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Abstract

OpenZFS is a storage system that combines volume management and �lesystem ser-

vices. The ZFS Intent Log (ZIL) is ZFS’s mechanism for supporting synchronous IO

semantics. To improve ZIL performance, ZFS allows for the con�guration of a sepa-

rate log device (SLOG) that it uses exclusively for ZIL allocations.

Persistent memory (PMEM) is an emerging technology that provides low-latency mem-

ory-mapped byte-addressable persistent storage. The Linux kernel’s /dev/pmem pseudo

block device allows existing block device consumers to bene�t from PMEM’s high

throughput and low latency without modi�cation.

To explore the use of PMEM as a storage medium for the ZIL, we con�gure a ZFS stor-

age pool that uses /dev/pmem as a SLOG. We �nd that the current ZIL implementation

(ZIL-LWB) exhibits signi�cantly higher latency and sub-par throughput compared to

the raw PMEM hardware in a 4k synchronous random write workload. An analysis

of wall clock time distribution among the ZFS components involved in this type of IO

operation reveals that block-device-oriented abstractions and data structures account

for the vast majority of the overall latency.

Motivated by this observation, we propose a new type of ZIL called ZIL-PMEM that ex-

clusively targets persistent memory to take advantage of its remarkable performance

characteristics. We refactor ZFS to support di�erent ZIL kinds at runtime, enabling

coexistence of ZIL-LWB and ZIL-PMEM. ZIL-PMEM maintains the same crash con-

sistency guarantees towards userspace as ZIL-LWB and uses the same checksum to

ensure data integrity. We validate our core data structure through extensive unit test-

ing as well as the upstream test suite and stress testing tool. Our implementation

shows high speedups over ZIL-LWB, with a maximum of 8x in a single-threaded 4k

synchronous random write workload on the same storage hardware.
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Chapter 1

Introduction

The task of a �lesystem is to provide non-volatile storage to applications in the form

of the �le abstraction. Applications operate on �les through system calls such as

write() which generally do not provide any durability guarantees. Instead, these sys-

tem calls only modify DRAM bu�ers, such as pages in the Linux page cache, and re-

turn to userspace. Writeback of these bu�ers to persistent storage is deferred to an

implementation-de�ned point in the future.

However, many applications have stronger durability requirements. For example, an

accounting system that processes a purchase needs to ensure that the updated account

balance is persisted before clearing the transaction. Otherwise, the on-disk state might

remain the pre-purchase balance. In the event of a crash and subsequent reboot, the

accounting system would then load this outdated state from disk, enabling double-

spending by the account holder. The solution is to request synchronous IO semantics

from the �lesystem through APIs such as fsync() which “assure that after a system

crash [...] all data up to the time of the fsync() call is recorded on the disk.” [52].

The Zettabyte File System (ZFS) combines volume management and �lesystem ser-

vices. It pools many block devices into a storage pool (zpool) which can hold thousands

of sparsely allocated �lesystems. ZFS uses copy-on-write techniques to ensure an al-

ways consistent on-disk state that moves forward atomically in so-called transaction
groups (txg). Transaction groups are “synced out” in the background by the txg sync
thread which is triggered periodically (default: 5s) or whenever the amount of dirty

data in DRAM exceeds a threshold.

Synchronous IO semantics cannot be reasonably achieved by triggering txg syncs for

every synchronous operation. The reason is that ZFS’s main on-disk structure, a sin-

gle large merkle tree, is too expensive to update at the typical frequency at which

userspace issues synchronous IO. Instead, ZFS maintains the ZFS Intent Log (ZIL)
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6 CHAPTER 1. INTRODUCTION

which is a per-�lesystem logical write-ahead log that can be written independently of

txg sync. The ZIL’s log records describe the logical changes that need to be applied (“re-

played”) to the �lesystem after a system crash to recover the state that was reported

as committed to userspace but not yet persisted by txg sync.

The on-disk representation of the ZIL is a chain of log-write blocks (LWBs), each of

which contains many log records. The lower bound for the latency of a synchronous

IO operation is the latency required for writing the LWBs that contain the operation’s

log records. By default, ZFS allocates LWBs from the zpool’s primary storage devices.

To address the case where these devices’ latency is insu�cient, ZFS provides the ability

to add a separate log device (SLOG) to a zpool which is reserved and preferred for LWB

allocation. A typical con�guration is to use a single or mirrored NVMe drive(s) as a

SLOG in an HDD-based zpool. Note that the space requirements for the ZIL (and thus

SLOGs) are low because LWBs are garbage-collected as soon as txg sync has written

out the dirty state of all log records that an LWB contains.

Persistent memory (PMEM) is an emerging technology that provides low-latency

memory-mapped byte-addressable persistent storage. The Linux kernel can expose

PMEM as a pseudo block device (/dev/pmem) whose sectors map directly to PMEM

pages. Unmodi�ed block device consumers can use it as a fast block device, albeit

with the caveat of lacking sector atomicity guarantees. Block device consumers that

are aware of PMEM can get direct-access (DAX) to /dev/pmem’s pages and bypass the

block IO stack completely.

The motivation for this thesis is to accelerate synchronous IO in ZFS by using PMEM

as a SLOG device. A single DIMM of the current Intel Optane DC PMEM product line

can sustain 550k random 4k write IOPS from a single CPU core, corresponding to a

write latency of 1.81 us. However, when con�guring /dev/pmem as a SLOG in ZFS,

a single thread only achieves 10k IOPS (100 us/IOP) and only scales up to 100k IOPS

at 7 threads (70 us/IOP per thread). This discrepancy prompted us to perform a more

detailed analysis of ZFS’s severe latency overhead in this benchmark. We �nd that

approximately 80% of wall clock time for the average synchronous write IOP is spent

in the ZIL code, and we conclude that both the LWB structure and the mechanism to

persist it (ZIO pipeline) are un�t for PMEM-level performance.

Based on our observations, we propose ZIL-PMEM, a new ZIL design that exclusively

targets PMEM. It coexists with the existing ZIL, which we refer to as ZIL-LWB in the

remainder of this document. With ZIL-PMEM, a single thread achieves 128.5k random

4k synchronous write IOPS and scales up to 400k IOPS at four threads. Our imple-

mentation is extensively unit-tested and passes the ZFS test suite’s SLOG integration

tests.
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The remainder of this thesis is structured as follows: in Chapter 2 we review prior

work in the �eld of �lesystems that use persistent memory, and provide technical

background knowledge on PMEM and ZFS. Chapter 3 describes our analysis of ZIL-

LWB’s sub-par performance on a /dev/pmem SLOG. Our solution, ZIL-PMEM, is then

presented in Chapters 4, 5, and 6. Chapter 4 de�nes the project goals and provides a

high-level overview of the design. Our main contribution, the PRB/HDL the data struc-

ture, is then presented in detail in Chapter 5. The integration of PRB/HDL into ZFS is

then described in Chapter 6. We evaluate our implementation in Chapter 7 and �nish

with a conclusion of our work in Chapter 8.
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Chapter 2

Literature Review & Technical
Background

In this chapter, we present prior work in the �eld of persistent memory and its ap-

plication in various storage systems developed in research and industry. The last two

sections on persistent memory and ZFS provide the technical background knowledge

that is necessary to understand the performance analysis of ZIL-LWB and the design

of ZIL-PMEM in the subsequent chapters.

2.1 Literature Review
We have surveyed publications in the area of persistent memory storage systems,

�lesystem guarantees & crash consistency models, checkers for the PMEM program-

ming model, and general methods to determine �lesystem robustness in the presence

of hardware failures.

2.1.1 PMEM Filesystems
In this subsection, we present research �lesystems that were explicitly designed for

persistent memory. ZIL-PMEM integrates into ZFS, a production �lesystem that was

not designed for persistent memory. Hence we focus on techniques for crash consis-

tency and data integrity that might be applicable to our work.

In-Kernel PMEM Filesystems

The initial wave of publications around the use of PMEM in �lesystems produced a set

of systems that were implemented completely in the kernel.

9



10 CHAPTER 2. LITERATURE REVIEW & TECHNICAL BACKGROUND

BPFS [7] is one of the earliest �lesystems expressly designed for PMEM. The �lesys-

tem layout in PMEM is inspired by WAFL ([18]) and resembles a tree of multi-level

indirect pages that eventually point to data pages. BPFS’s key contribution is the use

of �ne-grained atomic updates in lieu of journaling for crash consistency. For example,

updates to small metadata such as mtime can be made using atomic operations. For

larger modi�cations, the authors introduce short-circuit shadow-paging, a technique

where updates are prepared in a copy of the page. The updated page is then made

visible through an update of the pointer in its parent indirect page. The di�erence to

regular copy-on-write is that, as soon as the update to an indirect page can be done

through an atomic in-place operation, the atomic operation is used. Updates thereby

do not necessarily propagate up to the root of the tree.

PMFS [12] is another research �lesystem that targets persistent memory. The authors

make frequent comparisons to BPFS. The main di�erentiator from BPFS regarding con-

sistency is PMFS’s use of undo-logging for metadata updates and copy-on-write for

data consistency in addition to hardware-provided atomic in-place updates. The evalu-

ation shows that their approach for metadata has between 24x and 38x lower overhead

compared to BPFS (unit: number of bytes copied). PMFS also introduces an e�cient

protection mechanism against accidental scribbles. Scribbles are bugs in the system

that accidentally overwrite PMEM, e.g., due to incorrect address calculation or out-

of-bounds access in the kernel. By default, PMFS maps all PMEM read-only, thereby

preventing accidental corruption of PMEM from code outside of PMFS. When PMFS

needs to modify PMEM, it temporarily disables interrupts and clears the processor’s

CR0.WP, thereby allowing writes to read-only pages in kernel mode. [12, 8]

NOVA [56] is the most mature research PMEM �lesystem. NOVA uses per-inode logs

for operations scoped to a single inode (e.g. write syscalls) and per-CPU journals for

operations that a�ect multiple inodes. The intended result is high scalability with

regard to core count. The per-inode log data structure is a linked list with a head

and tail pointer in the inode. NOVA leverages 8-byte atomic operations to update

these pointers after it has written log entries. While not explicitly called so by the

authors, it is our impression that the log is a logical redo log except for writes, which

— judging from the text — are always logged at page granularity. The authors explain

the recovery procedure and measure its performance but do not address correctness

in the evaluation.

NOVA-Fortis [57] is a version of NOVA that introduces snapshots and hardening

against data corruption. Whereas snapshots are not relevant for this thesis because ZFS
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already provides this feature, the data corruption countermeasures are representative

of the state of the art:

• Handling of machine check exceptions (MCE) in case the hardware detects bit

errors. This is done by using the memcpy_mcsafe API for all PMEM access. (We

explain memcpy_mcsafe in Section 2.2.2.)

• Detection of metadata corruption through CRC32 checksums.

• Redundancy through metadata replication. For metadata recovery, NOVA-Fortis

compares checksums of the primary and replica and restores the variant with

the matching checksum.

• Protection against localized unrecoverable data loss through RAID4-like parity.

This feature only works while the �le is not DAX-mapped.

• Protection against Scribbles using CR0.WP as described in the paragraph on PMFS.

The authors use a custom fault injection tool to corrupt data structures in a targeted

manner and test NOVA Fortis’s recovery capabilities.

Hybrid PMEM �lesystems

A recurring pattern in PMEM �lesystem design is to split responsibilities between ker-

nel and userspace components in order to eliminate system call overhead.

Aerie [53] is a userspace �lesystem based on the premise that “SCM [Storage Class

Memory] no longer requires the OS kernel [...]. Applications link to a �le-system li-

brary that provides local access to data and communicates with a [user-space] service

for coordination. The OS kernel provides only coarse-grained allocation and protec-

tion, and most functionality is distributed to client programs. For read-only work-

loads, applications can access data and metadata through memory with calls to the

�le-system service only for coarse-grained synchronization. When writing data, ap-

plications can modify data directly but must contact the �le-system service to update

metadata.” The system uses a redo log maintained in each client program which is

shipped to the �lesystem service periodically or when exclusive access to a �le system

object is relinquished. It is our understanding that only log entries shipped to and val-

idated by the �lesystem service will be replayed. The authors state that log entries can

be lost if a client crashes before the log entries are shipped. The evaluation does not

address crash consistency or recovery at all.

Strata [23] is a cross-media �lesystem with both kernel and userspace components.

Since its distinguishing feature is the intelligent migration of data between di�erent

storage media, we discuss it in the Section 2.1.2 on cross-media storage systems.

SplitFS [22] is a research �lesystem that proposes a “split of responsibilities between

a user-space library �le system and an existing kernel PM �le system. The user-
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space library �le system handles data operations by intercepting POSIX calls, memory-

mapping the underlying �le, and serving the read and overwrites using processor loads

and stores. Metadata operations are handled by the kernel PM �le system (ext4 DAX)”.

SplitFS uses a redo log with idempotent entries that is written from userspace. As a

performance optimization, the authors use checksums and aligned start addresses to

�nd valid log entries instead of an explicit linked list with persistent pointers. The

SplitFS evaluation of correctness is limited to a comparison of user-observable �lesys-

tem state between SplitFS and ext4 in DAX mode. Recovery is evaluated only through

the lens of recovery time (performance), not correctness.

EvFS [60] is a “user-level POSIX �le system that directly manages NVM in user appli-

cations. EvFS minimizes the latency by building a user-level storage stack and intro-

ducing asynchronous processing of complex �le I/O with page cache and direct I/O.

[...] EvFS leads to a 700-ns latency for 64-byte non-blocking �le writes and reduces

the latency for 4-Kbyte blocking �le I/O by 20 us compared to a kernel �le system

[EXT4] with journaling disabled.“ In contrast to Aerie, EvFS does not require a coor-

dinating userspace service. Crash consistency and recovery is not addressed: “EvFS is

not a production-ready �le system because it neither provides all the POSIX APIs or

crash-safe properties”.

2.1.2 Cross-Media Systems
Cross-media storage systems combine the advantages of multiple storage devices from

di�erent levels of the storage hierarchy. Historically, these kinds of systems strive to

exploit hard disk for high capacity at low cost and more expensive �ash storage for low

latency random access IO. With persistent memory, a new class of storage has become

available whose role in cross-media systems is still to be determined. In the context of

this thesis, we �nd it most useful to compare the overall system architecture.

Strata [23] is a cross-media research �lesystem. “Closest to the application, Strata’s

user library synchronously logs process-private updates in NVM while reading from

shared, read-optimized, kernel-maintained data and metadata. [...] Client code uses

the POSIX API, but Strata’s synchronous updates obviate the need for any sync-related

system calls”. We classify Strata as a hybrid �lesystem in Section 2.1.1 because it con-

sists of both a userspace library and an in-kernel component. The log, written from

userspace, is an idempotent logical redo log. The kernel component then digests the

logs asynchronously and performs aggregation of the logged operations during diges-

tion. Aggregation permits the kernel component to issue “sequential, aligned writes”
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to the lower-tier storage devices such as SSDs or HDDs. ZFS with and without ZIL-

PMEM compares to Strata in the following ways:

• Both systems use a logical redo operation log instead of a block-level journaling

mechanism.

• Both systems perform asynchronous write-back and thereby reap similar bene-

�ts from it (parallel batch processing, optimized allocation).

• Strata’s kernel component digests the logs written from userspace in order to

write them back to other tiers. ZFS accumulates the write-back state in DRAM

and never reads the log except for recovery. (It is unclear to us how often Strata

digests the logs. ZFS performs write-back of dirty state after at most 5 seconds.)

• Strata seems to tune allocations for SSDs, e.g., allocating blocks in erasure block

size to prevent write ampli�cation. ZFS supports TRIM and supports variable

block sizes up to 16 MiB, but there are no automatic optimizations that speci�-

cally target write ampli�cation in SSDs.

• ZFS is in-kernel and requires no modi�cations to applications whereas Strata

requires linking to or LD_PRELOADing a userspace library, which, tangentially,

makes it incompatible with statically linked binaries.

Ziggurat [63] “Ziggurat exploits the bene�ts of NVMM [Non-Volatile Main Memory]

through intelligent data placement during �le writes and data migration. Ziggurat

includes two placement predictors that analyze the �le write sequences and predict

whether the incoming writes are both large and stable, and whether updates to the

�le are likely to be synchronous. Ziggurat then steers the incoming writes to the most

suitable tier based on the prediction: writes to synchronously-updated �les go to the

NVMM tier to minimize the synchronization overhead. Small, random writes also go

to the NVMM tier to fully avoid random writes to disk. The remaining large sequential

writes to asynchronously-updated �les go to disk”. The authors compare Ziggurat to

Strata as follows: ZFS with and without ZIL-PMEM compares to Ziggurat as follows:

• Ziggurat actively migrates data into PMEM based on access pattern. ZFS has no

provisions for data migration within the pool after block allocation. The ZFS

architecture such a feature is unlikely to be developed in the future (keyword:

blockpointer rewrite).

• Ziggurat sends writes directly to the suitable tier based on prediction of future

access patterns. If the access pattern is anticipated to be synchronous, Ziggurat

chooses the PMEM tier. The ZIL and ZIL-PMEM speci�cally only serve as a stop-

gap between txg sync points of the main pool. Data is always written twice —
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once to the log and once to the main pool —, and never read from the log except

during recovery.

• Both systems are fully in-kernel and require no modi�cations to userspace ap-

plications.

• Ziggurat builds on NOVA-Fortis and thus inherits the PMEM-speci�c data in-

tegrity and redundancy mechanisms provided for the PMEM storage tier. ZIL-

PMEM data integrity measures are currently limited to data and metadata check-

summing.

• The Ziggurat paper does not mention data integrity measures or redundancy

mechanisms for the block device layers beneath PMEM. Possibly, existing Linux

features such as Device Mapper could be used to compensate. In contrast, ZIL-

PMEM bene�ts from ZFS’s strong data integrity and redundancy mechanisms

once the logged data is written to the main pool by txg sync.

• Ziggurat was not evaluated on actual persistent memory. The authors used mem-

ory on another NUMA node to simulate lower latencies. We evaluate ZIL-PMEM

on commercially available PMEM hardware.

dm-writecache [55] is a new (2018) Linux Device Mapper target that implements a

write-back caching layer for block devices. Given an origin device and a cache de-

vice, it exposes a new virtual block device with the same capacity as the origin device.

Write-back is asynchronous and controlled by relative thresholds on the cache device

space utilization (low and high watermark, default to 45% and 50%). It starts when the

cache �ll ratio reaches the high watermark and stops once it reaches the low water-
mark. Reads are not handled by dm-writecache and instead served from the Linux

page cache. [55]

Dm-writecache is relevant to ZIL-PMEM because it is the closest functional analog

to the ZIL in the Linux Device Mapper stack. It has been designed with explicit sup-

port for persistent memory, and its authors have presented it as a means to accelerate

database workloads [51]. However, both the data �ow and data integrity guarantees

di�er substantially between the two systems. ZIL-PMEM persists writes as log entries

to an append-only log structure and does not perform coalescing or delta-encoding.

In contrast, dm-writecache is a block-level cache where an overwrite of the virtual

block results in an overwrite in the cache. Further, ZIL-PMEM protects data integrity

through checksums, whereas dm-writecache fully relies on hardware error correction

and detection, reported via memcpy_mcsafe(). After ZFS has synced out modi�cations

to the main pool, they bene�t from ZFS’s strong data redundancy mechanisms such

as raidz. In contrast, with dm-writecache, the origin block device driver must handle

data redundancy if desired, e.g., though another Device Mapper target such as dm-
raid. We compare the performance of the two implementations in Section 7.3.3 of our

evaluation.



2.1. LITERATURE REVIEW 15

2.1.3 Journaling & Write-Ahead Logs Adapted To PMEM
The following publications use persistent memory to accelerate �le system journals

and write-ahead logs.

Unioning of the Bu�er Cache and Journaling Layers with Non-volatile Mem-
ory [25] is an academic paper that presents a PMEM-aware bu�er cache design which

“subsumes the functionality of caching and [block-level] journaling”. From the bu�er

cache’s perspective, the on-disk blocks that make up a �lesystem journal are indistin-

guishable from non-journal �lesystem blocks. Thus, for a journal block A′ that logs

an update to a block A, both blocks A′ and A will sit in the bu�er cache. This waste

of space can be reduced with PMEM by the author’s proposal. Instead of journaling

on top of the block layer, they journal in the bu�er cache itself by a) placing the bu�er

cache in PMEM and b) introducing a new bu�er cache entry state “frozen” so that an

entry can be “clean”, “dirty” or “frozen”. When modifying a block A, the �lesystem no

longer makes a journal entry but instead modi�es the bu�er cache entry directly. If

the entry was “clean”, it is now “dirty”. If the entry was “frozen”, a copy is made and

the modi�cation goes to the copy, making it “dirty” as well. Committing a block to

the journal is a simple state transition from “dirty” to “frozen”. On a crash + restart,

“dirty” bu�er cache entries are discarded but “frozen” entries remain. We �nd the ap-

proach exceptionally interesting and can imagine an application of the idea to the ZFS

ARC. However, the system’s real-world performance is unclear (evaluation on DRAM).

Also, we see non-trivial software engineering and maintenance problems with the ap-

proach. Finally, the paper does not address hardware error handling or data corruption

concerns at all.

ext4 fast commits [15] is a feature released in Linux 5.10. “The fast-commit journal

[...] contains changes at the �le level, resulting in a more compact format. Information

that can be recreated is left out, as described in the patch posting: For example, if a

new extent is added to an inode, then corresponding updates to the inode table, the

block bitmap, the group descriptor and the superblock can be derived based on just the

extent information and the corresponding inode information. [...] Fast commits are an

addition to — not a replacement of — the standard commit path; the two work together.

If fast commits cannot handle an operation, the �lesystem falls back to the standard

commit path.” The cited article mentions ongoing work to use persistent memory for

ext4 fast commits. The approach is inspired by per-inode journaling as proposed by

Park and Shin in [37].

Disk-oriented database management systems often use write-ahead logs (WALs)

to allow a transaction to commit before the modi�ed pages are written back to stable

storage. However, appending to a shared WAL �le has historically been a latency and

scalability bottleneck, which lead to amortization techniques such as commit groups
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(aka group commit) and pre-committed transactions that batch the WAL entries of mul-

tiple committing transactions into a single physical WAL record.
1

With persistent

memory, the latency bottleneck no longer lies in the raw IO but rather the coordi-

nation overhead between multiple CPU cores and sockets, prompting new distributed

logging designs that avoid a central point of contention. [14, 38, 21] ZIL-LWB employs

group commit as well, although the terminology is di�erent. It batches log records is-

sued by independent threads for the same �lesystem into the currently “open” log-write
block (LWB). Once the open LWB is full or a timeout has passed, the open LWB is writ-

ten (issued) to disk (see Section 2.3.4 for details). In contrast, ZIL-PMEM commits log

records directly to PMEM and allows multiple cores to do so in parallel with minimal

global coordination. Our evaluation shows that the design scales well on single-socket

systems. NUMA and multi-socket systems, which are addressed in the cited publica-

tions from the database community, have been explicitly out of scope for this thesis

(Section 4.1.1).

2.1.4 Testing Filesystem Crash Consistency
In this section, we survey techniques to determine and verify crash consistency guar-

antees of �le systems. A formal and automatically veri�able model would have been

extremely helpful to ensure that ZIL-PMEM maintains the same crash consistency

guarantees as ZIL-LWB.

All File Systems Are Not Created Equal [40] contributes a survey of the atomicity

and ordering guarantees of several popular Linux �lesystems and provides a tool called

ALICE to validate or derive the guarantees required by applications. ZFS with and

without ZIL-PMEM could bene�t from this survey as well. The survey could be used

to characterize ZFS’s guarantees. ALICE could be used to determine whether ZFS’s

guarantees are su�cient for applications or whether ZFS’s guarantees exceed the re-

quirements of the majority of applications. However, since ZIL-PMEM shall maintain

the same guarantees as ZIL-LWB (Section 4.1.1), such �ndings would only be relevant

for future work.

Specifying and Checking File System Crash-Consistency Models [4] The authors of

this paper “present a formal framework for developing crash-consistency models, and

a toolkit, called FERRITE, for validating those models against real �le system imple-

mentations.” The system provides means to express expected �lesystem behavior as a

litmus test. A litmus test encodes expected behavior of a �lesystem though a series of

events (e.g., write to a �le) and a �nal predicate expressed as a satis�ability problem.

FERRITE can execute the litmus test against an axiomatic formal model of the �lesys-

1
According to [11] “the notion of group commits appears to be part of the unwritten database folk-

lore. The System-R implementors claim to have implemented it.”
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tem to ensure that the litmus test’s expectations hold if and only if the actual �lesystem

adheres to the formal model. Notably, the litmus test is executed symbolically and the

validation predicates are checked for satis�ability by an SMT solver; this is exhaustive

and not comparable to a unit or regression test. FERRITE can also execute litmus tests

against the actual �lesystem to test whether it adheres to the formal model. This test is

non-exhaustive. It is based on executing the litmus test “many times” where for each

execution, all disk commands emitted during execution are recorded. All permutations

and pre�xes of these traces that are allowed under the semantics of the disk protocol

are used to produce test disk images which are fed back to the �lesystem under test

for recovery. After recovery, the litmus test’s predicate must hold against the concrete

�lesystem state after recovery. If it does not hold, the given permutation of the trace

is proof that the �lesystem does not match its model (assuming the litmus test passes

execution against the model) or that the �lesystem’s assumptions about the disk do not

match the FERRITE disk model. FERRITE appears to be a useful tool to build a model

of ZFS’s undocumented crash consistency guarantees (ZFS has not been evaluated by

the authors). Such a model would be helpful to validate ZIL-PMEM’s goal to maintain

the same semantics as ZIL-PMEM. However, this would require a FERRITE disk model

for persistent memory.

Using Model Checking to Find Serious File System Errors [59] The authors pre-

sent an “implementation-level model checker” that removes the need to de�ne a formal

model for the �lesystem. Instead, the model is inferred by running the OS with the

�lesystem and recording both syscalls emitted by the application and disk operations

emitted by the �lesystem. These traces are subsequently fed to a process that produces

disk images created from reorderings of disk operations. The disk images are fed to

the �lesystem’s fsck tool. Disk images that can be ‘repaired’ by fsck are then fed to the

“recovery checker” which examines �lesystem state and compares it to the expected

state which (if we Understand section 4.2 of the paper correctly) is derived from the

recorded system calls. (The role of the “volatile �le system” in this process is still

unclear to us). The authors mention several shortcomings of their system:

• Lack of multi-threading support (this applies to FERRITE as well).

• The recovery checker produces a projection of the �lesystem state (e.g. only

names and content but no atime). Thus, the system can only check guarantees at

the projection level.

• Restrictive assumptions such as “Events should also have temporal independence

in that creating new �les and directories should not harm old �les and directo-

ries”.

The idea of using the �lesystem’s recovery tools (fsck) to infer its guarantees seems

useful to avoid the requirement of a formally speci�ed model. However, it is our under-

standing that the resulting model is rather a larger regression test than a truly derived
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exhaustive model. Such regression tests would be useful as a starting point for a formal

model, e.g., as initial litmus tests for use with FERRITE. We do not believe that we can

apply the presented approach to ZFS with and without ZIL-PMEM with reasonable

e�ort.

2.1.5 PMEM-speci�c Tools
A growing body of work introduces tools that check whether code that manipulates

persistent memory actually issues the architecturally required instructions for persis-

tence. However, most systems only target userspace code and are thus inapplicable

to ZIL-PMEM, which is implemented in the ZFS kernel module. Whereas ZIL-PMEM

can be compiled for userspace as part of the libzpool library, the large amount of con-

ditional compilation involved in the libzpool build process diminishes the signi�cance

of userspace tests. The following tools support kernel code and are applicable to ZIL-

PMEM in principle.

Yat: A Validation Framework For Persistent Memory Software [24] “Yat is a

hypervisor-based framework that supports testing of applications that use Persistent

Memory [...] By simulating the characteristics of PM, and integrating an application-

speci�c checker in the framework, Yat enables validation, correctness testing, and de-

bugging of PM software in the presence of power failures and crashes.” The authors

used Yat to validate PMFS (see Section 2.1.1). Yat’s hypervisor-based approach makes

it the ideal tool for evaluating ZIL-PMEM. To our great dissatisfaction, Yat has never

been published and remains an Intel-internal project.

PMTest: A Fast And Flexible Testing Framework For Persistent Memory Pro-
grams [27] PMTest is a validation tool that claims to be signi�cantly faster than the

userspace-only pmemcheck tool that is part of Intel’s Persistent Memory Development
Kit. The implementation is based on traces of PMEM operations which are generated

by (manually or automatically) instrumented application code. PMTest ships with two

built-in checkers that assert correct instruction ordering (e.g., missing store barriers)

and durability (e.g., missing cache �ushes). Higher-level checks must be implemented

by the programmer. PMTest works within kernel modules, but the implementation is

limited to a single thread. The processing of the operation trace happens in userspace.

2.1.6 Fault Injection
Error handling code paths are often notoriously di�cult to test but critical for correct-

ness. Fault injection is a common technique to simulate failures and thereby exercise

these code paths.
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Model-based FailureAnalysisOf Journaling File Systems [44]The authors present

an analysis of the failure modes caused by incorrect handling of disk write failures in

the journaling code in ext4, ReiserFS, and IBM JFS. These �lesystems each implement

one or more of the following journaling modes: data journaling, ordered journaling,

and writeback journaling. Any block write performed in one of these modes falls in

one of the following categories: “J represent journal writes, D represent data writes,

C represent journal commit writes, S represent journal super block writes, K repre-

sent checkpoint data writes [...]”. For each of the three journaling modes, the authors

present a state machine that describes all permitted sequences of block writes. The

state machine includes transitions to an error state if a block write fails. The system

works as follows. A kernel module tracks the �lesystems’ state as modelled by the

state machine. It intercepts block device writes from the �lesystem code and injects

write failures. If the �lesystem subsequently performs another block write that is not

permitted by the state machine, an implementation error has been found. The authors

distinguish several classes of failures with varying degrees of data loss. The method-

ology is very �lesystem speci�c which already shows in the adjustments required for

IBM JFS. ZFS’s on-disk format and speci�cally the ZIL’s structure is substantially dif-

ferent from the journaling modes presented in the paper (See Sections 2.3.2 and 2.3.4).

The system is thus not applicable to ZIL-PMEM.

ndctl-inject-error [32] is a subcommand of the ndctl administrative tool that “can

be used to ask the platform to simulate media errors in the NVDIMM address space

to aid debugging and development of features related to error handling." The kernel

driver forwards injection requests to the NVDIMM �rmware via ACPI. [1] The errors

then surface as machine check exceptions (MCE), which is the same mechanism used to

indicate detected but uncorrectable ECC errors for DRAM and PMEM. The function-

ality is useful for testing correct error handling in the �lesystem when reading PMEM.

ZIL-PMEM uses memcpy_mcsafe() to bu�er all PMEM reads in DRAM and thus is able

to handle MCEs gracefully. The handling is the same as for corrupted or missing log

entries, for which we have good unit test coverage (see Sections 5.5, 5.6 and 7.2.1).

ZFS Fault Injection [67]ZFS supports runtime IO error injection through APIs usable

by the ztest stress test and through the zinject tool used by the ZFS Test Suite. The ZFS

Test Suite makes use of the command for high-level features such as automatic hot

spares. The mechanism is implemented in the ZIO pipeline and supports scoping of

errors either to an entire device or to speci�c logical data objects in ZFS. Most of the

semantics are tied to ZFS’s zbookmark and blkptr structures which we do not use in ZIL-

PMEM. Since ZIL-PMEM’s existing unit tests already cover many scenarios for lost log

entries at a higher level, we do not see an immediate need for ZIO Fault Injection in

this thesis. However, a fault injection tool or “editor” utility with an understanding
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of ZIL-PMEM’s persistent data structures could be useful for end-to-end testing in the

future, in particular in comparison to ndctl-inject-error.

2.2 Persistent Memory
Persistent memory (PMEM), also known as storage-class memory (SCM) or non-volatile

main memory (NVMM), is a novel type of storage technology that is positioned be-

tween DRAM and �ash in the storage media hierarchy. It is memory-mapped, byte-

addressable, and accessible through regular load/store instructions, but, in contrast

to DRAM, provides durability and signi�cantly larger capacities. In this section, we

cover the technical background on persistent memory that is required to understand

the design and implementation of ZIL-PMEM. We recommend [48] and [50] for a more

comprehensive introduction.

Hardware: Intel Optane DC Persistent Memory

Intel Optane DC Persistent Memory is currently the only broadly available persistent

memory product on the market. The hardware form factor for Optane PMEM is that

of a regular (volatile) DIMM that is installed into the same type of slot on the mother-

board. Supercapacitor-backed non-volatile DIMMs (NVDIMM-N) have been available

for a longer period of time but are generally not comparable to PMEM. NVDIMM-N

devices use on-DIMM DRAM as the primary data store and only persist it to on-DIMM

�ash in case of power loss. In contrast, Optane PMEM uses the 3D-Xpoint non-volatile

memory technology as the primary data store, although a smaller amount of on-DIMM

DRAM is used for caching [58].

The performance of DRAM and NVDIMM-N di�ers signi�cantly from Optane PMEM.

We summarize the insights of Yang et al. published in [58]. For our purposes, the most

relevant �gures in the paper are “Figure 4: Bandwidth vs. thread count”, “Figure 5:

Bandwidth over access size”, and “Figure 7: Read latency”.

Latency The authors report 100 ns of random read latency (load instructions) for

NUMA-local DRAM and ca. 300 ns for Optane. For writes (store + cache �ush),

they report marginal di�erences in latency (both approximately 100 ns).

Maximum Bandwidth The maximum achievable bandwidth to a single Optane DIMM

is ca. 6.5 GiB/s for reads and 2 GiB/s for writes. Through interleaving of multiple

Optane DIMMs, almost linear scaling in maximum bandwidth with no severe

latency cost is possible. However, even with six interleaved Optane DIMMs, the

peak write bandwidth is ca. 13 GiB/s for PMEM and at least 30 GiB/s for DRAM

(6 DRAM DIMMs per socket on their system).
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Scalability PMEM and DRAM exhibit very di�erent scalability with regard to access

from multiple threads. Whereas DRAM bandwidth scales linearly before it even-

tually reaches a plateau, the Optane DIMM con�gurations’ bandwidth declines

after its peak. This is particularly noticeable for the single-DIMM con�guration

where write bandwidth decreases to less than 1 GiB/s after a peak of ca. 2 GiB/s.

Access Granularity Access size also severely a�ects the maximum achievable band-

width for both reads and writes. In particular, for a single Optane DIMM, access

sizes of 64 and 128 bytes only achieve ca. 30% and 50% of the maximum read and

write bandwidth.

The authors give the following recommendations for systems that build on top Intel

Optane hardware: “1. Avoid random accesses smaller than 256 B. 2. Use non-temporal

stores when possible for large transfers, and control cache evictions. 3. Limit the num-

ber of concurrent threads accessing an Optane DIMM. 4. Avoid NUMA accesses (espe-

cially read-modify-write sequences)” [58]. We could con�rm the authors’ observations

on our evaluation system and follow their recommendations for ZIL-PMEM.

2.2.1 PMEM Con�guration
The Optane DIMMs in a system must be provisioned from BIOS or the ipmctl util-

ity. Optane supports two major modes of operation: in Memory Mode, Optane acts

as volatile main memory that uses the DRAM modules as a cache. Memory Mode is

not relevant for this thesis. In App Direct mode, Optane appears as a physical memory

region (aka “interleave set”) that is separate from DRAM. Regions must also be pro-

visioned by the administrator. It is possible to make each Optane DIMM appear as

a separate region (AppDirectNotInterleaved), or to interleave multiple Optane DIMMs

into a single region. As suggested by the name, the addresses in an interleaved region

map to alternating DIMMs, thereby improving performance.

The space of a region can be further split up into so-called namespaces. To quote the

speci�cation:

“A namespace de�nes a contiguously-addressed range of Non-Volatile Mem-

ory similar to a SCSI Logical Unit (LUN) or an NVM Express namespace.

[...] [A] Persistent Memory namespace [...] provides a byte-addressable

range of Persistent Memory in the system physical address space.” [33]

We recommend [41] and [33] for more technical details.

In Linux, namespaces are managed using the ndctl utility. A namespace can have one

of the following types [42]:

devdax The namespace appears as a /dev/daxX.Y character device.

fsdax The namespace appears as a /dev/pmemX.Y block device.
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sector Not relevant for this thesis.

raw Not relevant for this thesis.

The intention behind the devdax device is to allow direct memory-mapping of the entire

namespace in userspace via mmap. Such a mapping’s page table entries point directly to

the respective PMEM pages. The primary use case is for this feature is virtualization,

e.g., using qemu [43]. We used devdax during development and in Section 3 where we

evaluate Optane’s performance in 4k random synchronous write workloads.

The fsdax namespace is intended for direct-access (DAX) capable Linux �lesystems.

The Linux kernel provides a set of APIs to check whether a block device represented

by struct block_device, is DAX-capable. For DAX-capable devices such as the fsdax
/dev/pmem nodes, the kernel-internal dax_direct_access API allows for translation of

a range of sectors (sector_t) to a virtual address range. A block device consumer that is

DAX-aware can thereby conditionally enable PMEM-speci�c optimizations. For exam-

ple, both Ext4 and XFS provide the dax mount option that enables bypass of the block

layer for writing data (albeit not yet for journaling / logging). Apart from such internal

optimizations, Ext4 and XFS in DAX mode support direct mapping of individual �les,

which is implemented by pre-allocating the mapped range’s data “blocks” (=pages) on

the underlying DAX device and establishing a userspace-accessible memory mapping.

However, for ZIL-PMEM, only the kernel-internal dax_direct_access API is relevant

since ZIL-PMEM does not aim to provide support for directly mapped �les.

2.2.2 PMEM Programming Model
Programming for persistent memory comes with a set of challenges that do not arise

when interfacing with block devices. The reason is that the CPU microarchitecture

e�ectively becomes a semi-transparent IO stack:

Smaller Atomicity Granularity The currently available PMEM-capable Intel plat-

forms only guarantee atomicity for 8 byte sized and aligned stores. Unaligned

writes or larger writes can be “torn” on power loss. In contrast, block device pro-

tocols such as SCSI or NVMe provide options for more coarse-grained atomicity

(e.g., at the sector level) which can potentially simplify the implementation of

some data structures. [48, 10]

Durability Stores to PMEM are not durable until they reach the system’s persistence
domain. For example, on our evaluation system, the persistence domain does

not include the processor caches. This necessitates the �ushing of CPU caches

after issuing stores, or to use non-temporal store instructions, to achieve durabil-

ity. However, newer Intel platforms include the caches in the persistence domain

(ADR vs. eADR, see [13]). The consequence is that software must detect the plat-
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form’s properties at runtime, and dispatch to the implementation that ensures

correctness and performance. [48]

No Transactionality Even if a platform only guarantees persistence if CPU caches

are �ushed, dirty cache lines may still be evicted and written back to PMEM at

any time during program execution. Which cache lines are a�ected by this, and

the order in which write-back happens, is a dynamic implementation-de�ned

property of the microarchitecture, e.g., the cache eviction policy. Any modi�-

cation that exceeds the atomicity guarantee must therefore be assumed to be

partially written (“torn”) in PMEM until after caches are �ushed. [50]

Ordering Due to out-of-order or speculative execution, the program order of instruc-

tions does not necessarily correspond to the granularity and order in which their

e�ects become observable from outside the thread that issues them. The degree

to which such e�ects can happen depends on the CPU architecture’s memory

ordering model. On x86_64, the ordering guarantees are generally strong but

some of the more e�cient cache �ushing instructions (clflushopt, clwb) as well

as non-temporal stores (e.g., vmovntdqa) are weakly ordered and could thus be

reordered or combined. To prevent such e�ects, it is necessary to insert a store

barrier instruction (sfence). For example, on our evaluation system, we must

use ntstore A + sfence + ntstore B to ensure that B is written to PMEM after

A. With regard to ZIL-PMEM, we cover this and the previous three aspects of

PMEM programming in Section 5.13.3 where we describe how ZIL-PMEM stores

log records in PMEM. [48, 6, 9]

Error Handling The error handling story for PMEM su�ers particularly from the

implicitness of the PMEM IO model.

On the read path, PMEM can detect data corruption through ECC. It commu-

nicates such problems and potentially other errors to the CPU, which surfaces

them to the operating system via machine check exceptions (MCE). (MCE is an

established mechanism to make the OS aware of errors detected by ECC DRAM.)

Linux handles MCEs for PMEM by putting the a�ected page on a “bad block list”.

If the a�ected range is a userspace mapping, Linux noti�es the application via

SIGBUS, giving application developers a chance to handle the error somewhat

gracefully. If the MCE is raised due to a kernel memory access, the default be-

havior is to trigger a kernel panic. However, the memcpy_mcsafe function provides

a more graceful way to handle MCEs when explicitly copying data from PMEM,

e.g., into a DRAM bu�er. Instead of panicking, the function returns an error if

an MCE occurs. [46, 39, 50, 57]

There is no mechanism to synchronously detect write errors since, even after

a cache �ush, the data may not have actually been written to the non-volatile
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media. It is only guaranteed to have reached the persistence domain which may

just be a volatile bu�er in the memory controller. There is no mechanism to wait

for persistence to the non-volatile media. Thus, if the asynchronous attempt to

persist that bu�er’s content fails, the software has already proceeded under the

assumption that the store succeeded. The recommended mitigations are all based

on the idea of reading all PMEM content in the background, either using a hard-

ware engine (“patrol scrub”) or an ACPI device-speci�c method (“address range

scrub”). The idea is that write errors will be discovered through the PMEM’s

ECC mechanisms and surfaced to the operating system. (See [46]; [50, Chapter

17])

A special condition that arises from the asynchronous nature of the PMEM write

path is the Unsafe Shutdown: “An unsafe or dirty shutdown on persistent mem-

ory means that the persistent memory device power-down sequence or platform

power-down sequence may have failed to write all in-�ight data from the sys-

tem’s persistence domain to persistent media. [...] A dirty shutdown is expected

to be a very rare event, but they can happen due to a variety of reasons such as

physical hardware issues, power spikes, thermal events, and so on. A persistent

memory device does not know if any application data was lost as a result of the

incomplete power-down sequence. It can only detect if a series of events oc-

curred in which data may have been lost. In the best-case scenario, there might

not have been any applications that were in the process of writing data when the

dirty shutdown occurred.” [50, Chapter 17]. Scargall[50] outlines an application-

level approach to detect if data was lost.

In ZIL-PMEM, we only handle read errors using memcpy_mcsafe, and treat them

equally to software checksum errors.

CPU E�ciency Wait-time for PMEM IO is spent on-CPU. The inherent assumption is

that at PMEM-level latencies, it is less overhead to stall the CPU than to context-

switch to another application. This assumption holds until the bandwidth limits

of PMEM are exceeded. In that case, as with any other storage device, queu-

ing e�ects come into play, causing per-IOP latency and hence stall duration to

grow. However, from the OS thread scheduler’s perspective, the thread appears

CPU-bound, even though it is e�ectively waiting for IO. This poses an e�ciency

problem if there is other work in the system that is actually CPU-bound.

To our knowledge, we are the �rst to identify the above as a systematic issue,

at least in the context of system services such as �lesystems. For the Optane

hardware in particular, the performance drop with increasing concurrent access

further ampli�es the problem. We implement a mitigation in ZIL-PMEM and

evaluate it in Section 7.3.4.
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2.3 OpenZFS Background
In this section, we provide an overview of ZFS’s architecture and a more detailed de-

scription of the current ZIL implementation. We encourage readers to look into [3],

[62], [29], and [35] for more comprehensive descriptions of ZFS.

2.3.1 Basic Concepts
ZFS combines volume management and �lesystem services in a monolithic storage sys-

tem that breaks with the traditional hard layering between block devices and �lesys-

tems.

When an administrator creates a ZFS storage pool (zpool), they supply ZFS with a set of

VDEVs that represent the pool’s volume topology. VDEVs can be either concrete (disk,

�le VDEV) or virtual (mirror, raidz{1,2,3}, or draid). Concrete VDEVs supply physical

storage space, whereas the virtual types compose multiple concrete VDEVs to achieve

redundancy. The space supplied by virtual VDEVs is thus less than the sum of its

children.

The Storage Pool Allocator (SPA) consumes a zpool’s VDEVs and makes their aggregate

space available through an interface that is reminiscent ofmalloc and free, albeit limited

to allocation sizes that are multiples of the disk block size. The handle to an allocation

is the data virtual address (DVA). DVAs are an indirection layer introduced by the SPA

to decouple the upper layers of ZFS from the storage hardware con�guration, enabling

features such as online expansion or replacement of faulty devices. The consequence

is that all reads from and writes to the allocated space must always go through the

SPA.

Neither the SPA nor VDEVs provide any form of consistency. That is the job of the

Data Management Unit (DMU). It uses the SPA to provide the abstraction of object sets
and objects. An object set can contain up to 264 objects, each identi�ed by a 64-bit

number. Each object in turn is a linear storage space with a theoretical size of up to 264

bytes. The operations that the DMU exposes for objects are reminiscent of �les, e.g.,

creation, read, write, destruction. However, in contrast to �les, consumers must make

all modi�cations to objects from within so-called DMU transactions. DMU transactions

are always part of a transaction group (txg). The DMU accumulates the changes to all

object sets and objects on a per-txg basis in DRAM, as so-called dirty state. Once a

txg’s dirty data exceeds a threshold or a periodic timer triggers, the DMU atomically

updates the on-disk state (more on this later).

The DMU is used by the ZFS Posix Layer (ZPL) to implement a POSIX-compliant �lesys-

tem, and by the ZVOL layer to implement virtual block devices, e.g., for storage vir-

tualization via iSCSI. ZVOLs register as a block device driver in the kernel and map
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block-level read, write, and discard operations (struct bio) to the corresponding DMU

operations of a single DMU object. In contrast, a ZPL �lesystem (just “�lesystem” from

now on) uses multiple DMU objects to implement �lesystem abstractions such as di-

rectories and �les. Both the data structures that represent the �lesystem metadata and

the actual �le data are stored in DMU objects.

A single zpool can hold thousands of �lesystems and ZVOLs, each of which keeps

its state (=object(s)) in its own private object set. This necessitates another software

module to create, delete, and manage all of these object sets. Its name is the dataset
layer (DSL), and it provides the following services:

Creation & Destruction Of Object Sets The DSL provides APIs to create and

destroy the object sets for �lesystems and ZVOLs.

Naming & Hierarchical Organization Of Object Sets The DSL assigns names

to object sets and organizes them in a tree structure. For example, a zpool

named example has a root ZPL �lesystem object set example and possibly three

child �lesystems example/a, example/b, and example/b/c, each with their own

object set.

Properties & Inheritance Per-object-set con�guration options, e.g., on-the-�y

compression, can be inherited along the tree hierarchy to aid administration

of large pools.

Snapshots & Clones The DSL provides facilities to create near-zero-cost snap-

shots and copy-on-write clones of �lesystems and ZVOLs. (This functionality

depends on some integration with the DMU on which we will not elaborate

here.)

The DSL stores all of the metadata that is required to realize these features in a special

object set, themeta object set (MOS). The ZFS term for the metadata about an individual

object set that contains user data (�lesystem, ZVOL, snapshot, clone) is “dataset”.

2.3.2 On-Disk State
ZFS’s on-disk structure is a tree of SPA-allocated blocks that link to their children

through block pointers. Block pointers are 128 byte sized structures that, among other

metadata, contain the size, checksum, and DVA of the pointee. The root of the tree

structure is located in the uberblock. The uberblock points, with a block pointer, to an

objset_phys_t structure. objset_phys_t is the root of an object set’s persistent represen-

tation that itself is a tree of SPA-allocated blocks linked by block pointers. However,

in the interest of brevity, we will view objset_phys_t as an opaque structure for now.

Regarding the uberblock, the speci�c objset_phys_t structure that it points to is that of

the MOS whose objects contain the DSL’s metadata about all datasets. The most im-

portant piece of per-dataset metdata is a block pointer (dsl_dataset_phys_t::ds_bp) that
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points to a block that contains the root of the dataset’s object set, i.e., an objset_phys_t

structure. The interpretation of that objset_phys_t’s content depends on the dataset

type, i.e., whether it is a �lesystem or ZVOL.

The DMU moves the on-disk state forward atomically at the granularity of transaction

groups. To “sync out” a txg, the DMU’s “syncing thread” (referred to as txg sync from

here on) constructs a new version of the on-disk tree structure. The new tree re-uses

unmodi�ed subtrees of the existing on-disk state whenever possible and allocates new

blocks from the SPA for updated state. Since newly allocated blocks have, by de�nition,

a di�erent block pointer, changes at any level of the tree propagate up to the location in

the uberblock where the block pointer that points to the MOS’s objset_phys_t is stored.

This root block pointer is then replaced atomically, thereby moving the pool’s on-disk

state forward by one txg. If the system crashes at any point in time before this �nal

update, the pool’s state after recovery is still that of the previous txg.

The uberblock is not part of the tree structure described above but stored in the VDEV
labels instead. VDEV labels contain the necessary metadata to import the pool and the

set of the most recently used uberblock pointers. Each physical storage device has four

VDEV label locations at well-known o�sets. When a pool is imported during boot, ZFS

searches all VDEV labels for the uberblock with the highest txg and interprets it as the

root block pointer of the tree structure. The atomic replacement of the uberblock that

txg sync depends on is implemented through a two-phase in-place overwrite scheme

that ensures that there are always at least two old or new valid copies of the VDEV

label on each storage device.

DMU consumers should be able to make progress while a transaction group is being

written to disk. Therefore, the DMU always maintains three unwritten transaction

groups, each in a di�erent state. The syncing txg is the oldest unwritten txg. It is

the txg that is currently being written out to disk by the procedure outlined above.

The open txg is the youngest unwritten txg. It is the txg that is used for any newly

started DMU transactions. Between syncing and open txg sits the quiescing txg. It is

not used for any new DMU transactions, but some DMU transactions assigned to it

may not have completed yet. However, once that has happened, it is guaranteed that

the accumulated dirty state for the quiescing txg is not going to change and is ready to

be written out by txg sync. Thus, as soon as the syncing txg has been fully written, the

quiescing txg becomes the new syncing txg, the open txg becomes the new quiescing

txg, and a new open txg is born.

It is of crucial importance that the completion of a DMU transaction, indicated by a

call to the dmu_tx_commit function, does not guarantee persistence. DMU transactions

merely scope modi�cations on the DMU level to a txg; more speci�cally, the txg that
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was the open txg at the time the transaction was started. If the system crashes before

that txg has �nished syncing, the in-�ight txgs’ modi�cations are lost.

2.3.3 ZFS Intent Log (ZIL)
The ZIL bridges the gap between the time at which a DMU transaction Ti completes

via dmu_tx_commit and the time at which the changes made by Ti actually reach the

main pool through txg sync. For that purpose, the DMU consumer that performs the

DMU transaction encodes the logical change Ci that was made in Ti as an intent log
transaction (ITX) and assigns it to the ZIL. For synchronous semantics, the DMU con-

sumer must invoke the ZIL’s zil_commit API after completing its DMU transaction(s)

but before reporting the logical change as committed to any upper layer. zil_commit

persists assigned ITXs to a sequential log on disk, independent of the DMU’s txg sync
procedure. This persistent log is used to recover lost changes in the event of a crash.

As an example, let us consider a write system call to a �le in a ZPL �lesystem that was

opened with the O_SYNC �ag. The ZPL’s VFS operation for this system call performs the

following steps:

1. Start a DMU transaction,

2. modify the DMU object that represents the �le,

3. create an ITX that describes the �le’s object number, the o�set, payload, and

modi�cation timestamp (zil_itx_create),

4. assign the ITX to the object set’s ZIL (zil_itx_assign),

5. complete the DMU transaction with dmu_tx_commit, and

6. call zil_commit(file_object_number) before returning to userspace.

The VFS operations fsync and fdatasync map directly to zil_commit. The sync system

call, which requests �ushing of the state of all �les in a �lesystem, uses the special

parameter zero (zil_commit(0)). Figure 2.1 visualizes these procedures.
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Figure 2.1: ZIL usage on the write path by example of write(), fsync(), and sync().

The ZIL tracks assigned ITXs in data structures called itxg. There exists one itxg for

each of the three unsynced DMU transaction groups. Each itxg consists of a sync list
and an async tree. The sync list is a simple list of ITXs, whereas the async tree is a search

tree that maps from object ID to a list of ITXs. Most ITXs are appended to the sync list
when they are assigned to the ZIL. However, ITXs that only a�ect a particular �le are

placed into the async tree instead. For example, an ITX that logs the creation of a �le is

added to the sync list whereas an ITX that logs a write within an existing �le is added

to the async tree. zil_commit uses the itxgs to determine the list of ITXs that need to be

appended to the on-disk log so that successful recovery is possible. The pseudo-code

in Figure 2.2 illustrates how zil_commit constructs this so-called commit list, and how

it appends the ITXs, encoded as log records, to the on-disk log structure.

After a system crash, the zpool is in the state of the last synced transaction group,

which we refer to as precrash_txg. All datasets (i.e, �lesystems, ZVOLs) are at their

precrash_txg state and any changes made in younger DMU transactions are missing.

The ZPL and ZVOL code use the ZIL’s zil_replay API when the �lesystem is mounted

(or the ZVOL opened) to recover the lost changes. The API contract is that the caller

provides a callback that is invoked for exactly those log records that were lost, i.e.,

whose ITX’s txg was > precrash_txg. The callback is invoked in the order of the

on-disk log structure. Its job is to interpret the log record and to re-apply the change

to the dataset in a new DMU transaction. Figure 2.3 exempli�es the rather unintuitive

behavior of zil_commit and zil_replay.
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zil_commit(object_id ):
commit_list := []
for each unsynced transaction group 'txg':

itxg := the itxg for txg
if object_id == 0:

move all itxs in itxg.async to itxg.sync
else:

move only the itxs in itxg.async[object_id] to itxg.sync
append itxg.sync to commit_list

for each itx in commit_list:
log_record := encode itx as log record
append log record to a persistent log structure

Figure 2.2: Pseudo-code that illustrates how zil_commit constructs the commit list from

the itxg structure.

Figure 2.3: Example log structure resulting from a series of VFS operations and the

corresponding replay callback invocations for di�erent values of precrash_txg. First,

note that fsync /A not only logs create /A and write to /A but also create /B since �le

creation is always placed on the itxg’s sync list. Second, note how records 1 and 2

are skipped during replay if precrash_txg = 4. If they were not skipped, the replay

callback would fail to create �le /A when replaying record 1 because /A already exists

in the on-disk state of txg 4.

Note that replay only re-enacts the logical changes to the dataset but does not nec-

essarily restore the exact physical state of the dataset that would have been synced

in the absence of a crash. For example, changes that would have been spread across

transaction groups 23, 24, and 25 at write time may land in transaction groups 42 and

43 during replay. Further, the system could crash again during replay. For example, a

power outage could cause txg 42 to be the last-synced txg, whereas 43 was still in sync-
ing state. Since the replay callbacks for the individual log records are not idempotent,
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the ZIL must ensure that, after a crash during replay, the changes that were already re-

played in transaction group 42 are not replayed again. For example, the second replay

attempt could apply the remaining set of changes in transaction group 83. (But it may

also happen that they are spread over several txgs, e.g., 83 and 84). The consequence

for any ZIL implementation is that it needs to persist the following data:

Precrash-txg The precrash-txg for open logs at the �rst time during pool import

so that it can �lter log records by that criterion, and

Replay progress Information that tracks which log records have already been

replayed so that replay can be resumed at the correct log record after a crash.

2.3.4 ZIL(-LWB) Persistence
The upstream ZIL implementation uses a singly-linked list of so-called log-write blocks
(LWBs) to represent the on-disk log structure. The block pointer to the �rst LWB is

stored in the ZIL header structure of the �lesystem’s or ZVOL’s object set. Each LWB

contains a contiguous sequence of the variable-length log records. The basic structure

is depicted in Figure 2.4.

Figure 2.4: On-disk structure of ZIL-LWB as described in the previous paragraph.

After zil_commit has produced the commit list, it iterates over it and appends the log

record representation of each ITX to an in-DRAM bu�er that will become the new tail

LWB in the chain. Once this bu�er is full, it is issued to disk in the background, and

the procedure continues with a new tail LWB. The packing of N log records on the

commit list into M fewer but larger LWBs has been advantageous in the past:

Latency Amortization Under the assumption that disk latency (latdisk) dominates

overall synchronous IO latency, writing log records one-by-one would result in
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a total latency of N ∗ latdisk. In contrast, grouping records into M << N LWBs

reduces the latency to M ∗ latdisk
LWB Timeout / Group Commit ZIL-LWB uses a timeout mechanism to extend the

amortizing e�ect of LWB packing. As explained above, when a thread A packs

log records into LWBs L1 . . . Ln, it issues the IO operations for all but the last

LWB Ln. A releases its lock on the LWB chain and goes to sleep, waiting for

another thread B to continue to �ll Ln. If such a thread B zil_commits to the

same dataset within that time window, it might �ll Ln completely and issue it

to disk, making Ln+1 the new tail LWB. The IO completion callback for Ln then

wakes up A which is now allowed to return from zil_commit because the last

entry on its commit list is now fully persisted. If no other thread picks up Ln, a

timeout wakes up A so that it can issue the IO operation itself.

Without this mechanism, thread B would need to wait for the last LWB of A
to be persisted, and for its own LWBs to be persisted because B’s �rst LWB is

pointed to byA’s last LWB. By sharing the last LWB ofA andB, up to 1∗latdisk of

waiting time can be avoided. Note that whereas ZFS refers to this mechanism as

LWB timeout, the technique is well-established in disk-oriented databases under

the name group commit or commit group.

Space E�ciency Log records are stored as a contiguous sequence within the LWB.

This avoids fragmentation if the commit list consists of small log records because

many such log records can be packed into the smallest LWB (4 KiB). However,

the on-disk format does not allow for splitting of individual log records. If the log

record cannot be split in software (WR_NEED_COPY), the open LWB is issued with

wasted space, and a new LWB is allocated for the log record. Conversely, if the

current LWB is large but only a few small entries need to be committed, a mostly

empty LWB will be issued.

LWBs present a special case for ZFS’s on-disk format because the LWB chain is rooted
in the tree structure that is written by txg sync but extended independently by the ZIL.

The solution is to pre-allocate LWBs such that the �rst LWB’s block pointer is stored

in the ZIL so that the �rst LWB of the chain can be found during recovery. The �rst

LWB’s content and any subsequent LWBs in the chain are written and allocated by the

ZIL. However, this represents a special case for the on-disk structure because, unlike

all blocks written by txg sync, an LWB’s content and checksum is not known at the

time that the block pointer is written to the ZIL header or the ancestor LWB in the

chain. Thus, instead of storing the checksum in the block pointer, it is stored in the

LWB itself — LWBs are self-checksumming. The full procedure for appending an LWB

to the chain thus consists of the following steps:

1. Wait until the LWB is �lled or the timeout triggers the LWB to be issued.

2. Predict the best size for the next LWB based on a simple heuristic.
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3. Allocate the next LWB from the SPA, preferably from a SLOG (next section).

4. Store the resulting block pointer in the current LWB so that it points to the next

LWB.

5. Compute the checksum of the current LWB.

6. Repurpose the current LWB’s block pointer �eld to store the computed check-

sum.

7. Write out the current LWB.

The checksum ensures crash consistency of the append operation since a partially

written block is assumed to have an invalid checksum. And even in the case where

no crash occurs, ZIL-LWB relies on an invalid checksum to detect the end of the LWB

chain during recovery. (It is assumed unlikely for an unwritten but allocated LWB

to be mistaken for an already written LWB because of additional metadata repeated

in each LWB that must match for all LWBs in a chain.) For OpenZFS native encryp-

tion, the LWBs are not checksummed but encrypted and authenticated using an AEAD

algorithm such as aes-256-gcm.

LWB that only contain obsolete entries (their maximum txg ≤ last synced txg) are

garbage-collected by txg sync. Every time txg sync visits the object set to construct the

new version of the on-disk structure, it unlinks LWBs from the head of the chain whose

maximum txg is ≤ syncing_txg until it reaches an LWB that contains at least one log

record for a txg > syncing_txg. The unlinking updates the chain’s head block pointer

in the ZIL header but, due to the atomic nature of txg sync, the update only becomes

visible on disk if syncing_txg successfully �nishes syncing. In that case, syncing_txg
becomes the new precrash_txg txg, and thus all entries in the freed LWBs are by

de�nition obsolete.

We visualize both the append and garbage-collection operations in Figure 2.5.
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Figure 2.5: Visualization of how the LWB chain is extended by the ZIL and garbage-

collected by txg sync.

2.3.5 Separate Log Devices (SLOGs) & Allocation Classes
By default, the SPA uses the same VDEVs for txg sync’s tree blocks and the ZIL’s LWB

allocations. However, it is possible to mark some of the pool’s VDEVs as separate log
devices (SLOGs). If a SLOG is present, the SPA uses it exclusively and preferentially

for LWB allocations. As hinted in Figure 2.4, a typical con�guration is the use high-

capacity HDDs in a space-e�cient raidz con�guration for the main pool and a costlier

but faster NVMe drive, or mirror thereof, as a SLOG. Thereby, the advantages of both

storage media are combined. Note that SLOGs only need very limited capacity (tens

of GiBs at most) since any LWB is guaranteed to be obsolete after three txgs.

SLOGs were the earliest cross-media capability added to ZFS. They have recently evolved

into a more general feature called allocation classes [30]. When VDEVs are added to
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a zpool, they are assigned to an allocation class.
2

Functions that allocate space from

the SPA must also specify the desired allocation class. If an allocation succeeds, the

space is guaranteed to be located on a VDEV within the speci�ed class. The following

classes exist in upstream ZFS:

aux A second-level victim cache for ZFS’s primary in-DRAM cache or for hot

spare devices.

special A recently added class for small allocations (still ≥ block size).

dedup Deduplication table data.

log The allocation class used for LWBs.

normal The default allocation class. Often used as a fallback if the preferred

class has no available space.

Allocation classes are relevant for this thesis because we introduce a new allocation

class called exempt in Section 6.3.2.

ZIO Pipeline

The uni�ed infrastructure for all IO performed by ZFS is the ZIO pipeline. As suggested

by its name, ZIO implements a pipeline execution model to execute IO operations. To

issue IO operations, consumers of ZIO allocate a zio_t object and annotate it with the

pipeline stages that it needs to pass through. Among others, there are pipeline stages

that abstract DVA allocation, DVA resolution, checksum computation, compression,

block-level deduplication, encryption, and VDEV IO. The pipeline execution is heavily

parallelized using taskq which are comparable to the Linux kernel’s work queues or a

dynamically scaling thread pool in userspace.

The ZIO pipeline is relevant for the ZIL because it uses ZIO to write its LWBs. Inte-

grating LWB IO into the ZIO pipeline is also bene�cial for the case where the pool

does not have a SLOG con�gured because the latency-sensitive LWB operations can

be prioritized over txg sync which is purely throughput-oriented. However, as we will

show in the next chapter, ZIO comes with signi�cant latency overhead, which results

in sub-par performance of ZFS on low-latency storage devices such as PMEM.

2
Actually, allocation classes are implemented at the level ofmetaslab groups, which are coarse chunks

of VDEV space. However, from the user’s perspective, allocation group assignment happens at the

VDEV level.
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Chapter 3

ZIL-LWB on PMEM

Our motivation for this thesis is the signi�cant overhead of the current ZIL imple-

mentation (ZIL-LWB) in 4k random synchronous write workloads compared to the

performance of the raw PMEM hardware in the same workload. In this chapter, we

describe how we measured this overhead (Section 3.1) and present the resulting data

(Section 3.2). In Section 3, we proceed with an analysis of the distribution of wall

clock time among the di�erent ZFS components under this workload. Our �ndings,

presented in Section 3.3, show that approximately 80% of the overall latency is spent

on persisting LWBs, most of which is software overhead. We conclude that ZIL-LWB’s

structure and the ZIO pipeline as its persistence mechanism are un�t to take advantage

of PMEM-level performance, motivating the development of ZIL-PMEM.

3.1 Benchmark Setup
Our main evaluation system has the following hardware con�guration:

CPU 2 x Intel Xeon Silver 4215 CPU 2.50GHz

Mainboard Supermicro X11DPi-NT, BIOS 3.1a 10/16/2019

DRAM 16 x Micron 8GiB DDR4 2933MT/s (18ASF2G72PDZ-2G9E1), evenly dis-

tributed across sockets.

NVMe 3 x Micron PRO 960GB NVMe, 512 byte namespace format

(MTFDHBA960TDF)

PMEM 4 x Intel Optane DC Persistent Memory, 128 GB, (NMA1XXD128GPS),

two per socket.

We use the following software stack:

Kernel Linux 5.9, Debian buster (5.9.0-0.bpo.5-amd64)

37
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Userland Debian GNU/Linux (buster)

�o - Flexible I/O Tester Built from Git commit �o-3.23-28-g7064 [2].

bpftrace - High-level Language for eBPF Version v0.12.0 [5].

BPF Compiler Collection (BCC) Library used by bpftrace, built from source.

Git commit v0.16.0-11-ga74413b0 [20].

OpenZFS Our tree of OpenZFS with support for ZIL kinds (Section 6.1). For this

experiment, we use the ZIL-LWB ZIL kind. Note that using our tree rather

than upstream OpenZFS is (slightly) favorable to ZIL-LWB because our tree

contains performance optimizations in the ITX code that are shared among

all ZIL kinds.

We use the following system con�guration:

• We leave SMT enabled, resulting in 16 hardware threads per socket.

• To rule out NUMA e�ects, we disable the entire second CPU in software using

the isolcpus=8-15,24-31 kernel command line parameter.

• We con�gure all Optane DIMMs in AppDirectNotInterleaved mode.

• We create a 40 GiB-sized fsdax namespace on the region of the �rst DIMM on

the �rst socket.

• We create a 40 GiB-sized devdax namespace on the region of the �rst DIMM on

the �rst socket.

• We partition each of the 3 NVMe drives into 10 equal-sized partitions.

• We create a zpool called dut with the 30 partitions as top-level VDEVs, and the

fsdax namespace’s /dev/pmem device as a SLOG. The reason for the large num-

ber of partitions is that we observed slightly improved txg sync performance,

presumably due to a higher degree of parallelism towards the NVMe drives.

• We create 8 datasets in the zpool, named dut/ds$i, mounted at /dut/ds$i.

• For all datasets, we con�gure recordsize=4k to match the �o workload and set

compression=off to avoid CPU overhead in the ZIO pipeline during txg sync.

We use �o to generate a workload of random 4KiB writes (blocksize=4k and rw=randwrite).

Each of 1–8 numjobs threads performs random synchronous write system calls to a sep-

arate �le per thread (ioengine=sync, sync=1, direct=0, fsync=0). Each �le has a size of

size=100MiB which means that the written data volume grows with numjobs, but the

amount of dirty data (max. 800 MiB) remains well below the NVMe drive’s bandwidth

limits. To avoid scalability-bottlenecks in the ITX code, we place each thread’s �le onto

a separate dataset using the option filename_format=/dut/ds$jobnum/fio_file. For each

numjobs value, we measure for one minute (time_based=1, runtime=60), with a ramp-up

time of 2 seconds (ramp_time=2), and set end_fsync=1. Before we run the benchmark, we

prepare the job �les using the create_only=1.
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We run this �o workload on the following storage con�gurations:

zil-lwb The zpool with ZIL-LWB ZIL kind as described above.

async The same con�guration as above, but with sync=disabled set on all data-

sets. This setting e�ectively disables the ZIL and thereby violates the syn-

chronous semantics. It serves as an upper bound for the performance that

any ZIL implementation can achieve. The remaining work done by async is

only CPU- or DRAM-bound, i.e., DMU object modi�cation and ITX allocation.

fsdax The �o con�guration above, but applied directly to the /dev/pmem0 block

device instead of the �lesystem, using direct=1,filename=/dev/pmem0 instead of

direct=0 and the filename_format option. This con�guration demonstrates the

performance of the Linux block device emulation around the PMEM hard-

ware. It includes the syscall overhead.

devdax The �o con�guration above, with ioengine=dev-dax, applied directly to

the /dev/dax namespace (filename=/dev/dax0.1 instead of the filename_format

option). In this con�guration, �o mmaps the PMEM namespace directly and

thereby bypasses the kernel completely.

3.2 Results
The following graphs show the achieved IOPS and per-thread latency by numjobs.
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Figure 3.1: IOPS and latency ZIL-LWB compared to ZFS in async mode as well as the

raw fsdax and devdax device.

ZIL-LWB only achieves approximately 10k IOPS at one thread and peaks at about 100k

IOPS at seven threads. In contrast, ZFS in async mode starts with 200k IOPS with one
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thread and achieves over 900k IOPS at seven threads. 900k IOPS exceeds the perfor-

mance of the PMEM hardware, which mostly stays at 500k IOPS, demonstrating that

the ZIL is the bottleneck in the zil-lwb con�guration. A look at the per-IOP average

latency emphasizes the vast overhead that ZIL-LWB adds compared to what is possi-

ble with the raw PMEM hardware. Whereas ZFS in async mode only requires 5 us per

IOP with numjobs=1, and raw writes to fsdax require approximately 3 us, ZIL-LWB with

the same PMEM hardware as SLOG takes more than 60 us per write. The minimum

latency achieved by ZIL-LWB is at numjobs=4 at approximately 50 us before it starts

increasing to up to 85 us at numjobs=8. Note that we do not use the results from the

dev-dax as a baseline for PMEM hardware because the IOPS and latencies reported by

�o do not match. For example, �o reports less than 1 us of latency but only reports

550k IOPS for dev-dax at numjobs=1 whereas
1

1 us/IOP
= 106 IOPS would be anticipated

at this latency and thread count. Figure 3.2 shows the same latency data as Figure 3.1

above, albeit zoomed to a scale that allows us to distinguish dev-dax, fsdax, and async
latencies.
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Figure 3.2: Zoomed section of the latency plot in Figure 3.1.

3.3 Analysis
By comparing the numbers for async and zil-lwb, it is safe to assume that regardless

of the value for numjobs, ZIL-LWB adds at least 40 us of latency. We want to determine

where this time is spent.

We use dynamic instrumentation (eBPF via bpftrace) to sum up the wall clock time

spent in ZFS functions that are executed by the �o threads during a synchronous write

operation. We then use the model in Figure 3.3 to compute the time spent in the asyn-

chronous part of the write operation, the ITX layer, and ZIL-LWB-speci�c code. We

visualize the results as stacked bar charts in Figure 3.4.
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Figure 3.3: Our model of the time spent in ZFS by a �o thread that performs a write

system call. The di�erent columns represent the di�erent levels of the dynamic call

graph. The nodes in each column describe all activity that happens at this level of the

call graph. The wall clock time spent in activities with a solid border style is mea-

sured using eBPF instrumentation. A dashed border-style indicates that the value was

computed in post-processing by subtracting the sum of the column’s instrumented ac-

tivities from the parent’s value in the column to the left. For example, to compute

async, we compute zfs_write_vnode_op - (zil_commit + zfs_log_write). The color indi-

cates the subsystem to which we attribute the respective activity.
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Figure 3.4: The relative and absolute breakdown of latency by activity. The absolute

breakdown is normalized by the number of write operations. We compared the laten-

cies in the breakdown with the latencies observed by �o to ensure that our accounting

is correct under the given model.

Our observations are as follows:

• The instrumentation overhead is 5–10 us per IOP. (We compared the latencies

that �o reports for the instrumented and uninstrumented run.)

• The relative distribution of latency remains mostly unchanged for the di�erent

values of numjobs.

• The async part of the write path and the ITX layer together only amount to

approximately 20% of overall latency. The remaining 80% are spent on LWB-

speci�c activities.

• The LWB timeout mechanism amounts to 4% of overall latency.

• At least 20% of overall latency are spent on �lling LWBs, issuing their corre-

sponding ZIOs, and other LWB-related activities.

• 45–50% of overall latency is spent waiting for the ZIO pipeline to persist the

LWBs. In absolute numbers, the value ranges from 25–40 us. We have sepa-

rately con�rmed that ZIL-LWB uses 12 KiB LWBs, which is the smallest possi-
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ble LWB size allowed by the implementation. In our benchmarking setup (per-

thread datasets), each LWB only holds a single 4 KiB write log record with 192 B

of additional metadata. This amounts to write ampli�cation of 3x. However,

even with this increased data volume per IOP, the results from the previous ex-

periment suggest that with a conservative estimate of 3 us per 4k write to the

raw PMEM hardware, we should expect less than 9 us of PMEM write time per

LWB. Thus, a major fraction of the 25–40 us that are spent waiting for ZIO is

pure software overhead.

Our observations lead us to the following conclusions:

First, we have reason to believe that the high overhead of ZIO is unlikely
to be reduced to a degree that allows for exploitation of PMEM-level latency, re-

gardless of whether the hardware is actual PMEM or simply very fast NVMe drives.

The reason is that there is an inherent con�ict of goals for ZIO: whereas the ZIL is

strictly latency-oriented, all other consumers (txg sync, scrubbing, zfs send/recv) are

throughput-oriented. The pipeline-oriented, parallelized architecture of ZIO is impor-

tant for throughput and provides great �exibility but increases latency through context

switches. This problem is well known in the ZFS community, see [36, 49, 34].

Second, the persistent representation of the ZIL as a chain of LWBs poses a
severe and unnecessary overhead on PMEM. For one, the latency amortization

provided by LWBs and the timeout mechanism is unnecessary at PMEM-level laten-

cies, where it is cheaper to persist the log records on an individual basis than batching

them in LWBs and coordinating with other threads on the matter. And for another,

since PMEM is byte-addressable, the persistent representation is no longer constrained

by disk block sizes, opening up the possibility of better space e�ciency.
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Chapter 4

Design Overview

Given the insights described in the previous chapter, we propose an alternative ZIL im-

plementation called ZIL-PMEM that exclusively targets PMEM SLOG devices. In this

chapter, we de�ne the project goals for ZIL-PMEM and provide a high-level overview

of its design. The subsequent two chapters then introduce the core data structure and

our approach to integrating it into ZFS.

4.1 Project Goals & Scope

4.1.1 Requirements
Coexistence ZIL-PMEM must coexist with ZIL-LWB in code and at runtime due to

limited availability of PMEM hardware and the limitations of the ZIL-PMEM design.

Same Guarantees ZIL-PMEM must maintain the same crash consistency guarantees

towards userspace as ZIL-LWB for both ZPL and ZVOL.

Simple Administration & Pooled Storage Pooling of storage resources and simple

administration are both central to ZFS [3]. ZFS should automatically detect that a

SLOG device is PMEM and if so, use ZIL-PMEM for all of the pool’s datasets. No

further administrative action should be required to bene�t from ZIL-PMEM fully.

45
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Correctness In the absence of PMEM media errors and data corruption, ZIL-PMEM

must be able to replay all data that it reported as committed. The result must be the

same as if ZIL-LWB had been used in lieu. Speci�cally:

• Replay must respect the logical dependencies between log records.

• Logging must be crash-consistent, i.e., the in-PMEM state must always be such

that replay is correct.

• Replay must be crash-consistent, i.e., if the system crashes or loses power during

replay, it must be possible to resume replay after the crash. Resumed replay must

continue to respect logical dependencies of log records.

Data Integrity Data integrity is a core feature of ZFS [3]. ZIL-PMEM must detect cor-

rupted log records using an error-detecting code. Detected corruption must be handled

correctly (as outlined in the previous paragraph) and gracefully with the following be-

havior as the baseline: “Assume a sequence of log records 1 . . . N where log record 1
does not depend on a log record and each record i > 1 depends on its predecessor i−1.

Data corruption in record i ∈ 1 . . . N must not prevent replay of records 1 . . . i− 1".

Low Latency The latency overhead of ZIL-PMEM compared to raw PMEM device

latency for the same data volume should be minimal for single-threaded workloads.

Multi-threaded workloads are addressed below.

Multi-Core Scalability Since PMEM is added as a pool-wide resource used by all of

the pool’s datasets, ZIL-PMEM should scale well to multiple cores. Barring PMEM

throughput limitations, the speedup in throughput (IOPS) achieved by parallelizing

synchronous IO to multiple cores on a ZIL-PMEM system should be as follows:

1 private dataset per thread Always near-linear speedup.

1 shared dataset
ZPL �lesystem No speedup.

ZVOL No speedup in standard mode, potentially sub-linear speedup in

bypass mode (Section 6.3.5).

Maximum Performance On Intel Optane DC Persistent Memory We develop

and evaluate ZIL-PMEM exclusively for/on Intel Optane DC Persistent Memory since

it is the only broadly available non-volatile main memory product on the market.

Whereas supercapacitor-backed persistent memory modules (NVDIMM-N) should be

usable with ZIL-PMEM, our goal is to design a system that makes optimal use of the

Optane hardware.

CPU-E�cientHandlingOf PMEMBandwidth Limits If the maximum write band-

width to any type of storage device is exceeded, the IO stack must somehow apply

back-pressure to avoid losing in-�ight data. With PMEM, the IO stack is the CPU

microarchitecture, and the back-pressure manifests as stalling instructions. However,



4.1. PROJECT GOALS & SCOPE 47

from the OS thread scheduler’s perspective, threads whose instructions stall because

they wait for PMEM are indistinguishable from actually busy threads. Yang et al. have

shown that a single Optane DIMM’s write bandwidth can be exhausted by one CPU

core at 2 GB/s and that write bandwidth decreases to 1 GB/s at ten or more CPU cores.

Since ZIL-PMEM shares PMEM among all datasets in a zpool, we expect bandwidth

exhaustion to be a phenomenon that will happen in practice. ZIL-PMEM should thus

provide a mechanism to shift excessive PMEM IO wait time o� the CPU.

Testability ZIL-PMEM must be architected for testability. The core algorithms must

be covered by unit tests. Further, ZIL-PMEM should be integrated into the ztest user-

space stress test as well as the SLOG tests of the ZFS Test Suite.

4.1.2 Out Of Scope For The Thesis
The following features were omitted to constrain the scope of the thesis. We believe

that our design can accommodate them without signi�cant changes.

Support For OpenZFS Native Encryption The ZIL-PMEM design presented in this

section does not address OpenZFS native encryption. Intel Optane DC Persistent Mem-

ory supports transparent hardware encryption per DIMM at zero overhead. In contrast,

OpenZFS native encryption is per dataset and software-based. Given these signi�cant

di�erences in data and threat model, ZIL-PMEM cannot rely on Optane hardware en-

cryption. Instead, ZIL-PMEM would need to invoke OpenZFS native encryption and

decryption routines when writing or replaying log entries.

Protection Against Scribbles Scribbles are software bugs that cause accidental over-

writes of PMEM, e.g., due to incorrect address calculation or out-of-bounds access in

any piece of kernel code. PMEM-speci�c �lesystems such as PMFS and NOVA-Fortis

have already introduced mechanisms to protect against scribbles [12, 57]. We believe

that these mechanisms can be applied to our design as well.

4.1.3 Limitations
The following features are deliberately not addressed by our design. More experimen-

tation and experience with ZIL-PMEM will be necessary to determine which features

are useful in practice, how they can be realized, and how they interact with the existing

requirements.

No NUMA Awareness Yang et al. recommend to “avoid mixed or multi-threaded

accesses to remote NUMA nodes. [...] For writes, remote Optane’s latency is 2.53x

(ntstore) and 1.68x higher compared to local" [58]. We do not account for this behav-

ior in the design and do not evaluate ZIL-PMEM in a NUMA con�guration.
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No Data Redundancy ZIL-PMEM provides data integrity protections but does not

provide a mechanism for data redundancy.

Only Works With SLOGs Our approach to integrating ZIL-PMEM into ZFS is only

applicable to PMEM SLOGs and does not work for a zpool that uses PMEM as main

VDEVs. Such pools continue to use ZIL-LWB.

No Software Striping Our design only supports a single PMEM SLOG device. Users

may wish to use multiple PMEM DIMMs to increase log write bandwidth. With Intel

Optane DC Persistent Memory, multiple PMEM DIMMs can be interleaved in hard-

ware with near-linear speedup [58]. Whereas software striping would be the natural

approach to ZFS, it will be non-trivial to achieve the same speedup as hardware-based

interleaving.

NoSupport For WR_INDIRECT ZIL-LWB writes the data portion of large write log records

directly to the main pool devices. The ZIL record then only contains metadata such

as mtime and a block pointer to the location in the main pool. This technique avoids

double-writes which is particularly advantageous if the pool does not have a SLOG,

which in turn is a use case that ZIL-PMEM does not address (see above). Further, if

a SLOG is available, WR_INDIRECT log record write latency is likely to be dominated by

the main pool’s IO latency if it consists of regular block devices. If the main pool’s IO

latency were acceptable, a fast NVMe-based ZIL-LWB SLOG or no SLOG at all would

likely be su�cient for the setup in question.

Space E�ciency ZIL-PMEM is allowed to trade PMEM space for time and simplicity

when presented with the option. Our justi�cation is twofold. First, PMEM capacities

are signi�cantly higher than DRAM. For example, the smallest Intel Optane DC Per-

sistent Memory DIMM o�ered by Intel is 128 GiB. Second, the maximum amount of

log records that need to be stored by any ZIL implementation is a function of the max-

imum amount of dirty data allowed in the zpool. For ZIL-LWB, small SLOG devices

of 16 to 32 GiB are su�cient in practice [54]. Thus, there is su�cient headroom for

PMEM space usage in ZIL-PMEM.

4.2 Design Overview
We add the concept of ZIL kinds to ZFS. A zpool’s ZIL kind is a pool-scoped variable

that determines its strategy for persisting the ZIL to stable storage. The ZIL’s record

format, logical structure, and code for creation and replay of log records remain shared

among all ZIL kinds. The default ZIL kind is ZIL-LWB, but if a zpool has exactly one

SLOG and that SLOG is persistent memory (/dev/pmem), its ZIL kind is ZIL-PMEM.

ZIL-LWB uses the SPA to allocate log-write blocks (LWBs) from the storage pool with a

bias towards SLOG devices. For ZIL-PMEM, we exempt the PMEM SLOG’s allocatable



4.2. DESIGN OVERVIEW 49

space from block allocation to use it directly for PRB/HDL, our PMEM-speci�c data

structure.

We partition the PMEM space into �xed-size contiguous segments called chunks. A

data structure called PRB consumes these chunks and exposes the abstraction of an

unordered persistent storage layer for log entries. A log entry is the unit of data that

can be written to and read from PRB. It consists of the ZIL’s log record and PRB-

speci�c metadata. PRB scales to many concurrent writers and features a mechanism

to avoid excessive on-CPU waiting for PMEM IO. Log entries that are stored in PRB

are automatically garbage-collected when they become obsolete after their transaction

group has been synced out.

PRB provides a pool-wide storage substrate for log entries but does not de�ne any

structure. This is the role of theHDL abstraction which implements a mostly sequential

log structure on top of PRB. Each dataset in the zpool has a separate HDL to which it

writes log entries. The HDL adds metadata to its entries to enable reconstruction of

the log’s logical structure. After a system crash, each HDL scans PRB for entries that

need to be replayed for recovery of the respective dataset’s committed state. Replay

happens in a deterministic sequential order and is crash-consistent. Loss of entries,

e.g., due to data corruption, is handled as gracefully as possible under the constraints

of the logical dependencies encoded in the log structure.

The role of the ZIL-PMEM ZIL kind is the integration of PRB/HDL into ZFS by hook-

ing into the SPA to construct the PRB, synchronizing HDL and dataset lifecycles, and

adapting between the ZIL and the HDL domain. Figure 4.1 visualizes the resulting

system architecture.

The next two chapters describe our design in detail. Chapter 5 describes our main

contribution — the PRB/HDL data structure. The integration of PRB/HDL into ZFS is

then presented in Chapter 6.
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Figure 4.1: Overview of the system architecture as described in this section.



Chapter 5

The PRB/HDL Data Structure

In this chapter, we describe the PRB/HDL data structure. PRB consumes chunks of

PMEM and provides a scalable storage substrate for an arbitrary number of HDLs

which in turn provide the abstraction of a persistent, garbage collected log. In Chap-

ter 6, we then present how we integrate PRB/HDL into ZFS as the ZIL-PMEM ZIL

kind.

We present the design and implementation of PRB in a top-down manner. In Sec-

tion 5.1, we isolate the requirements that ZIL-PMEM puts on PRB by recapitulating

how the ZIL �ts into ZFS’s overall architecture. Afterward, in Section 5.2, we give

a high-level overview of our design. Section 5.3 presents the virtual log abstraction

that is exposed by HDL and Section 5.4 describes the high-level approach for replay.

Sections 5.5, 5.6, and 5.7 then progressively re�ne our understanding of replay and

explain how data corruption and crash consistency is addressed by HDL, culminating

in a comprehensive example in Section 5.8. Subsequently, we describe PRB, which is

the storage substrate that the HDLs use for persistence: Sections 5.9 and 5.10 present

the data structures that we use for PMEM space management and log entry storage.

In Section 5.11, we describe the algorithm that traverses the in-PMEM data structure

during log recovery. Section 5.12 explains how garbage collection removes obsolete

entries from PRB. The low-latency and CPU e�cient design of the write path is then

presented in Section 5.13. Finally, Section 5.14 provides a walkthrough of the API that

ZIL-PMEM consumes.

5.1 Context & Requirements
Remember from Section 2.3 that all ZPL �lesystem state is represented as DMU ob-

jects. When a �lesystem call modi�es DMU objects, it must do so from within a DMU
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transaction Ti that belongs to a transaction group Titxg . After the system call handler

has completed the DMU transaction by calling dmu_tx_commit(T_i), the logical change

Ci made in Ti is not yet persisted to stable storage. Instead, the DMU accumulates

the changes from many DMU transactions in DRAM as so-called dirty state, grouped

by the transaction’s transaction group (txg). This dirty state is eventually persisted to

ZFS’s on-disk state in a procedure that, through copy-on-write techniques, is atomic

at the granularity of txgs (txg sync).

The ZIL bridges the gap between txg syncs so that synchronous VFS operations can

return to userspace, even though their DMU transaction’s txg has not yet been synced

to disk. For that purpose, each VFS operation summarizes each logical change Ci that

it makes per DMU transaction Ti as an intent log transaction (ITX). Before completing

the DMU transaction through dmu_tx_commit, it assigns the ITX to the ZIL. Synchronous

VFS operations call zil_commit before returning to userspace to append the ITXs that

are relevant to the operation to a sequential persistent log.

In upstream OpenZFS, the only available implementation of this persistent log is the

chain of log write blocks (LWBs) which we described in Section 2.3.4. With the intro-

duction of ZIL kinds (details in 6.1), the persistence layer becomes pluggable: whereas

the shared itxg data structure continues to determine the commit list that describes

which ITXs need to be persisted in what order, the ZIL kind is free to represent the log

structure however it sees �t.

Regardless of the persistence strategy, all ZIL kinds must implement the same inter-

face to recover the committed state (zil_replay). The ZPL invokes zil_replay during

the mounting procedure of a �lesystem. It provides a callback that the ZIL kind must

invoke for precisely those log records (= encoded ITXs) whose changes Ci were lost

in the crash. (Their txg Titxg > precrash_txg where precrash_txg is the last synced

transaction group before the system crashed.) The callback re-applies the change en-

coded in the log record, thereby recovering the committed state.

The reader should remember that the set and order of log records for/in which the

callback is invoked is not necessarily intuitive because a) ITXs may be reordered by

the ITXG structure, and b) the log records must be �ltered by precrash_txg. We refer

to Figure 2.3 in Section 2.3.3 to an example and more details.
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We derive the following abstract view of what needs to be stored per log:

• The log records themselves.

• The transaction group of the DMU transaction that the log record encodes.

• Structural information that de�nes replay order and logical dependencies be-

tween log records that replay must respect.

• For replay, the precrash txg to discern replayable from obsolete log records (see

previous section).

• For replay, some representation of replay progress to enable resumption of replay

if the system crashes during replay. (The log record format and replay callbacks

are not idempotent.)

For ZIL-PMEM, we put the following requirements on the PRB/HDL:

• On the write path, the overhead added to the raw log record write time should

be minimal.

• It must scale well on a multicore system since many datasets write their log

records in parallel. This scalability requirement includes e�cient use of CPU

time in case the PMEM write bandwidth is exceeded.

• It must garbage-collect log records after they are obsoleted by txg sync or �nished

replay.

• It must provide the replay interface described above.

• It must detect data corruption using checksums. (Repair and redundancy are out

of scope for this thesis, see Section 4.1.1.)

5.2 Approach
We introduce the pool-wide PRB object which abstracts a set of contiguous segments

of PMEM (chunks) as a persistent, unordered set of log entries. A log entry is a ZIL log

record and associated metadata. More abstractly, a log entry encodes a logical change

to a dataset that was applied in a single DMU transaction. PRB provides facilities

for adding log entries to the set and for iterating over its contents. It automatically

garbage-collects obsolete entries whose transaction group has been synced out by txg
sync.

Log entries are not written directly to PRB but instead to the HDL object of the dataset

that they a�ect. A HDL is a virtual log built on top of PRB that organizes the entries

for a single dataset in a mostly sequential structure. After a system crash, the HDL

provides a replay facility that recovers the replayable entries, orders them according

to their logical dependencies, and handles missing entries.
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At any time, there exists one HDL for each head dataset in the pool. They are set up

early during pool import and torn down late during export. If a dataset is created or

destroyed, the corresponding HDL is set up or torn down as well. HDL is stateful. Its

internal states represent the di�erent phases that a dataset goes through with regard

to the ZIL. They are depicted in Figure 5.1.

Figure 5.1: The runtime states of a HDL.

When a HDL is created, it does not have a log and is in state nozil. When the dataset is

mounted, the HDL allocates a log GUID and persists it to the ZIL header. The log GUID

uniquely identi�es the log’s entries in the PRB. The HDL is now in state logging and

threads can write entries to it. If the dataset is unmounted, the log GUID is discarded,

and the log transitions back to state nozil. Otherwise, the HDL remains in state logging
until the system crashes.

When a zpool is imported, the import procedure examines the ZIL header of each

dataset to recover the HDL’s runtime state from before the crash. If the HDL state was

nozil, there is nothing to do, and the HDL transitions to that state. If the HDL state

was logging or replaying, it must be claimed before txg sync starts. For HDLs in state

logging, the claiming procedure saves the zpool’s last synced txg as the precrash-txg and

transitions the HDL and ZIL header to state replaying in the initial replay position. If

the HDL was already in state replaying at import time, the precrash-txg and replay

position are recovered from the ZIL header. At this point, all HDLs are either in state

nozil or replaying but claiming is not yet complete. For every HDL in state replaying,

the claiming procedure scans the PRB for log entries that need to be held back for

replay. Entries that are held back by at least one HDL are exempt from PRB’s garbage

collection. After this scanning step is complete, the claiming phase is over and the

txg sync thread starts. HDLs are not replayed until their dataset is mounted by the

user. After replay is complete, the HDL discards the log GUID and transitions to state

nozil. At this point, the mount procedure behaves as if log replay had not happened
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and starts a new log with a new log GUID, thereby closing the circle. Note that the

HDL (and PRB) are able to recover from system crashes in all states. We describe how

we handle this issue in Section 5.7.

5.3 HDL: Log Structure
The structure of the virtual log that each HDL represents is de�ned by metadata stored

with each entry that is written to PRB.

We attribute entries to a given HDL’s log through the log GUID:

Log GUID A 128 bit random identi�er stored in the HDL’s ZIL header and re-

peated in every entry written through that HDL.

The following pieces of metadata de�ne the structure of the log.

Transaction Group (txg) The transaction group in which the change encoded

in the entry was or would have been synced out by txg sync.

Generation Number (gen) The log is a sequence of generations, each of which

contains many log entries. The generations encode logical dependencies be-

tween entries. Entries within the same generation do not depend on each

other. Entries from newer generations unconditionally depend on all entries

in all previous generations. We represent generations as unsigned 64-bit non-

zero integers.

Generation-Scoped ID (gsid) Within a generation, we identify entries by an-

other by the gsid, another unique unsigned 64-bit non-zero integer. As the

name suggests, the gsid only needs to be unique within a generation.

Note that the tuple (gen, gsid) uniquely identi�es an entry within a log.

We visualize the structure of the log in a grid. The rows represent the transaction group

(txg) and the columns represent the generation (gen). For readability, we represent

entries not by (gen, gsid) but by a single unique letter. The projection of entries onto

the horizontal axis shows the dependency relationship encoded by the generations.

The projection of entries onto the vertical axis shows the sets in which entries are

garbage-collected.
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Figure 5.2: Structure of a single HDL’s log as described in the previous paragraph.

5.4 HDL Replay: Basic Approach
Replay must apply the changes that were successfully logged to the HDL but whose

DMU transaction did not sync before the system crashed. To accomplish this task, it

scans the PRB for entries that belong to the HDL and determines a replay sequence S.

Entry Ei ∈ S

⇔Ei.log_guid = HDL.log_guid ∧ Ei.txg > precrash_txg

S is sorted in replay order, which is the order in which the changes encoded in the

entries need to be applied. Given two entries Ea, Eb ∈ S for the same HDL, the replay

order is a total order de�ned by

Ea <replay Eb

⇔(Ea.gen,Ea.gsid) <lexicographical (Eb.gen,Eb.gsid)

⇔Ea.gen < Eb.gen ∨ (Ea.gen = Eb.gen ∧ Ea.gsid < Eb.gsid)

For our example in Figure 5.2, this results in the following replay sequences, depending

on the value of precrash_txg.
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Replay Sequence

precrash_txg A B C D E F G H I

3 x x x x x x x x x

4 x x x x x x x

5 x x x x

6 x x

7

Figure 5.3: Replay sequences for the log depicted in Figure 5.2, by precrash_txg.

We use a total order so that we can precisely encode replay progress by storing the last-

replayed (E.gen,E.gsid). This is necessary for crash consistency because log entry

replay is not idempotent. We revisit this topic in Section 5.7.

Note that the de�nition of the replay order does not account for over�ows of gen or

gsid — entries written after the over�ow would be incorrectly ordered as “<replay”

entries written before the over�ow. Over�ows could be handled in software, e.g., by

temporarily destroying the log of the dataset and creating a new one with a fresh log

GUID. However, our implementation has no such provisions because — even with the

(absurdly) conservative value of 1 ns write time per log entry — the �rst over�ow event

would only occur in 584 years if gen starts at 1.

5.5 HDL Replay: Dependency Tracking
Replay is complicated by the fact that the entries that were stored in the PRB can be lost.

For example, a bit�ip in PMEM might corrupt the entry’s log GUID or PRB-internal

metadata. PRB uses checksums to detect such data corruption and hides corrupted

entries when HDLs scan the PRB.

If an entry Em with Em.txg > precrash_txg is missing, any entry Ed that logically

depends on Em (Em < Ed) must no longer be replayed. However, all entries Ep that do

not depend on Em and need replay should still be replayed (their Ep ≤ Em∧Ep.txg >
precrash_txg).

We detect missing entries through a set of counters that we store in the metadata of

each entry. For an entry E, the counter E.Cctxgi

E.Cctxgi := #{D : D.gen < E.gen ∧D.txg = ctxgi}

stores the number of entries that were written to the log since its inception, for a DMU

transaction with txg ctxgi, until generation E.gen. During replay, we �rst construct

the replay sequence (example in the previous section, Figure 5.3). Then, we walk over
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the replay sequence, re-compute the counters as if we were writing each entry, and

compare the counters. If an entry Em has been lost, the counters of any dependent

entry Ed (their Ed.gen > Em.gen) will not match, causing replay to stop with Ed as a

witness. Missing entries in the last generation (the “tail” of the log) cannot be detected

with this scheme.

The per-txg scoping of the counters is critical to accommodate garbage collection. Sup-

pose we only used a single sequence counter for all log entries of a HDL. After a txg

tsynced has been synced, PRB garbage-collects all entries Sgc that are obsolete:

Sgc := {E : E.txg ≤ tsynced}

These entries no longer show up when the claiming or replay procedures scan the PRB

for entries with the HDL’s log GUID. If we used a single sequence counter to check for

missing entries, we would be unable to discern garbage-collected entries from missing

entries.

It is su�cient to include only those counters E.Cctxgi in the entry metadata whose

transaction groups ctxgi had not yet been synced at the time that E.gen started. The

reason is that a) the replay sequence only contains entries in unsynced txgs and b) E
only depends on entries D with D.gen < E.gen. Since there are only three possi-

ble unsynced txgs at any time (open, quiescing, syncing), we only need to store three

(ctxgi, Cctxgi) tuples per log entry. In fact, since txgs never skip a number, we only

need to store the value of txgopen and recompute

txgquiescing = txgopen − 1

txgsycing = txgopen − 2

We use the same algorithm to compute the counters on the write path, and to re-

compute them from the replay sequence on the recovery path. It stores the counters

in a table called live table which has four rows Ri := (txg, ctr), i ∈ {0, 1, 2, 3}. When

an entry E is written or replayed, it modi�es the counter in the row with index IT :=
T mod 4 where T := E.txg. We distinguish the following conditions:

• If RIT .txg = T , we simply increment RIT .ctr and are done.

• IfT > RIT .txg, we can infer that txgRIT .txg must have been synced out because

there are only three unsynced txgs at any given time but four array entries that

are reused circularly, courtesy of indexing by T mod 4. In that case, we can

discard the state in the row and reuse it for T by setting RIT ← (T, 1).
• Conversely, if T < RIT .txg, we can infer that the entry we are writing is for

an already synced txg and hence obsolete. In that case, we do not change the

live table and turn the entry write operation into a no-op. Hence, the condition

cannot occur during replay. If it does, the write path implementation is incorrect.
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Note that the use of 4-ary arrays allows the use of bitwise-and for indexing, which is a

common ZFS idiom (table[txg&3]).

We maintain a separate variable Elast := (gen, gsid) to detect when a new generation

is started, and to support resumable replay after a crash (Section 5.7). When an entry

E is written or replayed, we compare it to Elast using the following rules:

E < Elast This case is prohibited for writers because the API contract for log

writers is that generation numbers must be monotonically increasing. During

replay, we skip all entries that are ≤replay Elast because Elast marks the last-

replayed entry.

E.gen = Elast.gen The writer did not start a new generation and we leave the

last table unmodi�ed.

E.gen > Elast.gen A new generation was started. We create a copy of the live
table which we refer to as last table. It will be used to compute the counters

stored in the entries of generation E.gen (next paragraph).

We always update Elast ← E, regardless of whether a new generation was started or

not, and increment the counter in the live table as described in the previous paragraph

after evaluating the rules above.

The counters E.Cctxgi have the same value for all entries in generation E.gen because,

by de�nition, they only count entries written up to but not including E.gen. We com-

pute them from the last table once and cache the results until the next generation is

started:

1. Determine row index imax := maxi∈{0,1,2,3}Ri.txg where Ri is a row in the

last table.

2. Invariant: Rimax .txg is the highest potentially unsynced txg from the perspective

of this HDL. We make the most conservative assumption that Rimax .txg might

be the currently open txg.

3. Find the counters for quiescing and syncing txg. We scan the last table twice to

�nd counters for transaction groups Rimax .txg− 1 and Rimax .txg− 2. If the last
table does not contain those counters, we use a value of zero.

Figure 5.4 contains an illustration of the last paragraph. Figure 5.5 provides an example

for the entire counter computation algorithm.
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Figure 5.4: Visualization of how the counters for one generation of entries are com-

puted from the last table. Note that our implementation does not yet use the compact

encoding (right table) but stores the content of the center table in each entry header.
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Figure 5.5: Example for the computation of the counters that are stored in the entry.

The following entries are written to the log: A,B,C,D in generation 1; E,F in generation

2; G in generation 3; H in generation 4; J in generation 5. Note that their txgs di�er

sometimes but stay in a corridor of at most three txgs. The table at the bottom shows

the counter values in the entry headers: each row represents the counters that are

stored in the entry headers of one generation. The table at the upper right shows the

live table’s content over time. Instead of counters, we show the entries that would

cause the speci�c counter to be incremented. We visualize row reuse by separating

new row content with a “|" symbol in each cell of the reused row.
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5.6 HDL: Model For Data Corruption
The use of counters to validate that no log entries are missing during replay relies on

the assumption that random data corruption is incapable of “forging” new log entries.

If this were possible, a forged entry could compensate a lost entry when re-computing

the counters during replay. The loss of the entry would go unnoticed, and the replay

of the forged entry would likely corrupt the dataset.

We believe that it is su�ciently unlikely for random data corruption to forge an entry

accidentally. A forged entry would have to ful�ll the following requirements to a�ect

counter validation for a given log L:

• It must have been correctly added to PRB’s data structures such that a scan of

PRB will �nd it during recovery. (We address the PRB’s data structure in Sec-

tion 5.10.)

• Its log GUID value must match log L’s log GUID.

• Its (gen, gsid) must not collide with the original entries. Such a collision would

be noticed when constructing the replay sequence. (Our implementation uses a

b-tree that identi�es and sorts nodes by (gen, gsid)).
• Its txg value must be in the correct corridor of unsynced txgs and generation.

If the txg is too old or too young, the forged entry would be noticed by the

dependency tracking code when re-computing the counters.

Apart from random data corruption, we have considered the following scenarios and

concluded that they are out of scope for ZIL-PMEM:

• Implementation errors on the write path.

• Firmware bugs, e.g., in the Optane DIMM’s wear-leveling layers that could make

old entries re-appear.

• Deliberate injection of log entries by a malicious party with write access to

PMEM. This needs to be part of the threat model if ZIL-PMEM is extended to sup-

port OpenZFS Native Encryption. Forged entries should be trivially detectable

by cryptographically authenticating the entry header, e.g., using the AEAD ci-

phers that are already in use for the encryption feature.

• Accidental reuse of log GUIDs. If two HDLs use the same log GUID to write their

entries, the HDLs will each claim their and the other HDL’s entries. This scenario

is very unlikely because we generate log GUIDs as 128-bit random numbers and

check for collisions with other HDLs.
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5.7 HDL: Replay Crash Consistency
The PRB and its HDLs must be able to tolerate a system crash at any time in their

lifecycle. With regard to recovery, this means that claiming must be restartable and

replay resumable across crashes. Further, the restarted or resumed recovery procedure

must be able to handle online and o�ine loss of entries due to data corruption.

Crash consistency for claiming is trivial because it runs during pool import before

txg sync starts. Thus, all changes made by claiming are accumulated in DRAM and

atomically persisted by the �rst transaction group that is synced after pool import.

From the perspective of HDLs that are in state logging, this �rst transaction group is

precrash_txg+1. If the system crashes before that txg is synced, a subsequent import

attempt restarts from the same state as the previous one. HDLs that are already in state

replaying make no modi�cations during claiming — they only build up DRAM state,

i.e., the set of entries held back for replay.

Replay is complicated by two additional aspects:

• Replay of an individual log entry is not idempotent. This is a property of the ZIL

log record format and its logical structure and thus a hard constraint.

• Replay is spread across several transaction groups and hence not atomic. (See

this chapter’s Section 2.3.3 on OpenZFS background.)

Our solution is to externalize all state of the replay algorithm, including the counters

used for dependency tracking, to a structure called replay state. Whenever we replay

an entry, we checkpoint replay state. We store the latest checkpoint in the ZIL header

every time we replay an entry. If the system crashes, we recover replay state from the

checkpoint in the ZIL header.

The following variables are stored in replay state:

(genlast,gsidlast) The (E.gen,E.gsid) of the last entry E that was replayed.

(Corresponds to Elast in Secion 5.5.)

Live Table The live table at the time the entry was replayed, i.e.,Ri with i ∈ 0, 1, 2, 3.

Last Table The last table at the time the entry was replayed.

Eseal An arti�cial entry header that is used to detect lost entries at the end of

the log structure.

The crash-safe replay procedure performs the following steps:

1. Claiming reads the log GUID from the ZIL header, then scans the PRB and holds

back the log’s entries from garbage collection.
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• If the HDL is in state logging, claiming transitions the ZIL header to replay-
ing and initializes the replay state checkpoint in the ZIL header.

– (genlast, gsidlast) is (0, 0).
– live table and last table are zeroed out.

– Eseal is determined as follows.

(a) Construct a temporary replay sequence

Stmp = {Es : s ∈ 1, . . . , n}.
(b) In DRAM, append an arti�cial entry En+1 to Stmp.

En+1.gen = En.gen+ 1, En+1.gsid = 1, and

En+1.txg = En.txg.

(c) Iterate over Stmp to compute and validate the counters for E1,...,n.

When arriving at En+1, store the expected counter values in Eseal.

• If the HDL is already in state replaying, the ZIL header is not modi�ed.

2. Replay recovers its replay state from the checkpoint C in the ZIL header.

3. Replay constructs a replay sequence S from the held back entries.

4. While replaying S, the following happens for each entry Es ∈ S:

(a) Skip Es if it has already been replayed, i.e.,

(Es.gen,Es.gsid) ≤ (C.Elast.gen, C.Elast.gsid).
Otherwise:

(b) Create a backup checkpoint Cb of replay state.
(c) Perform dependency tracking as described in the previous section.

(d) Create a checkpoint CEs .

(e) In one DMU transaction, replay Es and store CEs in the ZIL header.

(f) If replay fails or the DMU transaction fails, abort the transaction and roll

back the in-DRAM version of replay state to Cb.

Note that steps 1 and 3 construct a new replay sequence on every pool import, based on

a new scan of PRB. This allows for the handling of o�ine data corruption in PRB. As-

sume that we lose an entry Em while the system is o�ine. If Em.txg ≤ precrash_txg,

the loss of the entry is unnoticed because Em is by de�nition not part of the replay se-

quence. If Em is skipped by step 4a, the loss of the entry might be worth reporting but

does not a�ect replay because it has already been replayed. Otherwise, dependency

tracking will eventually detect that Em is missing if, and only if, any other entry de-

pends on it. Eseal is an arti�cial dependency to ensure that lost entries in the last

generation are detected.

We handle online data corruption as follows. Claiming and replay only operate on

DRAM-bu�ered copies of the entry metadata called replay node. The replay callback

does not get direct access to the entry in PMEM but is forced to use a PRB-provided

accessor function that bu�ers the entry in DRAM. Before allowing access to the entry,

it ensures that the entry metadata still matches the data in the replay node. If either the
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read from PRB fails (e.g., due to checksum errors) or if the metadata does not match,

we know that the entry has been corrupted since the PRB scan.

Note that the last generation Eseal.gen−1 of the log structure is not protected against

re-appearing log entries. Suppose that during initial claiming, entries (42, 1) and (42, 3)
in generation 42 are observed as the last entries of the replay sequence. In that case,

(Eseal.gen,Eseal.gsid) is (43, 1) and the counters of Eseal only account for these two

entries, and all previous generation’s entries. Now assume that another entry (42, 2)
had been written but was temporarily invisible during initial claiming, e.g., due to tem-

porary data corruption. If for some reason (42, 2) becomes visible again, and we start

replaying, then (42, 2) will be replayed even though it was not visible during claim-

ing. And if (42, 2) were to replace (42, 1) or (42, 3), we would not even notice the

counter mismatch when arriving at Eseal. This behavior seems desirable in the sense

that replay recovers as much committed data as possible. However, in combination

with WR_INDIRECT ZIL log records, it can lead to pool corruption. ZIL-PMEM does

not currently support WR_INDIRECT records due to this problem, as well as another

WR_INDIRECT-related issue that also a�ects ZIL-LWB, which we discovered during

this thesis [64]. The solution which we proposed in the upstream issue tracker could

also be used by ZIL-PMEM to properly detect entries that appeared after claiming.

Speci�cally, it would provide infrastructure to store a variable amount of data in the

main pool during claiming. ZIL-PMEM could use this facility to record the identity

of all claimed WR_INDIRECT entries in the main pool. Before replaying an entry, it

would check whether the entry had been claimed and treat it as absent if that is not the

case. Since this solution would be superior to Eseal, we have not yet implemented
handling of Eseal.

5.8 HDL: Comprehensive Example Of Replay
In this section, we present a comprehensive example of the replay algorithm. Figure 5.6

visualizes

• how precrash_txg controls which entries the algorithm considers for replay,

• how Elast causes already-replayed entries to be skipped after a crash (“last re-

played” in the �gure), and

• how we detect lost entries through the counters that the write path stores in

each entry.

Due to the shortcomings of Eseal that we mentioned in the previous section, we do not

cover it in the example. However, the reader may imagine that entry "L" is Eseal to get

an idea of its e�ect.
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Figure 5.6: Comprehensive example of the replay algorithm.
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5.9 PRB: DRAM Data Structure
After the description of HDL in the previous sections, we now move down to the level

of PRB. The central requirements for PRB are

• persistence of log entries in PMEM,

• parallel insertion of log entries from multiple threads and HDLs,

• garbage collection of obsolete log entries,

• measures to detect data corruption, and

• prevention of excessive on-CPU waiting for PMEM IO.

Our design is built around the chunk abstraction. A chunk is a contiguous segment

of PMEM that acts as an insert-only container for log entries. PRB’s role is to medi-

ate access between HDLs and chunks. When a thread writes an entry to the concep-

tual set of entries that is the PRB, it actually inserts the entry into one of the PRB’s

chunks. Once a chunk is full, PRB lets it sit unmodi�ed until all entries in it are ob-

solete. Garbage collection then removes all entries in those obsolete-only chunks and

makes them available for reuse by writers. The PRB scan used by claiming and replay

is an iteration over the entries of all chunks of the PRB. If a chunk contains at least one

candidate entry for replay, the claiming HDL holds the chunk back from the write path

and garbage collection. Note that this design fully decouples storage location (chunk)

from log structure (encoded in entry metadata, see previous sections).

Each chunk is represented by a DRAM object that holds the following values:

PMEM location The chunk’s start and end address in PMEM. These values do not

change for the lifetime of the chunk.

Claim refcount The number of HDLs that claimed at least one entry in the chunk for

replay. Chunks with non-zero claim refcount are exempt from garbage collection

and the write path.

Max txg The maximum transaction group of the entries that were written to this

chunk. This value is used by garbage collection to determine when all entries in

the chunk are obsolete.

Write position The PMEM address where the next entry will be written. We discuss

the PMEM layout of the chunk in more detail in Section 5.10.

We move chunks between the following data structures to keep track of their current

role within PRB.

Commit Slots PRB maintains a roster of commit slots, each of which has an asso-

ciated open chunk. When a thread writes an entry through a HDL, the thread

�rst acquires a commit slot to gain temporary exclusive access to its open chunk.

Then, it writes the entry to the open chunk and immediately releases the slot so

that other threads can acquire it.
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Free List The free list holds empty chunks. Their claim refcount and max txg is zero

and their write position is reset to the chunk’s start address. A log writer that

needs a new chunk for its commit slot puts the commit slot’s current open chunk

on the full list (see below) and gets a new chunk from the free list.
Full Lists The full lists contains chunks that wait for garbage collection. PRB main-

tains one full list for each unsynced txg Ti. The full list for Ti contains exactly

those (full) chunks whose max txg is Ti. After Ti has been synced, garbage col-

lection empties the chunks on Ti’s full list and moves them to the free list. Note

that it is su�cient to maintain three full lists at any given time — one for each of

the three unsynced transaction groups open, quiescing, and syncing. The three

lists can be represented as an array of three lists that is indexed by Ti mod 3.

The lists are cyclically reused as new transaction groups are born. Our imple-

mentation follows the common ZFS idiom of using four lists that are indexed by

T_i&3 where & is the bitwise and operation.

Wait Replay List During the claiming phase, all of the PRB’s chunks are on the wait
replay list. The HDLs scan the chunks on this list. If a chunk contains at least

one entry that needs to be held back for replay, the HDL increments the chunk’s

claim refcount. Once claiming is done and txg sync triggers the �rst garbage

collection cycle, any chunk on this list that has a zero refcount is emptied and

moved to the free list. This rule also applies to subsequent garbage collection

cycles so that the write path can re-use a chunk after all of its holding HDLs

have �nished replay. Note that it is critical for replay crash consistency to defer

garbage collection until after the last txg of replay of the last HDL that held

the chunk has synced. Suppose we would garbage-collect chunks immediately

after the last holding HDL has �nished replay. If we crashed before the on-disk

ZIL header has transitioned from state replaying to nozil, the garbage-collected

chunk’s entries would be missing when resuming replay after the crash.

Figure 5.7 visualizes the possible transitions of a chunk over its lifetime and Figure 5.8

provides an example.



5.9. PRB: DRAM DATA STRUCTURE 69

Figure 5.7: The di�erent owners of a chunk over its lifetime and the events that cause

ownership transitions.

Figure 5.8: Example for transitions of chunk ownership. The PRB is constructed with

all eight chunks added as _for_claim. Claiming (A) determines that chunks 0, 1, 3, 4,

and 6 need to remain on the wait replay list because they contain entries for HDL logs

that need replay. Chunks 2, 5, and 7 only contain obsolete entries and move to the

free list. We do not replay any of the logs. However, a log writer starts writing a new

log in B. It �nds that its commit slot (#0) has no active chunk. Thus, it and moves the

�rst chunk on the free list (i.e., chunk 2) to the commit slot. After writing the entry to

chunk 2 the log writer releases the commit slot. Another log writer acquires commit

slot #0 and writes entries to it. Chunk 2’s capacity is insu�cient to hold the last entry

(C). The thread places chunk 2 on the correct full list for chunk 2’s max txg and �nds

a new chunk on the free list for the commit slot (not shown). Eventually, txg sync
triggers garbage collection for the txg that is chunk 2’s max txg which resets chunk 2’s

in-PMEM and in-DRAM sequence and subsequently places it back onto the free list.
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5.10 PRB: PMEM Data Structure
As explained in the previous section, PRB is built on top of contiguous segments of

PMEM which we call chunks. However, PRB only consumes the chunks, it does not cre-

ate them. Chunk allocation is the responsibility of the PRB consumer, i.e., ZIL-PMEM.

This design improves modularity and testability because it decouples the following

two concerns:

Resource Acquisition The PRB consumer is responsible for integrating the

PMEM SLOG into the zpool, discovering its memory mapping, and partition-

ing the PMEM space into chunks.

PMEM Data Structure PRB implements the persistent data structure that ac-

tually stores entries inside the chunks.

This separation of concerns relieves PRB from the need to de�ne additional structures

to track the partitioning of PMEM space into chunks. It is the consumer’s responsibility

to provide the PRB with the same set of chunks every time the PRB is constructed.

However, since we do not store absolute addresses, the mapping of each chunk in the

virtual address space is allowed to change between PRB constructions.

Entries are variable-length records and are stored within chunks in a contiguous se-

quence. Each entry is represented as a �xed-length 256 byte sized header and a variable-

length body. The �rst entry starts at the chunk’s start address which must be aligned to

256 bytes. The space after each entry is zero-padded to the next multiple of 256 bytes.

The next entry starts after the padding. The sequence is terminated either explicitly by

an invalid entry header or implicitly if the last entry has �lled the chunk completely.

Figure 5.9 provides an example chunk layout. Note that the ordering of entries within

the chunk has no semantic value as the logical view on the chunk is that of a set of

entries.

The entry body is a verbatim copy of an opaque byte slice provided by the log writer.

(In ZIL-PMEM, this byte slice is the ZIL log record structure that is shared among all

ZIL kinds.) The entry header’s contents are managed by the PRB and HDL. Its contents

are as follows:

HDL-scoped metadata The metadata required for attribution of a log entry to

a HDL and subsequent replay.

• Log GUID

• Generation

• Generation-Scoped ID

• Encoded Counters for dependency tracking.

Body Length We store the exact body length in bytes. The zero padding in the

chunk sequence is not considered part of the entry itself.
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Body Checksum Fletcher checksum of the body data.

Header Checksum Fletcher checksum of the header to ensure data integrity

of the metadata. If the header checksum is corrupted, then none of the other

header �elds can be trusted.

Zero Padding The unused bytes in the header have the de�ned value of zero.

Their value is part of the header checksum.

Chunks must be su�ciently large to hold at least one entry because there is no mech-

anism to split an entry across multiple chunks. The smallest chunk’s size determines

the maximum entry size that can be written to PRB. However, for multicore-scalability,

it is advisable to use chunk sizes that are much larger than a single average entry, as

we will elaborate on in Section 5.13.

Figure 5.9: Example chunk layout. Note that although we partition the PMEM space

very regularly in this example, the PRB consumer is free to use variable-sized chunks.

Also, it is not required that any two chunks are positioned contiguously, e.g., there

could also be a gap between chunk #2 and #3.

5.11 PRB: Chunk Traversal
HDLs scan the PRB during claiming to put their holds on chunks that contain re-

playable log entries. During replay, the HDLs scan their held chunks again to con-

struct the replay sequence. The building block for both procedures is the iteration
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over the entries of a chunk. We call this iteration process chunk traversal and present

the algorithm in this section.

As a reminder, the data layout within the chunk is as follows:

• The �rst entry header starts at chunk o�set zero. Its size is �xed (256 bytes).

• The variable-length body starts immediately after the header. Its length is stored

in the header.

• The body is followed by zero padding to the next 256 byte multiple.

• The next entry’s header starts there.

• An invalid header marks the end of the chain. A header is invalid if its header

checksum is invalid or if the log GUID is invalid. The (128 bit) log GUID is invalid

if at least the upper or lower 64 bits are zero.

• Entries are never split between chunks.

In the absence of data corruption in PMEM, chunk traversal visits each valid entry in

the sequence and stops at its end. For the case where PMEM is corrupted, we distin-

guish the following conditions:

Machine check exception (MCE) If the PMEM hardware detects uncorrectable data

corruption, it raises an MCE. The Linux kernel’s memcpy_mcsafe API provides a

memcpy-compatible interface that converts MCEs into error return values. We

always use this API to bu�er PMEM contents in DRAM before accessing them.

The error handling for MCE errors is the same as for invalid checksums in en-

try header and body, which we describe below. (See Section 2.2.2 for details on

MCEs.)

Header: Detected Data Corruption If header checksum validation fails, the header

was either corrupted or never completely written. The latter case is critical for

crash consistency on the write path, as we will elaborate on in Section 5.13.3.

Regardless of the cause, an invalid header’s values cannot be trusted, and thus

the traversal stops.

Header: Undetected Data Corruption If the header checksum does not detect data

corruption in the header, the behavior is implementation-de�ned. Our imple-

mentation ensures that that memory accesses are constrained to the chunk’s

bounds.

Data corruption in the body The traversal algorithm does not read the body but in-

stead returns a closure that can be invoked for this purpose. The closure reads the

body into DRAM using memcpy_mcsafe, then validates the body checksum stored

in the header. Validation failures are returned as an error. The caller can decide

whether they want to iterate further or propagate the error up the call stack.
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Note that in our C implementation, the closure is replaced by the opaque struct

zilpmem_replay_node_t and function prb_replay_read_replay_node.

Data corruption in the padding We require that the padding in the space that fol-

lows the body to the next 256 byte multiple consists only of zero. We validate

this property in the closure that reads the body. Validation failure results in a

distinguished error being returned from the closure. Such an error is indicative

of data corruption or an incorrect implementation on the write path. The caller

of the traversal algorithm should surface it to the administrator but may choose

to proceed.

The following listing provides the pseudo-code for chunk traversal.

Algorithm: iter_chunk () - Iterate over the entries in a chunk.

Inputs:

ch_base chunk 's base address
ch_len chunk 's length

Procedure:
assert ch_base % 256 == 0
assert sizeof(entry_header_t) == 256
assert ch_len >= 256
assert ch_len % 256 == 0

e := ch_base
while (e < ch_base + ch_len) {

entry_header_t eh;

// read header with a function that handles MCEs
memcpy_mcsafe (&eh, e, sizeof(eh))?;

// invalid hdr checksum or id terminate the sequence
validate_header_checksum(eh)?;
if eh.log_guid 's upper or lower 64 bits are zero {

return None;
}

body_ptr := e + sizeof(eh);

if body_ptr + eh.body_len > ch_base + ch_len {
return Err ("""

entry out of chunk boundary:
a) writer implementation error
b) undetected header corruption

""");
}
e += sizeof(eh) + body_len;
e = roundup_to_next_256byte_multiple(e);

padding_ptr := body_ptr + eh.body_len
padding_len := e - padding_ptr

read_body := |buffer: *u8| {
memcpy_mcsafe(buffer , body_ptr , eh.body_len )?;
validate_body_checksum(eh, buffer , eh.body_len )?;
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pmem_is_zero(padding_ptr , padding_len )?;
return Ok(());

};
yield Some((eh, read_body ))

}

Example:

for (entry_header , read_body) in iter_chunk (...) {
if entry_header.txg <= precrash_txg {

continue;
}
buf := buffer of size entry_header.body_len
read_body(buf)?;
...

}

5.12 PRB: Garbage Collection
We already covered the essence of garbage collection in Section 5.9: if the capacity

of an acquired commit slot is insu�cient, the log writer puts it on the full list for the

chunks’ max txg and gets a new chunk from the free list. After txg sync has written out

that max txg, it triggers garbage collection, which removes all entries in the chunks on

the full list for max txg.

We remove all entries in a chunk in O(1) time by zeroing the �rst entry header in the

chunk (location: o�set zero). This is su�cient to prevent any further traversal of the

chunk by the algorithm presented in the previous section because a zero log GUID is

de�ned as a sequence terminator.

5.13 The Write Path
A thread that writes an entry to a HDL needs to perform the following tasks:

• Find a target chunk using the commit slot mechanism (Section 5.13.1).

• Determine the HDL-scoped metadata, i.e., log GUID, txg, gen, gsid, and counters.

• Compute header and body checksums.

• Insert the entry into the target chunk in a crash-consistent manner.

Our goal is a design with low write latency, good multicore-scalability, and CPU e�-

ciency. We identify the following factors as particularly relevant:

Checksumming Checksumming adds latency but does not concern multicore scal-

ability since no coordination is required between writers. Our implementation

uses ZFS’s optimized implementations of the Fletcher checksum.
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Dependency Tracking Counters We must update the dependency-tracking coun-

ters on every entry write operation. Since the counters are HDL-scoped, this

only presents a scalability concern if a single HDL is written from multiple

threads. Parallel writes to the same HDL do not happen in ZIL-PMEM proper

but are relevant for our ZVOL-speci�c ITXG bypass (Section 6.3.5).

Commit Slot Acquisition & Chunk Replacement Both the commit slots and the

chunk lists are shared among all HDLs. All threads that write to any HDL of the

PRB compete for these resources, making it a multicore scalability challenge.

Optane Characteristics We develop and evaluate ZIL-PMEM for/on Intel Optane

DC Persistent Memory. The performance characteristics of Optane DIMMs are

signi�cantly di�erent from regular DRAM. Yang et al. have established that the

Optane PMEM hardware is organized in units of 256 bytes. For example, the

access granularity and kind of store and cache �ush instruction have signi�cant

impact on the achievable write bandwidth. For the size of log entries written by

ZIL-PMEM, the use of AVX-512 non-temporal store instructions is recommended

for highest possible performance. [58].

PMEM Bandwidth Limits & Multicore Scalability It is inherent to the program-

ming model for persistent memory that wait time for PMEM IO is spent on-

CPU. For example, instructions that architecturally depend on a preceding write

to PMEM (store+cache�ush+sfence) will stall until the �ushed cache line reaches

the power-fail protected domain of the CPU [50]. This is problematic from a CPU

utilization perspective: if multiple threads attempt to write at a higher bandwidth

than PMEM can sustain, they still appear busy towards the OS thread scheduler

and waste CPU time that could be used more productively by other threads in the

system. Yang et al. have shown that a single Optane DIMM’s write bandwidth

can be exhausted by one CPU core at 2 GB/s. Write bandwidth decreases to

1 GB/s at ten or more concurrently writing CPU cores [58]. Whereas excessive

on-CPU waiting might be the right trade-o� in certain userspace applications

of PMEM, a kernel �le system such as ZFS cannot make assumptions about the

system’s overall CPU priorities. We expect that PMEM write bandwidth can be

exhausted in real-world use cases for ZIL-PMEM. Therefore, our design must

�nd a way to limit concurrent access to PMEM and shift wait time o� the CPU.

5.13.1 Commit Slots
Commit slots are our abstraction to enable multiple threads to write entries concur-

rently. The goal is to grant up to ncommitters parallel writers temporary exclusive ac-

cess to a chunk into which they can write their log entry. For this purpose, a thread that

wants to write an entry has to acquire a commit slot S ∈ 0, 1, . . . , ncommitters− 1.

Each thread that is simultaneously committing gets a di�erent commit slot. If no com-

mit slot is available, the function to acquire the commit slot blocks. Associated with
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each commit slot is a PMEM chunk which we refer to as open chunk. A thread that has

acquired a commit slot is allowed to write its entry to the slot’s open chunk.

The limitation to ncommitters parallel writers is desirable to avoid excessive on-CPU

waiting on PMEM. Let us make the simplifying assumption of a �xed maximum write

bandwidth ofBmax[byte/s] to PMEM before latency increases dramatically due to queu-

ing. Then an equal distribution of that bandwidth yields
Bmax

ncommitters
[byte/s] of write

bandwidth per writer. Assuming that writers do not exceed this limit, we can derive

latency guarantees for writing entries, dependent on entry size.

We implement commit slots using a semaphore initialized to ncommitters and a bitmask

with ncommitters bits. The thread that acquires a commit slot �rst enters the semaphore

and then �nds and �ips a zero bit in the bitmask. The zero bit’s index is the commit

slot number. We use opportunistic spinning to �nd and �ip the bit. The following

pseudo-code explains the acquisition and release procedures.

Procedure For Commit Slot Acquisition:
Input:

sem semaphore
bm pointer to PRB -wide bitmask with ncommitters bits

Output:
The commit slot number.

Steps
Enter semaphore.

my_bm <- atomic_load(bm, SeqCst)
'retry:

idx <- find first set bit index in (~my_bm)
if idx == 0:

panic: idx=0 indicates there is no free bit ,
but the semaphore guarantees that

idx -= 1
if idx >= ncommitters:

panic: semaphore guarantees that there are
free commit slots

my_bm = my_bm | (1<<idx)
if compare_and_swap(bm, &my_bm , SeqCst ):

// we won the race => return the commit slots
return idx

else:
// we lost the race with another committer
// => retry
// (my_bm contains the actual value of bm)
goto retry

---

Procedure For Commit Slot Release:

Input:
cslot The commit slot number returned on acquisition.

Steps:
Atomic bitwise and of bm with ~(1<<idx)
Exit Semaphore
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The procedure above is all the PRB-wide coordination that is required for writing a log

entry, if the acquired slot’s open chunk’s capacity is su�cient. If capacity is insu�cient,

the writing thread replaces the full open chunk with a new one. To accomplish that,

it puts the current open chunk on the correct full list and gets a new open chunk from

the free list. Access to the PRB’s lists is protected by a PRB-wide mutex. The potential

contenders for this mutex are up to ncommitters writer threads and the txg sync thread

that performs garbage collection.

Getting a new chunk from the free list fails if the free list is empty. The log writer

can choose whether to block and wait or fail the log entry write operation with an

error. Block-and-wait is implemented through a condition variable that is signaled by

garbage collection for every chunk that it puts back on the free list. If the log writer

chooses to block and wait during chunk replacement, it must guarantee that it does

not prevent txg sync from making progress to avoid a pool-wide deadlock. In practice,

this means that the log writer must not hold a DMU transaction open when writing

an entry. Note that this is the case for ZIL-PMEM proper because zil_commit is called

after the DMU transactions have �nished or failed. However, for the ITXG bypass for

ZVOLs (Section 6.3.5), we write log entries from within the DMU transaction and thus

need to use the non-blocking mode.

Sharing the slots (and thus chunks) among all threads and HDLs in the PRB is of am-

biguous value from perspectives other than bandwidth limitation:

Space E�ciency Sharing chunks causes entries to be packed into a small number of

chunks, even more so if we implemented some form of best �t selection scheme

for commit slots. Packing is bene�cial for space e�ciency because the spread
between the minimum and maximum txg of the entries in a chunk is small, en-

abling timely garbage collection.

Blast Radius However, the concentration of entries in a chunk also increases the blast

radius of data corruption due to the chunk’s physical data structure, which we

discussed in Section 5.10. In particular, data corruption within the entry meta-

data of one HDL’s entry can render another HDL’s entry unreachable during

PRB scan if they are stored in the same chunk.

Cache E�ciency Our acquisition procedure deterministically picks the lowest avail-

able commit slot. It is thus very likely that chunks bounce around CPU cores, re-

sulting in low temporal locality. Note that, due to the use of non-temporal store

instructions when writing log entries to PMEM, this only impacts the chunk

DRAM object. We brie�y experimented with per-core commit slots during de-

velopment and found no noticeable performance di�erence to the approach pre-

sented above on a non-NUMA system with a single non-interleaved Optane
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DIMM. This topic should be revisited for NUMA support and interleaved Op-

tane con�gurations.

5.13.2 HDL-Scoped Metadata
We have already addressed the algorithm to compute the HDL-scoped entry metadata

(Log GUID, txg, gen, gsid, counters) in Section 5.5. This subsection only addresses

multi-threading and scalability concerns.

HDL-scoped metadata does not pose a scalability concern if entries are written sequen-

tially. This is the case for ZIL-PMEM proper, which uses a mutex to serialize zil_commit

calls. (Remember from Section 2.3.3 that the ZIL’s shared itxg structure de�nes the se-

quential commit list model.) However, for the ITXG bypass for ZVOLs (Section 6.3.5),

the ZVOL dataset’s HDL can be written in parallel.

Multiple threads are allowed to write to a single HDL simultaneously if they do not

start a new generation. Threads that start a new generation must wait for all threads

that wrote entries to the previous generation to �nish writing. The reason is that the

new generation’s entry logically depends on the previous generation’s entry. Note that

it would be su�cient to prevent the function calls from returning out of dependency

order while allowing the new generation’s entry to be written in parallel with the

old entries. Such a system is used by ZIL-LWB’s commit ITXs which uses condition

variables to wake zil_committing threads up when the last LWB that contains one of

their commit list’s records has been written. However, we could not use commit ITX
in ZIL-PMEM because its implementation is too closely tied to the concept of LWBs.

For the ITXG bypass, we (use a read-write-lock which we elaborate on in Section 6.3.5.

Within the HDL, we use a spinlock to serialize access to the state used for dependency

tracking (live table, last table).

5.13.3 Crash-Consistent Insert
After the commit slot has been acquired, a target chunk been selected, and the HDL-

scoped metadata determined, we are ready to insert the entry into the chunk. Remem-

ber from Section 5.10 that the chunk is a sequence of entries that is terminated by an

invalid entry header. To insert the entry into the chunk, we must append the entry to

the sequence in a way that is crash-consistent with regard to the traversal algorithm

(Section 5.11):

Appending an entry En+1 to a chunk C that contains a sequence of entries

E1, . . . , En must be atomic from the perspective of traversal. After a
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system crash or power failure during the append operation, traversal of C
must either �nd E1, . . . , En or E1, . . . , En, En+1.

The following algorithm describes the procedure and invariants during the append

operation. Figure 5.10 contains a step-by-step visualization.

Inputs:
ch The chunk into which we append
e The entry that we append to ch's sequence.

Procedure:
Invariant 1: Traversal will stop at ch.pos because

either: ch.pos points to PMEM space that
is an invalid header

or: there is no space left in the chunk

Phase 1:
Write e.body to address ch.pos + 256
Write trailing zero padding
If there is still space in the chunk at

address ch.pos + 256 + e.body_len + padding_len:
Assert that the space is at least 256 bytes.
Write an invalid follow header (256 zero bytes)

to that address.
Cacheflush + Sfence

Corrolary 1: Neither body nor follow header
will be visited by traversal
because traversal still stops
at address ch.pos (Invariant 1).

Phase 2:
Write e.header (256 bytes) to address ch.pos
Cacheflush + Sfence

Corrolary 2: Traversal visits the entry written
to ch.pos and stops at the follow
header.

Invariant 1 can be proven by induction: if the entry being written is the �rst entry

in the sequence (base case) the chunk was fetched from the free list which is de�ned

to only contain chunks that are empty. (Empty means that the write position (ch.pos)

is at the chunk’s base address and that the PMEM at the write position is an invalid

header.) The induction step is that if an entryEn+1 is appended to an existing sequence

En, invariant 1 holds as well. This is true because the space occupied by En+1 contains

an invalid follow header written by phase 1 when En was appended to the sequence.

Stores made in Phase 1 for En are guaranteed to be persistent before any store for En+1

happens due to the cacheflush+sfence at the end of Phase 1. Note that we do not need

to address the case where the chunk is full because we cannot append En+1 to a full

chunk.

The �rst sfence in phase 1 is required for correctness if we do not trust the body check-

sum to detect partial writes. If we omitted the sfence in phase 1, it would be possible

that the entry header written in phase 2 reaches PMEM completely but the body writ-
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ten in phase 1 does not. In that case, after a crash, the traversal algorithm would ob-

serve a valid header but a body space with unde�ned content. We would rely fully on

the body checksum to detect the partially written body. If the checksum is too weak,

the replayer’s interpretation of the unde�ned body contents determines subsequent

behavior. Corruption of the dataset is a likely consequence.

The sfence (phase 2) is required for correctness because we must conservatively assume

that the log writer’s subsequent store instructions (in program order) depend on the

entry having reached stable storage.

Figure 5.10: The crash-consistent append operation to a PMEM chunk. The traversal

algorithm reaches the existing entries at all times and reaches the new entry only after

its body and header have been written completely.

The following implementation details of the append operation are relevant for latency

and e�cient use of CPU time:

• For ZIL-PMEM, the use of sfence in phase 1 came with negligible impact on

overall latency during development. We assume that this is because the wait

time added by the sfence is negligible compared to the write time for the en-

try body. For example, the entry body and zero padding for a 4k sync write is

sizeof(lr_write_t) + data+ padding = 4096+ 192+ 64 = 4352 bytes large.

Assuming 2 GiB/s write bandwidth for a single Optane DIMM [58], the write

time for the entry body is ca. 2 us. In contrast, the derived latency for a 256 byte
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write at that rate is ca. 0.12 us. If we use this value as an approximation for the

cost of the sfence, its latency contribution is only
0.12

0.12+2
= 5.6%.

• All writes to PMEM happen in multiples of 256 bytes because 256 bytes is Op-

tane’s internal write unit size. Writes below this size cause read-modify-write

cycles in the hardware and thus cost performance [58, 61].

• We use AVX-512 non-temporal store instructions (movnt) instead of regular stores

and cache �ushes. Again, this addresses established performance properties of

Intel Optane DC Persistent Memory [58].

• We also use ZFS’s optimized implementation of the Fletcher checksum to com-

pute body and header checksums. Whereas the best implementation is chosen

by benchmark dynamically at runtime, it is safe to assume that some SIMD ISA

extensions such as AVX-512 will be used if available.

• OpenZFS cannot rely on the Linux kernel’s interface for saving FPU state due to

licensing issues [26]. Unless the FPU is used by a dedicated kernel thread, ZFS

must temporarily disable preemption, mask local interrupts, and manually save

FPU state. PRB is written directly from the task that calls zil_commit and thus

incurs this overhead. We refactor ZFS’s FPU state management abstraction so

that FPU context is only saved once for both checksum computation and writ-

ing to PMEM. The time that is spent in this suboptimal state is bounded by the

maximum log entry size.

5.14 API Walkthrough
In this section, we provide a brief walkthrough of PRB/HDL’s API that is consumed by

the ZIL-PMEM ZIL kind. In the implementation, most types and functions are pre�xed

with zilpmem_ or zilpmem_prb_t which we omit for brevity.

5.14.1 PRB Setup
prb_t* prb_alloc(size_t ncommitters );
void prb_free(prb_t *b, bool free_chunks );

chunk_t* chunk_alloc(uint8_t *pmem_base , size_t len);
void chunk_free(chunk_t *c);

void prb_chunk_initialize_pmem(chunk_t *c);
void prb_add_chunk(prb_t *prb , chunk_t *chunk);

The zpool import procedure allocates the PRB using the prb_alloc function. The re-

turned prb_t is owned by the caller, which is responsible for freeeing it using prb_free

during pool export.
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The PRB consumer allocates the chunk objects using chunk_alloc. It adds the chunk

to the PRB using prb_add_chunk. The PRB assumes ownership of the chunks that are

added to it. When the PRB is constructed for the �rst time, the PRB consumer must

call prb_chunk_initialize_pmem to reset the PMEM sequence to an empty state.

The free_chunks argument to prb_free determines whether the PRB should free the

chunks objects that were added to it, or whether the ownership moves back to the

caller. Note that freeing the chunk object (chunk_free) does not alter the chunk’s PMEM

state.

HDL Setup

void zil_header_pmem_init(zil_header_pmem_t *zh);
hdl_t* prb_setup_hdl(prb_t *prb , const zil_header_pmem_t *hdr);
void prb_teardown_hdl(hdl_t *hdl ,

bool abandon_claim , zil_header_pmem_t *upd);

HDLs recover their DRAM state from the ZIL header (zil_header_pmem_t). The setup

prb_setup_hdl function takes a constant pointer to the last-synced header. The pointer

is not internalized in HDL — the pointee’s lifetime may be as short as the function call.

The PRB consumer instantiates all dataset’s HDLs during pool import or whenever a

new dataset is created. For new datasets, the initial value for the ZIL header (state

nozil) is set by zil_header_pmem_init.

When the head dataset is destroyed, or the pool is exported, the PRB consumer calls

prb_teardown_hdl to destroy the HDL. The PRB must only be freed after all of its HDL’s

have been torn down.

Claiming

check_replayable_result_t prb_claim(
hdl_t *hdl , uint64_t pool_first_txg ,
zil_header_pmem_t *upd);

After the PRB is constructed and HDLs are set up, we must claim the log entries of all

datasets’ HDLs. The corresponding function prb_claim is invoked by the pool import

procedure for each HDL. The pool_first_txg is the pool’s �rst new transaction group.

For HDLs in state logging, pool_first_txg - 1 becomes the precrash_txg.

prb_claim returns an update to the ZIL header through the upd out-parameter. We em-

ploy this pattern throughout the entire PRB API. It is always the API consumer’s re-

sponsibility to ensure that the update is correctly persisted in the correct transaction

group.
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Claiming can fail, e.g., if the procedure detects a missing entry for the HDL (claiming

performs a dry-run of replay internally). The API consumer de�nes the error handling

policy. It can either abort pool import or choose to abandon the log. To abaondon the

log, the API consumer must �rst tear down the HDL using prb_teardown_hdl with argu-

ment abandon_claim=true to release claims made during prb_claim. Then, the API con-

sumer can reset the ZIL header content using zil_header_pmem_init and re-instantiate

the HDL using prb_setup_hdl. The re-instantiated HDL is in state nozil.

After all HDLs have been claimed, the pool import procedure starts txg sync which

writes out the header updates made by claiming in the pool_first_txg. From that point

on, there is no need to coordinate HDL operations between di�erent datasets.

5.14.2 Replay
typedef struct { ... } replay_result_t;

replay_result_t
prb_replay(hdl_t *hdl , replay_cb_t cb, void *cb_arg );

typedef struct replay_node replay_node_t;
typedef int (* replay_cb_t )(void *rarg ,

const replay_node_t *rn,
const zil_header_pmem_t *upd);

typedef enum {
READ_REPLAY_NODE_OK ,
READ_REPLAY_NODE_MCE ,
READ_REPLAY_NODE_ERR_CHECKSUM ,
READ_REPLAY_NODE_ERR_BODY_SIZE_TOO_SMALL ,

} read_replay_node_result_t;

read_replay_node_result_t
prb_replay_read_replay_node(

const replay_node_t *rn,
uint8_t *body_out , size_t body_out_size ,
size_t *body_required_size );

void prb_replay_done(
hdl_t *hdl , zil_header_pmem_t *upd);

When a dataset is mounted, the mounting procedure must always call prb_replay. If the

HDL is in state nozil, the call is a no-op. If the HDL is in state replaying, the function

invokes the provided replay callback for each log entry that needs to be replayed in

replay order. The callback must perform the following steps for crash-consistent replay

for each replayed entry E.
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1. Start a DMU transaction tx.

2. Load the entry E into a DRAM bu�er using prb_replay_read_replay_node.

3. Apply the change encoded in E to the dataset.

4. Update the ZIL header to the value of *upd.

5. dmu_tx_commit(tx) the DMU transaction.

Note that the callback is forced to use prb_replay_read_replay_node function because

replay_node_t is an opaque type in the PRB API. The function forces the API consumer

to do DRAM bu�ering and protects against online and o�ine data corruption inter-

nally, as discussed in Section 5.7.

prb_replay can fail either due to an error returned by the callback, due to an error in the

scanning phase or due to log corruption. If the error is due to missing log entries, the

struct returned by the API contains the witness log entry (see Section 5.5). The caller

decides whether to retry replay or abandon the remaining unreplayable part of the log.

End of replay must be acknowledged explicitly by calling prb_replay_done. Abandoning

the log is done using prb_destroy_log (next section).

5.14.3 Writing Entries
bool prb_create_log(hdl_t *hdl , zil_header_pmem_t *upd);
void prb_destroy_log(hdl_t *hdl , zil_header_pmem_t *upd);

int prb_write_entry(hdl_t *hdl ,
uint64_t txg , bool needs_new_gen ,
size_t body_len , const void *body_dram );

After successful replay, the HDL is always in the unwritable state nozil. The log writer

must use prb_create_log to create a new log idempotently. If the HDL is in state nozil,
the function allocates a log GUID and transitions the HDL to state logging. Otherwise,

the HDL must already be in state logging, and the call is a no-op. If a new log was

created, the caller must ensure that the transaction group that persists the ZIL header

update has synced to disk before starting to write log entries. The caller distinguishes

the cases based on the function’s return value.

Log writers use the prb_write_entry function to write log records to the HDL. The log

record is treated as an opaque blob. PRB does not provide facilities to version di�erent

version of the encoding. In addition to the body (body_dram, body_len), the log writer

must provide two pieces of metadata:

txg The transaction group Titxg of the DMU transaction Ti whose changes Ci

are encoded in the log entry. Note: for ZIL-PMEM, this value is always the

same as the log record’s lrc_txg �eld.



5.14. API WALKTHROUGH 85

needs_new_gen Indicates whether a new generation should be started for this

log entry. It is the responsibility of the caller to serialize the start of a new

generation as described in Section 5.13.2. If a thread writes an entry with

needs_new_gen is true, that thread must be the only thread that is executing

zilpmem_prb_write_entry for the given HDL. The contrary is not true: multiple

threads may write entries in parallel to the same HDL if they set needs_new_gen

to false. Note that writers for di�erent HDLs do not need to coordinate at all.

Garbage Collection

void prb_gc(prb_t *prb , uint64_t synced_txg );

Whenever txg sync has �nished syncing a txg T to the main pool it must call prb_gc

with synced_txg = T. Note that unlike writing or recovering an individual log, garbage

collection is a PRB-level operation. Synchronization is handled internally.
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Chapter 6

Integration into ZFS

In this chapter, we describe how we integrate PRB/HDL into ZFS in three steps. First,

in Section 6.1, we describe how we re-architect ZFS to support di�erent ZIL imple-

mentations (ZIL kinds) at runtime (Section 6.1). Then, in Section 6.2, we present our

approach to making ZFS’s device management layer (VDEV) aware of persistent mem-

ory SLOG devices. Finally, in Section 6.3, we describe how we combine PRB/HDL and

PMEM SLOGs into the new ZIL-PMEM ZIL kind.

6.1 ZIL Kinds
Coexistence with the existing ZIL and preservation of ZFS’s crash consistency guar-

antees are two requirements for ZIL-PMEM (see Section 4.1.1). Our solution to both of

these problems is to re-architect ZFS to support di�erent persistence strategies for the

ZIL while sharing all code and data structures that ultimately de�ne crash consistency

semantics. In order to make the integration of ZIL-PMEM seamless to the end-user

(goal: simple administration), the persistence strategy is the same for all datasets in

a pool. The variable that determines the pool’s persistence strategy is its ZIL kind.

The following sub-sections present how we refactor ZFS to support ZIL kinds. The

existing ZIL, which uses LWBs for persistence (see Section 2.3.4) becomes the �rst ZIL

kind called ZIL-LWB. Note that some listings and �gures in this section already men-

tion ZIL-PMEM. However, in our implementation, all refactoring steps presented in

this section are separate commits that precede the introduction of the ZIL-PMEM ZIL

kind.

87
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6.1.1 ZIL Header
ZIL-LWB keeps its state in the ZIL header which is stored in the objset_phys_t struc-

ture. For ZIL kinds, we change the ZIL header to be a tagged union that uses the new

zh_kind_t enum as a discriminant. The existing ZIL-LWB header �elds are moved into

the zil_header_lwb_t type. ZIL-PMEM’s ZIL header, which we describe later in Sec-

tion 6.3, is the second member of that union. Figure 6.1 shows the relevant C structures

before and after the changes described in this paragraph.

typedef struct zil_header {
uint64_t zh_claim_txg;
uint64_t zh_replay_seq;
blkptr_t zh_log;
uint64_t zh_claim_blk_seq;
uint64_t zh_flags;
uint64_t zh_claim_lr_seq;
uint64_t zh_pad [3];

} zil_header_t;

typedef enum {
ZIL_KIND_UNINIT ,
ZIL_KIND_LWB ,
ZIL_KIND_PMEM ,
ZIL_KIND_COUNT

} zh_kind_t;

typedef struct zil_header_lwb {
/* fields of zil_header_t ,
* without zh_pad */

} zil_header_pmem_t;

typedef struct zil_header_pmem {
/* introduced later */

} zil_header_pmem_t;

typedef struct zil_header {
union {

zil_header_lwb_t zh_lwb;
zil_header_pmem_t zh_pmem;

};
uint64_t zh_kind;
uint64_t zh_pad [2];

} zil_header_t;

Figure 6.1: The ZIL header structs (in DRAM and on disk) before and after the intro-

duction of ZIL kinds. Note that we carve out the space for zh_kind from zh_pad[3] which

is guaranteed to be zeroed.

Compatibility

We register ZIL kinds as a zpool feature �ag. Feature �ags are OpenZFS’s mechanism

for expressing variants of the on-disk format.

Whenever we access the ZIL header, we �rst check the activation status of the feature

�ag. If the feature is not active, we implicitly know that the ZIL kind is ZIL-LWB and

always access zh_lwb. If the feature is active, we use the zh_kind discriminant �eld to

determine the ZIL kind.

ZIL kind implementations only access their sub-structure within the ZIL header. For

example, ZIL-LWB only operates on the zil_header_lwb_t structure, not zil_header_t.



6.1. ZIL KINDS 89

Hence, there is no di�erence to the ZIL-LWB implementation whether ZIL kinds are

enabled or not.

The migration path for activating ZIL kinds is simple since all ZIL headers in the

pool are guaranteed to be ZIL-LWB before the migration. The only change is to set

zh_kind = ZIL_KIND_LWB for all ZIL headers. (We found the ZIL_KIND_UNINIT variant,

which is the zero value, to be very helpful in catching initialization bugs and would

not want to miss it.)

New ZIL kinds, such as ZIL-PMEM, will require their own zpool features that are

marked as dependent on the ZIL kinds feature. However, this is not a solution for

decentralizing the assignment of new zh_kind_t enum variants to identify ZIL kinds in

zh_kind. We have not yet come to a satisfying solution for this problem.

6.1.2 Runtime State
In upstream ZFS, the ZIL runtime state is kept in the per-dataset zilog_t object. zilog_t

holds the itxg structure that is used to track uncommitted ITXs. zil_commit drains the

ITXs into the commit list and proceeds by packing their encoded representation (log

records) into LWBs. (See Section 2.3.3 and 2.3.4 for details.)

We observe the following properties of the upstream ZIL code:

• The itxg data structure de�nes the framework for ZFS’s crash consistency se-

mantics. Whereas ZPL and ZVOL code create the ITXs, the organization by itxgs

and the code that assembles the commit list constraints what can be expressed

in them.

• ITXs and even the commit list are independent of the LWB chain that is ulti-

mately written to disk. The commit list merely de�nes the set and order of ZIL

records that need to be persisted to some form of a sequential log.

• The interface between the ITX- and LWB-related code is limited to the commit
list and its contents. The responsibilities are thus already (conceptually) sepa-

rated.

Given these insights we refactor the ZIL implementation (zil.c) as follows:

1. Move all non-ITX functions into a separate module zil_lwb.c and pre�x them

with zillwb_. If the function was part of the public ZIL API, add a wrapper func-

tion with the original name to zil.c that forwards the call to the zillwb_ function

in zil_lwb.c.
2. Virtualize calls to zillwb_ functions in zil.c:

• De�ne a struct zil_vtable_t that contains function pointers with the type

signature of each of the zillwb_ functions called from zil.c.
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• De�ne zillwb_vtable as an instance of zil_vtable_t that uses zillwb_ func-

tions as values for the respective function pointer members.

• Add a member zl_vtable to zilog_t that is pointer to a zil_vtable_t.

• Replace all calls to zillwb_FN() in zil.c with indirect calls through the vtable,

i.e., zilog->zl_vtable.FN().

3. Make non-ITX state private to zil_lwb.c by turning it into a sub-object.

• Move the zilog_t members that are only used by the functions in zil_lwb.c
into a separate structure called zilog_lwb_t that is private to zil_lwb.c.

• Embed zilog_t as the �rst member in zilog_lwb_t.

• Add member zlvt_alloc_size to zl_vtable_t that indicates the amount of

memory to be allocated when allocating a zilog_t.

• Add constructor and destructor methods to the vtable that are called after

allocating the zlvt_alloc_sized zilog_t. The zillwb_ constructor and de-

structors initialize and deinitialize the private members of zilog_lwb_t.

• Add a downcast step to the start of each zillwb_ functions that casts the

zilog_t pointer into a zilog_lwb_t pointer. The cast is safe because zilog_t

is embedded as the �rst member of zilog_lwb_t. The majority of zillwb_

functions operate only on the zilog_lwb_t-private state without accessing

the embedded zilog_t.

The end result is best described in the terminology of object-oriented programming:

zilog_t is an abstract base class that implements the public ZIL interface as well

as ITX-related functionality and de�nes abstract methods for persisting log records.

These abstract methods must be implemented by concrete subclasses. zilog_lwb_t is

such a subclass that implements the LWB-based persistence strategy. For ZIL-PMEM,

the zilog_pmem_t, which we will introduce in Section 6.3, persists log records to PRB/HDL.

Which subclass is instantiated at runtime is determined by the zh_kind �eld in the ZIL

header. Figure 6.2 illustrates the changes described in this section.
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Figure 6.2: zilog_t before and after the introduction of ZIL kinds by example of the

zil_itx_assign() and zil_commit() APIs.
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6.1.3 Changing ZIL Kinds
A zpool’s ZIL kind can be changed by atomically switching over the zh_kind of every

ZIL header in the pool. The following procedure enables online switching of the ZIL

kind:

1. Ensure that all dataset’s ZILs have been replayed. If not, cancel the procedure

unless the caller speci�ed to drop unreplayed logs.

2. Stop use of the ZIL API and wait until all active API calls to it have �nished.

3. Wait for all ZIL entries to become obsolete by waiting for the current open txg

to be synced.

4. Free all dataset’s zilog_t instances.

5. Set all datasets’ ZIL headers to the new ZIL kind’s default value. The default

value is the ZIL state that encodes the absence of log entries, e.g., nozil for ZIL-

PMEM.

6. Allocate the new zilog_t instances and bring them into a usable state. The allo-

cation routine uses zh_kind to select the (new) vtable, allocates zlvt_alloc_size

bytes for the new zilog_KIND_t and runs the ZIL-kind-speci�c constructor.

7. Re-allow use of the ZIL API.

Step 5 must happen atomically for all ZIL headers in the pool. Otherwise, a crash could

result in a pool with mixed ZIL kinds.

Due to time constraints, we have not yet implemented the procedure outlined above.

As a stop-gap solution, we instead implemented a simpli�ed scheme where a zpool’s

ZIL kind is determined on pool creation time by a kernel module parameter called

zil_default_kind. On subsequent pool imports, we derive the pool’s ZIL kind from the

root dataset’s ZIL kind. We prevent attempts to switch the ZIL kind by preventing any

changes to the SLOG VDEV con�g in a ZIL-PMEM pool.

6.1.4 ZIL-LWB Suspend & Resume
The ZIL API provides the zil_suspend and zil_resume functions. zil_suspend halts all

ZIL activity and waits until all log entries are obsolete before returning to the caller.

zil_resume reverts the state to normal operation. Compatibility code for versions of ZFS

prior to the fast snapshots feature relies on ZIL suspend & resume for taking snapshots.

For newer pool versions, the only consumer is spa_reset_logs: when removing a SLOG

from the pool, the ZIL is temporarily suspended to ensure that the SLOG does not

contain valid log entries. After the SLOG is removed, the ZIL is resumed, and the SPA

uses the remaining SLOGs or the main pool devices to allocate LWBs.

With regard to ZIL kinds, only the spa_reset_logs use case is relevant since ZIL kinds

require a more recent pool version than the fast snapshots feature. Our design for
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changing ZIL kinds (Section 6.1.3) requires suspension of all ZIL activity and thus sub-

sumes the ZIL-LWB-speci�c zil_suspend and zil_resume. However, the compatibility

code for pools before fast snapshots needs to be maintained in a way that does not

depend on the ZIL kinds feature. Due to time constraints, we were unable to ad-
dress suspend & resume in our design. We expect that the solution will be highly

dependent on implementation-level constraints.

6.1.5 ZIL Traversal & ZDB
Whereas ZIL writing and replay are abstracted away by the zilog_t refactoring, there

are several cases where the raw ZIL-LWB chain is traversed directly using the zil_parse

function. zil_parse exposes several ZIL-LWB-speci�c implementation details to its

callers, such as blockpointers and the concept of LWBs. This is problematic for ZIL

kinds because not every conceivable ZIL kind uses these concepts — ZIL-PMEM being

the obvious example. We investigate all consumers of the ZIL traversal code and come

to the conclusion that there is no need for a generalized interface that every ZIL kind

needs to implement. The basis for this decision is a manual audit of all zil_parse callers:

dmu_traverse This code module implements a callback-based traversal of the zpool’s

data structures. It is used to implement many ZFS features, e.g., zfs send. If a

dataset is traversed that is a head dataset and its LWB chain has been claimed,

the LWBs are included in the traversal. (In the previous sentence, “claimed”

refers to ZIL-LWB’s claiming, not ZIL-PMEM’s.)

dsl_scan_zil During a zpool scrub (data integrity check of the entire pool), this func-

tion traverses claimed LWB chains.

spa_load_verify During pool import, this function uses dmu_traverse to validate data

structures that were modi�ed in the last synced transaction groups.

zdb_il.c The ZFS debugger interprets the ZIL header of head datasets, traverses their

LWB chain, and dumps its contents to stdout.

Most consumers of dmu_traverse operate on snapshots, not head datasets, and there-

fore do not trigger ZIL chain traversal. The dsl_scan and spa_load code only traverses

the ZIL but does not access its data — the data integrity checks that are done for vali-

dation are implemented transparently in the ZIO read pipeline that is used to load the

LWBs in the ZIL chain. One compatibility code path (old_synchronous_dataset_destroy)

uses dmu_traverse to free the ZIL blocks, but can be replaced with a more recent API

(zil_destroy_sync). zdb is an exception since its whole purpose is to interpret the ZIL

chain for debugging purposes.

Given this analysis, we conclude that a generic ZIL traversal API is not necessary in

practice. Hence, the ZIL vtable does not include such an API. To maintain pre-ZIL-

kinds behavior, we make the following changes as a precursor to the refactoring of
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zilog_t which we described in Section 6.1.2. We change the zil_parse API to work

directly on a zil_header_lwb_t* instead of zilog_t. We also rename the function to

zillwb_parse_phys to re�ect the fact that it is speci�c to ZIL-LWB and does not a�ect

runtime state. We change the dmu_traverse API so that callers must be explicit about

ZIL-LWB traversal. To avoid ZIL-LWB-speci�cs in the DMU traversal callback, we

change old_synchronous_dataset_destroy to use zil_destroy_sync instead of DMU traver-

sal.

It is our impression that traversal of the ZIL-LWB chain for the purpose of data in-

tegrity checking is moot. The reason is that ZIL-LWB cannot distinguish data corrup-

tion from the end of the LWB chain because it relies on invalid checksums to detect

the end of the chain. It is conceivable that, for claimed-but-not-replayed LWB chains,

lost LWBs could be detected and surfaced as errors to the user. However, the current

ZIL implementation suggests that this case has never been a top priority of the ZIL

design. For example, losing a claimed-but-not-replayed log entry can leak space in the

main pool or cause a crash during pool import [65, 66].

Other ZIL kinds, or a future revision of ZIL-LWB, might be able to detect the loss of log

entries and handle such situations more gracefully. In that case, an abstract integrity

check method that must be implemented by each ZIL kind might be advisable.

6.1.6 ZIL-LWB-Speci�c Callbacks
There are several callbacks in the ZIL API that other components of ZFS must invoke

for ZIL-LWB to function correctly:

zil_lwb_add_txg Keeps the in-DRAM representation of an LWB alive when writing

WR_INDIRECT blocks.

zil_lwb_add_block Necessary for an optimization that minimizes the number of �ush

commands that are sent to the SLOG device.

zil_bp_tree_add During a ZIL traversal with zil_parse, this API is used to avoid doing

operations more than once for a given blockpointer. It is an implementation

detail of ZIL-LWB that is only a public ZIL API because it is used by zdb’s ZIL

traversal code.

None of these callbacks are necessary for ZIL-PMEM, nor are they likely to be for other

ZIL kinds. Therefore, we pre�x the callback functions with zillwb_ and move them to

zil_lwb.c. The original call sites are unreachable with ZIL-PMEM, which allows us to

ignore them for the remainder of this thesis. We recommend that future work replace

these statically dispatched callbacks with dynamic callbacks through function pointers

to enforce decoupling.
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6.1.7 Re�ection & Alternatives
The general concept of ZIL kinds and the vtable-based implementation add complexity

to the ZIL code. In this section, we discuss the alternatives that we considered for

supporting multiple ZIL implementations at runtime.

Alternative #1: We considered moving the level at which we dispatch into ZIL-kind-

speci�c code one API layer upwards. This architecture would make zilog_t and ITX a

private implementation detail of ZIL-LWB. The API layer at which the virtual dispatch

would take place are the zfs_log_OP and zvol_log_OP helper functions which create and

assign ITXs for ZPL and ZVOL operations. The sequence diagram in Figure 6.3 pro-

vides an example of how they are used by a write system call. Declaring this API layer

the interface for ZIL kinds would allow ZIL implementations to choose freely how they

want to represent log records in DRAM and on stable storage. This additional freedom

could be used by future ZIL kinds to implement a di�erent log structure with better

scalability or more �ne-grained crash consistency guarantees. For example, an ear-

lier design for ZIL-PMEM used a graph-based log structure where log entries for a �le

in the same dataset could be written in parallel. However, the additional freedom also

has signi�cant drawbacks that ultimately led us to the design presented in the previous

subsections:

1. The zfs_log_OP family of functions only addresses the ZIL write path. There are

no equivalent abstractions that wrap the zilog_t APIs for ZIL replay or traversal.

In order to have a single clean abstraction at the level of zfs_log_OP, it would be

necessary to extend this API so that zilog_t could be hidden as an implementa-

tion detail of ZIL-LWB. We were not con�dent in our ability to design this API

extension without the risk of introducing a leaky abstraction.

2. ZIL-kind-speci�c functions for logging would also require ZIL-kind-speci�c re-

play functions, which is a non-trivial amount of code. ZIL kinds such as ZIL-

PMEM that only need to implement a di�erent persistence strategy would have

to duplicate this code, pointlessly increasing maintenance cost.

3. We �nd it undesirable to allow ZIL-kinds to implement di�erent crash consis-

tency guarantees, in particular, if ZIL kinds switch automatically depending on

SLOG con�guration as proposed later in this chapter (Section 6.3.1). Centraliz-

ing the ITX code and forcing every ZIL kind to �t into the ITX model is the best

way to ensure that crash consistency guarantees are the same across ZIL kinds.
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Figure 6.3: Sequence diagram of the APIs involved in creating the ITXs for a write

system call.

Alternative #2: Since we identi�ed the ZIO pipeline as the most dominant contributor

of latency in ZIL-LWB (Chapter 3), we considered sharing LWBs as a concept between

all ZIL kinds. In that scenario, the ZIL kinds would merely be an alternative to the

ZIO pipeline. A prototype that bypasses ZIO but preserves the concept of LWBs has

been presented at the OpenZFS 2020 Developer summit by OpenZFS, targeting NVMe

drives [36]. We found this approach too restrictive for ZIL-PMEM:

1. The batching of many log records into fewer but larger LWBs adds unnecessary

latency overhead. This notion is shared by the database community, which has

deemed such group commit schemes un�t for PMEM (see Section 2.1.3 on disk-

oriented DBMSes).

2. The design space for PRB/HDL would have been severely constrained. In par-

ticular, fully parallel logging to the same HDL would not have been possible be-

cause the LWB chain is inherently sequential. With our ITXG bypass for ZVOLs

(see Section 6.3.5), we want to explore whether parallel logging to PRB/HDL can

increase the ZIL’s scalability for a single dataset.

Conclusion Our design allows for sharing of ZFS’s crash consistency guarantees to-

wards userspace but leaves su�cient �exibility for each ZIL kind with regard to the

persistent representation. Our implementation shows little code duplication between

ZIL-LWB and ZIL-PMEM, thereby hopefully keeping the maintenance burden low. The

state of each zilog_KIND_t is truly private to the ZIL kind’s implementation. Neither
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ZIL-LWB nor ZIL-PMEM access the ITX-related state in the embedded zilog_t directly,

but only through the zilog_t method that computes the commit list. However, some

design questions (see 6.1.3 and 6.1.4) as well as some LWB-speci�c APIs (see 6.1.5 and

6.1.6) remain.

6.2 PMEM-aware SPA & VDEV layer
Prior to the work presented in this thesis, ZFS had no concept of persistent memory.

Fortunately, the requirements of ZIL-PMEM are very limited:

• /dev/pmem SLOGs must be recognized as such (“PMEM SLOG”) when they are

added to the pool so that the ZIL-PMEM can be activated.

• The PMEM SLOG’s space must be directly accessible via the PMEM program-

ming model (load/store instructions, cache �ushing, etc., see Section 2.2.2). If

direct access is not possible, the PMEM SLOG must be considered faulty, and

pool import must be refused. We assume that direct access cannot be lost once

it has been established.

We add a new boolean attribute is_dax for disk VDEVs in the zpool con�g format. The

attribute indicates whether the VDEV supports direct access through the Linux Ker-

nel’s DAX APIs. DAX capability is determined by the zpool command when creating

or adding devices to a pool, using libblkid. When opening a VDEV marked is_dax, the

kernel module ensures that all of the block device’s sectors are mappable as one con-

tiguous range of kernel virtual address space. Failure to establish this mapping fails

the onlining process, leaving the VDEV in state VDEV_STATE_CANT_OPEN. By default, this

state prevents the pool from being imported. Note that the is_dax feature applies to

all VDEVs and is independent of ZIL-PMEM. It merely records the fact that a VDEV is

required to be directly accessible via the DAX APIs. This ensures that future versions

of ZFS can leverage DAX capability of main pool VDEVs without needing to change

the on-disk format. Consequently, is_dax becomes an independent zpool feature.

6.3 The ZIL-PMEM ZIL Kind
The changes described in the preceding sections prepare the way for the introduction

of the new ZIL-PMEM ZIL kind.
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6.3.1 Activation
The ZIL-PMEM ZIL kind is used instead of ZIL-LWB based on the following rule:

If the pool has exactly one SLOG and that SLOG is is_dax, the ZIL kind is

ZIL-PMEM. Otherwise, it is ZIL-LWB.

This rule must be evaluated when the pool is imported or whenever the pool’s SLOG

VDEVs are about to change: during pool creation, on zpool add and zpool remove, and

when zpool import is told to drop log devices via the -m �ag. We compare the resulting

desired ZIL kind with the zh_kind value of any ZIL header in the pool. If they do not

match, we change the ZIL kind of all headers as described in Section 6.1.3. This implicit

activation & deactivation of ZIL kinds makes ZIL-PMEM completely transparent to the

administrator, thereby ful�lling our requirement of simple administration. ZIL-PMEM

is automatically used if it supports the user-speci�ed SLOG device con�guration, i.e., a

single /dev/pmem SLOG. Otherwise, the system transparently falls back to ZIL-LWB.

Note: We have not yet implemented changing ZIL kinds after pool creation and thus

not implemented the design described in the previous paragraph. Instead, the kernel

module parameter zil_default_kind determines the ZIL kind of a newly created pool

(ref. Section 6.1.3). If the ZIL kind is ZIL-PMEM, the implementation enforces that the

pool con�g has exactly one SLOG VDEV that is is_dax, and prevents any changes to

the SLOG VDEV con�g.

Alternative Design The implicit activation and deactivation based on the rule above

makes the rule e�ectively part of the zpool’s on-disk format because it must deliver

deterministic results for an unchanged pool, regardless of any future software changes.

If the rule evaluation is not stable, the pool’s ZIL kind could “�ap” between imports

which in turn would fail the import if there are unreplayed logs that prevent changing

ZIL kinds. It is worth reconsidering whether full implicitness is actually desirable or

whether surfacing ZIL kinds to the administrator is acceptable. For example, we could

store the pool’s current ZIL kind in the MOS and provide a zpool command or property

to change it. Before the change is executed, the desired ZIL kind would check that the

pool con�guration is supported and fail the change operation if that is not the case. In

the case of ZIL-PMEM, we would evaluate the rule above. Any changes to the VDEV

con�g (zpool add, remove, import with -m) would also check with the active ZIL kind

�rst.

6.3.2 PMEM Space Reservation & PRB Construction
If the pool’s ZIL kind is ZIL-PMEM, we reserve all of the allocatable space on the PMEM

SLOG for PRB. To accomplish this, we introduce a new allocation class called exempt

that is, by convention, never used for SPA allocations. The zpool command assigns
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SLOGs that are is_dax automatically to the exempt class, instead of the log class. Note

that the VDEV labels, which attribute the VDEV to the zpool and store parts of the

zpool con�g, are located outside the allocatable space. Readers and updaters of VDEV

labels continue to use block device IO (zio_read_phys and zio_write_phys).

ZIL-PMEM uses the dax_direct_access API (see Section 2.2.1) to discover the memory

mapping of the exempt SLOG VDEV’s allocatable space, and constructs the pool’s PRB

instance on top of it:

1. The pool import procedure allocates the prb_t and stores the pointer in the

DRAM object that represents the imported pool (spa_t). When the pool is ex-

ported, the spa_unload procedure frees the prb_t. The prb_t’s lifetime is thus a

contiguous sub-span of the lifetime of spa_t.

2. Immediately after allocating the PRB, pool import sets up the chunk objects and

adds them to the PRB. If the pool is being created, we reset the chunks to a known

PMEM state (prb_chunk_initialize_pmem) before adding them to PRB.

We use a simplistic partitioning scheme to divide the PMEM space into chunks. The

main advantage of the scheme is that it does not need to persist any metadata:

• Chunks have a hard-coded size of 128 MiB.

• We partition the PMEM SLOG’s allocatable space as a contiguous array of 128 MiB

segments, starting at o�set zero.

• Assuming A bytes of space, this yields nchunks := A>>27 chunks and less than

128 MiB of wasted space at the end of the allocated space.

• We do not store nchunks anywhere. Instead, we prohibit online resizing of the

PMEM SLOG, which allows us to deterministically re-compute the value.

Note: Over the course of implementing and testing ZIL-PMEM, we observed that in-

stead of attempting to exempt the PMEM SLOG’s space from regular allocation, it

is probably preferable to pre-allocate all the PMEM space on the SLOG VDEV from

the SPA. The reason is that some lesser-known components of ZFS expect that unall-

coated SPA space can be overwritten in the background (e.g., the code that supports

TRIM or the VDEV initialize functionality). Also, there is existing infrastructure to pre-

vent removal of SLOGs with existing SPA allocations, for which we currently require

a ZIL-PMEM-speci�c special case.

6.3.3 Dataset & HDL Lifecycle Synchronization
Whereas prb_t and spa_t’s allocation lifecycles line up well, the same is not true for

datasets and HDLs: HDLs must be set up during pool import and must not be torn down

via prb_teardown_hdl until either their dataset is destroyed or the zpool is exported.

In contrast, the per-dataset runtime state (dsl_dataset_t, its objset_t and the objset’s
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zilog_t) is allocated “on demand” when its consumer, the ZPL code, holds it by its object

ID in the MOS. Speci�cally, the �rst holder performs the allocation and recovers state

from the corresponding persistent structure (dsl_dataset_phys_t, objset_phys_t). Con-

versely, if there was already another holder, the existing DRAM object is shared. Once

a consumer no longer needs to hold a dataset, it releases its hold on the instance. The

last consumer that releases the structure frees the DRAM object. (Holds and releases

are implemented through reference counting.)

The mismatch of HDL and dataset object lifetimes is relevant for ZIL-PMEM because

the state in HDL, in particular the holds on chunks established during claiming, out-

lives the instantiation(s) of zilog_pmem_t. Our solution is to add a search tree to spa_t

which we call HDL map. It maps from the dataset’s object set ID to its HDL. We add

the necessary callbacks to synchronize the HDL map with the dataset layer.

• During pool import, after setting up the PRB but before claiming, we iterate over

the head datasets
1

in the pool, set up the HDLs for each of them, and add them

to the HDL map.

• When a new head dataset is created we set up its HDL and add it to HDL map
(dmu_objset_create_impl_dnstats and dmu_objset_clone_sync).

• When a head dataset is destroyed (zil_destroy_sync), we tear down the HDL and

remove it from the HDL map.

Whenever the ZIL-PMEM implementation needs access to the HDL, it looks up the

HDL in theHDLmap and acquires a reference to it. We use reference counting to assert

that there are no dangling references when the head dataset is destroyed, and the HDL

is torn down. We protect the HDL map against concurrent modi�cations using ZFS’s

read mostly lock which is a reader-writer-lock that is optimized for reads. Figure 6.4

visualizes the constellation of objects, their lifetimes, and reference relationships.

1
Head datasets are ZPL �lesystems, ZVOLs, and clones thereof. “Behind” a head dataset can be one

or more snapshots.
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Figure 6.4: The di�erent allocation lifecycles of HDLs and datasets, and how we bridge

them for ZIL-PMEM.

6.3.4 ZILOG_PMEM_T
The zilog_pmem_t structure and its methods in the zilpmem_vtable implement the ZIL-

PMEM ZIL kind. Its role is that of an adaptor between the shared high-level ZIL code

(itxg structure) and the dataset’s HDL that is associated with the dataset via the HDL
map. Apart from the exceptions listed below, the methods in the vtable are thin wrap-

pers around HDL’s interfaces. The general pattern for a ZIL-PMEM method is as fol-

lows:

1. Acquire a reference to the dataset’s HDL from HDL map.

2. Invoke the HDL method.

3. Release the HDL reference.

To avoid reference counting overhead for HDLs on the write path, we acquire a HDL

reference once when the ZIL is opened during mounting and hold it in the zilog_pmem_t

until the dataset is unmounted.

The following cases required additional code to adapt between the two domains:

zil_commit We implement zil_commit as follows:

1. Acquire a zilog_pmem_t-wide mutex.

2. Get the commit list from the itxg data structure.

3. Write each ITX (i.e., log record) on the commit list to the HDL using the

prb_write_entry function. A new generation is started for every ITX to en-

code the sequential log structure.

4. Release the mutex.
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The mutex ensures that committers are serialized. This is critical for the cor-

rectness of sync or fsync which are cumulative. Assume two threads A,B that

issue the sync system call. Assume A starts a sync system call and drains all

ITXs from the itxg into its commit list. If A is now preempted by B, which

also starts a sync system call, B’s commit list will be empty. B would return to

userspace, giving the caller the impression that all dirty data has been synced,

although they still need to be written to the HDL by A. B must therefore wait

for A before returning to userspace.

Starting a new generation for every entry ensures that the commit list’s entries

will be replayed in commit list order. The zilog_pmem_t-wide mutex already se-

rializes the start of the new generations as required by the HDL API, see Sec-

tion 5.14.3.

Serializing the entire zil_commit call allows for less parallelism than ZIL-LWB’s

commit ITXs. Commit ITXs implement a sort of pipelining by allowing log writ-

ers to issue LWB ZIOs in parallel while ensuring that they only return from

zil_commit after all LWBs up to and including the log writer’s last LWB have

been written. Whereas a similar approach could be applied to ZIL-PMEM in

principle by mapping parallel writers to the same generation, the current imple-

mentation of commit ITXs is too tightly coupled to the concept of LWBs and the

ZIO pipeline.

WR_NEED_COPY Chunking Remember from Section 2.3.3 that the ZIL allocates

ITXs for all changes to a dataset in DRAM. The ITXs are queued in the itxg
structure from where they are either zil_committed or freed when the txg syncs.

To avoid unnecessary memory usage and performance overhead, ITXs that log

large write operations do not always contain a copy of the written data. Instead,

the ITX is marked as a WR_NEED_COPY ITX. Such ITXs only contain the object num-

ber of the modi�ed DMU object and the a�ected range within it, i.e., o�set and

length. The actual write log record is created lazily in zil_commit. Its payload, the

modi�ed data, is copied from the DMU object.

To support WR_NEDD_COPY in ZIL-PMEM, we implement an isolated struc-

ture that turns a single WR_NEED_COPY record into an iterator over write log en-

tries. zil_commit writes each entry yielded by the iterator to the HDL using

prb_write_entry. Whereas the repeated chunk acquisition and dependency track-

ing during each HDL write add a small overhead, it also increases fairness among

HDLs if there is contention for commit slots.

Error Handling During Pool Import & Claiming ZIL kinds inherit the behavior

of ZIL-LWB for integrity checking and claiming of the ZIL during pool im-

port. ZIL-LWB checks the LWB chain twice. The �rst pass (zil_check_log_chain)
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checks for log corruption so that it can fail the pool import early if the log is

corrupt. The second pass (zil_claim) does ZIL-LWB’s equivalent of claiming and

stores the maximum claimed log record number in the ZIL header. It discards

traversal errors because it assumes that no online log corruption happened since

the �rst pass. (Note that zil_claim does have a return value, but only due to

software-technical reasons. It must always return zero.) ZIL-LWB’s approach

opens a window for time-of-check vs. time-of-use bugs, which we discovered

and reported during development [65]. In contrast, PRB/HDL does checking

and claiming in a single pass (prb_claim), reports corrupted log state through

its return value, and is designed to correctly handle online log corruption (see

Section 5.7).

Due to time constraints, we have not refactored the zpool import procedure to al-

low claiming to fail. Until that shortcoming of our implementation is addressed,

we trigger a kernel panic if prb_claim returns an error.

Error Handling During Replay Analogous to claiming, ZIL-LWB does not assume

that the log will be corrupted between the time of check during pool import

(zil_check_log_chain) and replay (zil_replay) [66]. However, ZIL-PMEM detects

online corruption and returns an error from prb_replay (see Section 5.7).

Again, due to time constraints, we have not yet refactored the consumers of the

ZIL to enable the handling of replay errors. Until this shortcoming has been

addressed, ZIL-PMEM triggers a kernel panic if prb_replay returns an error.

ZIL Header Updates Remember from Section 5.14.1 on the PRB/HDL API that the

responsibility of persisting the ZIL-PMEM header is split: HDL APIs that update

the ZIL header return the updated version through an out-parameter, and the

API consumer is responsible for persisting the update.

Unlike DMU consumers, the ZIL implementation itself is responsible for queu-

ing up changes that need to applied for the open, quiescing and syncing txg.

When txg sync is syncing the syncing_txg, it invokes the zil_sync API of each

zilog_t. The role of zil_sync is to set the ZIL header bu�er that is stored in

objset_phys_t::os_zil_header to the state that shall be persisted in the syncing_txg.

Txg sync then uses this bu�er’s content when it writes out objset_phys_t to the

on-disk tree structure.

ZIL-PMEM queues the updated header values returned by the HDL APIs in a

4-ary array that is indexed by [txg&3]. Each cell of the array contains the tuple

(txg: u64, header: zil_header_pmem_t). A header update (txg_u, header_u) over-

writes the cell at index txg_u&3. Updates must only be made from the open or qui-
escing txgs. zilpmem_sync then reads then cell C at index updates[syncing_txg&3]. If



104 CHAPTER 6. INTEGRATION INTO ZFS

C.txg == syncing_txg, it stores C.header in the objset_phys_t::os_zil_header �eld

to be picked up by txg sync. Otherwise, it leaves objset_phys_t::os_zil_header

unmodi�ed.

6.3.5 ITXG Bypass For ZVOL
The itxg structure forces the same sequential log structure upon all ZIL kinds: ZIL-

LWB is a long chain of log entries grouped in LWBs, and ZIL-PMEM starts a new gen-

eration for every entry on the commit list. This architecture is the best compromise for

consistent behavior across ZIL kinds, performance, code duplication, and maintainabil-

ity. (See Section 6.1.7 for a re�ection on alternatives.) Moreover, our evaluation in the

next chapter shows that ZIL-PMEM yields signi�cant latency bene�ts and comes close

to saturating PMEM bandwidth when performing synchronous IO from four threads

to separate datasets. However, we also wanted to explore the performance potential of

PRB/HDL without the limitations of itxg but the same log record types and guarantees

towards upper layers. The result is an ITXG bypass mode for ZIL-PMEM, which we

present in this subsection.

ZVOLs And The ZIL

The mode only works for ZVOLs, which are sparsely allocated virtual block devices.

Other block device consumers, e.g., virtual machines or other �le systems, can treat the

ZVOL as any other block device exposed by the kernel. ZVOLs are implemented as a

dataset with a single DMU object that contains the virtual block device’s data. When a

block device driver accesses the ZVOL block device (read, write, discard), ZFS maps the

block device operations to DMU operations on the object. The modi�cations are logged

to the ZIL as write and truncate ITXs. If the block device operation has synchronous

semantics, ZFS calls zil_commit before acknowledging completion of the block device

operation. The pseudo-code in Figure 6.5 illustrates the behavior described above.
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Input:
op block device operation
zv zvol

Steps:

if op.pre_flush:
zil_commit(zv.dmu_object_id)

match op {
Read (...) => {

dmu_read(zv.dmu_object , op.buf , ...)
},
Write (...) => {

tx := dmu_transaction ()
dmu_write(tx, zv.dmu_object_id , ...)
itx := zil_itx_create (...)
zil_itx_assign(itx)
dmu_tx_commit(tx)

},
Discard (...) => {

// analogous
}

}

if op.post_flush:
zil_commit(zv.dmu_object_id)

op.done() // acknowledge completion

Figure 6.5: Pseudo-code for the procedure that handles ZVOL block device operations.

The Linux kernel’s model for block-level IO is based on the assumption that storage

devices are asynchronous. IO operations are represented by a struct bio that is even-

tually submitted to the IO stack (submit_bio), potentially scheduled or merged, and

then passed down to the block device driver, which issues operations to the hardware.

Eventually, the hardware reports completion to the driveŗ and the driver marks the IO

as completed (BIO_END_BIO).

By default, ZVOLs uses a thread pool (taskqs) to process outstanding block device IO

asynchronously and in parallel. The zvol_request_sync=1 tunable changes this behavior

to synchronous mode where the procedure outlined above is executed synchronously

in submit_bio. We will refer to this tunable in the Section 7.3.3 of the evaluation.

ITXG Bypass

We observe that the ZIL’s fully sequential structure is unnecessary for ZVOLs be-

cause block device consumers must already account for device-internal caching. If a

block device consumer actually requires consistency at a given point in time, it already

explicitly indicates this to the block layer. In Linux, this indication is either given by
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the bio operation’s type (REQ_OP_FLUSH) or the pre-�ush or post-�ush �ags (REQ_PREFLUSH,

REQ_FLUSH).

We leverage this observation as follows. We do not queue ITXs in itxg but write all

log entries directly to the HDL from within the DMU transaction. By default, we do

not start a new generation, thereby enabling parallel writes to the HDL. If the block

device consumer requests a �ush, we temporarily serialize HDL access and start a new

generation.
2

We use a reader-writer-lock to achieve this behavior, as illustrated by the

pseudo-code in Figure 6.6. Figure 6.7 provides an example.

Input:
op block device operation
zv zvol

rwl reader -writer -lock
start_gen

Steps:
if op.pre_flush || op.post_flush:

zv.rwl.write_lock ()
zv.start_gen = true

else:
zv.rwl.read_lock ()
if zv.start_gen:

zv.rwl.upgrade ()

match op {
Read (...) => { ... }
Write (...) => {

tx := dmu_transaction ()
dmu_write(tx, zv.dmu_object_id , ...)
itx := zil_itx_create (...)
prb_write_entry(

itx.into_log_entry (),
needs_new_gen=zv.start_gen

);
assert zv.start_gen => zv.rwl.holding_write_lock
if zv.start_gen:

zv.start_gen = false
dmu_tx_commit(tx)

},
Discard (...) => { /* analogous */ }

}

if op.post_flush:
assert zv.rwl.holding_write_lock
zv.start_gen = true

op.done() // acknowledge completion

Figure 6.6: Pseudo-code that illustrates how the ITXG bypass uses a reader-writer-lock

to enable parallel writes to the ZVOL’s HDL.

2
Remember that external synchronization on generation start is a requirement of PRB/HDL, see

Sections 5.13.2 and 5.14.3.
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Figure 6.7: Example timeline for the IO operations of two threads that write to the

same ZVOL, with the ITXG bypass mode enabled. The �rst write operation after a

�ush detects that zv.start_gen is set and hence upgrades its read-lock to a writer-lock

so that it can write the �rst entry of the new generation sequentially. As soon as it is

done, it sets zv.start_gen = false and relinquishes the writer lock. Subsequent writes

— until the next �ush operation — acquire a read lock, observe zv.start_gen = false,

and write to HDL in parallel, which results in multiple entries for generation 43. Entry

F, which is the �rst entry after the second �ush, starts a new generation.
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Chapter 7

Evaluation

In this chapter, we evaluate whether ZIL-PMEM meets the project goals established in

Section 4.1.1.

7.1 Usability & Architecture
Our high-level requirements for ZIL-PMEM were: simple administration, sharing of

PMEM as a pool-wide resource, coexistence with the existing ZIL(-LWB), and conser-

vation of the same crash consistency guarantees towards userspace.

Simple Administration We have proposed a design where ZIL-PMEM is automat-

ically activated if exactly one PMEM SLOG is con�gured (Section 6.3.1). This

would make ZIL-PMEM completely transparent to the administrator and not

bring any user-visible change in ZFS’s administrative tools. However, our im-

plementation does not yet support changing the ZIL kind of a zpool after its

creation (Section 6.1.3).

Pooled Storage PRB abstracts the PMEM SLOG device and shares it as a pool-wide

resource among all HDLs / datasets.

Coexistence The introduction of ZIL kinds allows for coexistence of ZIL-LWB and

ZIL-PMEM in code and at runtime. The layer at which ZIL kinds were introduced

in the architecture allows for sharing of all code that deals with the ZIL’s logical

structure but enables coexistence of di�erent persistence strategies.

Same Guarantees ZIL-PMEM maintains the same crash consistency guarantees as

ZIL-LWB towards userspace, courtesy of the shared logical structure and guar-

antees provided by PRB/HDL’s.

109
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7.2 Correctness
We use unit tests and integration tests to validate our implementation.

7.2.1 Testing Strategy for PRB/HDL
We are able to test PRB/HDL in userspace since it is part of libzpool. libzpool is a

shared library that contains the majority of ZFS’s kernel code, compiled for userspace.

It is used by zdb (the ZFS debugger) and the ztest stress testing tool. We implement

our unit tests in Rust to leverage its expressive type and macro system, rich standard

library, and built-in testing harness. We use the popular bindgen crate to generate the

bindings to libzpool and implement a small set of idiomatic wrappers around PRB/HDL

to reduce boilerplate code in our tests.

API Walkthrough

We codify the walkthrough of the PRB/HDL API that we presented in Section 5.14 in

a large test:

1. Allocate a ZIL header on the stack.

2. Create a chunk whose space is allocated from the heap.

3. Construct PRB and add the chunk to it.

4. Setup a HDL.

5. Create a log for the HDL.

6. Write two entries for txg = 2 with body values 23 and 42 to the HDL.

7. Teardown the object set.

8. Destroy the PRB with free_chunks=false. This moves ownership of the chunk

moves back from PRB to us.

9. Construct a new PRB instance with the same chunk.

10. Setup a HDL from the ZIL header.

11. Trigger claiming.

12. Trigger replay, and record the replay callback invocations. For each invocation,

we read the body length and content and assert that no read error occurred. We

record body content and the ZIL header update as records in a list. We report

successful replay for every callback invocation.

13. After replay is complete, we compare the recorded list’s contents to the expected

replay order.

Correct Handling Of Obsolete Entries

PRB/HDL assumes that there are only three unsynced txgs at any given time. This

manifests in frequent use of the txg&3 indexing idiom that is common in ZFS. Whenever
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state needs to be kept for each of the unsynced txgs, a 4-ary array is used to represent

it. The txg&3’th element in the array then contains the state for txg. The value of txg is

repeated within the per-txg state to detect when an array element is re-used.

With regard to PRB, an entry Ei must only be written to PMEM if its txg Ei.txg is

newer than the HDL’s highest-ever written txg Tmax, or if it is one of Tmax, Tmax − 1,

or Tmax − 2. The reason is the �xed number of three counters in the entry header

that are used for dependency tracking (see Section 5.5). We add tests that ensure that

the prb_write_entry API returns an error if entries are written that do not meet this

criterion. We also test the behavior of replay to ensure that — if the write path imple-

mentation were incorrect — replay would identify the problem with a distinct error

code.

Replay Algorithm

We structure the PRB/HDL implementation such that it becomes possible to test the

core replay logic that we described in Sections 5.4, 5.5, 5.6 and 5.7: The idea is to isolate

the core logic in a function replay_resume that takes the following arguments as input:

NodeSet The set of entries, represented as replay nodes, that were discovered

for the HDL.

ReplayState A pointer to the DRAM representation of replay state,

Callback A callback that receives as arguments a) the replay node and b) a

pointer to the replay state that needs to be persisted to the ZIL header during

replay.

replay_resume constructs the replay sequence from NodeSet and then invokes the Call-
back for each entry that needs to be replayed. The prb_claim API uses replay_resume for

ZIL headers in state logging to determine Eseal, and for a dry-run of replay for headers

in state replaying to detect missing entries early during pool import (see Section 5.7,

Step 1). It provides its own Callback (prb_claim_cb) which checks that all replay nodes’

bodies can be read without error, using the prb_replay_read_replay_node API that the

actual replay callback is going to use as well. The prb_replay API uses replay_resume for

actual replay. Its Callback (prb_replay_cb) serializes ReplayState to the representation

stored in the ZIL header, builds the ZIL header update, and invokes the user-provided

replay callback. Figure 7.1 visualizes this architecture.
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Figure 7.1: The architecture that enables code re-use and testability for the core replay

logic.

This factorization of responsibilities provides maximum �exibility for testing because it

decouples the storage substrate (PRB & chunks) from the per-HDL logical log structure:

Independence of PRB & Chunks It is not necessary for testing code to mock

PRB or chunks. It is not even necessary to create mock log entries. Instead, it

is su�cient to allocate arbitrary replay node structures and to put them into

the EntrySet.
Independence of ZIL-PMEM The integration logic in ZIL-PMEM is not in-

volved in testing PRB/HDL. This means that PRB/HDL’s replays behavior can

be validated in isolation. It also simpli�es the testing code because there no

need to mock the environment that ZIL-PMEM expects, e.g., SPA, DMU, and

VDEVs.
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Crash Consistency Testing To test crash consistency and correctness for re-

sumed replay, the testing code can simply forge an arbitrary replay state in

DRAM and invoke replay_resume with it.

We leverage Rust’s macro system to de�ne test cases in a concise and expressive man-

ner. Our goal is to minimize the mental step from the two-dimensional grid visualiza-

tion to a test case (example: Figure 5.2 in Section 5.3). The following code snippet is

an excerpt from the test suite:

TestSet {
title: "I- shape",
entries: maplit::btreemap! {

// SynthEntry(txg ,gen ,gsid , (<counters >))
"A" => SynthEntry (3,10,1, ([(0 ,0) ,(0 ,0) ,(0 ,0)])) ,
"B" => SynthEntry (4,10,2, ([(0 ,0) ,(0 ,0) ,(0 ,0)])) ,
"C" => SynthEntry (5,10,3, ([(0 ,0) ,(0 ,0) ,(0 ,0)])) ,
"D" => SynthEntry (4,11,1, ([(5 ,1) ,(4 ,1) ,(3 ,1)]))

},
tests: vec![

test! {
"tail truncation ok",
claim_txg = 1,
// hide entry D during replay and assert that
// replay does not complain
stages = stages !(single , hide =&["D"], check=OK ,),
// expected replay callback invocations
expect_replay = vec!["A", "B", "C"],

},
test! {

"'A missing ' detected , but rest of gen is replayed",
claim_txg = 1,
// hide entry A during replay and ensure that replay
// complains about missing entries
stages = stages !(single , hide =&["A"], check=M_ENTRIES ,),
// expected replay callback invocations
expect_replay = vec!["B", "C"],

},
],

}

Our tests check the following properties of the replay code:

Shapes We test replay for di�erent “shapes” in the 2-

D grid. For example, an “I-” as described the snip-

pet above and depicted to the right.

Claim Txg We ensure that log entries for txgs≤ precrash_txg are not replayed

because their e�ect is already part of the dataset’s state. In the code base, it is

more common to refer to claim_txg = precrash_txg + 1.

Missing Entry Handling We test the handling of missing entries in both the

already replayed and the still-to-be-replayed parts of the replay sequence, as

well as the special cases for missing entries in the last generation.
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Resumability We test resumability of replay_resume for the cases of missing

entries, re-appearing entries, and no change of EntrySet between resume at-

tempts.

Entry Reappearance We validate that re-appearing entries that are ordered

before the last-replayed entry are ignored, and that re-appearing entries in

the unreplayed part are discovered and replayed.

Testing Runtime Assertions

We make heavy use of runtime assertions to protect against existing and future imple-

mentation errors. On the recovery path, which is not performance-critical, assertions

are enabled in release builds. On the write path, most assertions are only enabled for

debug builds. In libzpool, which is used by our userspace tests, assertions are always

enabled.

We modify libzpool such that our test suite can install a callback that is invoked when

a runtime assertion fails. The callback receives the formatted panic message as an

argument. We use this mechanism to implement crash tests which assert that a piece

of test code triggers a runtime assertion. The panic message is used to identify the

assertion since cross-FFI stack unwinding is not yet supported in Rust.

At this time, we use crash tests to ensure that incorrect usage of the PRB API is detected

at runtime:

• Operations on a HDL in the wrong state, e.g., replay of a HDL which was not

claimed.

• Attempts to set up a HDL that has already been set up.

• Writes that exceed the maximum allowed chunk size.

• Correct interplay of garbage collection and PRB during PRB allocation (critical

for pool export).

7.2.2 Testing Strategy for ZIL-PMEM
Our changes to ZFS have less coverage than PRB/HDL. The OpenZFS project has the

following existing facilities for testing:

ZFS Test Suite (ZTS) The ZFS Test Suite is a set of automated integration tests that

assert the expected behavior of the kernel module and CLI tools. ZTS is imple-

mented in shell and provides a signi�cant amount of functional tests that exercise

both the data path and administrative layer of ZFS.

ztest The ztest tool is a userspace binary that links against libzpool and stress-tests

core components of ZFS that are shared among all supported platforms. It de-

�nes routines that imitate the kernel module’s use of the core components’ APIs.
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The stress-testing aspect comes from repeatedly dispatching these routines to a

pool of threads. Additionally, IO failures are injected through ZFS’s fault injec-

tion facilities (see Section 2.1.6), and system crashes are simulated by randomly

killing the ztest process. ztest is particularly useful for exposing race conditions

in the administrative layer that would not be discovered by the mostly sequential

usage in the ZTS.

We identify three major challenges in adapting OpenZFS’s testing infrastructure to

ZIL-PMEM:

Dimensionality ZIL kinds add a new dimension in the con�guration space that has

not been anticipated by the designers of ZTS and ztest. Since all ZIL kinds should

be functionally equivalent, the ideal testing strategy would execute all existing

tests for each ZIL kind. However, the testing harnesses for ZTS does not have

the infrastructure for this task.

File VDEVs Both ZTS and ztest rely heavily on the �le VDEV type. File VDEVs are

plain �les that can be used in lieu of block devices when constructing a zpool.

They are problematic for ZIL-PMEM because we only added support for DAX

block devices, not �les. To support �le VDEVs for ZIL-PMEM, the ZFS kernel

module would need to mmap the �le in the kernel. We are unaware of a kernel

API that allows an external module, such as ZFS, to accomplish this. For correct-

ness, the memory mapping would further need to map directly to PMEM, i.e., be

located on a Linux �lesystem mounted with the dax mount option.

VDEV Management A signi�cant number of tests in ZTS and ztest address the dif-

ferent ways to change the pool’s VDEV con�g, e.g., addition, removal, growing,

and o�ining of VDEVs. This is related to ZIL-PMEM because our design goal is

to transparently switch ZIL kinds based on the absence or presence of exactly

one PMEM SLOG. However, the current state of our implementation does not

yet support changing ZIL kinds after pool creation and prevents changes to the

SLOG section of the VDEV con�g to ensure that the same PMEM SLOG always

remains part of the pool (Section 6.1.3). Thus, many tests that should work cor-

rectly in the �nal implementation currently fail when attempting to change the

VDEV con�g.

We modify ztest as follows:

Mocking Ztest mocks the representation of datasets (ztest_ds_t) but uses the produc-

tion implementation of the objset_t and zilog_t types and related APIs. Since

ZIL kinds do not change the public ZIL API signi�cantly, the parts of ztest that

are concerned with mocking the dataset lifecycle, such as dataset creation, snap-

shotting, destruction, and cloning, only required minor modi�cations.
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ZIL-LWB-Speci�c Assertions Some of the ztest routines assert ZIL-LWB-speci�c

state. We make these assertions conditional, based on the active ZIL kind. If the

ZIL kind is ZIL-LWB, we downcast zilog_t to zilog_lwb_t to perform the check.

Con�gurable ZIL Kinds We add a command line �ag to ztest to con�gure the ZIL

kind that is used for the test zpool. This is equivalent to the zil_default_kind

kernel module parameter (Section 6.1.3).

VDEV Management There are several ztest routines that randomly add and remove

VDEVs, including SLOG devices. We change the function that selects the target

VDEV such that it never returns a SLOG device if the pool’s ZIL kind is ZIL-

PMEM.

We have not added any ZIL-PMEM-speci�c assertions or additional test routines to

ztest. To get coverage for ZIL-PMEM and ZIL-LWB, it is necessary to run ztest twice

with the respective values for the command line �ag.

Regarding the ZTS, the following tests are relevant for the ZIL:

$ fdfind --print0 slog ./tests | xargs -0 grep log_assert | ...
slog_001_pos.ksh Creating a pool with a log device succeeds
slog_002_pos.ksh Adding a log device to normal pool works
slog_003_pos.ksh Adding an extra log device works
slog_004_pos.ksh Attaching a log device passes
slog_005_pos.ksh Detaching a log device passes
slog_006_pos.ksh Replacing a log device passes
slog_007_pos.ksh Exporting and importing pool with log devices
slog_008_neg.ksh A raidz/raidz2 log is not supported
slog_009_neg.ksh A raidz/raidz2 log can not be added

to existed pool
slog_010_neg.ksh Slog device cannot be replaced with spare
slog_011_neg.ksh Offline and online a log device passes
slog_012_neg.ksh Pool can survive when one of mirror log

device get corrupted
slog_013_pos.ksh Verify slog device can be disk , file ,

lofi device or any device
slog_014_pos.ksh log device can survive when one of the

pool device get corrupted
slog_replay_fs_001.ksh Replay of intent log succeeds
slog_replay_fs_002.ksh Replay of intent log succeeds
slog_replay_volume.ksh Replay of intent log succeeds

The slog_*_{pos,neg}.ksh tests cover VDEV management operations which are well-

described by the excerpts above. The slog_replay_* tests exercise the replay code path

as follows:

1. Create a zpool and a dataset in it.

2. Mount the dataset to start an on-disk ZIL chain.

3. Stop txg sync via zpool freeze. This keeps the current unsynced txgs open and

inhibits garbage collection, both in ZIL-LWB and ZIL-PMEM. From now on, all

modi�cations to the mounted �le system queue up as dirty state in DRAM that
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is never synced out. However, ZIL entries can still be written since the ZIL is

written independently of txg sync.

4. Perform synchronous �le system operations that cause new ZIL entries to be

written.

5. Archive the �lesystem’s contents via VFS, i.e., with tar.
6. Export the pool.

7. Import the pool again. The pool is now no longer frozen.

8. Mount the �lesystem to trigger replay.

9. Use the di� utility to compare the archived state, including metadata such as

mtime and extended attributes, against the replayed state of the �lesystem. The

test passes if no di�erences are found.

Whereas slog_replay_fs_00{1,2} work directly on ZPL �lesystems, the slog_replay_volume

test exercises the ZVOL code paths by instantiating an external �lesystem on top of

the ZVOL (ext4 on Linux, UFS2 on FreeBSD).

We modify ZTS as follows:

1. Add a mechanism to skip tests based on the value of the zil_default_kind module

parameter (Section 6.1.3).

2. Skip all slog_*_{pos,neg}.ksh tests for ZIL-PMEM.

3. Add a new ZIL-PMEM-speci�c test to assert the behavior of our current imple-

mentation. The test ensures that “ZIL-PMEM does not allow device removal,

addition, replacing, o�ining or pool splitting”.

4. Replace slog_replay_* with ZIL-kind-speci�c variants:

(a) Copy slog_replay_* to slog_replay_*__lwb and slog_replay_*__pmem.

(b) Remove slog_replay_*.

(c) Make slog_replay_*__{lwb,pmem} exclusive to either ZIL kind.

(d) For slog_replay_*_pmem, hard-code /dev/pmem0 instead of�le VDEVs as a SLOG

device.

To execute the tests, it is now required to load the ZFS kernel module and con�gure

zil_default_kind before starting the ZTS test harness. To achieve full coverage, the

ZTS must be run twice, once for ZIL-LWB and once for ZIL-PMEM.

7.2.3 Results
Our userspace tests for PRB/HDL enabled fast iteration on the implementation with

high con�dence in its correctness. The majority of tests address edge cases that we dis-

covered while designing the PRB/HDL data structure. Naturally, the implementation

handles all of these edge cases, and thus all PRB/HDL tests pass.
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ztest exposed many implementation errors in the integration code. We have addressed

all ZIL-PMEM-related ztest crashes with the exception of one SIGSEGV that happens

rarely (1–2 times per hour) and only if assertions are enabled.

The ZTS tests related to the ZIL pass (or are skipped) for both ZIL-LWB and ZIL-

PMEM. They exposed signi�cantly fewer implementation issues than ztest. (We used

ZTS during initial development and only adopted ztest later in the process; hence we

were able to experience the di�erence.)

We use the gcov code coverage analysis tool that is supported in the OpenZFS and Linux

kernel build system to get some quantitative results. We compare the line coverage in

the ZIL code for the userspace and kernel module tests between our tree of OpenZFS

and the merge-base commit of our tree with the upstream master branch. For userspace

coverage, we executed the PRB/HDL tests once and the zloop.sh script for 60 minutes

for each ZIL kind. (zloop.sh repeatedly invokes ztest with di�erent parameters.) In the

upstream tree, we only executed zloop.sh once (60 min of runtime). For kernel coverage,

we executed the ZTS tests tagged as “slog” (zfs-tests.sh -T slog), which corresponds

to the SLOG tests listed above. We present the results in Figure 7.2.

Upstream Our Tree
#Covered #Lines Cvg #Covered #Lines Cvg

K
e
r
n

e
l

zil.c 1230 1383 88.94% 375 514 72.96%

zil_lwb.c 0.00% 1085 1211 87.37%

zil_pmem.c 0.00% 601 838 71.72%

PRB/HDL 0.00% 862 1227 70.25%

Total 1230 1383 88.94% 2896 3790 76.41%

U
s
e
r
s
p

a
c
e

zil.c 1204 1379 87.31% 351 501 70.06%

zil_lwb.c 0.00% 1063 1204 88.29%

zil_pmem.c 0.00% 649 806 80.52%

PRB/HDL 0.00% 1031 1183 87.15%

Total 1204 1379 87.31% 3094 3694 83.76%

Figure 7.2: Line Coverage measured by gcov.
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7.3 Performance
We evaluate the performance of ZIL-PMEM using an extensive set of benchmarks. We

start with the familiar 4k synchronous random write workload that motivated this

thesis (see Section 3), asking the following questions:

• How many IOPS does ZIL-PMEM achieve for this workload? What is the speedup

over ZIL-LWB?

• How does ZIL-PMEM scale with an increasing number of writer threads?

• How homogenous is the service provided by ZIL-PMEM, i.e, what are the tail

latencies, and how do they compare to ZIL-LWB?

In Section 7.3.3, we expand our scope to more realistic workloads and di�erent storage

stacks:

• What bene�t does ZIL-PMEM provide to applications that frequently perform

synchronous IO?

• How does ZFS with ZIL-PMEM perform compared to other Linux �lesystems

that were adapted to PMEM?

• Is ZIL-PMEM a viable alternative to Linux �lesystems deployed on top of dm-

writecache?

• To what degree do ZVOLs bene�t from ZIL-PMEM?

• What is the bene�t of the ITXG bypass for ZVOLs?

Finally, in Section 7.3.4, we examine PRB’s commit slot mechanism:

• Do commit slots achieve their goal to limit on-CPU waiting for PMEM IO?

• What is the mechanism’s performance overhead?

• What is the e�ect of PMEM bandwidth through interleaving of Optane DIMMs?

7.3.1 Setup & Reproducibility
We have already described our primary evaluation hardware in detail in Section 3.1.

In summary: we con�gure the system such that it e�ectively becomes a single-socket

system with su�cient DRAM, two 128 GiB Optane DIMMs, and three Micron 960 GiB

NVMe SSDs. We use this system for all benchmarks except for Section 7.3.4 where we

evaluate the commit slot abstraction on a di�erent system with a higher core count and

more Optane DIMMs.

To ensure reproducibility, we automate our performance evaluation using a custom

benchmarking harness written in Python. It provides the following functionality:

Declarative PMEM Provisioning Declarative de�nition of the desired PMEM con-

�guration (interleaving / regions, namespaces).
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Hardware Resource Registry All hardware resources, e.g., NVMe partitions and

PMEM namespaces, are registered in a global registry object by a label.

Uni�ed Storage Software Con�guration We abstract setup and teardown of stor-

age stacks such as ZFS or dm-writecache as Python context manager objects. The

objects use the hardware resource registry to discover the storage devices. This

decoupling enables portability between the two evaluation systems.

Uni�ed Benchmark Abstraction We represent all benchmarks in this section as

Python objects with a uni�ed interface for benchmark execution.

Result Storage For each benchmark invocation, we serialize a description of the stor-

age stack, benchmark parameters, and results into JSON objects and store these

objects as unique �les in the �lesystem. Results are grouped by a pre�x for post-

processing, e.g., �les with pre�x app_benchmarks__v4 contain the results of the

fourth iteration of our application benchmark design.

We also automate post-processing of the results using the popular Pandas framework

and render plots using Matplotlib.

7.3.2 4k Synchronous RandomWrite Workload
The �rst pillar of our performance evaluation is the �o 4k synchronous random write

workload that motivated the design of ZIL-PMEM. We use the same zpool layout as

for ZIL-LWB (30 striped NVMe partitions & 1 non-interleaved Optane DIMM region /

fsdax namespace as SLOG). We con�gure PRB with ncommitters=3, which is the most

CPU-e�cient settings for a single Optane DIMM as we will show in Section 7.3.4.

Figure 7.3 shows the cumulative IOPS and per-IOP average latency measured by �o for

1–8 writer threads (“numjobs”). With a single thread, ZIL-PMEM achieves 128k IOPS

which is a speedup of 8 over ZIL-LWB (16k IOPS). ZIL-PMEM scales almost linearly to

400k IOPS at four threads, where the speedup over ZIL-LWB is still 5.5x. Throughput

does not increase further for higher thread counts. The constant o�set to the fsdax
curve for numjobs 4–7 suggests that performance is limited by PMEM write bandwidth.

(Remember that fsdax shows the raw /dev/pmem block device’s performance under

the same workload.) The slight decline to 346k IOPS at eight threads correlates with a

similar decline in the async curve but not the fsdax curve, suggesting a CPU bottleneck

(8 cores per socket) or scalability bottleneck in ZFS.
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Figure 7.3: Mean IOPS and latency measured by �o for our 4k synchronous random

write workload, by number of writer threads (numjobs).

We observed that the speedup for numjobs=1 and 2 varies signi�cantly between bench-

mark runs but remains stable for higher values of numjobs. We investigate this issue

by computing the coe�cient of variation (CoV) of the di�erent con�gurations based

on the mean and standard deviation of IOPS reported by �o (
stddev
mean

). The results are

displayed in Figure 7.4: The zil-pmem CoV remains close to the CoV of async until

numjobs=4 from where it starts to decline towards the CoV of fsdax. This phenomenon

correlates with the stop of increase in IOPS at numjobs=4, supporting our assumption

that zil-pmem’s behavior is dominated by the PMEM hardware for numjobs 4–7. In

contrast, zil-lwb’s CoV is 5x that of zil-pmem for numjobs=1 and 2x for numjobs=2 before

it starts to align closely with async. In absolute terms, for numjobs=1, the standard de-

viation for ZIL-LWB is 4.7k IOPS with a mean value of merely 16k IOPS. In contrast,

for ZIL-PMEM, the standard deviation is 7.5k IOPS at a mean of 128k IOPS.
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Figure 7.4: Comparison of the coe�cient of variation (
stddev
mean

). The smaller plots display

the absolute values.

To understand ZIL-PMEM’s impact on tail latencies, we compare the 5th, 95th, 99.9th,

99.9th, 99.99th, and 99.99th’s latency percentiles reported by �o. zil-pmem follows

async with a near-constant o�set for all percentiles until numjobs=4 where we observe

the characteristical “knee in the curve” which is to be expected given that the system’s

peak IOPS are �rst achieved at this value of numjobs. In contrast, zil-lwb’s base latency

(5th percentile, numjobs=1) is
36.6
6.7

[us
us
] = 5.46 times higher than zil-pmem’s and the

higher percentiles show a steeper growth with rising numjobs. Note that, by de�nition,

the tail latencies for high percentiles at higher numjobs only have proportional and thus

minor impact on the CoV.
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Figure 7.5: Comparison of completion latencies by percentile. Note the di�erent y-axis

scales.
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To get an idea of the distribution of per-IOP latency in ZIL-PMEM, we generalize our

eBPF instrumentation from Section 3.3 to support both ZIL-PMEM. We compare the

results in Figure 7.6. The zil_persistence component supersedes the ZIL-LWB-speci�c

ones: it is de�ned as the overall time spent in zil_commit minus the time spent �lling

the commit list.

Whereas zil_persistence is the dominant factor for latency in ZIL-LWB (80% of average

per-IOP latency, as observed in Section 3.3), ZIL-PMEM only spends approximately

25% on persistence to PMEM. For ZIL-PMEM, the dominant component with more than

50% is the async code, i.e, VFS-level work and modi�cation of in-DRAM DMU objects.

And in contrast to ZIL-LWB, the shared ITX code is a noticeable component at 10%.

The absolute async overhead for ZIL-PMEM is lower than for ZIL-LWB, particularly

for small numjobs values. We have no satisfying explanation for this behavior.
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Figure 7.6: Comparison of relative and absolute latency contribution of functions exe-

cuted by �o threads when they perform synchronous writes.
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7.3.3 Application Benchmarks
We determine ZIL-PMEM’s impact on real-world application performance using addi-

tional macro-level and application-level benchmarks. We execute each benchmark on

top of di�erent storage stacks that represent alternatives to ZIL-PMEM and compare

the results in the subsequent sections.

We de�ne a storage stack as a con�guration of storage hardware and software that ex-

poses a �lesystem at a mountpointM . Executing a benchmark on top of a storage stack

means that the benchmark is con�gured to place all of its data within the �lesystem

mounted at M . We de�ne the following storage stacks.

zfs-{lwb,pmem,async} A single ZFS dataset created on a zpool with the famil-

iar hardware con�guration (30 striped NVMe partitions and /dev/pmem0 as

SLOG). For zfs-lwb and zfs-pmem, we con�gure the corresponding ZIL kind.

For zfs-async, we con�gure the ZIL-LWB ZIL kind but set the sync=disabled

property. All variants use a recordsize=4k and compression=off on the dataset

since most of our benchmarks are synchronous workloads with small write

sizes. For the zil-pmem variant, we con�gure PRB with ncommitters=3.

{xfs,ext4}{,-dax} on $BDEV Linux 5.9’s xfs or ext4 �lesystems deployed on the

block device stack $BDEV. If the “-dax” su�x is present, the dax mount option

was set. We always perform benchmark runs without DAX, and perform an

additional run if $BDEV is a DAX-capable device.

The xfs and ext4 stacks are parametrized by the block device stack $BDEV which we

de�ne as a hardware and software con�guration that provides a (potentially virtual)

block device. We de�ne the following block device stacks:

devpmem The raw fsdax namespace block device in devfs (/dev/pmem0).

dm-writecache The dm-writecache Linux Device Mapper target synchronously

persists writes to a cache device and performs asynchronous write-back to an

origin block device in the background. It has explicit support for DAX de-

vices. We con�gure dm-writecache with /dev/pmem0 as the cache device and

a dm-stripe of the 30 NVMe partitions as the origin data store. Since most

benchmarks consume relatively little space compared to /dev/pmem0’s capac-

ity (40GiB), we set the low watermark parameter to 0% and high watermark to

1% in order to trigger some write-back during benchmark execution. (Refer

to Section 2.1.2 for details on dm-writecache.)
zvol-lwb,rs={0,1} A ZVOL, exposed by a zpool with the same con�g as zfs-lwb.

We set volblocksize=4k on the ZVOL dataset. The rs variable controls the value

of the zvol_request_sync tunable which, if enabled, processes block IO requests

(struct bio) synchronously instead of submitting them to a thread pool. (Refer

to Section 6.3.5 for more details on ZVOLs.)
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zvol-async Like zvol-lwb but with sync=disabled.

zvol-pmem,rs={0,1},byp={0,1} Like zvol-lwb but with the ZIL-PMEM ZIL kind.

PRB’s ncommitters tunable is always set to 3. The byp variable controls whether

the ITXG bypass is enabled (0 disabled, 1 enabled).

The following items are examples for storage stacks used in the evaluation:

ext4 on zvol-pmem,rs=1,byp=0 Ext4 deployed on a ZVOL on a zpool with the

ZIL-PMEM ZIL kind. zvol_request_sync is set, the ITXG bypass is disabled, and

ncommitters is set to 3. The ext4 �le system is mounted without the dax mount

option.

xfs-dax on devpmem XFS deployed directly on the PMEM block device (/de-

v/pmem0). It is mounted with the dax option.

zfs-pmem ZFS with the ZIL-PMEM ZIL kind and the default value of 3 for

ncommitters. The zvol_request_sync option and the ITXG bypass are only rele-

vant for ZVOLs and therefore are not part of the con�guration name.

We compare the performance of the storage stacks with the set of benchmarks de-

scribed below. To facilitate the comparison, all benchmarks have the following prop-

erties:

Scaling Factor The scaling factor increases the degree of concurrent synchro-

nous IO operations issued by the benchmark. We run each benchmark with

three scaling factor values: 1, 4, and 8.

Result Metric Each benchmark reports a single result metric per run. This al-

lows us to compare performance across di�erent storage stacks and scaling

factor values. For all benchmarks in this evaluation, a numerically greater

result is better.

What follows is a description of the benchmarks:

�o-growing The 4k synchronous random write workload that motivated our

work, but with all worker thread �les within the same �lesystem. The scaling

factor maps to the numjobs parameter which controls the number of worker

threads. The working set (amount of modi�ed data) grows with the scaling

factor because each additional thread adds a private �le with a constant size

of 100 MiB. We report mean IOPS as the result metric.

�o-�xed The 4k synchronous random write workload, with all �les on a single

�lesystem, but a �xed working set size, independent of numjobs. We achieve

the �xed working set size by setting the size parameter to
1 GiB

numjobs
. We report

mean IOPS as the result metric.

�lebench varmail Filebench is a benchmark execution engine that allows for

the de�nition of workloads in a domain-speci�c language. The pre-de�ned
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varmail workload “emulates I/O activity of a simple mail server that stores

each e-mail in a separate �le (/var/mail/ server). The workload consists of a

multi-threaded set of create-append-sync, read-append-sync, read and delete

operations in a single directory. ” [16]. We compile �lebench from source

(1.5-alpha1-33-g22620e6) and use the upstream workload de�nitions. The scal-

ing factor maps to the workload’s $nthreads variable which determines the

number threads that execute the operations described above. We use a run-

time of 20 seconds per con�guration and report �lebench’s ops per second
value as the result metric.

�lebench oltp The �lebench oltp workload emulates database workloads. It

“performs �le system operations using Oracle 9i I/O model. It tests the per-

formance of small random reads and writes, and is sensitive to the latency

of moderate size (128k+) synchronous writes to the log �le. By default [it]

launches 200 reader processes, 10 processes for asynchronous writing, and a

log writer.” [16]. We leave all parameters at the default setting except for the

$ndbwriters parameter for which we use the scaling factor’s value instead of

its default value of ten. It is our understanding that scaling the number of log

writer threads to a number greater than one would not be feasible with the

real DBMS and thus be unrealistic. We use a runtime of 20 seconds and report

�lebench’s ops per second value as the result metric.

MariaDB/sysbench We deploy the MariaDB 10.5.9 Docker image in its default

con�guration (InnoDB storage engine) with the /var/lib/mysql directory bind-

mounted to a sub-directory within the storage stack’s mountpoint. We apply

the sysbench benchmark’s oltp_insert workload with its default parameters

for ten seconds. The workload spawns a number of threads that insert rows

with random data into one or more tables. We use the default setting (a sin-

gle table) and map the scaling factor to the number of threads that perform

the insert queries. Each thread uses a private, long-lived connection to the

MariaDB server. We use Docker’s --net=host parameter when starting the

MariaDB container to allow sysbench to connect via loopback TCP, avoiding

the overhead of Docker’s userspace proxy. The result metric is the number of

transactions per second (tps) reported by sysbench.

Redis-SET Redis is a popular in-memory key value store. For persistence, it

provides two mechanisms that are recommended to be used in combination.

First, the system periodically persists a snapshot of the Redis database (RDB).

This process happens in the background in a forked child process. Second,

Redis features a logical write-ahead log (append-only �le, AOF) that is ex-

tended for every mutating operation and replayed after a crash. Redis sup-

ports three di�erent behaviors for ensuring the durability of the AOF, con�g-

urable through the appendfsync con�guration variable. A value of no does not
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perform any fsyncs, everysec performs an fsync every second (default), and

always performs an fsync operation for operation logged to AOF. [45]

We deploy Redis 6.2 (built from source). We con�gure RDB writeback to hap-

pen every second, regardless of the number of changes, We enable AOF and

con�gure appendfsync=always which e�ectively turns our Redis deployment

into a durable key-value store.

For benchmarking, we use Redis’s own redis-benchmark tool [19]. The scaling

factor maps to the --threads and -c parameters which control the number

of parallel clients. We use the benchmark’s SET workload to perform 106

SET operations with random keys and the default value size (3 bytes). We

con�gure a keyspace size of 106 to reduce contention. We leave the values for

pipelining and connection keepalive at their defaults (no pipelining, keepalive

enabled). The result metric is the requests-per-second (rps) value reported by

redis-benchmark.

We choose the number of 106 SET operations because it results in runtimes

of ten seconds or more for most combinations of scaling factors and storage

stacks. The only exception is zfs-async for which the shortest runtime is 8 s.

RocksDB-�llsync RocksDB is a popular key-value store developed by Face-

book that is optimized for fast storage devices. It can be used directly by

applications as an embedded database but is also the basis for the MyRocks
storage engine for MySQL [31]. RocksDB uses log-structured merge trees for

long-term storage which are written and rewritten in large units that are pre-

pared in DRAM (memtables). Operations that request synchronous semantics

using the WriteOptions.sync �ag are logged to a write-ahead log �le. [17, 47]

We measure the impact of ZIL-PMEM on RocksDB WAL performance with the

�llsync benchmark that is part of RocksDB’s db_bench tool. Fillsync performs

a �xed number of synchronous Put operations with random keys. We set the

number of operations to 400k and map the scaling factor to the number of

concurrently Putting threads. The result metric is the ops-per-sec (operations

per second) value reported by db_bench.

We choose the number of 400k operations because it results in at least ten

seconds of runtime for 90% of con�gurations. The con�gurations that achieve

less than ten seconds of runtime are:

• All zfs-pmem con�gurations at scaling factor 1 (∼4 s runtime)

• zfs-async for scaling factors 1, 4, 8 (∼2, 6.8 and 8 s rt.)

• xfs-on-devpmem with dax mount option at scaling factor 1 (9.1 s rt.)
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Figure 7.7: App Benchmarks: ZIL-PMEM vs. ZIL-LWB. The number on each bar indi-

cates the speedup over zfs-lwb.

We �rst compare the speedup of ZIL-PMEM over ZIL-LWB. ZIL-PMEM outperforms

ZIL-LWB in all benchmarks, but the speedup varies signi�cantly for the di�erent work-

loads and scaling factors. The highest speedups are achieved at scaling factor 1 by the

�o workloads (7.13x, 5.54x) and RocksDB-�llsync (100k ops-per-sec, a speedup of 5.8).

Redis-SET shows a speedup of 2.69 (30k rps) and MariaDB achieves 10k tps which is a

speedup of 2.14. For scaling factor 4, the �o and RocksDB’s speedup declines whereas

Redis’s grows to 2.78 and MariaDB’s grows to 3.08. For scaling factor 8, all workloads

show a reduction in speedup (RocksDB 2.81x, Redis 1.93x, MariaDB 1.43x).
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The �lebench-oltp workload shows no relevant speedup or slowdown for all scaling

factor values. We observed during benchmark execution that the 200 reader processes

always cause 100% CPU utilization.

The �lebench-varmail workload only shows a speedup of 1.43 at scaling factor 1 which

shrinks to 1.14 at scaling factor 8. A possible explanation for these meager results is

the larger data volume (16k appends) compared to the �o workloads (4k writes). In

combination with the large amount of metadata (�le creation and deletion), ZIL-LWB

might also be bene�tting from the commit ITXs’ pipelining. In any way, �lebench-
varmail shows that the large speedups for small writes cannot be generalized to all

�lesystem workloads. Future work should investigate ZIL-PMEM’s behavior during

this benchmark in detail and determine how bene�cial pipelining akin to commit ITXs
could be.

ZIL-PMEM vs. XFS and Ext4 on PMEM

Our next set of results is the comparison between the Linux �lesystems XFS and Ext4

and ZFS with both ZIL kinds (zfs-lwb, zfs-pmem). We also include zfs-async as a the-

oretical upper bound for any ZIL kind. Since both XFS and Ext4 are DAX-aware, we

include con�gurations with and without the dax mount option. Note that that the ZFS

con�gurations only use PMEM for the ZIL but NVMe devices for permanent storage

whereas the Linux �lesystem con�gurations are PMEM-only.
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Figure 7.8: ZFS with ZIL-PMEM, ZIL-LWB and sync=disabled (zfs-async) as well as ext4

and xfs on /dev/pmem, with and without the dax mount option. The number on each

bar indicates the speedup over zfs-pmem in the respective benchmark & scaling factor.

Our primary takeaway from this comparison is that, in contrast to ZIL-LWB, ZIL-

PMEM is competitive with both ext4 and xfs at scaling factor 1 in most benchmarks.

The �o workloads are the exception, where the Linux �lesystems achieve a speedup of

greater than 3 if the dax mount option is enabled. The reason for this phenomenon is

most likely lower CPU overhead at scaling factor 1 (compare zfs-pmem with zfs-async),
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and better multicore scalability at higher scaling factors. Note that, since the bench-

marks in this section all write to a single dataset, ZIL-PMEM’s scalability is bounded

by the sequential logical structure of the ZIL.

ZIL-PMEM performs exceptionally great for the Redis-SET and RocksDB-�llsync work-

loads at all scaling factors. The write-ahead log �les that these workloads write contain

the encoded representation of logical changes. The mutating requests issued by our

benchmarks have small payloads and result in small write+fsync system calls.
1

We as-

sume that ZIL-PMEM handles this IO pattern more e�ciently than the Linux �lesys-

tems. First, in non-DAX mode, every small append + fsync operation on the Linux

�lesystems is necessarily ampli�ed to block granularity, both for the data that is mod-

i�ed in place and for metadata that is additionally journaled. In contrast, ZIL-PMEM’s

PMEM write volume per append+fsync is most likely smaller. For example, a PRB entry

for a small write system call only consumes 256+256×d192+size
256

e bytes of PMEM. Sec-

ond, even in DAX-aware mode, the implementations of Ext4 and XFS still assume block

devices as the storage medium for their JBD2 journal (Ext4) or write-ahead log (XFS).

Thus, both write ampli�cation and unnecessary disk-oriented optimizations might be

relevant here.

In theMariaDB benchmark, the DAX-aware Linux �lesystems achieve up to 1.57x more

transactions per second than ZIL-PMEM. Zfs-async and the non-DAX-aware con�gu-

rations achieve 1.12x, 1.25x, and 1.35x higher results at scaling factors 1, 4, and 8. Man-

ual inspection of the CPU utilization shows a signi�cant amount of context switching

but no clearly identi�able CPU bottleneck. The database server process performs 1024

byte sized write + fdatasync system calls to the InnoDB redo log �le from a single

thread. However, since zfs-async does not perform better than any of the systems that

actually write to PMEM, we can rule out PMEM bandwidth as a possible bottleneck.

Regarding the �lebench-oltp benchmark, no con�guration performs exceptionally bet-

ter than any other, including zfs-async. We observe high CPU utilization in all bench-

mark con�gurations caused by the “hog” stage of the 200 processes that the bench-

mark uses to simulate reader threads. Thus, CPU time is most likely the bottleneck in

all con�gurations.

For �lebench-varmail, the highest speedup over ZIL-PMEM is 1.35 at scaling factor

1, achieved by XFS in DAX-aware mode, followed by ZFS with zfs-async with 1.22x.

For higher scaling factors, XFS’s speedup diminishes and even goes below 1 at scal-

ing factor 8, albeit only in DAX-aware mode. We have no satisfying explanation for

1
The RocksDB documentation and comments in the source code suggest that the WAL �les are

written in 32k blocks that are zero-padded if necessary [47, db/log_writer.h]. We observed the contrary

behavior with strace: each Put operation with WriteOptions.sync results in a write and fdatasync
system call. The write system call’s data size is proportional to the sum of the Put operation’s key and

value sizes.
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this behavior. Also, the fact that zfs-async achieves a lower speedup than XFS can

be taken as an indicator that �lebench-varmail is not bound by PMEM performance,

contradicting our speculation in the previous section.

ZIL-PMEM vs. XFS and Ext4 on Dm-writecache

The comparison between ZIL-PMEM with NVMe storage and Linux �lesystems on

pure PMEM in the previous section is insightful but not a level comparison in terms of

storage hardware performance and available functionality. A more practically relevant

competitor to ZIL-PMEM is dm-writecache with a dm-stripe of NVMe partitions as the

origin block device. In this section, we compare ZFS with ZIL-PMEM and ZIL-LWB to

Ext4 and XFS on such a setup.
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Figure 7.9: Comparison of the benchmark results for ZIL-PMEM and ZIL-LWB vs.

Linux �lesystems on dm-writecache. The number on each bar indicates the speedup

over zfs-pmem in the respective benchmark & scaling factor.

ZIL-PMEM’s performance is within +/-30% of XFS on dm-writecache at all scaling fac-

tors in all benchmarks except Redis-SET and RocksDB-�llsync where ZIL-PMEM per-

forms signi�cantly better. The 30% spread decreases slightly with higher scaling fac-

tors but does not change the overall picture. Our explanation for ZIL-PMEM’s signi�-

cantly better performance in the Redis-SET and RocksDB-�llsync workloads is (again)

write ampli�cation, possibly combined with the suboptimal scaling behavior of dm-

writecache that we describe below.

Ext4 performs signi�cantly worse than ZIL-PMEM (and XFS!) in some benchmarks,

with only 46%, 29%, and 14% of ZIL-PMEM’s performance in �lebench-varmail, Redis-
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SET, and RocksDB-�llsync at scaling factor 1. Write ampli�cation might be a possible

explanation as well.

We have observed the system while benchmarking the dm-writecache stack to ensure

that the comparison with ZFS is actually fair. We found that, despite the very aggres-

sive write-back con�guration (high watermark = 1%, low watermark = 0%), the system

performed very little write-back to the NVMe drives. The two �o workloads were the

exception, but the write load towards the NVMe devices was well below their max-

imum capacity. Thus, NVMe was not a bottleneck in the benchmark. However, we

found that dm-writecache has severe multicore scalability problems. For example, XFS

on raw PMEM without the dax mount option achieves 150k IOPS at scaling factor 1

and 409k IOPS at scaling factor 4 in the �o-growing workload. In contrast, on dm-

writecache, it is 112k IOPS at scaling factor 1 but only 165k IOPS at scaling factor 4.

Using the perf tool, we observed severe contention at a lock that serializes access to

the entire dm-writecache instance’s state. In private communication, dm-writecache’s

maintainer Mikulas Patocka stated that “the purpose of dm-writecache is to decrease

commit latency, not to increase throughput. There is not much that can be done with

the lock contention”. ZIL-PMEM has similar problems in �o-growing (125k IOPS at

factor 1, 217k at factor 4), albeit due to the sequential structure of the ZIL chain, not

the scalability of PRB/HDL. (We know from Section 7.3.2 that we can achieve 400k

IOPS with numjobs / scaling factor 4 if each writer thread operates on a seprate dataset.

However, remember that for comparability with the Linux �lesystems, the �o-�xed
and �o-growing workloads operate on a single ZFS dataset when executed on a zfs-

stack.) In the next section, we investigate whether a more relaxed log structure such

as the ITXG bypass can improve this shortcoming of the ZIL structure.

Impact on ZVOL Performance & ITXG Bypass

In this section, we examine the impact of ZIL-PMEM on ZVOLs. We compare the

performance of XFS deployed on a ZVOL in a zpool with varying ZIL kinds, values

for zvol_request_sync (rs_{0,1}), and ITXG bypass setting (byp_{0,1}). The results are

relative to zvol-pmem,rs=0,byp=0 as the baseline which is the standard con�guration

for ZIL-PMEM pools. Note that deploying a �lesystem on a ZVOL generally makes

little sense in practice because ZFS �lesystems provide the same basic service with

more additional features at less overhead. However, ZVOLs are a popular choice for

storage virtualization where ZVOLs are used as virtual hard disks, either on the same

host or via a SAN (e.g., iSCSI, Fibre Channel). To simplify our evaluation, we avoid

the overhead of a hypervisor or SAN and instead instantiate XFS directly on top of the

ZVOL, mount it, and execute the benchmarks.
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Figure 7.10: Comparison of the benchmark results for XFS on ZVOLs on di�erent zpool

con�gurations. The number on each bar indicates the speedup over ZIL-PMEM in the

zvol-pmem,rs=0,byp=0 con�guration.

Our �rst observation is that the default con�guration of ZIL-PMEM, rs=0,byp=0, deliv-

ers a signi�cant speedup over ZIL-LWB. At scaling factor 1, it is approximately 2x for

all workloads except MariaDB (
1

0.64
= 1.56) and �lebench-oltp (

1
0.96

= 1.04). At higher

scaling factors, the speedup declines for all benchmarks, albeit less so with Redis-SET
and RocksDB-�llsync than with the other workloads.
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The e�ect of zvol_request_sync=1 is ambiguous and not very signi�cant for ZIL-LWB

but very bene�cial for ZIL-PMEM in the �o workloads at scaling factor 1 with a 2x and

2.6x speedups over the standard con�guration, respectively. MariaDB, Redis-Set and

RocksDB-�llsync also bene�t with speedups of 1.18x, 1.23x, and 1.30x over the default

con�guration. However, for scaling factor 4, MariaDB performs substantially worse

if zvol_request_sync is set (30k tps vs. 20k tps). We also conducted the benchmarks

with Ext4 instead of XFS (not shown in the plot). Ext4 exhibited worse performance

in almost all con�gurations if zvol_request_sync was set, with the exception of the �o
workloads.

The ITXG bypass only has marginal e�ects with and without zvol_request_sync, ex-

cept for the �o workloads at scaling factors 1 and 4. For example, �o-growing at

scaling factor 8 shows an increase in IOPS from 84k to 102k (21%) for rs=0 and from

117k to 159k (35%) with rs=1. For Ext4, �lebench-varmail also shows a 20% improve-

ment with enabled ITXG bypass (byp=1) and rs=0. Activation of the ITXG bypass does

not appear to have a negative impact for XFS in the remaining workloads. For Ext4,

we observed some performance degradations in setups where both ITXG bypass and

zvol_request_sync were enabled.

In summary, ZIL-PMEM provides a sign�cant performance advantage for ZVOLs but

is less e�ective than with ZFS �lesystems (see Sections 7.3.2 and 7.3.3). This is par-

ticularly noticeable in the �o workloads and RocksDB-�llsync. Their speedup with

ZIL-PMEM on XFS+ZVOL is only half the speedup of what we observed for ZFS at

scaling factor 1. Write ampli�cation cannot be responsible for this behavior because

�o already writes at 4k block size. The most likely cause is latency overhead added by

the �lesystem that a�ects all workloads equally.

7.3.4 CPU-E�cient Handling Of PMEM Bandwidth Limits
PRB’s commit slot mechanism limits the number of parallel writers to ncommitters. The

goal is to avoid wasteful on-CPU stall cycles which inevitably occur if the aggregate

write bandwidth to PMEM exceeds the hardware capacity. (See Sections 4.1.1 and 5.13

for a more detailed explanation.)

To determine the mechanism’s e�ectiveness, we use our 4k synchronous random write

workload with separate ZFS �lesystems per �o thread. We add low-overhead per-CPU

counters to ZIL-PMEM to sum up the total amount of time that is spent writing PMEM

(Tpmem), as well as the number of write operations performed during the benchmark

(Nops). We then compute the average PMEM write time per IOP Tpmemiop
= Tpmem

Nops
[ s
op
].

The most e�cient value for ncommitters for a given system depends on the work-

load and e�ciency goals. In general, ncommitters should be the minimum value where

Tpmemiop
is tolerable, but the system’s primary performance metric is not impacted.
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We computeTpmemiop
for 1 to 18 numjobs, di�erent values of ncommitters and two di�er-

ent PMEM con�gurations. The �rst PMEM con�guration is a single, non-interleaved

Optane DIMM. The second con�guration is four interleaved Optane DIMMs. Regard-

less of how interleaving is con�gured, we create a 40 GiB-sized fsdax namespace on

the resulting region and use it as the PMEM SLOG for ZIL-PMEM. We use a machine

with higher core count for the benchmarks. The system con�guration is as follows:

System Supermicro SYS-1029U-TRT

Mainboard Supermicro X11DPU, Version 1.10

CPU 2 x Intel Xeon Gold 5220 CPU 2.20GHz

18 cores per socket, 2-way SMT per core

DRAM 12 x 32GiB SK HYNIX DDR4-2666, HMA84GR7CJR4N-VK

PMEM 8 x Intel Optane DC Persistent Memory, 128 GB, (NMA1XXD128GPS),

4 per socket.

NVMe System rootfs only, no dedicated NVMe hardware.

Kernel Linux Kernel, Fedora 5.11.15-100.fc32.x86_64

Userland Fedora 32

�o �o-3.21

As with our main evaluation system (described in Section 3.1), we leave SMT en-

abled. We disable the second socket in software using the isolcpus=18-35,54-71 kernel

command line parameter. Since the system does not have NVMe devices available,

we provision the disabled socket’s Optane DIMMs in non-interleaved mode, i.e., one

PMEM region and a single fsdax namespace per DIMM. We use these namespaces as

the zpool’s main (non-SLOG) VDEVs.

Figure 7.11 visualizes the results of this experiment. For the non-interleaved con�gura-

tion, we observe that the system’s peak IOPS is 400k, �rst achieved with ncommitters=3.

For ncommitters=3, IOPS quickly decline to 263k IOPS for higher numjobs. But with

ncommitters=8, the system is able to sustain the 400k IOPS for the fornumjobs ∈ 7 . . . 13.

The price is signi�cantly more on-CPU PMEM time per IOP: looking at numjobs = 8,

the Tpmemiop
is 3.3, 4.3, 6.5 us for ncommitters=3, 4 and 8. And at numjobs = 12,

Tpmemiop
climbs to 11.6, 20.6 us for ncommitters=8 and 12 whereas ncommitters=3 is suc-

cessfully limited to 2.7 us of PMEM write time per IOP. The ncommitters=12 and 24 con-

�gurations do not achieve higher peak IOPS than ncommitters=8 but decline to lower

values for high numjobs, e.g., only 237k IOPS for ncommitters=24, numjobs = 18. This

performance decline at high degrees of concurrency is an established property of the

Intel Optane PMEM hardware [58]. The limitation to ncommitters=8 mitigates this e�ect

(331k vs. 237k IOPS at numjobs = 18).

The four-way interleaved con�guration exhibits very di�erent behavior. We achieve

the highest IOPS for the con�guration where the commit slot mechanism has no e�ect,
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Figure 7.11: Comparison of performance and PMEM write time per IOPS for di�erent

values of ncommitters in the two PMEM con�gurations.
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i.e., ncommitters=24, numjobs = 18 with 900k IOPS. Given that the IOPS curve has not

reached a plateau at this point, a higher value might be possible with higher numjobs.

Tpmemiop
is the same for all ncommitters values at a given numjobs value (+/- 0.1 us). It is

1.66 us for numjobs = 1 and grows slightly unevenly towards 2.56 us at numjobs =
24. This is an increase of merely 54% which is likely to be acceptable in any setup,

given the 9.6x increase in IOPS (93k to 900k) that is possible with ncommitters=24.

To determine how the commit slot abstraction impacts performance in con�gurations

with ncommitters > maxnumjobs, we add additional instrumentation that measures

the average latency of commit slot acquisition and release. Figure 7.12 visualizes the

results for ncommitters=24. The absolute overhead is approximately the same for both

PMEM con�gurations. It starts at 100 ns for numjobs = 1, climbs to 240 ns at

numjobs = 4, and then scales linearly to 385 ns at numjobs = 18. In the interleaved

con�guration, for any numjobs > 4, this corresponds to approximately 11–13% of

the overall write latency per log entry. Without commit slots, zil_commit could thus be

1
1−0.13 = 14.9% faster. However, due to the overhead of the other ZFS components, the

contribution to overall IOP latency is only 2%, which would constitute a rather meager

improvement.
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Figure 7.12: Overhead of the commit slot for 24 = ncommitters > maxnumjobs. Note

the di�erent y-axis scales. Also note that the relative latency contribution for the

non-interleaved con�guration only shrinks because the PMEM write time (not shown)

grows signi�cantly.

We draw the following conclusions from our observations made above:

• The commit slot mechanism successfully limits PMEM write time.

• The commit slot mechanism’s multicore scalability is acceptable and contributes

little relative overhead to each IOP compared to other ZFS components.

• Regarding the non-interleaved con�guration (single Optane DIMM):
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– Our 4k synchronous write workload is able to achieve peak performance

with 400k IOPS as early as ncommitters=3.

– Setting ncommitters=8 extends the peak to a plateau with regard to numjobs,

but consumes
6.5 us

3.3 us
= 1.96 times more (on-CPU!) PMEM write time per

IOP.

– Note that we used ncommitters=3 as the con�guration for ZIL-PMEM in all

of the previous benchmarks. Since our main evaluation system on which

these benchmarks were executed has only 8 cores (2x SMT), this setting

ensured CPU-e�cient execution at all times. We believe that an e�ciency-

oriented default con�guration is the preferable approach for an in-kernel

�lesystem such as ZFS which provides a system-wide OS service whose

overall priority in the system is not known a priori. However, for systems

whose primary role is that of an NFS/SMB server or that of a SCSI target

(ZVOLs), it may be appropriate to allow more on-CPU waiting time.

• Regarding the four-way interleaved con�guration (4 Optane DIMMs):

– The commit slot mechanism is not useful for the observed range ofnumjobs
values.

– The reason is that ZIL-PMEM cannot saturate the Optane DIMMs’ write

bandwidth due to per-IOP overhead added by other components of ZFS.

– However, with ncommitters > maxnumjobs, the overhead per IOP is neg-

ligible.
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Conclusion

We have shown that the upstream implementation of the ZFS Intent Log (ZIL), which

is ZFS’s mechanism for supporting synchronous IO semantics, is unable to take ad-

vantage of persistent memory (PMEM) as a separate log device (SLOG). Our analysis

in Chapter 3 highlights the considerable latency overhead added by the ZIL’s block-

device-oriented data structure (LWB chain) and ZFS’s IO abstraction (ZIO pipeline).

This observation motivated the development of ZIL-PMEM, our new ZIL implementa-

tion that exclusively targets PMEM.

In comparison to related work in academia, ZIL-PMEM falls into the category of an

in-kernel cross-media �lesystem that uses PMEM for acceleration of its write path.

Other publications in this niche are Ziggurat and Strata [63, 23]. Ziggurat focuses on

predictive data placement and can migrate data between di�erent storage tiers such as

PMEM and �ash. It is based on NOVA-Fortis and thus a PMEM-�rst design, whereas

ZIL-PMEM introduces PMEM into a block-device-oriented system. Strata uses PMEM

as a log bu�er for fast synchronous IO and aggregates the log contents for e�cient

write-back to SSDs. Its hybrid architecture (LD_PRELOADed library + kernel mod-

ule) is not directly comparable to ZIL-PMEM. In the open-source ecosystem, we have

identi�ed Linux Device Mapper with its dm-writecache target as a practically relevant

alternative to ZIL-PMEM. Our survey of systems for modeling and validating �lesys-

tem crash consistency yielded no solution that would be immediately applicable to our

work.

Our main contribution is the PRB/HDL data structure which consumes the space of a

PMEM SLOG device and exposes the abstraction of a persistent garbage-collected log

(HDL) for each dataset in the pool. PRB/HDL scales to many concurrent writers, is

speci�cally optimized for Intel Optane PMEM’s performance characteristics, and fea-

tures an innovative mechanism to avoid excessive on-CPU waiting for PMEM IO. To

141
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our knowledge, we are the �rst to identify and address this problem in the domain of

PMEM-aware �lesystems. Our persistent data structure ensures data integrity through

checksums and encodes logical dependencies between log entries in a way that allows

for parallel writes to a HDL and yet results in a deterministic replay order during recov-

ery. The recovery procedure is crash-consistent and handles detected data corruption

as well as machine check exceptions (MCEs) correctly and gracefully.

We have integrated PRB/HDL into ZFS such that the upstream ZIL implementation

(ZIL-LWB) and ZIL-PMEM can coexist at runtime. Our approach shares the code and

data structures that de�ne the logical structure of the ZIL but provides su�cient �exi-

bility for di�erent persistence mechanisms. Whereas there are still open issues related

to dynamic changing of ZIL kinds after pool creation and the overall degree to which

ZIL kinds should be exposed to the user, we were able to successfully evaluate our

implementation.

We have validated correctness through extensive unit testing as well as existing ZIL

tests in the ZFS Test Suite and the ztest stress testing tool. We achieve 83.76% code

coverage with our userspace tests, and 76.41% code coverage for the kernel module.

Regarding performance, we were able to demonstrate high speedups over ZIL-LWB

in micro- and application benchmarks. The highest achieved speedups are 8x (4k

synchronous random write micro-benchmark) and 5.8x in a RocksDB workload. The

speedup of the same workloads for ZVOLs with XFS mounted on top is, barring a few

exceptions, at least 2x. In comparison to other block-device-oriented systems that were

adapted to PMEM (Ext4 or XFS on PMEM or dm-writecache), ZFS with ZIL-PMEM

performs exceptionally well for small synchronous operations (Redis, RocksDB), pre-

sumably due to lower write ampli�cation. Our experimental ITXG bypass for ZVOLs

with which we sought to demonstrate the bene�ts of parallel logging to the same HDL

showed some bene�t in the micro-benchmark, but not in the application benchmarks.

Our commit slot mechanism for avoidance of excessive on-CPU waiting when the max-

imum PMEM write bandwidth is exceeded was shown to be e�ective for a single non-

interleaved Optane DIMM but is not practically relevant with four interleaved DIMMs

at current CPU core counts.

8.1 Future Work
We would like to systematically validate the speculations about write ampli�ca-
tion that we made in the evaluation. This requires instrumentation of all benchmarked

storage stacks. The minimum required metrics are the sum of application data that

were written at the VFS level, and the number of bytes written to PMEM. Histograms

for the distribution of the VFS and PMEM write sizes could also be useful to compare

the degree to which aggregation of IO operations takes place in di�erent storage stacks
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and workloads. Whereas eBPF would work for this task, the measurement overhead is

not negligible. Statically compiled, low overhead, per-CPU counters are likely prefer-

able.

ZIL-PMEM’s multicore scalability for a single dataset is signi�cantly worse than

in con�gurations with a dedicated dataset per parallel writer. This can be observed by

comparing the IOPS achieved by ZIL-PMEM in Figure 7.3 (per-thread datasets) to �o-
growing in Figure 7.7 (shared dataset). Whereas the values for scaling factor (=numjobs)

1 are expectably the same, �o-growing only achieves approximately 50% of the IOPS

at numjobs=4 and 8. For numjobs=4, we believe that this is due to the use of a per-dataset

mutex to ensure a sequential log structure (Section 6.3.4). The e�ect does not grow

further for numjobs=8 because we are already limited by PMEM bandwidth at numjobs=4.

An extended latency breakdown that measures the time spent on acquiring the per-

dataset mutex could be used to con�rm this hypothesis.

Our evaluation does not address the performance of the recovery path. We expect

the relevant factors to be a) the number of datasets in the pool, b) the chunk size, and

c) the number of chunks. The important metrics for recovery are a) pool import time,

b) replay time, and c) peak aggregate DRAM usage by the per-HDL data structures.

The trade-o�s around the chunk size have not yet been evaluated. We chose a large

chunk size for our evaluation (128 MiB) to avoid contention on the PRB-wide mu-

tex that must be held while getting a new free chunk. Such a large chunk size is

probably not required in practice. For example, in a 4k write workload, only every

128∗220
256+192+4∗210+(256−192) ∼ 29127th

write would require a new chunk, which assuming

back-to-back writes at a very optimistic latency of 1.5 us, is only every 46.2 ms. Since

data corruption in an entry header makes the subsequent entries in the chunk unreach-

able for traversal, we expect that it is desirable to �nd the smallest possible chunk size

that works on a given system.

We explicitly ignored space e�ciency as a concern for ZIL-PMEM because of the high

capacity of Intel Optane PMEM. However, determining and potentially reducing the

per-entry space overhead could be bene�cial for media wear-out. Users of NVDIMM-N

devices, which are usable with ZIL-PMEM in principle but have DRAM-level capacities

and signi�cantly higher prices, could bene�t as well. Possible approaches for reducing

space overhead are:

• Batching of multiple small log records into a single PRB entry (e.g., directory

operations, �le metadata).

• Reduction or omission of padding in the in-PMEM structure. Whereas padding

to 256 byte multiples delivers the best performance on Optane PMEM, it is pre-

sumably unnecessary on DRAM/NVDIMM-N [58].
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We also ruled out NUMA awareness as a requirement for ZIL-PMEM to limit the

scope of this thesis. In the future, we would like to analyze the current implementa-

tion’s performance on NUMA systems and furthermore explore how the design can be

made NUMA-aware. A critical metric will be NUMA’s impact on tail latencies. A pos-

sible approach for NUMA-awareness could be to maintain a dedicated set of commit
slots per NUMA node that preferentially use chunks that are located on a NUMA-local

Optane DIMM.

We would like to extend our performance evaluation with the following storage

stacks:

ZIL ZIO Bypass By Saji Nair At the OpenZFS 2020 Developer summit, Saji Nair

of storage vendor Nutanix presented a proof-of-concept for handling fast block

devices more e�ciently when con�gured as SLOGs. The prototype avoids un-

necessary sequential ordering of IO operations when writing LWBs. It also

avoids using the ZIO pipeline due to context switching overheads and issues

block IO directly from the application thread instead. The evaluation is lim-

ited to a single benchmark: a �o 8k (!) sync write workload, spread across four

zpools in identical con�guration, achieves 75k IOPS at four threads. With 16

threads, the system achieves its peak IOPS at approx. 125k IOPS. The source

code for the prototype has not been published, and the design is incomplete

with regard to replay. [36]

Ext4 journal_dev / XFS logdev Both XFS and Ext4 provide an option to con-

�gure dedicated journaling / write-ahead logging devices. However, perfor-

mance during manual experimentation with this feature was unexpectedly

low for both �lesystems. Since both con�gurations seem rather exotic, we

ultimately did not use them in the evaluation.

XFS DAX Log Patch XFS developer Christoph Hellwig has published an un�n-

ished patch that adds DAX support for the code in XFS that writes its write-

ahead log [28]. Our understanding of the patch is that it bypasses the block IO

layer but leaves the persistent structure unchanged. The experiment would

be particularly interesting in combination with a (properly tuned) dedicated

logdev con�guration for XFS.
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Regarding correctness and robustness of our implementation, we would like to ex-

plore the following topics in the future:

Validating PMEM Durability PMTest is a tool which automatically validates

that the software under test issues the architectually required instructions for

durability and ordering (Section 2.1.5). In contrast to other tools, it supports

kernel mode and is publicly available.

Fault Injection for PMEM Access Whereas we are careful to always use the

memcpy_mcsafe function when accessing PMEM, we do not have tests that verify

the error handling path. As described in our literature review (Section 2.1.6),

fault injection is the tool of choice for such tests. Either ndctl-inject or an

extension of ZFS’s existing fault injection infrastructure that intercepts PRB’s

PMEM access could be used.

Fuzzing Fuzzing could potentially be used to harden our implementation against

unexpected in-PMEM state. Our software engineering e�orts to facilitate test-

ing of PRB/HDL might enable the use of established userspace tooling with

reasonable e�ort.

Our implementation does not yet attempt to detect write errors or unsafe shut-
downs (ref. Section 2.2.2). The PRB garbage collection procedure presents an op-

portune point for eager detection of media errors by traversing the chunks before

garbage-collecting them. If the PMEM hardware detects an error during traversal and

surfaces it via MCE, garbage collection can report it to the user. PRB could further

store a checksum of each chunk’s content in DRAM and validate it against the read-

able PMEM content during garbage collection. Regarding unsafe shutdowns, it would

be a valuable extension of the user experience to detect the condition and to surface

it to the user via zpool status or during pool import. However, ZIL-PMEM’s existing

measures to detect data corruption should be able to handle any problems caused by

unsafe shutdowns.

For the integration into ZFS, we anticipate the following future work items:

PMEM Space Management For maintainability and other use cases for PMEM

in ZFS, it might be sensible to integrate PMEM allocation more deeply into

the SPA. For example, we could extend the allocation interface such that it

becomes possible to request DAX-capable blocks. Instead of our simplistic

partitioning scheme which divides the entire PMEM space into chunks (Sec-

tion 6.3.2), ZIL-PMEM would pre-allocate chunks from the SPA. It would store

the chunks’ DVAs in the object set to reconstruct PRB after a crash.

ZIL Kinds User Experience The goal to make ZIL-PMEM, or ZIL kinds in gen-

eral, fully transparent to the administrator should be reconsidered. (See Sec-

tion 6.3.1 for our rationale.)
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Handling Of Claiming And Replay Errors PRB/HDL is able to detect and re-

port online log corruption, but ZIL-PMEM currently does not propagate these

errors and triggers a kernel panic instead. As described in Section 6.3.4, this is

due to shortcomings in the upstream error handling model for claiming and

replay errors. We would like to refactor the pool import code so that users

are better informed about log corruption and can specify the action that the

respective ZIL implementation should take in that case.

Support for Native Encryption The threat model for OpenZFS Native Encryp-

tion support in ZIL-PMEM must be the same as for ZIL-LWB. The entry header

and body need to be authenticated, and the entry body needs to be encrypted.

ZIL-PMEM’s recovery path needs to be vetted to ensure that recorded entries

cannot be injected into unintended replay sequences (replay attack).

System-Wide Impact Of Interrupt Masking Due to licensing issues, we must

mask local interrupts while using the FPU on the write path (see Section 5.13.3).

This will also be necessary to support hardware-accelerated encryption. We

would like to investigate the practical impact of this aspect of the implemen-

tation on overall system performance.

Redundancy Through Mirroring Redundancy for ZIL-PMEM could be accom-

plished by mirroring PRB between two or more DIMMs. During recovery, we

would always scan both PRBs and deduplicate the discovered entries.
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We have submitted the following Git repositories along with this thesis.

OpenZFS Repository
Our fork of the upstream OpenZFS repository that contains all changes presented in

this thesis. The following branches and respective commit hashes represent the source

code state used for the evaluation. All branch names listed below have the pre�x

problame/master-thesis-archive/. Use

git log --format=oneline --graph --remotes='*master-thesis-archive*' for a visualiza-

tion of the commit history.

zil-pmem The most recent version of our code at the time of submission.

Commit: 26482b2eef967b85e2d54592d3bd8667dc6dc0b8

evaluation/coverage/zil-pmem-mergebase-plus-gcov_bash The merge base be-

tween branch zil-pmem and the upstream master branch, plus a script to automate

code coverage measurement.

Commit: ca86024b481cc12a54df05dbaa04f4fca4d8bc93

evaluation/coverage/zil-pmem The branch used to produce the code coverage re-

sults (very close to zil-pmem).

Commit: e2f42280eb48eb05e2e0dc6739ee681a9a7725f7

evaluation/performance/main-evaluation-system_i30pc61 The branch

used to run the performance evaluation, except the benchmarks on the scalabil-

ity of commit slots (Section 7.3.4). The code is slightly older than the zil-pmem

branch. It does not include the �xes for crashes discovered by ztest (none of

them occurred during the performance evaluation). It also does not contain the

code for the ZIL kinds zpool feature, i.e., for handling pools with the old ZIL

header format (not relevant for performance evaluation).

Commit: c38696bc367c79a86f579a55a1431a253a4eb3dd

evaluation/performance/ncommitters_scalability_evaluation_system__i30pc62 The

branch that we used on the system with higher core count and more Optane
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DIMMs per core on which we evaluated the scalability of commit slots. The

branch is slightly older than the one of the main evaluation system and contains

hot�xes to address incompatibilities with an older version libblkid. Commit:

e3024d5398d395d317a7622263fb4833ba08e1ee

Evaluation Repository
The repository that contains the code and data used for the evaluation (Chapter 7).

The branch master-thesis-archive/submitted_state at commit

a467b56f3ca60d60e9eb66967f4c8dcfbb44c99c contains:

• The code that was used to run the benchmarks.

• The raw result data produced by the benchmarks.

• The code for post-processing the benchmark result data.

• Instructions for producing the coverage data

(correctness_evaluation/README.md).

• An archive of the code coverage data that we presented in Figure 7.4 in Sec-

tion 7.2.3.

Thesis Repository
The repository with the LATEX source code and assets that were used to produce this

document.
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