
Exploring Pre-scan, Parallel Copy, and
Large Pages for Continuous

Checkpointing

Masterarbeit
von

Janis Schoetterl-Glausch
an der Fakultät für Informatik

Erstgutachter: Prof. Dr. Frank Bellosa
Zweitgutachter: Prof. Dr. Wolfgang Karl
Betreuender Mitarbeiter: Dipl.-Inform. Marc Rittinghaus

Bearbeitungszeit: 1. Juni 2018 – 30. November 2018

KIT – Universität des Landes Baden-Württemberg und nationales Forschungszentrum in der Helmholtz-Gemeinschaft www.kit.edu

Ich erkläre hiermit, dass ich die vorliegende Arbeit selbständig verfasst und
keine anderen als die angegebenen Quellen und Hilfsmittel verwendet habe.

Karlsruhe, den 30. November 2018

Abstract

SimuBoost [35] is a concept to speed up full system simulation, which is
hampered by its low execution speed. To achieve this, SimuBoost relies on
lightweight, continuous virtual machine checkpointing. SimuBoost’s check-
pointing implementation is incremental [11] and makes use of copy-on-write
and concurrent-copy [15] to avoid the high downtime that would be the re-
sult of performing the copy while the virtual machine is stopped. Incremental
checkpointing only copies those pages written to since the last checkpoint.
It therefore requires a dirty logging mechanism. SimuBoost’s preferred dirty
logging mechanism scans the page tables mapping the guest physical address
space to the host physical address space. This occurs during the downtime,
increasing it.

We explore if pre-scan can decrease the downtime by moving part of the
scan outside the downtime We find that, while pre-scan succeeds in reducing
the downtime, it can negatively impact the performance of the virtual ma-
chine, mostly for interval lengths under 500ms. At 500ms, pre-scan causes
a sub 1% increase in performance.

The page faults caused by copy-on-write degrade the performance of the
virtual machine. We investigate if the number of such page faults can be
decreased. We attempt this by parallelizing concurrent-copy. The rationale
is to speed up concurrent-copy, so it can save more pages before they can
incur a copy-on-write page fault. While our implementation can roughly
half the number of page faults, it does not improve performance, instead
performance is reduced for intervals shorter than 500ms. For 500ms, parallel
copy improves performance by less than 1%.

Generally, the use of large pages improves the performance of virtual
machines [13, 28, 31]. SimuBoost does not make use of large pages during
checkpointing. To do so would increase the amount of memory to capture, the
additional overhead reduces the benefit of large pages. A naive, experimental
implementation of checkpointing with large pages shows a benefit only for
interval lengths of 2 s and higher. The benefit is approximately 5%. For
smaller intervals performance is decreased.

v

Deutsche Zusammenfassung

Diese Arbeit untersucht mehrere Techniken, um SimuBoost [35] zu verbes-
sern. SimuBoost ist ein Verfahren zur Beschleunigung der vollumfänglichen
Simulation eines Rechensystems. Dies ist nötig, da der Nutzen einer Simulati-
on, gegeben durch den hohen Detailgrad der Beobachtung, die sie ermöglicht,
durch die Langsamkeit, mit der sie erfolgt eingeschränkt wird. SimuBoost
beschleunigt die Simulation durch Parallelisierung. Dies erfolgt, indem Si-
muBoost den Rechner als virtuelle Maschine ausführt und dabei periodisch
Abbilder der virtuellen Maschine erstellt. Diese Abbilder dienen als Start-
punkte der parallelen Simulation.

Das Erstellen eines solchen Abbildes führt zu einer Unterbrechung der
Ausführung der virtuellen Maschine. Um diese zu verkürzen, erstellt Simu-
Boost Abbilder des Speichers der virtuellen Maschine, der eine erhebliche
Datenmenge darstellt, inkrementell [11]. Das heißt, SimuBoost sichert nur
die Speicherseiten, die seit dem letzten Abbild von der virtuellen Maschine
beschrieben wurde. Dies setzt einen Mechanismus voraus, der verfolgt, welche
Seiten des Speichers beschrieben wurden. Um die Unterbrechung der virtuel-
len Maschine weiter zu verkürzen, kopiert SimuBoost die zu sichernden Seiten
nach der Unterbrechung, gleichzeitig zur Ausführung der virtuellen Maschi-
ne [15]. SimuBoost schützt die zu sichernden Seiten vor Schreibzugriff, um
zu verhindern, dass die virtuelle Maschine sie modifiziert bevor sie kopiert
wurden. Wenn ein Schreibzugriff auf eine geschützte Seite erfolgt, wird die
virtuelle Maschinen kurzzeitig unterbrochen, die Seite wird gespeichert und
danach die Ausführung fortgesetzt. Auch diese Unterbrechungen stellen einen
unerwünschten Einfluss auf die Ausführung der virtuellen Maschine dar.

SimuBoost benutzt 4KiB große Speicherseiten, die Verwendung von grö-
ßeren Seiten verbessert jedoch, wenn keine Abbilder erstellt werden, die Aus-
führungsgeschwindigkeit einer virtuellen Maschine [13,28,31].

Diese Arbeit untersucht, ob die Unterbrechung zur Erstellung eines Ab-
bildes verkürzt werden kann, indem Teil des Aufwandes, um herauszufinden,
welche Seiten seit dem letzten Abbild beschrieben wurden, aus der Unterbre-
chung verschoben wird. Desweiteren wird untersucht, ob paralleles Kopieren

vii

viii DEUTSCHE ZUSAMMENFASSUNG

die Anzahl von Unterbrechungen wegen Schreibschutzverletzungen verrin-
gern kann. Außerdem prüfen wir, ob die Verwendung von großen Seiten für
SimuBoost Sinn ergibt.

Contents

Abstract v

Deutsche Zusammenfassung vii

Contents 1

1 Introduction 5

2 Background 7
2.1 Full System Simulation . 7
2.2 Virtualization . 8

2.2.1 Hardware-Assisted Virtualization 9
2.2.2 Virtual Machine Checkpointing 13

2.3 SimuBoost . 15
2.3.1 SimuBoost Implementation 16

3 Analysis 19
3.1 Impact of Dirty Logging . 19
3.2 Impact of Copy-on-Write . 24
3.3 Impact of Page Size . 27
3.4 Conclusion . 30

4 Design & Implementation 31
4.1 Pre-Scan . 31
4.2 Parallel Copy . 34
4.3 Large Pages . 36

5 Evaluation 39
5.1 Methodology . 39
5.2 Correctness . 41
5.3 Pre-scan . 41
5.4 Parallel Copy . 46

1

2 CONTENTS

5.5 Large Pages . 49
5.6 Conclusion . 51

6 Conclusion & Future Work 53

Bibliography 55

List of Figures

2.1 IA-32e paging . 11
2.2 Virtualization of paging . 12
2.3 Functional simulation accelerated using SimuBoost 16
2.4 Overview of SimuBoost . 18

3.1 Number of VM exits . 20
3.2 Mean downtime . 22
3.3 Accumulated downtime . 23
3.4 Performance impact of dirty logging 23
3.5 Mean jitter while checkpointing 24
3.6 Mean number of CoW cases 25
3.7 Timing of checkpointing events 26
3.8 Impact of copy-on-write page faults 27
3.9 Estimated impact of large pages on dirty logging 29

4.1 Overview of simple and pipelined pre-scan 33

5.1 Mean downtime of Pre-scan 42
5.2 Mean downtime of Pre-scan per configuration 43
5.3 Overview of iterated Pre-scan 44
5.4 Overhead of Pre-scan . 44
5.5 Mean number of CoW cases for parallel copy 47
5.6 Overhead of parallel copy, Reduction of CoW cases via parallel

copy . 48
5.7 Mean time to perform parallel concurrent-cop 49
5.8 Comparison of CoW page faults for parallel and non-parallel

copy . 50
5.9 Mean number of pages copied by checkpointing with large pages 51
5.10 Performance of checkpointing using large pages 52

3

Chapter 1

Introduction

This thesis explores multiple approaches to improve continuous virtual ma-
chine (VM) checkpointing. It does so in the larger context of SimuBoost [35],
which utilizes lightweight continuous checkpointing to accelerate functional
full system simulation.

Taking a checkpoint requires a brief interruption of the VM’s execution,
resulting in an undesirable downtime. To keep the downtime to a minimum,
SimuBoost uses incremental copy-on-write (CoW) checkpointing. Incremen-
tal checkpointing captures only those pages that were written to by the vir-
tual machine since the last checkpoint. A dirty logging mechanism is required
to know which pages to capture. One possibility is to write-protect the pages
to dirty log. A write access to a write-protected page triggers a page fault, so
that SimuBoost can mark the page dirty. Another possibility is to scan the
address translations mapping the guest physical address space to the host
physical address space for leaf page table entries that have their dirty bit set.
This occurs during the downtime, increasing it compared to dirty logging
using write-protection. However, because it does not cause page faults, scan-
ning ultimately leads to improved performance. Additionally, it allows for
accesses to be logged in an equivalent manner. SimuBoost uses this to reduce
the amount of data that has to be loaded during simulation. Because of these
two reasons page table scanning is the preferred dirty logging mechanism in
SimuBoost.

We devise pre-scan, in order to create a dirty logging mechanism that com-
bines the low downtime of write-protection with the performance of scanning
the page tables. The idea is to perform a scan before the checkpoint is taken,
so that the work done by a second scan during the downtime is reduced. We
observe that pre-scan is able to cut down the increase caused by scanning
to less than half. However, for intervals shorter than 500ms, performance is

5

6 CHAPTER 1. INTRODUCTION

negatively affected. The overhead can be in the order of 10%. For 500ms,
pre-scan shows a performance improvement of less than 1%.

SimuBoost uses copy-on-write to keep the downtime small. Instead of
copying the pages modified since the last checkpoint during the downtime,
SimuBoost write-protects them and resumes the virtual machine. It then
copies the pages concurrent to the execution of the VM. The write-protection
serves to preserve the integrity of the checkpoint. If the VM attempts to
write to such a page before it has been copied, a page fault occurs instead,
allowing SimuBoost to capture the page. Such page faults negatively affect
the performance of the virtual machine. At 50ms checkpointing interval
length, they can reduce performance by more than 10%.

In order to reduce this impact, we propose to perform concurrent-copy
with multiple threads, so that the bandwidth with which pages are copied is
maximized. This would give the VM less time to incur a CoW page fault.
We find that parallel copy can reduce the number of CoW page faults by
roughly half, however it does not significantly improve performance, instead
it decreases it for short interval lengths. The overhead is as high as 8%,
for an interval length of 500ms, we observe an average 0.7% performance
improvement.

Virtualizing the memory of a VM requires guest physical pages to be
translated to host physical pages. This process can use large pages, which
improves performance. SimuBoost, however, uses small pages when check-
pointing. As a result, compared to the use of large pages, which are enabled
by default, performance drops. To use large pages in conjunction with check-
pointing would increase the amount of memory that would need to be cap-
tured, since dirty logging would also have to work on the coarser granularity
of large pages. Experimentally, we incorporate large pages into checkpoint-
ing in order to gain an understanding of the implications of doing so. We
find that large pages can improve performance for interval lengths of 2 s and
higher. The benefit for 2 s is approximately 5%.

This thesis is structured as follows: Chapter 2 provides background on
full system simulation, virtualization and SimuBoost. Chapter 3 analyses the
impact SimuBoost has on the virtual machine it checkpoints and identifies
aspects of checkpointing that could benefit from optimization. Chapter 4
describes the design and implementation of those optimizations—pre-scan,
parallel copy, and the use of large pages. Chapter 5 evaluates if they succeed
in improving SimuBoost. Chapter 6 provides a conclusion and describes
possible future work.

Chapter 2

Background

Full system simulation is a powerful tool to gather detailed instruction-level
run time information that suffers from poor performance. SimuBoost is a
project to accelerate functional full system simulation by parallelization. To
achieve this, it uses virtualization and virtual machine checkpointing.

This chapter provides background on the relevant topics. Section 2.1
describes full system simulation. Section 2.2 explains virtualization, how it
is implemented on modern x86 architectures and reviews virtual machine
checkpointing techniques. Finally, Section 2.3 illustrates how SimuBoost
combines full system simulation and virtualization, as well as how SimuBoost
is implemented.

2.1 Full System Simulation
Full system simulation (FSS) allows simulation of a computer system, alter-
natively called a machine [18, 41]. It encompasses all parts of the system,
including the processor, memory, and devices like input peripherals and net-
working [18,51]. Full system simulators are useful tools in a range of cases:

• They allow the development of software without access to hardware,
for example when adding support for a new processor to an operating
system [18,19,27].

• They can be used to test availability by injecting faults and observing
the reaction of the system [18, 27]. The versatility of full system sim-
ulation allows a broad range of possible faults to be injected because
any part of the simulated system can be manipulated. Determinism
allows for simple regression testing [18].

7

8 CHAPTER 2. BACKGROUND

• Since FSS encompasses the whole system, it can aid in debugging. The
user can not only debug a program but also its interaction with the
operating system and the hardware [18,27]. Bugs often affect security.
Bochspwn [24] has identified security vulnerabilities in multiple operat-
ing systems by instrumenting the Bochs emulator to analyze memory
accesses. Xenpwn [48] has similarly found vulnerabilities in the Xen
hypervisor.

• Simulations can replace real hardware no longer in production [18].

• FSS can be used to better understand the behavior of software. SimOS
[37] has been used to characterize an operating system and predict its
performance on possible future hardware. Additionally, it has been
used to improve the output of a compiler [36]

As with all simulations, FSS must rely on a model [18]. The model determines
the level of abstraction provided by the simulation [37] and therefore how
closely it reproduces the behavior of the real system. Functional simulation
emulates instructions as defined by the instruction set definition but does
not take timing into account [27,51]. Cycle Accurate simulators emulate the
internals of a processor, closely approximating a real machine [51].

However, a big drawback of FSS is its slow execution. Its speed depends
on the level of abstraction of the model [37] and the implementation [10,49].
Rittinghaus et al. report slowdowns by a factor of 20–1100 depending on the
simulator and instrumentation level [35]. Bochspwn gives a slowdown factor
of 32–50 for an instrumented run, resulting in boot times of up to ≈20min
and a completion of the testing workload in less than 24 h [24].

The considerable slowdown of FSS limits its use because the simulation
must finish in a reasonable time frame [27]. The author of Bochspwn names
performance as a limitation [23]. Additionally, if the slowdown is too high,
interactions with the outside environment, e.g. a user, become impractical
and unrepresentative of a real system.

2.2 Virtualization
According to Popek and Goldberg [32], a virtual machine (VM) is a duplicate
of a real machine that is efficient and enforces isolation. The duplicate is
functionally equivalent to the real machine, however, this guest machine may
differ in timing characteristics and available resources. Efficiency is achieved
by running the majority of the VM’s instructions directly on the real pro-
cessor [32]. This, unlike FSS, restricts guests to compatible instruction sets

2.2. VIRTUALIZATION 9

but also implies much less overhead. All benchmarks evaluated in [35] show
an increase in execution time of less than 15% compared to native execution.
Directly running instructions also means that virtualization does not allow
instrumentation as powerful as that possible with full system simulation.

The virtual machine is an environment created by a virtual machine mon-
itor (VMM) [41, p. 369] running on the host machine. The VMM, although
it does not appear so to the VM, retains complete control over all resources
and enforces isolation, that is, it ensures that the VM can only access re-
sources allocated to it [32]. The VMM must provide the VM with resources
including a virtual processor and memory.

A conventional processor supports two different modes of execution—
supervisor mode and user mode. In user mode, only part of the instruction
set is available. Popek and Goldberg [32] showed that such a processor can
be efficiently virtualized by running the VMM in supervisor mode and VMs
in user mode, but only if all sensitive instructions are privileged. That is, if
all instructions that, if executed by the VM, would violate isolation, instead
cause an exit to supervisor mode, where the VMM can execute them on
behalf of the VM while maintaining isolation. Additionally, the processor
needs to support a way to determine the VM’s view of memory, for example,
via addressing relative to a relocation register [32] or page tables [41, p. 397].

2.2.1 Hardware-Assisted Virtualization
The x86 instruction set is not efficiently virtualizable according to the require-
ments defined by Popek and Goldberg [32] because it includes instructions
that are sensitive but not privileged [41, p. 391]. An example of such an
istruction is Pop Stack into Flags Register (POPF). When executed in user
mode, it does not affect the interrupt-enable flag. The behavior of POPF
therefore depends on the mode of the real processor, not on that of the vir-
tual processor. This violates the isolation of the virtual machine. There
are techniques to deal with sensitive non-privileged instructions1, but they
increase code complexity and negatively impact performance [41, p. 436].

To alleviate these problems and improve the virtualizability of x86, ven-
dors have released extensions to their instruction sets. Intel introduced Vir-
tual Machine Extensions (VMX) [22, ch. 23], AMD added AMD Virtualiza-
tion TM [9, ch. 15]. Because it is more relevant for this thesis, we give an
overview of VMX, AMD’s extensions work similarly.

VMX adds two kinds of processor operation: VMX root operation and
VMX non-root operation. VMX root operation is intented for the virtual

1Code Patching [41, p. 391,212]

10 CHAPTER 2. BACKGROUND

machine monitor and is mostly the same as processor operation without
VMX, except for the availability of VMX instructions. In VMX non-root
operation, the behavior of some instructions, like POPF, is changed. For
example, they may cause a VM exit, that is, a transition from VMX non-root
operation to VMX root operation so that the VMM can enforce isolation [22,
ch. 23.3]. VMX root and non-root operations therefore function as supervisor
and user mode as understood by Popek and Goldberg [32].

VMX also includes provisions to make implementing a VMM easier and
improve the performance of virtualization. One such provision aids in virtu-
alizing memory and virtual to physical address translation.

The x86 protected mode has support for paging to address memory [22,
ch. 4]. When paging is enabled, hierarchical paging structures are used to
translate linear addresses to physical addresses. In this thesis, all paging
structures, regardless of level, are referred to as page tables, their entries as
page table entries.

Multiple paging modes exist [22, ch. 4.1.1], all work according to the
same principle [22, ch. 4.2]: The CR3 register points to a page table. Part of
the linear address is used to index this table, resulting in an entry containing
a physical address. This physical address either points to another page table,
in which case the process repeats, or, on the last level, is used together with
the remaining part of the linear address to derive the result of the address
translation. Figure 2.1 portrays the process.

To improve performance, the processor may cache address translations in
Translation Lookaside Buffers (TLBs). It may also cache information about
page tables [22, ch. 4.10]. System software must appropriately invalidate the
caches so changes to the page tables take effect [22, ch. 4.10].

In addition to the physical frame number, page table entries contain bits
controlling the page’s access rights, as well as bits to track accesses and
writes to the page. Whenever the processor makes a memory access, it sets
the accessed bit in all page table entries used in the translation. If the access
is a write, it also sets the dirty bit in the page table entry lowest in the
hierarchy.

The virtual machine monitor must virtualize paging, that is, the guest OS
must be able to configure guest paging, with the VMM ultimately in control
of host memory allocation (s. Figure 2.2). This can be done without VMX
support via the use of shadow page tables [41, p. 399]: Because the access to
CR3 is privileged, the VMM retains control over it. When the guest tries to
write the address of a page table to it, the VMM instead writes the address
of the corresponding shadow page table. This shadow page table contains
the translation of guest virtual pages directly to host physical pages. The

2.2. VIRTUALIZATION 11

CR3

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

Physical MemoryLevel 1
Page Tables

Level 2
Page Tables

Level 3
Page Tables

Level 4
Page Tables

Linear Address
0111220212930383947

Figure 2.1: IA-32e paging. The linear address is split into offsets used to
index hieerarchical page tables. The lowest offset and the lowest page table
entry give the physical address.

12 CHAPTER 2. BACKGROUND

Process A Process B

Virtual Machine

Host Physical
Address Space

Guest Physical
Address Space

Guest Virtual
Address Space

Guest Virtual
Address Space

Page
Tables

Extended
Page
Table

Shadow
Page
Table

Figure 2.2: Virtualization of paging. The guest OS manages the page tables
of processes A and B. The VMM controls the allocation of guest physical
memory to host physical memory. If the processor does not support a second
level paging mechanism like EPT, the VMM uses shadow paging, replacing
the page tables of processes A and B with appropriate shadow page tables.

2.2. VIRTUALIZATION 13

VMM must take care to keep the shadow page table up to date when the
guest OS changes the corresponding page table.

Intel added the Extended Page Table Mechanism (EPT) to VMX [22,
ch. 28.2], which removes the need for shadow paging and improves perfor-
mance [13,14,33]. When EPT is enabled, the guest is able to configure pag-
ing without VMM intervention. However, the processor does not use guest
physical addresses, that is, the (intermediate) results of guest address trans-
lations, to accesses memory. Instead, it uses EPT page tables, which work
in the same manner as regular page tables, to translate the guest physical to
host physical addresses.

As with normal paging, the processor might cache (partial) guest vir-
tual to host physical translations, which must be properly invalidated when
necessary [22, ch. 28.3].

EPT may support accessed and dirty bits in the same way normal paging
does [22, ch. 28.2.4].

EPT supports 4KiB, 2MiB and 1GiB physical pages [22, ch. 28.2.2].
The size of the page is determined by the level of the last page table. The
lowest possible level maps a 4KiB page, that above a 2MiB page, etc. A bit
in the page table entry specifies whether that entry maps a page or points to
a lower page table. Using large pages can improve performance by reducing
the number of TLB misses, and thereby the number of cycles spend on TLB
miss handling [13,28,31].

VMXmay also support Page-Modification Logging (PML) [22, ch. 28.2.5].
When PML is enabled and the processor sets a dirty bit, it also logs the guest
physical address to a region specified by the VMM.

2.2.2 Virtual Machine Checkpointing
A VM checkpoint is an image of the complete state of a VM taken at an in-
stantaneous point in time. As such, it encompasses the state of the processor,
memory and devices [42].

When a VM checkpoint is transferred to another physical host, the process
is called VM migration. When a running VM is migrated, the operation is
designated live migration. Migration and checkpointing in general are useful
tools [16, 17]. Migration can be used to balance load. Both can be used for
fault tolerance, either by maintaining a fall-back VM on another host [17,43]
or by keeping a checkpoint on the same host, from which execution can be
resumed if a fault is detected [47].

Taking a checkpoint affects the execution of the VM. The downtime,
that is the time the execution of the VM is suspended [42], represents an

14 CHAPTER 2. BACKGROUND

interruption of service and must therefore be minimized [16]. Checkpointing
can also slow down the execution of the VM.

There are different techniques the virtual machine monitor can employ to
create checkpoints. The simplest, stop-and-copy, stops the VM and copies
the complete state [16, 42]. This has the disadvantage that the downtime is
proportional to the amount of of data that needs to be copied. With memory
sizes in the order of gigabytes, this can lead to unacceptable interruptions of
service [16].

Pre-copy drastically reduces the downtime by copying the majority of
data beforehand [16, 17, 42]. While the VM is still running, pre-copy copies
the VM’s memory in rounds. In each round, all memory pages not yet copied
or overwritten by the VM are captured. Eventually, the pre-copy phase ends,
the VM is suspended and the pages overwritten since the last round are
captured, as well as the processor and device states. Again, the downtime
is proportional to the data captured during it. Because only modified pages
need to be captured, it can be substantially less than that of stop-and-copy.

Since the VMM needs to know which pages were modified, a dirty logging
mechanism is required. Such a mechanism might adversely affect the VM
while it is running. Because the same page might be captured numerous
times, the total time to create the checkpoint is larger than that of stop-and-
copy.

Like pre-copy, post-copy moves the majority of work outside the down-
time, however, it moves it behind the downtime [17, 42]. This is done by
suspending the VM, saving the state of the processor and write-protecting
the memory of the VM. Then the execution of the VM resumes. When the
VM attempts to modify a page, an exit to the VMM occurs. The VMM cap-
tures the page, removes the write-protection so further accesses do not cause
an exit, and then continues the execution of the VM. These copy-on-write
(CoW) VM exits slow the execution of the virtual machine [46]. To decrease
the number of CoW exits, the VMM can concurrently copy those pages not
(yet) modified by the VM. After having copied a page, it also removes the
write-protection, preventing a CoW exit.

When creating multiple checkpoints of a VM after another, the amount
of data required to be saved per checkpoint can be lowered by reusing data
saved by other checkpoints. This incremental checkpointing can be done
in two ways:

One approach is to save the complete state of the VM for the first check-
point and then save only the data changed since the last checkpoint for every
subsequent checkpoint [46]. As such, this approach is equivalent to repeat-
ing the last step of pre-copy [17]. The restoration of the first checkpoint

2.3. SIMUBOOST 15

is straight-forward, every other checkpoint can be restored by restoring its
predecessor and applying the modifications that took place since it.

Another approach to implement incremental checkpointing is to capture—
via copy-on-write—the data that will be changed leading up to the next
checkpoint [46]. The last checkpoint encompasses the complete state of the
VM. A checkpoint can be restored by restoring its succeeding checkpoint,
then reverting the modifications via the saved data. Long Wang et al. [47]
use this approach to quickly revert the VM back to an earlier state upon
detection of an error in the execution of the VM.

Variations on these approaches exist. The first approach can be combined
with copy-on-write and concurrent-copy to copy the pages modified before the
checkpoint after the downtime, decreasing it [11, 15]. The second approach
can be varied by predicting which pages are going to be modified after the
checkpoint and copying them during the downtime [46,47]. This reduces the
number of CoW page faults and therefore their impact on the execution of
the VM.

2.3 SimuBoost

SimuBoost [35] is a project to speed up functional full system simulation by
parallelizing it.

An instruction can only be simulated if the state it operates on is known.
SimuBoost first runs the workload in a hardware-assisted virtual machine
and periodically checkpoints it, namely, it saves the complete state of the
VM. Because the execution of the virtual machine is fast, these checkpoints
represent fast-forwarded states from which SimuBoost derives starting states
for traditional functional simulations. Starting a simulation from a check-
point does not require waiting for the simulation of a previous interval to
have completed, SimuBoost exploits this parallelizability to achieve an over-
all speed up, as shown in Figure 2.3. As a result, SimuBoost unites the
advantages of full system simulation—detailed observability—with those of
virtualization—high speed.

The execution of the virtual machine is not deterministic [35]. This is
because eventually the non-determinism of the real machine hosting the VM
carries through into it. For example, the data of a virtual hard drive must
be stored on real storage device. When the virtual processor reads from
the virtual drive, the real processor must access the real device. After an
unknown duration the device responds and the result of the read is inserted
into the VM.

16 CHAPTER 2. BACKGROUND

Virtualizationiniki1

Simulationi1

Simulationik

Simulationin

vCPU
Node 0

Node 1

Node k

Node n

Figure 2.3: Functional simulation accelerated using SimuBoost. The work-
load runs in a VM. Periodic checkpoints serve as starting states for parallel
simulations. Because the simulation overleaps, the last simulation ends ear-
lier than a sequential simulation. [40]

This poses a problem for SimuBoost, because the final state of a simulated
interval must be equal to the starting state of the next [35]. Therefore, the
simulated execution must behave the same way as the virtualized one. To
solve this problem, SimuBoost records non-deterministic events and replays
them at the correct time in the simulation.

The downtimes caused by checkpointing influence the behavior of the
workload. If an event from a source outside the VM causes a reaction and a
downtime occurs between the event and the reaction, it will appear delayed
to an outside observer. In this way, the response to a network request may
have higher response time and variance. High downtimes can also deteriorate
user interactivity, the response to input should be less than 100-200ms [29].
Downtimes should therefore be minimal.

SimuBoost also causes a slowdown of the virtual machine’s execution. In
part, this is due to the recording of non-deterministic events [35]. Depend-
ing on the technique, checkpointing also contributes to the slowdown. Like
the downtime, the slowdown should be as small as possible to minimize its
influence.

2.3.1 SimuBoost Implementation
The SimuBoost imlementation is based on QEMU [3] and KVM [1]. QEMU
is a fast, portable full system emulator with support for a number of vir-

2.3. SIMUBOOST 17

tual devices [12]. Kernel-based Virtual Machine (KVM) is a subsystem in
the Linux kernel to expose the virtualization capabilities of the processor to
userspace [25]. Both are free software. Userspace can interact with KVM
via ioctls to the /dev/kvm device. Using these ioctls, a userspace appli-
cation can create a VM, assign part of its memory to the VM, create virtual
processors, and run them [20]. QEMU supports KVM, together they form a
VMM with QEMU emulating devices and KVM running virtual processors.

SimuBoost uses Simutrace [34], in form of the Simustore server, as the
storage back end. Simutrace provides streams of fixed size entries as an
abstraction. For each checkpoint SimuBoost utilizes multiple streams, for
example it uses one stream for all modified pages, one for device states,
etc. A stream consists of segments. After the client has (partially) filled a
segment, it submits it to the Simustore server to be appended to the stream.
While a stream is an ordered sequence, SimuBoost adds the pages saved
during checkpointing in an arbitrary order, with each entry containing the
address of the page.

Only one segment per stream can be filled at the same time, because
Simustore implicitly closes the previous segment when appending.

To conserve space, Simustore compresses stream data, captured pages are
additionally deduplicated.

Figure 2.4 visualizes the components of SimuBoost.

18 CHAPTER 2. BACKGROUND

Process A Process B

Virtual MachineQEMUSimustore

KVM ioctl

Stream

Figure 2.4: Overview of SimuBoost when checkpointing. The horizontal bars
represent physical or virtual memory, devided into pages. KVM and QEMU
interact via ioctls to create the VM. When checkpointing, QEMU writes
the checkpoint data to streams provided by Simustore. When QEMU and
Simustore run on the same machine, they can communicate via shared mem-
ory, represented by the pages mapped to the same frames. When prompted,
KVM saves the VM’s memory to an area provided by QEMU—if possible
the memory shared with Simustore.

Chapter 3

Analysis

The following chapter analyses aspects of checkpointing in SimuBoost. It
shows how checkpointing negatively affects the execution of the virtual ma-
chine. These ill effects present opportunities for optimizations presented
further on in the thesis.

Section 3.1 compares scanning and write-protection as dirty logging mech-
anisms. It shows that scanning increases the downtime and would thus ben-
efit from a reduction thereof. Section 3.2 portrays how copy-on-write page
faults are distributed and argues that their number could be decreased by
increasing the speed of concurrent-copy. Section 3.3 shows that the use of
large pages improves performance when no checkpointing takes place but
finds that checkpointing with large pages would have to capture substan-
tially more memory. For the benchmarking methodology see chapter 5.

3.1 Impact of Dirty Logging

SimuBoost’s preferred checkpointing technique is incremental [11] copy-on-
write (CoW) [15] checkpointing. We only consider incremental CoW check-
pointing in this thesis. This technique captures only those pages modified by
the VM since the last checkpoint. During the downtime the pages to be saved
are write-protected, in order to enable copy-on-write. After the downtime,
SimuBoost copies the majority of pages concurrent to the execution of the
virtual machine. Those pages modified by the VM before concurrent-copy
could save them are copied via CoW. Since little data is saved during the
downtime, it is generally below 20ms.

SimuBoost must know which pages were changed since the last check-
point and therefore requires a dirty logging mechanism. KVM provides dirty

19

20 CHAPTER 3. ANALYSIS

50 10
0

50
0

Interval [ms]

0%

500%

1000%

Nu
m

be
r o

f V
M

 e
xi

ts
Re

la
tiv

e
to

 B
as

el
in

e

Memory Size: 1GiB

50 10
0

50
0

Interval [ms]

Linux Kernel Build

Memory Size: 4GiB

Baseline Scan Scan+sparse WP

Figure 3.1: Total number of VM exits over the execution of the VM, relative
to the baseline. When write-protection is used, the number of VM exits
increases substantially, compared to the baseline it is between 5 and 13 times
as high. The higher the checkpointing frequency, the higher the the number
of VM exits.

logging mechanisms, in order to support live migration. SimuBoost builds
on this for its incremental checkpointing implementation.

A mechanism that KVM always provides uses the ability of paging to
write-protect pages. It sets the write-protect bit in page table entries map-
ping pages to be dirty logged. When a subsequent write to a protected
page triggers a page fault, KVM marks the page dirty in its dirty logging
structures, then makes the page writable.

In the context of dirty logging mechanisms, we refer to this mechanism
as write-protection or WP. When SimuBoost uses WP for checkpointing, it
write-protects the pages to be logged during each downtime.

Figure 3.1 shows that the number of VM exits increase by a factor of 5
to 12 compared to the baseline, where no checkpointing is performed. If the
checkpointing frequency is high, the write-protection is re-established often,
leading to more exits for short intervals.

Write-protection works with both shadow-paging and EPT.
If the hardware supports it, KVM uses Intel Page-Modification Logging

(PML) as dirty logging mechanism. PML lowers the number of VM exits
and improves performance [40]. Since the machine this analysis is performed
on does not support it, we disregard PML.

SimuBoost additionally supports scanning as a dirty logging mechanism.
When using scanning, SimuBoost walks the EPT page tables during the
downtime. It identifies dirty pages via the dirty bits in the last level page ta-

3.1. IMPACT OF DIRTY LOGGING 21

bles. If it finds a dirty page table entry, SimuBoost marks the corresponding
page dirty in its dirty logging data structures and resets the dirty bit. The
bit is reset so that a write access during the subsequent interval can set it
again. Before the downtime ends, SimuBoost flushes TLBs, in order to make
the processor aware of the changes made to page table entries. This causes
TLB misses, which can negatively affect the execution speed of the virtual
machine.

To decrease the scan time, SimuBoost does not descend through page
table entries that have not been accessed, because their children cannot be
dirty. We dub this pruning. Pruning would be more effective if higher level
page table entries contained dirty bits, but the hardware does not support
this. Scanning only performs work during the downtime and does not cause
additional VM exits while the VM is running. Figure 3.1 shows that this
is the case. The small increase in exits compared to the baseline is due to
checkpointing in general, interrupting the VM as well as CoW page faults
cause VM exits.

To accelerate the loading of checkpoints for simulation, SimuBoost can
use sparse checkpoint loading [39]. Sparse loading loads only those pages that
will be accessed during simulation of the respective interval. In order to know
which pages to load, SimuBoost must track which pages are accessed during
the virtualized run of the workload. This is only implemented for scanning;
in addition to the dirty bits, SimuBoost also logs and resets accessed bits.
We call scanning extended in this manner scanning+sparse. Since pruning
considers the accessed bits in higher levels page tables, not dirty bits, the set
of examined page table entries is the same for scanning and scanning+sparse.

The page table walk performed when scanning constitutes additional work
not done by write-protection. As a result the length of the downtime in-
creases. Figure 3.2 shows that the mean downtime of scanning is greater
than that of WP by 40% to 90%. Scan+sparse has to do additional work
logging and resetting accessed bits; this involves atomic instructions. As a
result, the downtime is higher, as shown by figures 3.2 and 3.3. Without
pruning, the amount of work required for scanning depends on the size of
the virtual machine’s memory. The bigger the memory, the more page ta-
ble entries exist which must be considered by scanning. With pruning, the
length of scanning mostly depends on the workload and the checkpointing
interval. If very little memory is accessed—either because of a light work-
load or because the checkpointing interval is short—few page table entries
must be considered and the downtime is short. Conversely, if a workload
aggressively accessed memory and the checkpointing interval is long, prun-
ing becomes ineffective, many page table entries must be examined resulting

22 CHAPTER 3. ANALYSIS

0

5

10

15

M
ea

n
Do

wn
tim

e
[m

s]

Memory Size: 1GiB

Linux Kernel Build

Memory Size: 4GiB

50 10
0

50
0

Interval [ms]

0

5

10

15

M
ea

n
Do

wn
tim

e
[m

s]

50 10
0

50
0

Interval [ms]

SPECjbb

Scan Scan+sparse WP

Figure 3.2: Mean downtime throughout a benchmark run. The error bars
show the range from the 5th to the 95th percentile. The downtime of scanning
and scanning+sparse is approximately twice that of write-protection.

in longer downtimes. Figure 3.2 shows this tendency, the effect is especially
pronounced for SPECjbb.

A higher checkpointing frequency implies that more checkpoints will be
taken during the time the workload runs, increasing the summed downtime.
Figure 3.3 portrays this connection. At an interval length of 50ms, 1GiB
memory, and scanning as dirty logging mechanism, the total downtime for the
kernel build benchmark is 98 s, that is, 7% of its execution time is downtime.
Reducing the downtime directly improves the performance of the VM. If the
downtime of scanning were the same as that of write-protection, the execution
time of the kernel build would decrease by 2%.

Scanning and write-protection have opposing advantages and disadvan-
tages. In the end, scanning has a smaller impact on the overall performance
of the virtual machine. Figure 3.4 shows that in all scenarios scanning re-
duces the time to complete the kernel build. At 500ms its overhead is 15%
compared to write-protection’s 24%. In the SPECjbb benchmark scanning
achieves a higher score in all scenarios. Scanning+sparse’s performanc is be-
tween that of scanning and WP. In part this is due to the higher downtime
of scan+sparse.

While scanning improves the performance, its higher downtimes are still
undesirable because they distort interaction with the VM. Figure 3.5 shows
the jitter reported by the iperf [6] network benchmark. During this bench-
mark, the client running inside the VM sends messages to a server running

3.1. IMPACT OF DIRTY LOGGING 23

0

50

100

150

200

Ac
cu

m
ul

at
ed

Do
wn

tim
e

[s
]

Memory Size: 1GiB
Linux Kernel Build

Memory Size: 4GiB
50 10
0

50
0

Interval [ms]

0

50

100

150

200

Ac
cu

m
ul

at
ed

Do
wn

tim
e

[s
]

50 10
0

50
0

Interval [ms]

SPECjbb

Scan Scan+sparse WP

Figure 3.3: Accumulated downtime for each dirty logging mechanism. The
total downtime shows the same relationship between dirty logging mecha-
nisms as the average. The total downtime is approximately proportional to
the checkpointing interval.

0%

50%

100%

150%

Sc
or

e
Re

la
tiv

e
to

 B
as

el
in

e

Memory Size: 1GiB Linux Kernel Build

Memory Size: 4GiB

50 10
0

50
0

10
00

Interval [ms]

0%

50%

100%

150%

Sc
or

e
Re

la
tiv

e
to

 B
as

el
in

e

50 10
0

50
0

10
00

Interval [ms]

SPECjbb

Baseline No Checkpointing,
2MiB pages

No Checkpointing,
4KiB pages Scan Scan+sparse WP

Figure 3.4: Performance for each dirty logging mechanism, relative to the
baseline. The baseline constitutes of no checkpointing and the default page
size. For the kernel build benchmark the vertical axis denotes the relative
execution time, lower is better. For SPECjbb it denotes the relative score,
higher is better. The performance of scanning is better than that of WP. As
the interval length increases, the performance improves.

24 CHAPTER 3. ANALYSIS

10
0

50
0

10
00

Interval [ms]

0%

2000%

4000%

6000%

8000%

10000%

Jit
te

r R
el

at
iv

e
to

 B
as

el
in

e
Memory Size: 1GiB

10
0

50
0

10
00

Interval [ms]

iperf3

Memory Size: 4GiB

Baseline Scan WP

Figure 3.5: Mean jitter observed by the iperf3 benchmark, relative to the
baseline. The baseline represents the jitter when no checkpointing is taking
place. The jitter is significantly higher when checkpointing is enabled and
increases as the checkpointing interval shrinks.

on the host. Jitter is the mean of the differences between consecutive transit
times [7]. If a downtime occurs during a transit, this transit time increases,
increasing the jitter (assuming no downtime during the previous transit). As
a result, the average jitter for scanning is between 12 and 77 times higher
than the baseline value. The jitter increases with decreasing checkpointing
interval length because downtimes are more frequent. The jitter is slightly
higher for scanning than for write-protection. The difference would likely be
higher if the benchmark were more memory intensive.

3.2 Impact of Copy-on-Write

Copy-on-write checkpointing negatively impacts the execution of the virtual
machine. Each CoW page fault implies a VM exit. While the CoW case
is processed by saving the page, the execution of the virtual processor is
halted, the workload can therefore not advance for this time. Both VM-
μCheckpoint [47] and Speculative Memory Checkpointing [46] try to avoid
copy-on-write page faults, citing overhead. Avoiding CoW cases in Simu-

3.2. IMPACT OF COPY-ON-WRITE 25

0

2500

5000

7500

10000

M
ea

n
Co

W
 P

ag
e

Fa
ul

ts
pe

r C
he

ck
po

in
t

Memory Size: 1GiB
Linux Kernel Build

Memory Size: 4GiB

50 10
0

50
0

Interval [ms]

0

2500

5000

7500

10000

M
ea

n
Co

W
 P

ag
e

Fa
ul

ts
pe

r C
he

ck
po

in
t

50 10
0

50
0

Interval [ms]

SPECjbb

Scan Scan+sparse WP

Figure 3.6: Mean number of CoW cases per checkpoint. The error bars show
the range from the 5th to the 95th percentile. The number of CoW cases
depends on the benchmark and increases with the checkpointing interval.

Boost has the additional advantage that it minimizes the distortion of the
workload behavior, making SimuBoost’s analysis more accurate.

Figure 3.6 shows the average number of CoW cases per checkpoint. How
many CoW cases occur depends on the checkpointing interval and the work-
load. During a very short interval the workload can modify only few pages.
Thus, only few pages must be captured in the next checkpoint, limiting the
number of pages potentially captured via CoW. However, as with the total
downtime, shorter intervals result in a higher total number of CoW cases.
Figure 3.6 shows that SPECjbb causes significantly more CoW cases than a
kernel build, indicating that it more aggressively writes memory. There is
a small difference between the dirty logging mechanisms. Write-protection
has a higher run time overhead than scanning, due to its dirty logging page
faults. Comparatively, this speeds up concurrent-copy, leading to less CoW
cases.

Figure 3.7 gives an overview over the distribution of CoW cases. For each
checkpoint it plots the time CoW page faults occur relative to the end of the
downtime. It also depicts when concurrent-copy (CC) has completed. The
lower plots of the figure shows the same for a small range of checkpoints.
Additionally, they show an estimate of the distribution of CoW cases and
CC completion. The figure shows that CoW cases are most likely directly

26 CHAPTER 3. ANALYSIS

Figure 3.7: Timing of events during incremental CoW checkpointing with
interval length 1 s, 4GiB memory. The horizontal axis denotes time since
the end of the downtime period. The lower plots shows a smaller range of
checkpoints, as well as an estimate of the distribution of CoW cases and
CC end points. The plots show that CoW cases occur even briefly before
checkpointing completes.

3.3. IMPACT OF PAGE SIZE 27

50 10
0

50
0

Interval [ms]

0%

2%

5%

8%

10%

Pe
rfo

rm
ac
e
In
cr
ea
se
 C
au
se
d

by
 L
ac
k
of
 C
oW

 C
as
es

Linux Kernel Build

50 10
0

50
0

Interval [ms]

M
em

ory Size: 1GiB
SPECjbb

Figure 3.8: Increase in performance if no CoW cases occur, higher is better.
For SPECjbb, performance improves by more than 5% for interval lengths
less than 100ms.

after the downtime. This is because concurrent-copy has not yet had time
to copy many pages. The effect is more pronounced for the kernel build. As
time goes on, the probability of CoW cases drops. After CC has completed,
CoW cases can no longer occur. The figure does not show a big gap between
the last CoW case and the completion of CC. Reducing the time to complete
concurrent-copy by speeding it up would therefore lower the number of CoW
cases.

To estimate the possible performance improvement, we experimentally
omit write-protecting the pages to be saved. This breaks copy-on-write check-
pointing and simulates a 100% reduction in CoW cases. Figure 3.8 shows
the resulting change in performance. For 50ms SPECjbb’s score improves
by more than 10%, for 100ms more than 5%. For higher interval lengths the
improvement becomes negligible. These values represent the best case, with
no CoW cases occurring. However, the improvement is large enough that a
reduction of CoW cases by 50% or 30% should cause a noticeable benefit.

3.3 Impact of Page Size
KVM supports large pages [26] but breaks them when dirty logging is ac-
tive because it logs dirty memory at a 4KiB granularity. Large pages can
be explicitly configured or they are automatically created via transparent
hugepages [50]. By default, QEMU requests the use of large pages.

28 CHAPTER 3. ANALYSIS

Large pages can increase performance by improving TLB utilization. Fig-
ure 3.4 confirms this. For SPECjbb the score of 2MiB pages is 8% higher
than that of 4KiB pages. A Linux kernel build with 2MiB pages finishes
10% earlier than when 4KiB pages are used. Transparent hugepages perform
similar to explicitly configured 2MiB pages. Starting at an interval length
of 500ms, the performance of a kernel build with checkpointing enabled and
scanning as dirty logging mechanism is close to that of no checkpointing and
4KiB pages.

This suggests for long interval lengths, the performance of incremental
checkpointing, compared to execution without checkpointing, is limited by
its need for a dirty logging mechanism, which currently restricts the page
size to 4KiB.

Dirty logging could also be done using larger pages. However, dirty log-
ging at a coarser granularity implies that more memory will be considered
dirty, and therefore more memory would need to be captured. This might
negate the benefit of large pages.

Figure 3.9 gives an overview of the effect of dirty logging at the 2MiB
level. The Figure visualizes the memory dirtied by SPECjbb at a checkpoint-
ing interval of 1000ms. Figure 3.9b shows the VM’s memory at a checkpoint
roughly halfway through the execution of the benchmark. Black pixels sym-
bolize a clean 4KiB page, white ones a dirty page. Figure 3.9d shows the
same memory if instead dirty logging was 2MiB based. A large page is
considered dirty if any of the small pages covered by it is dirty. The entire
memory covered by the large page must be considered dirty, increasing the
amount of memory that must be saved by a factor of ≈ 5.6 in this instance.

In the following, we assign a dirtiness percentage to each large page,
based on how much of its memory is considered dirty by 4KiB dirty logging.
Figure 3.9f shows clean large pages and completely dirty large pages in white,
that is, it shows partially dirty large pages in color. The shade of partially
dirty pages is determined by their dirtiness. Many partially dirty pages are
hardly dirty, these pages contribute the majority of the memory that would
be checkpointed needlessly.

The left column of Figure 3.9 gives an overview of large page dirtiness
throughout the benchmark. Each plot has one curve per checkpoint, drawn in
a different shade. Figure 3.9a depicts the distribution of dirtiness. It shows
spikes at 0% and 100%. The values in-between are partially dirty pages,
their distribution skews towards little dirtiness. The black curve describe
the average over all checkpoints.

Figure 3.9c displays the percentage of large pages whose dirtiness falls
into the interval (0%, x%]. Figure 3.9e displays the percentage of pages that
falls into [x%, 100%]. Again, the black curves depict the average. Both plots

3.3. IMPACT OF PAGE SIZE 29

0% 25% 50% 75% 100%
Dirtyness of large page

0%

20%

40%

60%

80%

100%

Pe
rc
en

ta
ge

 o
f a

ll
la
rg
e
pa

ge
s

th
at
 a
re
 X
%
 d
irt
y

(a)

(b) VM memory halfway through the
benchmark. Clean 4KiB pages are black,
dirty ones white.

0% 25% 50% 75% 100%
Dirtyness of large page

0%

20%

40%

60%

80%

100%

Pe
rc
en

ta
ge

 o
f d

irt
y
la
rg
e
pa

ge
s

th
at
 a
re
 a
t m

os
t X

%
 d
irt
y

(c)

(d) Equivalent dirty memory if dirty
logging had large page granularity. A
coarser granularity leads to more dirty
memory.

0% 25% 50% 75% 100%
Dirtyness of large page

0.1%

1.0%

10.0%

100.0%

Pe
rc
en

ta
ge

 o
f d

irt
y
la
rg
e
pa

ge
s

th
at
 a
re
 d
irt
ie
r t
ha

n
X%

(e)

0%

20%

40%

60%

80%

100%

(f) Partially dirty large pages in color,
clean and completely dirty pages in
white. Most partially dirty pages had lit-
tle memory actually modified.

Figure 3.9: Overview of dirty memory throughout an execution of SPECjbb,
1s interval length, 1GiB memory. Figures 3.9a, 3.9c and 3.9e: Histograms
showing distribution of dirtiness. One line for each checkpoint, drawn in a
different shade. The black lines show the average over all checkpoints. While
the distribution varies over the checkpoints, all show a substantial number
of large pages that would cause a lot of useless copy work.

30 CHAPTER 3. ANALYSIS

show that large pages which are hardly dirty are very common. Between
20% and 60%, 40% on average, of large pages are at most 20% dirty. These
pages alone cause 16% to 48% of the VM’s memory to be wrongly considered
dirty. Very dirty pages are rare, on average only ≈ 10% of large pages are
more than 60% dirty.

Summed over all checkpoints, dirty logging at large page granularity
deems ≈ 3.6 times more memory dirty than dirty logging at the 4KiB level.
This substantial increase would entail additional overhead, in part due to
more CoW cases. Because of this, it is doubtful that large pages can increase
checkpointing performance.

3.4 Conclusion
We have analysed aspects of SimuBoost’s checkpointing implementation and
identified sources of overhead. SimuBoost creates periodic downtimes in the
execution of the virtual machine. Scanning and scanning+sparse as dirty
logging mechanisms increase the length of the downtime compared to write-
protection. Additionally, SimuBoost causes copy-on-write page faults, which
slow the execution of the VM. SimuBoost also reduces performance by dis-
allowing the use of large pages. These aspects represent opportunities to
improve checkpointing that we will explore in the rest of the thesis.

Chapter 4

Design & Implementation

This chapter presents the design and implementation of three optimizations
to SimuBoost. The first addresses the downtime increase caused by scanning,
the second aims to reduce the number of copy-on-write cases and the third
serves to explore if large pages can benefit checkpointing despite the increase
in memory to capture.

4.1 Pre-Scan
To counter the increase of the downtime caused by scanning, we propose
doing a pre-scan. The idea of pre-scan is to shift some of the scanning work
before the downtime, when the virtual machines is still running. However,
because the VM is running, it can modify pages after the pre-scan has com-
pleted, a scan during the downtime is therefore still required. The mechanism
by which pre-scan could decrease the downtime is to increase the effective-
ness of pruning during the downtime scan. To do so, a pre-scan scans the
page tables, logs dirty pages and resets the accessed bits on all levels. If
the VM does not access the memory region mapped by a higher level page
table entry after the pre-scan, its accessed bit will remain zero, allowing all
its children to be skipped when it is scanned during the downtime.

Use of pre-scan must not break dirty logging, care must therefore be taken
to coordinate the access to page tables by pre-scan and the running virtual
processor. For example, the following sequence must not occur:

1. Pre-scan: Observes that a higher level page table entry E was previ-
ously accessed

2. Pre-scan: Descends and scans E’s children, finds no dirty pages

31

32 CHAPTER 4. DESIGN & IMPLEMENTATION

3. Virtual processor: Writes to a page mapped by a child of E, sets the
dirty bit in the child page table entry

4. Pre-scan: Resets E’s accessed bit in memory

5. Virtual processor: The processor’s translation caches indicate that
E’s accessed bit is already set, therefore, it does not need to be set in
memory again

6. Pre-scan: Invalidates translation caches

The result of the above sequence is a last level page table entry with set dirty
bit and a non-set accessed bit in its parent. The final scan in the downtime
does not find the dirty page because it is pruned when the parent page table
entry shows a zero accessed bit.

To solve this problem, each pre-scan consists of multiple steps:

Step 1 Walk the page tables. If the accessed bit of an entry is one, set
it to zero. Let P be the set of entries modified in this manner.
Store enough information to identify P .

Step 2 Invalidate TLBs. After this step, the following statements
hold:

• All accesses that took place before this step and for which
pre-scan observed a set accessed bit in Step 1, are covered
by entries identifiable via the information retained in Step
1.

• All accesses that took place before this step and which
pre-scan was not aware of (e.g., because they occurred
after pre-scan read the according page table entry), are
covered by page table entries that have the accessed bit
set. This is the case because pre-scan did not reset the
accessed bit.

• All accesses that take place after this step will cause the
processor to set the accessed bit. This is because the
translation caches no longer contain outdated data.

As a result, all accesses can be identified via the accessed bits
in the according page table entries or via the retained infor-
mation.

Step 3 Scan children of entries in P and log dirty bits.

4.1. PRE-SCAN 33

Step 1 TLB flush Step 3 Step 1 TLB flush Step 3 ... Step 1 TLB flush Step 3

Step 3
Step 1 TLB flush Step 3

Step 1 TLB flush Step 3
Step 1 ... TLB flush Step 3

Iteration 1 Iteration 2 Iteration n

Iteration 1

Iteration 2

Iteration n

Figure 4.1: Simple and pipelined pre-scan. Pipelined pre-scan combines
Steps 1 and 3, shortening the iteration: n iterations with the simple method
require 2n page table walks, n pipelined iterations only n + 1.

A pre-scan followed by a normal scan during the downtime will correctly log
all dirty pages.

It is possible to pre-scan multiple times, similar to pre-copy live migration.
This might be beneficial due to the same rationale: Each round must perform
less work than the previous, completes faster, and thus grants the virtual
machine less time to create work for the subsequent round.

During Step 1 we need to retain the information which page table entries
are in P . We chose to store this information for each page table entry in one
of the entry’s unused bits [22, ch. 28.2.2]. In order to identify entries in P
in Step 3 and scan their children, we walk the page tables and examine this
bit.

As a result, the use of multiple rounds can be further optimized by com-
bining Steps 1 and 3. This has the advantage that entries that would be
considered by both Step 1 and 3 are examined only once. We call this ap-
proach pipelined pre-scan and a pre-scan with separate Steps 1 and 3 simple.
Figure 4.1 contrasts the two approaches. We define two variants of pipelined
pre-scan. During the final step pipeline-early logs all dirty pages it finds,
while pipeline-late scans only pages covered by entries in P . Because of this,
pipeline-early might require the scan during the downtime to sync fewer dirty
bits. However, they do not differ in which page table entries the downtime
scan must examine.

To implement pre-scan, we modify SimuBoost’s existing scanning func-
tion so that it can be used to perform Step 1, Step 3 and the scan during the
downtime. We do this by making the behavior of the function conditional
on a number of flags. These flags determine which page table entries are de-
scended through during the walk (accessed and/or in P) and which actions
are performed (e.g., reset accessed bits and/or perform dirty logging).

34 CHAPTER 4. DESIGN & IMPLEMENTATION

When we modify page table entries, we do so atomically in order to
prevent interference with modifications by the virtual processor.

The KVM part of SimuBoost is not aware of the frequency or timing
of checkpoints. We therefore added a pre-scan ioclt to KVM, so QEMU
can initiate a pre-scan before the next downtime. The ioctl is passed the
number of iterations to perform, as well as the method—pipelined-early,
pipelined-late or simple.

The time between the pre-scan and the downtime should be minimal in
order to give the virtual machine less time in which to dirty memory. To
achieve this, the QEMU part of SimuBoost sleeps until a moment before
the downtime, calls the pre-scan ioctl and then immediately commences the
downtime. As a result, the actual interval length depends on the duration of
the pre-scan ioctl. To minimize the deviation of the actual interval length
from the intended one, we predict the length of the pre-scan ioctl to be the
exponential average of past invocations, and adjust the moment at which we
perform the pre-scan accordingly.

Just as normal scanning optionally supports sparse checkpoint loading,
we create versions of pre-scan that additionally sync accessed bits, which we
refer to as pre-scan+sparse.

4.2 Parallel Copy
To decrease the number of copy-on-write page-faults, we parallelize concurrent-
copy. The intention is to shorten the time until a page is captured by
concurrent-copy by maximizing the bandwidth with which pages are saved.
If pages are saved quickly, the workload has less time to generate CoW cases.

The current SimuBoost implementation concurrently copies pages in a
single thread. This thread requests a segment to fill with pages from the
Simustore server. It then calls into KVM via an ioctl, passing it the segment
buffer. This ioctl iterates over the physical memory of the virtual machine
and copies pages if they were dirtied during the previous interval and have
not yet been saved by copy-on-write. This continues until the buffer is full or
CC has completed. Then the ioctl returns, informing SimuBoost about the
number of copied pages and whether there remain additional ones to capture.
Upon return from the ioctl, SimuBoost submits the segment to Simustore,
in order to append it to the stream that stores modified pages. If more pages
need to be saved, SimuBoost repeats the process. Subsequent invocations of
the ioctl start saving pages where the last call left off, so that all required
pages are copied. KVM achieves this by storing the relevant information for
each virtual machine.

4.2. PARALLEL COPY 35

Multithreaded concurrent-copy requires that:

1. Multiple threads can obtain segment buffers of the same stream

2. KVM supports multiple copy threads

3. The copy threads capture pages at the same time

4. SimuBoost is informed if more pages are to be captured

5. KVM correctly resumes copying

6. Multiple threads can submit segments to Simustore independently

Sharing the copy work between multiple threads, as demanded by require-
ment 3, necessitates coordination between the threads. A possible design
would be to break the VM’s physical memory into equally sized parts and
assign each part to a thread. However, this design underutilizes threads that
have little work to do. After a thread has examined the region assigned to
it and found that it does not contain pages to save, it cannot relieve other
threads that have actual copying work to do.

Instead, we propose the following design: Whenever a copy thread has no
work, it assigns itself a continuous region of pages of a maximum size. These
regions are sequential according to an arbitrary order. A shared data struc-
ture points to the next region. Access to the data structure is synchronized
via a lock.

This design has the advantage that a thread can find new work after it is
done with its region. There is a trade-off between small and large maximum
region sizes. Large sizes require less synchronization but limit work sharing,
small sizes might lead to lock contention.

We implement this design by extending the mentioned ioctl, no new
ioctls are added. In addition to the segment buffer, SimuBoost passes a
thread id to the ioctl. Only one thread with the same thread id may
execute the ioctl at the same time for the same virtual machine. We set
the maximum number of thread ids to 128. Each thread id can be associated
with a region to save. This is used to track if there is work to resume when
the thread enters the ioctl again, after it had to leave without completing
the region (e.g., because the buffer was full).

Whenever a thread needs more work, it acquires it as per our design. The
access to the shared data structure is synchronized via a spinlock. We choose
a spinlock because the lock is going to be held only shortly.

If a thread attempts to acquire more work and finds that there is none
left, it returns this information to userspace. For concurrent-copy to function

36 CHAPTER 4. DESIGN & IMPLEMENTATION

correctly, SimuBoost must keep invoking the ioctl for each used thread id
until this occurs.

Currently, Simustore supports only one open segment per stream. To
implement requirements 1 and 6, we modify Simustore in the following way:
We add a DeferredOrder flag to the flags associated with a stream. This flag
signifies that the assignment of a sequence number to a segment is deferred
until the segment is appended, instead of occurring when it is opened. Until
this time, the segment is assigned a dummy sequence number, of which there
exist a fixed amount. When the segment is appended, it is renamed, that is,
it is assigned the next proper sequence number of the stream. Its dummy
sequence number can then be reused for a newly opened segment. During an
append operation, the client must now identify which segment to close instead
of Simustore implicitly closing the last opened segment. This identification
is done via the dummy sequence number.

In the course of implementing parallel copy, we also added an optimization
to the copy-on-write implementation. Previously, the CoW handler would
atomically allocate memory to save the page to. If the allocation pressure
was high, these allocations would fail.

Instead, we directly save CoW pages to userspace supplied buffers, as
with CC pages. We use the same ioctl for the implementation and add a
flag to the invocation determining if it is to save CoW pages. Once such a
CoW thread enters KVM, it sleeps until it is woken. We use a Linux wait
queue [45] to do so. A CoW thread is woken when its buffer is full, an error
occurs in the CoW handler or concurrent-copy has completed. This is the
case when a concurrent-copy thread exits KVM and there is no more work it
can do, nor do there exist copy threads with resumable work. When no CoW
thread is available, KVM falls back to atomic allocation. If multiple CoW
threads are available, KVM completely fills the buffer of one thread before
using another threads buffer. If userspace continuously supplies KVM with
buffers to use for CoW, atomic allocations can be completely avoided.

KVM’s page fault handler must be non-interruptible, else a deadlock
might occur. For this reason, if the copy to an userspace supplied buffer is
to be guaranteed to succeed, the virtual to physical translations covering the
buffer must exist, they cannot be faulted in by the CoW handler. To assure
this, QEMU pins the buffer in virtual memory using mlock [21].

4.3 Large Pages
The space of designs incorporating large pages into incremental checkpointing
is broad. Such a design must determine which parts of memory are to be

4.3. LARGE PAGES 37

backed by large pages, as it may be detrimental to performance to include
areas that will cause many superfluous copy operations. The simple choice is
to use large pages for all memory. The alternative is to predict which areas
will be dirtied and adjust the use of large pages according to this prediction.
Such a design would be significantly more complex. It would need to asses the
dirtiness of large pages but could not depend on dirty logging to do so because
the dirty logging mechanism itself would work on a large page level. In the
context of SimuBoost, the storage back end could provide this information;
its deduplication mechanism detects where memory was actually changed.
Given this information, there is a wide range of possible policies to decide
when to use large pages vis-á-vis small pages.

Incorporating large pages also needs a way to deal with copy-on-write
page faults to large pages. One possibility is to copy the large page. However,
this would substantially increase the cost of a CoW page fault, as 512 times
more memory must be copied. The alternative is to break the large page
and establish a 4KiB page at the faulting address. Then, only this small
page must be saved. To benefit the workload, large pages broken in this
manner must be re-established. Again, different designs are possible. Re-
establishing large pages early allows the workload to make better use of
them. If they are re-established while CoW cases are still possible, they may
be broken again. Depending on the implementation, this causes additional
overhead via page faults and TLB invalidations. The other possibility is to
re-establish a large page only if it is not possible for a CoW case to hit the
page. This is certainly the case when the checkpoint has been completed.
But it can also be guaranteed to be the case when the large page in question
has been completely captured by concurrent-copy, rather than all of them.
This requires cooperation between re-establishment and concurrent-copy.

We implemented the following simple design:

Large-zap: Use large pages for the entire memory, break them in case of
CoW. After a checkpoint has completed, remove all 4KiB page table
entries, subsequent non-present page faults create large pages.

We do not change the granularity of the dirty bitmap KVM uses to store
the dirty information. Instead we set 512 bits for each dirty large page. Our
implementation covers only scanning as dirty logging mechanism, without
sparse support.

Chapter 5

Evaluation

5.1 Methodology
We automated benchmarking by implementing the benchmarks as test cases
for the Avocado testing framework [4]. In order to enable the test cases to
interact with SimuBoost, we modified avocado-virt [5], a library to create
virtualization related tests. Unless otherwise stated, the following applies:

• We disable NUMA balancing.

• We set the CPU scaling governor to performance.

• VCPU threads are pinned to different cores.

• QEMU is started with -nodefaults, -mem-prealloc, an IDE-HD de-
vice, a rtl8139 network device and character devices for the serial con-
sole and monitor.

• The baseline value is that of no checkpointing, default page size.

• When we explicitly use large pages, we start QEMU with -mem-path
/dev/hugepages.

• When we explicitly use 4KiB pages, we set the transparent hugepage
parameters “enabled” and “defrag” to “never”.

• We set the mlock quota high enough for each CoW thread to use an
entire Simustore segment.

• We evaluate parallel copy with scanning without sparse support as dirty
logging mechanism.

39

40 CHAPTER 5. EVALUATION

• We record the number of certain events occurring throughout the exe-
cution with the perf [30] utility.

• We record the timings of: start of downtime, end of downtime, CoW
case, CC completion with the trace-cmd [38] utility.

• When using the pre-scan version of SimuBoost, we record statistics for
each (pre-)scan, also with trace-cmd.

• We start the java process that runs SPECjbb [8] with -Xmx1G

• Linux Kernel Build as a benchmark refers to the benchmark in the
Phoronix Test Suite [2].

• We perform only one kernel build per benchmark run.

• Values aggregated over each checkpoint (e.g average downtime) exclude
the first checkpoint in order to improve their descriptiveness of the
common case.

We perform the evaluation on a system with the following specifications:

Processor Dualsocket Intel Xeon CPU E5-2630 v3 @ 2.40GHz (8 phys-
ical cores, 16 logical)

Memory 64 GiB
Disk Crucial CT256MX1 (System disk)
Disk Samsung SSD 850 (Simustore output directory)
Motherboard Supermicro X10DRI-T 1.02

Used software versions are:

Host Operating System Ubuntu 16.04.5 LTS
Host Linux Kernel 4.3.0+
Guest Operating System Ubuntu 18.04 LTS
KVM 4.3.0+
QEMU 2.6.50
Simutrace 3.4.1
SPECjbb [8] 2005 v1.07
Phoronix Test Suite [2] 8.0.0
Phoronix Test Suite Linux Kernel Build 1.9.1

5.2. CORRECTNESS 41

Phoronix Test Suite Ramspeed 1.4.1
Phoronix Test Suite iperf 1.0.2
iperf3 [6] (server) 3.0.11

5.2 Correctness
To asses if checkpointing functions correctly with our modifications in use,
we compare the memory of the VM immediately before taking a checkpoint
with that saved by the checkpoint. We run a workload and save the VM’s
memory during the downtime, before creating the checkpoint. After the
workload has completed, we load every checkpoint and save the resulting
memory image. Because saving the complete memory is slow, we use a long
checkpointing interval of 20 s. The before and after memory images being
identical indicates that checkpointing is correct but does not guarantee it.
We find that the images are identical when our modifications are used.

5.3 Pre-scan
The aim of pre-scan is to reduce the downtime. To asses if it accomplishes
this, we benchmark a subset of pre-scan configurations. To keep the number
of benchmarks manageable, we do not explore all combinations of pre-scan
methods (simple, pipelined-early, pipelined-late) and iterations up to some
limit.

We choose to test pipelined-early with iterations from one to three. By
design, the pipelined method should show more strongly if iterating pre-scan
can reduce the downtime. We also perform one iteration of the simple pre-
scan method (i.e. with separate Steps 1 and 3), to give us a baseline value
with which to compare the more advanced pipelined design. We compare
pipelined-early+sparse and pipelined-late+sparse, which additionally sync
accessed bits. If syncing more page table entries during the last step of
pre-scan is beneficial, it should be more apparent with the sparse variant.
The rationale is that, if pipelined-early is able to move work out of the
downtime, it will move more work for scanning+sparse, creating a bigger
contrast between pipelined-early and pipelined-late.

Figure 5.1 shows the downtime averaged over the workload execution for
the chosen pre-scan configurations, as well as scanning without pre-scan, and
write-protection. It shows that pre-scan succeeds in lowering the downtime,
with all configurations being similar. On average over all scenarios, pre-
scan without sparse support reduces the downtime to 20% of that of write-

42 CHAPTER 5. EVALUATION

0%

100%

200%

300%

M
ea

n
Do

wn
tim

e
Re

la
tiv

e
to

 W
P

Memory Size: 1GiB

Linux Kernel Build

Memory Size: 4GiB

50 10
0

50
0

Interval [ms]

0%

100%

200%

300%

M
ea

n
Do

wn
tim

e
Re

la
tiv

e
to

 W
P

50 10
0

50
0

Interval [ms]

SPECjbb

Scan
Scan+sparse

Pre-scan
Pipelined-early
1 Iteration
Pre-scan+sparse
Pipelined-early
1 Iteration

Pre-scan
Pipelined-early
2 Iterations
Pre-scan
Pipelined-early
3 Iterations

Pre-scan+sparse
Pipelined-late
1 Iteration
Pre-scan
Simple
1 Iteration

WP

Figure 5.1: Mean downtime for various dirty logging scenarios, relative to
write-protection. The error bars show the range from the 5th to the 95th
percentile. Pre-scan is able to reduce the downtime and brings it close to
that of write-protection. Pre-scan+sparse has downtimes slightly increased
compared to pre-scan without sparse support. Pre-scan+sparse pipelined-
late has longer downtimes than pipelined-early in most cases. Other than
that, there is little difference between the choices of pre-scan configurations.

5.3. PRE-SCAN 43

140%

160%

180%

200%

220%

240%

260%

M
ea
n
Do

wn
tim

e
Re

la
tiv
e
to
 W

P

Sca
n

Sca
n+
spa
rse

110%

120%

130%

140%

150%

Pre
-sc
an

Sim
ple

1 I
ter
ati
on

Pre
-sc
an

Pip
elin

ed
-ea
rly

1 I
ter
ati
on

Pre
-sc
an

Pip
elin

ed
-ea
rly

2 I
ter
ati
on
s

Pre
-sc
an

Pip
elin

ed
-ea
rly

3 I
ter
ati
on
s

Pre
-sc
an
+s
pa
rse

Pip
elin

ed
-la
te

1 I
ter
ati
on

Pre
-sc
an
+s
pa
rse

Pip
elin

ed
-ea
rly

1 I
ter
ati
on

Interval
50
100
500

Memory Size
1GiB
4GiB

Test
Linux Kernel Build
SPECjbb

Figure 5.2: Mean downtime for different scanning configurations relative
to the downtime of write-protection. For pre-scan without sparse support
there is little difference between simple pre-scan and pipelined-early pre-scan
regardless of the number of iterations. For pre-scan+sparse pipelined-late
1 iter. (= simple 1 iter.), most scenarios have a downtime more than 30%
increased compared to WP. This is not the case for pipelined-early.

protection, whereas scanning without pre-scan results in a downtime 70%
higher than that of WP. The same is true when sparse loading is supported,
here the downtime is on average 30% higher than WP’s, without pre-scan
114%. Pre-scan is therefore able to lower the additional downtime caused by
scanning by more than 50%.

There is no clear trend showing that iterating pre-scan can decrease the
downtime. While it is the case for some scenarios (e.g. kernel build, 1G,
50ms), others shows a higher downtime (kernel build, 4G, 100ms) and some
show hardly any difference (kernel build, 4G, 500ms). Figure 5.2 shows the
downtimes relative to WP for all configurations. While for pipelined-early
the highest downtimes are at one iteration, the majority of points fall within
110% to 125% of write-protection’s downtime, regardless of the number of
iterations. Additionally, there are some outliers for three iterations.

44 CHAPTER 5. EVALUATION

0 1 2 3 4
Scan

0

50000

100000

150000

200000

250000

Nu
m
be

r o
f F

ou
nd

 L
ea

fs

Dirty Leaf
Observed Leaf

Figure 5.3: Overview of the number of found dirty pages and the number
of pages that had to be considered during a pipelined-early pre-scan with 3
iterations. Each scan shows an estimate of the distribution of the number of
dirty and considered pages over all checkpoints. The data is collected from
an execution of SPECjbb. Scans 0–3 occur during the pre-scan, scan 4 during
the downtime. For scan 0, most checkpoints find approximately 50 thousand
dirty pages, as shown by the peak. All subsequent scans find hardly any
dirty pages. The number of considered pages can only decrease after scan 2,
and does so. However, the distributions hardly change thereafter.

-5%

0%

5%

10%

15%

20%

Ov
er
he
ad
 re

la
tiv
e
to
 e
qu

iv
al
en
t s
ca
n

Pre-scan
Simple

1 Iteration

Pre-scan
Pipelined-early
1 Iteration

Pre-scan
Pipelined-early
2 Iterations

Pre-scan
Pipelined-early
3 Iterations

Pre-scan+sparse
Pipelined-late
1 Iteration

Pre-scan+sparse
Pipelined-early
1 Iteration

Interval
50
100
500

Memory Size
1GiB
4GiB

Test
Linux Kernel Build
SPECjbb

Figure 5.4: Overhead of pre-scan relative to the equivalent scan, that is, pre-
scan is compared to scan+sparse iff it supports sparse. For the kernel build it
is calculated as the increase in execution time, for SPECjbb as the reduction
of the score. Lower is better. While pre-scan is able to improve performance
for interval lengths of 500ms, the performance of smaller intervals mostly
suffers. This is especially pronounced for pre-scan+sparse.

5.3. PRE-SCAN 45

Figure 5.3 portrays the work done during a pipelined-early pre-scan with
three iterations. For each page table walk, it shows the number of leaf page
table entries examined, as well as the number of dirty ones found. The
number of entries are shown as the distribution over all checkpoints. The first
two scans are required regardless of pre-scan method or number of iterations,
the last scan is that during the downtime. Scans two and three represent the
additional scans performed by iterated, pipelined pre-scan. Figure 5.3 shows
that the first scan takes care of the majority of dirty pages, subsequent scans
find only few newly dirty pages. This is represented by the narrow spikes
close to zero for the scans after the first one. Pre-scan can therefore reduce
the number of dirty bits to sync with a single iteration. Additional pre-
scan iterations, however, cannot reduce the number of page table entries to
examine, the distribution of entries observed during scan two is very similar
to that of the scan during the downtime.

For one iteration, pipelining conceptually makes no difference. As a result,
the downtimes of pipelined and simple pre-scan are similar. Simple pre-scan
has a downtime 21% higher that that of WP, pipelined-early 23%.

For SPECjbb, pipelined-early+sparse reduces the downtime more than
pipelined-late+sparse. Here, pipeline-late leads to a downtime 37% higher
than that of WP, pipeline-early to 24%. For the kernel build, the values are
within three percent of each other. Because only one iteration is performed,
pipelined-late is equivalent to simple pre-scan.

Figure 5.4 shows the change in performance caused by pre-scan. The
values shown are percentages based on the equivalent normal scan, if pre-
scan supports sparse it is compared to scan+sparse and vice versa. For the
kernel build the percentages represent an increase in execution time. For
SPECjbb, the numbers represent the reduction in points. For both, lower
is better. The figure shows that for pre-scan without sparse support the
overhead lies between -5% and +10%, with most values being within 5% of
the equivalent scan. The overhead for most scenarios with an interval length
of 500ms show improved performance. On average, pre-scan+sparse is 0.4%
faster than scan+sparse for 500ms, pre-scan without sparse support 0.9%
faster than scan without sparse.

Pre-scan+sparse shows performance degradation of up to 20%, especially
for short interval length. The cause of this is unknown as of this time. We
have ruled out TLB misses as the culprit by experimentally removing the
TLB flushes from pre-scan. This did not substantially change performance.

The pre-scan implementation must protect the page table walk from con-
current modifications by the virtual machine monitor. For example, if a page
containing a page table were to be removed from the paging hierarchy and
repurposed, pre-scan might read corrupted data. To prevent this, the pre-

46 CHAPTER 5. EVALUATION

scan implementation obtains and holds KVM’s mmu_lock. While this lock is
held, KVM might not be able to process a page fault caused by the virtual
machine. To determine if this is the cause of the performance degredation,
we modified the pre-scan implementation so that it releases the lock if it is
contended. This did not eliminate the performance degradation. It is pos-
sible that the degradation is due to the use of many atomic instructions,
however, we have not determined if this is the case.

Our implementation may lead to deviations of the intended checkpointing
interval and the actual interval. Indeed, we find this is the case for small
intervals. For SPECjbb and 50ms we observe that the average interval length
is approximately 20% larger than 50ms and approximately 40% larger for
pre-scan+sparse. The median interval is within 3% of 50ms without sparse
support and approximately 20% with it.

The reason for the increased interval length is that, in our implementa-
tion, pre-scan is performed only after concurrent-copy has completed. The
write intensity of SPECjbb is high. As a result, too much of the interval is
dedicated to concurrent-copy. Additionally, the length of the pre-scan also
increases with the intensity. For one iteration it is approximately twice the
reduction of the downtime. During the later stages of SPECjbb, the pre-
scan can take 20ms alone. Together with concurrent-copy it is impossible to
maintain the intended checkpointing interval.

5.4 Parallel Copy

We designed parallel copy in the hopes of decreasing the number of CoW
cases and thereby improve performance, as well as decrease the impact of
checkpointing on the execution of the virtual machine.

Figure 5.5 portrays the average number of CoW cases per checkpoint. It
shows that parallel copy is able to reduce the number of CoW cases. Because
SPECjbb causes more CoW cases, the impact of parallel copy on SPECjbb
is bigger than that on the kernel build. However, the impact on SPECjbb
is also higher in relative terms. Figure 5.6a shows this. For kernel builds,
the number of CoW cases is reduced by 10% to 30% in most scenarios. For
SPECjbb, the reduction is between 40% and 70%. It makes sense that the
kernel build is less affected because its distribution of CoW page faults is
more skewed toward the end of the downtime.

Using more copy threads lowers the number of CoW cases. Averaged
over all scenarios, using 8 copy threads reduces the number of CoW cases by
another 12% compared to 4 copy threads.

5.4. PARALLEL COPY 47

0

2500

5000

7500

10000

M
ea

n
Nu

m
be

r
of

 C
oW

 p
ag

e
fa

ul
ts

pe
r C

he
ck

po
in

t

Memory Size: 1GiB
Linux Kernel Build

Memory Size: 4GiB

50 10
0

50
0

Interval [ms]

0

2500

5000

7500

10000

M
ea

n
Nu

m
be

r
of

 C
oW

 p
ag

e
fa

ul
ts

pe
r C

he
ck

po
in

t

50 10
0

50
0

Interval [ms]

SPECjbb

4 Copy Threads 8 Copy Threads Not parallel

Figure 5.5: Mean number of CoW cases per checkpoint. The error bars show
the range from the 5th to the 95th percentile. Parallel copy can reduce the
number of CoW cases, this is more pronounced for SPECjbb, which causes
more CoW cases to begin with.

Parallel copy is supposed to reduce the number of CoW cases by short-
ening the time to complete concurrent-copy. However, Figure 5.7 shows that
this is not the case. There appears to be a minimum copy time of around
25ms, as a result it is increased if non-parallel concurrent-copy takes less than
that. For the kernel build, parallel copy leads to greatly increased standard
deviations. These observations lead us to believe that there is an error in
our implementation. The number of pages copied via parallel copy is slightly
increased compared with single-threaded copy. The increase is consistent
with the reduction in CoW cases, it does not indicate that the parallel copy
implementation copies the same page multiple times.

Since the number of CoW cases is reduced, the basic mechanism to reduce
the number of CoW cases seems to be working. Figure 5.8 confirms this. It
displays the timing of CoW page faults relative to the end of the downtime
and compares single-threaded and parallel copy. Parallel copy removes CoW
page faults occurring late in the interval. The figure does not show any
anomalous behavior.

To evaluate the impact of parallel copy on the benchmark, we consider
the overhead caused by it. Figure 5.6b shows the results, the values are
calculated in the same manner as in Figure 5.4, lower numbers represent

48 CHAPTER 5. EVALUATION

-70%

-60%

-50%

-40%

-30%

-20%

-10%

0%

10%

Nu
m

be
r o

f C
oW

 C
as

es
 R

el
at

iv
e

to
 N

on
 P

ar
al

le
l C

op
y

4 8
Copy Threads

(a)

-2%

0%

2%

4%

6%

8%
Ov
er
he
ad
 R
el
at
iv
e
to
 N
on
 P
ar
al
le
l C
op
y

4 8
Copy Threads

Interval
50
100
500
Memory Size
1GiB
4GiB
Test
SPECjbb
Linux Kernel Build

(b)

Figure 5.6: Figure 5.6a: The overhead caused by parallel copy, calculated as
in Figure 5.4, lower is better. While parallel copy improves performance for
interval lengths of 500ms, it reduces performance for shorter interval lengths.

Figure 5.6b: Change in the number of CoW cases causes by parallel
copy. Parallel copy reduces the number of CoW cases by more than 40% for
SPECjbb in all cases, for the kernel build it is less than that. The reduction
caused by 8 threads is slightly higher than that of 4.

5.5. LARGE PAGES 49

0%

1000%

M
ea

n
Ti

m
e

to
co

nc
ur

re
nt

ly
 c

op
y

Re
la

tiv
e

to
 N

on
 P

ar
al

le
l Memory Size: 1GiB

Linux Kernel Build
Memory Size: 4GiB

50 10
0

50
0

Interval [ms]

0%

50%

100%

150%

200%

M
ea

n
Ti

m
e

to
co

nc
ur

re
nt

ly
 c

op
y

Re
la

tiv
e

to
 N

on
 P

ar
al

le
l

50 10
0

50
0

Interval [ms]

SPECjbb

4 Copy Threads 8 Copy Threads Not parallel

Figure 5.7: Mean time to perform concurrent-copy per checkpoint, relative to
checkpointing without parallel copy. The error bars show the empirical stan-
dard deviation. Especially for 8 threads and the kernel build, the standard
deviation is greatly increased, this is caused by very high outliers.

less overhead. While parallel copy is able to improve performance in some
scenarios, the increase is minor. For short intervals, parallel copy degrades
performance, it causes overheads as high as 8%. For 500ms, it improves
performance by 0.7%, averaged over all scenarios.

Besides potential implementation errors, parallel copy’s decrease in per-
formance is possibly due to the influence of the more intensive concurrent-
copy process on the execution of the virtual machine. For example, this
could occur via shared memory buses, caches and effects on the processor’s
frequency. This is, however, hard to quantify.

We evaluated if using userspace supplied buffers for CoW affects perfor-
mance and did not find that it does.

5.5 Large Pages
We expected the use of large pages to substantially increase the amount of
memory to capture. Figure 5.9 shows that this is indeed the case. Even for
a target interval length of 50ms, more than 500MiB is copied, the increase
compared to small pages is tenfold. As the target interval increases, the ratio
decreases, at 1 s it is less than four.

50 CHAPTER 5. EVALUATION

Figure 5.8: Comparison between the occurrence of CoW page faults of single
and multithreaded concurrent-copy. The left side shows the kernel build,
the right SPECjbb, interval length 1 s, 4GiB memory. The horizontal axis
denotes time since the end of the downtime period. The figure shows that
parallel copy suppresses late CoW page faults.

5.6. CONCLUSION 51

50 10
0

20
0

50
0

10
00

20
00

50
00

Interval [ms]

0

50000

100000

150000

200000

M
ea

n
Nu

m
be

r
of

 P
ag

es
 C

op
ie

d

SPECjbb

Memory Size: 4GiB

Large-zap Small pages

Figure 5.9: Mean number of pages copied per checkpoint. Checkpointing
with large pages shows a greatly increased amount of memory to be copied,
between 3 and 10 times more than when small pages are used.

As a result SimuBoost is not able to actually adhere to the intended in-
terval length for intervals smaller than 500ms. This makes the performance
comparison harder, because the scores of the target intervals cannot directly
be compared. Instead Figure 5.10 plots the mean observed interval length
on the horizontal axis. The figure shows that checkpointing with large pages
performs worse for interval up to and including 1 s. For 2 s and 5 s perfor-
mance is better. At 5 s interval length SPECjbb’s score is 4% higher when
large pages are used. It makes sense that large pages can eventually im-
prove performance. They increase the cost of creating a checkpoint, but as
the checkpointing frequency decreases that ceases to matter and the positive
effect of large pages prevails.

5.6 Conclusion
Pre-scan succeeded in lowering the downtime close to that of write-protection
but affected performance of short intervals negatively. The exact reason for
this has not been identified. We have shown that iterating pre-scan does
not decrease the downtime further. As a result the conceptually more com-
plex pipelined pre-scan can be abandoned. While parallel copy could reduce
the number of CoW page faults, this did not improve performance. The
evaluation showed anomalies that indicate an error in the implementation of
parallel copy.

52 CHAPTER 5. EVALUATION

0 1000 2000 3000 4000 5000
Observed Mean Interval [ms]

0

5000

10000

15000

20000

25000

30000

Sc
or

e

Checkpointing Variant
Large-zap
Small pages

Figure 5.10: Score of SPECjbb, higher is better. The horizontal axis shows
the mean observed interval length instead of the targeted interval length. For
small intervals, checkpointing with large pages has lower performance than
checkpointing with small pages. For 2 s and 5 s, performance is improved by
5% and 4% respectively.

For the simple design we implemented, large pages cause too much mem-
ory to be copied to be able to improve performance for interval lengths up
to and including 1 s. For longer intervals, we observe a small performance
improvement.

Chapter 6

Conclusion & Future Work

We have analyzed SimuBoost’s impact on the virtual machine running the
workload: SimuBoost causes downtimes, whose length is exacerbated by the
scanning dirty logging mechanism. It also induces copy-on-write page faults,
which cause overhead during the execution of the virtual machine. Addi-
tionally, SimuBoost does not make use of large pages, reducing performance
compared to the baseline, which does.

We have explored pre-scan to reduce the downtime when scanning, par-
allel copy to avoid CoW page faults and investigated if the use of large pages
makes sense for checkpointing. We found that pre-scan lowers the down-
time but can negatively impact the performance of the virtual machine. To
investigate why exactly pre-scan degrades performance and if this can be
avoided remains future work. Because the pre-scan takes place after the
previous checkpoint has completed, the current pre-scan implementation in-
creases the smallest possible checkpointing interval. In order to avoid this,
the implementation must be modified. Instead of performing pre-scan after
the completion of concurrent-copy, the two should run simultaneously. One
way to do this is to execute pre-scan in a separate thread, starting it at the
same point in time as in the current implementation. However, if concurrent-
copy completes after the pre-scan, there is a gap between pre-scan and the
next downtime, potentially decreasing the effectiveness of pre-scan in reduc-
ing the downtime. This could be mitigated by predicting the duration of
concurrent-copy as well as that of pre-scan. The next interval length is then
set to the maximum of predicted duration of concurrent-copy, pre-scan and
the intended interval length. After both concurrent-copy and pre-scan have
finished, the next downtime commences.

A further way to improve the accordance with the indented interval is to
make pre-scan interruptible. If a pre-scan takes too long, the thread execut-
ing it is signaled and the pre-scan is aborted. This could be implemented

53

54 CHAPTER 6. CONCLUSION & FUTURE WORK

similar to the lock release we implemented in our search for the reason of the
performance degradation. Instead of checking if a lock is contended, pre-scan
would check if the interrupt signal has arrived.

To decrease its duration, pre-scan could also be parallelized by splitting
up the guest physical address space and having multiple threads scan the
different regions. The current implementation could be extended in this way
quite easily, it already supports scanning only a region of the guests memory
but does not expose this ability to userspace.

Parallel copy reduces the number of CoW page faults without improving
performance. There are anomalies in our implementation that need to be
addressed in order to be able to conclude if parallel copy can improve per-
formance or not. Another possibility to reduce the number of CoW page
faults is to copy the pages most likely to incur a CoW page fault during the
downtime. Pre-scan could provide a heuristic to identify such pages. The
scan during the downtime finds pages dirtied since the pre-scan, that is, it
finds pages written to shortly before the downtime. Because of temporal and
spacial locality, these pages are likely to be written again after the downtime.
Capturing these pages during the downtime would prevent CoW page faults
and therefore a VM exit and entry. Since there are likely few such pages the
downtime would not increase substantially.

Large pages improve performance for long interval only. The increase in
dirty memory is a major hurdle to incorporating large pages into checkpoint-
ing while gaining performance for small intervals. A more complex design
would be required to achieve this. Such a design could for example only use
large pages for memory regions it predicts to be very dirty.

It would be interesting to see how parallel copy interacts with large pages.
If large pages are broken by CoW page faults and re-established after the
completion of concurrent-copy, parallel copy could increase the benefit of
large pages by extending the duration large pages are available for. It may
also somewhat counter the higher amount of memory that must be captured.
Alternatively, more memory to capture could raise the overhead of parallel
copy.

Bibliography

[1] KVM. http://www.linux-kvm.org/page/Main_Page, April 11 2016.

[2] Phoronix test suite. http://www.phoronix-test-suite.com/, Octo-
ber 31 2016.

[3] QEMU. http://wiki.qemu.org/Main_Page, April 11 2016.

[4] Avocado testing framework. https://avocado-framework.github.
io/, November 30 2018.

[5] avocado-virt. https://github.com/avocado-framework/
avocado-virt, November 30 2018.

[6] iperf. https://iperf.fr, November 08 2018.

[7] iperf. https://iperf.fr/iperf-doc.php, November 08 2018.

[8] Specjbb. https://www.spec.org/jbb2005/, November 30 2018.

[9] Advanced Micro Devices, Inc, One AMD Place, Sunnyvale, California,
U.S. AMD64 Architecture Programmer’s Manual, 3.30 edition, Septem-
ber 2018.

[10] Erik R. Altman and Erik R. Welcome to the opportunities of binary
translation. Journal of Parallel and Distributed Computing, 16:271–275,
2000.

[11] Nikolai Baudis. Deduplicating virtual machine checkpoints for dis-
tributed system simulation. Bachelor thesis, System Architecture
Group, Karlsruhe Institute of Technology (KIT), Germany, November 2
2013. http://os.ibds.kit.edu/.

[12] Fabrice Bellard. Qemu, a fast and portable dynamic translator. In Pro-
ceedings of the Annual Conference on USENIX Annual Technical Con-
ference, ATEC ’05, pages 41–41, Berkeley, CA, USA, 2005. USENIX As-
sociation. http://dl.acm.org/citation.cfm?id=1247360.1247401.

55

http://www.linux-kvm.org/page/Main_Page
http://www.phoronix-test-suite.com/
http://wiki.qemu.org/Main_Page
https://avocado-framework.github.io/
https://avocado-framework.github.io/
https://github.com/avocado-framework/avocado-virt
https://github.com/avocado-framework/avocado-virt
https://iperf.fr
https://iperf.fr/iperf-doc.php
https://www.spec.org/jbb2005/
http://os.ibds.kit.edu/
http://dl.acm.org/citation.cfm?id=1247360.1247401

56 BIBLIOGRAPHY

[13] Ravi Bhargava, Benjamin Serebrin, Francesco Spadini, and Srilatha
Manne. Accelerating two-dimensional page walks for virtualized sys-
tems. SIGPLAN Not., 43(3):26–35, March 2008. http://doi.acm.
org/10.1145/1353536.1346286.

[14] Nikhil Bhatia. Performance evaluation of intel ept hardware assist. Tech-
nical report, VMware Inc, 3401 Hillview Ave., Palo Alto, CA, 2009.

[15] Nico Boehr. Evaluating copy-on-write for high frequency checkpoints.
Bachelor thesis, Operating Systems Group, Karlsruhe Institute of Tech-
nology (KIT), Germany, September 30 2015.

[16] Christopher Clark, Keir Fraser, Steven Hand, Jacob Gorm Hansen, Eric
Jul, Christian Limpach, Ian Pratt, and Andrew Warfield. Live migration
of virtual machines. In Proceedings of the 2Nd Conference on Symposium
on Networked Systems Design & Implementation - Volume 2, NSDI’05,
pages 273–286, Berkeley, CA, USA, 2005. USENIX Association. http:
//dl.acm.org/citation.cfm?id=1251203.1251223.

[17] Brendan Cully, Geoffrey Lefebvre, Dutch Meyer, Mike Feeley, Norm
Hutchinson, and Andrew Warfield. Remus: High availability via
asynchronous virtual machine replication. In Proceedings of the 5th
USENIX Symposium on Networked Systems Design and Implementa-
tion, NSDI’08, pages 161–174, Berkeley, CA, USA, 2008. USENIX As-
sociation. http://dl.acm.org/citation.cfm?id=1387589.1387601.

[18] Jakob Engblom. Full-system simulation technology : Extended abstract
appearing in the proceedings of esses 2003 (european summer school on
embedded systems), 2003.

[19] Jakob Engblom, Dan Ekblom, and Virtutech Ab. Simics: A commer-
cially proven full-system simulation framework.

[20] Alexander Graf, Alex Bennée, Alexey Kardashevskiy, Alex Williamson,
Anatol Pomozov, Andre Przywara, Andrew Jones, Andrey Smetanin,
Anup Patel, Aravinda Prasad, Avi Kivity, Benjamin Herrenschmidt,
Bharat Bhushan, Borislav Petkov, Brijesh Singh, Carlos Garcia,
Carsten Otte, Christian Borntraeger, Christoffer Dall, Claudio Im-
brenda, Cornelia Huck, David Gibson, David Hildenbrand, Dominik
Dingel, Dongjiu Geng, Drew Schmitt, Ekaterina Tumanova, Eric Auger,
Eric B Munson, Eric Farman, Fan Zhang, Gabriel L. Somlo, Ge-
off Levand, Gleb Natapov, Greg Kurz, James Hogan, James Morse,
Jan Kiszka, Jann Horn, Janosch Frank, Jason J. Herne, Jason Wang,

http://doi.acm.org/10.1145/1353536.1346286
http://doi.acm.org/10.1145/1353536.1346286
http://dl.acm.org/citation.cfm?id=1251203.1251223
http://dl.acm.org/citation.cfm?id=1251203.1251223
http://dl.acm.org/citation.cfm?id=1387589.1387601

BIBLIOGRAPHY 57

Jens Freimann, Jim Mattson, Ken Hofsass, Linu Cherian, Linus Tor-
valds, Liu Yu-B13201, Luiz Capitulino, Marcelo Tosatti, Marc Zyn-
gier, Masanari Iida, Michael Ellerman, Michael Neuling, Michael S.
Tsirkin, Mihai Caraman, Nadav Amit, Paolo Bonzini, Paul Mack-
erras, Radim Krčmář, Rob Landley, Roman Kagan, Rusty Rus-
sell, Sasha Levin, Scott Wood, Shannon Zhao, Stefan Huber, Steve
Rutherford, Takuya Yoshikawa, Thomas Huth, Tiejun Chen, Tom
Lendacky, Vitaly Kuznetsov, Vladimir Murzin, Wanpeng Li, Xiao
Guangrong, and Yi Min Zhao. Documentation/virtual/kvm/api.txt.
84df9525b0c27f3ebc2ebb1864fa62a97fdedb7d git://git.kernel.org/
pub/scm/linux/kernel/git/stable/linux-stable.git.

[21] IEEE/The Open Group. MLOCK(3P) POSIX Programmer’s Manual,
posix.1-2008 edition, 2013.

[22] Intel Corporation. Intel 64 and IA-32 Architecture Software Developer’s
Manual, April 2016.

[23] Mateusz Jurczyk. Bochspwn revolutions further advancements in detect-
ing kernel infoleaks with x86 emulation. https://j00ru.vexillium.
org/slides/2018/infiltrate.pdf, 2018.

[24] Mateusz Jurczyk. Detecting kernel memory disclosure with x86 emula-
tion and taint tracking. Technical report, Google LLC, June 2018.

[25] Avi Kivity, Yaniv Kamay, Dor Laor, Uri Lublin, and Anthony Liguori.
Kvm: the linux virtual machine monitor. In In Proceedings of the 2007
Ottawa Linux Symposium (OLS’-07), 2007.

[26] Avi Kivity, David Matlack, Linus Torvalds, Liran Alon, Masanari Iida,
Paolo Bonzini, Peter Feiner, Rob Landley, Takuya Yoshikawa,
and Xiao Guangrong. Documentation/virtual/kvm/mmu.txt.
84df9525b0c27f3ebc2ebb1864fa62a97fdedb7d git://git.kernel.
org/pub/scm/linux/kernel/git/stable/linux-stable.git.

[27] Peter S. Magnusson, Magnus Christensson, Jesper Eskilson, Daniel Fors-
gren, Gustav Hållberg, Johan Högberg, Fredrik Larsson, Andreas Moest-
edt, and Bengt Werner. Simics: A full system simulation platform.
Computer, 35(2):50–58, February 2002. http://dx.doi.org/10.1109/
2.982916.

[28] Timothy Merrifield and H. Reza Taheri. Performance implications of
extended page tables on virtualized x86 processors. In Proceedings of

git://git.kernel.org/pub/scm/linux/kernel/git/stable/linux-stable.git
git://git.kernel.org/pub/scm/linux/kernel/git/stable/linux-stable.git
https://j00ru.vexillium.org/slides/2018/infiltrate.pdf
https://j00ru.vexillium.org/slides/2018/infiltrate.pdf
git://git.kernel.org/pub/scm/linux/kernel/git/stable/linux-stable.git
git://git.kernel.org/pub/scm/linux/kernel/git/stable/linux-stable.git
http://dx.doi.org/10.1109/2.982916
http://dx.doi.org/10.1109/2.982916

58 BIBLIOGRAPHY

the12th ACM SIGPLAN/SIGOPS International Conference on Virtual
Execution Environments, VEE ’16, pages 25–35, New York, NY, USA,
2016. ACM. http://doi.acm.org/10.1145/2892242.2892258.

[29] Robert B. Miller. Response time in man-computer conversational trans-
actions. In Proceedings of the December 9-11, 1968, Fall Joint Com-
puter Conference, Part I, AFIPS ’68 (Fall, part I), pages 267–277, New
York, NY, USA, 1968. ACM. http://doi.acm.org/10.1145/1476589.
1476628.

[30] Ingo Molnar, Kirill Smelkov, and Jiri Olsa. tools/perf/documenta-
tion/perf.txt. git://git.kernel.org/pub/scm/linux/kernel/git/
stable/linux-stable.git.

[31] Binh Pham, Ján Veselý, Gabriel H. Loh, and Abhishek Bhattacharjee.
Large pages and lightweight memory management in virtualized envi-
ronments: Can you have it both ways? In Proceedings of the 48th Inter-
national Symposium on Microarchitecture, MICRO-48, pages 1–12, New
York, NY, USA, 2015. ACM. http://doi.acm.org/10.1145/2830772.
2830773.

[32] Gerald J. Popek and Robert P. Goldberg. Formal requirements for virtu-
alizable third generation architectures. Commun. ACM, 17(7):412–421,
July 1974. http://doi.acm.org/10.1145/361011.361073.

[33] Marco Righini. Enabling intel R© virtualization technology features and
benefits. Technical report, Intel Incorporation, 2010.

[34] Marc Rittinghaus, Thorsten Groeninger, and Frank Bellosa. Simutrace:
A toolkit for full system memory tracing. White paper, Karlsruhe In-
stitute of Technology (KIT), Operating Systems Group, May 2015.

[35] Marc Rittinghaus, Konrad Miller, Marius Hillenbrand, and Frank Bel-
losa. Simuboost: Scalable parallelization of functional system simula-
tion. In Proceedings of the 11th International Workshop on Dynamic
Analysis (WODA 2013), Houston, Texas, March 16 2013.

[36] Mendel Rosenblum, Edouard Bugnion, Scott Devine, and Stephen A.
Herrod. Using the simos machine simulator to study complex computer
systems. ACM TRANSACTIONS ON MODELING AND COMPUTER
SIMULATION, 7:78–103, 1997.

http://doi.acm.org/10.1145/2892242.2892258
http://doi.acm.org/10.1145/1476589.1476628
http://doi.acm.org/10.1145/1476589.1476628
git://git.kernel.org/pub/scm/linux/kernel/git/stable/linux-stable.git
git://git.kernel.org/pub/scm/linux/kernel/git/stable/linux-stable.git
http://doi.acm.org/10.1145/2830772.2830773
http://doi.acm.org/10.1145/2830772.2830773
http://doi.acm.org/10.1145/361011.361073

BIBLIOGRAPHY 59

[37] Mendel Rosenblum and Mani Varadarajan. Simos: A fast operating
system simulation environment. Technical report, Stanford, CA, USA,
1994.

[38] Steven Rostedt. trace-cmd. git://git.kernel.org/pub/scm/linux/
kernel/git/rostedt/trace-cmd.git.

[39] Jan Ruh. Optimizing continuous checkpoints for deterministic replay.
Master thesis, Operating Systems Group, Karlsruhe Institute of Tech-
nology (KIT), Germany, July 15 2018.

[40] Janis Schoetterl-Glausch. Intel page modification logging for lightweight
continuous checkpointing. Bachelor thesis, Operating Systems Group,
Karlsruhe Institute of Technology (KIT), Germany, October 31 2016.

[41] Jim Smith and Ravi Nair. Virtual Machines: Versatile Platforms for
Systems and Processes (The Morgan Kaufmann Series in Computer Ar-
chitecture and Design). Morgan Kaufmann Publishers Inc., San Fran-
cisco, CA, USA, 2005.

[42] Michael H. Sun and Douglas M. Blough. Fast, lightweight virtual ma-
chine checkpointing. Technical report, Georgia Institute of Technology,
2010.

[43] Yoshiaki Tamura, Koji Sato, Seiji Kihara, and Satoshi Moriai. Kemari:
Virtual machine synchronization for fault tolerance using domt. Tech-
nical report, NTT Cyber Space Labs, 2008.

[44] O. Tange. Gnu parallel - the command-line power tool. ;login: The
USENIX Magazine, 36(1):42–47, Feb 2011. http://www.gnu.org/s/
parallel.

[45] Al Viro, Arnd Bergmann, Christoph Hellwig, David Howells,
Frederic Weisbecker, Harvey Harrison, Kees Cook, Linus Tor-
valds, Luis R. Rodriguez, Masanari Iida, Mauro Carvalho Chehab,
Paul Gortmaker, Randy Dunlap, Rusty Russell, Shawn Bohrer,
and Tobias Klauser. Documentation/docbook/kernel-hacking.tmpl.
84df9525b0c27f3ebc2ebb1864fa62a97fdedb7d git://git.kernel.org/
pub/scm/linux/kernel/git/stable/linux-stable.git.

[46] Dirk Vogt, Armando Miraglia, Georgios Portokalidis, Herbert Bos,
Andy Tanenbaum, and Cristiano Giuffrida. Speculative memory check-
pointing. In Proceedings of the 16th Annual Middleware Conference,

git://git.kernel.org/pub/scm/linux/kernel/git/rostedt/trace-cmd.git
git://git.kernel.org/pub/scm/linux/kernel/git/rostedt/trace-cmd.git
http://www.gnu.org/s/parallel
http://www.gnu.org/s/parallel
git://git.kernel.org/pub/scm/linux/kernel/git/stable/linux-stable.git
git://git.kernel.org/pub/scm/linux/kernel/git/stable/linux-stable.git

60 BIBLIOGRAPHY

Middleware ’15, pages 197–209, New York, NY, USA, 2015. ACM.
http://doi.acm.org/10.1145/2814576.2814802.

[47] Long Wang, Zbigniew Kalbarczyk, Ravishankar Iyer, and Arun Iyengar.
Vm-μcheckpoint: Design, modeling, and assessment of lightweight in-
memory vm checkpointing. Dependable and Secure Computing, IEEE
Transactions on, 12:243–255, 03 2015.

[48] Felix Wilhelm. Tracing privileged memory accesses to discover software
vulnerabilities. Master thesis, Operating Systems Group, Karlsruhe In-
stitute of Technology (KIT), Germany, November 30 2015.

[49] Emmett Witchel and Mendel Rosenblum. Embra: Fast and flexible
machine simulation. In Proceedings of the 1996 ACM SIGMETRICS
International Conference on Measurement and Modeling of Computer
Systems, SIGMETRICS ’96, pages 68–79, New York, NY, USA, 1996.
ACM. http://doi.acm.org/10.1145/233013.233025.

[50] Huang Ying and Mike Rapoport. Documentation/vm/transhuge.rst.
84df9525b0c27f3ebc2ebb1864fa62a97fdedb7d git://git.kernel.org/
pub/scm/linux/kernel/git/stable/linux-stable.git.

[51] Matt T. Yourst. Ptlsim: A cycle accurate full system x86-64 microar-
chitectural simulator. In ISPASS ’07, 2007.

http://doi.acm.org/10.1145/2814576.2814802
http://doi.acm.org/10.1145/233013.233025
git://git.kernel.org/pub/scm/linux/kernel/git/stable/linux-stable.git
git://git.kernel.org/pub/scm/linux/kernel/git/stable/linux-stable.git

	Abstract
	Deutsche Zusammenfassung
	Contents
	Introduction
	Background
	Full System Simulation
	Virtualization
	Hardware-Assisted Virtualization
	Virtual Machine Checkpointing

	SimuBoost
	SimuBoost Implementation

	Analysis
	Impact of Dirty Logging
	Impact of Copy-on-Write
	Impact of Page Size
	Conclusion

	Design & Implementation
	Pre-Scan
	Parallel Copy
	Large Pages

	Evaluation
	Methodology
	Correctness
	Pre-scan
	Parallel Copy
	Large Pages
	Conclusion

	Conclusion & Future Work
	Bibliography

