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Abstract

File system consistency in case of crashes is important to prevent data loss or file
system corruption. Unfortunately, common file systems give only few and incon-
sistent guarantees regarding the effects of crashes. To help application developers
as well as file system developers to find and understand issues caused by crashes,
tools for automated crash consistency testing are needed.

We provide a tool for automated crash consistency testing of unmodified full
systems with block based file systems on NVMe drives. Our approach uses trace-
and-replay to test for different guarantees, such as atomicity or writeability after
a crash. We analyse a virtualised system by tracing NVMe commands with an
emulated NVMe drive. Afterwards, a Crash Image Generator creates a set of file
system images that can originate from a system crash. These crash images are
then examined for their semantic file system state. These states can then be used
to validate file system guarantees.

We could verify the practicability of this approach with tests on vfat and
ext4 file systems. Our analysis of ext4 could reproduce a known bug and found
an issue with mkdir.
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Chapter 1

Introduction

File systems are the foundation of persistent data storage in modern operating
systems. Their reliability is therefore of outright importance. Unfortunately, file
systems are prone to inconsistencies resulting from system crashes [3]. Crash
consistency testing is relevant to reason about the consequences of crashes. Es-
pecially, because different file systems give incoherent guarantees regarding their
persistence behaviour [4].

There have been different works examining crash consistencies in file systems.
These works range from symbolic validations [4] to trace-and-replay solutions
[8, 13]. Our work focuses on full system tests without source code modifications.
We base our work on the Vinter test framework for NVM file systems [8], but
apply its techniques to block based files systems on NVMe drives.

Our tool Revin uses a trace-and-replay approach. We use QEMU to trace
NVMe commands issued by a virtualised system. This trace is used to generate
images of possible file system states that can originate from a crash. These crash
images are then mounted to a virtual system to examine their semantic file system
state as seen by applications. Revin groups the resulting semantic states together
to form a minimal set of post-crash states. These states are then used to infer file
system guarantees, such as atomicity or retained writeability.

The number of crash images can increase quickly. It is therefore relevant to
find strategies to limit the generated crash images without missing relevant states.
We therefore assess three different algorithms to generate them.

We test Revin with vfat and ext4 with and without data journaling. The
tests reproduce a known bug and show issues with mkdir in ext4. Furthermore,
the semantic states clearly show the impact of journaling. We could additionally
confirm the practicability of using this trace-and-replay approach if we reasonably
limit the number of crash images.

Due to our approach being similar to the one used by Vinter, we see a pos-
sibility of combining both tools. This could enable crash consistency testing for
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4 CHAPTER 1. INTRODUCTION

hybrid file systems relying on NVM and block based storage. Nevertheless, such
a merge requires adjustment of the tracing methods used.

We structure this work as follows: Chapter 2 gives an overview of the crash
consistency problem, the tools used and related work. We then present our design
in Chapter 3 and discuss the implementation in Chapter 4. Chapter 5 presents the
results of our tests, discusses observations and concludes with performance tests.
Issues with the design, as well as differences to Vinter are discussed in Chapter 6.
Finally, we summarise our work in Chapter 7.



Chapter 2

Background and Related Work

The subject of this work are block based file systems on NVMe drives. We there-
fore start with a quick overview over file systems and the NVMe protocol for com-
munication with NVMe storage devices. Afterwards, we introduce crash consis-
tency and present journaling as a solution to prevent data loss. We discuss general
file system guarantees as well. The next topic, virtualisation and emulation pre-
pares for the technologies used in crash consistency testing. Finally, we present
previous work in this field.

2.1 File Systems

File systems are an essential part of the storage abstraction in a modern operating
system. A file system organises data in named containers called “files”. These
files are catalogued in “directories”, which form a hierarchical file system tree.
Multiple file systems can be part of this tree. The intersections of these file sys-
tems are called “mount points”. UNIX expands upon this idea by integrating
hardware abstractions into this file system tree, for example by providing access
to serial devices with pseudo-files like “/dev/serial0”. We ignore these special files
for this work and focus on regular files, directories and symbolic links. [3]

Every file (or directory) consists of metadata and content data. The metadata
is usually organised in a structure called “inode”. An inode can be referenced
by multiple directories with different names. These names are called hard links.
Therefore, hard links can only exist within the same file system. Not all file sys-
tems support multiple hard links to a file. Some file systems even embed the
inode in the directory entries. Nevertheless, we keep this nomenclature regardless
of implementation. Symbolic links are special files which point to other files or
directories by providing an address to them (called a “path”). Symbolic links can
reference files in other file systems or even non-existing files. [3]

5



6 CHAPTER 2. BACKGROUND AND RELATED WORK

2.2 NVMe
One standard for communication with non-volatile memory storage is NVMe
[14]. NVMe utilises PCI Express or fabric as underlying connection. The com-
munication is designed around submission and completion queues. The driver
puts IO commands in the submission queue and signals the NVMe device that a
new entry is available. The device then executes the command. When command
execution is finished, the device adds a completion entry to the completion queue,
which can then be read by the driver [14, Section 1.4]. A pair of submission and
completion queues is called a command queue..

There are two types of command queues: The admin command queue and
the IO command queue. The former one is used to allocate IO command queues
and to manage the device. NVMe supports multiple IO command queues in par-
allel but only one admin command queue. We will focus on the IO command
queues. These queues can accept different commands; the most important ones
being flush, read, write and write zeroes [14, Section 6]. Although being
ordered in a submission queue, there is no guarantee in which order the commands
are executed [14, Section 6.2]. There are atomicity guarantees for commands up to
a specific size (dependent on the hardware), but in general, commands can be in-
terleaved [14, Section 6.4]. Especially, no power failure guarantees are given [14,
Section 6.4.2.1].

A NVMe device can use a write cache. This cache is used to serve read op-
erations before the corresponding data is persistently stored. The cache can be
forced to be written to storage with the flush command. This command ensures
that any operation marked as complete before the submission of the flush com-
mand is stored non-volatile [14, Section 6.8]. Due to this condition, flush can
be safely reordered on device.

For this work, we make simplifications. First, we treat NVMe commands as
being atomic. Any command is either run in full or not run at all. Secondly,
we assume that flush commands are reordering barriers. As flushes are used to
ensure the persistence of data, we assume that the driver software takes measures
to issue flush commands only after all previous commands are completed.

2.3 Crash Consistency
System crashes can occur due to power loss or unrecoverable system errors. Those
crashes require a system restart, which usually leads to a reset of volatile memory.
Any data on persistent memory is retained. This leads to issues when this data is
incomplete, as it can happen with partial writes or interrupted consecutive writes.
This is especially relevant for file systems, as they usually store data permanently.
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Crash consistency describes the ability for recovery and its outcome after a system
crash. In general, file system operations consist of multiple read or write events on
the underlying storage. These writes can be reordered for performance reasons,
leading to different possible states on the storage after a crash. This on-disk state
does not necessarily lead to a different file system state as it is perceived by an ap-
plication. Journaled file systems, for example, are resistant to incomplete journal
writes, because they only enter a new state after a journal entry is committed. For
our definition, crash consistency covers both application data loss, as well as file
system corruption. [3, 15]

Mitigations File system corruption can render the whole file system unusable.
It can therefore affect other files than the one leading to the corruption as well.
It is therefore necessary to recover the file system to a usable state. This is done
with the “file system checker (fsck)” on UNIX systems. This checker needs to
traverse the whole storage device to find data and inode regions for reconstructing
an usable state. Data blocks not assignable to a file are collected in “lost and
found” files. The user then needs to assemble this data manually. [3]

There are multiple mitigation strategies for retaining a sound file system. The
most common one is “journaling” or “write-ahead logging”. This approach uses a
circular log where all write operations are recorded prior to their proper execution.
Entries in this log are finalised or “committed” by an atomic write at the end of an
entry. Only then then proper data is written to inode and data blocks. In case of a
recovery, each journal entry can be replayed if it was committed before the crash.
This allows for atomic file system updates. Journaling can comprise metadata and
data (“data journaling”) or solely metadata for better performance. There are other
approaches, such as “log-structured file systems” or “copy-on-write”, as well. [3]

File system guarantees The POSIX specification defines an API for file system
interactions. This API specifies very little guarantees in case of crashes. No-
table exceptions are rename and fsync. The former is required to be atomic
while the latter guarantees that all data from the buffer cache is persistently writ-
ten upon completion. [4] File systems may provide implicit or explicit guarantees
beyond the POSIX specification. To allow software developers to make better as-
sumptions about implicit guarantees by specific file systems, Bornholt et al. [4]
envisioned more granular crash consistency models. These models are evaluated
by litmus tests. As these models are inferred through observation, they are only
valid for a specific file system and version. Therefore, portable software can only
safely rely on the guarantees given by the POSIX API.

Unfortunately, Rebello et al. [25] show that fsync is not as resistant as guar-
anteed. Pages in the file system cache can be marked clean after a fsync failure.
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This prevents subsequent fsync invocations to persist these pages, since they are
perceived to be persisted already. This shows that we cannot rely on API calls
when evaluating crash consistency. Instead, we need to evaluate based on com-
mands sent to storage devices.

2.4 Virtualisation and Emulation
Testing of interactions between software and hardware can be enhanced by using
virtualisation or emulation. Thereby, full systems run isolated on a host system,
enabling tracing of specific events. Important frameworks for this cause on Linux
are QEMU and PANDA.re.

QEMU QEMU has the ability to virtualise user mode software or full systems.
Virtualisation is done by using KVM. Additionally, QEMU can utilise dynamic
binary translation to automatically translate foreign platform code to native code.
Nevertheless, peripheral device are emulated completely by QEMU. These pe-
ripheral emulators provide trace points for various events. It is therefore possible
to test and trace interactions with devices not present on the host system. [22]

PANDA.re An extension of QEMU is PANDA.re. This framework specialises
on trace-and-replay testing, leveraging QEMU’s dynamic binary translation. In
contrast to QEMU, tracing is done by injecting tracing hooks in the binary trans-
lation stage. This enables PANDA.re plugins to execute arbitrary code at specific
points. These plugins can access guest software data, enabling more comprehen-
sive insights into the running program. [16]

2.5 Crash Consistency Testing
Multiple tools exist to aid developers with testing file systems for crash consis-
tency. These tools can be categorized into formal testing and trace-and-replay
testing. The former verifies a formal file system model with logical solvers, while
the latter analyses a test run and enumerates all possible file system states after
command reordering.

Ferrite The work by Bornholt et al. [4] provides a framework to reason about
possible outcomes of a crash by specifying crash consistency models. Those mod-
els consist of formal behaviour specifications and litmus tests to demonstrate and
verify this behaviour. Ferrite can validate these formal specifications against the
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litmus tests with logical checkers. Additionally, Ferrite leverages QEMU to test
existing file systems by generating all possible post-crash states.

CrashMonkey and ACE This work by Mohan et al. [13] uses a trace-and-
replay approach. A test case is executed on a file system and thereby traced.
This trace is then replayed with simulated crashes at different points during ex-
ecution. The resulting file system state is used for crash consistency evaluation.
Therefore, CrashMonkey can test black box systems. Notably, CrashMonkey uses
synthetic test cases generated by ACE. To generate these test cases, ACE enumer-
ates permutations of a set of file system operations. To limit the number of test
cases, ACE bounds the total number of operations, as well as the set of possible
operations. The results indicate that a limited number of two to three file system
operations per test case is sufficient to find bugs.

Vinter Kalbfleisch et al. [7] adapt the trace-and-replay approach to NVM file
systems. Those file systems pose new problems because of their direct addressable
storage. This makes the possibility of insufficient cache flushes more likely. The
authors therefore expand on the concept of atomicity and propose a new guarantee
called “single final state”. Atomicity guarantees that a file system is always in one
of two possible states during an operation, essentially prohibiting intermediate
states. Single final state, on the other hand, allows these intermediate states, but
requires that an operation only has one final state. This does not automatically
hold true because of more selective flushes.

Vinter uses PANDA.re to trace unmodified full systems. It then generates
possible post-crash file system images, called “crash images”, and extracts their
semantic state visible to applications. To reduce the number of crash images, the
authors propose a heuristic approach. This heuristic excludes all permutations of
write commands which are never read.
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Chapter 3

Design

In this work, we apply crash consistency testing strategies for NVM to block based
storage. We especially extend upon the design of Vinter [8] and Witcher [6].
Using a similar design for NVM and block based storage testing allows for a
subsequent integration of hybrid file system testing. Contrary to other work [13],
this work’s focus lies on the test pipeline and not on generating test cases.

Our primary objective is to test unmodified full systems. Especially, our ap-
proach does not rely on source code annotations for test evaluation. Furthermore,
our approach does not even require access to the source code, but rather relies
on virtualisation and emulation. While we focus on block based file systems, we
want to enable an easy integration of NVM storage testing, in order to possibly
support hybrid file systems in the future.

Our test system, Revin, supports the evaluation of common file system guar-
antees: atomicity or single final state behaviour of file system operations in case
of crashes. Generally, we want to evaluate possible data loss and file system cor-
ruption. The latter might render a file system partially or completely unusable or
might prevent writes to this file system, but does not necessarily come with loss
of user data. To find evidence for these guarantees and behaviours, we need to
simulate all relevant states the file system can adopt after a crash. Since we can
not simulate all possible states – which can differ further depending on configura-
tion and hardware – we can only determine breaches of these guarantees but not
conformance to them.

3.1 Overview

The test pipeline of Revin, as seen in Figure 3.1, consists of four major steps:
First, the Analyser, which executes the test case on a virtual system. This step
yields a tace of NVMe commands issued and processed, as well as checkpoints
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TesterCrash Image
Generator

Test ResultsTest Case Execution LogDisk Image

Classifier

NVMe Trace

Analyser

Figure 3.1: Test pipeline design: Based on the analysis of NVMe commands
issued during runtime, crash images are generated and tested for possible semantic
differences.

reached. Second, the Crash Image Generator creates crash images using subsets
of the traced NVMe commands. This step creates a post-success image as well.
This image contains the changes from all NVMe commands and is used to check
whether we traced all relevant NVMe commands. In the third step, the Tester
executes recovery and analysis commands on the crash images. This yields an
execution log containing information about the file system recovery, the current
file system state and whether the file system is still writeable. The last step clas-
sifies the execution logs for all crash images and creates a minimal set of distinct
semantic states. These semantic states can then be checked for atomicity or single
final state semantics.

Due to the two-step of analysing the uninterrupted program execution and
evaluating the crash image state later, the test cases consist of two parts. The first
part comprises the test case set-up, such as creating initial files and directories,
as well as the actual test commands. The second part is made up by optional
commands run after file system recovery and file system dump. Those trailing
commands are used to check whether the file system is still writable, but gives the
test case the ability to define, how writeability is checked.

3.2 Tracer
Tracing is needed in two different places: when analysing the uninterrupted pro-
gram execution and when testing the crash image. Both uses require the produc-
tion of NVMe command traces and execution logs as artifacts. Additionally, both
uses need the ability to execute arbitrary commands on the system.

There are two possible approaches to these challenges. In the first case, Revin
provides a modified NVMe driver for the tested system. This driver can then write
to actual hardware or to disk images and trace all NVMe commands. With this
scenario, Revin runs inside the tested system and can therefore issue commands
by using the standard system calls. Case two uses a virtualisation approach. The
tested system is run with a hypervisor. The hypervisor emulates a NVMe de-
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vice, which can trace NVMe commands. Because of this emulation, the use of
disk images instead of actual hardware is necessary. Since Revin runs outside the
virtualised system, commands need to be sent over a virtual console. This can
happen with ssh if the virtualised system has network connection, or by connect-
ing with the guest’s first serial input device. We decided in favour of the second
approach, because then we do not need to modify drivers, which would interfere
with the objective of testing unmodified systems.

Trace To reconstruct crash images from the trace, this trace needs to contain all
relevant information about the NVMe commands issued and completed. NVMe
uses command queues. The first queue is filled by the driver and contains com-
mand requests. These requests are handled by the NVMe device and might involve
a DMA device for copying data to and from the main memory. Finally, the NVMe
device sends a completion event to the completion queue to indicate a processed
command. Requests and completions do not need to be in the same order for
actual devices. [14] Since we use emulated NVMe devices, we decided to trace
NVMe commands when their corresponding request is submitted, but ignore them
later if no corresponding completion event is recorded. The traces need to include

• command type,
• offset (reads and writes),
• length (reads and writes) and
• data (writes only).

The command types are read, write and flush.
Additionally, the trace needs to include checkpoints. Those checkpoints are

used to distinguish between different stages in test execution; namely, file system
mounting, test set-up, test execution and file system shut down. We issue the
checkpoints by writing to a separate serial device. Thus, we can alter the serial
device emulator to issue traces for these writes. A sample trace with all three
NVMe command traces and checkpoints can be seen in Listing 3.1.

Communication To allow testing of arbitrary commands, we need a way to
automatically send commands to and receive responses from the virtual system.
For this purpose, we emulate a serial device to which the virtualised system can
connect the first virtual console (TTY0). Commands are then issued by writing
through this connection to the running shell. Incoming data is collected as re-
sponses. The responses are used in two different ways: First, they need to be
logged to the execution log, and second, the tracer needs to wait for special se-
quences – mostly checkpoints – to determine when the system is ready or finished
with test execution.
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R 0, 4096
R 4096, 4096
R 8192, 4096
R 12288, 4096
R 16384, 4096
C 0
W 9702400, 1024, "74 65 73 74 61 70 70 65 6E [...]"
W 51393536, 1024, "00 00 00 00 00 00 00 00 00 [...]"
F
W 51394560, 1024, "C0 3B 39 98 00 00 00 02 00 [...]"
F
C 1

Listing 3.1: Sample trace containing five reads, three writes in two transactions
separated by flushes and two checkpoints. Fields are command type, offset,
length and data in hexadecimal representation.

3.3 Crash Image Generator

The previous Analyser stage produces a trace of NVMe commands and check-
points. This trace contains all relevant information to reproduce the current stor-
age state on the block device when applied to the same base image in the same
order. Read commands can be ignored. We create such a post-success image to
verify that all relevant commands were logged. Primarily, we are interested in
crash images. These are images, which result from an incomplete execution of
write commands. To systematically generate them, we need to apply a subset of
the trace to the base image. Unfortunately, the trace contains commands which
were used to set up the test case or to shut down the file system. We are not inter-
ested in variations of these commands. Therefore, we always apply all commands
used for set-up and do not apply any commands for shut down, because the file
system will never reach shut down after a crash.

To distinguish between these three parts – the set-up, test run and shut down –
we use checkpoints. We automatically insert a checkpoint before mounting, after
set-up and before unmounting the file system. These checkpoints are respectively
called m, 0 and u. For crash image generation, we are only interested in variations
of NVMe commands issued between checkpoints 0 and u. We henceforth refer
to this part of the trace as “test trace”. All NVMe commands issued between
checkpoints m and 0 are always applied first in unchanged order. This is called the
“set-up trace” from now on. We discard all NVMe commands after checkpoint
u. NVMe commands can be reordered. We assume that flushes are barriers for
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reordering (Section 2.2). Therefore, we split the test trace at flushes and call the
resulting parts “transactions”.

To generate all possible crash images, we need to permute every transaction
and then generate crash images from subsets of these permutations. Since we
assume that transactions are sequential, we only need to permute the transaction
before the crash. Previous transactions are applied in full. This naïve algorithm
generates

∑
t∈T nt! · nt crash images for transactions T (nt being the number of

commands in transaction t). Because of the factorial, the number of crash images
increases fast. A transaction with 10 commands would yield more than 36 million
crash images. It is therefore important to find algorithms that yield most relevant
crash images but reduce the overall number.

Sequential algorithm The easiest algorithm applies the test trace in sequential
order starting at the beginning. We do this with the sequential algorithm and apply
only the first n write commands. Flush commands are ignored. We increase n for
each crash image and stop after we applied the whole test trace. Thus, we simulate
crashes at any point during execution with the assumption that NVMe commands
are not reordered.

Heuristic algorithm The sequential algorithm is limited, because of its assump-
tion of sequential order. This might hold true for emulated devices but does not
need to be true for real devices. As generating all possible crash images is not
feasible, we examine the heuristic proposed by Liu et al. [12] and Kalbfleisch et
al. [7].

The heuristic approach uses a post-success image. This image is generated
by applying all write commands to a clean base image. Then we run the same
post-failure tests on a virtualised system with this image, as we would do later
with the crash images. All read commands are traced during these tests. Thus,
we get a trace of all regions on the block device which were actually read. The
heuristic assumes that only alterations of writes which touch these regions can
lead to different semantic states. We could therefore ignore permutations which
only affect writes to different regions, reducing the number of commands per
transaction as a result.

Relying on a post-success image is a major drawback of this approach. A file
system might not read the same blocks after a crash than after a clean shut down.
An important example are journals: Journal entries are likely not read if there was
no crash. This approach could therefore miss important crash images that lead to
a different semantic state.

Revin does not implement this heuristic completely, because tests show only
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a minor impact on the overall number of crash images compared to the random
algorithm.

Random algorithm Nevertheless, we use a nondeterministic approach to test
out-of-order command sequences. Transactions are always applied in order. We
can only permute inside a transaction. We start with the first transaction and create
k random permutations of it. Since this transaction contains nt commands, we
need to generate k · nt crash images. Then we move to the next transaction. We
do the same for all transactions, but always apply the previous transactions with
sequential ordering, because all of their commands are guaranteed to be persisted
beforehand. With transactions T , we generate

∑
t∈T k · nt crash images.

3.4 Tester
The crash images represent the internal file system state after a crash. We are
interested in the semantic state of the file system as it is visible to applications.
To evaluate this semantic state, the Tester mounts every crash image on a fresh
virtualised system and runs the file system checker on it. Then it dumps the file
system structure and file contents to the execution log. Afterwards, it tests whether
the file system is still writeable by executing a write operation given by the test
case. To simplify analysis of the execution logs, crash images, which yield the
same execution logs with the same contents are grouped together by the Classifier.

The file system dump comprises two separate programs: fs-dump walks
through the file system tree and dumps the metadata of all entries. Addition-
ally, it dumps the contents of a regular file or the target of a symbolic link. The
second program, dir-dump, is used to check the correctness of inode entries. Ev-
ery directory holds an entry to itself and an entry to its parent directory. We want
to check whether these entries are still correct after a crash. dir-dump therefore
walks through each directory and prints the inode ID for each directory entry (es-
pecially including the . and .. entries). This ID is the one stored in the directory.
A second inode ID is obtained by calling lstat. This ID is found by walking
through the file system tree from its root. Both inode IDs must be the same in or-
der to be correct. Different inode IDs indicate update problems for these entries.



Chapter 4

Implementation

In this chapter, we apply the design outlined in the previous chapter in a prototype
implementation. This Revin prototype is able to run test cases on 64-Bit Linux
systems with traditional file systems. We chose the 64-Bit architecture to be con-
sistent with the implementation of Vinter [7] and to allow future improvements
for hybrid file systems. The Revin prototye is written in Rust. Internally, we
use QEMU with minor adjustments to the NVMe and serial emulators for guest
system execution and tracing.

4.1 Disk Images

The tested file systems need to reside on virtual disks. The contents of these
disks is stored in disk image files. QEMU provides the “QEMU Copy on Write
Version 2 (QCOW2)” file format for disk images. While this image format is
destined for incremental data writes and would result in less space usage, it is a
complex format as well. As of now, no Rust libraries for writing QCOW2 images
exist. We therefore settled on the simple RAW format. This format stores binary
data as it would be stored on disk. On supported file systems, sparse files are used
to improve storage usage.

To allow customisation of the initial file system and to avoid the need of having
all tools for partitioning in the virtualised system, we use base images. These base
images are disk images with an initialised file system. We use these base images
for tracing in the analysis stage. We also build the crash images out of these base
images. For our implementation, we reserve 100 MB per base image. The base
image contains a GPT partition table with one primary partition containing the file
system.

Crash images are generated out of a subset of the recorded NVMe command
trace. Every write command needs to be replayed on top of a base image. To write
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to RAW images, we need an offset and the binary data. The offset in the RAW
image corresponds to the offset recorded by the NVMe command trace. Thus, we
can easily apply the write commands to a RAW image.

4.2 Virtualised System
For this work, we focus on Linux with a x86_64 architecture as a base system. To
allow for fast start-up times, we use a stripped-down configuration of the kernel.
Nevertheless, we need PCI and NVMe block driver support compiled in. As file
systems, we include ext4 and vfat with codepage 437 and iso8859-1 charset;
this requires native language support for United States as well. We
run the kernel with console=ttyS0,115200n8 and loglevel=1 options to
enable communication via serial0.

Since we want the system to remain small, we provide our own initramfs

with busybox and our own init script. In this init, we mount the proc, dev
and sysfs, run every program in /init.d and then start busybox. Our cus-
tom initramfs includes the fs-dump and dir-dump tools, as mentioned in
Section 3.4. Those tools are built for the x86_64-unknown-linux-musl archi-
tecture.

4.3 Tracer
We use QEMU to virtualise the system described in Section 4.2. To generate the
relevant trace entries for the NVMe commands, we need to hook into the NVMe
device emulator. Similarly, we alter the serial emulator to trace checkpoints. The
serial0 interface is used for communication with the Tracer. The complete set-
up can be seen in Figure 4.1.

Trace QEMU allows to attach file-backed storage via the drive and device

directives. We use this approach to attach a base image. The drive directive
defines the storage backend – in this case a file. Furthermore, the device directive
creates an emulated NVMe device, which uses the previously defined drive as
storage backend. [21] The emulated NVMe device is where we hook into QEMU
for NVMe command tracing.

QEMU’s trace directive can be used to track various trace points built into
the QEMU source. [24] Since we need more information than the default trace
points for the NVMe emulation provide [19], we extend the source code. The re-
quired values for our use case are offset and length of reads and writes, as well as
the actual written data for writes. Additionally, we need to trace flush commands.



4.3. TRACER 19

execution
log

Tracer

Trace

Serial emulator

NVMe emulator

Pipe Shell

VM

responses

commands

NVMe commands

checkpoints

stdout

stdin

Figure 4.1: Tracing design: The virtualised system generates a trace of NVMe
commands and checkpoints. Communication with the tracer is done through a
UNIX pipe connected to the standard input and output.

Since reads and writes are passed through the PCI NVMe emulator and the DMA
emulator [18,23], we need four trace points. The first trace point traces the NVMe
request, the second trace point wraps the NVMe request (or any other DMA re-
quest) in a new object. We need this to make sure that this DMA event originated
as a NVMe request. The third trace point links the written data, offset and length
to the DMA event. We need the NVMe completion event as fourth trace point to
ensure that the read or write was successful. The flush command only requires
tracing of the flush request and completion.

Secondary, we need to communicate checkpoints to the trace. Checkpoints
are used to separate command sequences from each other, e.g. to separate set-
up commands from test commands. To make use of QEMU’s tracing, we need
to use an invocation on an emulated device. In this work, we use the emulated
serial1 device. A trace entry is created each time the virtual system writes to
this device. To distinguish between different checkpoints, we trace the value of
the first character written.

To make better use of the trace afterwards, we consolidate it into the simpler
format described in Section 3.2. The four trace points for NVMe reads and writes
are reduced to a single entry consisting of command type, offset, length and data
in hexadecimal representation for writes. Checkpoint traces (writes to serial1)
and NVMe flushes are stripped of their accompanying boilerplate text.
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Communication To allow testing of arbitrary commands, we need a way to
automatically send commands to and receive responses from the virtual system.
QEMU allows to connect serial0 to a UNIX pipe via the serial directive. This
directive requires two pipes with suffixes .in and .out for input and output re-
spectively [20]. To use serial0 as standard input and output, we need to use the
console=ttyS0,115200n8 option when launching the kernel. To make sure
that everything is written to standard output, we set loglevel=1. Commands are
sent to the virtual system by writing to the input pipe.

The responses are consumed in two different ways: First, they need to be
logged to the execution log, and second, the tracer needs to wait for special se-
quences – mostly checkpoints – to determine when the system is ready or finished
with execution.



Chapter 5

Evaluation

In this chapter, we evaluate our design and implementation. We test our prototype
with vfat and ext4 as representatives of a simple and a journaling file system
respectively. For ext4 we test both with and without data journaling (ext4 uses
only metadata journaling by default). First, we test two test cases from Crash-
Monkey [13] to evaluate whether Revin is able to find the same bugs. Then we
use modified versions of the test cases used with Vinter [7]. During these tests,
we gather information about the number of crash images generated or expected
by the different algorithms. Finally, we evaluate the overall performance of the
Revin prototype.

5.1 File Systems

vfat The vfat file system driver is an implementation of the FAT file system
for Linux. Contrary to the msdos and umsdos file system drivers, vfat uses the
same data structures as the Windows and DOS drivers use and supports long file
names. We therefore decided in favour of vfat to represent FAT in this work.
Due to the size of 100 MB per crash image, we use the FAT16 variant.

As vfat does not use journaling for metadata or data, we expect to find inter-
mediate states for crashes. Specifically, we assume no atomic or single final state
behaviour. Additionally, we do not expect to find pre-execution states, because
there is no recorded previous state the file system checker can roll back to. Some
test cases cannot be run on vfat as there is no support for UNIX file permissions
or soft links.

ext4 The ext4 file system was specifically developed for Linux and uses jour-
naling to be able to roll back changes after crashes. By default, journaling is only
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fd = open("foo")
data = generate(8k)
write(fd, data, size: 8k)
fsync(fd)
fallocate(fd, KEEP_SIZE, offset: 8k, size: 8k)
fdatasync(fd)
close(fd)

Listing 5.1: Pseudocode of test case CM2

fd = open("foo")
lseek(fd, offset: 16k, SEEK_SET)
data = generate(4k)
write(fd, data, size: 4k)
close(fd)

fd = open("foo", O_DIRECT)
blocksize = stat("foo")->blocksize
buffer = generate(4k, align: blocksize)
write(fd, data, 4k)
close(fd)

Listing 5.2: Pseudocode of test case CM4

used for metadata but can be enabled for data with a mount directive as well. We
test ext4 with both configurations.

Due to journaling, we expect to only find pre-test and post-test states for single
file system operations. Intermediate states should not be visible, because any
intermediate state would be rolled back with the journal. We therefore assume
atomicity guarantees for file system operations that only involve the metadata of
one file. Any other operation is expected to have single final state characteristics.

5.2 Reproduced Bugs
For their work with CrashMonkey, Mohan et al. [13] reproduced two bugs

which affect ext4. We call them CM2 and CM4 to be consistent with their naming.
We chose to reimplement these test cases to evaluate whether Revin is able to
find these bugs as well. CM2 found a bug where a crash after fallocate could
lead to loss of allocated blocks. The other test case, CM4 surfaced a metadata
inconsistency with the file size when crashing during writes in direct mode. The
test cases can be seen in Listing 5.1 and Listing 5.2 as pseudo code. We test both
test cases with Linux kernel versions 4.2 and 5.18.
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Because of our system architecture (x86_64-unknown-linux-musl) and
no available code for the test cases used by CrashMonkey (their test cases are
generated automatically), we have to resort to reimplementing the tests with Rust.
To minimize the impact of modifications automatically done by Rust, we use the
foreign function interface for C. This was especially important, because direct
writes require a specific data alignment. Nevertheless, we cannot rule out the
possibility of minimal differences to the CrashMonkey tests that may cause our
tests to not behave in such a way required to trigger the bugs.

In our tests, Revin is able to reproduce the bug for CM2 mentioned by Mohan
et al. [13] with kernel version 4.2 and 5.18. In both tests, an intermediate state
with file size 8192 B and block count 16 (compared to the correct file size 8192 B
and block count 32) is visible.

On the other hand, we are unable to reproduce the bug caused by CM4 with
either kernel version. This test case uses direct file access, which requires buffers
to be aligned in a specific fashion. Our reimplementation might be different to the
CrashMonkey tests, causing our tests to elude this bug.

5.3 Test Cases
We base our test cases for evaluating vfat and ext4 on the test cases provided
by Vinter [7]. These test cases were intended for use with NVM file systems and
focus on metadata integrity. We modify the test cases to fit our format and test
only one specific operation per test case. Our test cases always include a fsync
after the tested operation. The following list includes the test cases used.

append append text to a preexisting file
initial state non-empty file
expectation text is appended

chmod change mode to 0o666

initial state default mode
expectation mode 0o666

chown change owner to 321:789

initial state default owner
expectation owner 321:789

hardlink create hard link
initial state myfile exists
expectation hardlink and myfile share the same inode
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hardlink2 remove hard link
initial state myfile and hardlink share the same inode
expectation myfile is removed; hardlink still exists

symlink create symbolic link
initial state myfile exists
expectation symlink points to myfile

symlink2 create dangling symbolic link
initial state symlink points to myfile

expectation myfile is removed;
symlink is dangling link to myfile

mkdir create directory
initial state no directory exists
expectation directory mydir exists

rmdir remove directory
initial state directory mydir exists
expectation mydir does not exist anymore

rename rename file
initial state myfile and myfile2 exist
expectation myfile2 is renamed to myfile;

original contents of myfile do not exist anymore

move move file to other directory
initial state myfile and dir exist
expectation myfile is moved to dir and renamed to myfile2

unlink unlink file
initial state myfile exists
expectation myfile is removed

update update file contents in the middle
initial state non-empty file
expectation file contains new string in the middle

touch touch file
initial state ctime, mtime and atime have old time
expectation mtime is updated; ctime and atime keep old time
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vfat ext4 ext4-dj
A S W E A S W E A S W E

append 1 ✓ ✓ - ✓ ✓ ✓ - ✓ ✓ ✓ -

chmod – not supported – ✓ ✓ ✓ - ✓ ✓ ✓ -

chown – not supported – ✓ ✓ ✓ - ✓ ✓ ✓ -

hardlink – not supported – T ✓ ✓ - T ✓ ✓ -

hardlink2 – not supported – T ✓ ✓ - T ✓ ✓ -

symlink – not supported – ✓ ✓ ✓ - ✓ ✓ ✓ -

symlink2 – not supported – ✓ ✓ ✓ - ✓ ✓ ✓ -

mkdir R ✓ X MF 2 ✓ X MCL L ✓ ✓ -

rmdir R ✓ X MF ✓ ✓ ✓ - ✓ ✓ ✓ -

rename R ✓ ✓ F ✓ ✓ ✓ - ✓ ✓ ✓ -

move R ✓ ✓ - ✓ ✓ ✓ - ✓ ✓ ✓ -

unlink RD ✓ ✓ F ✓ ✓ ✓ - ✓ ✓ ✓ -

update ✓ ✓ ✓ - T ✓ ✓ - ✓ ✓ ✓ -

touch ✓ ✓ ✓ - ✓ ✓ ✓ - ✓ ✓ ✓ -

Table 5.2: Crash consistency test results for vfat, ext4 and ext4 with data jour-
naling (ext4-dj). The columns indicate atomicity, single final state behaviour,
writeability and file system errors.
✓ no violations found
1 file size increased but contents not written yet
2 mydir listed with type “other”
R file is recovered
D data in file lost
T multiple combinations of timestamps
X file system not writeable
M metadata error
F FATs are different
C directory entry corrupt
L wrong number of hard links
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These test cases are evaluated with Kernel version 5.18 on the system de-
scribed in Section 4.2. We check the resulting semantic states for atomicity and
single final state semantics and file system corruptions, such as ceased writeability
or access errors. The results can be seen in Table 5.2.

Atomicity We regard an operation as atomic if the tests yield no more than two
semantic states, where each semantic state is either the pre-test or post-test state.
We include the possibility of only one semantic state, because vfat does not
always yield a pre-test state, due to not being journaled. We regard any difference
(even minor metadata differences, such as different timestamps in ext4) as a
violation to atomic behaviour.

Single final state Generally, single final state guarantees that an operation may
only have one final state as soon as it is completed. Due to the POSIX API having
no guarantees prior to a fsync, this completeness is only given after a subsequent
fsync. This means that we check for SFS after applying all operations (in any
order) up to a checkpoint following a fsync. SFS is always satisfied in our tests.

Writeability A file system is deemed as writeable if the write operation follow-
ing the file system dump does not exit with an error. If this is not guaranteed for
every semantic state, we regard the file system as not writeable anymore.

Errors During our tests, we encountered errors such as corrupt FATs, wrong
hard link counts or metadata errors when dumping the file system. Those errors
might not interfere with the perceived file system state but rather concern the file
system internals. As such, they always coincide with non-atomic behaviour.

5.4 Observations

Journaling In our tests, we could observe a different behaviour of vfat and
ext4 which can be attributed to journaling. While ext4 always provided a state
corresponding to the state after test set-up, vfat did not provide such a state. This
is expected, because without a journal, vfat cannot roll back changes. Addition-
ally, vfat usually committed one to four changes without flushes in between.
Ext4, on the other hand, always committed two transactions separated by a flush.
The final state never occured if the first transaction was incomplete. This leads
to the assumption that this first transaction writes to the journal, while the second
transaction writes the actual data.
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Data journaling We tested ext4 with and without data journaling. Except from
the mkdir test case, both configurations behaved similarly. Without data journal-
ing, mkdir experienced metadata errors as well as corrupt directory entries. This
did not happen with data journaling. In Linux, directories are files as well. There-
fore, directory entries belong to the file data. It is therefore valid that they are only
journaled with data journaling enabled, which explains the observed behaviour.

Time stamps UNIX provides three different time stamps per file: access time
for the last read or write on the file, change time for the last metadata changes and
modify time for the last write operation [1]. Ext4, as a Linux file system provides
all three time stamps, whereas vfat exchanges change time with creation time [9,
11]. In Linux, the touch command can be used to set the access and modification
time stamps [2]. Our tests initially included a test case for time stamps. The test
case timestamps creates a new file by writing to it and then uses touch to set
the access and modification times to January 1st, 2020. We expect the file to have
change time set to now and access and modification time to be set to 2020.

Neither file system showed this behaviour when run for analysis. All file sys-
tems returned an access time set to now. This might be possible if readdir
updates the access times of files or if stat updates the access times prior to re-
turning them. Additionally, vfat had modification and change time set to 2020.
This should not happen, as change time (in vfat: creation time) is set indepen-
dently from modification time [10]. Due to these issues, we did not include this
test case in the final set.

Another time stamp issue was observed with hard links on ext4. Both hard-
link and hardlink2 yield multiple semantic states that only differ in their ac-
cess times. This only happens as long as two hard links to the same inode exist.
Except for atime both test cases are atomic.

Directories Operations involving directories can lead to multiple problems with
vfat. The most frequent issue are diverging FATs. Internally, vfat uses two file
allocation tables (FATs) for error correction. If they differ, vfat recovers the
corresponding blocks. The recovered blocks are available as binary files in the file
system root but their original name and place are lost. This might be the cause
of the issue arising with mkdir and rmdir. Both test cases yield metadata errors
when printing the directory structure. Additionally, writeability is not retained
after these crashes.

Even ext4 yields problems with mkdir. Aside from metadata errors when
listing the file system, two other severe errors are possible: First, one crash im-
age produced a state where the newly created directory was listed with file type
“other”. Secondly, one crash image contained a corrupt directory entry that caused
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readdir to return with an error. In both crash images, the file system refused
writes. These errors do not occur with data journaling. The reason might be that
directory entries are part of the file data and are therefore not covered by metadata
journaling.

Nevertheless, ext4 with and without data journaling exposed another error
with mkdir: The number of hard links to the file system root was inconsistent.
The mkdir test case creates a directory /dir in the file system root /. Before the
operation, / should have two hard links (from /. and /.. because it is the file
system root). Afterwards, / should have three hard links, because /dir/.. links
to it as well. The test case yields crash images where / has a hard link count of
two or four while /dir is present. Anyhow, there are no other accessible inodes
that link to /; therefore, the correct hard link count should be three.

5.5 Crash Image Generation Algorithms

In Section 3.3, we discussed the relevance of reducing the number of crash im-
ages. Our Crash Image Generator therefore uses uses two different algorithms
to generate crash images. The sequential algorithm creates crash images with
the command ordering intact while the random algorithm uses random permuta-
tions of the commands. To generate every possible crash image, we would need
to use every possible permutation. This is done by the hypothetical full algo-
rithm. Because the number of crash images generated by the full algorithm
increases quickly with the number of NVMe commands, a heuristic approach
was discussed in Section 3.3. Revin traces the number of transactions and their
commands for each test case. With this data, we can establish the number of crash
images each of the four algorithms would produce. The results can be seen in
Table 5.3.

We found that the vfat file system does not use flushes. Therefore, only one
transaction exists for every operation. Additionally, vfat issues two to three com-
mands on average without any redundancy. Therefore, every written block is read
later. This renders the heuristic approach useless for vfat. The random algo-
rithm produces around the same number of images, and sometimes even more, as
needed for full coverage. In the case of vfat, the full algorithm can be reasonably
used.

On the other hand, ext4 usually uses one flush in our tests. This is done
after writing journaling data and before writing the actual data. The number of
commands issued in total is with 8 - 12 in average more than twice the number
of commands issued by vfat. Fortunately, not all written data is read later. It
is therefore possible to decrease the number of commands by around one or two
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vfat ext4
seq rand heur full seq rand heur full

append 2 10 4 4 5 25 22 22

chmod – not supported – 6 30 22 36

chown – not supported – 4 20 8 8

hardlink – not supported – 8 40 36 192

hardlink2 – not supported – 8 40 36 192

symlink – not supported – 12 60 604 8640

symlink2 – not supported – 16 80 35284 645120

mkdir 4 20 96 96 17 85 3588480 3588480

rmdir 3 15 18 18 17 85 35284 3588480

rename 3 15 18 18 16 80 35298 645120

move 2 10 4 4 10 50 97 1200

unlink 3 15 18 18 16 80 35284 645120

update 2 10 4 4 5 25 22 22

touch 1 5 1 1 4 20 8 8

Table 5.3: Number of crash images generated by the respective algorithm. The
heuristic can decrease the number of crash images by around a half for ext4
compared to the full algorithm. The random algorithm was configured to generate
five permutations per transaction.
seq: sequential algorithm
rand: random algorithm
heur: heuristic algorithm
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by using the proposed heuristic. This can decrease the number of crash images
for tests with many commands. Nevertheless, the impact of the heuristic is minor
compared to its impact for NVM file systems [7, Section 5.2]. The random al-
gorithm produces a very limited number of possible crash images. Furthermore,
for less than six commands, the random algorithm produces more images than
needed. These images possibly contain duplicates.

As we can see, the random algorithm is problematic for both smaller traces
as well as for larger ones. For smaller traces, more crash images are generated
than necessary. But those crash images possibly contain duplicates. In this case,
the full algorithm would be suited best, because it generates less crash images
with full coverage. For larger traces, the heuristic approach is feasible but not as
promising as expected.

5.6 Performance

We discussed how to reduce the number of crash images in the previous section.
Now we take a look at the performance of a Revin workload. First, we compare
the Tracer run-time with different test cases and file systems. Then, we focus on
the rename test case and evaluate the component run-times in detail.

Tracing is done for both analysis and test stage. We focus on the Analysis
stage for this evaluation, but the results can be applied for the Test stage as well.
Table 5.4 shows the Analysis run-time for each test case described in Section 5.3.
As we can see, all test cases are run in approximately 5s or 7s, regardless of file
system. The test cases which need 7s contain a delay of 2s. As a result, all test
cases need approximately the same time on any file system. We therefore assume
that the run-time difference between test cases is insignificant.

Based on this observation, we can focus on a specific test case for a more
detailed run-time evaluation. We run the whole test pipeline ten times with the
rename test case on ext4 and Linux kernel version 5.18 and trace the run-time of
the individual stages, as well as the run-time between checkpoints in the Analyser.
The results can be seen in Table 5.5. As expected by the previous evaluation, the
Analyser (which uses the Tracer to analyse the test case behaviour) takes around
5s per analysis. Both algorithms for the Crash Image Generator take less than a
second to generate all crash images. Most of the time is needed by the Tester with
around 8 minutes of run-time. This equals to around 5s per crash image as well.

The total run-time is dominated by the Tester, and therefore by the number of
crash images. The time needed to generate the crash images is insignificant with
the two algorithms used. Overall performance would therefore benefit from an
algorithm that reduces the number of crash images significantly. This algorithm
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Run-time in s
vfat ext4 ext4-dj

append 7.030 7.037 7.031

chmod 7.035 7.034

chown 7.035 7.033

hardlink 5.034 5.034

hardlink2 5.034 5.034

symlink 7.035 7.033

symlink2 5.035 5.034

mkdir 5.034 5.032 5.034

rmdir 5.035 5.034 5.033

rename 5.035 5.035 5.034

move 5.033 5.035 5.033

unlink 5.036 5.034 5.034

update 5.034 5.034 5.034

touch 7.035 7.034 7.034

Table 5.4: Analysis stage run-time for different test cases. Run-time does not
depend on file system. Test cases with approx. 7s run-time contain a 2s delay.
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per image total
Component run-time

in ms
σ

in ms
run-time

in s
σ

in s

Analyser 5034 0.635
booting 1099 256
mounting 177 49
test run 849 51
unmounting 1030 10
shutdown 1894 227
process collection 11 17

Crash Image Generator (sequential) 4.873 0.085 0.078 0.001
Crash Image Generator (random) 7.116 0.317 0.569 0.025
Tester 5035 0.237 483.344 0.022

Table 5.5: Run-time of individual stages. Per image and total run-time are the
same for the Analyser.

can be more complex and time-consuming than the algorithms currently used.
We break down the Anayser further: an analysis sequence consists of booting,

file system mounting, running the test case, unmounting, shut down and collecting
the QEMU process. The most time-consuming part is the system shut down,
whereas file system mounting and process collection are negligible. We could save
1s by using system snapshots after the boot process. The shut down process cannot
be reduced further, as we already use a kill signal to stop the QEMU process.
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Discussion

The previous chapters focused on the design, implementation and evaluation of
Revin. This chapter presents difficulties and possible solutions concerning the
design. First, we discuss the reliability and completeness of the recorded trace.
Then, we focus on issues regarding our assumptions of flushes acting as reordering
barriers. The next section deals with the significance of single final state semantics
for block based file systems. Finally, we discuss the possibility of integrating
Revin with Vinter to accommodate for hybrid file system testing.

6.1 Tracing and Crash Images

Tracer The Tracer is a central part of Revin’s design, because all other compo-
nents rely on the correctness and completeness of the recorded trace. Therefore,
care must be taken to record any relevant information. Revin records only read,
write and flush commands. Another possibly important command, write
zeroes, is not traced. NVMe management commands are also not part of the
trace. Accordingly, Revin does not distinguish between IO command queues as
well. Multiple such queues can introduce new possibilities for concurrent NVMe
commands [14].

To verify the integrity of the trace, Revin generates a success image out of the
traced data and compares this image to the image generated by the Analysis stage.
Equality of these images indicates that any relevant data was traced.

The traced information was sufficient for our test cases. We also did not find
any use of write zeroes in the file systems included in the Linux kernel. Nev-
ertheless, third-party file systems or future versions might use currently untraced
NVMe commands. It is then necessary to integrate tracing for these commands to
maintain trace integrity.

33



34 CHAPTER 6. DISCUSSION

Flushes The most critical issue is the simplification made by our assumption
that flushes act as reordering barriers (Section 2.2). As per design, a flush com-
mand leads to the NVMe device persisting the contents in the write caches to
non-volatile memory. The command guarantees that all changes are persisted if
these commands were completed before the flush was issued [14, Section 6.8].
This means that a write issued before a flush is not guaranteed to be persisted
if it completes after the flush command was issued. Therefore, flushes are no
reordering barriers in reality. Lifting this assumption would require us to reason
about these special cases. Simply removing barrier semantics and putting all com-
mands into the same transaction might lead to false positives. The number of crash
images would increase significantly as well. Tracing both submission and com-
pletion events would not suffice either. This would yield one possible execution
order, from which we cannot infer any guaranteed ordering.

On the other hand, this extended tracing can be used to determine whether
such a reordering over flushes happens. While the NVMe standard only gives
the aforementioned guarantees, lower operating system layers (such as the block
layer) or the file systems themselves might enforce flushes as reordering barri-
ers. This is possible by delaying flushes until all previous writes have completed.
Tracing both submissions and completions, as well as delaying writes can give
insights whether such a mechanism is in place. Unfortunately, this is not possible
with the current NVMe emulator for QEMU, because it executes commands in
order. An asynchronous reimplementation of the emulator is necessary for these
tests.

6.2 Evaluation

Single final state Unsurprisingly, our tests show no violation to single final state
(SFS) semantics. Any SFS operation must lead to a single semantic state after its
return. This is always true for our tests, because we end every operation with
a fsync. With block based file systems, this fsync persists all data in the file
system cache with regard to the given file. On the other hand, NVM file systems
have different semantics due to the use of cache lines. The clflush operation
used by NVM file systems writes back the whole cache line corresponding to a
memory address [5], whereas NVMe flushes write back all blocks present in the
write cache [14]. The clflush semantics offer more possibilities for unpersisted
data. Therefore, SFS semantics are more important for NVM file systems than for
block based file systems.
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6.3 Extendability
Vinter Revin is based on Vinter [7]. While Vinter focuses on NVM file systems,
our work is focused on block based file systems with regard to NVMe as under-
lying technology. Both approaches share the same general design with Analyser,
Crash Image Generator and Tester. The major difference is found with the Tracer.
Vinter is implemented by leveraging hooks in PANDA.re. PANDA.re is a frame-
work based on QEMU that allows to invoke code when a guest program reaches
a specific state. This is done by using QEMUs dynamic binary translation to in-
sert hooks. [16] Within these hooks, Vinter can trace NVM access and runtime
metadata which can then be used to find the cause of bugs.

Revin, on the other hand, does not use dynamic binary translation. We use the
tracing capabilities within QEMU by including additional trace points in QEMUs
NVMe emulator. Therefore, we can only inspect the trace afterwards, whereas
Vinter can run code during test execution. Thus, Revin cannot trace runtime
metadata as easily. This design choice was made because PANDA.re uses an
old version of QEMU which does not support NVMe yet.

Hybrid file systems It would be beneficial to combine Revin and Vinter in order
to provide a common testing interface for both block based and NVM file systems.
This would enable testing hybrid file systems as well. Unfortunately, this is not
easily possible as of now, due to the different tracing methods.

There are two possible solutions to this problem: Either Vinter is ported to
QEMU tracing by leveraging the hardware emulators, or Revin is ported to PAN-
DA.re hooks. The former solution might be possible by including traces in the
nvdimm emulator [17]. Unfortunately, runtime metadata tracing would become
complicated with this approach because this data is not easily available without
dynamic binary translation. The second approach, on the other hand, would re-
quire porting PANDA.re to a newer version of QEMU or porting the NVMe emu-
lator to the older QEMU version.

Crash consistency testing for hybrid file systems is only possible by combining
NVMe tracing and NVM tracing. This is necessary to capture the interaction with
both storage backends in the same trace. Testing the block based parts and NVM
parts separately would not find bugs caused by the interaction with both backends
or could lead to false positives because data is persisted in the untraced storage
backend.
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Conclusion

Crash consistency testing is important to improve the reliability of existing file
systems and to aid the development of future file systems. There are different
works in this field, that focus on varying aspects, such as formal verification or
trace-and-replay assessments, as well as different kinds of file systems.

Our work applies techniques established by tests on NVM file systems to block
based file systems. We use virtualisation and emulation with QEMU to create a
trace-and-replay pipeline: We trace the storage device usage during the execution
of test cases and apply the variations of the resulting trace to a base image, thereby
creating crash images. The resulting set of crash images is examined for their
semantic file system state. We use this process to generate a set of distinctive
semantic states possible after a crash.

The total number of possible crash images increases quickly with each ad-
ditional NVMe command. Anyhow, not all of those crash images yield a new
semantic state. Therefore, we examined different algorithms that limit the total
number of crash images but retain relevant crash images. None of the examined
algorithms is suitable for every test case.

We further evaluated our test pipeline and could reproduce one known bug,
whereas we could not reproduce another one. We used vfat and ext4 to test
simple and journaled file systems. Our results show that journaling lead to more
atomic operations. Nevertheless, we found a significant bug with mkdir when
using ext4 that leads to corrupt directory entries.

Finally, we discussed the possibility of integrating Revin with Vinter to pro-
vide a unified tool for crash consistency testing of NVM and block based file sys-
tems. This would benefit hybrid file systems as well. We established that changes
to the tracing system are necessary to realise this integration.
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7.1 Future Work
NVMe flushes An important aspect of our design is the assumption that NVMe
flushes are reordering barriers. In Section 6.1, we examined the impact of lifting
this assumption. This led to the question how NVMe flushes are handled by lay-
ers below the file system layer. This behaviour could be tested by tracing both
submission and completion events, and by delaying writes. Such a test could give
insights whether the operating system holds back flushes until all writes were pro-
cessed. Unfortunately, this test is not possible with the current NVMe emulator
in QEMU, because it processes commands sequentially. The test though, needs
flushes to overtake writes.

Crash Image Generation algorithms Another unsolved problem is the algo-
rithm used to reduce the total number of crash images, while retaining relevant
ones. Our evaluation shows that the heuristic algorithm proposed by Kalbfleisch
et al. does not work well with block based file systems. Our random algorithm is
problematic as well, because it generates too many crash images for short traces,
but generates not enough crash images for larger traces. There are possible dupli-
cates among these crash images as well.

A possible solution could comprise different algorithms for differently sized
test cases. An algorithm creating all crash images may be well-suited for small
traces, whereas a heuristic approach might be used for traces with many redundant
writes. Further work is necessary to envision, evaluate and classify algorithms for
this purpose.

Automatic Test Generation The focus of our work was the pipeline for crash
consistency tests. We provided 14 handwritten tests for the evaluation; all of them
consisting of only one file system operation. It is necessary to test the interaction
of different file system operations to comprehensively test file systems. These
tests can be crafted manually, but Mohan et al. [13] presented a better solution: a
tool that automatically generates test cases. Their tool ACE generates test cases
in an intermediate text representation. This representation is then used to generate
C programs. We could use this text representation as well to generate Rust test
cases for Revin. Essentially, an adapter between ACE and Revin would make it
possible to use these automatically generated tests cases.

Hybrid file systems We discussed the possibility of integrating Revin with Vin-
ter in Section 6.3. Further work is necessary to turn both tools into a unified test
solution that would enable testing of hybrid file systems as well.
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