\

NIT

Karlsruhe Institute of Technology

Directories for GPU4FS

Bachelor’s Thesis
submitted by

Lennard Kitther

to the KIT Department of Informatics

Reviewer: Prof. Dr. Frank Bellosa
Second Reviewer: Prof. Dr. Wolfgang Karl
Advisors: Peter Maucher and Lukas Werling

4. Dezember 2022 — 4. April 2023

KIT — The Research University in the Helmholtz Association WWW. klt-ed u

I hereby declare that the work presented in this thesis is entirely my own and that
I did not use any source or auxiliary means other than these referenced. This the-
sis was carried out in accordance with the Rules for Safeguarding Good Scientific
Practice at Karlsruhe Institute of Technology (KIT).

Karlsruhe, April 4, 2023

Abstract

Non-Volatile Memory (NVM), especially Intel Optane, is a promising
addition to conventional DRAM-based memory. However, Intel Optane has
some drawbacks, namely high CPU usage due to high access times when
writing to Intel Optane. This thesis has two goals. The first is to add new
and improved directories to GPU4FS, a file system demonstrator, which
aims to address some of the problems of Intel Optane by using a GPU as
a file system accelerator. The second is to determine if a GPU-accelerated
files system is feasible. We evaluate the GPU directories and the feasibility
of a GPU-accelerated file system by comparing it to Ext4, a conventional
Linux file system. The results show that in all but one of our benchmarks,
Ext4 outperforms the GPU directories. The exception is the creation of
long directory chains where the GPU directories are faster than the C++
file system library. We only evaluate synthetic benchmarks that do not
reflect real-world file system use cases. Therefore, we concluded that a GPU-
accelerated file system is feasible in typical file system use cases, which also
involve reading and writing files. However, there are still possibilities to
reduce latency and increase performance.

Contents

Introduction

Background

2.1 GPU4FS
2.2 H-Tree
2.3 NVC-Hashmap
2.4 Filesystems
2.5 High-performance storage and Non-Volatile Memory
2.6 GPU-Architecture
2.7 OpenGL Shading Language (GLSL)

Related Work

3.1 File Systems
3.2 NVM . . .
3.3 NVM Data Structures
3.4 GPU File System

Design

4.1 Directory and H-treeo 0oL
4.1.1 Entry Lookup
4.1.2 Entry Creation

4.2 Comparison to the original H-tree

4.3 Lookup Cache

4.4 On-Disk Data Structures
4.4.1 Block Pointer and Position
4.4.2 Directory Leaf Block
4.4.3 Directory Entryo
444 Dummy Entryo
445 H-treeBlock
4.4.6 H-tree block Entry L.

4.5 Cache

Implementation

5.1 Commands e
5.1.1 The Metadata Command
5.1.2 The File Create Command
5.1.3 The File Lookup Command
5.1.4 The Directory Create Command

5.2 Problems.

6 Evaluation

6.1 Test System

6.2 Limitations
6.3 Latency .

6.4 NVM Data Initialization
6.5 Deep Directory Creation
6.6 Deep Directory Lookups0
6.7 Wide Directory Lookups oo
6.8 Wide Directory Creation

6.9 Discussion
7 Future Work

8 Conclusion

38
38
39
39
40
42
43
47
20
52

54

55

1 Introduction

Modern High-Performance Computing (HPC) necessitates ever-increasing mem-
ory capacity [22|. However, memory is expensive, and higher memory capacity
also increases static and dynamic power consumption [19]. One solution to these
problems is to use Non-Volatile Memory (NVM) instead; one example would be
Intel Optane. However, Intel Optane has its own problems and drawbacks, namely
high CPU usage due to high access times when writing to Intel Optane [29] [31].
Maucher [17] tried to address some of these problems by proposing a file system
that runs primarily on an external accelerator to free up CPU resources. In his
thesis, Maucher implemented a demonstrator of the proposed file system using an
off-the-shelf GPU as an accelerator. So far, directory creation is primarily handled
by the CPU, and the directories are linked-list based.

This thesis aims to port tasks like file lookup and directory creation to the
GPU, further relieving the CPU. We present a design and implementation of a
new H-tree-based directory data structure on the GPU. An H-tree is a combination
between a tree and a hashmap. Hashmaps offer fast lookups using the parallelism
of the GPU, and the tree structure helps to reduce the space overhead of large
hash tables.

In our evaluation, we compare the latency and speed of directory creates and
lookups to Ext4 [16], a conventional Linux file system running on the CPU. We
measured a base latency of 0.012 s every time the shader is executed and new
commands are sent to the GPU, which is 390 to 1000 times higher than the latency
experienced by Ext4. However, longer benchmarks that reduce the impact of the
base latency also reduce the performance difference. We also propose how the
performance gap between Ext4 and the GPU directories can be narrowed.

This thesis is divided into three parts. The first part contains Chapters 2
and 3 and presents background knowledge and prior work relevant to this thesis.
Chapters 4 and 5 make up the second part, which describes the design and im-
plementation of the new directories. In the remaining Chapters 6, 7, and 8, we
evaluate the new directories, propose future work, and conclude this thesis.

2 Background

This section introduces GPU4FS [17], the file system we aim to extend, data
structures that can be used for file lookup, and other modern file systems and
how they handle directories and file lookup. GPU4FS was explicitly designed with
Intel Optane and GPUs in mind; therefore, this section will also present some
information about Non-Volatile Memory and GPUs.

2.1 GPU4FS

GPUA4FS [17] is a file system demonstrator that aims to address some of Intel Op-
tane’s shortcomings. GPU4FS uses a GPU as a file system accelerator to prevent
CPU stalls caused by Intel Optane [29]. The goal of GPU4FS is to offload the
file system management and all of the communication with Intel Optane to the
GPU, thus reducing CPU usage. So far, GPU4FS can queue multiple commands
and execute them on the GPU. These commands are: setting memory regions
to a specific value (memset), copying memory regions (memcopy), writing files
(file_path), and setting meta information for the shader execution (meta info).

Currently, when a file is written to the storage medium, the CPU must create
its inode and the inode of the encapsulating directory. After that, the inodes and
file contents are copied to the storage medium by the GPU. Finally, GPU adds
the file’s inode to the directory.

Directories in GPU4FS are linked lists of directory entries; each entry consists
of four fields: the block pointer to the file’s inode, an offset to the next entry,
the length of the file name, and the file name string itself. A linked list has the
advantage of being space efficient and easy to implement. However, the file lookup
in large file systems will be slow because the time complexity will be O(n - m),
where n is the number of directories that have to be checked, and m is the average
size of a directory.

2.2 H-Tree

The original H-tree was proposed by Phillips [20] in 2001 for Ext2 [23]. It is a tree
with up to three levels. Every directory entry has a hash of its name as a key and
the leaf blocks store lists of directory entries. A first level index block contains an
ordered array of hash values, each pointing to a leaf block. The hash values in the
first level block are the lower bound of all hash values in the leaf block they point
to. The root level also contains an array of hash values that point to first level
blocks. The arrays and leaf blocks must be sufficiently large to ensure that three
levels are enough.

2.3 NVC-Hashmap

Schwalb et al. [25] have implemented a hashmap specifically designed with NVM
in mind. Their goal was to use the hashmap for in-memory databases, but the
same data structure could be used to manage files in a file system. They proposed
using split-ordered lists.

Generally, a hashmap consists of multiple buckets, each holding elements with
the same hash. A split-ordered list is a forward-linked list where buckets are

pointers into the list. The first element of each bucket is a dummy element, and
new elements are placed in the list behind the dummy element of the corresponding
bucket. Since forward-linked lists and dummy elements are used, no locking is
required to update the hashmap [25].

2.4 File systems

The task of a file system is to manage the raw bits and bytes of an underlying
storage system. A file system makes the raw data accessible by mapping it to files
and folders. How a file lookup is handled depends on how files and folders are
organized inside the file system.

Btrfs. Btrfs [24] is a Linux file system that uses balanced trees (B-trees) as
its primary data structure. A directory in Btrfs contains two sorted lists. These
lists hold so-called dir_items. A dir_item contains the name of a file and an
ID to locate the file’s contents. Both lists contain identical entries, but the first
is sorted by filename hash and the second by inode sequence number. The first is
used for path lookups, and the second for bulk operations like backups [24]. Btrfs
uses B-trees to look up entries in these sorted lists.

Xfs. Xfs is a file system primarily used in scientific applications [11]. It
is designed for computer systems with high CPU counts and large disk arrays.
Like Btrfs [24], Xfs stores directory entries in B+-trees. However, if a directory
only contains a few items, these items will be stored as a simple, unsorted list
instead [11].

Ext4. Ext4 [16] is the default Linux file system. Unlike other file systems that
use B-trees, such as Btrfs [24] and Xfs [11], Ext4 uses constant-depth H-trees [20]
to store directory entries.

2.5 High-performance storage and Non-Volatile Memory

Non-Volatile Memory (NVM) is a new and promising type of storage; one ex-
ample would be Intel Optane [22|. Unlike conventional volatile system memory,
NVM does not need to periodically refresh its data, resulting in lower standby
power. Furthermore, Intel Optane offers higher density and a lower cost per bit
compared to DRAM [19]. Although Intel Optane offers a higher read speed than
NVMe SSDs, the access latency can still be around 3-20 times higher than that
of DRAM [19]. Especially writes require significantly more time and power than
reads [31]. Additionally, Maucher [17] and Peng et al. [19] have shown that many
simultaneous requests to Intel Optane cause the bandwidth to decrease. This de-
crease in bandwidth and the longer access times cause the CPU to stall, resulting
in higher CPU utilization [29].

2.6 GPU-Architecture

The GPU’s primary purpose is graphics processing; therefore, its architecture is
designed with that goal in mind. However, GPUs can also be used for general-
purpose computing using APIs like CUDA [18|, OpenCL [10], and Vulkan [9]. A
GPU is a multithreaded single instruction multiple data (SIMD) processor [12].
That means a GPU consists of multiple processing cores (SIMD processors), where
each core operates on multiple pieces of data. The part of the SIMD processor
that operates on a single piece of data is called a SIMD lane.

The DRAM located on the graphics card is called VRAM. Each SIMD lane has
its own private section of off-chip DRAM called private memory [12]. The SIMD
lanes can also access memory shared among lanes of a single SIMD processor called
local memory; for communication between SIMD processors, a shared memory
section called GPU memory can be used [12].

The programs running on the GPU are called shaders. When programming
shaders, each SIMD lane looks like its own thread with its own program counter
and variables.

The number of SIMD lanes running on the same SIMD processor is called a
workgroup. A workgroup can be larger than the number of physical SIMD lanes
of the processor. If so, multiple threads will be launched on the same processor.

2.7 OpenGL Shading Language (GLSL)

GLSL is a programming language used to write compute shaders. GLSL’s syntax
is very similar to C. However, unlike C, GLSL has no pointers, and to modify
function parameters, GLSL has the keyword inout [14]. Another limitation is
that GLSL only allows arrays where the length is known at compile time, and
the length of arrays as function parameters has to be known at compile time as
well [14]. GLSL has built-in atomic functions and barriers for locks, synchroniza-
tion, and calculation with multiple threads [14]. Some examples that are often
used throughout the program code of this thesis are: atomicMin, atomicAdd,
atomicExchange, atomicCompSwap, and barrier. The first three atomic func-
tions all take two parameters mem and data, they then calculate the minimum or
sum of data and mem and write it to mem, or in the case of exchange directly write
data to mem. After that, they will return the previous value of mem. The read and
write happens atomically. atomicCompSwap also returns the previous value of mem
but only writes data to mem if mem is equal to a third parameter named compare.
The barrier synchronizes the execution and memory accesses of the SIMD lanes.

10

3 Related Work

This section presents prior work related to file systems, NVM, NVM data struc-
tures, and general-purpose GPU computing.

3.1 File Systems

The task of a file system is to manage the storage system and also give users the
ability to store files and folders.

GPUA4FS [17] is a file system demonstrator that aims to address some of Intel
Optane’s shortcomings. It is also the file system to which this thesis aims to add
directories.

Btrfs [24] is a Linux file system that uses balanced trees (B-trees) as its primary
data structure. We considered using B-trees as our main directory data structure.
However, we decided against it due to its complexity and the fact that it is hard
to take full advantage of the multithreaded nature of GPUs.

Ext4 [16] is the default Linux file system and uses H-trees for its directories.
The H-tree is also the data structure used in our directories.

Xfs [11] is a file system primarily used in scientific applications. Xfs inspired
us to store small directories as linked lists.

NOVA [30] is a log-structured file system that aims to maximize performance
on hybrid systems with volatile and non-volatile memory while providing strong
consistency guarantees. Unlike conventional log-structured file systems, in NOVA,
every inode has its own linked list log. They chose logs per inode to improve con-
currency and a linked list because of the good random-access performance of NVM.
However, when an operation that involves multiple inodes, e.g., a move between
Directories, is performed, journaling is used to update the logs atomically. NOVA
stores its lookup data structures in DRAM to keep the in-NVM data structures
simple and efficient.

Tmpfs for NVM Kim et al. [15] proposed that a modified version of Tmpfs [27]
could be well suited as NVM file system. We will call the modified version of Tmpfs
TmpfsdNVM. The original Tmpfs is an in-memory file system designed for storing
temporary files for applications. According to them, TmpfsdNVM performs bet-
ter than conventional file systems when used as an in-memory file system. They
tested this by benchmarking TmpfsdNVM and Ext4 using Ramdisk as the storage
medium. They say TmpfsdNVM is faster because it does not use reliability tech-
niques a conventional file system would use, such as journaling, shadow paging,
and checkpointing. These techniques are required when information is cached in
volatile memory, but not to the same extent when using NVM. However, they also
say that reliability mechanisms between the NVM and CPU cache are required
when using NVM file systems.

11

3.2 NVM

In [21], Puglia et al. present the current state of NVM research. They write about
the adaption of file systems and databases for NVM, but also the most common
issues and most significant challenges of NVM and proposed solutions. They do
this by analyzing, comparing, and categorizing various NVM-related studies.

In [31], Xue et al. talk about the characteristics, challenges, and opportunities
of three leading technologies used for NVM, i.e., phase-change memory (PCM),
Spin-transfer torque RAM (STT-RAM), and multi-level cell (MLC) STT-RAM.
PCM is the technology Intel Optante is based on [28].

3.3 NVM Data Structures

Recently some work has been done to design new or modify existing data structures
to take advantage of NVM and to alleviate its shortcomings [25] [6].

An example is the hashmap designed by Schwalb et al. [25]. Their goal was
to create a hashmap that guarantees consistency even in the case of power failure
while offering comparable performance to B+4-Trees. Some of their ideas, like
split-ordered lists, are used in our H-tree.

Bittman et al. [6] modified existing data structures to minimize bit flips. Ac-
cording to them, minimizing bit flips is more important than minimizing writes.
The reason is that writes to phase-change memory (PCM), used for NVM, con-
sumes (relatively) significant power and wears out the cells. Thus, the controller
often only writes to the PCM if the value actually changes, i.e., a bit flip oc-
curs. The authors present two data structures a hashmap and an XOR linked list.
The hashmap reduces bit flips by avoiding zeroed keys and checking the Hemming
distance of free slots before inserting new elements. The XOR linked list is doubly-
linked, but the forward and backward pointers are XORed, so one pointer less has
to be stored and potentially updated per list element.

3.4 GPU File System

Silberstein et al. [26] implemented a software layer called GPUfs, which allows
the GPU to access files on the host machine. Their goal is to give GPU pro-
grams a POSIX-like API to interact with the file system. For example, GPUfs
allows developers to map files into the GPU memory using the gmmap call. Unlike
GPUA4FS [17], GPUfs still relies on the CPU for its file system operations. GPUfs
offers an API for the GPU but does not enable the GPU to talk directly to the
storage medium.

12

4 Design

This chapter will present the complete implementation of the new directories. Cur-
rently, directories in GPU4FS [17] are linked lists. A linked list has the advantage
of being space efficient and easy to implement. However, the file lookup in large
directories will be slow compared to a tree-based approach. With a linked list, po-
tentially, every file inside the directory has to be checked. With a tree managing
the linked list, on the other hand, only a few files have to be checked because the
tree makes it possible to reach later parts of the list without the need to scan all
previous files inside the list.

The data structure inside directories is the most important part of the file
lookup. After looking through file systems and data structures, three candidates
are up for consideration: B-tree [24|, H-tree [20|, and Hashmap [25].

The B-tree offers good worst-case performance for directory lookups, O(log(n)),
where n is the number of subdirectories [20]. Additionally, B-trees are more space
efficient than H-trees and hashmaps because they do not have to store lookup
tables. On the other hand, B-trees are very complex [20].

H-trees were designed to be much simpler than B-trees while still offering sim-
ilar performance [20]. In contrast to B-trees, H-trees have a limited depth, sig-
nificantly simplifying splitting and balancing. However, the index blocks have to
store lookup tables for the leaves; the original H-tree paper [20| proposed 4 KB
per index block and a maximum depth of three.

According to their benchmarks, the hashmap proposed by Schwalb et al. [25]
has worse single-threaded search and insert performance than a B-Tree but per-
forms better than a B-tree in multithreaded tests. The hashmap is also simpler to
implement than the B-tree and H-tree. However, a lookup table has to be stored
similarly to an H-tree. Fortunately, the hashmap stores its entries as a forward
linked list, so directories with few elements could be stored as a simple linked list,
and if the directory gets large enough, the lookup table could be added. This is
very similar to Xfs, which also stores small directories as lists [24].

We believe combining hashmap and H-tree provides the best balance between
complexity, performance, and additional data to be stored. Additionally, it works
well for multithreaded access, which is crucial for a GPU. Our data structure will
store entries inside split-ordered lists like the hashmap. However, since a hashmap
lookup table would be too big, an H-tree is used to index the list instead. Figure 2
shows a draft of the data structure.

Another critical factor is the hash function. The hash function should be
fast and efficient, and the output values should be evenly distributed to minimize
linear search. We believe a hash function that has already proven its effectiveness
should be used rather than developing our own hash function. Considering this,
the hash function used by Ext4 is a good choice. Ext4 uses a modified md4

13

hash that hashes strings to 32 or 64 bit numbers [13]. We use 32 bit hashes in
our implementation because our H-tree will manage at most 65.025 hash regions.
Thus, 232 = 4.294.967.296 possible hash values are sufficient. It also allows for
smaller tree block entries and, therefore, more entries per tree level.

4.1 Directory and H-tree

A directory consists of an optional H-tree and a linked list of leaf blocks. The H-
tree is only added to sufficiently large directories. A linked list is used for lookups
in small directories, resulting in less space overhead for small directories. The
Directory entries are stored inside a split-ordered forward-linked list. The linked
list contains dummy entries that signal the boundaries of the hash regions. The
hash regions are ordered by their lowest hash, and divided by dummies containing
the lowest hash of the hash region, but the entries between dummies are unsorted.
If the list grows too large new leaf blocks are added to the leaf block list. Currently,
the H-tree is limited to three levels: root, first, and leaf. Each entry inside the
H-tree has a hash value less or equal to the lowest hash inside the hash region they
represent. Entries inside the root level block can point directly to dummies inside
the leaf blocks or to a first level block. Entries inside the first level blocks always
point to dummies inside the leaf blocks. Figure 1 shows two example directories,
one managed by an H-tree and one without an H-tree.

In its current configuration, a hash region has a maximum size of 256, the tree
is limited to a depth of three, and an H-tree will only be created after 256 entries
have been inserted into a directory. This configuration allows an H-tree to manage
255 * 255 x 256 = 16.646.400 files. The directory can store more files, but we can
only give hard runtime limits up to 16.646.400 files; after that, performance can
degrade because hash regions can become larger than 256 entries resulting in a
longer linear search. Changing the size of hash regions or the value of entries after
which the H-tree is added is simple. However, changing the maximum depth of the
tree requires changes to the block-splitting code. The changes are relatively simple
and centered around the possibility that with more than three levels, a block split
can lead to the parent block also splitting, which is impossible with only three
levels because the parent block is always the root.

Locking is handled through a reader-writer lock in the inode of directories. We
considered locking on the hash region level, but the changes to the H-tree when
a hash region splits affect the entries of other hash regions. This problem may
be solved in the future through more sophisticated locking. One approach would
be to use optimistic locks on the allocation bitmap and split-ordered list because
they can be updated atomically and use exclusive locks on parts of the H-tree if
a hash region splits. Optimistic locks work by first reading some value and then
only write a new one if the old value has not changed since the last read. The

14

operation is tried again if the value changes between the read and the write access.
An exclusive lock, on the other hand, guarantees access to a resource to a single
party until the lock is released. This allows multiple reader and writer to access
the directory simultaneously and only restrict access if a hash region splits.

Direcotry: 1
Dummy File 1 File 2 File 3 File 4

Y
Y
Y
Y

Hash: 0 Hash: 1 Hash: 4 Hash: 3 Hash: 1

1 |

Direcotry: 2

Entry 1 |Entry 2
Hash: O(Hash: 2

/\

«

Dummy File 1 File 4 Dummy File 2 File 3

Hash: 0 Hash: 1 Hash: 1 Hash: 2 Hash: 4 Hash: 3

1 |

Figure 1: Directories one and two both show the same directory with four different
files. In this example, each file has a hash from one to four. The hash of the
dummies and entries represents the starting point of their hash region. Directory
one is not managed by an H-tree. It has only one dummy, and hash region,
which starts at hash zero, and the files have no particular order. Directory two is
managed by an H-tree. There are two hash regions inside the directory. The first
hash region starts at hash zero and the second at hash two. Each hash region has
its own dummy and entry inside the H-tree. The hash region starting at zero only
contains files whose hash is greater or equal to zero and smaller than two. The
second hash region only contains files with a hash of at least two. The files inside
the hash regions have no particular order.

Y

Y
Y

4.1.1 Entry Lookup

To determine if a directory contains a given file, first, the file’s name is hashed.
Second, the first leaf block is checked to determine whether an H-tree manages the
directory; if not, a linear lookup will be performed.

15

For the linear case, the lookup is completed, so we describe the lookup when an
H-tree manages the directory. Next, the root of the H-tree is checked to determine
the hash region which contains the file’s hash. To be more specific, each entry
inside the H-tree block has a hash value representing the lowest hash value of the
referenced hash region, so we want to find the entry with the highest hash value
still smaller than the hash of the file. Here we take advantage of the many SIMD
lanes of the GPU. An H-tree block can have up to 255 entries, and each lane checks
an equal portion of the entries. Therefore if the shader runs with 64 SIMD lanes
per workgroup, each lane has to check at most four entries. Each lane searches
the entry inside their portion of entries with the highest hash value still smaller
than the hash of the file. Then all lanes combine their results by calculating the
highest hash, thus determining the hash region containing the file’s hash.

If the entry points to another H-tree block, the same process of determining
the right hash region is repeated for that H-tree block. If the entry points to a
dummy inside a leaf block, a linear search starts at that dummy. Our H-tree is
limited to a depth of three; therefore, at most, two H-tree blocks must be checked
before reaching a dummy.

The linear search stops if the next dummy is reached, i.e., the current hash
region ends. The configuration we tested splits hash regions with more than 256
entries. Thus, the linear search has to check at most 256 entries. However, a hash
region can become larger than 256 entries if the H-tree is full or more than 256
hash collisions occur. In this case, the linear search may check more than 256
entries.

4.1.2 Entry Creation

The file insertion uses the same code as the file lookup to determine the hash region
in which the file will be inserted. Then, space inside the directory is allocated; if
all leaf blocks are full, a new empty leaf block is created and added to the linked
list of leaf blocks. After that, a directory entry referencing the file is inserted into
the linked list immediately after the dummy of the hash region.

The hash region is split if it contains 256 files after the insertion. Since the
entries inside hash regions are unsorted, a pivot hash that splits the hash region
evenly has to be determined. We calculate the pivot hash by taking advantage of
the high SIMD lane count of the GPU. There are 256 files inside the hash region.
Therefore 256 hashes have to be checked. First, each lane calculates the rank
of an equal portion of these hashes. After that, the hash between the two most
middle hashes is chosen as the pivot hash. Then a new dummy is inserted into
the directory, and the pointers of the entries inside the hash region are updated
according to whether their hash value is greater or smaller than the pivot hash.
Next, a reference to the new hash region has to be inserted into the H-tree.

16

If the directory has no H-tree, a new root block with two entries is created.
The first entry points to the hash region starting at zero, and the second entry
points to the hash region, which starts at the pivot hash.

Otherwise, the entry is added to the tree structure. Here two things can hap-
pen: a new level has to be added to the tree, or a tree block has to be split. Both
operations are done the same way as in the original H-tree by Phillips [20]. When
splitting a tree block, half the entries are copied to a new H-tree block, and a new
entry is inserted into the root block. Adding a new level is done by creating a new
root block with an entry that points to the old one.

Currently, if the root of a two level tree is full, a warning is sent to the user,
signaling that the directory tree is full. When this happens, files can still be
inserted into the directory. However, tree blocks can not be split anymore. Thus,
if a hash region’s splitting requires a tree block to be split, no split will occur.

17

Root block

»Metadata] Entry | Entry | Entry | Entry

H-Tree blocks

1 | /]
Metadataj l/ | | | |

Metadatal | | | |
Metadatal

Metadata] Entry | Entry [Entry | Entry

Leaf blocks

Metadatal

Metadatal
iy
NV

Metadatal

Metadata| |Dummyl—»| Entry »Dummy

File inodes

Figure 2: This is an overview of the data structure used inside directories. It shows
the two tree levels and the leaf level, along with some directory entries, dummies,
and inodes.

18

4.2 Comparison to the original H-tree

This section will explain the differences between the H-tree used for
GPU4FS [17] and the original H-tree designed by Phillips [20].

The original H-tree entry is 64 bit in size and consists of a 32 bit hash and a
32 bit logical pointer. In our implementation, the block pointer is expanded to
64 bit, and another 64 bit are used for the 32 bit hash and some metadata; the
metadata is padded to 32 bit, so the entries are 64 bit aligned. Since the new tree
entries are twice as large, one tree block can only store 255 instead of 508 entries.
The two entries can be seen in Figure 3. The leaf block is the most significant
difference between the H-tree presented in this thesis and Phillips’ [20] H-tree. In
Phillips’ [20] H-tree, every hash region has its own fixed-size leaf block; this has
some problems he admits in his paper. Our H-tree aims to address these problems
by using a single split-ordered list that spans across leaf blocks instead. This
approach defines a hash region through a dummy element inside the list instead
of a fixed-sized leaf block.

Possible waste of space inside block: If a block has only a narrow range
of hash values, space inside the block could be wasted because a 4 kB block is too
large for the number of entries. Our H-tree does not have this problem because
leaf blocks are independent of hash regions and can be used by all hash regions.

Leaf blocks with very few entries: Phillips’ leaf blocks are 4 kB in size, and
the name of a file can be as large as 256 B, that means in a worst-case scenario,
less than 16 directory entries could be stored in one block. The number of leaf
blocks is limited, so a directory with long file names can store fewer files than a
directory with short file names. The hash regions in our H-tree are not limited
to a fixed amount of disk space; instead, an arbitrarily predetermined number of
entries can be stored in every hash region.

Extended search if too many hash collisions occur: Hash regions can
become larger than a single leaf block if too many entries have colliding hashes.
Phillips alleviates this by signaling a collision and also filling the leaf block of the
following hash region. As mentioned before, our hash regions are not limited to a
fixed amount of disk space, so this is not a problem. However, lookups may take
longer if more entries collide than are generally allowed inside a hash region.

The need to copy entries when a block splits: To split hash regions,
Phillips sorts the entries inside the hash region and then copies half of the entries
over to the new leaf block. We do not sort the entries but instead choose a hash
that splits the regions evenly, which was also mentioned in the original paper as
a possible way for splitting hash regions. This reduces the time complexity of
the split from O(nlog(n)) to O(n), where n is the number of files inside the hash
region. After that, we update the pointers of the entries instead of copying them.
This reduces writes to NVM, which is crucial because of the significant time and

19

power writes to NVM require [31].

64 32 0
hash pointer } original H-tree entry
128 64 32 0
metadata hash target position } new H-tree entry

Figure 3: The original and the new H-tree entries.

4.3 Lookup Cache

The lookup cache reduces the number of NVM accesses, thus improving lookup
latency. The cache maps the hash of a path component to its name, a pointer to
its inode, and a pointer to the inode of the encapsulating directory. The name
is necessary to detect hash collisions. The pointer to the encapsulating directory
is necessary to determine whether the correct directory is being searched because
file names are not unique across directories. Thus resolving a given path with n
path components requires n accesses to the cache. We considered using the hash
of the whole path instead of only the hash of a single path component, which
would reduce the required accesses to only one cache access per path. However,
in contrast to path components where the name has a fixed length, a path has
no length limitation. This complicates storing the whole path, which is necessary
to detect hash collisions. Another disadvantage of caching the whole path is that
relative paths, which are part of a longer path that is already cached, still cause
cache misses.

At the moment, the cache is located inside the local memory of each workgroup.
Therefore each workgroup has its own cache, and the size of the cache is limited
to the size of the local memory. The local memory is limited to a few kilobytes,
whereas the VRAM can be as large as multiple gigabytes [12|. In the future, the
cache should be moved to the VRAM and shared among workgroups. However,
this would also require locking so the cache stays consistent.

4.4 On-Disk Data Structures

Here we present the blocks and entries that make up the new directories. A block
contains 4 kB of continuous data and comprises a header and a set of entries. An
entry can vary in size and purpose but is always inside a block. A directory is a file,
so the directory’s inode points to the blocks the pointer can be seen in Figure 4.
Figure 2 shows an overview of the whole data structure.

20

4.4.1 Block Pointer and Position

The tagged block pointer of GPU4FS [17], as seen in Figure 4, is used in the
inode and lookup cache. GPUA4FS is a 64 Bit file system, meaning nearly all
offsets, counters, and sizes are 64 Bit in size; this includes the block pointer.
Maucher [17] chose 64 bit because of Intel Optane’s 64 bit-crash consistency and
atomicity guarantees.

Files systems have so-called blocks. A block is the smallest amount of data
that can be read or written; it also depends on the target storage medium. In
GPU4FS, the block sizes are inspired by the DRAM page sizes commonly seen
on x86-64 systems. Thus, GPU4FS uses 1 GB, 2 MB, 4 kB, and 256 B or 128 B
blocks. It is configurable whether an inode is 256 B or 128 B in size.

By design, each block on the drive is 128 B aligned. Thus, the last seven
bits of the block pointer are always zero. These bits are used for a two-bit tag
field indicating the size of the referenced data, a valid flag, and an indirection flag
indicating whether the pointer is pointing to more pointers.

Everywhere except for the inode and lookup cache positions are used instead of
tagged block pointers. A position is a 64 B aligned offset, therefore more precise
than the tagged block pointer. This precision is unnecessary when addressing
blocks because the smallest block is 128 B. However, most data inside blocks is 64
bit or 32 bit in size and 64 bit aligned.

63 7 432 0

offset vli| t

Figure 4: The tagged block pointer. The first 57 bits are used for the byte offset.
The following three bits are unused. The next two bits signal whether the pointer
is valid (v) and whether it points indirectly (i) to more pointers. The remaining
two bits show the tag (t), which holds information about the size of the referenced
data.

4.4.2 Directory Leaf Block

As the name suggests, the directory leaf block is on the lowest level of the H-tree
structure and houses the directory entries. Leaf blocks have a size of 4 kB to
reduce wasted space in small directories.

The header of the leaf block contains the position of the root of the H-tree, the
position of the next leaf block, and the allocator. If no H-tree exists, the field is set
to the position of the leaf block itself. The rest of the leaf block contains the linked
list of directory entries. The leaf block and leaf block entries use global positions
instead of local positions or offset because the linked list of directory entries can

21

span multiple leaf blocks scattered across the disk.

The allocator is one crucial design aspect of the leaf block. It has to be able
to handle directory entries of different sizes because, depending on the file name,
a directory entry can vary in size. The size of an entry can be anywhere between
33 B to 288 B because an entry contains 32 B of metadata and the file name,
which is at most 256 B. Chapter 4.4.3 describes the directory entry in greater
detail. It should also be possible to free and reallocate space so that file deletion
can be added in the future. Furthermore, the allocator should minimize wasted
space inside allocation units and the leaf block itself. With this in mind, we chose
a bitmap-based allocator with an allocation size of 16 B, which means 256 possible
allocations inside the 4 kB leaf block. A bitmap-based allocator divides the total
space, in this case, a 4 kB leaf block, into equally sized chunks, in our case 16 B in
size. To allocate the nth 16 B chunk inside the leaf block, one has to set the nth
bit inside the allocation bit map to one. However, the first 48 B are used for the
leaf block’s header, leaving 253 possible allocations. Therefore, the first three bits
of the bitmap are always zero and can be used for something like locking. The leaf
block can be seen in Figure 5.

6361 0

root level block position

next position

i

bitmap

dir entries

Figure 5: The directory leaf block. The header contains the position of the H-tree,
the position of the next leaf block, and a bitmap for allocation. The r represents
the reserved bits of the bitmap. The remaining space contains the directory entries.

22

4.4.3 Directory Entry

Every file inside a directory has its own directory entry. It contains all the file’s
relevant information, as seen in Figure 6. In addition to the file name, file name
length, and inode position, the entry also contains a hash of the file name. The
hash is included to speed up name comparisons when looking up files and to avoid
recalculating the hash every time the hash region splits, which is necessary to
determine the hash that splits the hash region.

63 32 8 0

inode position

next position

hash length

name

Figure 6: The directory entry. It contains the position of the inode of the under-
lying file or directory, a next pointer, the hash and length of the file name, and
the name itself.

4.4.4 Dummy Entry

The dummy entry, as seen in Figure 7, is a special kind of directory entry. Instead
of referring to a file, it signals the beginning of a new hash region. That means
all directory entries that come after a dummy have the same or a higher hash
value. The structure of the dummy is very similar to a regular directory entry.
However, there are some differences. The first eight bytes are unused because the
dummy does not belong to any file. Furthermore, the name field is used to count
the entries inside the hash region belonging to the dummy. Therefore, the name
length is always set to zero.

23

63 32 8 0

next position

hash 0

hash region size

Figure 7: The dummy entry block. It is a special kind of directory entry. The first
eight bytes are unused, then comes the next pointer, hash, and length, just like
the directory entry. However, the length has to be zero, and the field after that is
used for the size of the hash region.

4.4.5 H-tree Block

The H-tree is used to speed up file lookups in directories. Its design is straight-
forward; each H-tree block, as seen in Figure 8, is 4 kB in size, and the size of
an H-tree block entry is 16 B, which means one block can theoretically store 256
entries. However, the first 8 B store the number of entries inside the block, and the
second 8 B are padding. Therefore, only 255 entries can be stored in one block.

63 0

entry count

tree block entries

Figure 8: The H-tree block. The first eight bytes store the number of entries, the
next eight are unused, and the remaining space contains the tree block entries.

4.4.6 H-tree block Entry

Inside the H-tree block is the H-tree block entry, as shown in Figure 9. It maps
a hash region to either another H-tree block or a dummy entry inside a directory
leaf block. The first 8 B are split evenly between metadata and hash. Currently,

24

the metadata only signals whether the entry points to a dummy or another H-tree
block. The last 8 B is the position of either a dummy or an H-tree block.

63 32 0

metadata hash

target position

Figure 9: The H-tree block entry. It contains some metadata, a hash representing
the underlying hash region, and the position of a dummy or H-tree block.

4.5 Cache

The lookup cache consists of cache entries. Every entry has a fixed size of 272
B. The first 256 B store the file name, and the last two 8 B fields contain tagged
block pointers to the encapsulating directory’s inode and the file’s inode. The file
name hash is used to locate the cache entry inside the cache and therefore does
not need to be stored inside the entry. The cache entry can be seen in Figure 10.

63 0

name

dir inode position

file inode position

Figure 10: The cache entry. The first 256 bytes store the file name, then comes
a tagged pointer to the inode of the encapsulating directory and a second tagged
pointer to the file’s inode.

5 Implementation

This chapter describes the implementation of the new directories for
GPUA4FS [17]. We first ported ext4’s hash function to GLSL and then implemented
parsing a path string on the GPU. After that, we implemented the split-ordered
list and the H-tree.

25

The implementation targets x86-64 Linux Systems with modern NVIDIA or
AMD GPUs. We used the same tools as the creator of GPU4FS, meaning the
graphics API used is Vulkan [9], the shaders are implemented using GLSL [14],
and Googles glslc [7] GLSL [14] to SPIR-V [8] compiler. The CPU-side implemen-
tation uses C++-20 [3] and is compiled using g+-+ [4].

The new directories for GPU4FS are tested on these systems

e a desktop PC with an Intel Core™ i7-4770K processor and a dedicated
NVIDIA GeForce GTX 1070 GPU,

e a server with an Intel Xeon E5-2618L v3 processor and a dedicated AMD
Radeon RX 6600 GPU,

e and a server with two Intel Xeon Silver 4215 processors, a dedicated AMD
Radeon RX 6800, and four DIMMs of Intel Optane NVM, with a combined
capacity of 512 GB. This is also the machine used for the benchmarks in our
evaluation in Chapter 6.

5.1 Commands

In GPU4FS [17]|, command descriptors are first written into a command buffer
shared by the CPU and GPU and then executed by the GPU. This section presents
commands of GPU4FS that have been modified and new commands that were
previously not part of GPU4FS.

The new file lookup and directory creation commands use response codes to
signal successful execution or to provide more information in case of an error. The
response codes have the following meanings:

0. The execution was successful.
1. The file already exists.
2. The H-tree is full.

3. A data pointer could not be added to the directory’s inode because all indi-
rection blocks are full.

4. The file could not be found.
5. A path component could not be found.

6. An invalid data pointer was encountered.

26

7. More than 256 hash collisions were detected.

8. One or more file system invariants have been violated.

5.1.1 The Metadata Command

GPUA4FS [17| requires the command buffer to start with some metadata that is
shared for all executions. The metadata configures whether to use separated ex-
ecution, and the number of SIMD lanes that should be used, which are the same
usages as presented in the GPU4FS thesis [17]. Separated execution gives work-
groups the ability to execute commands independently of each other.

In the past, GPU4FS created the root directory with the CPU, but now the
GPU is used instead. Furthermore, we added a new flag called create_root that
signals whether or not to create a new root directory. Without this flag, a new root
directory would be created every time the GPU4FS compute-shader is executed,
making all previously created files and directories inaccessible. Another approach
would be to set a flag inside the superblock that signals if the root directory already
exists. The modified metadata command can be seen in Figure 11.

type tag
(next)

separated _execution

num_work itmes

create root

(atomic_aquire)

atomic_complete

Figure 11: The GPU4FS [17] metadata command descriptor. It contains one
boolean flag signaling separated execution, the number of SIMD lanes, and a
new flag signaling whether to create a new root directory (highlighted in green).
The next and atomic_aquire fields are unnecessary for the metadata command
descriptor because it is always the first command executed by every lane.

27

5.1.2 The File Create Command

The new file create command can create and insert files into the H-tree-based
directories. There was already a command to create files in GPU4FS [17], and
although they use different kinds of directories, the new command descriptor is
entirely backward compatible with the old one; the only difference is the type_tag
and that some fields are no longer used. The inode_position and file_position
were previously used by the CPU to specify where to write the inode and file but
are no longer needed because Maucher [17] has since ported the block allocator to
the GPU. Furthermore, the directory_position was used by the CPU to tell the
GPU in which directory the file should be inserted; this is also no longer needed
because the GPU is now capable of resolving a given absolute path and finding the
directory in which the file should be inserted on its own. The file create command
can be seen in Figure 12, and more information about the unchanged parameters
can be found in the GPU4FS thesis [17].

Main Functionality: To write a file to disk, the GPU has to complete five
steps:

1. Write the file data to disk,
2. write the inode to disk,

3. set the block pointers,

4. resolve the path,

5. update the directory

The first three steps are unchanged from the original file write command from
GPUA4FS and are, therefore, not described in this thesis. On the other hand, the
fourth and fifth steps are new and thus described in more detail. The steps can
be executed in any order, but step four has to happen before step five because the
path has to be resolved before the directory can be updated.

Resolve the path: The function resolve_path() is used to resolve the path.
The function takes as input the position of the root inode, command block, path
offset, and path length. The position of the path offset and path length are re-
quired, so the function can parse different command descriptors. If the file exists,
it will return the position of the file’s inode, the position of the dummy of the
hash region the file is located in, the file name length, the file name hash, and the
file name itself. If a path component can not be found, the lookup will stop, and
all information needed to create the missing file and resume the lookup will be
returned. This information includes the position of the inode of the last directory
that was found, the position of the dummy of the hash region in which the missing

28

file should be inserted, the length of the name of the missing file, the hash of the
name of the missing file, the name of the missing file itself and some state that can
be used to resume the lookup. The file create command does not use the lookup
resume feature, but it is necessary for the directory creation. The initialization of
resolve_path() can be seen in Listing 1. To resolve the path, we loop over it and
look up each path component as seen in Listing 2.

Update the directory: After the path has been resolved, the file can be
inserted using the function dir_insert_file() and the information returned by
resolve_path(). The dir_insert_file() first prepares the directory for file
insertion and checks if the file already exists, as shown in Listing 3. Then, the
function writes all necessary data to the disk and updates the existing directory.
It will also split the hash region in which the file is inserted if it gets too large.
This can be seen in Listing 4. Chapter 4 provides more information about the
splitting process.

29

// shared variables

shared int64_t _path_buffer_256[32];
shared uint _path_component_hash;
shared int _path_component_length;

int resolve_path(uint root_inode_position, uint block_position,

— uint path_offset_offset, uint path_length_offset, inout uint
inode_position, inout uint dummy_position, inout uint hash,
inout int64_t name[32], inout int length, bool use_state, inout
int current_element, inout int component_shift, inout int
chars_scanned) {

uint local = gl_LocallnvocationID.x;

uint working_directory_position = root_inode_position;

uint path_component_hash = 0O;

R

10

11

12

13

14

15

16

17

18

int return_code = SUCCSESS;

if ('use_state) {
component_shift
current_element
chars_scanned =

int path_offset = int(config.data[block_position +
< path_offset_offset]) / sizeof_int64_t;

int path_length = int(config.data[block_position +
< path_length_offset]);

int path_elements = rounded_up_division(path_length,
< sizeof_int64_t);

Listing 1: The GLSL code to prepare the parsing and resolving of a path. First,
the state is initialized with default values or a provided state if use_state is true.
Then the path offset and path length are retrieved from the config buffer.

30

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

while (chars_scanned < path_length) {
_path_component_length = path_length - chars_scanned;
if (local < path_elements - current_element && local<32) {
// read from config buffer ...
// calculate path component length
for (int j = 0; j < sizeof_int64_t; j++) {
if ((int(_path_buffer_256[local] >> (j*8)) & OxFF)

~ == 0x2F) {
atomicMin(_path_component_length,
int (local*sizeof_int64_t+j));
break;
b
b
}

groupMemoryBarrier();
// update loop wvariables ...
// skip leading "/"
if (_path_component_length == 0) { continue; }
// add padding ...
int err = dir_lookup(working directory_position,
— dummy_position, _path_component_hash, _path_buffer_256,
< _path_component_length);
if (err != SUCCSESS) { ... }
+

Listing 2: The GLSL code for parsing and resolving a path. It is part of the
resolve_path() function. The loop ends if the path is fully parsed or a path
component cannot be found. In each iteration, first, the path component is read
from the config buffer. Each lane reads eight characters at once and writes them
to the shared variable _path_buffer_256 so all lanes inside the same workgroup
can see the current path component. Depending on the previous path component,
some shifting is necessary because accesses to the config buffer are 64 bit aligned,
but path components are not. After that comes another loop in which each lane
checks its eight characters for a slash (0x2F), i.e., the end of the path component.
The position of the first slash is then communicated to the other lanes of the
workgroup through the shared variable _path_component_length. Next, the hash
is calculated by the first lane of the workgroup and communicated to the other
lanes via the shared variable _path_component_hash. Finally, dir_lookup() is
called to check if the path component exists. If so, the next iteration starts;
otherwise, the loop ends. 31

1

10

11

12

13

14

15

16

17

18

19

20

21

22

int dir_insert_file(uint dummy_position, uint dir_inode_position,
— uint file_inode_position, uint hash, int64_t name[32], int
- length) {
uint local = gl_LocalInvocationID.x;
acquire_write_lock(dir_inode_position);

// check if file already exists
if (dir_lookup_linear (dummy_position, dir_inode_position, hash,
- name, length) == SUCCSESS) {
unlock_write_lock(dir_inode_position);
return FILE_ALREADY_EXISTS;

}
int type = O;
bool valid = false;

bool indirect = false;
uint dir_position =
< 1inode_get_position_from_first_data_pointer(dir_inode_position,
< type, valid, indirect);
if (valid == false) {
unlock_write_lock(dir_inode_position);
return INVALID_DATA_POINTER;
}
bool has_H_tree = uint(nvm.to[dir_position]) != dir_position;
uint space_needed = ENTRY_NAME_OFFSET +
< rounded_up_division(length, sizeof_int64_t);
uint entry_position = O;
int err = dir_allocate_space(dir_inode_position, space_needed,
< entry_position);

Listing 3: The GLSL code to prepare the insertion of a file into an existing di-
rectory. First, the inode of the directory is locked using aquire_write_lock().
Second, dir_lookup_linear() is used to check if the file already exists. If not,
the first leaf block position is read from the inode, and space is allocated inside
one of the leaf blocks using dir_allocate_space().

32

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

const uint name_elements = rounded_up_division(length,
sizeof_int64_t);
nvm.to[entry_position + ENTRY_INODE_POSITION_OFFSET] =
int64_t(file_inode_position);
nvm.to[entry_position + ENTRY_HASH_OFFSET] = int64_t(hash) <<
ENTRY_HASH_SHIFT;
nvm.to[entry_position + ENTRY_NAME_LENGTH_OFFSET] |=
int64_t(length);
if (local < name_elements) {
nvm.to[entry_position + ENTRY_NAME_OFFSET + local] =
name [local];
+
inode_increment_hardlink_counter(file_inode_position);
// insert file into list ...
if (uint(nvm.to[region_dummy + ENTRY_HASH_REGION_SIZE_OFFSET])
< DIR_MAX_ENTRIES_PER_HASH_REGION) {
unlock_write_lock(dir_inode_position);
return SUCCSESS;
}
if ('has_H_tree) {
uint H_tree_block = get_free_block();
err = new_H_tree(dir_position, dir_inode_position,
H_tree_block);
} else {
err = expand_H_tree(dir_inode_position, region_dummy) ;
}
unlock_write_lock(dir_inode_position);
return SUCCSESS;

Listing 4: The GLSL code to insert a file into an existing directory. It is part of
the dir_insert_file() function. First, the file’s information is written into the
leaf block. The local variable is unique for each SIMD lane inside a workgroup;
it counts from zero to the number of SIMD lanes per workgroup. Then the next
pointer of the dummy of the hash region in which the file is inserted is updated.
Finally, three things can happen depending on the directory and size of the hash
region. If the hash region has less than 256 entries, the inode of the directory is
unlocked using unlock_write_lock(), and the function returns. Otherwise, it is
split using expand_H_tree(), or if no H-tree exists, a new one is created using
new_H_tree() before the inode is unlocked.

33

type tag

next

file size

num_work itmes
file data offset
path length

path offset

directory position

inode offset

inode position

file position

atomic_aquire

atomic__complete

Figure 12: The GPU4FS [17] file writing command descriptor. In addition, to the
default command descriptor fields, it contains several offsets into the command
buffer to configure which data is copied from DRAM to NVM. path_length and
path_offset were previously limited to the file name but are now used for the
file path (highlighted in yellow). directory_position, inode_position, and
file_position are no longer needed (highlighted in red).

5.1.3 The File Lookup Command

The new file lookup command, as seen in Figure 13, can be used to let the GPU
resolve a given path. If the file exists, the inode offset will be written to the
provided result offset; otherwise, an error code will be written to the response code
offset. The file lookup command is just a wrapper around the resolve_path()
function, which can be seen in Listing 1 and Listing 2. Each field in the descriptor
has the following purpose, where the index shows the offset inside the descriptor
in multiples of 8 B:

2. Reserved for the number of SIMD lanes, but currently unused.

3. The offset of the path in the command buffer that should be resolved.

34

4. The length of the path.
5. The offset in the command buffer where the response code is written to.

6. The offset in the command buffer where the inode position is written to.

type tag

next

num work itmes

path offset

path length

response_code offset

result offset

atomic_aquire

atomic__complete

Figure 13: The new path lookup command descriptor. It contains offsets for the
path which should be resolved and offsets specifying where to write the result and
response code.

5.1.4 The Directory Create Command

The new directory create command, as seen in Figure 14, can be used to create
directories using the GPU. Both commands mkdir() and mkdir_all() use the
same command descriptor; the only difference is the type_tag. mkdir() tries to
create the directory at the provided path and fails if one or more intermediate
directories do not exist. mkdir_all(), on the other hand, creates the directory at
the provided path and also any nonexisting intermediate directories. Each field in
the descriptor has the following purpose, where the index shows the offset inside
the descriptor in multiples of 8 B:

2. Reserved for the number of SIMD lanes, but currently unused.

3. The offset of the path in the command buffer specifying where the directory
should be created.

35

4. The length of the path.

5. The offset in the command buffer where the response code is written to.

Main Functionality: The path is resolved, and the directory is inserted the
same way it is done in the file create command using the functions resolve_path()
and dir_insert_file(), which can be seen in Listing 1, 2, 3, and 4. mkdir()
will execute resolve_path() and dir_insert_file() asingle time and fail if any
intermediate directories do not exits. In the case of mkdir_all(path), all missing
intermediate directories must also be created. This is done using resolve_path().
Every time a missing directory is encountered, the lookup will stop, and all infor-
mation needed to create the missing directory and resume the lookup is returned.
Then the directory is created using dir_insert_file(). After that, the lookup
is resumed.

type tag

next

num_work itmes

path offset

path length

response code offset

atomic aquire

atomic__complete

Figure 14: The new directory creation command descriptor. It is for both com-
mands mkdir and mkdir_all. It contains an offset for the path and an offset
specifying where to write the response code.

5.2 Problems

The workgroup size specifies the number of SIMD lanes that should run on each
SIMD processor. The SIMD lanes act like threads with their own program counter
and variables. They normally communicate through shared variables inside the lo-
cal memory, but they can also communicate via the storage medium or variables in-
side the VRAM. The order in which the SIMD lanes are executed is undefined [14].

36

Therefore, barriers must be used to synchronize execution and ensure that values
modified by one SIMD lane are visible to another [14]. However, we noticed that
changes to shared variables and the storage medium are sometimes not visible to
some SIMD lanes.

Visibility inside workgroups: We tested this on two GPUs: an NVIDIA
GTX 1070 and an AMD Radeon RX 6600. On the AMD GPU 64 lanes, and on
the NVIDIA GPU, only 32 lanes were able to sync correctly. We implemented our
own barrier, which can be seen in Listing 5, to work around this when calculating
the minimum of values. However, we could not solve the inconsistencies regarding
the storage medium. Thus, we only use 32 and 64 lanes for our evaluation.

Visibility between workgroups: We also noticed inconsistencies between
workgroups. Our locks were able to synchronize the workgroups correctly. Thus
not more than one workgroup can write to the same directory simultaneously.
However, sometimes the workgroups did not see some of the changes made by
other workgroups. Despite the use of memoryBarrier (), which should guarantee
the visibility of prior writes [14].

Synchronization: When a SIMD lane reaches a barrier(), its execution
should pause until all other lanes reach the same barrier() [14]. Therefore, the
code in Listing 6 should result in a deadlock when it is executed with more than
three SIMD lanes because the first three lanes should never leave the if statement.
However, the shader will finish execution without a timeout, and the from buffer
will contain an entry from every lane, even from the first three. This is unexpected
and may also cause the visibility issues.

void main() {
uint global = gl_GlobalInvocationID.x;

if (global < 3) {
memoryBarrier();
barrier();
+
file.from[global] = to_64bit_literal(0, global);
return;

Listing 5: This GLSL code should result in a deadlock. @ The variable
gl_GlobalInvocationID.x assigns each lane a unique id. It starts at zero and
counts up to the total number of SIMD lanes. Therefore, only the first three lanes
should enter and never leave the if statement.

37

10

11

@define sync_minima(_minima) ‘
uint _local = gl_LocalInvocationID.x;‘
while (_minima[3] !'= 1 || _minimal[2] !'= 1) {‘
if (_local < 32) atomicMin(_minimal[O], _minima[l]);!
if (_local >= 32) atomicMin(_minimal[1], _minima[O]);H
if (_minima[0] == _minimaf[1]) {!
if (_local < 32) _minima[2] = 1;\
if (_local >= 32) _minima[3] = 1;\
N
barrier();‘
N

Listing 6: The goal of the GLSL macro is to calculate a minimum and synchronize
the SIMD lanes so all see the same value. The code is not inside a function
because we need a direct reference to the shared array _minima, and GLSL has
no pointers [14|. Before this macro is called, _minima[0] should contain a value
considered by the first 32 SIMD lanes to be the minimum, and _minima[1] should
contain a value considered by the second 32 SIMD lanes to be the minimum.
_minima[2] and _minima[3] are used to check that both SIMD lane groups saw
the other group’s value and have updated their value accordingly. The SIMD lanes
will loop until both groups agree on the smallest value.

6 Evaluation

This thesis aims to evaluate the extra latency of file lookups introduced by using
a GPU as a file system accelerator. Therefore, we evaluate the latency of the
GPU itself, path lookups, and directory creations. We also evaluate the new
directories by measuring the time it takes to create directories and the time it
takes to perform lookups in large directories. We then compare our results with
Ext4 [16], a conventional Linux file system.

6.1 Test System

The system used for the evaluation has the following specifications:

e Processors: Two Intel Xeon Silver 4215, operating at 2.5 GHz

e Memory: Eight DIMMs of DDR4 at 2400 MT /s with a combined capacity
of 128 GB: Each CPU has four 16 GB DIMMs.

38

e NVM: Four DIMMs of DDR4-socket-compatible Intel Optane memory at
2400 MT /s with a combined capacity of 512 GB; Each individual CPU is
connected to two 128 GB DIMMs.

e GPU: AMD Radeon RX 6800 with 16 GB of VRAM and connected via 16
PCle Gen3 lanes

e Storage: One Samsung NVMe SSD and three Micron NVMe SSDs

6.2 Limitations

Various factors limit the number of tests we can perform:

Number of SIMD lanes: The shader requires at least 32 SIMD lanes to
perform string comparisons. Furthermore, the number of SIMD lanes should be a
multiple of the physical vector size of the GPU. Although our implementation can
handle any number of SIMD lanes greater than 32, it is better to use a power of
two because the directory data structures also often use powers of two. However,
due to the problems described in Section 5.2, we can use 64 SIMD lanes at most.
Therefore, only two workgroup sizes, 64 and 32 SIMD lanes can meaningfully be
tested.

Timeout: The kernel will terminate any GPU program after approximately
10 s. This problem was already identified by Maucher [17] but could not be solved
so far. Therefore, all test cases have to take less than 10 s; this limits the possible
number of directory lookups or creations.

Number of workgroups: As described in Section 5.2 there are visibility is-
sues between workgroups. However, this only affects writing data with multiple
workgroups, not reading data. Thus, the lookup benchmarks are unaffected and
use up to 512 workgroups, but the directory creation benchmark is limited to at
most two workgroups. Wa also wanted to include a benchmark where each work-
group creates directories inside its own subdirectory. However, this benchmark
was also not possible due to the visibility issues between workgroups.

6.3 Latency

Every time we execute a command on the GPU, the GPU must first be initialized,
and then the CPU has to send the commands via the PCle bus to the GPU. This
latency is present whenever we execute a command on the GPU. We assume that
the 10 s timeout limitation of GPU tasks will be solved in the future. This would
allow the GPU shader to run constantly; thus, no GPU initialization is required
when executing a new command. Therefore, we excluded the base latency from
all other benchmarks.

39

We measured the base latency by sending a command to the GPU that im-
mediately signals completion and exits. Figure 15 shows that the base latency is
around 0.012 s. It is also worth noting that the number of workgroups does not
influence the latency. We also noticed that our base latency is between five to ten
times higher than the latency measured by Maucher [17]. Our test system and
the system used by Maucher are very similar, but one difference is the GPU; he
used an AMD Radeon RX 6600 compared to our AMD Radeon RX 6800. We also
tested the latency on another system with an AMD Radeon RX 6600 and also
measured around 0.012 s base latency. Therefore, we think that the GPU is not
the cause of the lower latency, but we are unsure why his latency is much lower
than ours.

20 T T T T T T T T T T T T T

18 1 8
16

14 - :
12

10 - 8

Time [ms]

@] \} —~ D oo
[
|

| | | | | | | | | | | | |
0O 2 4 6 8 10 12 14 16 18 20 22 24 26 28
Workgroups

Figure 15: The latency of the GPU for different numbers of workgroups. We
measured the base latency by sending a command to the GPU that immediately
signals completion and exits. It shows that the number of workgroups does not
influence the latency.

6.4 NVM Data Initialization

At the moment, inode data pointer indirection is limited to one level. However,
all allocations related to directories are only 4 kB in size. We, therefore, had to
increase the size of the indirection block from 128 B to 4 kB so enough pointers

40

could be stored in one indirection level. However, every indirection block has to
be initialized with zero. Thus, 4 kB of additional zeros must be written whenever
a new directory is created. Given the high write costs of NVM, we expected this
would impact our measurements significantly [31]. To test our hypnosis, we ran our
subdirectory creation benchmark two times. The first time every byte inside the
NVM was set to zero; therefore, we deactivated the GPU code that writes zeros to
the indirection block. The second time every byte was set to 0xDC; therefore, the
indirection block had to be set to zero explicitly by the GPU. Figure 16 shows that
the difference between the two runs is minimal. We suspect that the large write
queues of the GPU help hide the additional write time. We decided to use 0xDC
as the initial NVM value for all other benchmarks and set the indirection block
explicitly to zero because this way, we do not make any assumptions about the
initial value of the NVM and keep our implementation more robust and flexible.

101: T T TTTTTW T T TTTTTT[T T TTTTTT[T T TTTTTT[T T TTTTTT:

- | ——initialized with 0xDC l

I | ——1initialized with 0x00 1

100 8 .

w L i

© | i

g | |

B | i

1071 B .

10—2 Lol Ll Ll Lol [
10° 10! 102 103 10* 10°

Directories

Figure 16: A comparison between different NVM initial values. We test if different
NVM initial values affect the time it takes to create and add subdirectories. The
data shows that if every byte on the NVM is set to zero, the directory creation is
slightly faster than if every byte is set to 0xDC.

41

6.5 Deep Directory Creation

In Figure 17, we measured the time it takes to create a deep directory structure,
ie., a/b/c/d/... We compare the GPU directories with one workgroup and
different numbers of SIMD lanes to two different Ext4 directory creation APIs.
We wanted to use the same number of directories for both creation and lookup
benchmarks. However, the lookup benchmarks encountered timeouts with more
than 4000 directories, and thus we limited the depth to 4000 directories.

First, we will discuss the performance differences between the two workgroup
sizes on the GPU and then compare them to EXT4. We test one workgroup with
two sizes, 64 and 32 SIMD lanes. This benchmark does not benefit from the new
directory H-tree structure because each directory only holds one entry. Therefore,
the file system overhead is small, and the time is dominated by the time it takes
to write the data. This can also be seen by the fact that the results are similar to
the write times measured by Maucher [17]|. It is also worth noting that 64 SIMD
lanes are consistently faster than 32. When creating 4000 directories, 64 SIMD
lanes are 1.63 times or 0.0695 s faster than the GPU directories with 32 SIMD
lanes. This is unexpected because, without an H-tree, we only use the extra 32
SIMD lanes when setting the indirection block zero, and Figure 16 showed that
the additional time required to set the indirection block zero is negligible.

We test two different approaches to create the directories one uses the C+-+ [3]
API std::filesystem: :create_directories and the other the C system call
mkdirat. Using std::filesystem::create_directories limits the directory
depth to 1000. Linux has no system call to create a directory and all missing
parent directories. Therefore the mkdirat has to use mkdirat and openat on
every directory in the chain. The base overhead of the Ext4 file creation us-
ing mkdirat is 865 times or 0.0165 s lower than the GPU directories with 64
SIMD lanes, but the relative time difference shrinks with an increasing number
of directories. Thus, at a directory depth of 4000 directories, mkdirat is 1.84
times or 0.0507 s faster than the GPU directories with 64 SIMD lanes. It is
also worth noting that mkdirat fluctuates more than the GPU directories. Us-
ing std::filesystem: :create_directories is consistently slower than using
mkdirat. After 800 directories, the GPU directories with 64 SIMD lanes and
after 1000 directories, the GPU directories with 32 SIMD lanes are faster than
std::filesystem: :create_directories. These measurements exclude the base
latency as measured in Figure 15. With the base latency included, the GPU di-
rectories with 64 SIMD lanes are still faster when creating 1000 directories.

We would expect that creating a single directory takes a constant amount
of time. Thus, creating one directory should be around 4000 times faster than
creating 4000 directories. This can be seen using Ext4; creating one directory is

42

3144 times faster than creating 4000 directories. However, creating one directory
using the GPU directories is only 6.7 times faster than creating 4000 directories.
This indicates some hardware or software bottlenecks.

100 E T T T T 1 171 T[T T T T 1 1 TT[T T T T 1 1 TT[T T T T 1 1 TTE
1071 g

— 1072 8 : E
i) i 1
° i |
I |
= 10731 3
10-4 7 ——32 SIMD lanes per workgroup 7
——64 SIMD lanes per workgroup | |

L Ext4 mkdirat .

—— FExt4 create_directories |

10_5; Lo R R \\\\\\7

—_
o W
T~

10° 10 10? 10?
Directory Depth

Figure 17: The time it takes to create a deep chain of directories. We exclude the
base latency of 0.012 s from the GPU directory results.

We use two different methods to create directories in Ext4 mkdirat
(x) and std::filesystem::create_directories (+). Using
std::filesystem::create_directories limits the directory depth to 1000.
The writes to NVM dominate the total directory creation time. Notably, the
workgroup with 64 lanes is consistently faster than the one with 32. Ext4 has
a lower base latency, but the relative time difference decreases as the directory
depth increases. The GPU directories with 64 SIMD lanes outperform the
std::filesystem: :create_directories implementation after 800 directories.

6.6 Deep Directory Lookups

We performed two different benchmarks related to lookups in a deep directory
structure. Both benchmarks measure the time it takes to look up the deepest
directory 256 times. In Figure 18, we compare the GPU directories with one
workgroup and different numbers of SIMD lanes to Ext4.

43

First, we will discuss the performance differences between the two workgroup
sizes on the GPU and then compare them to EXT4. We test two workgroup sizes,
64 and 32 SIMD lanes. After 3200 directories, the workgroup with 32 SIMD lanes
had a timeout. We, therefore, only test 64 SIMD lanes from 3200 to 4000 directo-
ries. After around 100 directories, the graph is very linear, which is to be expected
because it takes a linear amount of time to walk the directory chain. Most of
the time using 64 SIMD lanes is around 1.5 times faster than using 32. This is
unexpected because without using the H-tree, no calculation or reads should take
advantage of more than 32 SIMD lanes.

Performing 256 lookups with only one directory in the chain is 62 times or
0.0318 s faster when using Ext4 compared to one workgroup with 64 SIMD lanes.
However, unlike the deep directory creation benchmark, the time difference be-
tween the GPU directories and Ext4 grows as the directories chain gets longer.
Thus, looking up a directory at depth 4000 Ext4 is 88 times or 7.994 s faster.
These comparisons exclude the base latency measured in Figure 15. We suspect
this is because Ext4 uses some lookup cache; our lookup cache only contains 64
entries and is, therefore, too small for the long directory chains.

44

1 [T T T T T 1T T T TTT T T 1T T T TTJ]

10 | |— 32 SIMD lanes per workgroup i

I | —— 64 SIMD lanes per workgroup]

i Ext4)

10° g

e (U £
5} = 3
E -]
=) | i
1072 F g
1073 F g

! ! Lo ! ! L Ll ! ! [|
10° 10* 102 103
Directory Depth

Figure 18: The time it takes Ext4 and the GPU directories using different numbers
of SIMD lanes to perform 256 file lookups in a deep file structure. We exclude the
base latency of 0.012 s from the GPU directory results. Notably, the number of
SIMD lanes does affect the time it takes to perform a lookup, as 64 SIMD lanes
are consistently faster than 32. Ext4 has a lower base latency and requires less
time per directory.

45

In Figure 19, we compare the GPU directories with different numbers of work-
groups, each with 64 SIMD lanes, to Ext4. First, we will show the results for the
GPU directories and then how they compare to Ext4. The workgroups can per-
form lookups simultaneously and independently from each other. Furthermore, the
time it takes to look up the deepest directory increases linearly with the number
of directories in the chain. The linear growth becomes less visible as the number of
workgroups increases. We also notice that a doubling in workgroups also roughly
doubles the lookup speed. There is only a tiny difference between the 128, 256, and
512 workgroups when performing lookups in a directory chain with more than 32
directories. We expected that 512 workgroups would not perform better because
only 256 lookups were performed. The number of compute units probably limits
the 256 workgroups. The RX 6800 only has 60 compute units; therefore, only 60
workgroups can run simultaneously [2]. We think there are two possible reasons
why 128 workgroups are faster than 64: more read commands can be bundled and
sent to the NVM controller, and while one workgroup waits for a response from
the NVM, another can resume execution.

Single-threaded Ext4 is 23.8 times or 0.0125 s faster than the GPU directories
with 128 workgroups when the directory chain only contains one directory. How-
ever, without the base latency measured in Figure 15, the GPU directories are 1.12
times or 54.58 ps faster than Ext4. After that, Ext4 is consistently faster than the
GPU directories. The performance gap fluctuates, and Ext4 is at most 11 times
faster than the GPU directories. At 4000 directories, Ext4 is 1.31 times or 0.0281
s faster than the GPU directories; this excludes the base latency. We expected
that the performance gap would be smaller than in Figure 18 because, unlike our
single-threaded Ext4 test, the workgroups can perform lookups simultaneously.
We can assume that in the real world, more workgroups can work simultaneously

on the GPU than threads on the CPU.

46

101 — T T T TTT] T T T T1TT] +1W0rkgr0up
—— 2 workgroups

——4 workgroups

T T T 11T

100 | . 8 workgroups
1 |— 16 workgroups
i 1 |— 32 workgroups
10-1 64 workgroups

—— 128 workgroups

—— 256 workgroups

—— 512 workgroups
Ext4

E Ll Ll Ll
0

0 10! 102 103
Directories

Figure 19: The time it takes Ext4 and the GPU directories using different numbers
of workgroups to perform 256 file lookups in a deep file structure. We exclude
the base latency of 0.012 s from the GPU directory results. Notably, the more
workgroups are dispatched, the faster the lookups are completed. Ext4 has a
lower base latency but requires more time per directory.

6.7 Wide Directory Lookups

We performed two benchmarks related to lookups in a directory with many subdi-
rectories. Both benchmarks measure the time it takes to perform 512 file lookups
to random subdirectories in a directory with an increasing number of direct sub-
directories.

In Figure 20, we compare the GPU directories with different numbers of SIMD
lanes to single-threaded Ext4. We test two workgroup sizes, 64 and 32 SIMD lanes.
First, we will discuss the performance differences between the two workgroup sizes
on the GPU and then compare them to EXT4. The base latency dominates from
one to 32 files, so the graph only grows slowly. Then, the time increases faster
because the linear search time dominates. After that, the time fluctuates but
stays consistent at around 0.067 s, which is to be expected because lookups using
the H-tree only require a constant amount of time regardless of the number of
subdirectories as long as the H-tree is not full.

After 200 subdirectories, the performance of the different workgroup sizes is

47

almost identical. We think this is because the lookup can be split into two phases:
H-tree and linear. The H-tree phase profits from more SIMD lanes but does not
require many accesses to the NVM. The linear phase, on the other hand, can per-
form up to 256 sequential accesses to the NVM that do not benefit from more
SIMD lanes. Therefore the linear time dominates the total time a single lookup
takes. However, this contradicts the fact that from 0 to 200 subdirectories, the
workgroup with 64 SIMD lanes performs better than the workgroup with 32 SIMD
lanes because directories with 200 or fewer subdirectories are not managed by an
H-tree. This is unexpected but similar to the results from the deep directory
lookup, where the workgroup with 64 SIMD lanes also outperformed the one with
32.

Directory lookups in Ext4 are around 70 times or 0,066 s faster than lookups
using the GPU directories with one workgroup and 64 SIMD lanes; this excludes
the base latency measured in Figure 15. Furthermore, the difference stays roughly
the same. This is similar to the deep directory lookup benchmark, and we suspect
this is also because of a lookup cache used in Ext4 or more efficient code.

48

]_00 T T T T TTTT] T T T T 117177 T T T T 117177 T T T T 117177 T T T T T 11T

1071 F R
H W E
o I]
é 10-2 1 ——32 SIMD lanes per workgroup
g ——64 SIMD lanes per workgroup
- Ext4
1073 | .
L Lol Lol Lol Lol \\\\\7
10° 10¢ 102 103 104 10°
Subdirectories

Figure 20: The time it takes Ext4 and the GPU directories using different numbers
of SIMD lanes to perform 512 file lookups in a directory with an increasing number
of subdirectories. We exclude the base latency of 0.012 s from the GPU directory
results. Notably, the lookup time is remarkably constant for large directories. Ext4
is consistently around 0,066 s faster than the GPU directories. The log scale may
cause the impression that Ext4 lookup times grow faster than the GPU directory
lookup time, but this is not the case. 512 lookups in a directory with only one
subdirectory are 1.74 times faster than 512 lookups in a directory with 32768
subdirectories using the GPU directories compared to a factor of 1.46 when using
Ext4.

In Figure 21, we compare the GPU directories with different numbers of work-
groups, each with 64 SIMD lanes, to Ext4. First, we will show the results for
the GPU directories and then how they compare to Ext4. The workgroups can
perform lookups simultaneously and independently from each other. Therefore
increasing the number of workgroups reduces the time it takes to perform the
lookups. However, the speed gains shrink with an increasing number of work-
groups. The performance gains after 64 workgroups are small, but using 512 gives
the best results. Using 512 workgroups is only 1.38 times faster than 64. This has
two possible reasons. The first is that a single dir lookup is short, so the GPU can
not take full advantage of all workgroups. The second is that the RX 6800 has

49

only 60 compute units; therefore, only 60 workgroups can run simultaneously [2].
Single-threaded Ext4 performs the 512 directory lookups around 6.74 times or
0.0049 s faster than the GPU directories with 512 workgroups; this excludes the
base latency measured in Figure 15. We can assume that in the real world, more
workgroups can work simultaneously on the GPU than threads on the CPU.

10 T T TTTTT T T T TTTT T T TTTTT T T TTTTT | R
0 | | | | —— 1 workgroup

—— 2 workgroups
——4 workgroups

8 workgroups
—— 16 workgroups
—— 32 workgroups

64 workgroups
: | |—— 128 workgroups

— —— 256 workgroups

—— 512 workgroups

Ext4

1071

|

Time [s]

Lol Lol Lol Lol (N
10° 10 10 10 10* 10°
Subdirectories

Figure 21: The time it takes Ext4 and the GPU directories using different numbers
of workgroups to perform 512 file lookups in a directory with an increasing number
of subdirectories. We exclude the base latency of 0.012 s from the GPU directory
results. Notably, increasing the number of workgroups decreases the time it takes
to perform the lookups, and the lookup time is very constant for large directories.
The log scale may cause the impression that Ext4 lookup times grow faster than
the GPU directory lookup time, but this is not the case. 512 lookups in a directory
with only one subdirectory are 1.74 times faster than 512 lookups in a directory
with 32768 subdirectories using the GPU directories compared to a factor of 1.46
when using Ext4.

6.8 Wide Directory Creation

In Figure 22, we measured the time it takes to create a directory with many
subdirectories. We test Ext4 and compare it to the GPU directories using two

50

workgroup sizes, 64 and 32 SIMD lanes, with one and two workgroups per size.

First, we show the results of the GPU directories and then how they compare
to Ext4. After creating 600 and 1000 directories, errors started appearing when
using more than one workgroup, so we limited tests to one workgroup per size after
that. This benchmark benefits from the new directory H-tree structure because
all directories are located in the same directory.

After 200 subdirectories, the graphs are linear, which is to be expected, because
the subdirectory creation can be split into two phases: lookup and write to NVM.
The lookup is constant in large directories, as seen in Figure 20, and the amount
of data that has to be written is also constant.

It is also worth noting that more total SIMD lanes reduce the time it takes
to create the subdirectories. Therefore, one workgroup with 32 SIMD lanes is the
slowest, two workgroups with 32 SIMD lanes (64 SIMD lanes in total) are very
similar to one workgroup with 64 SIMD lanes, and the two workgroups with 64
SIMD lanes (128 SIMD lanes in total) are the fastest. The difference between one
and two workgroups is small because the directory’s inode is locked; thus, only
one workgroup at a time can write to the NVM.

The following comparisons exclude the base latency measured in Figure 15.
Similar to other benchmarks, the base latency of Ext4 is much lower than the
GPU directories; in this case, Ext4 is 239 times or 0.0068 s faster when creating
a single subdirectory. However, with increasing subdirectories, the relative per-
formance difference between the GPU directories and Ext4 shrinks. The relative
difference plateaus at 1200 subdirectories and stays roughly the same. After 1200
subdirectories, Ext4 is consistently around 4.7 times faster. This indicates that di-
rectory creation in Ext4 is faster than when using the GPU directories, regardless
of base latency.

As we would expect, creating one directory using Ext4 is 28752 times faster
than creating 32768 directories. However, with the GPU directories creating one
directory is only 590 times faster than creating 32768 directories. This again
indicates some hardware or software bottlenecks.

ol

10!

= T T T T T 1T T T T T T 1T T T T T T rrry T T T T T rrry T T L TTTTE

- |— 1 workgroup 32 lanes 1

o| |——2 workgroups 32 lanes |

Lo - workgroup 64 lanes

2 workgroups 64 lanes

107 E Ext4 1

) i |

o -2 i

g 10 =—=r |

10_3 ? é

1074 B |

10_5j (RN [| [| [| T = |
100 101 102 103 104 105

Subdirectories

Figure 22: The time it takes Ext4 and the GPU directories to create and add
subdirectories to the same directory. We exclude the base latency of 0.012 s from
the GPU directory results. After 200 subdirectories, the graphs are linear. It is
also worth noting that more workgroups and SIMD lanes only slightly decrease
the directory creation time. Ext4 is faster than the GPU directories. After 1200
subdirectories, Ext4 is consistently around 4.7 times faster.

6.9 Discussion

This section will discuss our results, what we have learned, how the GPU directo-
ries can be improved, and the broader context of the results.

The base latency represents a significant difference between the GPU directories
and Ext4 across all benchmarks. It is, therefore, crucial to reduce this latency. We
see two possible ways to reduce the latency. First, remove the GPU task 10 s
timeout. This would allow the GPU shader to run permanently, removing GPU
initialization latency every 10 s and only leaving transmission latency over the
PClIe bus. The second way is to determine why Maucher [17] measured a lower
latency than we did; this may allow us to reduce latency even further.

Sometimes the first command executed by the GPU takes one to five minutes to
complete. This is substantially longer than the latency measured in Figure 15. This
has to do with shader compilation. The GLSL [14] shader is first compiled to SPIR~

52

V [8], an intermediate language, and then compiled again to the binary running
on the GPU. The first compilation step is not part of our measurements, but the
second is done right before the shader execution and thus causes a substantially
longer latency. We were able to verify this using gdb [5]. Before the shader is
executed, the AMD compiler (ACO) [1] is executed. ACO compiles an intermediate
language to AMD RDNA-specific binary code.

One advantage of the GPU is parallelism. In our context, workgroups on the
GPU are comparable to threads on the CPU. Like CPU threads, workgroups can
independently and synchronously create or look up files and directories. Especially
in the directory lookup tasks, more workgroups improved performance drastically.
We expect that directory creation performance can also be improved by using
more workgroups if the locking described in Section 4.1 is implemented because
the current locking in the directory inode is too restrictive.

The results show that even if the shader code sometimes does not directly
take advantage of more SIMD lanes, in most cases, workgroups with 64 SIMD
lanes outperformed workgroups with 32 SIMD lanes. However, all 64 SIMD lanes
execute the shader even if the shader code does not directly take advantage of all 64
SIMD lanes. We also explained in Section 5.2 that 64 SIMD lanes are the highest
number of SIMD lanes that synchronize correctly. This could have something to
do with the physical vector size of the GPU. Therefore, we think the AMD Radeon
RX 6800 is better suited to operate with 64 SIMD lanes. However, we would also
like to see if more than 64 SIMD lanes improve performance even further.

In the Deep directory creation benchmark, the GPU directories beat Ext4 when
std::filesystem: :create_directories is used for directory creation. However,
other benchmarks, e.g., wide directory creation and single deep directory lookup,
showed that the GPU directories are slower than Ext4 per operation. This can
have multiple reasons:

e Our code needs more optimization, and the Ext4 code is very optimized.

e The caches are currently too small for the number of directories we used for
benchmarking.

e The GPU is slower than the CPU when calculating, e.g., hashes.

e The PCle bus latency slows down sequential reads e.g. when following a
linked list.

The first two reasons can be addressed in the future, and the latter two can not be
solved but measured and evaluated. Currently, we use the same hash algorithm
as Ext4, which is only single-threaded; a multithreaded algorithm could improve
GPU performance.

23

All benchmarks we evaluated are synthetic and therefore differ from typical
file system usage. Typical file system use cases do not only comprise of hundreds
of directory lookups or thousands of directory creations. They also involve file
creation and read or write access to existing files. In his thesis, Maucher [17]| shows
file creation and file write performance of 1.4 - 1.9 Gbit/s, close to Intel Optane’s
maximum write bandwidth of 2 Gbit/s. However, we do not have measurements
related to file read bandwidth on the GPU but suspect that it is similar to write
bandwidth, thus around 70 - 95% of Intel Optane’s maximum read bandwidth.
Considering this, we can assume that the file reads and writes in typical file system
use cases will hide the performance difference between the GPU directories and
Ext4. Therefore, we think that GPU accelerated file systems are a feasible solution.

7 Future Work

There are still some areas where the current directory implementation could be
improved, including file deletion, tree depth, better locking, caching in VRAM,
size of workgroups, number of workgroups, reducing linear search, and reducing
latency.

File deletion: The directory entry list and leaf block allocator are designed
with possible file deletion in mind. However, file deletion would require tree balanc-
ing, which has not been implemented so far. The tree can only manage a limited
number of hash regions. Therefore tree balancing is necessary to avoid unevenly
filled hash regions and thus increase the number of files the tree can handle.

More levels: More levels would allow the H-tree to access more than 16.646.400
files per directory. Currently, the block split algorithm can only handle trees of
depth three, but it could be made more recursive to support more.

Better locking: Currently, the whole inode of a directory is locked whenever a
file is inserted into it. This simplifies keeping the directories consistent but reduces
parallelism. Theoretically, locking is only required on the allocation bitmap and
when a hash region splits.

Caching in VRAM: At the moment, the cache is located inside the local
memory of each workgroup. Caching in the VRAM would reduce the number of
cache misses because it would be bigger and shared by all workgroups. However,
this would also require locking, which is unnecessary if every workgroup has its
own cache.

More SIMD lanes: Due to synchronization issues, our implementation is
limited to 32 or 64 SIMD lanes depending on the hardware. A solution could be to
implement new barriers and other synchronization primitives like we already did
in Listing 5. Increasing the number of SIMD lanes per workgroup could improve
performance and use the GPU more effectively because each workgroup would be

54

able to process more data in parallel.

More workgroups: Due to visibility issues between workgroups, creating di-
rectories with multiple workgroups can lead to inconsistencies. Solving this prob-
lem is essential because using multiple workgroups to create and lookup files or
directories simultaneously is a significant performance benefit.

A new level to avoid linear search: Another level could be added between
the tree blocks and leaf blocks. Every hash region would have its own block that
maps a file name hash to the entry inside the leaf blocks. Therefore the GPU could
locate a file inside a hash region by checking the block instead of using a linear
search inside the leaf blocks. This will increase the lookup speed because multiple
entries can be checked in parallel.

Inode indirection: Currently, inode data pointer indirection is limited to one
level. However, all allocations related to directories are only 4 kB in size. We,
therefore, had to increase the indirection block size from 128 B to 4 kB so enough
pointers could be stored in one indirection level. This is not ideal because most
of the indirection block is unused in small directories, and the block has to be
initialized with zero, which means a lot of potentially unnecessary writes to NVM.
More indirection levels with 128 B blocks would alleviate these issues.

latency: In Chapter 6, we measured a five to ten times higher base latency
than Maucher [17] on a very similar test system. We were not able to find the
reason for the difference in latency. However, reducing base latency is crucial for
a file system. Thus, further research is required.

8 Conclusion

This thesis aimed to extend the implementation of GPU4FS by adding new H-
tree-based directories and to determine if a GPU-accelerated file system is feasible.
GPUA4FS is a file system demonstrator that offloads file system management to the
GPU to reduce CPU usage.

In this thesis, we described the design and implementation of our H-tree-based
directories. We evaluated our directory implementation with a number of synthetic
benchmarks and compared the performance to Ext4, a conventional Linux file
system.

Our evaluation tested latency, directory creation, and directory lookups in both
long directory chains and directories with many direct subdirectories. The results
showed that commands executed on the GPU have a base latency of 0.012 s.
Furthermore, Ext4 outperformed the GPU directories in most benchmarks. The
base latency heavily influenced short benchmarks; Ext4 was between 1000 and 22
times faster than the GPU directories. In longer benchmarks, this performance
gap shrunk, and in most cases, Ext4 was between 119 and 2 times faster. One

25

exception is the benchmark that tested long directory chain creation, where the
GPU directories managed to be faster than the C++- file system library. However,
we only evaluated synthetic benchmarks that do not necessarily reflect real-world
file system use cases.

Prior work by Maucher [17] lets us assume that real-world file system use
cases that also include reading and writing files will hide the performance gap
between the GPU directories and Ext4. Thus, we conclude that GPU-accelerated
file systems are feasible, and more research should be conducted in this area.

We also present possibilities for future work to improve the GPU directories’
latency and performance or to add a new feature necessary in a file system.

References

[1] Amd compiler (aco). https://gitlab.freedesktop.org/mesa/mesa/-/
tree/ffebe480133479be58eb6057f08bec893cd999f8/src/amd/compiler.
Accessed: 30.03.2023.

[2] Amd radeon rx 6800. https://www.amd.com/en/products/graphics/amd
-radeon-rx-6800. Accessed: 24.03.2023.

[3] C++. https://isocpp.org/. Accessed: 2.03.2023.
[4] G++. https://gcc.gnu.org/. Accessed: 2.03.2023.

[5] The gnu project debugger (gdb). https://sourceware.org/gdb/. Accessed:
30.03.2023.

[6] Daniel Bittman, Matthew Gray, Justin Raizes, Sinjoni Mukhopadhyay, Matt
Bryson, Peter Alvaro, Darrell D.E. Long, and Ethan L. Miller. Designing
data structures to minimize bit flips on nvm. In 2018 IEEFE 7th Non-Volatile
Memory Systems and Applications Symposium (NVMSA), pages 85-90, 2018.

[7] Google. glslc. https://github.com/google/shaderc. Accessed: 22.02.2023.

[8] The Khronos@®) Group. Spir-v. https://www.khronos.org/spir/. Accessed:
2.03.2023.

[9] The Khronos@®) Group. Vulkan. https://www.vulkan.org/. Accessed:
22.02.2023.

[10] The Khronos@®) Group. Opencl overview, 2022. https://www.khronos.or
g/opencl/.

o6

https://gitlab.freedesktop.org/mesa/mesa/-/tree/ffebe480133479be58eb6057f08bec893cd999f8/src/amd/compiler
https://gitlab.freedesktop.org/mesa/mesa/-/tree/ffebe480133479be58eb6057f08bec893cd999f8/src/amd/compiler
https://www.amd.com/en/products/graphics/amd-radeon-rx-6800
https://www.amd.com/en/products/graphics/amd-radeon-rx-6800
https://isocpp.org/
https://gcc.gnu.org/
https://sourceware.org/gdb/
https://github.com/google/shaderc
https://www.khronos.org/spir/
https://www.vulkan.org/
https://www.khronos.org/opencl/
https://www.khronos.org/opencl/

[11]

[12]

[13]

[14]

[15]

[16]

[17]
[18]

[19]

[20]

21

22|

Christoph Hellwig. Xfs: the big storage file system for linux. ; login:: the
magazine of USENIX & SAGE, 34(5):10-18, 20009.

John L. Hennessy and David A Patterson. Computer architecture: a quanti-
tative approach. Elsevier, 2011.

Linux kernel. The hash function used by ext4. linux/fs/ext4/hash.c https:
//github.com/torvalds/linux/blob/094226ad94f471a9f19e8f8e7140a
09c2625abaa/fs/ext4/hash.c. Accessed: 14.11.2022.

John Kessenich, Dave Baldwin, and Randi Rost. The opengl®shading lan-
guage, 2014.

Hyunjun Kim, Joonwook Ahn, Sungtae Ryu, Jungsik Choi, and Hwansoo
Han. In-memory file system for non-volatile memory. In Proceedings of the
2018 Research in Adaptive and Convergent Systems, RACS "13, page 479484,
New York, NY, USA, 2013. Association for Computing Machinery. https:
//doi.org/10.1145/2513228.2513325.

Avantika Mathur, Mingming Cao, Suparna Bhattacharya, Andreas Dilger,
Alex Tomas, and Laurent Vivier. The new ext4 filesystem: current status
and future plans. In Proceedings of the Linuz symposium, volume 2, pages
21-33. Citeseer, 2007.

Peter Maucher. Gpudfs: A graphics processor-accelerated file system, 2022.

NVIDIA. Cuda zone. https://developer.nvidia.com/cuda-zone. Ac-
cessed: 27.01.2023.

Ivy B Peng, Maya B Gokhale, and Eric W Green. System evaluation of
the intel optane byte-addressable nvm. In Proceedings of the International
Symposium on Memory Systems, pages 304-315, 2019.

Daniel Phillips. A directory index for EXT2. In 5th Annual Linux Showcase
& Conference (ALS 01), Oakland, CA, 2001. USENIX Association. https:

//www.usenix.org/conference/als-01/directory-index-ext2.

Gianlucca O. Puglia, Avelino Francisco Zorzo, César A. F. De Rose, Taciano
Perez, and Dejan Milojicic. Non-volatile memory file systems: A survey. I[EEE
Access, T7:25836-25871, 2019.

Daniel A Reed and Jack Dongarra. Exascale computing and big data. Com-
munications of the ACM, 58(7):56-68, 2015.

57

https://github.com/torvalds/linux/blob/094226ad94f471a9f19e8f8e7140a09c2625abaa/fs/ext4/hash.c
https://github.com/torvalds/linux/blob/094226ad94f471a9f19e8f8e7140a09c2625abaa/fs/ext4/hash.c
https://github.com/torvalds/linux/blob/094226ad94f471a9f19e8f8e7140a09c2625abaa/fs/ext4/hash.c
https://doi.org/10.1145/2513228.2513325
https://doi.org/10.1145/2513228.2513325
https://developer.nvidia.com/cuda-zone
https://www.usenix.org/conference/als-01/directory-index-ext2
https://www.usenix.org/conference/als-01/directory-index-ext2

23]

[24]

[25]

[26]

27]

28

[29]

[30]

31

Card R’emy, Ts’o Theodore, and Tweedie Stephen. The second extended
filesystem (ext2), 1993.

Ohad Rodeh, Josef Bacik, and Chris Mason. Btrfs: The linux b-tree filesys-
tem. ACM Transactions on Storage (TOS), 9(3):1-32, 2013.

David Schwalb, Markus Dreseler, Matthias Uflacker, and Hasso Plattner. Nvc-
hashmap: A persistent and concurrent hashmap for non-volatile memories. In
Proceedings of the 3rd VLDB Workshop on In-Memory Data Mangement and
Analytics, pages 1-8, 2015.

Mark Silberstein, Bryan Ford, Idit Keidar, and Emmett Witchel. Gpulfs:
Integrating a file system with gpus. ACM Trans. Comput. Syst., 32(1), feb
2014. https://doi.org/10.1145/2553081.

Peter Snyder. tmpfs: A virtual memory file system. In Proceedings of the
autumn 1990 EUUG Conference, pages 241-248, 1990.

Junji Tominaga. Topological memory using phase-change materials. MRS
Bulletin, 43(5):347-351, 2018.

Lukas Werling, Christian Schwarz, and Feank Bellosa. Towards less cpu-
intensive pmem file systems. Talk presented at Fachgruppentreffen Betrieb-
ssysteme 2021, Trondheim. https://www.betriebssysteme.org/wp-conte
nt/uploads/2021/09/FGBS_Herbst2021_Folien_Werling.pdf, 2021.

Jian Xu and Steven Swanson. {NOVA}: A log-structured file system for
hybrid volatile/non-volatile main memories. In 14th { USENIX} Conference
on File and Storage Technologies ({FAST} 16), pages 323-338, 2016.

Chun Jason Xue, Youtao Zhang, Yiran Chen, Guangyu Sun, J. Jianhua Yang,
and Hai Li. Emerging non-volatile memories: Opportunities and challenges.
In Proceedings of the Seventh IEEE/ACM/IFIP International Conference on
Hardware/Software Codesign and System Synthesis, CODES+ISSS ’11, pages
325-334, New York, NY, USA, 2011. Association for Computing Machinery.
https://doi.org/10.1145/2039370.2039420.

o8

https://doi.org/10.1145/2553081
https://www.betriebssysteme.org/wp-content/uploads/2021/09/FGBS_Herbst2021_Folien_Werling.pdf
https://www.betriebssysteme.org/wp-content/uploads/2021/09/FGBS_Herbst2021_Folien_Werling.pdf
https://doi.org/10.1145/2039370.2039420

	Introduction
	Background
	GPU4FS
	H-Tree
	NVC-Hashmap
	File systems
	High-performance storage and Non-Volatile Memory
	GPU-Architecture
	OpenGL Shading Language (GLSL)

	Related Work
	File Systems
	NVM
	NVM Data Structures
	GPU File System

	Design
	Directory and H-tree
	Entry Lookup
	Entry Creation

	Comparison to the original H-tree
	Lookup Cache
	On-Disk Data Structures
	Block Pointer and Position
	Directory Leaf Block
	Directory Entry
	Dummy Entry
	H-tree Block
	H-tree block Entry

	Cache

	Implementation
	Commands
	The Metadata Command
	The File Create Command
	The File Lookup Command
	The Directory Create Command

	Problems

	Evaluation
	Test System
	Limitations
	Latency
	NVM Data Initialization
	Deep Directory Creation
	Deep Directory Lookups
	Wide Directory Lookups
	Wide Directory Creation
	Discussion

	Future Work
	Conclusion

