
Technical Report:
Mechanism to Mitigate AVX-Induced Frequency Reduction

Mathias Gottschlag, Frank Bellosa

Operating Systems Group
Karlsruhe Institute of Technology

E-mail: os@itec.kit.edu

Abstract

Modern Intel CPUs reduce their frequency when exe-
cuting wide vector operations (AVX2 and AVX-512 in-
structions), as these instructions increase power con-
sumption. The frequency is only increased again two
milliseconds after the last code section containing such
instructions has been executed in order to prevent ex-
cessive numbers of frequency changes. Due to this de-
lay, intermittent use of wide vector operations can slow
down the rest of the system significantly. For exam-
ple, previous work has shown the performance of web
servers to be reduced by up to 10% if the SSL library
uses AVX-512 vector instructions [11]. These perfor-
mance variations are hard to predict during software
development as the performance impact of vectoriza-
tion depends on the specific workload.

We describe a mechanism to reduce the slowdown
caused by wide vector instructions without requiring ex-
tensive changes to existing software. Our design allows
the developer to mark problematic AVX code regions.
The scheduler then restricts execution of this code to a
subset of the cores so that only these cores’ frequency
is affected. Threads are automatically migrated to a
suitable core whenever necessary. We identify a suit-
able load balancing policy to ensure good utilization of
all available cores. Our approach is able to reduce the
performance variability caused by AVX2 and AVX-512
instructions by over 70%.

1 Introduction

Parallelization of computation-intensive code with
SIMD instructions can cause significant performance
improvements. In particular, wider vector instruc-
tions can often improve throughput. For example, the
OpenSSL implementation of the ChaCha20-Poly1305

encryption algorithm achieves a throughput of up to
2.89 GB/s, whereas the implementation in the Bor-
ingSSL library only achieves 1.6 GB/s [11]. One of the
reasons for this difference is that BoringSSL only uses
256-bit wide AVX2 operations whereas OpenSSL em-
ploys 512-bit wide AVX-512 instructions.

The end of Dennard Scaling has lead to a situa-
tion where modern CPUs cannot utilize the full silicon
area at maximum frequency anymore [21]. Instead,
CPUs either have to keep parts of the chip unused or
have to reduce their operating frequency. As chip area
utilization depends on the complexity of the instruc-
tions executed – resulting in significantly varying power
consumption [17] – it is possible to increase CPU fre-
quency when only instructions of lower complexity are
executed. In particular, the parallel operations of wide
SIMD instructions can temporarily draw large amounts
of additional current. Therefore, recent Intel CPUs
limit their frequency depending on the rate and type
of executed SIMD instructions. For example, the In-
tel Xeon Silver 4116 reduces its base frequency from
2.1 GHz to 1.1 GHz when executing certain AVX-512
instructions [3].

These frequency changes are associated with some
overhead, though [16]. Current Intel server CPUs only
revert frequency changes caused by AVX instructions
approximately 2 ms after the last problematic section
of code has been executed [1, Section 15.26], likely in
order to limit the rate of frequency changes. This delay
can have a significant negative impact on the perfor-
mance of systems where only parts of the workload
are vectorized, as a large amount of scalar (i.e., non-
vectorized) code following the problematic AVX code
is slowed down as well. For example, in web server
benchmarks conducted at Cloudflare [11] to compare
the two SSL libraries mentioned above, a system using
OpenSSL performed 10% worse overall than a system
using BoringSSL, even though the SSL library in iso-
lation was almost twice as fast.

1

ar
X

iv
:1

90
1.

04
98

2v
1

 [
cs

.D
C

]
 2

0
D

ec
 2

01
8

This example shows that vectorized code can have
a negative impact on completely unrelated sections of
code, which is highly problematic for several reasons:

• Breach of isolation: If one process executes vec-
torized code which reduces the CPU frequency, all
other processes which are scheduled in the next
two milliseconds also execute with reduced CPU
frequency. This effect not only poses a problem
for scheduling fairness, as subsequent processes
suffer from reduced performance, but also allows
the construction of a covert channel between two
otherwise isolated processes where information is
transmitted via frequency changes.

• Optimization complexity: Traditionally, soft-
ware developers expect a high degree of perfor-
mance composability, i.e., optimizations in one
software component do not negatively affect the
performance of other components. If vectorization
of one component reduces the CPU frequency for
other components, this assumption is broken and
all optimization work on a single component has
to take the whole software system into account.

Furthermore, the impact of frequency changes on
overall performance depends on the amount of
scalar code in between vectorized parts, so vec-
torization also has to take all potential workloads
into account. In the case of software libraries such
as OpenSSL, it is hard to predict in which envi-
ronment they are going to be used.

• Performance predictability: As it is hard
to predict performance implications of vectoriza-
tion, inconspicuous updates of software compo-
nents promising performance improvements can to
the contrary cause significant performance prob-
lems (as, for example, observed at Cloudflare [11]).
In the worst case, vectorized code can negatively
affect the quality of the service provided by the
system or can cause the system to fail to meet
realtime requirements, posing a threat to system
reliability.

Although these performance variability problems
are currently limited to recent generations of CPUs and
the use of AVX2 and AVX-512, we expect future CPUs
to show similar behaviour. The underlying mechanism
– increasing the CPU frequency when a limited sub-
set of the supported instructions is used – is a sensible
optimization if power consumption varies significantly
depending on the executed instructions. If the amount
of chip area used for accelerators increases, the vari-
ation of power consumption increases as well, which
in turn increases the scale of the resulting frequency

differences. As the performance of CPUs is increas-
ingly limited by their power consumption, literature
suggests an increasing amount of task-specific acceler-
ators as one method to increase the power efficiency
and therefore the performance of CPUs [21].

Previous work to optimize existing software with
AVX-512 has lead Tiwari et al. to the suggestion that
in the future the software should be rearchitected to
split parts using AVX-512 into different threads and
concentrate those threads on a subset of the system’s
CPUs [22]. Such a split would limit the impact of the
frequency drop to specific cores. However, such changes
usually require significant engineering effort.

In this work, we propose thread migration as an un-
intrusive mechanism to limit execution of wide vector
instructions to a subset of the system’s cores in order to
limit the frequency effects to these cores. If the operat-
ing system automatically migrates threads to suitable
cores whenever they start or stop executing AVX in-
structions, there is no need for any significant restruc-
turing of the application. We describe a scheduling pol-
icy which is able to limit AVX instructions to few cores
and which employs load balancing and prioritizing to
achieve full utilization of all cores. We also describe a
workflow which can be used to identify code sections
which have the potential to cause significant frequency
reduction, and provide a simple method to mark those
code sections to trigger the appropriate thread migra-
tions.

Even though thread migration has the potential to
cause higher overhead than other application-specific
mechanisms to isolate problematic vectorized code sec-
tions, we show that the overhead is low enough to re-
duce performance variation by over 70% in a web server
scenario similar to the one described above.

2 Analysis

For recent Xeon Scalable processors, Intel docu-
ments three different sets of maximum frequencies due
to the heat output and current requirements of dif-
ferent instructions. For example, the Xeon Gold 6130
processor has an all-core turbo frequency of 2.8 GHz for
most instructions (frequency level 0 in Intel parlance),
whereas the all-core turbo frequency for heavy AVX-
512 instructions (multiplications and fused multiply-
add) is documented to be 1.9 GHz (frequency level 2)
[3]. All other AVX-512 instructions as well as heavy
AVX2 instructions allow for an intermediate all-core
turbo of 2.4 GHz (frequency level 1).

The frequency is, however, only reduced if at least
approximately one instruction of the corresponding
type is executed per cycle [14] or if a sufficiently dense

2

Throttle

AVX-512

Scalar

≈2 mscore checks AVX
instruction density

core requests new
frequency level

PCU grants
request

Time

F
re

q
u

en
cy

le
ve

l

Scalar AVX-512 ScalarInstructions

Figure 1. Frequency levels when an Intel Skylake-SP core temporarily executes 512-bit FMA in-
structions. After AVX-512 usage has been detected, the core executes at reduced performance while
requesting a new power license level [1]. Once the request has been granted, the core switches to
the new frequency.

mixture of instructions from two different categories is
executed [1, Section 15.26]. This frequency reduction
affects each core individually depending on the work-
load on the specific core [1].

The transition between different frequency levels
does not happen instantaneously when the instruction
mix changes. Instead, the frequency reduction consists
of multiple steps as shown in the left half of Figure 1.
First, the core needs to recognize that the condition
for a frequency change has been fulfilled. Then, the
core requests a different power license from the central
package control unit (PCU). The PCU takes up to 500
microseconds to evaluate the number of cores execut-
ing at the new license level, during which the core oper-
ates with reduced performance [1, Section 15.26]. Only
afterwards can the core switch to the frequency level
for the detected instruction mix. Switching back to a
higher frequency level is, as described above, delayed
as well [1]. When the CPU detects that the conditions
for the frequency reduction are not fulfilled anymore, it
waits approximately two milliseconds before reverting
the frequency change.

The latter mechanism in particular can negatively
impact the performance of the scalar code following
AVX instructions. To analyze the extent of this ef-
fect, we replicate the web server benchmarks conducted
at Cloudflare [11]. We let the nginx web server serve
static files via HTTPS. The server uses the ChaCha20-
Poly1305 encryption algorithm from OpenSSL library,
which we compile for different SIMD instruction sets.
To increase the scalar parts of the workload, the server
optionally compresses the files on-the-fly with the brotli
compression algorithm.

Figure 2 shows the results of this test as well as the
throughput of a microbenchmark exercising only the
encryption algorithm. It is immediately visible that,

nginx+brotli nginx openssl speed
0

100

200

300

400

-4
.2

%

+
21

.0
%

+
1
7
6
.9

%

-1
1.

2%

+
10

.3
%

+
2
6
6
.9

%

T
h

ro
u

gh
p

u
t

(%
of

S
S

E
4

va
ri

an
t) SSE4

AVX2
AVX-512

Figure 2. Different workloads show different
sensitivity to the frequency reduction caused
by wide SIMD instruction sets (normalized to
SSE4 performance).

although AVX2- and AVX-512-enabled cryptography
performs worse for a web server serving compressed
websites, AVX2 has significant advantages if the web
server serves uncompressed data, while in microbench-
marks the AVX-512 cryptography code provides the
highest performance. The choice of instruction sets
therefore depends on the workload, yet software devel-
opers of generic libraries can rarely predict the user’s
workload and usually optimize for what they expect
to be the most likely workload or only optimize the
performance in microbenchmarks.

3

(a) AVX-heavy AVX-heavyScalar

(b) Scalar AVX-heavy Scalar

Figure 3. It is less problematic if a core
mostly executes AVX-heavy code and in-
termittently executes predominantly scalar
code (a) than vice versa (b), as the latter
causes a frequency reduction for at least two
milliseconds. The hatched parts are scalar
code slowed down by AVX-heavy code.

2.1 Core Specialization for Scalar Code

Software libraries could provide various implementa-
tions of each algorithm and could either automatically
decide at runtime which SIMD instruction set to use or
could let the user programmatically choose the specific
implementation. However, disabling vectorization can
– at least locally – be detrimental to performance, as
the unvectorized codepaths usually execute slower than
their vectorized counterparts. Also, most existing soft-
ware libraries do not allow for the user to select the
type of vectorization. Therefore, a more promising ap-
proach is to leave the application code unchanged, but
isolate the vectorized code in order to limit its negative
effects on overall performance.

Whereas on Intel Haswell CPUs the frequency drop
caused by AVX code always affects all cores in the sys-
tem, starting from the Broadwell microarchitecture the
CPUs only reduce the clock of individual cores execut-
ing AVX instructions [1]. Therefore, one method to iso-
late vectorized code sections is to place AVX code and
scalar code sections on different sets of cores. Assum-
ing that a fine-grained partitioning of the program into
predominantly scalar code sections and code sections
containing significant amounts of AVX instructions is
available, applying such core specialization would limit
the negative impact on frequency to those cores which
only execute AVX code sections.

A strict partitioning of cores into cores which only
execute mostly scalar code (in the following called
scalar cores) and cores which only execute AVX-heavy
code (AVX cores), however, results in reduced per-
formance because, unless the ratio of cores perfectly
matches the ratio of time spent in scalar code versus
AVX code, one of the two sets of cores will necessarily
be underutilized. Choosing the correct ratio of cores
will lead to a situation with high utilization where the
idle time of cores between two code sections of the ap-
propriate type is low. Even then, however, significant

1 /* [...] */
2 with_avx ();
3 n = SSL_read (c->ssl ->connection , buf , size);
4 without_avx ();
5 /* [...] */

Figure 4. Example of an annotated function
call from nginx which potentially executes
AVX-512 instructions. The call to with avx()
marks the task as an AVX task and migrates
the task to an AVX core, whereas the call to
without avx() reverts the task type change and
potentially migrates the task to a scalar core.

amounts of idle time exist, which significantly reduces
the overall system performance. Achieving full CPU
utilization is only possible if either AVX cores tem-
porarily execute scalar code when they would be oth-
erwise idle, or vice versa.

As the time periods where no suitable code is avail-
able are rather short, the effect of the executed code on
CPU frequency has to be considered. Figure 3 shows
the periods of reduced CPU frequency when a AVX
core intermittently executes scalar code (a) and when
scalar code executes AVX-heavy code (b). The figure
shows that the former case is less problematic, as only
the short section of scalar code is unnecessarily slowed
down, whereas in the latter case every short section of
AVX code slows down two milliseconds worth of scalar
code. This asymmetry has to be taken into account
during allocation of cores for AVX code (the sched-
uler must allocate enough cores) and during scheduling
(scalar cores must never execute AVX-heavy code).

3 Design and Implementation

As described above, limiting the use of wide vec-
tor operations to specific cores can significantly im-
prove performance. Most applications, however, do not
use a threading model which allows individual opera-
tions to be executed on a different thread on a different
core. Reengineering these applications to introduce a
separate thread pool for code sections with wide vec-
tor operations is likely excessively expensive and time-
consuming.

Therefore, we suggest migration of mostly unmod-
ified threads between cores as a mechanism to isolate
scalar code from AVX code, so that the system will
automatically migrate threads to the appropriate core.
Combined with fault-and-migrate to recognize AVX
code sections [15], such a mechanism can be used to cre-
ate a fully-automatic solution for existing applications.

4

In our prototype, instead, the application developer
manually marks sections of code if they potentially ex-
ecute expensive vector instructions. Although such an
approach requires some manual intervention, no large
changes to the application are required. Figure 4 shows
an example for the annotation mechanism used by our
design. Before and after the function which poten-
tially executes AVX-512 instructions, we have placed
a system call which informs the OS about whether the
thread is going to execute wide vector instructions in
the future or not. In the following, we name threads
either AVX tasks or scalar tasks depending on whether
they expect to execute wide vector instructions or not.

3.1 Core Specialization

As described above, it is more problematic to allow
an AVX task to execute on a core which usually only
executes scalar tasks than to let a core which mostly
executes AVX tasks to execute a scalar task. Therefore,
our approach limits the set of available cores for AVX
tasks (in the following called AVX cores). Whereas
AVX cores can execute scalar tasks if necessary, all
other cores must only execute scalar tasks.

The system therefore allocates as many AVX cores
as required for the AVX tasks in the system or more
and those cores prioritize AVX tasks, but execute ar-
bitrary scalar tasks if no AVX task is available. If a
thread becomes an AVX task while it is still running
on a scalar core, the scheduler immediately suspends
the thread and schedules a scalar task instead. The
(now suspended) AVX task preempts any scalar task
running on an AVX core. As core specialization is im-
plemented as a restriction of the allowed cores for AVX
tasks, the regular scheduler load balancing mechanism
automatically migrates tasks to the appropriate cores.

3.2 Scheduler Implementation

We implement the policy described in the last sec-
tion as an extension of the MuQSS scheduler [10], an
alternative out-of-tree scheduler for Linux. We chose
the MuQSS scheduler over the CFS scheduler due to its
significantly lower code complexity: Whereas in Linux
4.17 MuQSS consists of 7326 lines of code, much of
which is common boilerplate code also found in the
CFS scheduler, CFS encompasses 23399 lines and im-
plements a more complex policy, making an extension
substantially harder1. While our implementation mod-
ifies some of the core data structures of MuQSS, we ex-

1We count the lines in all files which are only compiled for
one of the two schedulers and which cannot be disabled by a
separate configuration option.

pect an implementation in a different scheduler to be
viable.

The central data structure of MuQSS is a run queue
sorted by the tasks’ virtual deadline [10]. Depending on
the configuration, MuQSS allocates one such run queue
per system, per logical CPU or – as chosen for our ex-
periments, as it maximizes throughput – per physical
core. We replicate each run queue of MuQSS three
times in order to separate the different types of tasks.
The original MuQSS code always selects the task with
the earliest deadline. This replication of run queues
allows us to restrict the types of tasks executed on a
core or to deprioritize certain types of tasks by adding
a penalty to the deadline of all tasks in the correspond-
ing run queues. The first two run queues contain the
scalar tasks and AVX tasks respectively. The last run
queue contains all tasks which have never declared the
type of their work (i.e., all tasks not belonging to the
instrumented application), as these tasks are not re-
stricted to run on any specific core. In particular, the
last run queue contains system tasks pinned to AVX
cores. If these tasks were treated like scalar tasks, they
would be starved by AVX tasks.

A scalar core only picks tasks from the first and
the last run queue in order to prevent the execution of
AVX tasks. An AVX core, instead, can pick tasks from
all run queues, but only runs scalar tasks if no other
runnable tasks are available to the core. This priority
scheme is implemented by adding a large value to the
deadline of scalar tasks so that the deadline of all other
tasks is guaranteed to be lower. Note that a similar
mechanism is already used in MuQSS to implement
tasks with idle priority.

In the MuQSS scheduler, whenever a core selects
the next task, it also (locklessly) checks the minimum
deadline of the run queues of all other cores and steals
a task from a different core if that task has a lower
deadline. This mechanism is responsible for all load
balancing between scalar and AVX cores in our proto-
type. Whenever on a scalar core a scalar task becomes
an AVX task, it is put back into the local run queue
and if there is any scalar task executing on an AVX
core, that task is preempted via an inter-processor in-
terrupt to allow the AVX core to select the new AVX
task instead.

3.3 Identifying Problematic Code

To implement core specialization, the scheduler re-
quires information about whether tasks are scalar or
AVX tasks. As shown in Figure 4, this information
is provided by the developer in form of manual instru-
mentation of AVX code sections. As analyzing complex

5

code bases in order to identify vectorized functions can
be time consuming, we provide tools and a correspond-
ing workflow to help the developer to identify problem-
atic code regions.

First, a static analysis tool disassembles the target
application as well as all its dynamically linked libraries
and analyzes the usage of wide vector registers. For ev-
ery function, the program calculates the ratio between
the number of the instructions accessing 256-bit and
512-bit registers and the total instruction count. As
the frequency reduction depends on the frequency of
wide vector operations [14], this ratio is a good indi-
cator for whether the function is causing a frequency
drop and for the magnitude of the frequency drop. As
a result, the program prints a list of functions sorted
by this AVX instruction ratio. The functions with a
high ratio are good candidates for core specialization.

This static analysis limits the number of functions
which need to be considered. However, whether a func-
tion causes a significant frequency drop depends on
a number of additional factors, and frequently called
functions such as memcpy should not cause the thread
to migrate to a different core if they do not cause any
frequency change. Intel documents some conditions
for frequency changes [1]. Whether these conditions
are fulfilled largely depends on the microarchitecture.
For example, a sufficiently dense mix of AVX-512 and
AVX2 instructions causes a switch to the AVX-512 fre-
quencies, but pipeline stalls during execution due to de-
pendencies can cause the vector instruction frequency
to be decreased enough to prevent frequency changes.

In some cases the output of the static analy-
sis clearly identifies the problematic code. For the
remaining cases, as accurate modelling of the mi-
croarchitecture is impractical, we suggest the use of
performance counters to determine whether a func-
tion causes frequency changes. To track the fre-
quency level, Intel provides four performance counters
which count the cycles spent at each frequency level.
The CORE POWER.LVL0 TURBO LICENSE per-
formance event as well as the LVL1 TURBO LICENSE
and LVL2 TURBO LICENSE events count the cycles
spent at the frequency levels for scalar code, AVX2
code and AVX-512 code as described in Section 2, re-
spectively, whereas the CORE POWER.THROTTLE
event counts the cycles with reduced performance dur-
ing a power license request [1]. The core requests a new
power license whenever the condition for a frequency
reduction has been fulfilled, i.e., when the core has de-
termined that it exceeds the current power budget.

As shown in Figure 1, both entering and exiting a
lower frequency level is delayed, which restricts the per-
formance counters which can be used to detect prob-

lematic code. In particular, reverting to the frequency
for scalar code is delayed by at least two milliseconds,
so the counters for the AVX2 and AVX-512 frequency
levels cannot be reliably used to determine the code
which caused the frequency drop, as they are incre-
mented during all following scalar code affected by the
frequency reduction. Also, during the transition, the
CPU throttles not just during the offending AVX code
but also for some time afterwards while waiting for
the PCU to grant the new power license. However,
the time spent waiting is significantly shorter (up to
0.5 ms) than the time spent at the AVX frequency lev-
els, and throttling begins right after the condition for
the frequency reduction has been detected.

The latter property in particular is why the
CORE POWER.THROTTLE counter event is a good
indicator for code which causes frequency changes. Af-
ter completing the static analysis, the user therefore
generates a flame graph [4] from this counter. A flame
graph is a tool to visualize where in the call tree of
an application a performance counter is increased. In
most cases, the flame graph is used to visualize CPU
cycles to locate hot spots in the application. Visualiz-
ing THROTTLE cycles instead of all CPU cycles shows
approximately where in the call tree frequency changes
are triggered.

Because, as described above, frequency changes are
delayed by up to 0.5 ms and therefore unrelated code
might be shown in the flame graph, the functions shown
in the graph have to be compared to the output of
the static analysis pass to remove false positives. If
core specialization is not able to completely eliminate
frequency changes on the scalar cores because not all
problematic code segments have been identified, the
developer can repeat the performance counter analysis
to identify the remaining AVX code.

Note that, as described in 2, there is a short de-
lay of up to approximately 100 instructions between
the execution of the first instruction of an AVX-heavy
code section and the time at which the core recog-
nizes the need for a lower frequency level. This delay
might cause the performance counter analysis to miss
very short AVX-heavy functions. As AVX instructions
are particularly useful to parallelize operations on data
streams, we expect such short AVX instruction bursts
to be highly unusual. In addition, due to the conditions
for frequency changes [1,14], we expect such short AVX
instructions to have little effect on CPU frequencies.

It is, however, possible to detect even such code
sections if they cause frequency changes, even though
the execution of these code sections already lies in the
past at the moment the CPU recognizes the need for
a frequency change. If the operating system configures

6

the performance counter to overflow at the very first
CORE POWER.THROTTLE cycle, the counter over-
flow interrupt can be used to notify the OS. The OS can
then examine the last branch records [9] of the CPU to
determine the recently executed code which caused the
frequency change. We did not find any workload which
had sufficiently short AVX code sections, therefore we
did not implement this technique.

4 Evaluation

To show that our approach is able to reduce the
performance variation caused by vectorized parts of a
program, we evaluate our design in a scenario similar to
the experiments conducted at Cloudflare [11]. We run
the nginx web server and let it serve a compressed static
page via HTTPS. The connections are encrypted with
the ChaCha20-Poly1305 encryption algorithm, with
the implementation provided by the OpenSSL library.
For the different experiments, OpenSSL is compiled
with support for either AVX-512, AVX2 or only SSE4
vector instructions.

All experiments are run on a system with an Intel
Xeon Gold 6130 processor and 24 GiB of DDR4 RAM.
The processor contains 16 physical cores with all-core
turbo frequencies of 1.9 GHz, 2.4 GHz and 2.8 GHz for
heavy AVX-512 instructions, heavy AVX2 instructions
and other instructions respectively. The web server is
executed on 12 of the 16 cores, and the wrk2 web server
benchmark client is executed on the other 4 cores to
generate HTTPS requests.

Static analysis showed use of AVX2 and AVX-
512 instructions in the OpenSSL implementation of
ChaCha20 and Poly1305, in one function in glibc’s
profiling code, and in memset/memcpy/memmove.
Analysis of the CORE POWER.THROTTLE perfor-
mance counter showed that only OpenSSL encryp-
tion and decryption code caused frequency changes.
Therefore, we annotated the calls to the OpenSSL
functions SSL read, SSL write, SSL do handshake and
SSL shutdown to restrict execution of these functions
to the last two physical cores. In total, annotations
added only 9 lines to the program.

Figure 5 shows the throughput of the web server
in the scenario described above with and without core
specialization. Without core specialization, through-
put varies depending on the SIMD instruction set used
in the SSL library. For AVX2 and AVX-512 instruc-
tions, throughput is reduced by 4.2% and 11.2%, re-
spectively, over a version using only instructions which
do not cause any frequency drop. With core special-
ization, this negative effect of vectorization on perfor-
mance is significantly reduced: The performance drop

SSE4 AVX2 AVX-512
0

2

4

6

-4
.2

%

-1
1.

2%-0
.1

%

-1
.1

%

-3
.2

%

T
h

ro
u

gh
p

u
t

(×
10

0
0

re
q
/
s)

Unmodified
Core Specialization

Figure 5. Throughput of nginx with OpenSSL
compiled for different instruction sets: The
blue bars show the throughput of the unmod-
ified web server, whereas the green bars in-
dicate performance when execution of SSL
code is restricted to a subset of the system’s
cores.

is reduced to 1.1% for AVX2 and to 3.2% for AVX-512
instructions, a reduction by 74% and 71% respectively.
These results show that core specialization is able to
significantly reduce performance variability and causes
little overhead, even though additional scheduler invo-
cations are performed.

4.1 CPU Frequency

The main reason for the performance improvement
lies in the improved CPU frequencies, as the goal of
core specialization is to limit the AVX-induced fre-
quency drop to a subset of the cores. In our bench-
mark scenario, only two out of 12 cores should be af-
fected by AVX code. Note, however, that this does not
automatically result in a six-fold reduction of any fre-
quency drops. As the original software is partially able
to run the cores at maximum frequency whereas core
specialization causes a significantly higher concentra-
tion of AVX code on the AVX cores, we expect a lower
effect on CPU frequencies, which is mirrored by the
performance measurements shown above.

To show the effect on frequency, we repeat the ex-
periment from the last section and measure the aver-
age frequency across all cores. The results are shown
in Figure 6. For AVX2 code, the frequency drop is re-
duced from 4.4% to 1.8%, and for AVX-512 code from
11.4% to 4.0%. These numbers closely correlate with
the measured performance.

As performance is affected by other factors such as
overhead as well as different cache utilization, the re-

7

SSE4 AVX2 AVX-512
0

1

2

3

-4
.4

%

-1
1.

4%-0
.3

%

-1
.8

%

-4
.0

%

F
re

q
u

en
cy

(G
H

z)

Unmodified
Core Specialization

Figure 6. Average frequency of the cores
executing the nginx web server. Core spe-
cialization limits the frequency reduction to 2
out of 12 cores. Note that the frequency im-
provement achieved by core specialization is
lower because the unmodified web server is
partially able to run at maximum frequencies.

sults slightly differ, though. Therefore, in the next sec-
tions, we analyze these factors to give a better overview
over the effects of core specialization on performance.

4.2 Instructions per Cycle

One particularly striking result is that our proto-
type provides higher performance than expected from
the CPU frequency measurements alone, even though
thread migration and frequent scheduler invocations
should on the contrary cause additional overhead. As
expected, measurements conducted with nginx when
using SSE4 OpenSSL show a slightly increased number
of instructions executed per HTTPS request (+0.7%)
when using core specialization. Performance counter
analysis of the instructions per cycle, however, also
shows an improvement (+0.7%). The improved utiliza-
tion of the CPU therefore makes up for the overhead
caused by the scheduler invocations.

To determine the cause of the IPC improvement,
we conduct a performance counter analysis with Intel
VTune Amplifier. The analysis shows that the sys-
tem with core specialization experiences slightly more
stall cycles due to memory accesses. However, core
specialization also significantly reduces the number of
mispredicted branches due to more effective use of the
misprediction tables. These tables exist once per core
and cache branch history, and restricting the amount
of code executed on a core reduces the amount of code
that needs to be covered by the respective branch pre-
dictor. Similar effects on caches have already been

104 105
10−1

100

101

102

Task type changes per second

O
ve

rh
ea

d
(%

)

Overhead

Figure 7. Overhead of core specialization in
a CPU-intensive microbenchmark. The hor-
izontal axis shows the task type changes
(AVX vs. scalar) executed per second.
For reference, the web server benchmark
described above executes 55000 task type
changes per second.

shown for other approaches using core specialization
or cohort scheduling [7, 8, 13].

4.3 Overhead of Thread Migration

As shown in the previous experiment, it is difficult
to measure the overhead of frequent context switches
and migration between cores in real-world applications
as the cache behaviour is invariably affecting the per-
formance. Therefore, we use a simple microbenchmark
to gauge the raw overhead. Our microbenchmark exe-
cutes a simple loop consisting solely of scalar instruc-
tions without any memory accesses. For core special-
ization, 5% of the loop is marked as if it was AVX code.
As the overhead depends on the frequency of migra-
tions of tasks between cores, the length of the loop is
varied. The benchmark starts 26 threads and places
them on 12 cores (24 hardware threads) of the system
in order to achieve a similar environment compared to
the web server benchmark. As the remaining 4 cores
are not used, we disable C-states to prevent the use of
higher turbo boost frequencies which would cause the
benchmark to underestimate overhead.

Figure 7 plots the runtime overhead for different
loop lengths. The results show that over a wide range
of task type change rates the overhead scales propor-
tionally to the rate of task type changes. The cost
of each pair of switches from AVX to scalar code and
back stays fairly constant (approximately 400-500 ns),

8

low enough to result in acceptable overhead for a
wide range of applications. Even at 100,000 task type
changes per second (corresponding to 50,000 sections
of AVX code), the overhead due to frequent scheduler
invocations is below 3%.

The result, however, also shows that in any situation
the resulting performance impact depends on both fre-
quency improvement as well as overhead. Especially
at higher task type change rates, the overhead can eas-
ily negate any positive effects. Although our prototype
always enables core specialization, we therefore expect
that policies have to be adaptive to be viable for wide-
spread use. We expect that a good policy has to esti-
mate the impact of core specialization on performance
and, depending on the outcome, has to choose whether
to use core specialization or not.

5 Related Work

We are, to the best of our knowledge, the first to im-
plement core specialization to reduce the performance
variation brought by wide vector instructions on cur-
rent Intel CPUs. However, we are not the first to de-
scribe the effects of these instructions, and core special-
ization has been successfully used in other scenarios to
improve performance. This section gives an overview
over related work in both these areas.

AVX-Induced Frequency Changes Frequency
variations depending on the executed instruction mix
were first described for Haswell-EP processors which
have different maximum frequencies depending on
whether AVX instructions are executed [6]. Whereas
previous CPUs operated at a constant frequency and
the power consumption varied depending on the in-
struction mix, these CPUs keep their power consump-
tion fairly constant, but frequency and therefore per-
formance vary depending on the executed instructions.
In a cluster, this performance imbalance causes per-
formance issues for tightly coupled code because sig-
nificant amounts of time are spent in synchronization
primitives such as barrier synchronization [18].

The Skylake-SP microarchitecture and the introduc-
tion of the AVX-512 instruction set in server proces-
sors further increased the frequency variation, with fre-
quency differences of up to 900 MHz between AVX-512
code and scalar code [3]. As a result, in many cases
the performance advantage of the wider vector registers
when compared to AVX2 is negated by the frequency
reduction. For example, AVX-512 vectorization in the
x265 video encoder did not yield any performance im-
provement for the “veryfast” quality profile when all
cores were utilized, and even the “veryslow” profile only

yielded a 10% performance improvement even though
the IPC gain was significantly higher [22]. As future
work, the authors therefore suggest either monitoring
the CPU frequency to conditionally enable AVX-512
vectoring based on the CPU frequency or fundamental
rearchitecting of the x265 encoder to let different cores
execute different operations, with the intent to limit
the number of cores which execute AVX-512 instruc-
tions. We expect such a reengineering of the whole
application to be costly and time-consuming, though.

Often, however, not the whole application is accel-
erated with wide vector instructions. Instead, soft-
ware engineers only apply vectorization where it seems
fitting. This situation can cause performance prob-
lems as the frequency reduction caused by AVX in-
structions is only reverted after at least approximately
two milliseconds [1]. For example, web server bench-
marks at Cloudflare showed significantly lower perfor-
mance for a web server using AVX-512-enabled cryp-
tography primitives in the OpenSSL library compared
to their AVX2 counterparts in the BoringSSL library
even though the OpenSSL library in isolation provided
higher encryption and decryption speeds, simply be-
cause the frequency reduction affected unrelated web
server code [11].

In a blog post, Daniel Lemire argues that a signif-
icant frequency reduction is only triggered by dense
AVX code [14]. He suggest as future work that the
operating system or an application framework could
schedule threads on separate sets of cores whenever
they execute sufficient numbers of AVX instructions..
However, no implementation or evaluation is described.
We provide an implementation of such a core special-
ization framework and provide an evaluation of its cost
and benefits. Especially we show that thread migra-
tion, when optimized for this use case, has low enough
overhead to be a viable mechanism to limit the number
of cores executing AVX-512 code.

Core Specialization We use core specialization as a
technique to limit the effect of AVX-induced frequency
reduction to select cores. Core specialization has been
suggested as a mechanism to increase performance be-
fore, although different effects were utilized. As the
fastest cache levels are usually private to the individ-
ual cores, core specialization can be used to place differ-
ent parts of the system’s working set in private caches
of different cores, thereby increasing cache utilization
by reducing the number of duplicated entries in dif-
ferent cores’ private caches. For example, FlexSC [20]
places the operating system on a separate set of cores,
whereas SchedTask [8] analyzes the instruction foot-
print of code sections and uses instruction footprint

9

similarity for scheduling decisions in order to reduce
instruction cache misses.

Instead, our approach utilizes core specialization
in order to limit the impact AVX-induced frequency
changes to a subset of all cores. We show that, al-
though our prototype also shows a slight reduction of
the amount of last-level cache misses due to core spe-
cialization, the impact on IPC is limited and the effects
on processor frequency dominate system throughput.
However, it is likely that the approaches can be com-
bined to further increase performance if the workload
permits.

On single-core systems, an alternative to core spe-
cialization is to batch similar operations from multiple
threads together and to schedule them so that the same
part of the application code is executed repeatedly be-
fore other unrelated code pollutes the caches [7, 13].
If one codepath is repeatedly executed, starting from
the second execution the instructions can be fetched
from the cache which significantly reduces the number
of instruction cache misses. Similarly, batching should
in theory reduce the frequency drop caused by AVX
instructions if the AVX code from multiple threads is
grouped together in order to reduce the number of fre-
quency transitions. However, even in this scenario, all
cores periodically reduce their frequency. Therefore,
we expect this technique to have a lower performance
benefit than our proposed mechanism.

OS Support for Heterogeneous Multiprocesors
The approaches described above implement core spe-
cialization in software, but operate on multiproces-
sor systems containing hardware-wise identical cores.
However, different applications (or parts of applica-
tions) have different requirements to the underlying
microarchitecture. For example, a memory-intensive
application might not be able to fully utilize the po-
tential of a wide out-of-order architecture and might
execute more efficiently on a more simple in-order sys-
tem [12]. As a result, single-ISA heterogeneous multi-
core systems have been suggested which consist of cores
with equal instruction sets but differing microarchitec-
ture and operating frequency and provide an energy-
efficient core for a wide range of applications [12].
Especially heterogeneous applications with execution
phases with significantly different behaviour can profit
if the phases are each executed on their ideal core type.

Similarly, a heterogeneous multi-core system can
provide cores with different ISAs [23]. For example,
the ARM Thumb instruction set provides higher code
density, but provides fewer and smaller general pur-
pose registers, and is therefore efficient for execution
of code sections with low register pressure, whereas

core with higher register pressure executes more effi-
ciently on architectures such as Alpha with larger reg-
ister sets. Also, the Thumb instruction set does not
provide floating point and SIMD support which sig-
nificantly improves peak power consumption and core
area but requires costly emulation of floating point in-
structions.

Even though current server CPUs employ identical
microarchitectures and instruction sets in all cores, we
show that it is beneficial to artificially create hetero-
geneity even in these systems. Limiting the execution
of AVX2 and AVX-512 instruction to a subset of the
cores lets all other cores execute at increased frequen-
cies, thereby improving performance for code which
does not use wide SIMD instructions.

On such a system, threads need to be migrated
to a suitable core whenever they execute significant
amounts of wide SIMD instructions. Fault-and-migrate
is an operating system mechanism to automatically
move threads to a suitable core [5, 15]. Whenever a
thread executes an instruction not supported on its
current core, the core triggers an undefined instruc-
tion exception. Following the exception, the operating
system selects a core with support for the instruction
and migrates the thread.

Previous work assumes a heterogeneous multipro-
cessor where cores differ in hardware [5, 15]. How-
ever, the concept of fault-and-migrate is applicable to
software-based heterogeneity similar to the one used in
our design. Whereas our prototype currently requires
the developer to manually annotate code sections which
make use of wide SIMD instructions, we intend to ex-
tend the prototype to make use of fault-and-migrate in
order to automatically detect problematic code regions.
Li et al. describe how disabling the floating point unit
allows to emulate instruction set asymmetry on current
systems [15]. Similarly, we intend to restrict the size of
the memory region used for the FXSTOR instruction
during context switches [2, Sec. 2.6.11] to selectively
let AVX-512 instructions invoke the operating system.

Shen et al. [19] describe several scheduling algo-
rithms for ISA-heterogeneous multiprocessors which
share a common core ISA. They describe a system
in which each task has a task ISA ID and where
the scheduler prefers tasks whose task ISA ID closely
matches the core’s ISA. We apply a similar approach to
software-defined heterogeneity on current Intel server
processors. As our design is integrated into an exist-
ing scheduler with deadline-based priorities, we employ
a slightly different priorization mechanism to prevent
starvation of kernel tasks.

10

6 Conclusion

Many recent server CPUs reduce their frequency
when wide vector instructions are executed. In order
to reduce the number of frequency transitions, these
CPUs delay reverting to the original frequency, so any
scalar code following such vectorized portions of the
code is significantly slowed down. For heterogeneous
workloads, this effect can reduce overall performance
by over 10%.

We propose core specialization to limit the impact of
these frequency effects. By limiting the subset of cores
on which vectorized parts of the program are executed,
only the frequency of those cores is affected. We show
that migration of unmodifed threads is a viable unob-
trusive mechanism for core specialization, and we de-
scribe a scheduler interface which can be used to mark
vectorized code regions so that the threads are then
transparently migrated to a suitable core. The evalu-
ation of our prototype based on the MuQSS scheduler
with workloads based on the nginx web server and the
OpenSSL SSL library shows that core specialization
can reduce the frequency impact of AVX instructions
by over 70%.

6.1 Future Work

Our prototype requires manual instrumentation of
the program to mark vectorized parts of the code. In
this work, we describe how automatic disassembling
of the program combined with a performance counter
analysis can be used to identify these parts of the code.
We also describe a mechanism using the last-branch
records found in recent CPUs to accurately identify
very short sections of AVX-heavy code. As our eval-
uation workload, however, did not contain any such
short AVX code sections, we were not able to evalu-
ate this approach. We intend to evaluate a prototype
of this technique with synthetic benchmarks to show
its accuracy, and we intend to conduct a survey over a
wider range of applications vectorized with AVX2 and
AVX-512 to estimate the need for such techniques.

Although our prototype requires manual instrumen-
tation by the user, ideally no such input would be
required and the system would use fault-and-migrate
techniques [15] to automatically migrate AVX code to
the appropriate cores. We intend to evaluate restrict-
ing the size of the memory region used by the FXS-
TOR instruction to store the FPU content as a method
to make wide instructions fault, at which point the
threads can be migrated before any frequency reduc-
tion is triggered.

References

[1] Intel 64 and IA-32 Architectures Optimization
Reference Manual, Apr. 2018.

[2] Intel 64 and IA-32 Architectures Software Devel-
oper’s Manual - Volume 2 (2A, 2B, 2C & 2D):
Instruction Set Reference, A-Z, May 2018.

[3] Intel Xeon Processor Scalable Family – Specifica-
tion Update. Intel Corporation, Feb. 2018.

[4] B. Gregg. The flame graph. Communications of
the ACM, 59(6):48–57, 2016.

[5] V. Gupta, R. Knauerhase, P. Brett, and
K. Schwan. Kinship: efficient resource manage-
ment for performance and functionally asymmet-
ric platforms. In Proceedings of the ACM In-
ternational Conference on Computing Frontiers,
page 16. ACM, 2013.

[6] D. Hackenberg, R. Schöne, T. Ilsche, D. Molka,
J. Schuchart, and R. Geyer. An energy efficiency
feature survey of the intel haswell processor. In
Proceedings of the 2015 IEEE International Par-
allel and Distributed Processing Symposium Work-
shop, pages 896–904. IEEE, 2015.

[7] S. Harizopoulos and A. Ailamaki. Steps towards
cache-resident transaction processing. In Proceed-
ings of the Thirtieth International Conference on
Very Large Data Bases, volume 30, pages 660–671.
VLDB Endowment, 2004.

[8] P. Kallurkar and S. R. Sarangi. Schedtask: a
hardware-assisted task scheduler. In Proceed-
ings of the 50th Annual IEEE/ACM International
Symposium on Microarchitecture, pages 612–624.
ACM, 2017.

[9] A. Kleen. An introduction to last branch records,
Mar. 23, 2016. https://lwn.net/Articles/

680985/.

[10] C. Kolivas. Muqss - the multiple queue skiplist
scheduler. http://ck.kolivas.org/patches/

muqss/sched-MuQSS.txt.

[11] V. Krasnov. On the dangers of in-
tel’s frequency scaling, Oct. 10, 2017.
https://blog.cloudflare.com/on-the-

dangers-of-intels-frequency-scaling/.

[12] R. Kumar, K. I. Farkas, N. P. Jouppi, P. Ran-
ganathan, and D. M. Tullsen. Single-isa hetero-
geneous multi-core architectures: The potential

11

https://lwn.net/Articles/680985/
https://lwn.net/Articles/680985/
http://ck.kolivas.org/patches/muqss/sched-MuQSS.txt
http://ck.kolivas.org/patches/muqss/sched-MuQSS.txt
https://blog.cloudflare.com/on-the-dangers-of-intels-frequency-scaling/
https://blog.cloudflare.com/on-the-dangers-of-intels-frequency-scaling/

for processor power reduction. In Proceedings of
the 36th annual IEEE/ACM International Sym-
posium on Microarchitecture, page 81. IEEE Com-
puter Society, 2003.

[13] J. R. Larus and M. Parkes. Using cohort-
scheduling to enhance server performance. In Pro-
ceedings of the USENIX 2002 Annual Technical
Conference, pages 103–114. USENIX Association,
2002.

[14] D. Lemire. Avx-512: when and how to
use these new instructions, Sept. 9, 2018.
https://lemire.me/blog/2018/09/07/avx-

512-when-and-how-to-use-these-new-

instructions/.

[15] T. Li, P. Brett, R. Knauerhase, D. Koufaty,
D. Reddy, and S. Hahn. Operating system sup-
port for overlapping-isa heterogeneous multi-core
architectures. In 16th International Symposium on
High Performance Computer Architecture, pages
1–12. IEEE, 2010.

[16] A. Mazouz, A. Laurent, B. Pradelle, and W. Jalby.
Evaluation of cpu frequency transition latency.
Computer Science - Research and Development,
29(3-4):187–195, 2014.

[17] D. Molka, D. Hackenberg, R. Schöne, and M. S.
Müller. Characterizing the energy consumption of
data transfers and arithmetic operations on x86-64
processors. In International Conference on Green
Computing, pages 123–133. IEEE, 2010.

[18] J. Schuchart, D. Hackenberg, R. Schöne, T. Ilsche,
R. Nagappan, and M. K. Patterson. The shift
from processor power consumption to performance
variations: fundamental implications at scale.
Computer Science - Research and Development,
31(4):197–205, 2016.

[19] H. Shen and F. Pétrot. Novel task migra-
tion framework on configurable heterogeneous mp-
soc platforms. In Proceedings of the 2009 Asia
and South Pacific Design Automation Conference,
pages 733–738. IEEE Press, 2009.

[20] L. Soares and M. Stumm. FlexSC: Flexible system
call scheduling with exception-less system calls.
In Proceedings of the 9th USENIX Conference on
Operating Systems Design and Implementation,
pages 33–46. USENIX Association, 2010.

[21] M. B. Taylor. Is dark silicon useful? harness-
ing the four horsemen of the coming dark silicon

apocalypse. In 49th ACM/EDAC/IEEE Design
Automation Conference, pages 1131–1136. IEEE,
2012.

[22] P. K. Tiwari, V. V. Menon, J. Murugan, J. Chan-
drasekaran, G. S. Akisetty, P. Ramachandran,
S. K. Venkata, C. A. Bird, and K. Cone. Accelerat-
ing x265 with Intel R© Advanced Vector Extensions
512. Technical report, Intel, 05 2018.

[23] A. Venkat and D. M. Tullsen. Harnessing isa diver-
sity: Design of a heterogeneous-isa chip multipro-
cessor. ACM SIGARCH Computer Architecture
News, 42(3):121–132, 2014.

12

https://lemire.me/blog/2018/09/07/avx-512-when-and-how-to-use-these-new-instructions/
https://lemire.me/blog/2018/09/07/avx-512-when-and-how-to-use-these-new-instructions/
https://lemire.me/blog/2018/09/07/avx-512-when-and-how-to-use-these-new-instructions/

	1 Introduction
	2 Analysis
	2.1 Core Specialization for Scalar Code

	3 Design and Implementation
	3.1 Core Specialization
	3.2 Scheduler Implementation
	3.3 Identifying Problematic Code

	4 Evaluation
	4.1 CPU Frequency
	4.2 Instructions per Cycle
	4.3 Overhead of Thread Migration

	5 Related Work
	6 Conclusion
	6.1 Future Work

