/NVM-Express-Base-Specification-2.0d-2024.01.11-Ratified.pdf
https://www.usenix.org/conference/osdi20/presentation/anderson
https://www.usenix.org/conference/osdi20/presentation/anderson
https://www.qemu.org/docs/master/devel/tcg-plugins.html
https://www.qemu.org/docs/master/devel/tcg-plugins.html


Improvements in Crash Consistency Testing for Persistent Memory File Systems

Proceedings of the 26th ACM International Conference on Architectural
Support for Programming Languages and Operating Systems. ACM,
Virtual USA, 503–516. https://doi.org/10.1145/3445814.3446744

[8] Brendan Dolan-Gavitt, Josh Hodosh, Patrick Hulin, Tim Leek, and
Ryan Whelan. 2015. Repeatable Reverse Engineering with PANDA.
In Proceedings of the 5th Program Protection and Reverse Engineering
Workshop. ACM, Los Angeles CA USA, 1–11. https://doi.org/10.1145/
2843859.2843867

[9] Subramanya R. Dulloor, Sanjay Kumar, Anil Keshavamurthy, Philip
Lantz, Dheeraj Reddy, Rajesh Sankaran, and Jeff Jackson. 2014. System
Software for Persistent Memory. In Proceedings of the Ninth European
Conference on Computer Systems (EuroSys ’14). ACM, New York, NY,
USA, 15:1–15:15. https://doi.org/10.1145/2592798.2592814

[10] Xinwei Fu, Wook-Hee Kim, Ajay Paddayuru Shreepathi, Mohannad
Ismail, Sunny Wadkar, Dongyoon Lee, and Changwoo Min. 2021.
Witcher: Systematic Crash Consistency Testing for Non-Volatile Mem-
ory Key-Value Stores. In Proceedings of the ACM SIGOPS 28th Sympo-
sium on Operating Systems Principles. ACM, Virtual Event Germany,
100–115. https://doi.org/10.1145/3477132.3483556

[11] João Gonçalves, Miguel Matos, and Rodrigo Rodrigues. 2023. Mumak:
Efficient and Black-Box Bug Detection for Persistent Memory. In Pro-
ceedings of the Eighteenth European Conference on Computer Systems.
ACM, Rome Italy, 734–750. https://doi.org/10.1145/3552326.3587447

[12] Rohan Kadekodi, Saurabh Kadekodi, Soujanya Ponnapalli, Harshad
Shirwadkar, Gregory R. Ganger, Aasheesh Kolli, and Vijay Chi-
dambaram. 2021. WineFS: a hugepage-aware file system for persistent
memory that ages gracefully. In Proceedings of the ACM SIGOPS 28th
Symposium on Operating Systems Principles CD-ROM. ACM, Virtual
Event Germany, 804–818. https://doi.org/10.1145/3477132.3483567

[13] Rohan Kadekodi, Se Kwon Lee, Sanidhya Kashyap, Taesoo Kim,
Aasheesh Kolli, and Vijay Chidambaram. 2019. SplitFS: reducing
software overhead in file systems for persistent memory. In Proceed-
ings of the 27th ACM Symposium on Operating Systems Principles. ACM,
Huntsville Ontario Canada, 494–508. https://doi.org/10.1145/3341301.
3359631

[14] Samuel Kalbfleisch, Lukas Werling, and Frank Bellosa. 2022. Vinter:
Automatic Non-Volatile Memory Crash Consistency Testing for Full
Systems. In 2022 USENIX Annual Technical Conference (USENIX ATC
22). 933–950. https://www.usenix.org/conference/atc22/presentation/
werling

[15] Youngjin Kwon, Henrique Fingler, Tyler Hunt, Simon Peter, Emmett
Witchel, and Thomas Anderson. 2017. Strata: A Cross Media File
System. In Proceedings of the 26th Symposium on Operating Systems
Principles. ACM, Shanghai China, 460–477. https://doi.org/10.1145/
3132747.3132770

[16] Philip Lantz, Subramanya Dulloor, Sanjay Kumar, Rajesh Sankaran,
and Jeff Jackson. 2014. Yat: A Validation Framework for Persis-
tent Memory Software. In 2014 USENIX Annual Technical Conference
(USENIXATC 14). 433–438. https://www.usenix.org/conference/atc14/
technical-sessions/presentation/lantz

[17] Hayley LeBlanc, Shankara Pailoor, Om Saran K R E, Isil Dillig, James
Bornholt, and Vijay Chidambaram. 2023. Chipmunk: Investigating
Crash-Consistency in Persistent-Memory File Systems. In Proceed-
ings of the Eighteenth European Conference on Computer Systems (Eu-
roSys ’23). Association for Computing Machinery, New York, NY, USA,
718–733. https://doi.org/10.1145/3552326.3567498

[18] Sihang Liu, Korakit Seemakhupt, Yizhou Wei, Thomas Wenisch,
Aasheesh Kolli, and Samira Khan. 2020. Cross-Failure Bug Detec-
tion in Persistent Memory Programs. In Proceedings of the Twenty-
Fifth International Conference on Architectural Support for Program-
ming Languages and Operating Systems (ASPLOS ’20). Association for
Computing Machinery, Lausanne, Switzerland, 1187–1202. https:

//doi.org/10.1145/3373376.3378452
[19] Sihang Liu, Yizhou Wei, Jishen Zhao, Aasheesh Kolli, and Samira

Khan. 2019. PMTest: A Fast and Flexible Testing Framework for
Persistent Memory Programs. In Proceedings of the Twenty-Fourth
International Conference on Architectural Support for Programming
Languages and Operating Systems. ACM, Providence RI USA, 411–425.
https://doi.org/10.1145/3297858.3304015

[20] JayashreeMohan, Ashlie Martinez, Soujanya Ponnapalli, Pandian Raju,
and Vijay Chidambaram. 2018. Finding Crash-Consistency Bugs with
Bounded Black-Box Crash Testing. 13th USENIX Symposium on Oper-
ating Systems Design and Implementation (OSDI 18) (Oct. 2018), 33–50.
https://www.usenix.org/conference/osdi18/presentation/mohan

[21] Ian Neal, Ben Reeves, Ben Stoler, Andrew Quinn, Youngjin Kwon,
Simon Peter, and Baris Kasikci. 2020. AGAMOTTO: How Persistent is
your Persistent Memory Application?. In 14th USENIX Symposium on
Operating Systems Design and Implementation (OSDI 20). 1047–1064.
https://www.usenix.org/conference/osdi20/presentation/neal

[22] Christian Schwarz. 2021. Low-latency synchronous IO for OpenZFS
using persistent memory. https://os.itec.kit.edu/downloads/2021_
MA_Schwarz_SyncIOForZFS.pdf

[23] Haris Volos, Sanketh Nalli, Sankarlingam Panneerselvam,
Venkatanathan Varadarajan, Prashant Saxena, and Michael M.
Swift. 2014. Aerie: Flexible File-system Interfaces to Storage-class
Memory. In Proceedings of the Ninth European Conference on Computer
Systems (EuroSys ’14). ACM, New York, NY, USA, 14:1–14:14.
https://doi.org/10.1145/2592798.2592810

[24] Jian Xu and Steven Swanson. 2016. NOVA: A Log-structured File Sys-
tem for Hybrid Volatile/Non-volatile Main Memories. In 14th {USENIX}
Conference on File and Storage Technologies ({FAST} 16). 323–338.
https://www.usenix.org/node/194455

[25] Jian Xu, Lu Zhang, Amirsaman Memaripour, Akshatha Gangadhara-
iah, Amit Borase, Tamires Brito Da Silva, Steven Swanson, and Andy
Rudoff. 2017. NOVA-Fortis: A Fault-Tolerant Non-Volatile Main Mem-
ory File System. In Proceedings of the 26th Symposium on Operating
Systems Principles (SOSP ’17). ACM, New York, NY, USA, 478–496.
https://doi.org/10.1145/3132747.3132761

[26] Yang Yang, Qiang Cao, Jie Yao, Yuanyuan Dong, and Weikang Kong.
2021. SPMFS: A Scalable Persistent Memory File System on Optane
Persistent Memory. In 50th International Conference on Parallel Pro-
cessing (ICPP 2021). Association for Computing Machinery, New York,
NY, USA, 1–10. https://doi.org/10.1145/3472456.3472503

[27] Shengan Zheng, Morteza Hoseinzadeh, Steven Swanson, and Linpeng
Huang. 2023. TPFS: A High-Performance Tiered File System for Per-
sistent Memories and Disks. ACM Transactions on Storage 19, 2 (May
2023), 1–28. https://doi.org/10.1145/3580280

[28] Shawn Zhong, Chenhao Ye, and Guanzhou Hu SuyanQu. 2023. MadFS:
Per-File Virtualization for Userspace Persistent Memory Filesystems.
21st USENIX Conference on File and Storage Technologies (FAST 23)
(Feb. 2023), 265–280. https://www.usenix.org/conference/fast23/
presentation/zhong

[29] Diyu Zhou, Yuchen Qian, Vishal Gupta, Zhifei Yang, Changwoo Min,
and Sanidhya Kashyap. 2022. ODINFS: Scaling PM Performance with
Opportunistic Delegation. In 16th USENIX Symposium on Operating
Systems Design and Implementation (OSDI 22). 179–193. https://www.
usenix.org/conference/osdi22/presentation/zhou-diyu

https://doi.org/10.1145/3445814.3446744
https://doi.org/10.1145/2843859.2843867
https://doi.org/10.1145/2843859.2843867
https://doi.org/10.1145/2592798.2592814
https://doi.org/10.1145/3477132.3483556
https://doi.org/10.1145/3552326.3587447
https://doi.org/10.1145/3477132.3483567
https://doi.org/10.1145/3341301.3359631
https://doi.org/10.1145/3341301.3359631
https://www.usenix.org/conference/atc22/presentation/werling
https://www.usenix.org/conference/atc22/presentation/werling
https://doi.org/10.1145/3132747.3132770
https://doi.org/10.1145/3132747.3132770
https://www.usenix.org/conference/atc14/technical-sessions/presentation/lantz
https://www.usenix.org/conference/atc14/technical-sessions/presentation/lantz
https://doi.org/10.1145/3552326.3567498
https://doi.org/10.1145/3373376.3378452
https://doi.org/10.1145/3373376.3378452
https://doi.org/10.1145/3297858.3304015
https://www.usenix.org/conference/osdi18/presentation/mohan
https://www.usenix.org/conference/osdi20/presentation/neal
https://os.itec.kit.edu/downloads/2021_MA_Schwarz_SyncIOForZFS.pdf
https://os.itec.kit.edu/downloads/2021_MA_Schwarz_SyncIOForZFS.pdf
https://doi.org/10.1145/2592798.2592810
https://www.usenix.org/node/194455
https://doi.org/10.1145/3132747.3132761
https://doi.org/10.1145/3472456.3472503
https://doi.org/10.1145/3580280
https://www.usenix.org/conference/fast23/presentation/zhong
https://www.usenix.org/conference/fast23/presentation/zhong
https://www.usenix.org/conference/osdi22/presentation/zhou-diyu
https://www.usenix.org/conference/osdi22/presentation/zhou-diyu

	Abstract
	1 Introduction
	2 Background and Related Work
	2.1 Vinter
	2.2 Newer Crash Consistency Testing Tools

	3 Testing Cross-Media PM File Systems
	3.1 Approach
	3.2 Implementation
	3.3 Evaluation
	3.4 Discussion

	4 Fast Testing for Logic Bugs
	4.1 Crash Image Generation
	4.2 Trace Analysis
	4.3 Results
	4.4 Discussion

	5 Future Work
	6 Conclusion
	References

