
Technical Report:
Dim Silicon and the Case for Improved DVFS Policies

Mathias Gottschlag, Yussuf Khalil, Frank Bellosa

Operating Systems Group
Karlsruhe Institute of Technology

E-mail: os@itec.kit.edu

Abstract

Due to thermal and power supply limits, modern In-
tel CPUs reduce their frequency when AVX2 and AVX-
512 instructions are executed. As the CPUs wait for
670 µs before increasing the frequency again, the perfor-
mance of some heterogeneous workloads is reduced. In
this paper, we describe parallels between this situation
and dynamic power management as well as between the
policy implemented by these CPUs and fixed-timeout
device shutdown policies. We show that the policy im-
plemented by Intel CPUs is not optimal and describe
potential better policies. In particular, we present a
mechanism to classify applications based on their like-
liness to cause frequency reduction. Our approach takes
either the resulting classification information or infor-
mation provided by the application and generates hints
for the DVFS policy. We show that faster frequency
changes based on these hints are able to improve per-
formance for a web server using the OpenSSL library.

1 Introduction

In recent years, performance became increasingly
limited by power consumption as Dennard scaling has
come to an end [33]. The effect where the available
power budget allows for different maximum frequen-
cies depending on the number of cores is called dim
silicon [17]. The same effect also applies to different
instruction mixes. As different operations cause differ-
ent switching activity on the chip, they consume dif-
ferent amounts of energy, so complex instructions have
to be executed at a lower frequency. Similarly, if un-
used parts of the chip are power-gated because they
are not required by simpler operations, the resulting
power savings can be used to increase the frequency.

The power budget is not only limited due to thermal
constraints but also due to power supply limitations1,
where even short-term transgressions could cause in-
stability due to voltage drops.

As the large size of the SIMD registers used by re-
cent SIMD instruction set extensions causes high power
variation, recent CPUs have started to vary their fre-
quency based on the workload to maximize perfor-
mance under power budget constraints. For exam-
ple, Intel CPUs reduce their clock speed as soon as
code containing AVX2 and AVX-512 instructions is ex-
ecuted [5]. However, every frequency change causes
some overhead [26], because the system has to wait
for voltages to change2 and clock signals to stabilize.
Therefore, even if no AVX2 and AVX-512 instructions
are executed anymore, these CPUs delay increasing
the clock speed [6]. This mechanism ensures that if
the code continues executing these vectorized instruc-
tions shortly after, no excessive numbers of frequency
changes are performed.

For some workloads, the delay causes overhead,
though, as parts of the software which could be exe-
cuted at higher frequency are needlessly slowed down.
For example, a simple benchmark using the nginx web
server is slowed down by 10% if the SSL library used
by the web server is compiled with support for AVX-
512, as the CPU frequency is reduced during AVX-512-
heavy encryption and decryption, but the frequency
change also affects the non-vectorized parts of the web
server [20].

A policy similar to this constant-delay policy is em-
ployed in the area of dynamic power management. In
this area, a similar trade-off is found, as disabling

1In our tests, recent Intel CPUs have reported maximum cur-
rent as the most common reason for frequency changes in AVX-
512-heavy workloads.

2The frequency can only be increased when sufficient voltage
is available, leading to frequency change delays and a resulting
“underclocking loss” [26].

1

ar
X

iv
:2

00
5.

01
49

8v
1

 [
cs

.O
S]

 4
 M

ay
 2

02
0

devices saves energy but incurs overhead both dur-
ing shutdown and reactivation. The widely-used fixed
timeout policy shuts down devices after a fixed de-
lay [7], where the delay is usually equal to the break-
even time in order to improve worst-case power con-
sumption [18]. In the area of power management, re-
search has brought up a plethora of other shutdown
strategies promising higher energy savings [7] and has
shown that input from the application can be used to
further improve power efficiency [34]. It is likely that
similar approaches can be used to reduce DVFS over-
head for partially power-intensive workloads. In this
work, we show that, in particular, input from the ap-
plication can be used to predict whether immediate
reclocking makes sense. Our contributions are as fol-
lows:

• We describe the parallels between DVFS in dim
silicon scenarios and dynamic power management.
The duality allows to apply research from the area
of dynamic power management to the former.

• We determine the frequency change cost on a cur-
rent server system and calculate the break-even
time for frequency changes. We use this result
to show how the delay specified by Intel does not
provide optimal worst-case behavior.

• We show that application knowledge about exe-
cution phases or the instruction types used by in-
dividual processes can be used to improve perfor-
mance by passing hints about future instruction
set usage to the DVFS policy. We validate this
finding through simulation of different DVFS poli-
cies on a web server workload.

• We describe a mechanism to determine at runtime
whether individual processes will trigger frequency
reductions due to their usage of power-intensive
instructions. Unlike existing approaches, our de-
sign can reliably distinguish between all three fre-
quency levels provided by current Intel CPUs.
This information can be used as input for an im-
proved DVFS policy to trigger frequency changes
during context switches.

2 Effects of AVX2 and AVX-512

Starting with the Haswell microarchitecture which
introduced the AVX2 instruction set, Intel introduced a
separate maximum frequency for AVX2-intensive code
segments [15]. The Skylake microarchitecture added
AVX-512 instructions and a third AVX-512 frequency
level [29]. Table 1 shows the maximum turbo frequency

for the Intel Xeon Gold 6130 server processor. The
maximum frequency depends both on the number of ac-
tive cores – with larger numbers of active cores requir-
ing larger frequency reduction – as well as on the type
of instructions executed. AVX-512 causes a particu-
larly large frequency reduction due to the complexity
of operations on 512-bit vectors. As described above,
the reduced frequency is maintained longer than nec-
essary to prevent excessive reclocking overhead.

There are two situations where this delay can cause
the frequency reduction to negatively affect unrelated
non-AVX code and cause a significant performance re-
duction. First, on a system with simultaneous multi-
threading (SMT), if one of the hardware threads causes
the frequency of the physical core to be reduced, the
other hardware threads on the same core also execute
at lower frequency even if their code is not as energy-
intensive [22]. Second, in heterogeneous applications
consisting of power-intensive and less power-intensive
parts – or if the OS frequently switches between power-
intensive and less power-intensive tasks – the delay
before increasing the frequency causes reduced perfor-
mance for the less power-intensive code [13].

As an example for the latter, previous work de-
scribes overhead caused by AVX-512 in a web server
workload, where the nginx web server provides up to
10% lower performance when the SSL library uses cryp-
tography primitives implemented with AVX-512 in-
structions, because unrelated web server code is slowed
down following calls into the SSL library [20]. We repli-
cated this experiment, the result is shown in Figure 1
alongside other experiments with workloads consisting
of multiple different processes to show that the per-
formance impact is also present in such scenarios. For
these other experiments, we execute different non-AVX
workloads while concurrently executing the x265 video
encoder configured to use AVX, AVX2, or AVX-512 in-
structions. The experiments are conducted on a system
with an Intel Xeon Gold 6130 processor.

Our first multi-process experiment determines the
impact on an interactive web server workload: We ex-
ecuted the nginx web server alongside the x265 video
encoder and configured the wrk2 client to generate a
fixed number of requests to the web server. This setup
imitates the scenario where a web server is not fully
utilized and the remaining CPU time is used for back-
ground batch tasks. Figure 1 shows the normalized
CPU time required by the nginx web server to serve
a unencrypted static file (“nginx+x265”). The results
show a 6.6% performance impact when the background
process uses AVX2 instructions and a 21.8% perfor-
mance impact for AVX-512. As the web server is not
operating at 100% utilization, the background process

2

Active cores 1-2 cores 3-4 cores 5-8 cores 9-12 cores 13-16 cores

Normal 3.7 GHz 3.5 GHz 3.4 GHz 3.1 GHz 2.8 GHz
AVX2 3.6 GHz 3.4 GHz 3.1 GHz 2.6 GHz 2.4 GHz

AVX-512 3.5 GHz 3.1 GHz 2.4 GHz 2.1 GHz 1.9 GHz

Table 1: Maximum turbo frequency of the Intel Xeon Gold 6130 processor [3]. The frequency reduction caused by
AVX2 and AVX-512 instructions increases when more cores are active.

Parsec Phoronix Test Suite

bl
ac

ks
ch

ol
es

flu
id

an
im

at
e

ng
in

x+
x2

65

ng
in

x+
op

en
ss

l

ap
ac

he

bu
ild

-li
nu

x-
ke

rn
el gi

t

m
ys

ql
sla

p
re

di
s

sq
lit

e

sw
ap

tio
ns

vi
ps

x2
64

0

0.5

1

1.5

C
P

U
ti

m
e

(n
o
rm

al
iz

ed
)

AVX AVX2 AVX-512

Figure 1: CPU time required to run various benchmarks under the influence of different instruction sets to measure
the impact of AVX frequency reduction.

is often executed inbetween two consecutive requests or
is executed in parallel on the other hardware thread of
the same core, causing a particularly large performance
impact.

To show that the problem affects both interactive
and batch workloads, we also execute various bench-
marks from the Parsec [8] benchmark suite and the
Phoronix Test Suite (PTS) [1] benchmarks in paral-
lel to the x265 video encoder. As shown in Figure 1,
all these benchmarks are also affected by the frequency
changes caused by x265. The Parsec benchmarks expe-
rience an average performance reduction by 10.0% for
AVX-512. Similarly, the PTS benchmarks are slowed
down by 12.4%.

As described above, one major mechanism for slow-
down that is targeted by other approaches [22] is that
software on one hardware thread slows down other
hardware threads of the same core. To show that some
of the slowdown is also experienced on systems with-
out hyperthreading, we repeat all the benchmarks on
a system with hyperthreading disabled. The results of
this experiment are shown in Figure 2 and show that
CPU-intensive non-interactive workloads are not sig-
nificantly slowed down anymore once hyperthreading
is disabled as the system does not switch between the
processes often enough for frequency change delays to
have a significant effect. For example, on a system

with the default Linux CFS scheduler, we observe only
one context switch every 10 to 20 ms for the blacksc-
holes workload whereas frequency increases are only
delayed by less than one millisecond. Although dis-
abling hyperthreading reduces the performance of the
system and is therefore not a viable technique against
the overhead caused by AVX-heavy code in these sce-
narios, other techniques such as core specialization [13]
and core scheduling [22] can make sure that whenever
possible either both hyperthreads are executing AVX-
intensive code or none of them is.

Overhead caused by hyperthreading is out of the
scope of this paper, though. Instead, the goal of our
approach is to reduce the overhead in applications
which periodically execute short sections of AVX-512
or AVX2 code as well as in workloads which frequently
switch between AVX-512 or AVX2 and non-AVX ap-
plications on a single core. From the benchmarks
shown in Figure 2, an example for the former is the
nginx/OpenSSL benchmark, which executes AVX-512
instructions only when OpenSSL functions are called.
The nginx/x265 benchmark as well as the Apache,
MySQL and SQLite benchmarks from PTS, instead,
trigger frequent context switches between the AVX-
512-enabled background task and the benchmarked ap-
plication and are therefore examples for the latter be-
haviour. These types of benchmarks are the bench-

3

Parsec Phoronix Test Suite

bl
ac

ks
ch

ol
es

flu
id

an
im

at
e

ng
in

x+
x2

65

ng
in

x+
op

en
ss

l

ap
ac

he

bu
ild

-li
nu

x-
ke

rn
el gi

t

m
ys

ql
sla

p
re

di
s

sq
lit

e

sw
ap

tio
ns

vi
ps

x2
64

0

0.5

1

1.5

C
P

U
ti

m
e

(n
o
rm

a
li

ze
d

)

AVX AVX2 AVX-512

Figure 2: CPU time required for the experiment shown in Figure 1 on a system with hyperthreading disabled. Note
that benchmarks with few context switches do not suffer from frequency changes anymore once hyperthreading
is disabled, whereas benchmarks with frequent switches between AVX and non-AVX code (i.e., heterogeneous
programs with short AVX-heavy phases as well as workloads consisting of an interactive service and an AVX-heavy
background task) still suffer from the frequency change delay. Note that such workloads are often latency-critical
and therefore particularly suffer from degraded performance.

marks which show overhead even when hyperthreading
is disabled: For AVX-512, the nginx benchmarks are
slowed down by 7.0% on average, whereas the three
PTS benchmarks are slowed down by 12.4% on aver-
age.

Due to the frequent switches between AVX-
512/AVX2 and non-AVX code during these workloads,
the upclocking delay implemented by the CPU’s ex-
isting hardware DVFS policy is the main source for
the overhead caused by AVX instructions. To isolate
this overhead source and to demonstrate that improved
DVFS policies are able to mitigate its effects, we con-
duct all further experiments in this paper with hyper-
threading disabled. The assumption of CPUs with-
out hyperthreading significantly simplifies the design of
some parts of our approach. This does not mean that
improved DVFS policies are inherently ineffective on
systems with hyperthreading, although more research
has to be conducted to identify appropriate heuristics
for improved DVFS decisions.

3 Parallels to Dynamic Power Manage-
ment

As described above, the complex frequency behav-
ior of modern CPUs stems from the fact that it is not
economically viable to cool modern CPUs when they
are executing power-intensive code at their maximum
frequency [17]. Instead, available thermal headroom
is used to temporarily use higher frequencies (a form
of computational sprinting [27]). In this scenario, the
more the energy consumption per instruction varies,

the higher is the thermal headroom for code execut-
ing simple instructions. Therefore, modern Intel CPUs
use different turbo frequencies for different types of
code, with AVX2 and AVX-512 instructions triggering
a transition to significantly lower frequency levels [29].
As shown by the registers provided by these CPUs to
determine the reason for frequency changes, not only
thermal headroom plays a factor for these frequency
reductions, though: The power dissipation of the chip
correlates with the current required from the power
supply, and frequency changes are also required to pre-
vent voltage drops due to increased current draw.

The frequency changes required to use the available
headroom come at a cost. For example, Mazouz et al.
have measured the cost of a single frequency change
to be approximately 10 µs on an Intel Ivy Bridge sys-
tem [24] and our own experiments presented in Sec-
tion 4.1 arrive at a similar cost (between 9 µs and
19 µs) on more recent Skylake server CPUs. Therefore,
increasing the frequency to use thermal headroom is
only viable if the higher frequency can be applied long
enough that the performance improvement makes up
for the frequency change overhead. This trade-off is
similar to the problem of dynamic power management
where devices are temporarily switched off or transi-
tioned to a low-power state in order to save energy [7].
Here, the energy cost for the state transition means
that switching devices off for only short periods of time
is frequently unviable. As the operating system, how-
ever, does not know how long a device is going to stay
unused, it is in general not possible to determine in ad-
vance whether shutting a device off is going to result

4

in a net improvement.
In the area of dynamic power management, sig-

nificant effort has gone into developing heuristic ap-
proaches to guess when to shutdown devices [7]. One
metric to measure the quality of heuristic approaches
is their competitiveness in a worst-case scenario. The
competitiveness is the worst-case ratio between the en-
ergy required by the approach compared to the energy
required by an oracle policy that can determine in ad-
vance whether shutting off a device is viable. Karlin
et al. [18] showed at most 2-competitiveness (mean-
ing that the approach uses at most twice as much en-
ergy) is possible for deterministic algorithms. In dy-
namic power management, 2-competitiveness can be
achieved by switching a device off after a fixed time-
out. When that timeout equals the break-even time
(i.e., the time of inactivity during with the low-power
state would have made up for the transition costs), the
device uses at most twice as much energy if it wakes
up directly after being sent to a low-power state. In-
tel CPUs show a very similar behavior as they delay
increasing the frequency by a fixed timeout after the
CPU has stopped executing any AVX instructions [29].
However, the fixed delay is not optimal in terms of com-
petitiveness because, as we show in Section 4, DVFS
has wildly varying break-even times in different sce-
narios. Neither is the DVFS policy implemented by
current Intel CPUs optimal for real-world workloads
as we show in Section 6.2.

There are approaches that can, depending on the
situation, perform better than simple heuristic ap-
proaches. For example, applications can give hints
about expected future behavior to let the OS perform
better informed decisions [23] or the OS can use the
deadlines of I/O requests to change the device usage
pattern to save more energy [35] Both these approaches
can be applied to DVFS policies in dim silicon scenar-
ios. In this paper, we show an example for the former
approach. As software developers often know whether
the application is going to execute no power-intensive
code – i.e., no AVX2 and AVX-512 – in the near future,
that information can be used by the CPU to forego the
frequency change delay and immediately change fre-
quencies for improved performance.

4 Behavior of Intel CPUs

According to the optimization manual, recent Intel
CPUs implement a fixed-timeout policy where the CPU
waits approximately 2 ms after the last section of AVX-
intensive code before increasing the frequency again [6,
p. 2-13]. In addition, before lowering the frequency, the
core requests a power license from the package control

unit (PCU) which takes up to 500 µs before granting
the license. However, as shown by Schne et al. [29], the
behavior of the hardware does not match the documen-
tation. Instead, the processor waits for a significantly
shorter timeout (approx. 670 µs as measured in our ex-
periments) before upclocking. We were able to confirm
the observed behavior on a system with an Intel Core
i9-7940X, where we measured the delay for frequency
changes when executing sections of code consisting of
scalar, AVX2, or AVX512 instructions. Note that fre-
quency reduction is triggered almost immediately when
AVX2 or AVX-512 instructions are executed, as re-
quired to prevent excessive power consumption.

The upclocking delay is constant independent from
the number of cores in use. As described in the last sec-
tion, maximum competitiveness in worst-case scenar-
ios is reached when the timeout equals the break-even
time, but the break-even time depends not only on the
cost for the frequency transition but also on the perfor-
mance advantage at a higher frequency. In this case,
the frequency change is higher if more cores are ac-
tive [5], so the performance overhead for downclocking
is higher and the break-even time is shorter when more
cores are active. Therefore, the policy implemented by
Intel does not provide maximum competitiveness. To
show the potential for improved timeout-based poli-
cies, the following sections describe experiments to de-
termine both frequency transition overhead as well as
performance impact for different situations to deter-
mine the corresponding break-even times.

4.1 Cost of Frequency Changes

One factor required to determine the break-even
time is the frequency change overhead: If the cost of
individual frequency changes increases, more time be-
tween consecutive changes is required in order to make
up for the overhead. For the Intel Ivy Bridge architec-
ture, Mazouz et al. determined that a CPU is stopped
for approximately 10 µs during a frequency change [24].
This pause is required to allow the new frequency to
stabilize [26]. However, in particular in the case of
frequency changes caused by AVX instructions, addi-
tional factors increase the overall overhead. Therefore,
and because our systems use a newer CPU architecture
than the one considered by Mazouz et al., we measure
the overhead of frequency changes on a system with an
Intel Xeon Gold 6130 CPU.

To measure the overhead due to frequency reduction
caused by AVX2 and AVX-512 instructions, we execute
the same amount of such instructions twice, once when
the system is already at the appropriate frequency, and
once when it executes at a higher frequency and the

5

0 5 10 15
0

20

40

Active cores

O
ve

rh
ea

d
(µ

s)

Scalar → AVX2
Scalar → AVX-512
AVX2 → AVX-512

Figure 3: Overhead when the frequency is reduced,
measured as the mean of 1000 runs. The error bars
indicate the standard deviation. The overhead seems
to vary slightly based on the number of active cores
and on the resulting frequencies. Note that a transition
from scalar to AVX-512 frequencies incurs two separate
frequency transitions.

0 5 10 15
0

20

40

Active cores

O
ve

rh
ea

d
(µ

s)

AVX2 → Scalar
AVX-512 → Scalar
AVX-512 → AVX-2

Figure 4: Overhead when the frequency is increased.
No variation based on the number of active cores can
be observed.

code triggers a frequency change. The overhead of the
frequency change can be calculated as the difference of
the two runtimes. The results of this experiment for all
combinations of scalar, AVX2, and AVX-512 instruc-
tions are shown in Figure 3, which shows significantly
higher overhead than measured by Mazouz et al. [24].
For example, a transition from the maximum frequency
to the AVX2 frequency level takes 17 µs on average,
whereas a transition to the AVX-512 frequency level
takes 24 µs. The reason for this increased overhead is
likely the reduced IPC due to additional throttling be-
fore the frequency switch is complete [11]. As AVX2
and AVX-512 instructions would draw excessive power
at the previous higher frequency, the system temporar-
ily employs throttling to reduce power consumption [9].
Note that the overhead appears to vary slightly for the

different frequencies and frequency differences caused
by different numbers of active cores.

Measuring the overhead of frequency increases is
slightly more complex due to the large – and, in our
experiment, somewhat variable – delay before the sys-
tem restores the non-AVX frequency level. In this case,
we employ the technique employed by Mazouz et al. to
determine frequency change costs [24] as we start at a
system running at either AVX2 or AVX-512 frequen-
cies and repeatedly execute a short code section which
consists of instructions allowing a higher frequency. We
measure the runtime of the code section each time, so
that frequency changes are shown as spikes in the mea-
sured runtime. As other sources such as the activation
of additional cores can trigger additional reduction of
the maximum frequency, we simply assume that the
first frequency change is the one triggered by the lack
of AVX2 and AVX-512 instructions and discard any
further runtime spikes. The size of the spike is assumed
to be the overhead of the frequency change, which is
plotted in Figure 4. The results closely match those of
Mazouz et al. [24] and show no variation based on the
absolute frequency of the core or the magnitude of the
frequency change, both of which vary with the number
of active cores. Note, however, that this experiment
does not consider the performance loss due to the sys-
tem temporarily executing at a lower frequency while
the voltage is ramped up to the level required for the
frequency change [26]. For many dynamic power man-
agement approaches, state changes can be predicted
in advance, so voltage changes can likely be conducted
speculatively, removing the need for such additional de-
lays. For example, for fixed-timeout policies, the time-
out can be slightly reduced accordingly.

4.2 Performance Versus Frequency

The break-even time for frequency changes depends
not only on the overhead for frequency transitions but
also on the relative performance advantage due to the
higher frequency. Whereas the performance of CPU-
bound tasks is nearly proportional to the CPU fre-
quency, the same is not true for memory-heavy work-
loads as the memory latency is independent from the
CPU frequency. In this work, to simplify the proto-
type, we assume the former.

The result of this simplification is that the break-
even time is underestimated for memory-heavy appli-
cations. To quantify this error for the workloads used
in this paper, we executed most of the individual ap-
plications described in Section 2 – nginx, x265, the
Parsec benchmarks and the PTS benchmarks with the
exception of mysql due to the long execution time of

6

1.5 2 2.5

·106

1

1.5

2

frequency (GHz)

in
st

ru
ct

io
n

s
p

er
cy

cl
e

nginx+openssl blackscholes
fluidanimate swaptions

vips x264
x265 pts-apache

pts-build-linux-kernel pts-git
pts-nginx pts-redis

Figure 5: IPC of various parsec and PTS benchmarks
as well as the nginx/OpenSSL workload described in
Section 2 when executed at different frequencies. In
the monotome region between 2.1 GHz and 2.8 GHz
the benchmarks show little IPC variation. The step
between 2.0 GHz and 2.1 GHz is likely because by ei-
ther memory or bus frequency scaling in relation to the
frequency of the cores.

the corresponding benchmark and sqlite due to its par-
ticularly I/O-heavy nature – at different frequencies
and measured the instructions per cycle (IPC). We ex-
ecuted the applications at frequencies between 2.8 GHz
and 1.3 GHz on a system with a 16-core Intel Xeon
Gold 6300 processor. We configured the application
to use all cores of the system except for the nginx
server benchmark where we allocated three cores to
the HTTP request generator3. Maximizing the num-
ber of active cores should maximize the working set
of the application and should therefore maximize the
impact of memory accesses on performance.

Figure 5 shows the results of this experiment. Coun-
terintuitively, IPC consistently improves when the fre-
quency is increased from 2.0 GHz to 2.1 GHz – we as-
sume this is due to the chip adapting either mem-
ory or bus frequency to the core frequency. For all
other frequency ranges, higher frequency correlates
with lower IPC. When comparing the IPC at 2.1 GHz

3x265 failed to fully saturate all cores due to inter-thread
dependencies.

and 2.8 GHz, the biggest difference was found for x264
which had 5.9% higher IPC at 2.1 GHz. This IPC
difference would translate into a error of 5.9% during
break-even time calculation, which is likely low enough
for the simplified model to be viable for this workload.

The reason for the low IPC changes is found in the
low cache miss rates for all these applications: The
workloads trigger at most 2.03 last-level cache misses
per 1000 instructions (in the case of PTS build-linux-
kernel).

Note that our simulation to show the viability of
improved DVFS policies in Section 6.2 also uses the
simplified performance model. However, as our exper-
iment shows, the resulting error is negligible and does
not influence our conclusions. The simulation uses the
nginx web server with the configuration marked as “ng-
inx+openssl” in Figure 5. In this configuration, the
nginx web server showed less than 1% IPC difference
between 2.1 GHz and 2.8 GHz.

Workloads with higher cache miss ratios than the
benchmarks shown in Figure 5 can show lower corre-
lation between performance and frequency [16]. While
we show that improved DVFS policies in general have
the potential to improve performance for workloads in-
volving AVX2 and AVX-512 code, our simplified linear
model might not be sufficient for these workloads in
practice. Concrete DVFS policy implementations for
such workloads might require a better prediction of the
performance at different frequencies to make decisions
on whether to change the CPU frequency or not. Such
predictions can be made, for example, by using perfor-
mance counters to determine the impact of frequency
changes on the number of stall cycles [19]. Further
research has to be conducted to show whether DVFS
policies based on such approaches are viable and pro-
vide a significant performance advantage for a wider
range of workloads.

4.3 Break-Even Time

The break-even time tBE – i.e., the time after which
the performance increase due to increased frequencies
offsets the cost to increase and decrease the frequency
– can be calculated according to the following formula:

plowtBE = phigh(tBE − to)

In this formula, plow and phigh are the performance
at the lower and higher frequency, respectively, and
to = to,d + to,u is the total overhead for reducing (to,d)
and increasing (to,u) the frequency, measured as the
equivalent CPU time as in Section 4.1.

If we insert the results from the last sections and cal-
culate tBE , we arrive at the times shown in Figure 6.

7

0 5 10 15

500

1,000

Active cores

B
re

a
k
-E

ve
n

T
im

e
(µ

s)

AVX2 → Scalar
AVX-512 → Scalar
AVX-512 → AVX-2

Figure 6: Break-even time for frequency changes cal-
culated from Figure 3 and 4, assuming performance to
be proportional to frequency. The break-even times
vary with the number of active cores due to the dif-
ferent magnitude of the frequency change. The results
show that a single fixed timeout as implemented by
Intel CPUs can not be optimal in terms of worst-case
competitiveness.

As the performance is dominated by the frequency
whereas the overhead is fairly constant, the break-even
time is significantly affected by the number of active
cores. For example, for a transition between AVX2
and non-AVX frequencies, the break-even time in situ-
ations with less than four active cores is approximately
1000µs due to the low frequency swing of only 100 MHz
(see Table 1), whereas for more than eight cores fre-
quency changes between 400 and 500 MHz cause break-
even times between 150 and 190µs.

As Karlin et al. [18] show, a fixed-timeout policy
achieves optimal competitiveness – in our case, min-
imal overhead when the system has to switch back
to a lower frequency at the least opportunistic time
– when the timeout equals the break-even time. In
this case, the timeout before the CPU increases its fre-
quency should therefore be based on the frequency dif-
ference to achieve good competitiveness in all cases.
Intel CPUs, however, only implement one fixed time-
out for all core counts and instruction sets. As shown in
Section 2, some applications are negatively affected by
the overhead of frequency changes, which shows that
an improved DVFS policy with variable timeout based
on the frequency difference can likely have positive im-
pact on these applications.

5 Exploiting Application Behavior

While the 2-competitive fixed-timeout policy is op-
timal in the worst case for unpredictable workloads, it
is not when the behavior of the workload is predictable,

in which case earlier decisions to increase the CPU fre-
quency can result in higher performance. In this work,
we focus on two types of predictions about whether
the system is going to use AVX-512 in the near future.
First, the application developer has knowledge about
the structure of the application and can tell the operat-
ing system when AVX-intensive parts begin and end,
which can aid workloads where one process switches
between AVX-intensive code and code without power-
intensive instructions. Second, the operating system
can statistically determine whether a process is likely
to require a reduced frequency and can change the CPU
frequency during context switches in order to imme-
diately let non-power-intensive processes profit from
higher frequencies.

5.1 Heterogeneous Applications

If an application consists of vectorized and non-
vectorized parts and those are executed alternately –
such as the web server example in Section 1 – the non-
vectorized part is slowed down due to the frequency
change caused by the vectorized part. Often, software
developers know which part of the application is vec-
torized and how long execution of each part takes. In
that case, assuming that a suitable hardware-software
interface exists, they can notify the CPU after each vec-
torized code portion if the next scalar portion is likely
long enough to warrant for an early frequency increase.
The CPU could use that hint to immediately switch to
a higher frequency. Such a hint could therefore improve
performance, as the existing DVFS policy of the CPU
would instead needlessly keep the frequency reduced
for some time.

5.2 Classification of Tasks

Even if each individual application is sufficiently uni-
form, it is still possible that context switches between
different applications cause overhead as an application
is slowed down by the preceding AVX-enabled applica-
tion as described in Section 2. For most workloads, this
overhead is avoidable, as scheduler time slices are usu-
ally longer than the break-even time. During a switch
from an AVX-enabled application to a non-AVX appli-
cation, the scheduler should usually immediately select
a higher frequency.

To trigger such frequency changes, the scheduler
needs a categorization of the individual processes based
on their instruction set usage and their expected fre-
quency reduction. To this end, we introduce the notion
of a power score which serves as a measure of the ex-
pected power consumption of the instruction mix exe-

8

cuted by a process. A high power score signals that the
process will likely trigger significant frequency reduc-
tions. More specifically, a power score of 1 means that
the process is assumed to execute at AVX2 frequencies,
whereas a power score of 2 means that the process likely
causes a reduction down to AVX-512 frequency levels.

This power score could potentially be determined
either via a static analysis of the application binary
or via a dynamic analysis of the frequency changes at
runtime. A static analysis can detect whether an exe-
cutable contains any AVX2 or AVX-512 instructions
that could trigger a frequency reduction. However,
applications might contain such instructions even if
they do not execute them frequently enough to signif-
icantly reduce the average frequency. Also, functions
like memset make use of AVX-512 instructions, but only
for inputs of certain size which is hard to detect via
static analysis. Overall, a static analysis is therefore
bound to be unreliable.

We expect dynamic analyses to yield a better es-
timate of the instruction set usage of individual pro-
cesses as they are able to observe the effects of the
actual execution patterns within the process. Simply
mapping the frequency level to the active process is,
however, not accurate in situations with frequent con-
text switches, because the delays mean that some of
the time spent at lower frequencies is attributed to the
wrong processes. Counting the AVX2 and AVX-512 in-
structions executed by the active process might be suffi-
cient to draw conclusions about the resulting frequency
requirements in most cases, but recent Intel CPUs only
provide performance counters for specific types of such
instructions [4, p. 19-20f]. In any case, though, more
accurate statistics would be possible if the processor
provided the operating system with information about
whether the conditions for each frequency level were
fulfilled at each point in time, for example via appro-
priate performance counters. Current hardware does
not provide such performance counters, either.

As a method to collect reliable information about
frequency requirements and to determine the processes
responsible for frequency reductions, we therefore sug-
gest distinguishing between two cases based on the time
between subsequent scheduler invocations.

If the time between subsequent scheduler invoca-
tions is significantly longer than the frequency increase
delay of 670 µs, the scheduler can sample the CPU fre-
quency level and can directly attribute the frequency to
the last process, as any influence of its predecessor on
the CPU frequency has ended. To determine the CPU
frequency level, we configure the performance counters
to track the cycles spent at power license levels 0, 1,
and 2 which correspond to the frequency levels for non-

AVX, AVX2, and AVX-512 code, respectively [6].
If the time between subsequent scheduler invoca-

tions is shorter than the frequency increase delay,
such an approach would risk misattributing frequency
changes. In this case, our main observation is that if
the frequency is reduced during the execution of a pro-
cess, then that process is most likely responsible for the
change. For short periods of execution of a process, we
therefore only attribute the resulting frequency to the
process in case of a frequency change during the pe-
riod. In some rare cases, however, frequency changes
can occur during the execution of a process that did not
trigger the change – most likely due to delays during
frequency selection as documented by Intel [6]. There-
fore, the power score is calculated as the moving av-
erage over all CPU frequency samples attributed to a
process to reduce the impact of occasional misattribu-
tion. The following steps are conducted to calculate
the power score of the processes:

1. Initially, the power score of new processes is set to
0, i.e., the system assumes that new processes will
not use AVX-512 or AVX2.

2. At each scheduler invocation, we detect the cur-
rent power license level by sampling all power li-
cense level performance counters twice in a row.
The counter that is incremented during the short
time inbetween indicates the current frequency
level.

3. We compare the level during two consecutive con-
text switches. If the levels match, the power li-
cense did not change. In this case, for short CPU
bursts, the current process might not have had
enough time to have an impact on the power li-
cense, so the power score is not updated.

4. If context switches are more than 1 ms apart –
longer than the frequency delay as reasoned above
– or if the power license decreases below or in-
creases above the current power score, however,
the power score of the process is updated as the
exponential moving average of such power license
changes. Assuming St−1 is the old power score
and Lt is the new power license, the new power
score is St = 0.2Lt + 0.8St−1.

The resulting power score indicates the potential fre-
quency reduction caused by the process. The dynamic
analysis of frequency changes can be combined with the
results of a static analysis of the executable – e.g., by
overriding the score to be 0 if the executable does not
contain AVX2 nor AVX-512 instructions – and with
manual instrumentation as described in Section 5.1, in

9

which case hints from the developer override the auto-
matically determined power score.

Note that with hyperthreading the frequency is de-
termined by two programs. Thus, this technique only
works on systems with deactivated hyperthreading and
on systems which always schedule the same program
on both cores, as recently suggested for the Linux ker-
nel [10]. On other systems, the hardware has to be
modified to provide a more reliable source of informa-
tion about the energy consumption of the instructions
executed by individual processes.

5.3 Using Hints For DVFS

Once predictions about the instruction set use are
available, the system can use this information to im-
prove performance. When the code running on a core
– i.e., all hardware threads in the case of a system with
hardware multithreading – indicates that no power-
intensive instructions are going to be executed in the
near future, for example, via the mechanisms presented
in Sections 5.1 or 5.2, the system can eagerly increase
the frequency when it is not already at the highest level
possible for the expected instructions.

Ideally, the DVFS policy should be implemented in
the CPU to be able to provide quick reactions to chang-
ing instruction usage and to prevent power budget vi-
olations, so any hint about future instruction usage
needs to communicated to the CPU using an appropri-
ate software-hardware interface. For example, the op-
erating system or the application software could tem-
porarily configure a different frequency change timeout
depending on the type of executed code, to force earlier
frequency changes or to prevent any changes.

5.3.1 Viability on Current CPUs

Current hardware does not provide any such interface.
It does, however, provide a mechanism to manually set
the CPU frequency, which can be used to implement
a wide range of DVFS policies in software. For the
dim silicon scenario described in this paper, the limita-
tions of the hardware prevent both practical software-
based implementations of DVFS policies as well as lim-
ited implementations to estimate the performance of
hardware-based implementations.

Any practical implementation of a DVFS solution
for AVX-512 or AVX2 code is prevented both by the
inability to detect problematic AVX-512 or AVX2 code
as well as by the delay of manual frequency changes.
First, conservative detection of problematic code is nec-
essary so that the OS knows when frequency reductions
are required. Our approach in Section 5.2 is not usable

as it only results in approximate long-term classifica-
tion of applications. In contrast, conservative short-
term estimation based on register set usage can detect
any access to 512-bit and 256-bit vector registers but
will often select lower frequencies than necessary as we
show in our evaluation in Section 6.1, leading to re-
duced performance. Second, software-based DVFS pol-
icy implementations require the ability to change the
frequency at a precise point in time, yet current CPUs
delay frequency changes significantly. As described by
Hackenberg et al. [15], the frequency selection logic of
Intel CPUs starting with the Haswell microarchitecture
only allows frequency changes once every 500 µs, so any
frequency change request is delayed until the end of the
next such 500 µs window. The immediate throttling of
AVX-512 instructions [11], however, shows that imme-
diate power reduction is necessary for stability, so such
delays are inacceptable.

These limitations not only prevent practical soft-
ware solutions but unfortunately also prevent the con-
struction of a prototype based on existing hardware
to evaluate the performance of hardware implementa-
tions. Such a prototype would not necessarily have to
be able to ensure system stability, but would have to
trigger frequency changes in a way that results in equal
performance compared to a complete implementation.
As from the point of view of the OS the frequency
change delay often appears to be random with an even
distribution, a näıve approach might assume that the
average delay of frequency increases cancels out the av-
erage delay of frequency reductions. However, for short
sections of AVX- or non-AVX code, both frequency in-
crease and decrease might occur within the same 500 µs
window, in which our experiments showed that no fre-
quency change occurs.

In this paper, we suggest improved DVFS policies
as a method to reduce the overhead caused by AVX2
and AVX-512. As we cannot use existing hardware to
conduct a performance evaluation, we are limited to
demonstrating the performance impact through simu-
lations and microbenchmarks as shown in Section 6.2.

6 Evaluation

As described in the last section, this paper pro-
poses using hints from the application or the oper-
ating system to provide improved frequency scaling.
Our approach consists of two main pieces, namely
the classification of the processes – or, alternatively,
hints from the application developer – and a modi-
fied DVFS algorithm that takes those hints into ac-
count. For existing processors, it is impossible to build
a complete implementation of this design, as the exist-

10

ing DVFS policy implemented by the CPU cannot be
extended as required. Deactivating all AVX-induced
frequency changes and completely reimplementing the
policy in software is impossible due to the latency of
software-triggered frequency changes which can be as
long as 500µs. Our evaluation is therefore limited to
qualitatively showing that the individual components
are functional and that application-directed DVFS can
have an advantage over the existing policy.

6.1 Categorization of Processes

The main goal of the process classification mecha-
nism described in Section 5.2 is to be able to detect
the required power license of individual processes even
if they are running in a heterogeneous multi-process
workload where the effects of one process on the CPU
frequency might shadow the effects of another process.
To show that the mechanism fulfills this goal, we con-
structed a prototype based on Linux 5.2. We modi-
fied the kernel’s completely fair scheduler (CFS) and
inserted the power license detection code in the main
scheduler function schedule(). Our implementation
uses the Linux perf framework to read the power license
performance counters.

We let our prototype estimate the power score of the
x265 video encoder using different instruction sets run-
ning in isolation. To show that our prototype is able
to correctly distinguish between different processes ex-
ecuting on the same system and is able to attribute
frequency changes to the correct process, we also exe-
cuted the Apache benchmark from the Phoronix Test
Suite as well as the swaptions benchmark from Par-
sec in parallel with x265. The two applications were
configured to share the same set of cores without any
restrictions to scheduling. Note that we specifically
selected an interactive benchmark as well as a batch
workload, to show that the classification works with
both. Table 2 shows both the expected power score for
the applications – we expected our prototype to classify
x265 according to the instruction set used, and neither
of the other two benchmarks used significant amounts
of vector instructions – as well as the estimated power
score from our prototype, averaged over the runtime of
the application.

The first three rows show that x265 was correctly
classified in all cases, except for some uncertainty if
neither AVX2 nor AVX-512 instructions were used.
The next two table rows then show the results for
the mixed scenarios. In both cases, our prototype can
correctly identify x265 as the process responsible for
the frequency reduction. For x265 executed alone, we
compared the performance of our prototype to a stock

Linux kernel and were not able to measure any statis-
tically significant performance overhead.

We compare our approach to the state-of-the-art
technique available in the Linux kernel. Linux pro-
vides the time elapsed since the last use of AVX-512 as
part of the arch status file in the proc file system [2].
The time since the last use of AVX-512 is calculated
by checking the state of the FPU registers at each con-
text switch. Like our approach, this mechanism is able
to detect AVX-512 usage in the benchmarks described
above as shown in the upper half of Table 2.

The approach found in the Linux kernel has a sig-
nificant drawback, though, as the use of specific FPU
registers is only loosely connected to the resulting fre-
quency change. For example, a dense sequence of
multiplication instructions on 512-bit vector registers
causes the CPU to transition to the lowest frequency,
whereas other instructions only trigger the intermedi-
ate “AVX2” frequency. Therefore, in a workload con-
sisting of processes showing the former behavior as well
as processes of the latter type, the time since the last
512-bit register usage cannot be used to identify the
processes responsible for a frequency reduction. We
demonstrate this effect by executing a sequence of 512-
bit and 256-bit multiplications and additions both with
our approach and on an unmodified Linux 5.5 kernel.
The results shown in the lower half of Table 2 show that
our prototype is correctly able to detect the three dif-
ferent frequency levels caused by different types of in-
structions, whereas the stock Linux kernel is only able
to detect whether 512-bit registers are used.

To show that the problem also affects real-world
workloads, we execute an web server benchmark us-
ing nginx and OpenSSL similar to the one described
in Section 2 and measure the average time since the
last AVX-512 usage as determined by the Linux 5.5
kernel on a system running Fedora 30. We let the
nginx web server serve a static file with compression
at runtime and use OpenSSL compiled with either
AVX2 and AVX-512 instruction support for TLS en-
cryption. As shown above, the web server provides
significantly higher performance when using AVX2 in-
structions due to the resulting higher frequencies. Even
in this case the system uses 512-bit registers, though, as
the C library provides AVX-512 variants of memset(),
memmove(), and memcpy(). Therefore, the stock Linux
kernel detects AVX-512 usage in both cases, with simi-
lar reported average time since the last usage of 512-bit
registers. Note that the implementation tests whether
registers are in use only during context switches. Dif-
ferent scheduling causes large variation in the resulting
values, making a quantitative comparison for such ex-
periments difficult.

11

Predominant Average
Scenario Freq. Level AVX Score AVX512 elapsed ms

x265 (AVX) 0 0.356 N/A
x265 (AVX2) 1 1.005 N/A

x265 (AVX-512) 2 1.899 103.4 ms
x265 (AVX-512) 2 1.827 181.3 ms

+ pts-apache 0 0.428 N/A
x265 (AVX-512) 2 1.679 86.0 ms

+ parsec-swaptions 0 0.099 N/A

512-bit FMA 2 1.821 0.10 ms
512-bit add 1 0.917 0.10 ms

256-bit FMA 1 0.934 N/A
256-bit add 0 0 N/A

Table 2: Estimated AVX scores for different scenarios and a comparison to the mechanism found in the Linux
kernel to track AVX-512 usage. The first three rows show the score for an isolated instance of x265 using different
instruction sets. The next two rows show the scores in scenarios with two different applications running concurrently
on the same set of cores, to show that the score is estimated correctly on a per-process basis even if one process
affects the frequency of another. The remaining rows show how our approach is able to distinguish between the
three frequency levels of the CPU, whereas the stock Linux kernel is only able to track AVX-512 register usage.

6.2 Potential of Eager Frequency Changes

Once it is known which parts of the system use
power-intensive instructions – either using manual an-
notation as described in Section 5.1 or via automatic
detection as described in the previous section – this
information can be used to optimize performance.
Whereas other approaches perform core specialization
to separate AVX-512 code from non-AVX code [13,22],
we, as described in Section 5, suggest that improved
DVFS policies can also significantly reduce the over-
head caused by AVX-512 instructions and similarly
power-intensive instruction sets. In particular, we sug-
gest that the delay for frequency increases as imple-
mented by recent Intel CPUs is unnecessary if the sys-
tem can predict that the software executed in the near
future does not require power-intensive instructions.

6.2.1 Methodology

The most direct method to show the potential of im-
proved DVFS policies would be to compare the per-
formance of a benchmarked application when using a
fixed-timeout policy such as the one implemented by
the processor to the same benchmark instrumented to
change the processor frequency at points in the pro-
gram selected by the developer. However, recent In-
tel CPUs delay frequency change requests by up to
500 µs [15], making it impossible to precisely specify
the points in the program at which frequency changes

occur. Therefore, our evaluation relies on simulation
of different DVFS policies based on a trace generated
while running a web server benchmark (Section 6.2.2)
and uses a microbenchmark to demonstrate the po-
tential performance impact of a single eager frequency
change (Section 6.3) and to check the accuracy of the
simulation.

The following experiments were conducted on a sys-
tem with an Intel Core i9-7940X processor, with the
simulation configured to match this system. This pro-
cessor was selected because, as it is designed for over-
clocking, it allows configuration of the AVX offsets
which specify the frequency reduction caused by AVX2
and AVX-512 instructions. For tests to determine the
baseline performance of the system, we configured the
offsets to match the frequencies reported in news arti-
cles [32], where the base frequency of the processor is
reported to be 3.1 GHz and the frequencies for AVX2
and AVX-512 code are 2.7 GHz and 2.4 GHz, respec-
tively, providing similar frequency ratios compared to
server processors. Note that no authoritative informa-
tion about AVX2 and AVX-512 frequencies is found in
official Intel documentation and that mainboards such
as ours frequently provide non-default AVX offsets.

With minimal AVX offsets, the AVX2 and AVX-512
frequencies are both 3.0 GHz, so the AVX frequency
reduction cannot be disabled completely. We discuss
the effect of this minimum frequency change where ap-
plicable below. All experiments were executed with
Turbo Boost disabled and with C-states limited to C1

12

application
trace

frequency
change

costs (Sec-
tion 4.1)

simple
model-
based

simulator

policy

runtime

Figure 7: Experimental setup to estimate the perfor-
mance resulting from different DVFS policies. Our sim-
ulator implements a very simple performance model as-
suming fixed frequency change costs and performance
proportional to the CPU frequency. We instrumented
the nginx web server and used the resulting trace of
AVX- and non-AVX periods to determine the runtime
with different DVFS policies.

in order to reduce variance in the measurement results.

6.2.2 Web Server Simulation

For our simulation experiments, the workload used is
the nginx web server example from Section 2. We con-
figure the web server to serve a single static file using
gzip compression and we encrypt HTTP requests and
replies using the OpenSSL library. The library is con-
figured to vectorize encryption and decryption using
AVX-512 instructions, which in other experiments has
resulted in a 10% slowdown. We instrument the web
server to record the times when the OpenSSL func-
tions for encryption and decryption are called and when
they return. When generating the log of the OpenSSL
function calls, we execute the benchmark with min-
imal AVX offsets. Although the resulting frequencies
would not be stable and would result in frequent system
crashes with all cores utilized, this setup yields more
representative timing input for the simulator, as the
simulator itself is supposed to slow down the AVX-512
portions of the simulated workload. To ensure system
stability and to simplify simulation, the web server is
only executed on a single core. We do not expect in-
dividual web server threads to behave significantly dif-
ferent when additional web server threads are placed
on the other cores of the system.

The resulting application trace contains a list of pe-
riods where the system is assumed to execute only
AVX-512 code (the function calls into OpenSSL) alter-
nating with periods where the system is assumed not
to execute any AVX-512 or AVX2 instructions. We
feed this trace into a simple model-based simulator as
shown in Figure 7 to estimate the application runtime
resulting from different DVFS policies. The simulator
applies a DVFS policy to the trace and dilates the time
during periods where the CPU would be executing at a
lower frequency. During the simulation, to get results
more representative for a server scenario, we assume
that most of the cores are active and assume a corre-
sponding large frequency reduction whenever AVX-512
code is executed.

We implement fixed-timeout policies with the time-
out used by Intel processors as well as with a timeout of
180 µs which was shown to be more competitive in Sec-
tion 4.3. As an example for a policy based on developer
input, we also implement a policy which only increases
the frequency when the last packet of an HTTP request
was received and decrypted, which we identify by the
return value of the corresponding OpenSSL function
call 4. After this call, the web server processes the re-
quest and takes a significant amount of time before any
further AVX-512 code is executed when the HTTP re-
ply is sent, so at this point eager frequency changes are
most likely to be beneficial for application performance.
For all the policies, the simulator assumes a perfor-
mance impact of 16 µs per frequency change, similar to
the values determined experimentally in Section 4.1.

The simulation result shows that a lower timeout
than what is used by Intel CPUs results in a 2.9%
higher performance in the simulated scenario. With
a lower timeout, the policy can exploit shorter non-
AVX program phases and wastes less time at lower fre-
quencies throughout the program. The resulting per-
formance improvement outweighs the (simulated) over-
head of the larger number of frequency changes. Even
though the difference is small, the result shows that the
timeout does have a measurable impact on application
performance.

The developer-directed DVFS policy performed even
better, with a 3.9% performance improvement com-
pared to the policy implemented by Intel CPUs, as the
policy was able to completely mitigate overhead due
to low CPU frequencies during the longest non-AVX
phases of the program. While this improvement might
seem minor, it covers most of the 5.7% overhead caused

4A more generic and robust implementation would be to in-
strument the HTTP request parsing logic to increase the fre-
quency whenever the end of a HTTP request is detected. Our
implementation suffices to show that the approach is generally
possible.

13

(a) Normal AVX offsets

Non-AVX code

−0.2 0 0.2 0.4 0.6 0.8 1 1.2

2.5

3

3.5

Time (µs)

F
re

q
.

(G
H

z)

(b) Minimal AVX offsets

Non-AVX code

130µs
speedup

−0.2 0 0.2 0.4 0.6 0.8 1 1.2

2.5

3

3.5

Time (µs)

F
re

q
.

(G
H

z)

(c) Manual eager reclocking

Non-AVX code

98µs
speedup

−0.2 0 0.2 0.4 0.6 0.8 1 1.2

2.5

3

3.5

Time (µs)

F
re

q
.

(G
H

z)

Figure 8: To determine the potential performance im-
provement for a single frequency change, we execute a
fixed amount of non-AVX code directly following some
AVX-512 code. We compare the time required at de-
fault AVX offsets (a) to the time required at minimal
AVX offsets (b) as well as with eager frequency changes
simulated by a manually inserted frequency change at
the beginning of the non-AVX code (c).

by AVX-512 for this workload as shown in Figure 2.
Workloads with more frequent AVX-512 phases might
benefit more from improved policies. In addition, the
policy did not increase the frequency during some other
non-AVX phases where a frequency change would have
been beneficial, showing that a carefully optimized pro-
totype might achieve higher performance.

6.3 Maximum Potential per Frequency
Change

When looking at a single developer-directed eager
frequency change, the simulation resulted in a CPU
time saving of 195 µs for sufficiently long stretches of
non-AVX code compared to a fixed timeout of 670 µs as
implemented by current Intel CPUs, as the CPU was
operating 30% faster during this time. To show that

the assumptions made in our simulator yield realistic
results, we validate this value against measurements
based on a simple microbenchmark. The microbench-
mark first executes a series of AVX-512 instructions
and then executes a fixed amount of non-AVX instruc-
tions. The number of instructions is chosen so that
they take longer than the frequency change timeout
implemented by the CPU. We measure the time re-
quired for the code section to determine the impact of
the frequency change caused by the preceding AVX-
512 code in different configurations. All experiments
are repeated 1000 times.

First, to measure the overall impact of such fre-
quency changes on the CPU, we compare the average
time at default frequencies (Figure 8a) with the aver-
age time with minimal AVX offsets (Figure 8b). Our
experiment shows that with minimal frequency changes
the code executes 130 µs faster. In this configuration
the AVX-512 code still reduces the CPU frequency by
100 MHz as described in Section 6.2.1 and the mea-
sured runtime still includes the overhead of the cor-
responding frequency change which needs to be taken
into account when comparing the values with the model
used for our simulation.

Second, we manually insert frequency changes into
our prototype so that the frequency is reduced when
the AVX-512 code starts and is immediately increased
when the non-AVX code starts. Note that, as described
in Section 6.2.1, frequency changes are applied with a
random delay of up to 500 µs. Therefore, for this ex-
periment, we do not take the average time but instead
take the 5th percentile as this value represents the situ-
ation when an optimized DVFS policy implementation
almost immediately triggers frequency changes. In this
experiment, we measure a runtime for the non-AVX
code which is 32 µs slower than the result with min-
imum frequency changes, but 98 µs faster than regu-
lar frequency changes (Figure 8c). The performance
is slightly lower than in the experiment with mini-
mal AVX offsets because the benchmark triggers not
one but two frequency changes – one by the hardware
due to the 100 MHz reduction described above, and
one manual frequency change to simulate the DVFS
policy. Apart from this overhead and minor overhead
due to the additional system calls, the runtime mostly
matches the optimal case, which supports our model
that eager frequency changes can mitigate most of the
overhead caused by AVX instructions.

However, the absolute runtime differences are lower
than determined by the simulation. As described
above, two potential reasons for the deviation are the
larger number of frequency changes as well as some
remaining frequency reduction. As shown in Fig-

14

ure 4, the additional frequency change costs approx-
imately 10 µs, and an expected 3% performance over-
head due to the 100 MHz frequency difference costs an-
other 20 µs. While the measured results mostly match
our model when taking these effects into account, fur-
ther analysis of the CPU behavior has to be conducted
to provide a better quantitative model of the perfor-
mance in similar situations.

7 Discussion

In this paper, we showed that the fixed timeout pol-
icy implemented by recent Intel CPUs for AVX fre-
quencies yields less-than-optimal average processor fre-
quencies for heterogeneous workloads. We also argue
that better timeouts and developer-directed frequency
changes can improve performance. Even though our
evaluation lacks experiments to directly demonstrate
the effects on real-world workloads, the estimate gener-
ated by our simulation shows that it is highly likely that
such a performance improvement is to be expected.
This basic result opens up a number of further research
questions which we will discuss in the following sec-
tions.

7.1 Hardware Interfaces

In Section 6.2.1, we show why the frequency change
delays on current Intel CPUs prevent constructing a
full prototype demonstrating our approach. Even if
frequency changes were triggered instantly, though, a
software-only DVFS policy implementation would not
be viable for two reasons: First, the CPU would still
need to be able to autonomously reduce power con-
sumption when executing AVX-512 instructions to en-
sure system stability, for example, by reducing the fre-
quency or applying other forms of throttling. Second,
not all applications in the system would be modified to
make use of developer-directed frequency scaling, mak-
ing a hardware fallback necessary.

If the DVFS policy is implemented in hardware, a
software-hardware interface is required to influence pol-
icy decisions. We propose the combination of two such
interfaces:

1. Configurable frequency change delay: As
we show, the problem of AVX-induced frequency
changes is similar to the dynamic power manage-
ment problem, and the main decision is whether
to immediately increase the frequency when pos-
sible or whether to wait or not increase the fre-
quency at all. While it would be possible to tell

the CPU to immediately increase the frequency af-
ter the next section of AVX code, we expect such
an interface not to be viable in many situations,
because the boundaries of AVX-intensive program
execution phases are not well defined and varia-
tions in the program’s control flow might cause
unnecessary frequency changes. Instead, we sug-
gest an interface to manually set a different fre-
quency change timeout for individual parts of the
program – i.e., until the application manually re-
verts the change or sets a different timeout – to al-
low applications to enable eager frequency changes
in certain situations.

2. Forced immediate frequency change: In ad-
dition, the CPU should provide an interface to im-
mediately increase the frequency to the maximum
frequency for use by the operating system to in-
crease the frequency during context switches when
it is known that the next task is unlikely to use
AVX-512 or AVX2.

Further work has to be conducted to test whether
these interfaces are sufficiently flexible to implement a
wide range of DVFS policies in software.

7.2 Hardware Multithreading

One significant limitation of our work is that all our
experiments were conducted with a system in mind
that does not use hardware multithreading. On a sys-
tem with hardware multithreading, the CPU frequency
has to be reduced when either of the threads executes
AVX instructions, thereby limiting the potential per-
formance advantage of developer-directed approaches
as it is hard to predict when another completely un-
related hyperthread will affect the frequency. Also, as
shown in Section 2 on systems with hyperthreading
many additional types of workloads experience slow-
down due to frequency reductions. Despite the differ-
ences, improved DVFS policies might be viable and
their effectiveness might even be amplified as more
code is affected by frequency reductions. More research
should be conducted to create a statistical model of
the CPU frequency selection in systems with hardware
multithreading and to develop suitable DVFS policies.

7.2.1 AVX Overhead Profiling

In our controlled experiment, we used a benchmark
that had a clearly defined performance metric. In gen-
eral it is, however, not always clear whether the over-
head caused by AVX-512 is large enough to warrant

15

the usage of techniques to reduce it and it is not al-
ways clear whether these techniques are successful. In
particular when techniques have the potential to cause
additional overhead – for example, due to increased
numbers of frequency changes – it would be beneficial
to be able to profile a system to estimate the impact of
AVX-512 on performance. The result of such a profiler
could also be used to implement close-loop policies. For
example, the system could repeatedly try out different
DVFS policies depending on the resulting performance
change.

The performance counters on current CPUs, how-
ever, cannot be used to construct such a profiler, as
they can only be used to count cycles spent at reduced
frequencies but do not provide sufficient information
about how long the reduced frequencies are actually
required. In particular, the performance monitoring
units of these CPUs can not be used to detect any exe-
cuted AVX2 and AVX-512 instructions as they can only
count floating point instructions. Instead, we envision
an approach which periodically samples the frequency
of the system, pauses the system to let the CPU switch
back to the highest possible frequency, and then checks
whether the system will immediately switch back to a
lower frequency when the workload is continued. The
latter check determines whether a frequency reduction
is required due to ongoing AVX code or whether the
reduction represents avoidable overhead. Further ex-
periments have to determine the accuracy of such an
approach, and further work has to be conducted to
show whether modified hardware-software interfaces
can provide a more accurate profiling mechanism with
lower CPU time overhead.

8 Related Work

This paper presents improved DVFS policies as a
method to reduce the overhead of the frequency reduc-
tion caused by AVX and AVX-512 instructions on re-
cent Intel CPUs. Other approaches to this and similar
problems have used core specialization or have mod-
ified the application to reduce the impact of varying
power consumption and of frequent frequency changes.

8.1 Core Specialization

Another method to limit the performance impact of
AVX and AVX-512 code on unrelated non-AVX code
is to place AVX and non-AVX parts of the workload
on separate sets of cores. As performance problems
occur when non-AVX code is executed on the same
core following AVX code which reduced the frequency,

specialization of cores can prevent such overhead. Ap-
proaches for core specialization either targeted het-
erogeneous programs consisting of AVX and non-AVX
code within one process [13] or targeted workloads con-
sisting of AVX and non-AVX processes [22]. The for-
mer detects the usage of AVX instructions either by
instrumentation inserted by the developer or by recon-
figuring the CPU to trigger exceptions when executing
AVX instructions [13, 14]. Based on this information,
individual threads are migrated between cores to con-
centrate the AVX part of the program on as few cores
as possible. The latter technique which is targeted
at multi-process workloads instead relies on heuristics
to identify processes using AVX-512 instructions and
modifies the scheduler to prevent scheduling an AVX-
512 and a non-AVX task on hardware threads of the
same core at the same time [22]. This approach cur-
rently uses the Linux arch status interface which only
gives a rough estimate of AVX-512 usage. In this pa-
per, we present a method to identify applications which
cause frequency reductions with higher accuracy.

Note that all these approaches can cause significant
performance overhead themselves. Task migrations can
increase cache miss rates, and restricting scheduling
of different processes on the same core at the same
time can cause significant overhead with some work-
loads [10]. We present a technique which might provide
advantages in situations where other approaches cause
too much overhead.

The fact that co-scheduling applications on the
hardware threads of a single core can cause varying
overhead depending on the type of the applications has
been observed by other works before and many schedul-
ing techniques have been developed to improve the
performance of SMT systems. For example, existing
approaches use sampling-based techniques [31], cache
conflict detection [30], or performance counters [12,25]
to determine whether two tasks are suited for paral-
lel scheduling on the same physical core. We describe
a similar approach which uses performance counters
to identify tasks requiring execution at reduced fre-
quency and which can likely be used for improved co-
scheduling of AVX-512 applications as described above.

8.2 Profile-Guided Software Modifica-
tions

The approach in this paper is designed either for
applications which are only available in binary form or
which can benefit from AVX2 and AVX-512 instruc-
tions. If a program only makes use of such instructions
in very short execution phases, those parts could al-

16

ternatively be rewritten to use instructions with lower
power consumption.

Kumar et al. [21] use such an approach to improve
the efficiency of power-gating the processor’s SIMD
unit. In this scenario, devectorizing parts of the pro-
gram reduces the speedup caused by SIMD instruc-
tions, but reduces the power-gating overhead. The au-
thors use a profiler to determine the SIMD instruction
usage in individual parts of the program. As static re-
compilation based on this information is problematic
as the profiling results are only accurate for specific
input data, the authors integrate the profiler into a
system which uses dynamic translation at runtime to
devectorize those parts which only rarely use SIMD
instructions. Such an approach could likely be ap-
plied to AVX-512 to improve average CPU frequencies,
although hardware modifications would be required –
current CPUs can only count floating-point AVX-512
instructions, but not integer operations [4, p. 19.20f].
Even with such hardware changes, it is not possible to
use the approach with existing ahead-of-time compil-
ers, though. In our work, we explore techniques usable
within the existing software environment.

Roy et al. [28], instead, suggest a similar technique
that uses information from dynamic profiling to insert
static power management code into an application at
compile time. Their approach inserts instructions for
power gating of parts of the processor in order to save
energy. A similar approach, however, could potentially
be used to let the application guide frequency selection
decisions of the processor.

9 Conclusion

Modern Intel CPUs reduce their frequency when-
ever power-intensive AVX2 or AVX-512 instructions
are executed to prevent violating power limits. The
frequency is only increased again after a fixed timeout
has elapsed, in order to prevent excessive numbers of
frequency changes. This behavior reduces the perfor-
mance for heterogeneous workloads where code sections
with and without such AVX instructions alternate, as
parts of the latter are executed at a lower frequency
than necessary.

We show the similarity between this behavior and
mechanisms from dynamic power management. We
show that the constant delay before increasing the fre-
quency is not optimal in terms of worst-case competi-
tiveness and show how the delay should depend on the
magnitude of the frequency change. We also sketch
how information from the OS or the developer can be
used to inform the CPU about future system behavior
so that the CPU can implement more efficient DVFS

policies. Although we do not have a complete imple-
mentation due to constraints of the hardware, we show
that it is possible to reliably determine whether an
application will cause frequency changes and we show
that eager frequency changes based on such informa-
tion about the workload can improve performance.

9.1 Future Work

Although we show that an oracle-style DVFS pol-
icy can improve performance, it remains to be seen
whether other approaches from the area of dynamic
power management can be applied as well. In particu-
lar, some shutdown strategies achieve lower power con-
sumption compared to the simple fixed-timeout policy
even without application-level knowledge.

In addition, due to hardware constraints, we do not
present any complete implementation of our approach.
We plan to construct a testbed for other DVFS policies
and to use it to evaluate different hardware-software
interfaces which would allow input from the operat-
ing system or from applications to affect hardware-
controlled frequency scaling.

References

[1] Phoronix test suite. https://phoronix-test-

suite.com/.

[2] The /proc filesystem. Linux,
Documentation/filesystems/proc.txt.

[3] Wikichip: Xeon Gold 6130 – Intel. https://en.

wikichip.org/wiki/intel/xeon_gold/6130.

[4] Intel 64 and IA-32 Architectures Software Devel-
oper’s Manual - Volume 3 (3A, 3B, 3C & 3D):
System Programming Guide, May 2018.

[5] Intel Xeon Processor Scalable Family – Specifica-
tion Update. Intel Corporation, Feb. 2018.

[6] Intel 64 and IA-32 Architectures Optimization
Reference Manual, Sept. 2019.

[7] L. Benini, A. Bogliolo, and G. De Micheli. A sur-
vey of design techniques for system-level dynamic
power management. IEEE transactions on very
large scale integration (VLSI) systems, 8(3):299–
316, 2000.

[8] C. Bienia. Benchmarking Modern Multiprocessors.
PhD thesis, Princeton University, January 2011.

17

https://phoronix-test-suite.com/
https://phoronix-test-suite.com/
https://en.wikichip.org/wiki/intel/xeon_gold/6130
https://en.wikichip.org/wiki/intel/xeon_gold/6130

[9] N. Bonen, R. Gabor, Z. Sperber, V. Svilan, D. N.
Mackintosh, J. A. B. Paredes, N. Kumar, and
S. Gupta. Performing local power gating in a pro-
cessor, Sept. 26 2017. US Patent 9,772,674.

[10] J. Corbet. Core scheduling, Feb. 28 2019. https:
//lwn.net/Articles/780703/.

[11] T. Downs. Gathering intel on intel avx-512 tran-
sitions, Jan. 17 2020.

[12] A. El-Moursy, R. Garg, D. H. Albonesi, and
S. Dwarkadas. Compatible phase co-scheduling on
a cmp of multi-threaded processors. In Proceedings
20th IEEE International Parallel & Distributed
Processing Symposium, pages 10–pp. IEEE, 2006.

[13] M. Gottschlag and F. Bellosa. Reducing avx-
induced frequency variation with core specializa-
tion. In The 9th Workshop on Systems for Multi-
core and Heterogeneous Architectures, Dresden,
Germany, Mar. 25 2019.

[14] M. Gottschlag, P. Brantsch, and F. Bellosa. Auto-
matic core specialization for avx-512 applications.
In Proceedings of the 13th ACM International Sys-
tems and Storage Conference (to appear). ACM,
2020.

[15] D. Hackenberg, R. Schöne, T. Ilsche, D. Molka,
J. Schuchart, and R. Geyer. An energy efficiency
feature survey of the intel haswell processor. In
Proceedings of the 2015 IEEE International Par-
allel and Distributed Processing Symposium Work-
shop, pages 896–904. IEEE, 2015.

[16] R. Hebbar SR and A. Milenković. Impact of thread
and frequency scaling on performance and energy
efficiency: An evaluation of core i7-8700k using
spec cpu2017. In 2019 SoutheastCon, pages 1–7.
IEEE, 2019.

[17] W. Huang, K. Rajamani, M. R. Stan, and
K. Skadron. Scaling with design constraints: Pre-
dicting the future of big chips. IEEE Micro,
31(4):16–29, 2011.

[18] A. R. Karlin, M. S. Manasse, L. A. McGeoch, and
S. Owicki. Competitive randomized algorithms for
nonuniform problems. Algorithmica, 11(6):542–
571, 1994.

[19] G. Keramidas, V. Spiliopoulos, and S. Kaxiras.
Interval-based models for run-time dvfs orchestra-
tion in superscalar processors. In Proceedings of
the 7th ACM international conference on Comput-
ing frontiers, pages 287–296, 2010.

[20] V. Krasnov. On the dangers of in-
tel’s frequency scaling, Oct. 10, 2017.
https://blog.cloudflare.com/on-the-

dangers-of-intels-frequency-scaling/.

[21] R. Kumar, A. Martinez, and A. Gonzalez. Effi-
cient power gating of simd accelerators through
dynamic selective devectorization in an hw/sw
codesigned environment. ACM Transactions on
Architecture and Code Optimization (TACO),
11(3):25, 2014.

[22] A. Li. Core scheduling: prevent fast instructions
from slowing you down. Linux Plumbers Confer-
ence, Sept. 9 2019.

[23] Y.-H. Lu, L. Benini, and G. De Micheli. Power-
aware operating systems for interactive systems.
IEEE transactions on very large scale integration
(VLSI) systems, 10(2):119–134, 2002.

[24] A. Mazouz, A. Laurent, B. Pradelle, and W. Jalby.
Evaluation of cpu frequency transition latency.
Computer Science - Research and Development,
29(3-4):187–195, 2014.

[25] R. L. McGregor, C. D. Antonopoulos, and D. S.
Nikolopoulos. Scheduling algorithms for effective
thread pairing on hybrid multiprocessors. In 19th
IEEE International Parallel and Distributed Pro-
cessing Symposium, pages 10–pp. IEEE, 2005.

[26] S. Park, J. Park, D. Shin, Y. Wang, Q. Xie, M. Pe-
dram, and N. Chang. Accurate modeling of the
delay and energy overhead of dynamic voltage
and frequency scaling in modern microprocessors.
IEEE Transactions on Computer-Aided Design of
Integrated Circuits and Systems, 32(5):695–708,
2013.

[27] A. Raghavan, Y. Luo, A. Chandawalla, M. Pa-
paefthymiou, K. P. Pipe, T. F. Wenisch, and
M. M. Martin. Computational sprinting. In IEEE
international symposium on high-performance
comp architecture, pages 1–12. IEEE, 2012.

[28] S. Roy, N. Ranganathan, and S. Katkoori. A
framework for power-gating functional units in
embedded microprocessors. IEEE transactions
on very large scale integration (VLSI) systems,
17(11):1640–1649, 2009.

[29] R. Schöne, T. Ilsche, M. Bielert, A. Gocht, and
D. Hackenberg. Energy efficiency features of the
intel skylake-sp processor and their impact on per-
formance. arXiv preprint arXiv:1905.12468, 2019.

18

https://lwn.net/Articles/780703/
https://lwn.net/Articles/780703/
https://blog.cloudflare.com/on-the-dangers-of-intels-frequency-scaling/
https://blog.cloudflare.com/on-the-dangers-of-intels-frequency-scaling/

[30] A. Settle, J. Kihm, A. Janiszewski, and D. Con-
nors. Architectural support for enhanced smt
job scheduling. In Proceedings. 13th International
Conference on Parallel Architecture and Compila-
tion Techniques, 2004. PACT 2004., pages 63–73.
IEEE, 2004.

[31] A. Snavely and D. M. Tullsen. Symbiotic job-
scheduling for a simultaneous multithreaded pro-
cessor. In Proceedings of the ninth international
conference on Architectural support for program-
ming languages and operating systems, pages 234–
244, 2000.

[32] C. Spille. Skylake X: Das heitere AVX-
Takteraten hat ein Ende, Sept. 8 2017.
https://www.pcgameshardware.de/Skylake-

X-Codename-266252/News/Takt-Reduzierung-

AVX2-AVX512-1238210/.

[33] M. B. Taylor. Is dark silicon useful? harness-
ing the four horsemen of the coming dark silicon
apocalypse. In 49th ACM/EDAC/IEEE Design
Automation Conference, pages 1131–1136. IEEE,
2012.

[34] V. Venkatachalam and M. Franz. Power reduc-
tion techniques for microprocessor systems. ACM
Computing Surveys (CSUR), 37(3):195–237, 2005.

[35] A. Weissel, B. Beutel, and F. Bellosa. Coopera-
tive i/o: A novel i/o semantics for energy-aware
applications. ACM SIGOPS Operating Systems
Review, 36(SI):117–129, 2002.

19

https://www.pcgameshardware.de/Skylake-X-Codename-266252/News/Takt-Reduzierung-AVX2-AVX512-1238210/
https://www.pcgameshardware.de/Skylake-X-Codename-266252/News/Takt-Reduzierung-AVX2-AVX512-1238210/
https://www.pcgameshardware.de/Skylake-X-Codename-266252/News/Takt-Reduzierung-AVX2-AVX512-1238210/

	1 Introduction
	2 Effects of AVX2 and AVX-512
	3 Parallels to Dynamic Power Management
	4 Behavior of Intel CPUs
	4.1 Cost of Frequency Changes
	4.2 Performance Versus Frequency
	4.3 Break-Even Time

	5 Exploiting Application Behavior
	5.1 Heterogeneous Applications
	5.2 Classification of Tasks
	5.3 Using Hints For DVFS
	5.3.1 Viability on Current CPUs

	6 Evaluation
	6.1 Categorization of Processes
	6.2 Potential of Eager Frequency Changes
	6.2.1 Methodology
	6.2.2 Web Server Simulation

	6.3 Maximum Potential per Frequency Change

	7 Discussion
	7.1 Hardware Interfaces
	7.2 Hardware Multithreading
	7.2.1 AVX Overhead Profiling

	8 Related Work
	8.1 Core Specialization
	8.2 Profile-Guided Software Modifications

	9 Conclusion
	9.1 Future Work

