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Abstract

Non-volatile memory (NVM) is a new technology that is directly integrated in the pro-
cessor’s memory system. While NVM has a higher latency and is slower than DRAM,
its performance is far superior when compared to regular SSDs. NVM can be used as
a DRAM replacement as well as regular storage. When used as regular storage, it can
be accessed by a Persistent Memory (PM) compatible application, or be abstracted into
a regular storage device with a generic standard interface, like POSIX, using a file sys-
tem. New file systems like Nova and PMFS were developed to fully profit from NVM’s
design. Due to this difference in design, existing file system testers to test for crash
consistency, like CrashMonkey or Hydra, are not able to test those file systems and new
solutions, like Vinter, had to be developed.

Vinter is a record-and-replay black-box approach for testing PM file systems using
manually written tests. While it provides a quick test heuristic already, Mumak, a black-
box system to analyze performance and crash consistency on PM applications, presented
a different approach that promises similar results at a better runtime performance when
applied to Vinter. Mumak uses a trace entry’s kernel stack trace to generate a failure
point tree. This tree is used deduplicate trace entries by their kernel stack trace and
to generate possible crash images later on. Mumak extends this process with a pattern
based trace analyzer to discover potential bugs in performance and design of the tested
application.

In this thesis, we extend Vinter’s crash image generator by this new approach to
generate crash images using the failure point tree.

We also extend Vinter with an improved and standalone version of Mumak’s trace
analyzer to provide an additional way to find bugs.

We could verify that the failure point tree approach delivers a big improvement in
runtime while delivering similar, although not always fully equal, results when running
our existing tests against Nova, Nova-Protection and PMFS.

We were further able to show that the trace analyzer is able to find some of the
bugs missed by the failure point tree approach as well as additional bugs that were not
previously covered at all.
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Chapter 1

Introduction

Non-volatile memory (NVM) is a new byte-addressable storage technology. Its first
and most popular commercially available implementation is the Intel® Optane™ DC
Persistent Memory Module (Optane DC PMM) [9]. Optane DC PMM is a nonvolatile
memory DIMM that is able to work as RAM replacement at a better price to storage
performance, or as a non-volatile storage directly addressable as part of the processor’s
memory hierarchy.

The latter is implemented by either directly accessing the Persistent Memory (PM)
through software or through a PM compatible file system providing common user space
interfaces such as POSIX [7].

For software to directly access the PM, the software will be required to implement
all data-, storage- and crash-handling on its own, requiring its entire design to be around
PM.

File systems designed for PM on the other hand require no changes in an application
while still providing the advantages delivered by PM. An ideal file system provides
performance while guaranteeing crash consistency. Crash consistency is an application
or file system’s ability to recover from a crash consistently, leaving no inconsistent or
incomplete data behind.

The rather young age of the NVM technology paired with its difference in design
make PM file system development hard. As such, proper testing is important.

Previous tools to test for crash consistency, like CrashMonkey paired with ACE [19]
or Hydra [14], rely on the kernel’s block layer to record I/O operations for their analysis.
This makes them incompatible with PM file systems.

To properly test PM file systems, new tools were introduced.
Vinter [11] uses binary translation to trace relevant instructions, like load-store in-

structions and barriers, in a virtual machine to provide a black-box debugging approach
without the need for kernel or user space code modifications. Given the amount of pos-
sible crash images during a test, analyzing all of them would not be feasible because
it would take too long. Vinter uses a heuristic to only analyze crash images that con-
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4 CHAPTER 1. INTRODUCTION

tain variations of stores that are likely to be read during the post-failures crash-recovery
stage. Although this limits the amount of crash images to check, its performance could
still be improved. LeBlanc et al. [18] have observed that logic bugs are much more
common in PM file systems than programming errors. This is where Mumak comes
into play.

Mumak provides performance and crash consistency analysis for PM applications by
analyzing the software binary with Intel Pin [23] to quickly generate a failure point tree
that is used to deduplicate the trace entries, and therefore their resulting crash images,
by their kernel stack trace. This is paired with a comprehensive trace analysis to find
certain types of PM misuse.

The failure point tree promises similar results in crash consistency testing while
requiring less crash images to be generated. This will greatly improve a test’s runtime
because fewer crash images need to be generated and processed.

To further improve on detecting potential performance, design and consistency bugs,
Mumak presents a trace analysis tool that detects potential bugs using pattern matching
on a test’s trace.

In this thesis we will focus on implementing Mumak’s failure point tree and an im-
proved version of its trace analysis into Vinter’s test pipeline to enable an even faster
crash image generation and a comprehensive analysis of logic bugs in PM file systems.
To verify the implementation and to evaluate the bug hit rate we will compare the re-
sult to the original implementation of Vinter in terms of performance, runtime and the
amount of bugs that were found. The source code of the changes described in this thesis
can be found on GitHub.com/Myself5/vinter [22].

https://github.com/Myself5/vinter/tree/thesis


Chapter 2

Foundations

2.1 Persistent Memory
Persistent Memory (PM) is a type of non-volatile memory (NVM). NVM is a new byte
addressable storage technology integrated in the processor’s memory system. It allows
software direct access to virtual memory mappings in order to persistently load and store
data.

PM’s first commercially available implementation is Intel® Optane™ DC Persistent
Memory Module (Optane DC PMM). Optane DC PMM is a DDR4 DIMM module
using the Optane DC PMM UTH DDR-T Protocol [8]. Because of that, its compatibility
is limited to Intel CPU’s which support the DDR-T protocol.

Optane DC PMM’s performance sits between SSDs and DRAM with a higher la-
tency than DRAM (346 ns) [9] but, especially when interleaved and used with an opti-
mal amount of threads, a far superior read- (40 GB/s) and write-bandwidth (10 GB/s)
compared to SSDs [27].

As Optane DC PMM is both byte-addressable and persistent, it can be used as a
DRAM replacement with high capacity and slightly higher latency for main memory
(memory mode) or as a persistent storage device replacing disks and SSDs (AppDirect
mode).

In this thesis, we will focus on its usage in AppDirect mode. In AppDirect mode,
software is able to directly access the storage through the processor’s memory hierarchy.
For software to access the PM, it is required to manually handle all storage processes
like implementing memory fences, flushing volatile caches as well as handling crashes
and crash recovery, resulting in the software to be written entirely for and around the
design of Persistent Memory.

Alternatively, new file systems were designed around PM to provide generic stan-
dards (our focus will be on POSIX compatible file systems during the tests), abstracting
the PM to the software while profiting from the performance improvements delivered
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6 CHAPTER 2. FOUNDATIONS

by PM. However, these file systems still need to handle the aforementioned challenges
and require testing. Due to the differences in PM’s design, software and file systems
can no longer be tested with previously known analysis tools like CrashMonkey paired
with ACE [19] or Hydra [14] as those rely on the kernel’s block layer to analyze I/O
operations and only inject crashes after fsync-related system calls. PM file systems
do not use fsync but instead require a set of cache line flushes (clflushopt) or write
backs (clwb) paired with memory fences to persistently store the data onto the NVM.
As such, it is necessary to also inject crashes before, during and after these system calls
to expose bugs in the largely untested and complex crash consistency mechanisms of
PM file systems. Further, LeBlanc et al. [18] observed that logic bugs are much more
common than actual programming errors on PM file systems. To handle this change in
requirement, new tools were introduced to debug PM file systems and applications.
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2.2 Crash Consistency
Crash consistency is an often only loosely described property of a stateful application.
It describes a storage’s ability to consistently store persistent data when experiencing
a crash. When data is written to NVM it is initially written to a volatile cache (often
DRAM) and will be stored to the persistent NVM upon an instructed memory write
back or flush. If a crash happens during that procedure the cache is either lost, partially
stored or fully stored to the NVM. We call these different states crash images. For an
atomic operation this means that each crash image results in one of two states: the initial
or the final state. Figure 1 shows the NVM storage process during an atomic operation
as time proceeds from left to right.

time

NVM

caches

crash images

1 2 semantic states

Figure 1: Potential crash images recovering to one of two semantic states after an atomic
operation [11]

When the write of new data (here marked blue) is instructed, the data is sent to a
cache and as long as these caches are not fully flushed to the NVM, like they are in
the final step on the right, the recovery operation ends up in the same, initial semantic
state. The final write (here marked green) marks a successful write, comparable to how
journaling works on some file systems. For non-atomic operations Kalbfleisch, Werling,
and Bellosa define a single final state (SFS) with weaker properties that all crash images
recover to. Any of these properties might however be violated by different kinds of
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logic or programming bugs. To find these bugs, various testing frameworks of different
scopes were introduced or are under active development.

2.3 Vinter
Vinter [11], the virtualization-based NVM tester, is a record-and-replay black-box ap-
proach for testing a PM file system’s crash consistency. It uses manually written tests
to cover most of the POSIX standard but also provides guidance on how to extend those
tests if needed. As its name suggests, Vinter uses binary translation to trace relevant
load-store instructions and barriers in a virtual machine using PANDA [1]. Using that
trace, crash images representing possible NVM contents after a crash, are generated.
These crash images are reduced exponentially in quantity by using a heuristic to iden-
tify the NVM locations where the file system’s recovery code is reading from the crash
image. This is followed by comparing each crash image’s semantic state, in this case a
list of all files in a file system, to automatically verify crash consistency properties such
as atomicity.

2.4 Chipmunk
Chipmunk [18] is a record-and-replay grey-box approach for testing a PM file system’s
crash consistency using the ACE workload generator [19] and Google’s syzcaller grey-
box kernel fuzzer [25] to generate test workloads. It requires only basic knowledge
about the file system and needs to be supplied with the name (for kernel space compo-
nents) or an offset (for user space components) of a file system’s persistence functions
so that it can instrument them at runtime using Kprobes [13] for kernel space compo-
nents, Uprobes [26] for userspace components or both in case of a split file system like
SplitFS [10]. Other than that, it does not require changes to the software, kernel or file
system allowing easy debugging without introducing an additional layer of potential
errors. [18]
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2.5 Mumak
Mumak is a black-box system to analyze performance and crash consistency in PM
applications. Other than Vinter and Chipmunk, it focuses on PM applications rather than
PM file systems. Like Vinter, Mumak relies on a given workload to run the analysis on
an application and is therefore only able to test what is covered in the given workload.
Instead of filtering all possible crash images, Mumak generates a failure point tree by
using the Intel Pin tool to capture opcodes and optional arguments. Specifically, Mumak
captures stores, flushes, fences and atomic instructions that have a fence semantic to find
potential failure points and uses these to generate the failure point tree. An example of
such a failure point tree and its corresponding code is shown in Figure 2.

1 void persist(int *i) {
2 clwb(i);
3 sfence();
4 }
5 void redundant_loop(int *i) {
6 for (int j = 0; j < 8; j++)

{
7 *i = 3;
8 persist(i);
9 }

10 }
11 int main() {
12 int *x = pm_alloc();
13 int *y = pm_alloc();
14 int *z = pm_alloc();
15 *x = 1;
16 clwb(x);
17 sfence();
18 *y = 2;
19 persist(y);
20 redundant_loop(z);
21 return 0;
22 }

pm.c

_start at
pm.elf

main at
pm.c:16

main at
pm.c:19

main at
pm.c:20

persist
at pm.c:2

redundant_loop

at pm.c:8

persist
at pm.c:2

Figure 2: Sample program and corresponding failure point tree [3]

Using that tree, Mumak iterates over the tree until it reaches an unvisited failure
point in the tree, injects a fault and marks the point as visited. It then recovers the state
and, depending on the recovery status, reports a discovered bug. This process is repeated
until all leaves in the failure point tree are marked as visited. To cover potential bugs not
reached by the tree, Mumak generates a PM access trace while processing the failure
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point tree and analyzes that trace to find patterns of misuse to generate bug reports or
warnings in parallel.

The following PM patterns are being observed: [3]

• Store instructions that are not explicitly persisted.

• Flush instructions that act on volatile address(es), or whichs address(es) have not
been written to the cache since the most recent flush.

• Fence instructions without pending flush or non-temporal stores.

• Fence instructions that act on more than one clflushopt, clwb, or non-temporal
store.

If a given pattern is found in the trace, Mumak will report it. For performance
reasons, this will happen after a single pass. Due to that, paired with the black-box
approach, Mumak may not always be able to confidently say if it is in the presence of
a bug and will only report a warning to the developer in those cases. The result of the
failure point tree processing and the trace analysis form the final report provided by
Mumak.

2.6 YAT
YAT [15] is a hypervisor-based brute-force testing tool designed for Intel’s PMFS file
system [2]. It records individual memory states without filtering or evaluation on how
useful a specific crash state might be. It was one of the first PM file system testing
frameworks and shows how important it is to slim down the crash image generation.
The authors report that, due to the lack of filtering, going through all possible crash
images generated in one of their three test workloads would take over 5 years to be fully
completed.



Chapter 3

Design

With Vinter’s test concept leaving room for performance improvement and the knowl-
edge that most of the bugs in a PM file system are logical bugs, we intend to extend
Vinter with a different approach to generate crash images as well as a trace analysis tool
in this work.

Our primary objective is to greatly improve Vinter’s runtime while maintaining a
similar quality in results. This means that, between the existing heuristic and the new
approach, the tests should ideally have the same amount and kind of semantic states as
their result while maintaining a shorter runtime.

With the failure point tree approach we will skip the heuristic to create additional
crash images that could likely be of interest entirely. The approach will only try to
generate up to two crash images for every flush or fence that had a previous write
to it. In addition, we implement and use the failure point tree during the crash image
generation to deduplicate the trace entries for which a crash image should be generated
by their kernel stack trace. This prevents creating multiple crash images for the same
kernel stack trace.

If a crash image was generated for a trace entry with the same stack trace already,
there will be no additional crash image generated, and the next trace entry will be pro-
cessed.

Using that approach, we intend to achieve a faster runtime because, ideally, less
crash images will need to be generated and analyzed to discover the same amount of
semantic states.

By introducing trace analysis we will get an additional way to discover performance
and durability bugs in a given file system. While the discovery of performance bugs
is a new feature, the additional discovery of durabilty bugs specifically complements
the failure point tree based crash image generation as Gonçalves, Matos, and Rodrigues
describe this ability to be the failure point tree crash image generator’s weakness in their
paper [3].

11
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3.1 Overview
A regular Vinter test run consists of the three steps shown in Figure 1.

Generate
Trace

Crash Image
Generator

Tester
Output
Folder

trace
crash

images
semantic
states

trace file

Figure 1: original Vinter flowchart

In a full test run, Vinter runs a given test and generates a trace. The existing tests are
rather simple and can be as easy as adding content to a file in test_append.

The trace is then stored in the output folder and the path will be given to the crash
image generator. The crash image generator proceeds to parse the trace, generates crash
images that could be of interest and passes them to the tester. A crash image contains
the program in a specific state during which a crash is injected. The tester observes the
file system’s internal recovery from said crash and logs the recovery’s output or a failure
if the recovery fails. The tester’s state extractor proceeds to mount the file system in a
read-only state and provides a serialized representation of each file. This serialization
is used to determine differences in files. A crash image’s output that differs from the
expected output we would get if there were no crashes during the run, called single final
state, will be reported as an additional semantic state and is considered a bug in the file
system.

In this work, we extend the crash image generator with a different approach to create
crash images, as detailed in Section 3.2.

With potential degradations in bug-detection quality in mind, we will extend Vinter
by a trace analysis tool that takes a given trace file and checks it for potential design
and performance bugs by analyzing the order of trace entries and operation range. The
adjusted flowchart for this, now four-step, process is shown in Figure 2, and the trace
analyzer is detailed in Section 3.3.
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Generate
Trace

Crash Image
Generator

Tester
Output
Folder

Trace
Analyzer

Bug Report

trace
crash

images
semantic
states

trace file

trace file

report

Figure 2: Vinter flowchart with added trace analysis

3.2 Crash Image Generation
A trace generated by Vinter logs all writes, fences, flushes and hypercalls during a given
test run. As the trace includes the startup and shutdown of the test VM, hypercalls are
used to determine the beginning, the end and the individual checkpoint steps of a test
run. The crash image generator begins to iterate over the given trace and proceeds to
filter the entries within the test range. The filter works by determining if there are cur-
rently unstored writes, that are followed by a fence instruction within the same check-
point segment. In that case the trace entry will be sent off to generate crash images using
the heuristic.

To improve Vinter’s runtime while keeping the same quality in result, we try to
reduce the number of similar crash images that need to be generated and analyzed. To
do so, we extended the aforementioned trace filter to act the same for flushes and fences
and introduced a failure point tree. This tree is used to deduplicate the trace entries that
could result in the generation of crash images by their kernel stack trace. It does so by
attempting to insert the kernel stack trace as detailed in Section 3.2.1. During insertion,
the failure point tree checks if a stack trace is already included in the tree. If the stack
trace is fully included already, no additional crash images will be generated. If not, the
stack trace will be added to the tree and crash images will be generated.

The failure point tree implementation does not use the heuristic to generate addi-
tional crash images that could be of interest and only generates a single crash image
without pending writes and, if present, one including pending writes per trace entry.



14 CHAPTER 3. DESIGN

3.2.1 Failure Point Tree
In order to prevent creating multiple crash images for the same code at different posi-
tions in the trace we use the entry’s kernel stack trace and a failure point tree. When
trying to insert the stack trace into the failure point tree, the tree either returns true, if
successfully inserted, or false, if the entry is already present in the tree.

Table 3.1: Snippet from a trace running test_rename-dir
with vm_nova. pc and kernel_stacktrace were altered
and shortened for a better readability.

Trace Entry Trace ID Stack Trace
Write 295921 [19, 23, 25, 35, 39, 48]

Flush 295922 [25, 35, 39, 48]

Write 295924 [25, 35, 39, 48]

Flush 295925 [25, 35, 39, 48]

Write 295934 [35, 39, 48]

Flush 295935 [35, 39, 48]

Write 296056 [25, 28, 48]

Flush 296057 [25, 28, 48]

Table 3.1 shows a trace snippet containing four entry pairs that match Vinter’s filter
requirements by having a write followed by a flush or fence. Starting with an
empty failure point tree, the flush with ID 295922 will be added to the tree and the
corresponding crash images will be generated. The following flush with ID 295925

matches the filter as well. However, as the stack trace is the same as the previously
added entry, the crash image generation is skipped, and no new crash images will be
generated. The trace entries with ID 295935 and 296057 have a different stack trace
that are not contained in the failure point tree yet. Therefore, their stack trace will be
added to the failure point tree and crash images will be generated. To get an overview
on how this tree would be structured, a tree matching the snippet in Table 3.1 is shown
in Figure 3. The address zero is used as a common root to span the tree.
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Address:
0

Address:
25

Address:
35

Address:
35

Address:
28

Address:
39

Address:
39

Address:
48

Address:
48

Address:
48

Figure 3: Failure point tree resulting from trace snippet shown in Table 3.1
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3.3 Trace Analysis
The standalone trace analysis is intended to parse an existing trace file and use it to find
potential bugs by analyzing the order and address space of trace entries to determine
possible overlaps. In its original design, Mumak differentiates between correctness
bugs, which more specifically get split up in durability and ordering bugs, and perfor-
mance bugs. We adapt that differentiation alongside the seven possible bug types listed
and detailed in Table 3.2.

Table 3.2: List of possible bugs during trace analysis

Bug Type Description
Redundant Flush Performance Flushes are considered redundant when the

content of the address they are supposed to
store has not been altered since the address
has last been flushed, if the flush acts on
volatile memory, or if the only writes were
non-temporal and went straight to storage,
skipping the cache.

Redundant Fence Performance Fences are considered redundant if there
were no flushes or non-temporal writes to
the address since the last fence.

Missing Flush
Missing Fence

Durability Stores that are not explicitly flushed
and fenced and therefore rely on non-
deterministic cache eviction policies are
reported to have a missing flush or fence.

Overwritten Unflushed
Overwritten Unfenced

Durability Overwriting an address without previously
fencing/flushing it implies the address to
be used as a volatile memory of sorts. This
should be moved to actual volatile memory
and is therefore reported as a bug.

Unordered Flushes Ordering When storing data that requires multi-
ple flush instructions the flush instructions
should be in order to allow a successful re-
covery from a crash. A subset of this bug
could also be considered as an atomicity
bug as, ideally, a set of multiple flushes
should be performed atomically.

Continued on next page
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Table 3.2 – continued from previous page
Bug Type Description
Implicit Flush - Mumak contains code for this, but it was

commented out. Mumak’s paper has no
documentation on this decision or that bug
in general, so we did not implement its
functionality. [5, 6]

Performance bugs are bugs that negatively affect the performance by running in-
structions unnecessarily whereas correctness bugs list bugs that could potentially reveal
mistakes in a file systems design due to incorrect usage or consistency bugs caused by
incorrect ordering that could result in an incorrect crash recovery.

Table 3.3 shows two trace entries that will result in a bug.

Table 3.3: Trace example for an Overwritten Unflushed bug

Trace Entry Trace ID Address
Write 295752 2990248

Write 295808 2990248

The trace analysis iterates over a given trace and checks the order as well as the
address range of each trace entry. If an address range is affected by a given pattern of
trace operations that matches a known bug, in this case two writes to the same address
without a fence or a flush in between, a bug in that entry will be reported. For Table 3.3
that is an overwritten unflushed bug for ID 295752. As those bugs could happen mul-
tiple times in the same trace, the list of bugs will be deduplicated by their stack trace,
type and checkpoint within the trace using a modified failure point tree.

To do so, we extended the failure point tree’s leaves to contain a list of bugs assigned
to this specific leaf. As the leaf structure is created from the kernel stack trace, this will
assign the bug to its responsible trace entry’s kernel stack trace. We further extended
the tree’s code to optionally allow inserting a new bug alongside the kernel stack trace
and to check the list of bugs during insertion to maintain the same return handling.
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Chapter 4

Implementation

To improve Vinter’s overall runtime, we implemented a new approach using a failure
point tree to deduplicate trace entries and their resulting crash images during crash im-
age generation.

To find and report potential performance and correctness bugs in a given trace, we
introduced and implemented a trace analyzer. The source code to the changes described
in this section can be found on GitHub.com/Myself5/vinter [22].

Vinter’s Rust implementation is split into four different Cargo packages.

• vinter_common: the library for common code between the different tools

• vinter_trace: the library responsible for creating a trace

• vinter_report: the standalone tool to print a trace file

• vinter_trace2img: the tool to run a full test using vinter_trace to generate
a trace followed by creating crash images, and determining the different semantic
states when recovering from those crash images

In Section 4.1 we describe the extension of vinter_trace2img with the failure
point tree, it’s implementation and how it was implemented into the crash image gener-
ator alongside the existing heuristic.

vinter_report’s extension with the pattern based trace analyzer, its way of work-
ing and the improvements compared to Mumak’s original design are outlined in Sec-
tion 4.2.

In addition, we document the changes to prepare for the trace analyzer and changes
that prove themselves to be useful for either testing or evaluation in Section 4.3. This
section also documents our changes to the documentation, the new tests we introduced
and our changes to existing test tools that were required for them to work with the failure
point tree implementation.
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4.1 Crash Image Generation
By default, Vinter’s crash image generation step uses the HeuristicCrashImage-

Generator. As its name implies, this generator handles the creation of crash images
by parsing a trace and applying the heuristic to generate additional crash images that
could likely be of interest to find varying semantic states. The previous implemen-
tation already contained a hard coded boolean to toggle between using the heuristic
and using no heuristic, which would result in generating every possible crash image.
Moving this hard coded switch to a CLI flag had been an outstanding to-do already, so
the to-do was implemented as -g/--generator <(d)efault|(f)pt|(n)one> and
extended to become an internal parameter that is set when creating a new Heuristic-

CrashImageGenerator instance. Furthermore, the class was renamed into Generic-
CrashImageGenerator to reflect its new features.

The generator parses a previously generated trace in the replay method. This
method start off by finding the test range using the hypercall trace entries and proceed to
parse the entries within that range. Essentially, the replay method calls the generation
of crash images for every hypercall and every fence if there was a previous write
that has not been followed up by a fence yet.

We extended this replay method to handle a flush the same way it handles a
fence when using the failure point tree implementation and made it forward the trace
entry’s kernel stack trace from its metadata to insert_crash_image.

The insert_crash_image is the code responsible for creating a crash image. It
receives a trace entry and proceeds to generate a crash image without pending writes
and, if present, including pending writes. It will then proceed to apply the heuristic the
find and create additional crash images that will likely be of interest.

We extended this method with a callstack_option parameter that includes an
option to an entry’s kernel stack trace. The way replay is configured, this option will
only be None if the trace entry is a hypercall. In that case, we will skip the failure
point tree and always generate a crash image. Otherwise, the stack trace is of the type
Some(Vec<u64>). It will be unwrapped, preceded with a zero to introduce a common
root that is required for the tree structure and will be attempted to be inserted into the
tree.

In case of successful insertion, crash images without pending writes and, if present,
including pending writes will be generated. All additional crash image generation will
be skipped for the failure point tree based test run.



4.1. CRASH IMAGE GENERATION 21

4.1.1 Failure Point Tree
We modeled the initial failure point tree after Mumak’s implementation. After research,
the only existing library that provides support for non-binary trees that is still in active
development is r3bl_rs_utils [24]. However, even the code examples provided by
the developer were broken at the time of implementation. As the library, even if it was
working, did not provide all the search features required by the initial design and as
the library-provided multi-thread safety was not a concern in our implementation, we
decided to implement the tree on our own.

The failure point tree has a single root leaf that, by itself, has a vector of links to
its children. In our implementation, the root leaf will be represented by the address 0.
Each child has a parent reference to its single parent and a vector containing a reference
to its children.

Due to the difficult ownership handling between children and parent, we followed
an example on double linked lists from Learning Rust With Entirely Too Many Linked
Lists [17] and introduced the FPTraceLink: Option<NonNull<FPTraceAddr>>

type. While this requires the usage of unsafewhen unwrapping the FPTraceLink, the
failure point tree provides a controlled environment that guards the unsafe operations
safely.

Due to a misunderstanding, the initial design contained the ability to optionally store
a CrashImageHash in each FPTraceAddr. This was caused by erroneously assuming
the fence_id in a crash image entry’s originating_crashes vector to be the stack
trace address and assuming that all fence_ids in the vector would make up the entry’s
stack trace.

After clearing up that confusion, we extended PANDA’s CLI parameter to col-
lect a kernel stack trace as part of the metadata when using the failure point tree, the
CrashImageHash support was removed from the tree, and a proper kernel stack trace
handling had been put in place by getting the kernel stack trace from a trace entries
metadata and forwarding it to insert_crash_image inside the replay method.
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Figure 1: failure point tree class diagram after final implementation

The final failure point tree implementation shown in Figure 1 works by creating a
new tree instance using the new method. All possible entries are then added by calling
the add method with a kernel stack trace and the stack trace’s length as the parameters
on the instance. The tree proceeds to recursively call the add_to_parent method
which uses contains_root to recursively check if an address is either partially of
fully included already. If the address is fully included, contains_root will return
None and add will return false to signal that the kernel stack trace has not been added
as it is already included. Otherwise, contains_root will return the last common
FPTraceLink (this could be the root link if there are no common addresses) and
add_root will proceed to add the branch of remaining stack trace entries as a child of
then given FPTraceAddr.

Our initial design for the FPTraceAddr included a visited parameter. In Mumak,
the parameter is used for crash image generation. Mumak runs an application, generates
a full failure point tree and only then iterates over the tree to generate a crash image for
a specific leaf and to run the crash analysis for that image. It then marks the leaf as
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visited and proceeds with this iteration until the entire tree is marked as visited.
Contrary to Mumak, we parse the trace and generate the crash images along the way.
The trace entries are deduplicated by trying to insert the stack trace into the failure point
tree every time a crash image is supposed to be generated.

While the visited logic is currently unused in our implementation, a few ideas
came up to utilize this in the future, so it was kept in place. This also applies to the
search, get_by_addrs and get_path_from_addrmethods as well as their internal
implementations which were used for testing during development and are currently only
in use by the example. A full example of the failure point tree in action with all its
supported features can be run using cargo run --example fptree.

4.2 Trace Analysis
Trace analysis works by pattern matching the order of trace entries affecting addresses
within the same range against patterns of known possible bugs.

For example, if an address is flushed, but there were no previous writes to the ad-
dress, a RedundantFlush bug will be reported. All possible bugs are detailed in Sec-
tion 3.3.

In its first implementation, the trace analyzer was implemented as an optional feature
during a vinter_trace2img run. If the CLI parameter to run trace analysis is set,
the replay method will collect a separate vector containing trace entries that will be
returned to the main method. The main method proceeds to create a TraceAnalyzer
instance and passes the entry vector to its analyze_trace method.

After review, we decided to move the tracer to a standalone tool that will read ex-
isting trace files. As such, the TraceAnalyzer was moved into vinter_report. To
prepare for that, vinter_report was refactored and extended with features in the pro-
cess. A detailed description on that can be found in Section 4.3.3.2. We merged the new
TraceAnalyzer with the TraceAnalyzer responsible for reading and filtering exist-
ing traces that we introduced to vinter_report during its rework. We refactored the
analyze_trace method to take a trace file’s path that will be read and parsed, rather
than a previously created vector of trace entries.
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Figure 2: TraceAnalyzer class diagram after merge

Figure 2 marks existing methods as red squares and our additions as green circles.
To process a trace, the TraceAnalyzer instance is created, and analyze_trace is
called with a path to the trace_file, an Option of a path to the trace’s vmlinux file,
an Option to an output folder and a verbose boolean. analyze_trace proceeds
to read the file and will iterate over it until the test begins. This is determined using
the hypercall trace entries. Write, flush and fence entries within the test range
will be added to a HashMap that is keyed by their trace_id and processed in their
individual handling methods.

process_trace_entry_write checks if a write affects a previous write that
is still pending a fence or flush’s storage range and reports an Overwritten-

Unflushed or OverwrittenUnfenced bug if this is the case. It then proceeds to
add the write to the list of pending flushes or, if it is a non-temporal write that
is considered flushed already, to the list of pending fences. These entries are called
stores internally, and to prevent confusion we will continue to refer to them by that
name.

The logic behind process_trace_entry_flush is based on a common CPU’s
cache line size to be 64 bytes and that a flush will always flush an address’ entire cache
line. While this may vary for some CPU architectures, Vinter does currently only im-
plement the x86 semantic on which this size is guaranteed. If that changes, the cache
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line size can be adjusted according. With those criteria, the method will filter the list
of pending flushes by their address being within the cache line that is to be flushed.
That cache line ranges from the flush’s address to its address plus 64 bytes. Those
stores are then differentiated in being either fully or partially contained within the
flush. If a store is fully contained in the flush, it is marked as flushed and will
be removed from the list of pending flushes after it was added to the list of pend-
ing fences. A store that is only partially contained in the flush will be marked as
PartiallyFlushed. Stores that are only partially contained in the flush’s range
for a second time are added to the list of pending fences and will be removed from the
list of pending flushes. If at least one store was either fully or partially flushed in
this process and the fences mnemonic is either clflushopt or clwb, it will be added
to the list of unordered flushes. In case no store was flushed in the process, the flush
is considered redundant and will be reported as a RedundantFlush.

process_trace_entry_fence checks the list of pending fences and reports the
fence as redundant if there are no pending fences. It will also report an Unordered-

Flushes bug if the list of unordered flushes contains more than one flush. The list of
pending fences and unordered flushes will be cleared afterwards.

Once analyze_trace is done processing the trace it will check the lists of pending
flushes and fences and will report their entries as MissingFlush or Missing-
Fence accordingly.

During initial testing it became apparent that many bugs affecting the same code
line get reported multiple times as they appear more than once in the trace. As such, we
decided to introduce a method to deduplicate the list of bugs using the kernel stack trace
and checkpoint ID. While this requires a trace to include a kernel stack trace, a feature to
always log a stack trace was introduced in Section 4.3.3.3. For deduplication, the failure
point tree was extended to store an Option<Vec<FPTBug>> inside the FPTraceAddr.
A FPTBug contains the BugType as well as the checkpoint during which a bug was
encountered. This is necessary, as the same kernel stack trace can have multiple bugs of
different types during different test phases assigned to it.

While the original Mumak design only contained the basic information of the bug
type and the trace entry’s ID shown in Figure 3, this was greatly extended upon in our
implementation.

1 > vinter_report analyze-trace results/trace.bin
2 Analyzing Trace...
3 ---
4 - bug_type: OverwrittenUnflushed
5 id: 295752

Figure 3: Trace analysis output when following the original Mumak design
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Previously we would only know that ID 295752 was overwritten, but not where
and why. To change that, the trace analyzer was extended to store vectors of trace IDs
instead of counters and single trace IDs to include all trace entries involved in a bug
report as shown in Figure 4. In this example, we report an OverwrittenUnflushed

bug because the write with ID 295808 writes to the same address as ID 295752 has
written to before without the address range being flushed in between.

1 > vinter_report analyze-trace results/trace.bin
2 Analyzing Trace...
3 - Bug Type: OverwrittenUnflushed
4 Checkpoint: 1
5 Responsible Trace Entries:
6 - Write { id: 295752 }
7 - Write { id: 295808 }

Figure 4: Final Trace analysis output with regular output

This is further extended upon using the -v or --verbose parameter. When request-
ing a verbose bug report, the report contains the full trace entry including the address,
size, content, metadata including the kernel stack trace and the information if the
write is non_temporal. We can now see in Figure 5 that both entries try to write
the same address without being flushed in between. Similar to previous examples, the
metadata was shortened for better readability.

1 > vinter_report analyze-trace results/trace.bin -v
2 Analyzing Trace...
3 - Bug Type: OverwrittenUnflushed
4 Checkpoint: 1
5 Responsible Trace Entries:
6 - Write { id: 295752, address: 2990248, size: 1, content: [0], non_temporal: false,

metadata: Metadata { pc: 81129721, in_kernel: true, kernel_stacktrace: [80102328,
80033853, 80125903, 79687992, 79688156, 79688374, 78849556, 83039589] } }

7 - Write { id: 295808, address: 2990248, size: 1, content: [2], non_temporal: false,
metadata: Metadata { pc: 80088151, in_kernel: true, kernel_stacktrace: [80099160,
80102328, 80033853, 80125903, 79687992, 79688156, 79688374, 78849556, 83039589] }
}

Figure 5: Final Trace analysis output with verbose output (pc and stack trace shortened)
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Figure 6 displays the output after specifying the traces corresponding vmlinux im-
age. Similar to vinter_report’s existing read-trace feature, using the image will
display the corresponding kernel symbols to each trace entry’s kernel stack trace. This
flag can also be used together with the verbose flag.

1 > vinter_report analyze-trace results/trace.bin --vmlinux nova_out/vmlinux
2 Analyzing Trace...
3 - Bug Type: OverwrittenUnflushed
4 Checkpoint: 1
5 Responsible Trace Entries:
6 - Write { id: 295752 }
7 Kernel Symbols:
8 pc: 0xffffffff8122dbf9 ?? at /nova/arch/x86/lib/memset_64.S:66:0
9 stack trace:

10 #1: 0xffffffff81132eb8 nova_append_dentry at /nova/fs/nova/log.c:1020:8
11 #2: 0xffffffff8112233d nova_add_dentry at /nova/fs/nova/dir.c:322:8
12 #3: 0xffffffff81138acf nova_mkdir at /nova/fs/nova/namei.c:500:8
13 #4: 0xffffffff810cdc38 vfs_mkdir at /nova/fs/namei.c:3819:1
14 #5: 0xffffffff810cdcdc done_path_create at /nova/fs/namei.c:3682:2
15 #6: 0xffffffff810cddb6 __x64_sys_mkdir at /nova/fs/namei.c:3852:1
16 #7: 0xffffffff81001114 do_syscall_64 at /nova/arch/x86/entry/common.c:290:12
17 #8: 0xffffffff81400065 ?? at /nova/arch/x86/entry/entry_64.S:184:0
18 - Write { id: 295808 }
19 Kernel Symbols:
20 pc: 0xffffffff8112f757 nova_update_new_dentry at /nova/fs/nova/log.c:331:20
21 stack trace:
22 #1: 0xffffffff81132258 nova_get_super at /nova/fs/nova/super.h:202:9
23 #2: 0xffffffff81132eb8 nova_append_dentry at /nova/fs/nova/log.c:1020:8
24 #3: 0xffffffff8112233d nova_add_dentry at /nova/fs/nova/dir.c:322:8
25 #4: 0xffffffff81138acf nova_mkdir at /nova/fs/nova/namei.c:500:8
26 #5: 0xffffffff810cdc38 vfs_mkdir at /nova/fs/namei.c:3819:1
27 #6: 0xffffffff810cdcdc done_path_create at /nova/fs/namei.c:3682:2
28 #7: 0xffffffff810cddb6 __x64_sys_mkdir at /nova/fs/namei.c:3852:1
29 #8: 0xffffffff81001114 do_syscall_64 at /nova/arch/x86/entry/common.c:290:12
30 #9: 0xffffffff81400065 ?? at /nova/arch/x86/entry/entry_64.S:184:0

Figure 6: Final Trace analysis output with kernel symbols
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4.3 Additional Changes
Apart from the planned changes, we made a few additions during the thesis as they
proved to be necessary or useful at a later point. This includes the introduction of
new build and test scripts, additional performance logging, code restructures that were
required to extend upon them at a later point or small features to make the evaluation
process easier.

4.3.1 Documentation and Scripts
As the PMFS file system requires gcc4 to be built, the documentation was updated with
a workaround to successfully install the bc tool required for the kernel compilation on
the deprecated Debian Jessie based gcc:4 Docker container.

All test scripts were adjusted to use the results directory as an output and their
documentation was adjusted accordingly.

Furthermore, three new test scripts were introduced.
run-rust-single-test.sh has a flag for the crash image generator, the test to

run, if a stack trace should be stored and if the output should optionally be in JSON
object or extra verbose. It then proceeds to run the single test against the Nova and
PMFS file systems using vinter_trace2img.

run-rust-parallel-all.sh extends on that by running all available tests, op-
tionally in parallel with a specifiable count of parallel jobs, against Nova,
Nova-Protection and PMFS while keeping the same flags as run-rust-single-
test.sh. The JSON output will return a JSON Object that is alphabetically sorted by
test name and is including the total runtimes for each step. It can be converted directly
into a table with tools like json2table [16].

Adding to that, run-rust-parallel-ta.sh can take the result folder of a run-
rust-parallel-all.sh run and will run trace analysis for all traces in that folder.
The script has flags for JSON formatted as well as extra verbose output and allows spec-
ifying if kernel symbols should be included in the output or not. Similar to run-rust-
parallel-all.sh, its JSON output is alphabetically sorted by test name, includes
the total runtime for each step and can be converted directly into a table with tools like
json2table [16].
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4.3.2 Analysis
Both, vinter_trace2img and vinter_report were extended by a -j/--json CLI
flag to provide their statistics’ output in a JSON format. This way the results can be
parsed by the newly added test scripts to receive a better overview during evaluation. In
addition, they were extended with runtime tracking that is shown after a test run.

Both tools were extended with a -v/--verbose flag to provide a more detailed
human-readable output. In case of vinter_trace2img, that includes the individual
runtimes of each internal step during the test run. For vinter_report’s analyze-
trace feature, this means each entry on the list of Responsible Trace Entries

contains more information.

4.3.3 Tools
4.3.3.1 report-results.py

During development, we discovered that report-results.py may not always in-
clude a step’s final state in the semantic state list. When analyzing a test run from
the default heuristic this would not be apparent because the default heuristic indirectly
added the final state to the state list. As this does not always happen when using the
failure point tree implementation we made sure to always add a checkpoint’s final state
to the list of different states.

In addition, some internal logic was restructured to properly analyze test results
coming from the failure point tree implementation. Some image handling required to
track dirty lines would previously depend on the HeuristicApplied property which
is unused with the failure point tree. The guard was moved to a later point to allow
using the common handling code with the results coming from the failure point tree
implementation.

4.3.3.2 vinter_report

In preparation to implement the trace analysis, we refactored vinter_report to move
all actual code into a separate library file. With the plan for extension in mind, lib.rs
received a TraceAnalyzer class that would initially contain the code to parse the trace
and has later on been extended by the trace analyzer described in Section 4.2. Moving
the code to a seperate class within the lib allows an easy reuse of shared code between
the trace reader and the analyzer.

While a trace file includes the test’s entire trace including all preparation steps, we
are usually only interested in the test’s trace part marked by the hypercalls. To allow
quickly finding the hypercalls, or any other specific trace entry type for that matter,
we added the --filter <FILTER LIST> parameter to filter the trace by a comma
separated list of trace entry types.
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Combined with read-trace’s existing --skip <NUM> flag to skip a certain num-
ber of entries, this allows to limit the trace to the entries of interest. In addition, a
--count <NUM> parameter to limit the amount of trace entries to consider after the
start was introduced.

1 vinter_report read-trace results/vm_nova/test_rename-dir/trace.bin \
2 --skip 296055 --count 5 --filter write,flush

Figure 7: vinter_report read-trace example using filter and count parameter

In this example, the output of the command shown in Figure 7 will include all
writes and flushes ranging from the 5 trace IDs between 296055 and 296059.

4.3.3.3 vinter_trace2img

While vinter_trace2img is the easiest way to generate a trace file, our trace anal-
ysis requires a kernel stack trace for deduplication. A run with the default heuristic or
no heuristic at all would not include a kernel stack trace by default as it is not needed
in the regular test and introduces a runtime overhead of up to 91% in the trace step1.
In order to store a kernel stack trace for a later usage in those cases, we extended
vinter_trace2img with a CLI flag (-k/--kernel-stacktrace) to always request
and store a stack trace. This flag will be ignored when using the failure point tree gen-
erator as a kernel stack trace is always stored there by design.

1Comparing the average trace step runtime of test_rename on nova-protection when using the default
heuristic (2196.4 ms) compared to using the default heuristic and saving the kernel stack trace (4196.2 ms)
on the test system. Reference: Appendix A and Section 5.2.1.2.



Chapter 5

Evaluation

In the previous chapter we have described the design and implementation of our addi-
tions. We detailed the introduction of a failure point tree to use for trace entry dedupli-
cation and have described it’s implementation into the crash image generator. We have
also outlined the implementation of the pattern based trace analyzer.

In this evaluation we will show the efficiency of our work, describe and evaluate
possible problems and compare the work to Vinter’s original implementation. We will
start off by describing the test setup and evaluate the changes done to the crash image
generation in regard to our two design goals of runtime improvement and similar bug
report results.

The Trace Analyzer will be detailed by outlining its quick runtime and by analyzing
some of its reported bugs for sanity. We show how the trace analyzer is a good addi-
tion to the failure point tree implementation and outline potential issues with the trace
analyzer’s logic.

5.1 Test Setup
During the Evaluation we will use the existing tests included in Vinter. Their detailed
results can be found in Appendix A. For the vinter_trace2img results, we ran all of
our tests against Nova, Nova-Protection and PMFS and collect the results in a JSON
formatted output1. These runs were repeated for a total of five consecutive runs and
the average in runtime, fence/flush count, crash image count, semantic state count and
failed recoveries was calculated.

While the consecutive runs were originally intended to only create an average of
the runtime, it became apparent that some tests do not always result in the same set of
test-relevant trace entries every run, resulting in different amounts of crash images and
bugs during trace analysis.

1Using run-rust-parallel-all.sh
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We calculated the trace analyzer results by running all available tests for
vinter_trace2img on Nova, Nova-Protection and PMFS using the failure point
tree generator in parallel1, followed by running vinter_report’s analyze-trace
feature for each test result. We collected the JSON output containing the bug count, the
count of relevant trace entries and the runtime for each individual test2. We repeated this
procedure for a total of five consecutive times and calculated the average of the output.

The test system uses a modified artifact evaluation VM vinter.qcow2 [12] and is
configured as shown in Table 5.1.

Host CPU AMD Ryzen Threadripper 3970X (32 Cores @4.1GHz All-Core)
Host RAM 4x 32 GB DDR4-3600 CL16
Host OS Ubuntu 22.04.3 (6.2.0-35-generic)
Host Drive Samsung 980 Pro
VM OS Fedora 34 (Cloud Edition) x86_64 (5.17.6-100.fc34.x86_64)
VM CPU 32 Threads
VM RAM 64 GB
VM Tech KVM

Table 5.1: Test system specs with VM config

We upgraded the VM’s packages to the newest available3 upgraded Rust to version
1.72.1. We disabled SELinux due to complications with podman when building the
PMFS kernel, and adjusted the command to build the PMFS kernel as documented in
Section 4.3.1.

In comparison to Vinter’s documentation, we adjusted the qemu command for the
host system’s OS and increased the RAM as well as the CPU count. Since Ubuntu
uses qemu-system-x86_64 rather than qemu-kvm, the accelerator was set to kvm as
qemu-system-x86_64’s default tcg is unbearably slow and not designed for general
usage. This results in the final command shown in Figure 1.

1 qemu-system-x86_64 -m 64G -smp 32 -display none -accel kvm \
2 -serial mon:stdio -device e1000,netdev=net0 \
3 -netdev user,id=net0,hostfwd=tcp::2222-:22 vinter.qcow2

Figure 1: Adjusted qemu command for the test system

2Using run-rust-parallel-ta.sh
3as of Oct 26 03:08:31 AM UTC 2023
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5.2 Crash Image Generation
While we introduced a failure point tree to deduplicate crash images, this approach
also skips the heuristic to create additional crash images that could likely be of interest.
We will continue to evaluate the failure point tree’s deduplication by itself and the full
implementation compared to the default implementation.

5.2.1 Runtime Performance
During the runtime’s evaluation we will outline how our changes to the crash image
generation affect each test run’s step. Our expectation is a significant improvement in
overall runtime, especially for long tests. Due to the additional collection of a kernel
stack trace in the trace, we account for a small increase in total runtime on smaller tests
that do not profit from the failure point tree’s trace entry deduplication.

5.2.1.1 Standalone Failure Point Tree

To evaluate the failure point tree’s standalone effect on the runtime, we modified the
code to skip the failure point tree handling [21]. This results in creating up to two
crash images, one without pending writes and, if existent, one with the pending writes
included, for each fence or flush that is preceded by a write. This will be referred to
as FPT-SKIP from now on. We compared FPT-SKIP against a regular run using the
failure point tree to deduplicate trace entries. A regular run using the failure point tree
will be referred to as FPT from now on.

Figure 2 displays a list of selected test runs and the overall runtime average over
all tests. Each test has a group of two bars assigned to it. The upper bar visualizes
the runtime on FPT-SKIP and the lower bar visualizes the runtime on FPT. The bar is
separated into three segments, to cover the three steps in a Vinter test run. The colors
for the trace step, the crash image generation step and the tester step, during which the
tester will analyze the crash images to find different semantic states, are described in the
legend.

While we will continue to evaluate and explain the results shown in the graph in
detail, the graph does provides a quick outlook on what kind of runtime improvement
to expect from the failure point tree.
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Figure 2: Runtime comparison between FPT-SKIP (top) and FPT (bottom)

As FPT-SKIP and FPT only differ in the crash image generation, the trace step
remains identical in both tests.

Despite being identical, the trace step runtime in our tests show a range difference
between -3% for test_unlinked on Nova-Protection and +3% for test_atime
on PMFS across all tests. The average discrepancy in trace runtime between FPT and
FPT-SKIP is ±1.1%. The the total trace runtime difference between FPT and FPT-SKIP
is 0.7%.

We use these numbers to set the margin of error in our evaluation to ±5.0%. This
margin will help us to determine if a tests runtime change is only a system load related
difference in runtime or an actual change.

Analyzing the crash image generation step’s runtime shows us that, even when FPT

and FPT-SKIP generate the same amount of crash images, the runtime still profits from
the failure point tree’s deduplication by between 3.9% for test_chmod on Nova and
10.6% for test_update-middle on PMFS. That is an average improvement of 6.8%
per test. This happens, because the crash image generator uses a HashMap to organize
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crash images internally. While the failure point tree would skip the crash image gen-
eration after determining that a kernel stack trace is already contained, FPT-SKIP will
always create a crash image and insert it into the HashMap, overwriting the equal crash
image that was contained in the HashMap before. This means, that the amount of crash
images does not change, but the work to create a crash image twice contributed to the
increase in runtime for FPT-SKIP.

The potential runtime overhead introduced by the failure point tree creation and
insertion is small enough to not be of negative effect in the individual steps runtime. In
our comparison, the overhead introduced by the additional crash image generation was
higher than the potential overhead from the tree itself for every test.

Considering out margin of error, we can therefore safely say that the failure point
tree does always improve the runtime and that the improvements of 3.9%-10.6% on the
runtime even with the same the amount of resulting crash images can be considered real.

We will proceed to look into the changes with actual changes in the crash image
count. The difference, if any, in crash image count for the tests mentioned in our evalu-
ation are shown in Figure 3.
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Figure 3: Crash image count comparison between FPT-SKIP (top) and FPT (bottom)

For tests with an actual change in crash image count, the crash image generation’s
runtime is decreased by between 6.4% for test_touch-long-name on PMFS and up
to 30.2% for test_rename-dir running on Nova-Protection. The average change
was observed to be 12.6% per test. The crash image generators runtime on all tests
combined has been improved by 15.6%, from a total of 52.8 seconds down to 44.5
seconds.
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This is, however, not the only step in which the failure point tree is responsible
for runtime improvements. The tester processes every crash image and checks it for
varying semantic states. As this is a single threaded process, a decrease in crash images
will directly result in a decrease in the tester step’s runtime.

Across all tests, the changes in runtime for the semantic state discovery range from
a 3.8% slowdown for test_atime to a 44.4% improvement for test_link-sym,
both on Nova-Protection. Considering that test_atime only has three crash im-
ages on both, FPT and FPT-SKIP, the 3.8% increase in tester runtime between FPT

and FPT-SKIP can be justified as equal within the margin of error. In total, this steps
runtime is improved by 19.7%, from 6.3 minutes down to 5.1 minutes.

When only considering tests that have an actual change in the crash image count,
the improvement is between 5.7% for test_link-hard on Nova with 22 crash im-
ages on FPT against 23 crash images on FPT-SKIP and the aforementioned 44.4%
for test_link-sym on Nova-Protection with 30 crash images on FPT against 53
images on FPT-SKIP. The average per-test improvement in runtime for tests with a
change in crash image count is 18.6%. For reference, that is an absolute improvement
from 17.8 s down to 9.9 s in the tester for test_link-sym.

These improvements in the crash image generation as well as the tester runtime are
reflected to the total runtime as well. The final runtime when using FPT compared to
FPT-SKIP is, at worst, even for test_atime running on Nova. This test has a rather
small runtime of around 6.3 seconds to begin with and has only three crash images
on both FPT and FPT-SKIP. For tests in which the failure point tree decreased the
amount of crash images that have to be generated and analyzed, the improvement in
total runtime can be up to 35.4%, as it is for test_link-sym on Nova-Protection.
While the improvement in crash image generation is only 25.4% for this test, the big
decrease in crash images results in the aforementioned improvement of 44.4% in the
tester step and an overall improvement in runtime of 35.4%. In absolute numbers, this
is an improvement from 24.0 seconds down to 15.5 seconds for this test.

Using just the failure point tree rather than generating a crash image at every given
moment, the overall runtime for all tests of 11.6 minutes is decreased by 12.2% down
to 10.2 minutes.

5.2.1.2 Full Failure Point Tree Implementation

With the failure point tree approach, we will only generate up to two crash images per
trace entry. One with no pending writes persisted and, if they exist, one with all pending
writes persisted.

Vinter’s default heuristic, from now on referred to as Default, additionally gener-
ates crash images that could likely be of interest. In most cases, this will result in an
increase in runtime.

Similar to the graph in Section 5.2.1.1, Figure 4 displays a selected list of tests. Each
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group displays the Default runtime on the upper, and the FPT runtime on the lower
bar. Once again, the runtime is separated by the test runs individual steps. The graph
gives us an overview of the increase in trace runtime and the improvements in crash
image generation and semantic state discovery in the tester. We will proceed to evaluate
and explain this behavior in detail.
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Figure 4: Runtime comparison between Default (top) and FPT (bottom)

Other than the Default implementation, FPT requires a kernel stack trace to dedu-
plicate its entries. While collecting a stack trace can also be useful for a later trace
analysis, it negatively affects the trace steps runtime. The increase in the trace step’s
runtime when comparing FPT to Default ranges from 23.3% for test_link-hard
on PMFS to up to 92.3% for test_unlink on Nova-Protection. In total for all tests,
that is an increase of 44.7% from 3.1 minutes up to 4.4 minutes. The slowdown scales
with the amount of trace entries, which means that, the longer the test, the slower the
trace step will be.

As crash image count and their improvements between FPT and Default scale
roughly similar to the trace length as well though, the increase in trace time can be
compensated and improved in most of the tests.

A comparison of the crash image count for the tests shown in Figure 4 is displayed
in Figure 5.
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Figure 5: Crash image count comparison between Default (top) and FPT (bottom)

While FPT’s overall runtime change, when compared to Default, ranges from a
21.5% slowdown to an 85.7% improvement, the average runtime improvement over all
tests is 64.5%. In absolute numbers that is an improvement from 28.7 minutes down to
10.2 minutes.

Out of the 48 tests across the three file systems, only ten are affected by a slowdown
when using FPT over Default. The average slowdown of 11.5% across those tests,
however, does only make up a total runtime of an additional 10.1 seconds going from
87.7 up to 97.8 seconds.

Eight out of those ten tests show the same explanation. While crash image gener-
ation is significantly faster on FPT for all of them, with improvements between 25.1%
up to 70.0% and an average improvement of 53.6% per test, FPT generated additional
crash images. This happens because FPT tries to generate crash images for fences and
flushes while Default only generates crash images after a fence.

As more crash images were generated, the tester had to check more images, and
its runtime increased by 7.5% up to 37.2% with a median of 23.0%. Paired with the
increase in runtime caused by the kernel stack trace collection in the trace step, the
overall runtime is just slower.

The remaining two are test_atime on Nova and PMFS. While both tests had the
same amount of fences and flushes as well was crash images as their Default equiv-
alent, the Nova run showed a 52.8% improvement in crash image generation with an
equal runtime for the tester. The 26.1% increase in the tracer step runtime, however,
ended up increasing the total runtime by 10.3% for a total of 6.3 seconds on FPT up
from 5.7 seconds on Default.

The test run on PMFS, however, is different. It is the only test that shows an increased
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runtime in the crash image generation step. test_atime is a very short test with only
a single fence, two crash images and two semantic states. While its increased runtime
in the trace is expected, a 25.1% increase in the crash image generation’s runtime is
not explainable until looking at the comparison of the same test on Default and a
Default run with an included kernel stack trace (Default+ST). These tests show
the same increase in crash image generation despite not even using a stack trace in
their crash image generation. Upon closer inspection, we discover that the crash image
generation increase might, in relation, be rather big, but in absolute numbers this is an
increase from 603.8 ms to 755.4 milliseconds. At the same time, the trace file’s size
increases from 6 MB to 7.6 MB just by collecting the kernel stack trace. As the crash
image generation step includes reading and parsing the trace file, the increase in runtime
can be explained by the additional time it takes to read the file. The remaining increase
in total runtime is once again explained by the increase of runtime during the trace step.

For the remaining tests that were not affected by a slowdown, the overall runtime has
improved by 5.6% up to 85.7% with an average improvement of 53.7%. In total runtime,
this is an 68.5% improvement in runtime from 27.2 minutes down to 8.6 minutes.

While those tests also have the aforementioned trace step slowdown of 23.7% to
92.2% with an average of 49.2% per test, the improvement of 37.6% to 96.5% with a
per test average of 86.3% during the crash image generation paired with the 5.6% to
90.1% improvement with an per test average of 58.7% in the tester step make up for the
runtime increase in the trace step.

Especially on long tests we can observe big improvements in runtime thanks to
an up to 90.0% decrease in crash images. That is a difference of 108 crash images
coming down to 12 on FPT from the 120 images on Default for test_append on
Nova-Protection.

This difference is directly mirrored to the improvements in runtime during the se-
mantic state, which is the same 90.1% in case of the aforementioned test_append.

Comparing the decrease in crash images and the testers runtime, no matter if positive
or negative, we can, within our accepted margin of error, say, that improvements are
directly equal to each other. This is confirmed by the results when comparing FPT to
FPT-SKIP.

To summarize, while some of the smaller tests have a slightly increased runtime with
FPT, the improvements in runtime, especially in long tests, justify the usage of FPT over
Default when purely having runtime performance in mind.
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5.2.2 Result Quality
We will continue to evaluate the failure point tree implementation in terms of actual
bug detection quality. We begin by evaluating the failure point tree’s deduplication and
then proceed to evaluate the full implementation in the crash image generator. In regard
to the result quality, we specifically evalute ommitting Vinter’s heuristic responsible
for creating additional crash images that likely are of interest to discover additional
semantic states in our failure point tree implementation.

5.2.2.1 Standalone Failure Point Tree

When using FPT in comparison to just inserting the crash images with FPT-SKIP, the
amount of crash images is between even in a test_atime run for all file systems and
up to 43.4% less, going from 53 down to 30 images in a test_link-sym run for
Nova-Protection. On average this represents a decrease in crash images by 13.8%
per test and a decrease in total crash images create by over 18.5% going from a total of
1105.2 crash images down to 900.8. A visual representation of that decrease is included
in Section 5.2.1.1. While even more potential crash images are attempted to be created
without the tree on FPT-SKIP, Vinter uses a HashMap to organize the crash images
internally. If a generated crash image is exactly the same as an existing crash image, it
will not be handled twice.

Despite that decrease in crash images, we confirmed that FPT delivers the same
semantic states as FTP-SKIP. This means, that the deduplication caused by the failure
point tree does not affect the bug result quality at all.

5.2.2.2 Full Failure Point Tree Implementation

In addition to the failure point tree’s deduplication, our implementation will attempt to
generate crash images if a trace contains a write followed by a flush or a fence compared
to only attempting to generated crash images for a write-fence combination on the de-
fault implementation. The failure point tree implementation does, however, not use the
heuristic to generate crash images that likely are of additional interest to discover addi-
tional semantic states. While we have shown that this does greatly improve the runtime,
the FPT implementation was not able to fully reproduce the same results delivered by
the Default implementation.

We will evaluate the tests ordered by the potential bugs that were discovered. We
categorize the tests by their amount of semantic states and failed recoveries into three
categories. In those categories, the tests are ordered by having a single final state (SFS)
and their atomicity. The tables use abbreviations for the difference in Semantic States
(∆Sem.) and the difference in failed recoveries (∆FR) and list the tests’ single final
state (SFS) and atomicity in a FPT/Default format. Atomic tests that have a single
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final state are considered to not contain bugs and are therefore of equal result without
further confirmation. Tests that are reported to contain bugs are reviewed by their sim-
ilarities or differences in their single final states and their potential cause in the code
as well as their differences between the semantic states that imply atomicity bugs using
report-results.py analyze --verbose --diff individually.

Equal Results The first category contains tests with equal amount of semantic stats
and failed recoveries between FPT and Default. This includes the tests in which no
bugs were discovered by FPT and Default shown in Table 5.2 and tests with the same
bugs reported shown in Table 5.3.

For the tests where no bugs were reported we conducted no further analysis as both
implementations report no bugs at all and are therefore of equal result.

Table 5.2: Tests with no discovered bugs on both, FPT and
Default

VM Test ∆Sem. ∆FR SFS Atomic
vm_nova test_atime 0 0 ✓/✓ ✓/✓
vm_nova test_chmod 0 0 ✓/✓ ✓/✓
vm_nova test_chown 0 0 ✓/✓ ✓/✓
vm_nova test_ctime-mtime 0 0 ✓/✓ ✓/✓
vm_nova test_mkdir-rmdir 0 0 ✓/✓ ✓/✓
vm_nova test_unlink 0 0 ✓/✓ ✓/✓

vm_nova-protection test_atime 0 0 ✓/✓ ✓/✓
vm_nova-protection test_chmod 0 0 ✓/✓ ✓/✓
vm_nova-protection test_chown 0 0 ✓/✓ ✓/✓

vm_pmfs test_append 0 0 ✓/✓ ✓/✓
vm_pmfs test_atime 0 0 ✓/✓ ✓/✓
vm_pmfs test_chmod 0 0 ✓/✓ ✓/✓
vm_pmfs test_chown 0 0 ✓/✓ ✓/✓
vm_pmfs test_link-hard 0 0 ✓/✓ ✓/✓
vm_pmfs test_link-sym 0 0 ✓/✓ ✓/✓
vm_pmfs test_rename-long-name 0 0 ✓/✓ ✓/✓
vm_pmfs test_touch 0 0 ✓/✓ ✓/✓
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Table 5.3: Tests with the same discovered bugs between FPT
and Default

VM Test ∆Sem. ∆FR SFS Atomic
vm_nova test_link-hard 0 0 ✓/✓ ✗/✗
vm_nova test_rename 0 0 ✓/✓ ✗/✗
vm_nova test_rename-dir 0 0 ✓/✓ ✗/✗
vm_nova test_touch 0 0 ✓/✓ ✗/✗
vm_pmfs test_ctime-mtime 0 0 ✓/✓ ✗/✗
vm_pmfs test_hello-world 0 0 ✓/✓ ✗/✗
vm_pmfs test_rename-dir 0 0 ✓/✓ ✗/✗
vm_pmfs test_touch-long-name 0 0 ✓/✓ ✗/✗

For tests that reported a bug, we conducted further analysis. As displayed in Ta-
ble 5.3, the tests match in their single final state and each of their checkpoint’s atom-
icity. Each test reported to have atomicity bugs was verified to have similar difference
between its semantic states in each checkpoint for FPT and Default to make sure FPT
found the same kind of atomicity bug as the Default approach. This was the case for
all tests on that list. As such, we consider these results to be equal.

Additional Semantic State, missing Failed Recovery The next category are tests
that report additional semantic states on FPT but less failed recoveries when compared
to Default. When Vinter’s tester fails to recover a crash image, the image will be
reported as a failed recovery and automatically be considered a guaranteed bug as crash
consistency always implies a successful recovery from a crash. As Vinter however also
considers a semantic state to be a possible bug, using FPT over Default should yield
the same results, although in different form.

Table 5.4: Tests with additional semantic states and missing
failed recoveries on FPT compared to Default

VM Test ∆Sem. ∆FR SFS Atomic
vm_pmfs test_mkdir-rmdir 1 -1 ✓/✓ ✗/✗
vm_pmfs test_rename 1.2 -1 ✓/✓ ✗/✗
vm_pmfs test_unlink 1.2 -1 ✓/✓ ✗/✗
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Table 5.4 lists the aforementioned tests. The 0.2 difference with test_unlink

and test_rename is likely to be caused by the varying trace output of the PMFS file
system. It is to be assumed that the result will near the value of a single additional
semantic state with a bigger sample size. On detailed inspection, all three tests show
the same kind of atomicity bug and the same kind of kernel bug (kernel BUG at

/mnt/pmfs/fs/pmfs/balloc.c:70!) when trying to recover some of the crash
images. Their test results will therefore be considered equal as well.

Missing Semantic States The last class of results are tests with fewer discovered
semantic states. We verify if these semantic states still cover the same kind of bugs or
if results are omitted.

Table 5.5: Tests with fewer semantic states discovered by
FPT in comparison to Default

VM Test ∆Sem. ∆FR SFS Atomic
vm_nova-protection test_append -1 0 ✓/✓ ✓/✗
vm_nova-protection test_ctime-mtime -1 0 ✓/✓ ✓/✗
vm_nova-protection test_mkdir-rmdir -1 0 ✓/✓ ✓/✗
vm_nova-protection test_unlink -1 0 ✓/✓ ✓/✗
vm_nova-protection test_update-middle -1 0 ✓/✓ ✓/✗

vm_pmfs test_update-middle -5 0 ✓/✓ ✓/✗
vm_nova-protection test_hello-world -1 0 ✓/✓ ✗/✗
vm_nova-protection test_link-hard -2 0 ✓/✓ ✗/✗
vm_nova-protection test_rename -1 0 ✓/✓ ✗/✗
vm_nova-protection test_rename-dir -1 0 ✓/✓ ✗/✗
vm_nova-protection test_rename-long-name -1 0 ✓/✓ ✗/✗
vm_nova-protection test_touch -1 0 ✓/✓ ✗/✗
vm_nova-protection test_touch-long-name -1 0 ✓/✓ ✗/✗

vm_nova test_append -3 0 ✗/✗ ✗/✗
vm_nova test_hello-world -2 0 ✗/✗ ✗/✗
vm_nova test_link-sym -2 0 ✗/✗ ✗/✗
vm_nova test_rename-long-name -1 0 ✗/✗ ✗/✗
vm_nova test_touch-long-name -2 0 ✗/✗ ✗/✗
vm_nova test_update-middle -5 0 ✗/✗ ✗/✗

vm_nova-protection test_link-sym -2 0 ✗/✗ ✗/✗

As shown in Table 5.5, multiple tests report a test to be atomic and have a single
final state on FPT but report an atomicity bug on Default. In most of those cases
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this is because FPT was not able to find the one semantic state that would show the
inconsistency with missing and mismatching content.

While test_update-middle on PMFS differs by 5 crash images, all of them show
the same atomicity issue. The test creates a file, and replaces lines in the middle of that
file with the string hohoho using the command shown in Figure 6.

1 echo -n hohoho | dd of=/mnt/myfile seek=171 bs=6 conv=notrunc

Figure 6: test_update-middle checkpoint 1 to 2

The resulting semantic state images contain different variations in length of the
hohoho string, showing that this step is not atomic. FPT fails to detect any of those
states and is therefore not able to report a bug.

Not being able to discover the atomicity bugs in those tests a degradation in test
quality between FPT and Default and does not fullfill our goal to achieve a similar
quality in bug reports.

We will continue to analyze the tests that report the same result for single final state
and atomicity for similarities and make sure both of them report the same kind of bug.

While having less semantic states, all tests with only one single final state (✓) and
reported atomicity issues show the same kind of differences and effectively report the
same issue. As such, we regard their result as equal.

The result for the remaining tests that report both, multiple single final states and
an atomicity issue, the results vary slightly. All of the tests reported the same kind
of bugs despite having fewer semantic states. However, test_update-middle and
test_hello-world on Nova report the atomicity between checkpoint 2 and 3 as a
yellow (atomic) instead of a red non atomic. This happens because the FPT is able
to only find two semantic states for that checkpoint range. As those two semantic states
however end up as two final states, atomicity can already be considered violated.

The way report-results.py reports the atomicity state is by counting semantic
states. The tool reports a test’s checkpoint range to be atomic if there is only one SFS
and only two semantic states for a checkpoint range. If there are more than two semantic
states, the result is reported as non atomic. If there are only two semantic states but
multiple SFSs, the tool will report the checkpoint to be (atomic) as the test is, by its
definition of atomicity, atomic, but the tool automatically invalidates this result using
the parentheses as a checkpoint can not be atomic with multiple SFSs. We confirmed
for both tests that the additional semantic states for those checkpoints on the Default
implementation show no additional differences but instead just additional variations of
the differences discovered by the FPT implementation. As such, we consider these tests
to be equal as well.

As a conclusion we can say that, if a bug is discovered on FPT, its debugging value
will be the same as with Default.
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5.3 Trace Analyzer
In this section we will outline quality improvements brought to a Vinter test by the trace
analyzer and evaluate the changes we did to it compared to its original design in Mumak.
We will also give a quick overview over its runtime and the changes we did to improve
that runtime.

5.3.1 Runtime
The trace analyzer is a new feature. There will be no relative runtime comparison but
absolute numbers instead. While the trace analyzer itself is rather quick, the requirement
for a kernel stack trace in the trace file needs to be taken into account. A FPT run does
already include the kernel stack trace, but a run of the Default heuristic is required to
collect an additional kernel stack trace (Default+ST) for the trace analyzer to work.
As this is not required for the crash consistency test run we consider the increase in
runtime to be part of the trace analyzer.

This means, that the runtime for a FPT based run is between 155.2 ms for
test_ctime-mtime on Nova and 658.6 ms for test_touch-long-name on Nova-
Protection. The average runtime for a test is 276.7 ms. In comparision, the runtime
for a Default+ST based run is between 1186.2 ms for test_link-hard on Nova and
2680.8 ms for test_rename-dir on Nova-Protection with an average runtime of
1840.6 ms.

As expected, the trace analyzers runtime scales with the amount of trace entries that
need to be processed.

During implementation, we decided to implement the failure point tree to dedu-
plicate the bugs found by the trace analyzer as many of the bugs we observed were
duplicate entries for the same code. An overview of the deduplications efficiency can
be seen in Figure 7.
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Figure 7: Bug count before (top) and after (bottom) deduplication

The amount of bugs was deduplicated from a range between 0 for test_atime on
PMFS and 566 for test_rename-dir on Nova-Protection, down to a range of 0 to
49 for the same tests. The average bug count for a test was decreased from 103.4 bugs
to 11.6 bugs. This deduplication does not omit any information, as it only deduplicates
the same type of bug within the same checkpoint range and with the same kernel stack
trace.

While this deduplication introduced the need for a kernel stack trace and therefore
the potential addition of additional runtime with Default+ST, the runtime of the trace
analyzer itself did not increase. In fact, the average runtime even went down to 276.7 ms
from 310.0 ms, which appears to be caused by the fewer bugs that need to be written in
the report.
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5.3.2 Quality
As for its efficiency and result quality, we will take a look at the tests with missing
semantic states that reported a bug with the Default implementation but not with the
FPT from Section 5.2.2.2. As a reminder, these are shown in Table 5.6.

Table 5.6: Tests with fewer semantic states discovered by
FPT in comparison to Default

VM Test ∆Sem. ∆FR SFS Atomic
vm_nova-protection test_append -1 0 ✓/✓ ✓/✗
vm_nova-protection test_ctime-mtime -1 0 ✓/✓ ✓/✗
vm_nova-protection test_mkdir-rmdir -1 0 ✓/✓ ✓/✗
vm_nova-protection test_unlink -1 0 ✓/✓ ✓/✗
vm_nova-protection test_update-middle -1 0 ✓/✓ ✓/✗

vm_pmfs test_update-middle -5 0 ✓/✓ ✓/✗

We start by taking a look at test_ctime-mtime, test_mkdir-rmdir and
test_unlink on Nova-Protection. These traces report multiple unordered flush
bugs within the checkpoint range. Unordered flushes are explicitly listed to be responsi-
ble for atomicity bugs. That means that, in this case, the trace analyzer strongly suggests
an atomicity bug in the checkpoint range and the trace analyzer is able to potentially de-
tect the atomicity bugs the FPT implementation was not able to find when compared to
the Default implementation.

In case of test_append and test_update-middle on Nova-Protection, the
Default implementation reported an atomicity bug in the relevant trace range that
had not been found by the FPT. The trace analyzer reports a missing flush for a write
within that checkpoint for both of the tests. The missing flush could explain the lack of
atomicity within this range, but it is not a direct proof for the lack of atomicity.

For test_update-middle on PMFS, the trace analyzer only reports a single re-
dundant fence. This is a performance bug and has no influence on atomicity. In that
case, the FPT implementation is, even when combined with the trace analyzer, not able
to find the same atomicity bug as the Default implementation.

This means that the trace analyzer was able to strongly suggest three of the six
atomicity bugs missed by the FPT implementation, hint at two of the remaining three and
could not deliver any additional consistency bug on the last one. Using the ✩ symbol
to represent the hints at a potential atomicity bug, our revisioned table is displayed in
Table 5.7.
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Table 5.7: Tests with fewer semantic states discovered by
FPT in comparison to Default when factoring in the trace
analyzer

VM Test ∆Sem. ∆FR SFS Atomic
vm_nova-protection test_append -1 0 ✓/✓ ✩/✗
vm_nova-protection test_ctime-mtime -1 0 ✓/✓ ✗/✗
vm_nova-protection test_mkdir-rmdir -1 0 ✓/✓ ✗/✗
vm_nova-protection test_unlink -1 0 ✓/✓ ✗/✗
vm_nova-protection test_update-middle -1 0 ✓/✓ ✩/✗

vm_pmfs test_update-middle -5 0 ✓/✓ ✓/✗



Chapter 6

Discussion

In the previous chapters we have shown the design and implementation of the failure
point tree approach into the crash image generator and the pattern based trace analyzer.
We proceeded to evaluate the failure point tree’s runtime improvement and bug detec-
tion rate and showed how the trace analyzer can improve that result by finding bugs
missed by the failure point tree and providing more detail on them. We will now pro-
ceed to discuss those results. We will discuss the improvements and drawbacks when
using the failure point tree implementation over the existing implementation. We will
also discuss how using the trace analyzer can make up for some of those drawbacks and
potential issues with the trace analyzer itself.

6.1 Failure Point Tree
Extending the crash image generator with the failure point tree implementation had two
design goals. An improvement in runtime compared Vinter’s default implementation
and the same results. While it was clear that, by design, the failure point tree implemen-
tation will not be able to find some of the semantic states discovered through the crash
images generated by the heuristic, we were expecting it to show similar results.

The evaluation in Section 5.2.1.2 shows that theses goals were mostly achieved.
Thanks to the failure point tree implementation’s decrease in crash images, the runtime
is significantly faster. We were showing an average improvement of 40.1% on an indi-
vidual test and a decrease in total runtime for all tests of 64.5%. In total runtime, that is
a decrease from 28.7 minutes down to 10.2 minutes.

Section 5.2.2.2 shows us that the FPT implementation was able to find the same kind
of single final state bugs as the Default implementation. After modifying report-

results.py to be compatible with the results delivered by the FPT in Section 4.3.3.1,
we showed that the FPT was able to find and report the same code responsible for the
dirty lines causing the bug reported. Concluded, FPT is able to to find the same consis-
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tency bugs as the Default implementation. However, FPT is not able to find atomicity
bugs reported by the Default implementation on six of the 48 tests. This means, that
the additional crash images generated by the Default implementation’s heuristic were
able to reveal additional semantic states the FPT implementation was not able to find.

When combining the failure point tree with the trace analyzer, however, we were
able to report potential atomicity bugs on three of those six tests and hint at potential
issues on two of the remaining three, leaving only one out of 48 tests on which Vinter
was not able to find an atomicity bug using the failure point tree.

To summarize, using the failure point tree implementation will yield big runtime
improvements at the cost of a slightly worse bug detection rate.

6.2 Trace Analyzer
The trace analyzer should, by design, be regarded to as a suggestion. While its reported
performance bugs will provide a guaranteed bug in the design, its pattern based trace
analysis is not able to check or confirm most of the bugs it reports. For most of the bugs,
the trace analyzer can only imply and warn about potential bugs based on the order of
trace entries. While those will need to be checked and confirmed manually, the report
remains a great help on where to check for potential bugs nonetheless.

However, the trace analyzer leaves some room for improvement. The original design
within Mumak contains the ability to detect implicit flushes, but it was commented
out [5, 6]. In case of a x86 system, a flush will always flush a full cache line of 64 byte.
If there are multiple stores within that line, all of them will be flushed. Every write that
was not targeted but affected by that flush however is considered an implicit flush. While
we assume that it has been commented out because this is how typical memcpy routines
work, it is undocumented on why this action has been taken in the original Mumak
implementation. We discovered that having knowledge of implicit flushes could be of
help during the evaluation.

During our tests, we did not discover any unaligned stores that would be affected by
a partial flush. However, the way partial flushes are handled requires a closer inspection
and potentially a rework. The original design assumes that, if a store is partially flushed
twice, it is always stored [4]. This was adapted in our Rust implementation as well [20].

Figure 1 displays the potential problem with that approach. Red displays an un-
flushed address, green a flushed one. Assuming a store consists of four bytes and the
partial flush stores the first two of them. Assuming a second partial flush covers the first
two bytes again, the last two bytes are still unflushed. While this store is still clearly
partially unflushed, the trace analyzer considers this a successful flush.
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0 .. 62 63 64 65

0 .. 62 63 64 65

0 .. 62 63 64 65

partial flush by
flushing address 3

partial flush by
flushing address 12

Figure 1: Partial flush handling in vinter_report

This design can prevent the trace analyzer from reporting additional unflushed and
unfenced writes.

While these improvements could further improve the trace analyzer, it does already
provide a helpful addition in file system analysis and represents a valueable addition to
Vinter in its current state.
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Chapter 7

Conclusion

Non-volatile memory storage is still a comparatively new technology and development
for it proves to be difficult. As such, Persistent Memory file systems using that tech-
nology require careful testing. Vinter provides a set of tools to do so. In this thesis
we extended the crash image generator with Mumak’s failure point tree approach and
added the trace analyzer to Vinter. Both prove to be a valuable addition to Vinter. Using
the failure point tree to deduplicate the trace entries in order to decrease the amount of
crash images that need to be generated and tested provided big improvements in runtime
while maintaining almost the same quality in results.

The pattern based trace analyzer offers a new tool to discover an additional set of
potential bugs.

We have shown that the trace analyzer can profit from the failure point tree as well by
using it to deduplicate the reported bugs by their kernel stack trace to prevent reporting
the same bug affecting the same code twice.

Further we outlined the performance improvements delivered by our new implemen-
tations and show how the trace analyzer can be used to find new bugs or help with those
discovered by vinter_trace2img already.
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7.1 Future Works
Failure Point Tree visited logic During implementation it became apparent that
we do not require the visited handling included by the original failure point tree
design. In Mumak this logic is used to reiterate over the tree in order to generate crash
images and analyze them for each leaf [3]. After a crash image has been generated and
analyzed, the leaf will be marked as visited and the iteration will be repeated until all
leaves are visited. In our implementation we parse the trace, create crash images along
the way and process them after all images were generated. In our implementation, the
failure point tree is used to check if crash images for a specific kernel stack trace were
generated before by checking if a stack trace is already included in the tree during an
attempted insertion. If it was not contained before, we add the stack trace to the tree
and proceed to generate crash images. As such, marking if a leaf was visited before is
not neccesary. However, during the implementation the idea of moving or reusing the
tree to an earlier stage in the tool while using the visited property alongside the path
and leaf search came up. This will need further research that is beyond the scope of this
thesis.

Compare Vinter to Chipmunk Chipmunk is a different tool to test a PM file system’s
crash consistency. Other than Vinter’s manually written tests, Chipmunk uses the ACE
workload generator [19] and Google’s syzcaller grey-box kernel fuzzer [25] to generate
test workloads. While it was on our original agenda to compare our failure point tree
implementation and the default heuristic with the test results delivered by Chipmunk,
time contraints did not allow for it. It will be interesting to compare Vinter with both,
the failure point tree and the default heuristic to Chipmunk to further evaluate its quality
in bug discovery.

Trace Analyzer: Implicit Flush As previously mentioned, Mumak’s original design
for the trace analyzer includes logic to report implicit flushes that is commented out [5,
6]. A careful evaluation and possible rewrite of that code in order to be able to report
implicit flushes could be of additional help in bug discovery and analysis.

Trace Analyzer: Rework Partial Flush As mentioned in Section 6.2, the logic to
handle partial flushes seems flawed. A careful reevaluation and a potential tracking of
which part of a store is partially flushed could further improve the trace analysis results.
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Appendix A

Test Performance Summaries

A detailed documentation on how these results were created can be found in Section 5.1.

Table A.1: Legend
VM Info about Test VM, named after the file system used
Test Test scenario
Tech Info about Crash Image Generator, stack trace etc.
Fences Amount of Fences (and Flushes, if FPT) during Crash Image generation
CIs Amount of generated Crash Images
SSs Amount of different Semantic States found
FR Failed recoveries during Semantic State Check
Trace (ms) Duration to run and collect the test trace (in ms)
CI (ms) Duration to generate Crash Images (in ms)
SS (ms) Duration to check the Crash Images for different Semantic States (in ms)
Total (ms) Total Runtime (in ms)
TA Bugs Amount of bugs found during trace analysis
TA Entries Amount of trace entries that could potentially cause a bug
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60 APPENDIX A. TEST PERFORMANCE SUMMARIES

A.1 Crash Image Analysis

Table A.2: System 1 Test Average

VM Test Tech Fences CIs SSs FR Trace (ms) CI (ms) SS (ms) Total (ms)
vm_nova test_append Default 5 23 6 0 4017,6 3680,4 7285,8 14985
vm_nova test_atime Default 1 2 2 0 4086,6 968,2 635 5690,8
vm_nova test_chmod Default 2 3 2 0 4020,8 1568,2 948,6 6538,6
vm_nova test_chown Default 2 3 2 0 4041,8 1591 954 6587,6
vm_nova test_ctime-mtime Default 14 33 2 0 4056,2 8136,8 10825,4 23019,2
vm_nova test_hello-world Default 12 75 7 0 2019,6 9450,8 23707,2 35178,4
vm_nova test_link-hard Default 19 36 4 0 4071,6 11093 11559,2 26724,6
vm_nova test_link-sym Default 12 102,4 5 0 2012,4 12201 32820,6 47035
vm_nova test_mkdir-rmdir Default 22 115,6 3 0 3149,4 15426,2 37640,8 56217,4
vm_nova test_rename Default 18 37 4 0 2034 11830,8 11761 25626,4
vm_nova test_rename-dir Default 34 175,4 7 0 2129 25379,2 57845,8 85355,2
vm_nova test_rename-long-name Default 10 30 5 0 2047,2 6753,8 9662,6 18464,6
vm_nova test_touch Default 10 55,6 4 0 4035,8 7859,2 17665,8 29561,6
vm_nova test_touch-long-name Default 14 101,4 8 0 4066,6 11460,8 31975,8 47504,2
vm_nova test_unlink Default 12 22 2 0 2003 7381,2 6994 16379,2
vm_nova test_update-middle Default 5 22 8 0 2070 5158,6 17444,2 24673,8
vm_nova-protection test_append Default 6 120 3 0 4195,2 7036,4 40035 51267,8
vm_nova-protection test_atime Default 2 7 2 0 4301,4 2288,2 2306 8896,4
vm_nova-protection test_chmod Default 5 11,4 2 0 4193,6 4240 3747,6 12181,8
vm_nova-protection test_chown Default 5 11,4 2 0 4241,2 4227,2 3764,2 12233,2
vm_nova-protection test_ctime-mtime Default 22 67,8 3 0 4296,8 12232,2 22087,8 38618,2
vm_nova-protection test_hello-world Default 27 201,8 5 0 2257,8 29471 66368,6 98098,4
vm_nova-protection test_link-hard Default 26 95,8 6 0 4269,8 15014,4 30901 50186

Continued on next page
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Table A.2 – continued from previous page
VM Test Tech Fences CIs SSs FR Trace (ms) CI (ms) SS (ms) Total (ms)

vm_nova-protection test_link-sym Default 24 223 5 0 2204,8 32143 74043,2 108392
vm_nova-protection test_mkdir-rmdir Default 39 194,2 4 0 3355,4 26540 64123,2 94020
vm_nova-protection test_rename Default 24 115,2 5 0 2196,4 18654,4 36702,4 57554,2
vm_nova-protection test_rename-dir Default 68 317,6 8 0 2290,2 54633,8 107216,4 164141,2
vm_nova-protection test_rename-long-name Default 14 54,2 4 0 2209,4 10953,4 17389,6 30553,4
vm_nova-protection test_touch Default 22 159,8 5 0 4229,2 25660,2 52788,6 82679
vm_nova-protection test_touch-long-name Default 32 169,6 6 0 4270,8 31782,2 56602,6 92656,6
vm_nova-protection test_unlink Default 17 62,8 3 0 2219 10258,4 19858,8 32337,4
vm_nova-protection test_update-middle Default 6 109 3 0 2287,2 8076,2 60327 70691,6
vm_pmfs test_append Default 2,2 3,2 2 0 6220,2 1206,2 1053,6 8480,8
vm_pmfs test_atime Default 1 2 2 0 6365,4 603,8 709 7679,4
vm_pmfs test_chmod Default 3 5 2 0 6247 1115,2 1649,4 9012,6
vm_pmfs test_chown Default 3 5 2 0 6272,6 1116,6 1657,8 9048,2
vm_pmfs test_ctime-mtime Default 11,2 18,4 3 0 6365,2 2814,2 6286,6 15467,2
vm_pmfs test_hello-world Default 11,6 26,8 3 0 4298,4 4497,8 8801,4 17598,8
vm_pmfs test_link-hard Default 10 14 3 0 6310 2169,2 4603 13083,4
vm_pmfs test_link-sym Default 6 16 2 0 4248,2 2804 5299,8 12353
vm_pmfs test_mkdir-rmdir Default 17 61 8 1 5410,6 5565,8 20560,8 31538
vm_pmfs test_rename Default 13,8 41,8 6,8 1 4283,6 5199,2 13606,8 23090,8
vm_pmfs test_rename-dir Default 24,8 61,6 5 0 4344,6 9036,4 21193,8 34575,6
vm_pmfs test_rename-long-name Default 7 10,2 2 0 4235,6 2236 3499,4 9971,8
vm_pmfs test_touch Default 9 20 3 0 6274,4 3198,2 6519 15992,2
vm_pmfs test_touch-long-name Default 14,4 28 4 0 6317,4 5393,8 9276,4 20988,8
vm_pmfs test_unlink Default 11 15,2 6,8 1 4208,2 2621,6 4810,6 11641,4
vm_pmfs test_update-middle Default 2 7 7 0 4382 1220 2365,4 7968
vm_nova test_append Default+ST 5 23 6 0 5075,8 3765,2 7378 16219,4
vm_nova test_atime Default+ST 1 2 2 0 5159,6 1098,2 639,8 6898,6

Continued on next page
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Table A.2 – continued from previous page
VM Test Tech Fences CIs SSs FR Trace (ms) CI (ms) SS (ms) Total (ms)

vm_nova test_chmod Default+ST 2 3 2 0 5110,8 1728,4 955,4 7795,6
vm_nova test_chown Default+ST 2 3 2 0 5111 1721,6 954 7787,8
vm_nova test_ctime-mtime Default+ST 14 33 2 0 5131,6 8249,6 10827,4 24209,2
vm_nova test_hello-world Default+ST 12 75 7 0 3067 9369 23870,6 36307,6
vm_nova test_link-hard Default+ST 19 36 4 0 5101,2 11298,6 11675,6 28076,6
vm_nova test_link-sym Default+ST 12 86,8 5 0 3037 11161,8 28184,2 42383,6
vm_nova test_mkdir-rmdir Default+ST 22 116,6 3 0 4254,4 15171,4 38264,2 57690,8
vm_nova test_rename Default+ST 18 37 4 0 3116,8 12045,2 11862,4 27025,6
vm_nova test_rename-dir Default+ST 34 174,2 7 0 3163,4 25698,2 57584,8 86447,4
vm_nova test_rename-long-name Default+ST 10 30 5 0 3120,8 6912 9643,6 19677,4
vm_nova test_touch Default+ST 10 63,8 4 0 5093,2 8002,4 20375,8 33472,2
vm_nova test_touch-long-name Default+ST 14 100,6 8 0 5108,6 12632,8 31605,4 49347,6
vm_nova test_unlink Default+ST 12 22 2 0 3049,8 7569,2 7042 17662
vm_nova test_update-middle Default+ST 5 22 8 0 3126 5310,4 17538,6 25976,4
vm_nova-protection test_append Default+ST 6 122,8 3 0 6131,4 7340,8 41165 54638
vm_nova-protection test_atime Default+ST 2 6,8 2 0 6303,8 2564 2257,8 11126,8
vm_nova-protection test_chmod Default+ST 5 11,6 2 0 6244,4 4376,6 3821,6 14443,6
vm_nova-protection test_chown Default+ST 5 11,4 2 0 6206,6 4477,4 3765 14450
vm_nova-protection test_ctime-mtime Default+ST 22 67,2 3 0 6239,2 12638,4 22150,4 41029,2
vm_nova-protection test_hello-world Default+ST 27 196,6 5 0 4252,8 29757 65075 99085,6
vm_nova-protection test_link-hard Default+ST 26 94,2 6 0 6202,4 15445 30712,6 52361,2
vm_nova-protection test_link-sym Default+ST 24 215,2 5 0 4135,4 30786 72341 107263,8
vm_nova-protection test_mkdir-rmdir Default+ST 39 188,8 4 0 5281,6 28131,8 62651 96065,4
vm_nova-protection test_rename Default+ST 24 115,4 5 0 4196,2 19020,2 37072,4 60289,6
vm_nova-protection test_rename-dir Default+ST 68 326,6 8 0 4318,2 56274,6 111188,8 171782,8
vm_nova-protection test_rename-long-name Default+ST 14 56,2 4 0 4258,8 11223,8 18110 33593,6
vm_nova-protection test_touch Default+ST 22 154 5 0 6390,2 25289 51174,8 82854,8

Continued on next page
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Table A.2 – continued from previous page
VM Test Tech Fences CIs SSs FR Trace (ms) CI (ms) SS (ms) Total (ms)

vm_nova-protection test_touch-long-name Default+ST 32 166 6 0 6201 33560,8 55849,2 95612,2
vm_nova-protection test_unlink Default+ST 17 62,8 3 0 4174,6 10463,6 20037 34676
vm_nova-protection test_update-middle Default+ST 6 110,4 3 0 4309,2 8491 64420,8 77222,2
vm_pmfs test_append Default+ST 2 3 2 0 7959,4 1303 999,2 10263
vm_pmfs test_atime Default+ST 1 2 2 0 7934,6 776 693,6 9405,2
vm_pmfs test_chmod Default+ST 3 5 2 0 7861 1292,2 1676,4 10830,6
vm_pmfs test_chown Default+ST 3 5 2 0 7861,4 1300 1663,2 10825,6
vm_pmfs test_ctime-mtime Default+ST 11 21,6 3 0 7995,4 3028 7459 18483,2
vm_pmfs test_hello-world Default+ST 12,2 26,8 3 0 5891,6 5227 8811,6 19931
vm_pmfs test_link-hard Default+ST 10 14 3 0 7865,6 2364,2 4665,4 14896,2
vm_pmfs test_link-sym Default+ST 6 16 2 0 5974,4 3030,8 5365,4 14371,6
vm_pmfs test_mkdir-rmdir Default+ST 17 61 8 1 7060,4 5768,6 20776,8 33606,4
vm_pmfs test_rename Default+ST 13,8 34 7 1 5931 5560 11239,6 22731,6
vm_pmfs test_rename-dir Default+ST 26,2 59 5 0 6042 9493,4 20482,4 36018,8
vm_pmfs test_rename-long-name Default+ST 7 9 2 0 5922,4 2443 3089 11455,4
vm_pmfs test_touch Default+ST 9 21,2 3 0 7991,2 3421,2 6989,8 18403,2
vm_pmfs test_touch-long-name Default+ST 14,2 28 4 0 7932,6 5207,4 9401 22542,4
vm_pmfs test_unlink Default+ST 11,4 16 7,4 1,2 5902,2 3139,4 5084,4 14127
vm_pmfs test_update-middle Default+ST 2 7 7 0 5934,6 1401 2382,4 9718,8
vm_nova test_append FPT 5 9 3 0 5090,2 508,2 2886 8485,6
vm_nova test_atime FPT 1 2 2 0 5157,8 457 658,8 6274,2
vm_nova test_chmod FPT 3 4 2 0 5058,8 479,4 1301,2 6840,6
vm_nova test_chown FPT 3 4 2 0 5076,6 477,4 1301,8 6857,2
vm_nova test_ctime-mtime FPT 17 15 2 0 5150,8 580,2 4947,2 10679,2
vm_nova test_hello-world FPT 17 19 5 0 3082,6 632,2 6035,6 9750,8
vm_nova test_link-hard FPT 23 22 4 0 5126,8 634,2 7092,2 12854,2
vm_nova test_link-sym FPT 16 19 3 0 3044,4 604,2 6091,8 9742

Continued on next page
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Table A.2 – continued from previous page
VM Test Tech Fences CIs SSs FR Trace (ms) CI (ms) SS (ms) Total (ms)

vm_nova test_mkdir-rmdir FPT 29 27 3 0 4197,2 700,8 8745,8 13644,6
vm_nova test_rename FPT 24 23 4 0 3117,8 655,4 7298 11072,6
vm_nova test_rename-dir FPT 48 46 7 0 3180,6 893,6 15071,2 19146,6
vm_nova test_rename-long-name FPT 14 18 4 0 3096,2 586,8 5798,8 9482,8
vm_nova test_touch FPT 15 15 4 0 5079 578,6 4744,4 10403,4
vm_nova test_touch-long-name FPT 20 25 6 0 5029,4 669,4 7811,8 13512
vm_nova test_unlink FPT 14 13 2 0 3070,4 554,8 4144,4 7770,6
vm_nova test_update-middle FPT 5 8 3 0 3118,4 514,8 5565 9198,8
vm_nova-protection test_append FPT 8 12 2 0 6216,6 1102,8 3974,8 11295,2
vm_nova-protection test_atime FPT 2 3 2 0 6254,2 937,4 1073,2 8266
vm_nova-protection test_chmod FPT 7 6 2 0 6239 1005,2 2006,8 9251,8
vm_nova-protection test_chown FPT 7 6 2 0 6220,6 1007 2041 9269,6
vm_nova-protection test_ctime-mtime FPT 31 21 2 0 6304,6 1300 7065,6 14670,8
vm_nova-protection test_hello-world FPT 36 33 4 0 4227,2 1474 10838,8 16541,2
vm_nova-protection test_link-hard FPT 35 23 4 0 6244,8 1333,2 7572,6 15152
vm_nova-protection test_link-sym FPT 32 30 3 0 4159,2 1410 9926,8 15497
vm_nova-protection test_mkdir-rmdir FPT 53 39 3 0 5278,6 1640,6 13077 19997
vm_nova-protection test_rename FPT 37 28 4 0 4163,8 1440,8 9172,8 14778,6
vm_nova-protection test_rename-dir FPT 95 71 7 0 4258,2 2293 24045,6 30598
vm_nova-protection test_rename-long-name FPT 22 18 3 0 4217,4 1234,8 6009,4 11462,6
vm_nova-protection test_touch FPT 31 25 4 0 6183 1362 8217,6 15763,6
vm_nova-protection test_touch-long-name FPT 43 32 5 0 6259,4 1527,8 10613,4 18402
vm_nova-protection test_unlink FPT 22 15 2 0 4266,2 1161,8 4904,2 10333,2
vm_nova-protection test_update-middle FPT 8 11 2 0 4378,8 1126 8151 13656,8
vm_pmfs test_append FPT 2,4 3,4 2 0 7826,6 769,2 1132,8 9729,6
vm_pmfs test_atime FPT 1 2 2 0 7893 755,4 681,6 9331,2
vm_pmfs test_chmod FPT 5 6 2 0 7893,2 765,2 1984,2 10643,6

Continued on next page
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Table A.2 – continued from previous page
VM Test Tech Fences CIs SSs FR Trace (ms) CI (ms) SS (ms) Total (ms)

vm_pmfs test_chown FPT 5 6 2 0 7787,6 771 2007,2 10566,8
vm_pmfs test_ctime-mtime FPT 13,8 16 3 0 7882,2 848,4 5480,8 14211,8
vm_pmfs test_hello-world FPT 16 20 3 0 5809,8 894,6 6521,8 13227,4
vm_pmfs test_link-hard FPT 13,2 18,2 3 0 7780,2 844,8 6098,6 14724,4
vm_pmfs test_link-sym FPT 10 15 2 0 5802 858,2 5001,6 11662,6
vm_pmfs test_mkdir-rmdir FPT 23 31 9 0 7061,8 954,4 10250,2 18267
vm_pmfs test_rename FPT 17 24 8 0 5888,8 899 7685 14473,6
vm_pmfs test_rename-dir FPT 35 44,4 5 0 5971,6 1072 15272 22317
vm_pmfs test_rename-long-name FPT 9 12 2 0 5787 840,2 4077,4 10705,2
vm_pmfs test_touch FPT 14 17 3 0 7971,8 852,6 5548,8 14374,4
vm_pmfs test_touch-long-name FPT 20,6 24,8 4 0 7863 922,2 8273,8 17059,6
vm_pmfs test_unlink FPT 14 17 8 0 5863 856,6 5426,8 12147,4
vm_pmfs test_update-middle FPT 2 2 2 0 5899,4 761,6 707,6 7369,2
vm_nova test_append FPT-SKIP 5 11 3 0 5073 546,4 3603,4 9223,8
vm_nova test_atime FPT-SKIP 1 2 2 0 5174,6 480,4 667,2 6323,8
vm_nova test_chmod FPT-SKIP 3 4 2 0 5084,8 499 1333,4 6918,4
vm_nova test_chown FPT-SKIP 3 4 2 0 5154,2 500,6 1312,4 6968,2
vm_nova test_ctime-mtime FPT-SKIP 17 16 2 0 5130,8 662,8 5302,2 11096,4
vm_nova test_hello-world FPT-SKIP 17 22 5 0 3036,6 708,8 7073,8 10820,2
vm_nova test_link-hard FPT-SKIP 23 23 4 0 5131,4 737,6 7527 13396,8
vm_nova test_link-sym FPT-SKIP 16 27 3 0 3035,2 700,8 8774 12511,2
vm_nova test_mkdir-rmdir FPT-SKIP 29 29 3 0 4213,4 816,8 9593,2 14624,8
vm_nova test_rename FPT-SKIP 24 26 4 0 3110,2 752,4 8366 12229,6
vm_nova test_rename-dir FPT-SKIP 48 48 7 0 3173,6 1061 16109,6 20345,4
vm_nova test_rename-long-name FPT-SKIP 14 25 4 0 3124 672,2 8179,6 11976,8
vm_nova test_touch FPT-SKIP 15 16 4 0 5092,8 643,6 5174,6 10912,2
vm_nova test_touch-long-name FPT-SKIP 20 32 6 0 5161 765,6 10216 16143,6

Continued on next page
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Table A.2 – continued from previous page
VM Test Tech Fences CIs SSs FR Trace (ms) CI (ms) SS (ms) Total (ms)

vm_nova test_unlink FPT-SKIP 14 14 2 0 3082,8 633 4547,4 8264,8
vm_nova test_update-middle FPT-SKIP 5 10 3 0 3166,8 558,2 6256,4 9982
vm_nova-protection test_append FPT-SKIP 8 14 2 0 6187,4 1187,2 4675,8 12051,4
vm_nova-protection test_atime FPT-SKIP 2 3 2 0 6326,4 1009,6 1033,8 8371
vm_nova-protection test_chmod FPT-SKIP 7 8 2 0 6249 1108,8 2729,2 10088,2
vm_nova-protection test_chown FPT-SKIP 7 8 2 0 6285 1112,6 2688,4 10086,8
vm_nova-protection test_ctime-mtime FPT-SKIP 31 28 2 0 6260,4 1684,2 9707,8 17653,4
vm_nova-protection test_hello-world FPT-SKIP 36 50 4 0 4189,2 1974,8 16826,8 22991,8
vm_nova-protection test_link-hard FPT-SKIP 35 30 4 0 6305 1767,8 10079,4 18153,2
vm_nova-protection test_link-sym FPT-SKIP 32 53 3 0 4262,6 1889,4 17847 24000
vm_nova-protection test_mkdir-rmdir FPT-SKIP 53 53 3 0 5353,2 2246,6 18111,2 25712
vm_nova-protection test_rename FPT-SKIP 37 42 4 0 4202,6 1890,2 14018,2 20111,8
vm_nova-protection test_rename-dir FPT-SKIP 95 95 7 0 4364,8 3286,6 32808 40460,2
vm_nova-protection test_rename-long-name FPT-SKIP 22 25 3 0 4171,8 1501,6 8471,6 14145,8
vm_nova-protection test_touch FPT-SKIP 31 33 4 0 6344 1778 11002,2 19125
vm_nova-protection test_touch-long-name FPT-SKIP 43 44 5 0 6221,4 2013,4 14870,4 23106,2
vm_nova-protection test_unlink FPT-SKIP 22 21 2 0 4133,6 1476,4 6918 12529,2
vm_nova-protection test_update-middle FPT-SKIP 8 13 2 0 4326,6 1213,4 8945 14485,6
vm_pmfs test_append FPT-SKIP 2,2 3,2 2 0 7927,8 830,2 1099,2 9858,2
vm_pmfs test_atime FPT-SKIP 1 2 2 0 8123,6 819,6 703,4 9647,4
vm_pmfs test_chmod FPT-SKIP 5 7 2 0 7887,6 823 2382,6 11094,4
vm_pmfs test_chown FPT-SKIP 5 7 2 0 7971,8 824,8 2375,8 11173,4
vm_pmfs test_ctime-mtime FPT-SKIP 14 18,2 3 0 7987,4 928,8 6395,8 15313,2
vm_pmfs test_hello-world FPT-SKIP 15,4 20 3 0 5903,6 959,6 6661,2 13525,8
vm_pmfs test_link-hard FPT-SKIP 13,2 18,2 3 0 7967,6 895,6 6086 14949,8
vm_pmfs test_link-sym FPT-SKIP 10 16 2 0 5916,2 958,2 5448,4 12323,8
vm_pmfs test_mkdir-rmdir FPT-SKIP 23 34 9 0 7067,6 1073,4 11577,6 19719,8

Continued on next page
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Table A.2 – continued from previous page
VM Test Tech Fences CIs SSs FR Trace (ms) CI (ms) SS (ms) Total (ms)

vm_pmfs test_rename FPT-SKIP 17 24,8 8 0 5953,8 980,2 8189 15123,8
vm_pmfs test_rename-dir FPT-SKIP 35,4 47 5 0 6029,2 1181,6 16589,2 23801
vm_pmfs test_rename-long-name FPT-SKIP 9 12 2 0 5936,8 937,4 4209,8 11085
vm_pmfs test_touch FPT-SKIP 14 19 3 0 7892,4 915 6316,4 15125,2
vm_pmfs test_touch-long-name FPT-SKIP 20,8 26,8 4 0 7965,4 985,6 9089,2 18041,2
vm_pmfs test_unlink FPT-SKIP 13,4 19 8 0 5924,4 931,6 6230,8 13087,8
vm_pmfs test_update-middle FPT-SKIP 2 2 2 0 5987,4 851,6 717 7557,4
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A.2 Trace Analysis

Table A.3: System 1 TA Average

Test VM TA Bugs TA Entries Total (ms)
test_append vm_nova 2 66 156,8
test_atime vm_nova 2 6 157,2
test_chmod vm_nova 4 79 160
test_chown vm_nova 4 79 158,2
test_ctime-mtime vm_nova 13 172 155,2
test_hello-world vm_nova 15 4375 523,6
test_link-hard vm_nova 13 291 156,6
test_link-sym vm_nova 15 740 165,4
test_mkdir-rmdir vm_nova 24 347 156,4
test_rename vm_nova 15 347 160,2
test_rename-dir vm_nova 40 4810 517
test_rename-long-name vm_nova 11 305 157,4
test_touch vm_nova 14 217 157,2
test_touch-long-name vm_nova 17 4530 521,8
test_unlink vm_nova 9 159 157,2
test_update-middle vm_nova 3 65 155,2
test_append vm_nova-protection 1 105 294
test_atime vm_nova-protection 3 23 297
test_chmod vm_nova-protection 3 171 293,2
test_chown vm_nova-protection 3 171 295,8
test_ctime-mtime vm_nova-protection 15 272 293,4
test_hello-world vm_nova-protection 18 4686 658,6
test_link-hard vm_nova-protection 10 443 296,2
test_link-sym vm_nova-protection 17 977 303,2
test_mkdir-rmdir vm_nova-protection 30 654 294,8
test_rename vm_nova-protection 16 544 299,6
test_rename-dir vm_nova-protection 49 5515 652,8
test_rename-long-name vm_nova-protection 9 539 299,4
test_touch vm_nova-protection 17 452 295,6
test_touch-long-name vm_nova-protection 21 5007 658,6
test_unlink vm_nova-protection 9 243 296
test_update-middle vm_nova-protection 2 104 298,2
test_append vm_pmfs 1 18 236,4

Continued on next page
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Table A.3 – continued from previous page
Test VM TA Bugs TA Entries Total (ms)

test_atime vm_pmfs 0 3 239,2
test_chmod vm_pmfs 3 51 241,6
test_chown vm_pmfs 3 51 240
test_ctime-mtime vm_pmfs 7,2 97,6 241,8
test_hello-world vm_pmfs 11,4 646,4 242
test_link-hard vm_pmfs 9 127,4 240,4
test_link-sym vm_pmfs 8 113 239
test_mkdir-rmdir vm_pmfs 13 207 237
test_rename vm_pmfs 11,8 139,8 242,2
test_rename-dir vm_pmfs 26 856,8 245,8
test_rename-long-name vm_pmfs 9 179 238,6
test_touch vm_pmfs 9 145 238
test_touch-long-name vm_pmfs 14,4 759,8 241,8
test_unlink vm_pmfs 7,2 97,4 239,2
test_update-middle vm_pmfs 1 11 236

Table A.4: System 1 TA-NoFPT Average

Test VM TA Bugs TA Entries Total (ms)
test_append vm_nova 5 66 179,6
test_atime vm_nova 3 6 176
test_chmod vm_nova 54 79 180,2
test_chown vm_nova 54 79 178,2
test_ctime-mtime vm_nova 50 172 175,6
test_hello-world vm_nova 126 4375 543,2
test_link-hard vm_nova 98 291 178,6
test_link-sym vm_nova 129 740 185,8
test_mkdir-rmdir vm_nova 114 347 176,8
test_rename vm_nova 126 347 180,6
test_rename-dir vm_nova 288 4810 557,4
test_rename-long-name vm_nova 178 305 180
test_touch vm_nova 108 217 175,4
test_touch-long-name vm_nova 237 4530 564,8
test_unlink vm_nova 45 159 177,6

Continued on next page
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Table A.4 – continued from previous page
Test VM TA Bugs TA Entries Total (ms)

test_update-middle vm_nova 8 65 174,8
test_append vm_nova-protection 4 105 333,8
test_atime vm_nova-protection 3 23 336,2
test_chmod vm_nova-protection 110 171 334,4
test_chown vm_nova-protection 110 171 332
test_ctime-mtime vm_nova-protection 91 272 332
test_hello-world vm_nova-protection 241 4686 700,4
test_link-hard vm_nova-protection 184 443 331,4
test_link-sym vm_nova-protection 241 977 345,6
test_mkdir-rmdir vm_nova-protection 225 654 330
test_rename vm_nova-protection 254 544 338,4
test_rename-dir vm_nova-protection 566 5515 702,8
test_rename-long-name vm_nova-protection 342 539 338,2
test_touch vm_nova-protection 216 452 335,8
test_touch-long-name vm_nova-protection 471 5007 709,4
test_unlink vm_nova-protection 84 243 331
test_update-middle vm_nova-protection 7 104 338,8
test_append vm_pmfs 1,2 18,2 272,2
test_atime vm_pmfs 0 3 275,8
test_chmod vm_pmfs 5 51 277
test_chown vm_pmfs 5,2 51,2 276
test_ctime-mtime vm_pmfs 9 97,2 273,8
test_hello-world vm_pmfs 16,2 646,2 277
test_link-hard vm_pmfs 11 127,2 274
test_link-sym vm_pmfs 12 113 277,2
test_mkdir-rmdir vm_pmfs 20 207 276,2
test_rename vm_pmfs 16,8 139,8 281
test_rename-dir vm_pmfs 38,8 857 280,4
test_rename-long-name vm_pmfs 12 179 275
test_touch vm_pmfs 13 145 276,8
test_touch-long-name vm_pmfs 22,4 759,8 283,4
test_unlink vm_pmfs 8,8 97,2 275,4
test_update-middle vm_pmfs 1 11 273,6
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