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Abstract

In recent years non-volatile main memory (NVMM) emerged as a technology
for byte-addressable persistent storage accessible similar to DRAM via the CPUs
memory bus. Operating systems followed by introducing direct access (DAX)
allowing applications to map NVMM into their address space, bypassing the OS
on accesses.

We contribute an NVMM usage monitor based on processor event-based sam-
pling (PEBS) capable of detecting accesses to NVMM performed by applications.
This can be used to interpolate an application’s NVMM utilization and perform
system-wide per-process accounting.

Further, prior work has shown Optane DC’s throughput to drop with the in-
creasing number of parallel accesses. By limiting the set of schedulable CPU
cores for threads that recently accessed NVMM, we also aim to improve the
throughput at high numbers of concurrent threads.
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Chapter 1

Introduction

With the recent arrival of commercially available Intel Optane non-volatile main
memory (NVMM), its capabilities and limitations are becoming increasingly rel-
evant. NVMM describes a new class of byte-addressable memory that is persis-
tent across power cycles and connected to the processor’s memory bus similar to
DRAM. [4]

The performance of Optane DC is generally as prior work expected with a
lower bandwidth at higher latency compared to DRAM. [43] However, depending
on the access pattern, the achievable bandwidth can vary significantly.

For one, while Optance DC is byte-addressable, its underlying media’s access
granularity is 256-byte. [30] On updates smaller than said access granularity, Op-
tane is required to load the previous 256-byte record, modify its content to then
write back the updated record. This causes, small accesses can incur write ampli-
fication which lowers the available bandwidth.

Prior work also found Optane DC to drop its total throughput at an increasing
number of simultaneous accesses from different threads. [43] Assuming NVMM
becomes prevalent in the future, this is a significant issue as more applications
may want to adopt the technology.

Further, whilst there are well-known best practices for the usage of NVMM
[43], the later issue cannot be solved by individual applications, yet requires a
system-wide solution. While previous storage technologies were generally man-
aged as a resource by the operating system, Optane’s integration with the memory-
bus led to the development of direct access (DAX) [?]. DAX allows applications
to get request the operating system to map data directly into their address space,
from which point the OS is no longer involved in the process of persisting data.

Generally, a good idea, as it lowers the overhead on data’s path to persistence,
the loss of transparency however is an issue on multiple levels. For one the oper-
ating system is currently unable to manage or even observe the throughput from
and to NVMM for each individual process. Moreover, even detecting whether or

3



4 CHAPTER 1. INTRODUCTION

not the mapped NVMM region was used at all is difficult with direct access in use.
In our work, we utilize counter- and sampling-based performance events to

regain insight into a process’s usage of NVMM. Further, we implement a proto-
typic application capable of restricting threads that recently utilized NVMM to a
subset of the available CPU cores, thereby setting an upper limit on the number of
concurrent accesses to NVMM.

The remaining thesis is structured as follows: Chapter 2 describes the relevant
background for this work and looks at related works in the field. Chapter 3 dives
deeper into the already briefly mentioned issues of Optane DC’s limited paral-
lelizability and direct access. We then evaluate the use of performance counters to
mitigate the issue in Chapter 4, see how they perform and what we learned from
our experience. Afterward, in Chapter 5 we similarly evaluate sampling-based
performance counters for the same task, amending our work by implementing
core specialization to separate NVMM threads from others. Chapter 6 discusses
our contributions and outlines changes Intel could take to help. Finally, Chapter 7
finishes with a conclusion of our work.



Chapter 2

Background and Related Works

This chapter presents the relevant background of commonly used technologies
throughout our work as well as related works. We will start with a quick introduc-
tion to persistent memory and continue with details on the throughout this work
prominently used Intel Optane DC persistent memory. Finally, we provide some
background on performance counters.

2.1 Persistent Memory
The emergence of memory technologies offering non-volatile, byte-addressable
access at a performance level within an order of magnitude of DRAM, such as
Intel’s 3D XPoint [32], brought upon a new layer in the memory hierarchy of
computing systems. This layer is populated by non-volatile DIMMs (NVDIMMs)
directly attaching to a processor’s memory bus, similar to common DRAM. [4,25]
In contrast to DRAM, however, data on NVDIMMs persists over power cycles
of the system. Furthermore, it supports a load and store programming model
using the respective CPU instructions, unlike typical block-device storage [7],
supporting access to storage at lower overheads.

2.1.1 Direct Access Mode

Applications can either use system calls like read [22] and write [24] to selectively
access a files content or mmap [19] to get the file’s entire contents mapped into
their address space. While typically, the operating system’s page cache is involved
in reading and writing to files and mapping pages for the use with mmap [12], this
is not necessary for NVMM.

Common block storage that is not instantiated with direct access mode (DAX)
will trigger a page fault on an application’s reading accesses when data is not
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6 CHAPTER 2. BACKGROUND AND RELATED WORKS

available in the page cache, then loading it from the device. The page cache maps
data sectors from block devices to memory which allows byte-granular access by
the processor in contrast to operating at sector- or even memory-page size.

By design, the attributes of NVMM meet those requirements, which resulted
in operating systems adapting direct access (DAX) [12, 26]. In addition to that,
files can be mapped directly into the userspace of a DAX-aware process, and
filesystem [26], avoiding the overhead of additional copies on the standard block
I/O path. Due to the efficiency gains of removing unnecessary copies, processes
are even encouraged to use DAX.

Consequentially, after initially mapping the memory region, accesses onto
NVMM performed by a process are opaque to the operating system. Further-
more, as a processor’s access to memory via load and store instructions is syn-
chronous, latency and throughput significantly impact the overall system perfor-
mance. To avoid possible CPU stalls, it is fundamental to have low latencies and
high throughput.

Wang et al., for example, used the read and write system calls in their work
about NUMA-Aware Thread Migration for High Performance NVMM File Sys-
tems [40] to measure the amount of data a thread interacted with. As it is reason-
able to use Optane DC in combination with DAX, the operating system, however,
is unable to make a similar association for an application’s access to mapped data.
With DAX, accesses in reading and writing directions will utilize load/store se-
mantics that are effectively opaque to the operating system and its page cache.

2.2 Intel Optane

As currently the only widely available persistent memory module, Intel Optane
DC Persistent Memory offers data persistence at high capacities of up to 512GB
per DIMM. [3, 4] These NVDIMMs are compatible with 2nd Generation Intel
Xeon Scalable ("Cascade Lake") and newer processors and can be configured in
a variety of configurations. Among other things, they can be used as volatile
memory in a so-called Memory Mode, whereby they serve as the system’s main
memory and use neighboring DRAM DIMMs on the same channel as cache. Sec-
ondly, configured as persistent storage in App Direct Mode, Optane DC can be
presented to the system as a common block device. [4]

We will focus on exploring Intel Optane used as persistent storage for this
work. The memory mode-usage scenario is not relevant to our work.
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2.2.1 Performance Characteristics

While the overall performance characteristics are promising, it was believed that
Optane NVMM would behave similarly to DRAM. Yet, the reality is more nu-
anced with overall lower performance, according to prior works by Yang et al. [43]
and Peng et al. [30]. For further reading, we also recommend Wang et al. [41]
with their work modeling Intel Optane DIMM for a better understanding of the
discrepant performance characteristics.

Access Size While Optane Memory is byte-addressable, the underlying media
currently uses chips with an access granularity of 256-bytes [41], which causes
the performance to vary depending on the access pattern. This larger access
granularity of the media results in generally better performance for sequential
accesses [30]. In case of a write smaller than 256-bytes, overhead incurs, as the
media will first need to read the 256-bytes, modify its content to write it back
afterward [41]. This overhead is called write amplification and is often than into
account when designing applications using NVMM [35]. This is also highlighted
by the fact that the NVDIMM can buffer and merge writes, which helps to reduce
the overhead for writes. [43]

Latency As for reads, the latency of Optane Memory is about twice to three
times as high in comparison to DRAM and is shown to be more sensitive to data
locality. [30,43] Evaluating stores, one finds the latency of DRAM and NVMM is
similar to one another and generally consistent. [30]

Bandwidth The maximum bandwidth achievable by a single Optane Memory
DIMM is about 6.6 GB/s when reading and 2.3 GB/s writing. Thus, the maximum
bandwidth is overall lower than DRAM and shows a significantly higher read-
write gap. Whereas DRAM has a small gap of about 1.3x between read and write
bandwidth, the same metric for Optane is 3.3x [30]. [43]

A significant influence on the write bandwidth can be observed depending on
whether temporal or non-temporal stores are used by the application. Whereas
temporal stores are passed along the cache hierarchy of the processor and written
back to Optane on a cache line evict or write back (clflush, clwb), non-temporal
stores are directly written to the persistent memory. The latter shows an overall
higher throughput at a lower latency [43]

In a scenario with multiple Optane DIMMs, one can use interleaving to scale
the bandwidth for reading and writing almost linearly. [43]
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Parallelism Generally, parallelism for Optane DC is not as well explored as the
above listed. With increasing numbers of threads accessing Optane DC, Yang et
al. [43] found that between one and four threads, performance for reading and
writing will peak, after which it will diminish.

Interleaving multiple DIMMs can be of help here, too, yet does not seem to
scale linearly with the amount used. One of the authors recommended principles
for building software for Optane-based systems even states to "Limit the number
of concurrent threads accessing an Optane DIMM" [43].

This has led other researchers like Yang et al. to fall back on dedicated I/O
threads for their file system SPMFS [44]. They implement a custom I/O han-
dling framework in combination with SPMFS that builds upon an independently
managed thread pool to avoid resource contention on the DIMM.

2.2.2 Performance Metrics
Each Optane NVDIMM has its own health and performance metrics that can, for
instance, be accessed using ipmctl [37] or derived tools like pmwatch [8]. Most
prior work only used pmwatch [8] to evaluate their works, with [14, 45] being
examples of this. NThread [40] on the other hand even incorporated it into their
designed solution.

Among various others, Optane NVDIMMs promote performance metrics such
as the number of load/store operations received from the CPU’s integrated mem-
ory controller as well as the number of load/store operations performed to the
physical media of the NVDIMM [8]. As stated in Section 2.2.1, the access
granularity to the underlying media is at 256-byte larger than the desired byte-
granularity from the CPU and could cause write amplification for smaller ac-
cesses.

While both metrics can be used to measure the bandwidth of the NVDIMM
to the CPU, they are not sufficient to account for the usage of each process. As
those are measured after the memory controller, changes in these metrics cannot
be precisely correlated to a single, respective origin. A possible cause may be a
remote NUMA access, but even parallel accesses from multiple local cores cannot
be differentiated. Restricting access to a single NVDIMM to only one core at a
time is unfeasible, as it would reduce the achievable bandwidth and thus lower
system throughput.

2.3 Thread Affinity
Most application processors nowadays are general-purpose, and thus processes
and their respective threads can run on all available cores. However, carefully se-
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lecting a thread’s core can provide performance benefits for the task at hand and
the entire system. The most prominent example of this is cache affinity, as operat-
ing system schedulers try to rerun threads on the same core to reuse accumulated
data and instructions of the lower level caches. [39]

Respective APIs to restrict a thread to use a set of cores are found in the kernel
and the userspace. [15]

2.3.1 Core Specialization

A different approach is outlined by Gottschlag et al. in "Automatic Core Spe-
cialization for AVX-512 Applications" [6]. During AVX-512 instructions, Intel
CPUs will reduce their frequency, impacting the overall system performance, as
a sibling hyperthread is also affected by this, and restoration of the higher fre-
quency happens delayed. Their work detects threads using AVX-512 instructions
and restricts them to a subset of all available cores to reduce the overall impact on
performance.

NThread As for NVMM, a paper from Wang et al. [40] describes a mechanism
to reduce the number of remote NUMA accesses by threads of an NVMM-based
filesystem. As the filesystems currently do not consider NUMA, threads may
start by default on a suboptimal core concerning their NUMA node for the files
they serve. NThread, by default, migrates the threads so that more local NUMA
accesses can be performed, yet also applies an analysis to detect resource con-
tentions. Contention on the NVMM is detected by assuming a maximum band-
width for Optane DIMMs and using DIMM performance counters to measure their
current bandwidth. Once contention is detected, threads with a high write ratio
are displaced to different CPU cores where remote NUMA accesses are required.
However, the authors mention that their technology does not support mmap-ed
files. [40] We assume this is because there is no easy way to associate the band-
width usage of any process due to synchronous memory accesses bypassing the
operating system, more specifically the page cache.

2.4 Performance Monitoring Units

The performance of modern processors can typically be evaluated using embed-
ded performance monitoring units (PMU) that measure different performance pa-
rameters, such as instruction cycle, cache hits or misses, and various others.

In the case of Intel processors, each logical processor has its own set of gen-
eral=purpose performance counters. [11, Vol. 3B, Ch. 19.2.1] Each logical pro-
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cessors’ performance parameters can be acquired by configuring the appropriate
model-specific registers with a desired performance monitoring event (PME).

While some PMEs are architectual, making them more universally available,
others are non-architectual and specific to a processors’ microarchitecture. The
most prominent non-architectural events measure off-core subsystems (so-called
uncore), which among other things includes the integrated memory controller
(iMC) [10]. [11, Vol. 3B, Ch. 19.3.1] As those subsystems are shared among
all cores on the same physical die [10], the measurements cannot be directly cor-
related to an individual core without additional effort, if at all. However, there is
a slightly different mechanism to collect offcore events allowing the measurement
of events that are caused by a processor’s core yet leave it for the uncore. [42]

Further details, as well as a reference of the events supported by each Intel
CPU, can be found in the Software Developer’s Manual Volume 3 in "Performance
Monitoring" [11, Vol 3B, Ch. 19].

2.4.1 Processor Event-Based Sampling
While most performance monitoring events provide the developer with counters,
some can also be used in connection with processor event-based sampling (PEBS)
for saving precise architectural information, such as the state of the general-purpose
registers and the instruction pointer. PEBS events will be collected after an associ-
ated counter reaches a selected sampling period and written into a records buffer.
Once the buffer is close to being filled, an interrupt is generated to collect the
records. [11, Vol. 3B, Ch. 19.6.3.8]

The idea of utilizing PEBS to sample memory accesses to NVMM is already
used by Oh et al. in their paper about MaPHeA, a profile-guided heap allocation
framework with low overhead. Their intention is to reduce the average mem-
ory access latency with knowledge about the memory hierarchy. Often used data
structures may be allocated on faster memory such as DRAM, whereas less often
used ones may be allocated to NVMM. Another interesting contribution of theirs
to our work is the insight into the significantly stagnating benefit of high sampling
frequencies (or low sampling periods). [28]



Chapter 3

Problem Analysis

As persistent memory is a relatively recent technology, a large part of prior works
predates its commercial availability. Researchers until now founded their work
on assumptions as to how they expect NVMM will perform, emulating it from
their point of view, fitting ways, and performing a variety of studies on these
[1, 2, 5]. It was widely expected that Optane DC would have higher latency and
lower bandwidth than DRAM. Yet, researchers also find its performance highly
dependent on the number of concurrent threads accessing it. [43] Moreover, the
access pattern also has a significant impact on its performance.

In this chapter, we first describe how the achievable performance depends on
the type of access for Optane DC. Next, we explore the problem of limited par-
allelism and finish by detailing the issue of detecting utilization in direct access
mode.

3.1 Dependence on Access Type

Prior research shows that Optane DC’s performance depends on the kind of ac-
cess (i.e., reads and writes) and their pattern. [43] While the available bandwidth
for writes is already limited compared to reads, the problem amplifies for small
updates due to the media’s physical access granularity of 256-bytes. [41] On each
update smaller than said access granularity, the current contents must be read,
updated, and written back to the media.

Considering that the granularity is larger than cache lines at 64-bytes, the
NVDIMM was found to have a small buffer, sometimes referred to as XPBuffer
for combining adjacent writes. [43] Yet, random accesses smaller than 256-bytes
without much locality cannot meaningfully benefit. A small, random access pat-
tern causes congestion on the buffer and leads to it needing to flush back to the
media more often. The required read, update, and the following store increases the

11
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so-called write amplification, which negatively impacts the achievable throughput
of the NVDIMM significantly.

The above motivates taking a closer look at stores and what could be done to
reduce congestion of the buffer, improving the write throughput of the NVMM.

Finally, it is the reason for our work focusing solely on the evaluation of writes
to NVMM. Discovered mechanisms can potentially be used analogously in read-
ing direction with minor adaptions. Nevertheless, we acknowledge that reads
should be evaluated in future work, as the read bandwidth is still significantly
lower than what is achievable with DRAM.

3.2 Limited Parallelism
Optane DC’s performance is dependent on the number of parallel accesses per-
formed. Whereas the observable bandwidth for DRAM increases monotonically
for reads and writes with an increasing number of threads accessing it in paral-
lel, Optane was observed to peak at a low number of parallel accesses of one to
four threads. [43] One of the reasons is that with an increasing number of threads
storing, the contention on the XPBuffer increases, as each thread will likely have
a separate working set. Because of this, its effectiveness in mitigating write am-
plification decreases.

This limited ability to parallelize leads to related works like SPMFS [44] in-
troducing dedicated I/O threads for their file system. However, in real-world sce-
narios, an individual application of NVMM cannot control this issue on their own.
More and more applications will likely support NVMM, thus requiring coordina-
tion among applications to avoid congestion.

However, we believe it is worth considering having the operating system be
part of a solution by adapting the scheduling based on the NVMM usage pattern.

3.3 Detecting Direct Access
Due to the limited bandwidth and performance specifics at different access pat-
terns, applications need to be far more mindful of their use of Optane DC than of
DRAM. Deploying Optane DC as persistent memory, applications can access it
using read/write system calls but are encouraged to use direct access (see 2.1.1)
for improved performance and reduced overhead. While the throughput can be
well observed for system-call-based accesses, once an NVMM-based memory
region is mapped into an application’s address space, all accesses happen syn-
chronously via load/store instructions of the CPU, transparent to the operating
system.
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Thus, a supervising system is unable to account for the NVMM usage of an
application, let alone able to detect if it was used at all. This issue is commonly
known and resulted in papers, such as NThread [40], being unable to support an
mmapped usage scenario.

We believe a mechanism to detect those accesses is crucial when optimizing
the usage of NVMM with software, as one is missing a significant part of the
picture otherwise.
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Chapter 4

Performance Counter for Usage
Estimation

As established, we seek to find a way to reliably detect the usage of NVMM in
processes and prefer associating NVDIMM usage with their causing processes.
Current solutions cannot detect and account for accesses to regions mapped into
the address space of a process. We have already seen that the performance metrics
provided by the NVDIMM itself are insufficient for our needs due to the inability
to associate changes in the metrics with a CPU’s cores.

Based on the knowledge that we need to utilize a source of information closer
to the CPU cores, we evaluated the use of performance monitoring units. Their
general availability and low overhead in counting mode, especially if only a few
events would be sufficient, make them ideal for continuous monitoring. [27] The
ability to acquire them transparently to an application by the kernel or a sepa-
rate monitoring application using the perf API [13], such as the respective binary
application perf itself, is an essential requirement for unbiased results.

Nevertheless, we believe this approach is still limited in that the PMEs cannot
capture the size of the individual accesses of each process. However, the num-
ber of accesses per time slice can still be a useful measure to compare different
processes or the same process over time.

In the following, we first introduce how we planned on using performance
monitoring units to achieve per-process accounting. We continue with how we
decided on the events we planned to use and show preliminary results from testing.
Finally, we conclude with what we have learned from this approach.

15



16 CHAPTER 4. PERFORMANCE COUNTER FOR USAGE ESTIMATION

4.1 Design
We set out to use PMUs for per-process accounting. Assuming appropriate events
are chosen, they are influenced only by the retired instructions of the observed
CPU core and resistant to outside factors. Moreover, as those provide an accurate
picture formed by the instructions executed, we assume a high level of accuracy in
detecting writes. An implementation into an operating system’s kernel would also
provide a mapping of currently executed processes to their running cores, making
it possible to correlate the measured events to the processes.

Our solution configures a limited set of performance counters per CPU core
to the relevant events acquiring information about the current NVMM usage. We
prefer to set as few counters as possible and evaluate if a single event may be
sufficient.

With our PMUs set up with the desired events, before the scheduler switches
the context over to the process to be scheduled, we read the value of the current
counter. Later, we compare the previously read value with the updated one once
we return from the process’s context to the scheduler, be it for an interrupt or as
the time slice is exhausted. The difference in the before and after is then used to
determine how often the process accessed NVMM.

The number of writes triggered does not indicate the amount of data written,
as stores can vary in size. Given the granularity for writing to the media of 256
bytes, we can determine an upper limit for an absolute bandwidth measurement.
Nevertheless, our design can be used to relatively compare the NVMM usage of
different processes in the same time frame or a single process over time. We
believe while absolute measures may provide better results, a relative comparison
between processes is a good start for bandwidth measurement.

4.2 Event Selection
Support for Optane DC persistent memory is a relatively new feature and requires
the Cascade Lake architecture or more recent. As our later evaluation happens
on a CPU based on Cascade Lake, we focused our event selection on said archi-
tecture. A list of all supported performance monitoring events can be found in
human-readable [9] as well as machine-readable form [29].

In our search for appropriate PMEs, we limit ourselves to on-core events, as in
particular offcore events can be triggered not only by the currently observed core
but also by its siblings and remote NUMA accesses. Thus, we encounter the same
issues already observed with the performance metrics of the Optane NVDIMM
itself.

Next, as we focus this work on writes, we identify a subset of the PMEs that
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can be used to detect writes to the NVDIMM. This results in the list of appropriate
events found in Table 4.1. Those have in common that they are increased on
each request of ownership (RFO) of the core for a cache line, which is typically
triggered before a write can occur.

While most of these still describe specific scenarios, such as an RFOs before
prefetching for L2 or L3 cache levels and multiple bus snooping configurations,
the event OCR.ALL_RFO.PMM_HIT_LOCAL_PMM.ANY_SNOOP in particular
seems, based on its name, to be summarizing all others. However, we assume
prefetching causes additional RFOs that may not occur, due to its speculative na-
ture.

OCR.ALL_RFO.PMM_HIT_LOCAL_PMM.ANY_SNOOP
OCR.ALL_RFO.PMM_HIT_LOCAL_PMM.SNOOP_NONE
OCR.ALL_RFO.PMM_HIT_LOCAL_PMM.SNOOP_NOT_NEEDED
OCR.ALL_PF_RFO.PMM_HIT_LOCAL_PMM.ANY_SNOOP
OCR.ALL_PF_RFO.PMM_HIT_LOCAL_PMM.SNOOP_NONE
OCR.ALL_PF_RFO.PMM_HIT_LOCAL_PMM.SNOOP_NOT_NEEDED
OCR.DEMAND_RFO.PMM_HIT_LOCAL_PMM.ANY_SNOOP
OCR.DEMAND_RFO.PMM_HIT_LOCAL_PMM.SNOOP_NOT_NEEDED
OCR.PF_L2_RFO.PMM_HIT_LOCAL_PMM.ANY_SNOOP
OCR.PF_L2_RFO.PMM_HIT_LOCAL_PMM.SNOOP_NOT_NEEDED
OCR.PF_L3_RFO.PMM_HIT_LOCAL_PMM.ANY_SNOOP
OCR.PF_L3_RFO.PMM_HIT_LOCAL_PMM.SNOOP_NONE
OCR.PF_L3_RFO.PMM_HIT_LOCAL_PMM.SNOOP_NOT_NEEDED

Table 4.1: The list of possible performance monitoring event candidates for Cas-
cade Lake to detect writes for mapped NVMM regions.

4.3 Evaluation
With our set of performance monitoring events defined, we set out to test our
hypothesis of those events being a good fit for detecting write accesses to NVMM
after which we interpret the results.

4.3.1 Testing Methodology
All benchmarks in this work will utilize our custom pmm-writer load generator,
which tightly loops around configurable store instructions. These instructions can
be temporal or non-temporal and of different sizes.
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For our testing, we opted to run perf stat -e <event> [13] for all events listed
in 4.1 against our pmm-writer in different configurations. To ensure stable results,
we used taskset to ensure the benchmark was consistently scheduled on the same
CPU core. We ensured the selected to be part of the same NUMA group as the
NVDIMM.

Each benchmark writes a total of 512 MB into a 256 MB large file. Aside
from this, each iteration runs at different access sizes, ranging from 1 byte to 256
bytes, with sequential or random write destinations. Finally, we also verified the
behavior of temporal and non-temporal stores.

To reduce fluctuations, each configuration was run three times, and their re-
sults were averaged for the below results.

4.3.2 Results
While most of our selected PMEs provided us with non-zero counter values during
our runs, seven of them did not give any information and thus will not be further
evaluated. Those events include all SNOOP_NOT_NEEDED variants, as well as
the events counting pre-fetches for requests for ownership on the L3 cache, did
not provide any results.

For the remaining events, we continued our evaluation by calculating the ratio
of reconstructed usage ur we were able to detect based on our known access sizes
s and the final performance counter value c after writing Ut bytes, with Ut as
previously mentioned being 512 MB using the following formula:

RatioofReconstructedUsageur =
CounterV aluec ∗ FixedAccessSizes

TotalUsageUt

In the best case, promising high detection rates and thus overall accuracy will
be achieved when ur is closest to 1. A lower score can be interpreted as an un-
derestimation of the actual usage, whereas a higher score than one highlights an
overestimation.

Temporal Writes

Out of our remaining performance monitoring events, we found that the events
responsible for counting RFOs before prefetching on the L3 cache and the overall
summarizing prefetching-only counters are inconsistently able to provide us with
insight. Often they will turn out to provide a counter result of zero, even for mul-
tiple runs. Considering the specialized nature of those events and that prefetching
is only an optimization that is not always performed beforehand, those results are
unsurprising.
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Outliers at 256-bytes access size The Figures 4.1 and 4.2 show the usage ratio
as defined in Section 4.3.2 for each PME at different numbers of threads. A value
of 1 represents a perfect reconstruction of the data usage, whereas a low value
shows underestimation and vice versa.

Looking at these figures, one will see significant outliers for the access size of
256-bytes, which are due to our calculation assuming accesses to be of the access
sizes s and not being split up into multiple accesses. While the CPU supports
vector instructions that can manipulate data more extensively than 64 bytes, the
memory bus itself is designed with cache-line size in mind. In addition, when ac-
cessing NVMM using vector instructions, prominent examples such as PMDK’s
libpmem will first align their accesses by cache-line and only then use the largest
possible instructions for each access. [31] We believe this improves the perfor-
mance, as partial updates will require reading the existing data and updating them
to write back the new contents, which is a potentially avoidable step. Further, this
may help to reduce write amplification.

However, as our model assumes each store is indifferent to its size and results
in one increment of the performance counter, the 256-byte accesses are overrepre-
sented. Theoretically, they show four times higher reconstructed usage ratio than
other access sizes in our graphs. As an example, the actual performance counters
values show an average of 7859510 accesses for demand-based temporal stores
from runs with 256-byte access size, compared to 7753884 accesses for the same
with runs of 64-byte access size. Thus they are very similar, with 256-byte de-
tecting 1.3% more write attempts. We will thus concentrate on the smaller access
sizes for the remainder of this section.

Next, we want to take a closer at the demand RFOs up to and including the
64-byte access size. We observe performance counter values resulting in a recon-
structed usage from 67% up to 100%, with no correlation between the detected
usage and their access size. Still, random accesses are performing slightly better
with the lowest accuracy of 73% of the total written data detected. Moreover, the
any snooping variation of the events performs consistently better across sequential
and random access modes.

For the accumulating ALL_RFO-events, we find a generally identical picture,
which is unsurprising considering most usages were already detected by the herein
included DEMAND_RFO’s. Taking the prefetching counters into account still
increased the lowest calculated reconstructed usage to 97%, at the expense of an
overshoot of 33% of the written data, up to 70% for an outlier for random write
accesses.
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Figure 4.1: Relative detected usage ratio for sequential temporal writes per PME
at different access sizes. DEMAND_RFO as well as ALL_RFO related events
seem to be the most promising. A white field is the result of the PMEs counter
returning zero.
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Figure 4.2: Relative detected usage ratio for temporal writes with random access
pattern per PME at different access sizes. In comparison to temporal writes, we
detect overestimation of the reconstructed throguhput compared to the actual us-
age of up to 70%. A white field is the result of the PMEs counter returning zero.
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Non-Temporal Writes

Looking at the sole prefetching-related events, we find a similar picture in Fig-
ure 4.3 and 4.4 as already discussed in connection to the temporal stores. Those
are not consistently providing reliable insight to reconstruct usage on their own,
which, again, was to be expected due to their limited responsibility.

Full Cache-line Aligned Writes An important discovery made during our bench-
mark is the significantly limited ability to detect non-temporal stores to NVMM.
During our runs with an access size of 64-byte or 256-byte, as previously dis-
cussed, we would theoretically expect about 8388608 detected accesses to fully
reconstruct the usage. In practice, we however saw 62 accesses at the highest,
11,375 accesses on average with a median at 5 accesses and thus are in compari-
son neglectable. We believe this to be caused by non-temporal stores not requiring
an RFO to be storable without conflict, but a broadcasted invalidation to be suffi-
cient to achieve cache consistency.

Similar to temporal stores, we can see DEMAND_RFO-based events to at first
slightly underestimate by up to 3%. Genereally we find that the reconstructable
usage ratio ur for DEMAND_RFO-based PMEs decreases exponentially with in-
creasing access size s and can be well approximated by ur = 1 − s

64
. The

SNOOP_NONE-variant has a significant outlier for sequential at the access size
of 2-bytes, For random accesses, a similar outlier can be observed for the ANY_-
SNOOP-variant at one, and two bytes access size, both at about 68% instead of
the estimated value of over 96%.

Also similar to temporal stores, ALL_RFO-based events generally overesti-
mate the reconstructed usage, potentially by as much as 54%. Nevertheless, we
again find the above formula to be a good approximation of the reconstructable
usage. The significant outliers originate from OCR.ALL_RFO.PMM_HIT_LO-
CAL_PMM._SNOOP_NONE and focus on the access sizes of 8-byte as well as
16-byte.

4.4 Conclusion
Based on the above results, the selected performance monitoring events cannot
provide an accurate picture of stores to Optane NVMM.

While the PMEs seem promising to detect overall usage of NVMM in the
case of temporal stores, estimating a consumer’s actual bandwidth usage is more
difficult due to the lack of further information, such as actual access sizes. We
were able to reconstruct the usage of our microbenchmark closely, with only a
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Figure 4.3: Relative detected usage ratio for sequential non-temporal writes per
PME at different access sizes. We found the score for the reconstructed usage
ratio to be estimatable by the formula mentioned in Chapter 4.3.2. A white field
is the result of the PMEs counter returning zero.
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Figure 4.4: Relative detected usage ratio for non-temporal writes with random
access pattern per PME at different access sizes. A white field is the result of the
PMEs counter returning zero.
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few outliers, using a constant and known access size, which leads us to believe
that the PMEs are well suited to detect usage of NVMM overall.

Non-temporal stores paint a different picture, as we are critically unable to
detect stores of a full cache-line. We assume this is the case, as due to the nature
of a non-temporal store, the new contents are not to be placed in the cache after the
write. Thus it is sufficient to invalidate the targeted cache line only, not requiring
a request for ownership due to partial content changes.

We found the reconstructable bandwidth at a known access size to be increas-
ingly unreliable as the size increases for non-temporal stores.

Applications will generally, to reduce write amplification, attempt to write
back blocks as large as possible [35]. They are further likely to use non-temporal
stores due to minor cache poisoning and higher bandwidths unless the data is still
needed after the write. Both these well-known best practices from Yang et al. [43]
cause us to believe that the available PMEs are insufficient.

Thus, we conclude that the selected performance monitoring events would be
insufficient to accurately picture the amount of bandwidth consumed per-process
in their current form. Even the reliable detection of accesses to NVMM, in
general, is questionable considering the importance of non-temporal stores for
NVMM.

However, this point may be reevaluated for future hardware revisions that can
include other PMEs better suited for our task.

4.5 Future Works
As we have seen, certain performance monitoring events are providing helpful in-
formation. In contrast, others are potentially less useful for continuous monitoring
due to the limited information inferable and the low number of PMCs available per
core. However, it seems reasonable to explore if a combined use of DEMAND_-
RFO- and ALL_RFO-based PMEs may be suitable to reduce their divergences
from the actual usage.

As future works may also want to use the same approach for reading, possible
events should be evaluated. A later step may determine the efficiency in multiplex-
ing load and store related PMEs to use as few of the available hardware PMUs as
possible without limiting the overall detection rates for NVMM accesses.

Moreover, as not every process will use NVMM, future works may also con-
sider only configuring the PMU if a to be executed process’s context can poten-
tially access an NVMM region.

Last but not least, one may also use the performance metrics of the Optane
NVDIMM itself to measure the bandwidth usage at the DIMM and collate this
information with the number of writes per process during the same timeframe.
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We believe this may help build a heuristic for absolute bandwidth usages in past
timeframes.



Chapter 5

PEBS-Based Usage Monitoring

In the previous chapter, we have seen that performance monitoring events for
Cascade Lake-based CPUs are neither sufficient to account for writes to Optane
NVMM nor to reliably all kinds of stores, underperforming significantly for non-
temporal stores. We believe this to be the case as it is a well-known best practice,
published by Yang et al. [43], to prefer non-temporal stores and use large stores to
reduce write amplification. We expect this scenario may be prevalent in real-world
applications.

In their work "HeMem: Scalable Tiered Memory Management for Big Data
Applications and Real NVM" by Rayback et al. [34] the authors describe the
use of processor event-based sampling (PEBS) to sample memory accesses that
are later analyzed in batches to determine whether a memory page is commonly
or infrequently used. Based on those results, HeMem aims to build a multi-tier
memory management system that puts "hot" memory pages in DRAM and moves
other pages to slower NVMM.

As HeMem shows, PEBS is already successfully used to sample accesses to
NVMM in related works. Thus, we decided to utilize it for our following approach
to tackle the problem. Each collected sample will contain deeper information
about the related memory access, giving us further insights like the precise in-
struction executed and its destination. This detailed information drives improved
insight into the actual workload of a process, likely increasing the accuracy of
NVMM accounting. All pre-processed information about the number of accesses
and the total bandwidth of each thread and process past NVMM activities can then
be stored to drive future policy decisions.

Next, we study the effects of core specialization on the write throughput of Op-
tane DC NVDIMMs. As shown by related works [43], the bandwidth of NVMM
is dependent on the number of threads accessing it, at some point decreasing with
increasing load. Based on the PEBS-based detection of stores, we affiliate threads
with different cores depending on whether they write to NVMM. We expect to see

27
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an increased throughput at a more significant number of threads storing to NVMM
compared to an unmanaged environment.

This chapter first discusses the differences between counting and sampling in
performance monitoring as relevant for this work. Following is a deeper explana-
tion of the design for our accounting mechanism and an initial attempt to utilize
this information for NVMM core specialization. Later, we discuss our implemen-
tation of both and continue with the evaluation. Finally, we discuss the results in
our conclusion, giving an outlook on future works.

5.1 Differences of Counting and Sampling
Before diving into our design, we first want to highlight some of the key differ-
ences between using the processor’s performance monitoring units for counting
compared to sampling.

Once a configured event occurs, during the counting mode, we increment the
counter and can thus make an accurate assessment of the number of occurrences.
Yet, we are missing further information about the context of the event. The count-
ing application can later read this counter.

In comparison, we can get further information about each occurrence for a
sampled event, which includes the current set of registers, including FLAGS and
the instruction pointer. These details are then stored into a precise event record
buffer allocated and assigned by the application using PEBS. Before the buffer
overflows, an interrupt is triggered before the buffer overflows to allow the appli-
cation time to collect the generated samples. This process overall is expensive;
thus, typically, a sampling rate is used that is significantly higher than the capture
of each occurrence. [11]

Although when using PEBS, we are missing out on a detailed sample for each
occurrence, a fixed sampling rate allows us to infer a range of events that hap-
pened based on the number of samples we collected. Further, the fixed sampling
rate allows us to extrapolate based on the available information, assuming the
underlying application’s consistent behavior between samples.

In addition, depending on the events in question, the information provided by
the samples can be a valuable basis for metrics one may wish to collect that does
not have a counting event as an alternative.

5.2 Design
In the following section, we outline an application capable of accounting for writ-
ing using a PEBS-based sampling approach. Further, we will continue conceptu-
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alizing a lightweight approach to core specialization based on detecting threads
storing data on NVMM.

5.2.1 Write Accounting Architecture

Our approach to accounting writes to Optane DC, based on PEBS sampling, starts
by configuring one performance monitoring unit per core to sample any executed
stores at a configurable sampling rate. By monitoring every available core, we
ensure that no thread is scheduled unfavorably and able to elude our monitoring.
A thread’s sampled stores are going to include accesses to memory that are not
NVMM; however, they are filtered out at a later stage based on the details pro-
vided.

We determine their executing thread for each of those collected samples, which
can be derived from the sample’s originating core and its current scheduling in-
formation. Further, we gather the registers of a sample containing the instruction
pointer and the address of the memory access causing the generation of the sam-
ple.

These are passed to a processing thread that infers further information using
the originating processes’ address space. We use the threads associated process
memory map to determine the region the memory access occurred and utilize
the region’s configuration to infer whether it is mapped to NVMM. If this region
corresponds to NVMM, we will continue processing it. Otherwise, the sample is
likely caused by access to DRAM and is not relevant for our solution.

Next, we amend the sample by the executed instruction using the instruction
pointer. We utilize it and the process’ memory map to determine the instructions
binary executable and further use a disassembler to learn about the instruction
itself and its operands. The instruction’s operands let us determine the amount of
data stored by it respectively.

This information is then collected in an aggregated form, offering a tuple of the
number of accesses and the total detected throughput per thread per second. We
further summarize this to gain a per-process view of NVMM usage by associating
each thread to its parent process if thread-level would be too fine-granular for the
tasks.

5.2.2 Core Specialization

Referencing Gottschlag et al. [6] as related work who successfully performs core
specialization for AVX-512, we design a similar solution: We augment the above
design with a prototype intending to separate threads triggering stores on NVMM
from those that are not.
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For this, we categorize a select few cores as NVMM cores and restrict threads
storing on NVMM to run only on those cores. The separation is achieved by
classifying threads as NVMM-writing and not NVMM-writing.

Threads that are recognized to store to NVMM are temporarily classified into
the NVMM-writing category and get their thread affinity (see 2.3) adapted to the
defined set of NVMM cores only, constraining the scheduler in its placement
of these. The classification can expire once a thread is not detected to store on
NVMM for a configurable period of time. All other threads can be scheduled to
any core available; however, assuming a high load on the NVMM cores, they will
be less likely scheduled there by the operating system by default.

5.3 Implementation

We opted for a modular, fully userspace-based implementation, as we deemed it
sufficient to evaluate the possible success of our described approach.

This section will be divided into our design section into two parts. First, we
will detail our implementation for PEBS-based detection of stores to NVMM and
accounting. Then we follow up with our implementation of the core specializa-
tion.

5.3.1 Write Accouting Implementation

The part of our implementation responsible for the detection and accounting of
NVMM writes consists of multiple modules. The most significant contribution is
the sampler that acquires the samples and evaluates the necessity to process them
further, filtering them out if they are not caused by access to NVMM. Based on
those, the accounting module updates the thread’s current usage after augmenting
information, such as the instruction that triggered the sample as well as its access
size. Last but not least, the sampler also triggers an update toward the component
responsible for our core specialization component procaffinity.

Sampling

The sampler is responsible for the fundamental acquisition of samples and deter-
mining whether those were to be further evaluated or can be discarded without
influencing the accuracy of NVMM accounting.

We start by requesting the number of available CPU cores of the system using
get_nprocs [18]. Each of the available cores is then configured to provide us with
performance information using perf [13].
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Initialization Our system call to perf_event_open() [20] requests the collection
of samples for each of the cores themselves instead of for any preset processes or
threads, which is necessary to get a complete picture of all processes running in
the operating system. Further, we pinned it to ensure the OS is not going to tem-
porarily remove it to multiplex with other PMEs, improving the detection rates
and accuracy of the resulting data. The PMUs are configured with the MEM_-
INST_RETIRED.ALL_STORES event [9] and we request the perf API to record
the instruction pointer, process- and thread-identifier as well as the address of the
memory access for each sample. To ensure the instruction pointer is accurate, we
further required it to have no skid. Without this setting, the CPU only starts ac-
quiring the instruction pointer after the sample is to be generated, whereas by
requesting no-skid, Intel CPUs will capture the IP for soon-to-be overflowing
counters. [11] We opted to exclude samples that may occur in a hypervisor or
the kernel itself for our perf configuration. This decision was made as we can-
not assign actions performed by a transparent hypervisor to any operating system
process. Moreover, we decided to exclude accesses by the kernel, as we, as a
user-space application, are further unable to detect for which process the kernel
and its page cache are currently performing work.

Next, we memory-map a buffer for each core used by perf to place our re-
quested, preprocessed samples. Lastly, a thread is spawned repeatedly, iterating
through all core’s buffers to collect new samples and process them accordingly.

Sample Processing For every sample collected, we use the provided process
identifier to load the process’s memory map in question. In addition to that, we
look up the processes’ memory region at the location of the memory access pro-
vided by the sample and determine if the access went to NVMM.

We look at the region’s originating path and determine the corresponding
mount in the file system’s hierarchy. For the moment, we assumed the mount
to be to an Optance DC NVDIMM if and only if the the dax option (see 2.1.1) is
set. Future works may decide to improve on this mechanism.

Should we determine the sample to indeed be for an NVMM access, it is
passed on to the accounting module. Nevertheless the result, the sample will be
passed on to the core specialization module augmented with the information on
whether the access went to NVMM.

Accounting

The accounting module in our implementation is not used to drive any policy de-
cisions for the later-described core specialization, yet only used for verification
purposes, printing the detected usage over the last second to stdout. A separate
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thread is spawned on initialization that prints the data and then clears the account-
ing history to output to stdout. However, generally, the accounting mechanism
could be used for more advanced purposes with little adaption and is currently
only closely built to the requirements of this work.

Determining a proxy IP Once a sample is passed from the sampler to the ac-
counting module, we first create a pointer in our tools address space referencing
the same data the sample’s instruction pointer was pointing to in the originating
process. We call this pointer an proxy instruction pointer.

To create it, we first reconstruct the sampled processes’ address space based
on the /proc/{pid}/maps file [21]. Next, we determined the memory region the
sample’s instruction pointer referred to and loaded the corresponding static binary
file into our memory. After computing the offset of the sample’s IP to the start
of the memory region in the originating process, we used the calculated offset to
reconstruct where exactly our proxy IP had to point based on where our copy of
the static binary resides in memory.

Reconstruct the instruction Afterward, we need to reconstruct the instruction
itself, which we do use the capstone disassembler [33] as a library. At the time
of writing, it is recommended to use the long-running feature branch next for
purposes of reconstructing our results, as it contains fixes to specific instructions
operands metadata one may encounter running temporal stores.

As we previously ensured no-skid on the instruction pointer, we use capstone
to reconstruct the instruction by providing it with 20 bytes of data starting at the
proxy IP. Should this result in more than one instruction being found, we still only
focused on the first one, as it is the causing instruction of the memory access. We
know this to be reliable, as we requested the perf API to ensure there is no skid.

As part of the instruction’s metadata, we observe its operands. Finally, using
the fact that the instruction is from a store to a memory address. We inspect the
instruction’s operands and determine which writes to memory extracting its size
in bytes for the accounting.

Data Structuring Once we determined the size of the write, we update our
collected usage information.

These are organized by process identifier, with each entry further broken down
into known threads and their identifiers. We increment the number of writes
recorded with each sample and added the size to the accumulated total for the
current second.

After each second, a thread that was initialized on startup creates a new bucket
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for the upcoming second’s usage information. The previous second’s usage infor-
mation is then printed afterward and erased from memory.

Optionally, our tool can also be compiled to track the mnemonic of the instruc-
tion that caused the memory access. We deemed it necessary to collect the usage
details by the process and broken down by thread. Different design patterns, such
as applications designed to have separate I/O threads, may otherwise negatively
impact their overall performance needlessly.

Caching Both the sampler and accounting module require introspection into
other processes’ memory mappings and potentially the contents of their loaded
binaries. Thus, we implemented a global memory mapping cache that expires en-
tries if a process has not been seen for the last 60 seconds. This cache consists of
multiple layers, first only loading and parsing requested processes /proc/{pid}/maps
file [21], which contains a process’s current mapped memory regions and addi-
tional information, such as their access rights and origin for the process with the
process identifier matching pid. The origin, which is often a path in the file sys-
tem, is later used to determine if a memory access went to NVMM. It can further
be used to load and cache executables of the observed process to reconstruct the
instruction at the acquired instruction pointers by the accounting module, improv-
ing the overall performance.

Moreover, we also keep a cached mapping of all instantiated mounts at /proc/-
mounts and their mountpoints.

5.3.2 Core Specialization

Our procaffinity module supported associating threads to groups and enforced
these groups to only run on selected CPU cores. It requires the operating pro-
cess to possess the CAP_SYS_NICE capability. [16]

The procaffinity module allowed the creation of groups, represented by inte-
gers, that define specific parameters for their member threads. Each group had its
own set of processor cores, an expiry time for associated threads, and a stickiness
property. Internally, the CPU sets were stored as a cpu_set_t data structure [17],
which has a significant number of valuable macros surrounding it and can later
easily be used to update our threads. On a group’s initialization, one defined an
expiry time for joining threads, which could be used to automatically unassociated
threads that have not been seen for some time. The group 0 was a special default
group that threads got associated with when they expire their current, which they
could, however, also expire from and then be unassigned from any groups. A pos-
sible reason may be that a thread exited. Further, the above-mentioned groupwide
stickiness was used to determine if a thread is allowed to be unassigned from a
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group before its expiry.
To associate a thread to a group, the operational process invokes procaffinity

and passes the thread identifier and its expected group association. This associa-
tion is expected to happen frequently to reconfirm that a thread is still associated
with its current group, refreshing the expiry. It is checked if the thread was already
assigned to any other group on the association. Should that be the case, it would
leave the old group and join the now expected one, setting the threads’ expiry to
the default of the newly assigned group. However, this was only possible if the last
group was not marked as sticky, in which case the thread association would not be
updated. On the other hand, if the thread is already part of the group, the expiry
is updated as if the thread had just joined. Further, if ultimately the thread joins
or switches groups, its thread affinity is updated by calling sched_setaffinity [23],
passing the CPU_SET associated with the new group.

For simplicity, the expiry is checked for every thread associated with any
group on any update or assignment attempt. This was a reasonable decision, as
they happened very frequently. We used procaffinity to update a threads’ group
association for each sample we found, regardless if it was an access to NVMM.

Configuration For our use of core specialization, we used procaffinity with two
groups. The first group, which was also the default group, assigned each process
a general CPU set and kept processes assigned for up to 60 seconds. The benefit
of this group is that it allowed us to be on the lookout for threads scheduled on
ony core due to our sampler, then associate them all with our potentially more
restrictive set of CPU cores. For instance, we used this mechanism to ensure the
load of the entire system could be concentrated on cores from one NUMA node
to provide our evaluation will not be impacted. If a thread exited or just has not
been seen for 60 seconds, it defaulted to any core available to the system again.

Our second group was assigned to any thread that performed an NVMM store.
The group was sticky and had an expiry of 200ms. These cores were a subset of
the general CPU set of group 0. Once a thread was not detected to use NVMM up
to the expiry, it was released to use a more extensive set of cores again.

5.4 Evaluation
In this section, we first introduce you to our testing methodology in our evaluation
of the PEBS-based usage monitoring and core specialization tool. Next, we will
discuss how accurate our solution is in terms of reconstructable throughput and its
consistency. Finally, we will focus on the core specialization and how our minor
implementation can affect the runtime of adjacent software and its impact on the
observed NVMM bandwidth.
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5.4.1 Testing Methodology

We want to ensure NUMA effects will not influence our results, similar to our
evaluation of the performance counter-based approach. Thus, we deliberately re-
stricted our benchmark to cores sharing the same NUMA node as the single, non-
interleaved Optane DC DIMM we used. All benchmarks below effectively had 16
CPU cores available.

Further, they were run with the Best Practices by Yang et al. [43] in mind. We
configured the pmm-writer to use non-temporal stores at 256-byte access size to
achieve the highest possible bandwidth, which was typically at about 1.9 GB/s.
While these kinds of stores were indetectable for the counter-based approach, we
will see them be easily so using the PEBS-based method.

Significant variables during the below benchmarks are the sampling period,
which describes how often the event had to occur for us to get one sample where
we opted to test at 2503, 5107 and 9973. Moreover, the number of writer threads
and, in particular, for core specialization, the number of cores in our NVMM group
out of 16 cores in total we have available for one NUMA node are of higher
importance.

Again, similar to the evaluation of the performance counters, all benchmarks
were run five times, and their results were averaged to have a reliable data basis.
Further, we note that all the below benchmarks were run using the same user-space
application designed to associate the NVMM usage to processes while also man-
aging a threads association to the group of nvmm-utilizing and other applications
based on our core specialization approach.

5.4.2 Store Detection

We start by determining how well our sampler is able to capture the stores from
processes writing to NVMM. A high detection rate is preferred, as with it, a better
estimation of the actual NVMM usage per process is possible.

The benchmark starts our PEBS-based usage monitor, listening for activity on
all cores. Then, we run from 1 to 16 pmm-writer in parallel, each configured to
write precisely 32 GB onto NVMM. Once all those writers finish, we stop the
usage monitoring.

In terms of accuracy, we considered two domains to be of significant value to
dive deeper into. First, we determine how well our implementation can reconstruct
the throughput of the writers. Then, we further discuss the consistency of those
results.
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Reconstucting Usage

Similar to Section 4.3.2, we tried to determine how much of the written data we
were able to reconstruct in terms of usage. As the PEBS-based approach allowed
us to know the access size s for each individual access, we know the observed
usage Uo =

∑
isi for each thread. We previously defined a formula for the ratio

of reconstructed usage ur, which we are now able to simplify to:

ReconstructedUsageRatiour =
ObservedUsageUo

TotalUsageUt

Figure 5.1: We can see the amount of accesses detected at different numbers of
parallel NVMM writer threads for different sample periods normalized by the
number of threads. The sample period has a significant effect.

Figure shows the averaged number of stores detected at different amounts of
NVMM writer threads operating in parallel divided by said thread count to nor-
malize the graph. Further, we can see how the different sampling periods influ-
enced these results.

As is apparent, the detection rates show slight variation for different numbers
of NVMM threads, except the sampling period 5107, which starts off near zero
and is increasing as the writer thread count grows. The average detected samples
at 2503 were about 304596 whereas we detected 44758 at a rate of 9973. This
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informs us that there is no bottleneck due to the higher number of threads, as the
detected writes would otherwise decrease for increasing thread counts.

While focused on the number of stores detected, we also verified the recon-
struction of the instructions to work reliably. We used AVX-512 vector extensions
for our stores of 256-bytes; these were effectively four stores each of 64-bytes.
For all our run benchmarks, the total throughput observed was an exact multiple
by 64 of the number of stores.

Interpolating by sample period By interpolating the detected stores by the
sample periods, we estimate the absolute number of stores. However, this value
has to be seen with caution. First and foremost, by interpolating, we assume the
thread to be performing the same task for an extended period, which may not re-
flect real-world scenarios. As we know, each thread wrote exactly 32 GB and did
not perform other activities; we can proceed in the case of our benchmark.

Figure 5.2: The number of accesses found in Figure 5.4.2 was multipled by the
sampling rate. We show this information for different thread numbers and sam-
pling rates. The results show statistically to be expected interpolated data usage.
The red line represents to target of 32 GB.

Figure 5.2 shows us the interpolated data usage we are able to infer statistically
as the number of detections from Figure 5.4.2 multiplying by their sampling rate.
The visualized red line shows our actual data usage of each thread at 32 GB.
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We find that at the sampling rate of 2503 we consistently overestimated the
data usage, on average overestimating by 42%. In the case of the sampling period
being 9973, we on average underestimated by 16.85% but generally were closer
to the expected result. Finally, as one expects the interpolated at the sampling rate
of 5107 is still unstable.

Consistency

We wanted to understand if our sampling was consistent and equally detected
NVMM stores of all threads. This is a fundamental requirement for meaningful
results, as a more significant deviation from the mean could indicate an unfair
preference of certain threads during the sample acquisition.

We inspected individual runs and found no such significant deviation in any
benchmark performed.

5.4.3 Core Specialization
As the first application for our PEBS-based store detection, we implemented a
core specialization for NVMM writing threads.

To determine how this approach performs, we constructed and defined an un-
managed scenario, in which the benchmark and NVMM writer threads are run
solely managed by the kernel’s scheduler. Further, we define a managed scenario
in which, before the benchmarks start, our PEBS usage monitor is started, which
integrated our core specialization solution. Thus, threads that are detected to store
to NVMM will be assigned to an NVMM group with only a subset of CPU cores
available to them.

Should we be benchmarking a managed scenario, we first started with the
PEBS usage monitor to run in the background. Then, regardless of the scenario,
we first start a set of pmm-writer processes followed by a CPU benchmarking soft-
ware sysbench, [36], running a multi-threaded prime benchmark with 16 threads
up to the number 10000000. Once the benchmark is completed, we stop all pmm-
writers and the monitor, if it is was running.

In this section, we will first evaluate the runtime impact of our interference
with the default scheduling of the operating system. Next, we will look at the
resulting changes to the total bandwidth towards the Optane NVDIMM.

Impact on Benchmark Runtime

We set out to see how CPU-bound processes are affected by an increasing num-
ber of NVMM writing threads. To quantify the overhead, we summed the total
running time of all our unmanaged sysbench’s threads.
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Figure 5.3 plots the summed runtimes of sysbench’s threads, comparing the
unmanaged to the managed scenario. Before the point of NVMM writing threads
saturating the number of CPU cores available is reached, the runtime of sysbench
is slowly but steadily rising, ranging from 5% to 30% for every doubling. Once
16 NVMM storing threads were active, saturating the number of available CPU
cores, we find the unmanaged scenario’s total runtime to increase by about 50%
for every doubling of NVMM writer threads.

Figure 5.3: We compare the total duration of the sysbench [36] benchmark’s
threads runtimes aggregated for an unmanaged workload toward a managed on.
The graph shows the results at different numbers of NVMM writer threads. We
find our core specialization to keep the runtime of the benchmark consistent.

In contrast, the summed runtimes are barely rising in the managed scenario.
The total increase compared the quickest with only one NVMM writer with sys-
bench competing against 32 NVMM writers is just 27,12%. At the point of writer
saturation, we find the managed solution to allow sysbench to perform better by
31,01%.

To conclude this, we find it unsurprising that the runtime is only slowly in-
creasing for the managed scenario. As all NVMM writing threads are consoli-
dated by the core specialization on three cores. The remaining are freely available
to sysbench. Likewise, a non-neglectable increase in runtimes is expected for the
unmanaged case due to the increasing competition on shared CPU cores.
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Impact on Optane Throughput

Parallel accesses to Optane DC are known to result in diminishing bandwidth after
peaking at up to four threads. [43] Constraining a multitude of NVMM threads to
a limited number of cores could impact the achievable bandwidth by reducing the
degree of parallelism, thus effectively increasing the achievable bandwidth.

Figure 5.4 shows the average throughput observed during the benchmarks for
unmanaged and managed scenarios in comparison.

Figure 5.4: We show the aggreagted throughput per second of all NVMM writer
threads whilst the sysbench [36] benchmark was running for an unmanaged to a
managed workload.

While we can observe the typical decrease in bandwidth in our unmanaged
scenario, the peak can be observed at five threads, which is slightly later than
previous works found [43]. This may be due to the high system load due to the
CPU-bound sysbench running parallel. Further, we find our first more consider-
able drop in bandwidth at the point of NVMM threads saturating the available
CPU cores, which continues decreasing at about 5% for every doubling of the
NVMM threads afterward in our observation.

As for managed, the peak is found at three threads, showing a neglectingly
higher bandwidth than we saw as the peak for unmanaged.

Directly comparing unmanaged and managed, we observed bandwidths are
close with the highest discrepancy at one thread by 4.2%; however, for both cases,
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the bandwidth has still not peaked yet. Aside from this, unmanaged is up to 3.4%
faster up to 8 NVMM threads, from which point managed takes the lead up to 32
NVMM threads by up to 5.36%. We see this as a confirmation that decreasing the
degree of parallelism using core specialization is a potentially valuable tool.

Sample Processing Overhead

Finally, we take a closer look at the overhead caused by the sampler, including the
accounting, as we see that retrieving the access size is vital information for every
sample. While as long as the system has enough computing resources available,
one could argue that this procedure’s impact is negligible, it is no longer the case
under load, as during our benchmarks.

Figure 5.5: We show the overhead caused by the sampler and accounting module
during our benchmark at variying NVMM thread counts and sample rates. The
sampling rate has little effect compared to the NVMM threads.

In Figure 5.5 we see the overhead of the procedure by the total wall-clock time
of the benchmark. The graph breaks this information down by NVMM thread
count and sampling size. We can observe the thread count has a noticeable impact
on the overhead, which is expected as the overall workload increases.

As for the sampling period, we again discover it to have a more minor impact
than one may anticipate. While we can see a minor reduction with increasing
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sample periods for the same thread counts, the impact is nowhere near a halving
of the incurred overhead.

Last but not least, we notice a significant standard deviation in our underlying
data basis for these measurements, increasing with rising NVMM thread counts.

5.5 Conclusion

We have seen our implemented NVMM usage monitor work reasonably well,
providing consistent results detecting stores to Optane DC NVMM. It became
however apparent that the selection of the sampling period is a key point and
should be further investigated.

As for the grouping of NVMM cores onto a subset of available cores, we have
also seen good results. Adopting NVMM usage for process scheduling can reduce
the impact on adjacent CPU-bound processes by up to 31% for a matching number
of NVMM threads and available CPU cores.

Moreover, the negative impact on the total bandwidth of NVMM is small,
at most 4.2%, and could be viewed as evened out by an in comparison higher
bandwidth at larger thread counts of up to 5%. The observed shift may cause core
specialization to be the start of a software-based solution to improve the possible
parallelism of NVDIMMs in the future.

Finally, regarding our implementation, we believe a kernel-based implementa-
tion may be more rewarding, in particular, to address shortcomings we are unable
to solve from the user space, such as the detection of read and write system calls
to NVMM-based storage. We stand by this decision for now as NVMM-based
applications will likely shift to mapping-based persistent storage compared to the
continued use of system calls for the mentioned performance improvements pos-
sible with direct access in Section 2.1.1.

5.5.1 Limitations and Future Works

Concerning our implementation, there are a few minor things future works may
improve on. First, we assume a mount point to be NVMM only if dax is provided
as a mounting option. While this will likely be fulfilled, it is not a necessity and
could be implemented more reliable by checking the device path and correlat-
ing with ndctl list [38]. Further, we retrieve mounts from /proc/mounts, however,
Linux introduced per-process mounts some time ago, which could result in our im-
plementation being unable to detect certain accesses to NVMM. [21] Also mount
details are not currently updated during the runtime of our NVMM usage monitor,
which could also be addressed by future works.
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A more significant limitation is missing support for just-in-time compiled
code, which should be introduced by future works to support a wider range of
real-world applications.

Moreover, future works may port our work to the kernel space which could
improve the accuracy and overhead caused by our approach. As already discussed,
a kernel-based implementation could be able to detect reads and writes to NVMM
performed via system calls, and precisely account for those. Further, similar to
our recommendation with the counter-based approach, we would like to see the
collection of samples stopped if a thread is scheduled that has no NVMM mapped
into its address space.

It would also be valuable to have a similar PEBS-based setup for the detec-
tion of reads from NVMM and how the observation of both directions could be
combined.

Finally, as for our evaluation, we would like to see future works take a closer
look at the use of different sampling rates, possibly evaluating with real-world
applications.
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Chapter 6

Discussion

We contributed a usage monitor with reliable detection of stores to NVMM. The
PEBS-based usage monitor provides us with samples we can use to reconstruct
the executed instruction to infer its access size. Based on this, we can statistically
interpolate the NVMM usage of each process. Related works, such as NThread
[40], would benefit from this as it allows to estimate a process’s usage even for
memory-mapped NVMM regions.

The integrated core specialization assigns NVMM threads to a subset of the
available CPU cores, resulting in a reduction of parallel threads writing to the
NVDIMMs. We observed an increase in the overall throughput at higher thread
counts due to this adjustment and see operating systems potentially utilizing such
mechanisms in the future. We believe it eases the design of NVMM-utilizing
applications by reducing the need to limit stores to only a few threads, as works
like SPMFS [44] needed to adopt to achieve high bandwidth.

As for future generations of Optane DC, we would like to see Intel work on
supporting a higher number of threads accessing NVMM in parallel. One possible
short-term solution may be to increase the XPBuffer, as this would reduce the
contention observed by related works [43].

However, in the longer term, we would like to see performance monitoring
events that are specifically designed to introspect the utilization of NVMM by
tasks running on the CPU. Ideally, we would like a PME that provides the to-
tal read/write utilization since it has been configured. Alternatively, it would be
valuable to have PMEs available in counting mode to determine how many ac-
cesses occurred. We would prefer the events to be further configurable to observe
different access sizes individually to reconstruct the throughput.

As for sampling-based usage estimation, instead of relying on a PME that
tracks all accesses to memory, we would like to see one in particular for accesses
to NVMM. We believe this would significantly reduce the overhead of our current
implementation while increasing the accuracy of throughput estimations.
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Chapter 7

Conclusion

We have established that available Optane DC’s performance is highly impacted
by the access pattern, as small random accesses cause significant write amplifi-
cation. This write amplification combined with limited XPBuffer size reinforces
a low degree of parallelism each NVDIMM is capable of without reducing the
overall performance. Solving this issue requires the operating system to become
NVMM usage aware, which is difficult as applications prefer using direct access
to reduce the overhead incurred.

We evaluate the use of performance counters to detect an application’s access
to NVMM, both in counting and sampling configurations. After finding a set of
viable performance counter events that can be used to count stores to NVMM, we
evaluated these further. We found counting works out reasonably well for tem-
poral stores, it is however difficult to reconstruct non-temporal stores, becoming
almost impossible for non-temporal stores of a size of 64-bytes and multiples.
Further, we found it likely to be difficult to reconstruct the size of the occurred
accesses in a practical application.

In contrast, our contributed sampling-based approach built on top of PEBS is
able to detect these stores reliably. We use it to acquire samples for stores to mem-
ory, then filter out all stores that do not target memory residing on NVMM. Using
the instruction pointer collected with each sample, we are able to reconstruct the
executed instruction and determine an accurate size for each access, which in turn
was used to build a framework for accounting per-process NVMM usage.

Moreover, we used the sampler to implement a user-space prototype of a core
specialization, grouping threads storing onto NVMM. Those were then only pro-
vided a subset of the available CPU cores for their execution. We found this man-
agement to result in a significant improvement in throughput for other compute-
intensive tasks residing on the system. Further, reducing the set of utilizable CPU
cores for threads writing to NVMM resulted in an improved throughput to NVMM
at higher thread counts than in an unmanaged case.

47



48 CHAPTER 7. CONCLUSION

Finally, we discussed how related works could already benefit from imple-
mentations similar to ours and steps Intel could take in the future to help improve
throughput for highly parallel workloads and estimations for per-process account-
ing of NVMM usage.
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