
Saving Power Without Sacrificing
Performance on Asymmetric

Multicore Processors

Masterarbeit
von

Lukas Werling
an der Fakultät für Informatik

Erstgutachter: Prof. Dr. Frank Bellosa
Zweitgutachter: Prof. Dr. Wolfgang Karl
Betreuender Mitarbeiter: Mathias Gottschlag, M.Sc.

Bearbeitungszeit: 30. August 2017 – 28. Februar 2018

KIT – Universität des Landes Baden-Württemberg und nationales Forschungszentrum in der Helmholtz-Gemeinschaft www.kit.edu

Ich versichere wahrheitsgemäß, die Arbeit selbstständig verfasst, alle benutzten
Hilfsmittel vollständig und genau angegeben und alles kenntlich gemacht zu haben,
was aus Arbeiten anderer unverändert oder mit Abänderungen entnommen wurde
sowie die Satzung des KIT zur Sicherung guter wissenschaftlicher Praxis in der
jeweils gültigen Fassung beachtet zu haben.

Karlsruhe, den 28. Februar 2018

iv

Abstract

Asymmetric multicore processors (AMP) integrate multiple core types with different
power and performance characteristics in a single package. Using optimized schedul-
ing, these processors can deliver higher performance per watt than a symmetric
multicore processor. An application executes most efficiently on a certain core
depending on how it uses resources like CPU and memory. Previous approaches
analyze applications at coarse granularities, classifying each process or thread. In
systems such as servers that have homogeneous processes with similar behavior in
all threads, these approaches cannot distribute applications to core types effectively.

However, applications generally go through different execution phases over time.
These phases often differ in their resource usage and exist at both large and small
scales. Whereas some systems already incorporate changing application behavior
over large time intervals, it should also be possible to utilize shorter phases to save
energy by migrating between cores at high frequency.

In this work, we design and implement such a system that characterizes the
small-scale phase behavior of applications between developer-defined points by
monitoring memory accesses with performance counters. At runtime, it migrates
the application thread to the optimal core for each execution phase.

We evaluate our system on an AMD Ryzen processor. These processors allow
asymmetric core configurations using frequency scaling. We fail to see reductions in
power consumption with our system on these processors. We show that, contrary
to available documentation, Ryzen does not have per-core voltage domains and
conclude that these processors are not suitable as asymmetric platform.

v

vi ABSTRACT

Contents

Abstract v

1 Introduction 3

2 Background and Related Work 7
2.1 Previous work on AMP scheduling 7
2.2 MONITOR and MWAIT . 10
2.3 Target platform . 11

2.3.1 ARM big.LITTLE . 11
2.3.2 AMD Ryzen . 12

3 Design 15
3.1 Single-Threaded Efficiency Specialization 15
3.2 Program Flow Analysis . 17
3.3 User-mode core migration . 19

4 Implementation 21
4.1 libswp: Migration based on program flow analysis 22
4.2 libultmigration: User-mode core migration 25
4.3 Making an asymmetric processor 25

5 Evaluation 27
5.1 Test Setup . 28
5.2 Adapting an Application: MySQL 29

5.2.1 Source Code Modification 29
5.2.2 Performance Counter Monitoring 30
5.2.3 Application Profile . 32
5.2.4 Migration Results . 32

5.3 Microbenchmark . 33
5.3.1 CPI . 35
5.3.2 Cache Miss Performance Counters 35

1

2 CONTENTS

5.3.3 Migration Overhead . 37
5.3.4 Overhead From Ryzen as Asymmetric Processor 38
5.3.5 Comparison With Fixed Frequency 40

5.4 Discussion . 43

6 Conclusion 45
6.1 Future Work . 46

A Complete Power Graphs 47

Bibliography 49

Chapter 1

Introduction

Modern processors are often constrained by power. Mobile devices, such as laptops
and smartphones, run on batteries. Batteries limit the total energy available, but
also impose a maximum discharge rate [25]. In contrast, servers are generally
connected to the power grid. However, they are restricted in their thermal output:
The server’s direct cooling system - usually heat sinks and fans - has a maximum
amount of power it can safely dissipate. Additionally, the data center as a whole has
only limited cooling capacity. These power restrictions lead to “Dark Silicon” [12]:
A processor may only activate parts of its chip at the same time to avoid exceeding
its power budget. Dark Silicon limits multicore scaling. Adding more cores does
not improve performance if they cannot work at the same time.

Asymmetric multicore processors (AMP) are a possible solution for Dark Silicon.
AMPs consist of multiple cores with different power and performance characteristics.
Given a fixed power budget, an asymmetric processor can either run few high-
performance, but power-hungry cores, or lots of low-performance, but power-efficient
cores [14]. Parallel applications benefit from running on many small cores. They
achieve a higher speedup compared to a symmetric processor with few large
cores [17]. Specialized scheduling algorithms for AMPs optimize core allocation
depending on an application’s needs.

On smartphones, asymmetric processors based on the ARM big.LITTLE tech-
nology are already widely deployed. The smartphone operating system schedules
background tasks to the little cores and foreground tasks to the big cores [19].
This strategy reduces overall power consumption while keeping low latency for
user interaction. However, it needs special semantic knowledge about the processes
running on the system. Previous academic work on asymmetric processors instead
observes processes and threads to determine the ideal core. The two major strate-
gies are parallel speedup and efficiency specialization [27]. A scheduler targeting
parallel speedup assigns small cores to parallel parts of an application and large
cores to sequential parts, as sequential parts can run on only one core at a time.

3

4 CHAPTER 1. INTRODUCTION

void process() {
SWP_MARK;
 ...
}
void read() {
SWP_MARK;
 ...
}
...

fast slow

1 2 3 4 5

Figure 1.1: Overview of our system

For efficiency specialization, the scheduler instead characterizes threads as CPU-
intensive or memory-intensive. A CPU-intensive thread makes use of the complex
and fast execution units a large core provides, whereas a memory-intensive thread
often stalls the CPU with memory requests for some amount of time independent
of the CPU frequency. Thus, the scheduler can reduce stall cycles by running
memory-intensive code on a slower CPU core, increasing overall power efficiency.

Such coarse-grained per-thread or per-process core allocation strategies do
however not work well with typical server applications. Usual large-scale server
deployments run only one type of application per (virtual) machine, for example
a database or a web server. Unikernels, a potential future approach to deploying
cloud software, similarly execute only one application per virtual machine [20].
Consequently, all active threads have very similar execution characteristics. There
is no opportunity to partition at the level of threads.

However, we can find differing characteristics at smaller scales within a thread.
For example, in a database application, parsing and optimizing a query is CPU-
intensive, whereas reading or writing stored data is memory-intensive. By migrating
such a thread between a large and a small core, we can do efficiency specialization
with small code sections.

In this work, we present a library for analyzing single-threaded applications
and assigning code sections to small or large cores. Figure 1.1 shows an overview
of the steps involved. First, the developer modifies the application source code to
add measurement points (1). The second step is to run an application benchmark
in measurement mode (2), which results in a control flow graph with performance
counter results for each edge (3). Processing the graph, the developer obtains an
application profile that maps code sections to a core type (4). Finally, the application
user runs the application in migration mode: when reaching a measurement point
for which the current core is not optimal as indicated by the profile, the library
migrates execution to the optimal core (5). As we are working at very small scales,
we cannot rely on the high-overhead core migration the operating system provides.
Instead, we do high-frequency core migration from user space.

5

For evaluating our library, we use an AMD Ryzen processor. We develop
software for configuring the processor and achieve an asymmetric system with
underclocked cores. We analyze the processor’s power characteristics and assess
its suitability as an asymmetric processor for our technique. We conclude that
Ryzen processors do not make efficient asymmetric processors. In general, applying
our technique produces worse performance per watt than an equivalent constant
frequency on a single core.

This thesis is structured as follows: In the Chapter 2 below, we summarize
previous work in scheduling for asymmetric processors and introduce hardware
platforms with asymmetric processors. In Chapter 3, we discuss the design and in
Chapter 4 the implementation of our application analysis and core migration library.
We then evaluate our approach on an AMD Ryzen processor in Chapter 5. Finally,
we summarize our results in Chapter 6, presenting a conclusion and proposing
future work.

6 CHAPTER 1. INTRODUCTION

Chapter 2

Background and Related Work

We are developing a technique for scheduling on asymmetric multicore processors
(AMPs) via high-frequency core switching. This chapter provides background
information on technologies and tools: First, we outline previous approaches to
asymmetric scheduling, which generally work at coarser granularities. We then
describe the monitor and mwait x86 instructions which form the basis for our core
switching method. Finally, we describe possible target platforms with asymmetric
processors, including ARM big.LITTLE and AMD Ryzen. For AMD Ryzen, we give
additional information about its power supply structure and about performance
counters, as we use this processor for our evaluation.

2.1 Previous work on AMP scheduling

Previous work on scheduling for AMPs works either on application or thread
level. Figure 2.1 shows three common scheduling strategies that we describe in the
following.

Gupta and Nathuji investigate AMPs in the context of latency-sensitive data-
center applications [14]. They describe the two main scheduling strategies for
AMPs, energy scaling and parallel speedup. Energy scaling schedules threads on
slower cores to save energy at the loss of performance. For applications under a
service-level agreement (SLA) mandating a specific latency, the operator can use
slower cores as long as that latency is met, saving money on power and cooling
systems. Parallel speedup uses lots of small cores to execute parallel parts of a
program and few large cores for the sequential parts.

Saez et al. propose a “Comprehensive Scheduler for Asymmetric Multicore
Systems” [27], considering efficiency specialization as additional strategy. Efficiency
specialization uses fast cores for CPU-intensive threads, and slow cores for memory-
intensive threads. Saez et al. translate these requirements into a scheduling metric

7

8 CHAPTER 2. BACKGROUND AND RELATED WORK

fast

fast

slow

(a) Parallel Speedup

fast

slow

CPU heavy

memory heavy
(b) Efficiency Specialization

fast

deadline

slow

(c) Energy Scaling

Figure 2.1: Illustration of different approaches to scheduling on asymmetric pro-
cessors. Parallel Speedup uses fast cores for sequential code and slow cores for
parallel code. Efficiency Specialization classifies threads by their resource usage,
choosing the optimal core. Energy Scaling applies to latency-sensitive applications:
scheduling applications on the slow core is possible as long as they still meet the
deadline.

by estimating the speedup factor from running on a large instead of a slow core
using cache miss performance counters. They combine this strategy with parallel
speedup by incorporating the number of threads an application has.

Our system works within a thread and does not take interactions with other
threads into account. Consequently, it cannot differentiate parallel and sequential
parts of an application, so parallel speedup does not apply. Instead, we target
efficiency specialization at the granularity of code sections. In previous works,
scheduling systems employing efficiency specialization usually analyze whole appli-
cations or threads. They monitor cache miss rates to differentiate memory-heavy
and CPU-heavy code. At runtime, the scheduler uses this information to assign
threads to cores. We adapt this principle to smaller scales, analyzing code sections
within a thread. We use a scheduling metric very similar to the one used by
Gupta and Nathuji, but collect performance counter events offline. We found the
overhead of online performance counter collection to be too high at small scales. At
this level, our scheduler cannot simply run periodically to assign threads to CPU
cores. Instead, we move scheduling into the application, decide core assignments at
pre-defined points in the code, and perform core migration in user space.

The third scheduling technique pictured in Figure 2.1c, energy scaling, applies
to our target software as well. Providers often sell services governed under service-
level agreements (SLA) which guarantee metrics such as maximum latency. The

2.1. PREVIOUS WORK ON AMP SCHEDULING 9

provider can run processes on slower cores with a performance hit as long as the
latency stays under the deadline mandated by the SLA. Our technique enables
energy scaling by assigning more code sections to the slower core. Compared to
whole-thread scheduling, this allows a gradual approach to the deadline. However,
we did not pursue energy scaling further here, leaving it to future work.

All scheduling strategies for AMPs need additional information about programs
to determine core assignments. Shelepov and Fedorova propose embedding archi-
tectural signatures into application binaries [30]. An architectural signature is a
summary of the application’s runtime behavior. They generate these signatures
offline using binary instrumentation and L2 cache miss rate estimates. At runtime,
the scheduler reads the signatures, places processes into three categories, and as-
signs cores based on these categories. The authors reject manual classification and
runtime statistics from execution on different core types as alternative approaches
for generating signatures. Developers would need a very deep understanding of
their program’s behavior to perform a good classification. In contrast, runtime
statistics are precise for specific core types, but are unwieldy to obtain and hard to
generalize for different hardware.

With phase-based tuning [32], Sondag combines offline analysis with runtime
monitoring. The system uses static analysis to group code segments. At runtime,
it monitors execution of some code segments from each group on different core
types. It then assigns a core type to the whole group of code segments. When
execution steps into a group with a different core type, the system initiates a core
migration at the operating system. Compared to fully static systems, phase-based
tuning also works well for programs whose behavior changes with the input.

As we aim to do core migration at smaller scales, our work cannot directly use
previous approaches to application analysis. Our method requires manual source
code modification to insert analysis points. We then monitor cache misses between
analysis points, similar to Architectural Signatures. This approach requires only
simple knowledge about the program from the developer. Compared to phase-based
tuning, we can obtain smaller code segments than what is possible with information
from static analysis. We currently do not do any online runtime monitoring.
Although extending our library to do online performance counter collection would
be possible, we expect the additional overhead to be problematic.

With special hardware support, it is possible to implement core migration with
very low overhead. With Thread Motion [24], Rangan et al. explore fine-grained
core migration on a processor with shared L1 caches. Adopting such a model
would require significant architectural restructuring. In contrast, Fast and Scalable
Thread Migration [26] amends existing architectures and requires only little extra
hardware. It improves performance by migrating cache contents along with threads
to another core.

10 CHAPTER 2. BACKGROUND AND RELATED WORK

We evaluate our system on standard AMD Ryzen processors, which do not
include any special support for core migration or asymmetric core configurations.
We find that these processors do not show the power savings we hoped to see. A
hardware platform built for high-frequency asymmetric scheduling would have to
incorporate core switching hardware, significantly improving on our results with
commodity hardware.

2.2 MONITOR and MWAIT

Schedulers for asymmetric processors need to control precisely which application
runs on which core. Our prototype runs in user space only. Operating systems
usually support core migrations by pinning threads to specific cores. However, this
approach involves the OS scheduler for each migration and thus has high overhead.
Instead, our technique for fast CPU core migrations builds on the x86 monitor
and mwait instructions.

The monitor instruction sets a memory address range to watch. The mwait
instruction then puts the CPU to sleep until another CPU writes to a monitored
memory address or an interrupt happens [2]. To filter interrupts, it is necessary
to repeatedly check whether the monitored address actually changed and to issue
another mwait if not.

monitor and mwait are usually only available in kernel mode. On AMD
processors, a model-specific register (MSR) enables the instructions for user mode
as well [3]. This is not possible on most Intel processors [10], which currently limits
the technique to AMD processors.

mwait takes a C-state number as argument. C-states are processor sleep states
and are numbered as C0 (operational), C1 (halt), etc. The C-state selection allows a
compromise between sleep power consumption and wakeup latency: higher C-states
consume less power, but waking up takes longer. However, for usermode monitor
and mwait, Intel does not allow any C-state selection; the CPU always goes into
C1 [10]. AMD does not document such restrictions, but our power measurements
do not show any variance between different mwait arguments, suggesting a similar
policy.

Although monitor and mwait are x86-specific, similar instructions for waiting
on and signalling events are available on ARM as well (Wait For Event and Send
Event [5]).

2.3. TARGET PLATFORM 11

L2

L1 L1 L1 L1

Big CPU

L2

L1 L1 L1 L1

Little CPU

Cache-coherent interconnect
(a) ARM big.LITTLE

L3

L2 L2 L2 L2

L1 L1 L1 L1

CCX 0

Cache-coherent interconnect

L3

L2 L2 L2 L2

L1 L1 L1 L1

CCX 1

(b) AMD Ryzen

Figure 2.2: Simplified cache structure on ARM big.LITTLE and AMD Ryzen
systems. In both cases, the L1 cache consists of a data and an instruction cache.

2.3 Target platform

To evaluate our system, we need a platform with an asymmetric processor. Pre-
vious works on asymmetric processors often use Intel or AMD processors with
underclocked cores for their evaluation [27][30][32]. In this section, we first consider
ARM big.LITTLE processors, which are widely deployed processors with heteroge-
neous core architectures. However, we find these processors to be unsuitable for
our system. Similarly to previous works, we use an AMD Ryzen processor with
underclocked cores instead and describe that processor in more detail.

2.3.1 ARM big.LITTLE

Asymmetric processors designed by ARM are nowadays commonly deployed in
smartphones.

In their “big.LITTLE” processors, ARM integrates two separate CPUs on a
single chip. Those CPUs often differ in their microarchitecture. For example, the
Samsung Exynos 5 Octa System-on-Chip (SoC) [28] combines an out-of-order ARM
Cortex A15 CPU [6] with an in-order ARM Cortex A7 CPU [7].

Figure 2.2a shows the simplified cache hierarchy of an octa-core ARM big.LIT-
TLE CPU. Each core has a private L1 cache. Two L2 caches for the big and the
little CPU each connect to four L1 caches. A cache-coherent interconnect connects
the L2 caches with each other and the memory bus, providing a consistent view
of memory across all cores. Consequently, there is no common cache for all CPU
cores. Our system relies on migrating processes between cores with different power
and performance characteristics. For the ARM processors, this means migration
between cores of the big CPU and cores of the little CPU. As these cores do not
share a cache, all memory accesses after a migration are cache misses. The remote
cache or the main memory have to handle the requests via the interconnect.

12 CHAPTER 2. BACKGROUND AND RELATED WORK

Future asymmetric ARM processors called “DynamIQ” will include a shared
L3 cache for both CPUs [33]. The resulting memory hierarchy resembles classic
symmetric multicore processors. Consequently, we expect lower core migration
costs from this future platform.

As our work depends on quick core migration, the current big.LITTLE processors
are not suitable. However, a future re-evaluation of the technique on “DynamIQ”
processors may yield new results.

2.3.2 AMD Ryzen

“Ryzen” is AMD’s current generation of x86 desktop processors. It includes all
features we need for our system: user space monitor and mwait is available (see
Section 2.2), we can manually control frequency and voltage of each individual core
via P-states, and each core has its own voltage domain. In contrast, on current
Intel processors, the operating system has no direct control over P-states and there
is no user space monitor/mwait.

Although Ryzen processors are symmetric multicore processors, we can use
frequency scaling to configure different frequencies per CPU core (see Section 4.3).
Unfortunately, we find that Ryzen does not make an efficient asymmetric processor
for our use-case due to peculiarities in its structure and its power supply. In the
following, we describe these processor design decisions in more detail.

Core Complex

Ryzen processors are organized in two core complexes (CCX). Figure 2.2b shows
the processor’s cache hierarchy. Each CCX has a shared 8 MB L3 cache and four
cores. Each core has private L1 and L2 caches. The processor features simultaneous
multithreading (SMT) with two hardware threads per core [4]. Except for the
extra cache level and SMT, this structure is very similar to the ARM big.LITTLE
processors (Figure 2.2a). Indeed, migration from one CCX to the other suffers
from the same issue as on ARM: There is no shared cache for both CCX; memory
accesses go to the remote L3 cache via the interconnect (called “Infinity Fabric” by
AMD). However, the processor allows setting different frequencies and voltages for
cores within a CCX. Accordingly, we work only with cores from one CCX.

AMD sells Ryzen processors with four, six, and eight cores. Six-core processors
come with one core disabled per CCX; on four-core processors, two cores are
disabled per CCX.

2.3. TARGET PLATFORM 13

Power

Each CCX has three main voltage domains [31]. The “Real VDD” (RVDD) is
the core supply at the package level and powers the L3 cache logic. The “VDD
memory” (VDDM) powers the static random access memory (SRAM) in the L2
and L3 caches. From the RVDD, low-dropout regulators (LDO) create per-core
VDD supplies.

The currently active P-state determines the per-core VDD. A P-state is a
combination of core frequency and voltage. On Ryzen processors, model-specific
registers (MSR) allow changing the P-states. The frequencies are freely configurable
at runtime. In contrast, the firmware configures fixed RVDD voltages of 1.2 V,
1.0 V, and 0.8 V on our test system. On each CCX, the highest P-state determines
the overall RVDD. We can read these voltages via sensors on the motherboard.
In contrast, AMD does not document any sensors for reading the actual per-core
voltages.

Our asymmetric processor configuration sets the cores of one CCX up with
different P-states. We have to use cores from only one CCX to avoid high migration
overhead. Therefore, all cores get the same RVDD supply and the slower core
has to use its LDO to obtain the lower voltage, which is less power efficient than
a separate supply from the motherboard. In Section 5.3.5 of our evaluation, we
conclude that our Ryzen processor does not appear to use per-core LDOs. Due to
these restrictions, Ryzen processors are not as efficient as asymmetric processor as
a dedicated design with independent voltage supplies would be.

To save power, the CPU cores enter C-states when idle. Higher C-states use less
power, but take longer time to wake up from. At the highest C-state C6, the full
core is power-gated. Although the operating system has full control over P-states,
it cannot influence C-state selection on Ryzen1. AMD recommends that operating
systems should not try to manage power with P-states and should instead rely on
the integrated automatic C-state selection [16].

We follow AMD’s recommendation as we assign a static P-state to each core
and do not switch between P-states at runtime. However, the processor’s automatic
C-state selection does not work properly with our core migration technique: As
described in Section 2.2, the processor does not appear to use higher C-states
during usermode mwait. Consequently, an application running with our system will
always use additional power for the core idling in mwait. As a proper asymmetric
processor would not restrict mwait like this, we control for this issue by having a
core running mwait during comparison benchmark runs without our system.

1On the contrary, on Intel CPUs, the operating system explicitly selects C-states with the
mwait instruction, but can set only a rough policy for P-state selection.

14 CHAPTER 2. BACKGROUND AND RELATED WORK

The processor has running average power limit (RAPL) counters [3]. They
allow estimating power usage for each individual core as well as the whole CPU
package.

Performance Counters

Ryzen processors include two types of performance counters, one per core and
the other type per L3 cache [3]. We use the per-core counters to monitor cycles,
instructions retired, and L2 cache misses. The L3 cache counters are shared for all
cores on the same CCX. We use these counters to monitor L3 cache misses.

Chapter 3

Design

Our goal is to save energy in server software by adapting it for asymmetric multicore
processors at the granularity of code sections within a thread. In Section 2.1, we
discussed three scheduling strategies from previous works that achieve energy
reductions—energy scaling, parallel speedup, and efficiency specialization—and
concluded that efficiency specialization fits best to our target scenario.

In contrast to previous work, our system does not distribute multiple diverse
threads to processor cores. Instead, it migrates individual threads between two cores.
Although we simplify our prototype implementation by limiting it to single-threaded
applications, our approach works with multi-threaded applications as well. In our
prototype, we reserve a fast and a slow core; a multi-threaded implementation could
choose from a larger pool of cores. As our goal is to optimize energy consumption,
having idling cores that only wait for work is not an issue. In a power-constrained
system where full processor utilization is not viable, using the fast cores as efficiently
as possible is the main priority.

The rest of this chapter is structured as follows: We start with a more detailed
account on applying efficiency specialization to individual threads. In Section 3.2,
we describe how we modify and analyze applications to obtain the information
necessary for scheduling. Finally, in Section 3.3 we specify our user space core
migration technique that is necessary to avoid high migration costs.

3.1 Single-Threaded Efficiency Specialization

This section describes how to apply user-level core migration to do power-efficient
asymmetric scheduling with only a single thread.

There are memory-(bandwidth-)bound and compute-bound applications. When
executing compute-bound applications, the CPU works mainly on data in registers
and the L1 cache. It constantly has work to do and thus benefits from a high

15

16 CHAPTER 3. DESIGN

clock rate. On the other hand, memory-bound applications have a large working
set that does not fit into the CPU caches. The CPU frequently stalls on memory
accesses [18]. While stalled, the CPU continues running at its base clock, but
cannot retire any instructions. As lowering the CPU’s base clock does not affect
memory latencies, we can reduce the amount of stalled cycles by scheduling a
memory-bound application to a CPU core running at a lower frequency. This
strategy saves energy without substantially reducing application performance [34].
In other words, running a memory-bound application at lower frequency improves
CPI (cycles per instruction, lower is better) while lowering power consumption.

Many real programs do not fit in the rigid memory- or compute-bound categories.
They have execution phases that are more demanding on memory, and others that
do compute-bound work [29]. By identifying these phases, we can modify the
program to execute each phase on either a high frequency or a low frequency core.

Previous work that utilized execution phases did so at large granularities
only. As we work with a user space core migration technique with little overhead,
switching very frequently is possible. Therefore, we can exploit phase behavior at
smaller scales as well.

There are different approaches for finding execution phases and initiating core
switches:

Fully manual The application developer knows about the application’s execution
characteristics and manually inserts calls to the core migration library. Al-
though very simple, this approach has significant drawbacks. Even with good
knowledge of a code base, it is often hard to predict where the CPU stalls
due to memory accesses. Caches differ between CPUs, so a switching strategy
that works well on one CPU may produce completely different results on
another. Consequently, manual analysis will only work well in constrained
environments such as embedded computing.

Manual migration point placement, automatic analysis Here, the applica-
tion developer only has to identify points where the execution characteristic
may change. The actual classification into compute- or memory-bound
happens automatically using performance counters.

Fully automatic The previous approaches all required manual source code mod-
ifications. As application source code often is not available, a technique
that works with unmodified binaries is desirable. The “phase-based tuning”
system [32] implements this approach.

Our system implements the second approach. On one hand, we believe that
fully manual classification by a developer is not viable and unlikely to produce
good results. On the other hand, requiring the developer to manually separate

3.2. PROGRAM FLOW ANALYSIS 17

void process() {
SWP_MARK;
 ...
}
void read() {
SWP_MARK;
 ...
}
...

fast slow

1 2 3 4 5

Figure 3.1: Overview of our system for program analysis

code sections without classifying them has advantages compared to fully automatic
analysis. From manually inserted library calls, we can precisely analyze all code
sections using performance counters without having to perform sampling or relying
on expensive emulation techniques. The following section describes our approach
in more detail.

3.2 Program Flow Analysis
We now describe our system for classifying an application into compute- and
memory-bound parts. To adjust an application for asymmetric scheduling, a
developer works through the following steps, illustrated in Figure 3.1:

1. The developer modifies the application’s source code to add measurement
points which are calls into our library. These points should mark transitions
between different logical parts of the application. For example, in a database
application, each command type (e.g., select, insert, delete) should start with
a measurement point.

2. The developer executes a representative workload in measurement mode (i.e.,
linking with our measurement library). At each measurement point, our
library reads performance counters, aggregating results for each pair (start
to end) of measurement points. This step needs only one CPU core and does
not perform migration.
As we are doing precise measurements synchronous to the instrumented code,
this step potentially has high overhead.

3. The data from the previous step forms a control flow graph with average
performance counter results on each edge.

4. Using the control flow graph and a threshold value for one of the performance
counter events, we can arrange the measurement points by core type. For

18 CHAPTER 3. DESIGN

example, we may run all code sections with a cache miss rate larger than a
threshold on the slow core and the rest on the fast core. This mapping is the
application profile we pass to the program at runtime.

The choice of threshold value allows controlling the performance and energy
saving ratio. The more code sections are running on the slow core, the larger
are the energy savings, but the lower is the application performance. In this
work, we decide on threshold values through experimentation. Future work
may use them to perform Energy Scaling: By taking deadlines into account
during runtime, we could run more code on the slow core.

5. The user then starts the application in migration mode (i.e., linking with
our migration library), providing the application profile. When hitting a
measurement point, the application uses the profile to decide on the fast or
slow core for the following code segment, migrating as needed.

The steps above leave some decisions to the developer: Which metrics should the
performance counters capture? How can the developer evaluate their measurement
point placement? We discuss these points in the following.

Metrics Selection

In step 2, we use performance counters to characterize each code section. As
discussed before, we want to differentiate memory-bound and CPU-bound code
sections. As the CPI (cycles per instruction) of memory-bound programs reduces
when executing on a slow core instead of a fast one, CPI is an obvious metric to
capture with performance counters. However, two measurement runs on different
cores are necessary to calculate the ratio. Instead, we find memory-bound sections
directly by monitoring cache miss events. Our Ryzen CPU offers events for “L2
latency” (cycles spent waiting for L2 fills), and “L3 cache misses” (number of L3
cache misses) [3]. We normalize these event counts by instruction count to account
for code sections of different lengths.

In Section 5.3.2, we show that using cache miss counters instead of CPI ratio
yields similar results.

Measurement Point Assessment

The code sections between the measurement points have to be long enough to avoid
excessive overhead from core migration. At the same time, each section should fit
well into the memory-bound / compute-bound classification and should contain
only little mixed code. These goals are in conflict. Consequently, finding good
measurement points requires some experimentation: is it better to split a code

3.3. USER-MODE CORE MIGRATION 19

Thread 1

Work

MWAIT

Work

Thread 2

Work

MWAIT

MWAIT

Figure 3.2: Migration based on monitor and mwait between two threads.

segment to get better memory/compute separation, or are the extra core migrations
more detrimental to performance?

Step 3 produces a control flow graph with performance counter results on
each edge. The developer can use this graph to find very long or very short code
sections and gets an overview of the metric used for scheduling. In Section 5.3.3,
we analyze the performance cost of our migration technique, which is important
when considering code section length.

Online Monitoring

Our design only allows for offline application analysis, so the system cannot react
to different application input. Ideally, the system would monitor performance
counters online and decide on future core switching based on current execution
characteristics. However, setting up and reading performance counters requires
access to the CPU’s model specific registers (MSR) on x86. The CPU instructions
rdmsr and wrmsr are privileged, so each access needs potentially multiple system
calls. Future work may be able to reduce this overhead by using the rdpmc
instruction which allows read-only access to performance counters from user space.

3.3 User-mode core migration

In this section, we describe our technique for migrating an application between CPU
cores. Low-overhead migrations allow us to exploit phase behavior in applications at
small scales. Our technique builds upon the x86 monitor and mwait instructions
which we introduced in Section 2.2.

20 CHAPTER 3. DESIGN

The user-mode core migration works like this: During application initialization,
the migration library creates two kernel-level threads, pinning one to a “fast” (high
frequency) CPU core and the other to a “slow” (low frequency) core. One of
these threads then resumes executing application code, while the other sleeps via
mwait. Figure 3.2 illustrates the migration process: When the application asks
for migration, a write to the monitored address wakes up the sleeping thread. The
woken-up thread takes over the application stack and resumes execution, while the
other thread puts itself to sleep.

Even though one of the threads is idle at any time, the operating system always
sees two active threads. A system using user space core migration thus may need
a special OS scheduler that can distinguish the threads to prefer preempting the
idling thread over the working one.

The two CPU cores running the application need a shared cache. Otherwise,
memory accesses would be very costly after migration due to cache coherency
protocols or cache misses. On our AMD Ryzen test system, this means migrating
within caches of only one CCX. We analyze the cost of cross-CCX migrations in
Section 5.3.3.

Chapter 4

Implementation

This work aims to develop a system for reducing power consumption of applications
on asymmetric processors. In the previous chapter, we presented our design: We
analyze the application with performance counters at measurement points defined by
the developer and create an application profile which determines core assignments
for each code section. At runtime, we migrate between a fast and a slow core in
user space.

To evaluate this approach, we now introduce a prototype implementation that
we published on GitHub [35]. Figure 4.1 shows an overview of artifacts involved in
our implementation:

1. After inserting measurement points, the developer compiles the application
once.

2. Linked with our libswp library, the binary will execute with performance
counter monitoring, producing a control flow graph.

3. A script then processes the graph into an application profile that maps
measurement points to aggregated performance counter values.

4. The application user decides on a threshold value, thus assigning each code
section to either a fast or a slow core.

5. Finally, the application user links the program binary with libswp_migrate
and libultmigration and executes it on the asymmetric processor, providing the
profile and the threshold value. At each measurement point, libswp_migrate
compares the measurement point value from the profile with the threshold
given by the user and calls libultmigration to perform migration if necessary.

In the following, we describe these libraries and associated scripts in detail.
The library libswp provides performance counter monitoring between measurement

21

22 CHAPTER 4. IMPLEMENTATION

^?ELF...

libswpvoid process() {
SWP_MARK;
 ...
}
void read() {
SWP_MARK;
 ...
}
...

modified
source
code

binary

link
+

run

control
flow
graph

###
###
###
###
###

appli-
cation
profile

linklibswp_migrate
libultmigration

run

threshold

asymmetric processor

1

2 3

4

5

Figure 4.1: Overview of artifacts involved in our implementation. Orange artifacts
are provided by the user, blue artifacts are generated, and our libraries are green.
The circled numbers correspond to the conceptual steps from Figure 3.1.

points. libswp_migrate is the runtime pendant that decides on core assignments.
In Section 4.2, we describe the libultmigration library which implements usermode
core migration. Finally, we need a hardware platform with an asymmetric proces-
sor to evaluate our system. We explain our asymmetric AMD Ryzen processor
configuration in Section 4.3.

4.1 libswp: Migration based on program flow anal-
ysis

For our program flow analysis, we implemented two libraries with a common C API.
In Figure 4.1, the user links with these libraries in steps (2) and (5). Note that it
is not necessary to recompile the application binary for each step; the libraries are
ABI-compatible, allowing the user to swap them out by configuring the dynamic
linker (e.g., using the LD_PRELOAD environment variable). The libswp library used
in step (2) does performance counter measurements and the libswp_migrate
library used in step (5) does migration based on a profile. For overhead testing, we
implemented another library, libswp_dummy, that contains just the function stubs.

4.1. LIBSWP: MIGRATION BASED ON PROGRAM FLOW ANALYSIS 23

function libswp (step (2)) libswp_migrate (step (5))
swp_init() initialize performance coun-

ters
initialize libultmigration

SWP_MARK collect performance counters
for previous code section

read value from profile, per-
form core migration

swp_deinit() print control flow graph, dis-
able performance counters

deinitialize libultmigration

Table 4.1: Description of functions in libswp and libswp_migrate. The steps refer
to Figure 4.1.

Three functions make up the API. Table 4.1 contains a summary of their
functionality in libswp and libswp_migrate. The functions swp_init() and
swp_deinit perform initialization and deinitialization in both libraries. In server
software, the developer will typically insert calls to these functions before and after
the main event loop.

The macro SWP_MARK specifies a measurement or migration point. It identifies
the point using the current C or C++ function name combined with the current
source file position. This combination yields unique names that are also easy to
understand for the developer. By naming points automatically, libswp relieves
the developer from having to invent a unique name for each measurement point.

On each call of SWP_MARK, the libswp library collects performance counter
results for the previous code section in a map. It identifies each code section via
the names of the start and end measurement points. For code sections called more
than once, the library sums the counter values and keeps a call count. Finally, it
prints results in a simple text format to the standard output on deinitialization.
All measurements combined form a control flow graph with measurement points as
nodes and performance counter results on the edges. For analysis of the results, we
visualize that graph using graphviz [13] (see Figure 5.1 on page 31 in the evaluation
for an example). With the graph, the developer can do an initial assessment of
measurement point placement: Are there unexpected edges? Are there very short
or very long code sections? Are there any clearly compute-bound or clearly memory
bound code sections? Do diverse sections share a common starting node? Thus,
the graph allows quick iteration on measurement point placement without having
to run benchmarks with libswp_migrate while monitoring power.

As preparation for libswp_migrate, a script processes the graph to the application
profile, a simple map that translates a measurement point name to a single counter
value. When arriving at a measurement point, the library cannot know which
of the possible following code paths will be taken. This is why we compute the
average for all outgoing edges of a node, weighted by the number of calls of that

24 CHAPTER 4. IMPLEMENTATION

original thread

ult_regi-
ster_klt()

sem_wait()

thread on
fast core

thread on
slow core

work queue work queueMWAIT MWAIT

start threads
enqueue

wake up

ult_migrate
 (ULT_SLOW)

MWAIT
enqueue

wake up

ult_unregi-
ster_klt()sem_post()

restore stack

switch stack

switch stack

stop thread

Figure 4.2: Visualization of libultmigration functionality. Time flows from
top to bottom. Threads executing user code have a yellow background.
The user code executes ult_register_klt(); ult_migrate(ULT_SLOW);
ult_unregister_klt();.

code path. The resulting value for a start node with code paths 1 to n which are
called callsi times and have the performance counter result counteri is calculated
as follows:

value =

∑n
i=1 callsi · counteri∑n

i=1 callsi

If the code paths following a node are too diverse, this approach will not yield
good results and the developer will have to add additional measurement points.

To use libswp_migrate, the application user sets the environment variable
SWP_CFG to the path of a file with the resulting application profile. Additionally,
the user selects a threshold value in SWP_THRESHOLD. On initialization, the library
then parses the profile. For each measurement point in the profile, if the cache
miss rate is larger than the threshold, the library calls libultmigrate to migrate to
the slow core. Otherwise, it migrates to the large core.

4.2. LIBULTMIGRATION: USER-MODE CORE MIGRATION 25

4.2 libultmigration: User-mode core migration

In Section 3.3, we described a mechanism for fast usermode core migration based
on monitor and mwait. We used a preexisting implementation of this concept,
which we explain in the following.

Figure 4.2 visualizes a simple example that calls libultmigration’s three API
functions in sequence. The initialization function ult_register_klt() starts
two threads via pthreads and pins one to the fast CPU core and the other to the
slow core. The user passes the CPU indices of these cores as environment variables
FAST_CPU and SLOW_CPU. The library then pushes all callee-saved registers on
the stack, switches to a new, empty stack, and enqueues the original stack on the
first thread’s work queue. The original thread then sleeps, waiting on a semaphore.

The two pinned threads start up in a loop that waits for entries in their respective
work queues. Each work queue can hold a single pointer to a user stack. By using
monitor and mwait (see Section 2.2) on the work queue, the CPU cores can
idle, but wake up once another thread enqueues work. After waking up, a thread
switches to the enqueued stack, pops all callee-saved registers, and returns from
the library function call. Hence, the user code continues execution on the new core.

In the example in Figure 4.2, the user code calls ult_migrate(ULT_SLOW)
next, initiating a core migration. The user selects the target core via the constants
ULT_FAST and ULT_SLOW; selecting the currently active core does nothing. Once
again, libultmigration pushes all callee-saved registers on the user stack and switches
back to the thread’s own stack. It then enqueues the user stack in the target work
queue.

Finally, the function ult_unregister_klt() reverts back to a single thread:
the worker thread saves registers, switches to its own thread, signals the original
thread’s semaphore, and stops the other thread and itself. The original thread
restores the user stack and returns control to the user.

We also implemented a dummy library that, when loaded via LD_PRELOAD,
allows running a program without migration. We use this library for power and
performance comparisons in our evaluation.

4.3 Making an asymmetric processor

AMD Ryzen processors offer up to six configurable P-states. A P-state is a
combination of frequency and voltage at which the processor can be operated.
They are commonly used for overclocking by increasing the frequency and voltage
of the highest P-state P0 [1]. Kernel-mode code can configure the P-states by
writing to model-specific registers (MSR) [3]. We developed a tool that can read

26 CHAPTER 4. IMPLEMENTATION

and write this P-state configuration. It relies on the msr Linux kernel module [21]
for accessing model-specific registers from user space.

Although each core has an individual set of these model-specific registers, the
processor does not allow configuring P-states differently on each core. Consequently,
we always set identical P-state configurations on all cores. For our asymmetric
configuration, we set one P-state to the lowest possible frequency of 833 MHz. The
highest P-state remains at the base clock of 3600 MHz. We find the high frequency
to restrict lower frequencies on the same CCX; for example, with a base frequency
of 3600 MHz and a configured low frequency of 833 MHz, the slow core runs with
an actual frequency of 1400 MHz.

During normal execution, the operating system periodically selects a P-state for
each core via ACPI based on current system load. Linux implements the selection
mechanism in the acpi_cpufreq driver; “cpufreq governors” provide the selection
policy. Instead of reacting to system load, the “userspace” governor allows setting
a fixed P-state via files in sysfs. Note that due to the generic nature of the driver,
the sysfs interface works with frequency values instead of P-state numbers. These
values correspond to the P-state settings at kernel startup time.

We found that the actual processor frequency as measured by APERF/M-
PERF [3] depends on the processor topology. Ryzen processors implement simul-
taneous multithreading (SMT). Each core exposes two hardware threads to the
OS, both of which share a single P-state. On a higher level, the processor consists
of two core complexes (CCX, see Section 2.3.2 for an overview). When setting
different P-states for cores of the same CCX, the lower-bound frequency appears
to rise with the highest active frequency. With our frequency configuration of
3600 MHz and 833 MHz on one CCX, the slower core actually runs at a frequency
of approximately 1440 MHz.

Although there are no such restrictions when setting P-states across core
complexes, we observed that application performance on one CCX changes with
the highest active P-state on the other CCX. We suspect cache coherency protocols
between the CCX’s L3 caches to be the cause here, as these caches likely adjust
their speed to the CCX’s fastest core. To avoid interference from this effect, we
always run tests on only one CCX and set the other’s cores to the lowest P-state.

Chapter 5

Evaluation

The overall goal of this work is to use fast core migration on an asymmetric
multicore processor in order to save energy. To reach this goal, we apply efficiency
specialization by migrating CPU-heavy code to the fast CPU core and memory-
heavy code to the slow core (see Chapter 3). In the previous chapter, we introduced
a prototype for analyzing applications, identifying memory-heavy and CPU-heavy
code sections, and for performing fast core migration in user space. Additionally,
we described an asymmetric core configuration for AMD Ryzen processors to serve
as a test bed. We now put this prototype to the test.

In our experiments, we say our migration technique is successful regarding our
goal if after applying it, an application consumes less power on average than when
executed on a single core with a performance-equivalent constant frequency (i.e, a
frequency with which the application finishes within the same duration). We are
targeting server software where latency is often critical, so sacrificing performance for
energy consumption is only possible as long as the software does not miss its latency
deadlines (see the discussion about energy scaling in Section 2.1). Therefore, our
metric is more useful than overall energy consumption: If our migration technique
is successful, it is an improvement at that performance level, irrespective of lower
constant frequencies that may not meet the latency deadlines.

The application analysis library libswp we designed and implemented in the
previous chapters requires manual work from developers. To show that the manual
time and effort is reasonable, we walk through the steps necessary to adapt a
large real-world application, namely MySQL Server. Along the way, we show the
artifacts our system produces (see Figure 4.1 for an overview).

Finally, we use microbenchmarks to analyze smaller parts of the system. We
validate detection of memory- and CPU-heavy code sections, verify that efficiency
specialization is applicable on our platform, and measure overhead of our migration
technique.

27

28 CHAPTER 5. EVALUATION

CCX CCX 0 CCX 1
Core 1 2 3 4 5 6
P-state P0 P2 P2 P2 P2 P2
Target Voltage (V) 1.2 0.8 0.8 0.8 0.8 0.8
Target Frequency (MHz) 3600 833 833 833 833 833
Effective Frequency (MHz) 3600 1440 1440 833 833 833

Table 5.1: Overview of our asymmetric core configuration on an AMD Ryzen 1600X
processor with six cores.

5.1 Test Setup

Our test platform is an AMD Ryzen 1600X processor. It has six cores, so there
is one disabled core per core complex (CCX, see Section 2.3.2). We set the first
core to P-state P0 at the base frequency 3600 MHz and all other cores to P2 at
the lowest possible frequency 833 MHz. See Section 4.3 for details on asymmetric
Ryzen processor configuration. Table 5.1 provides an overview of frequencies and
voltages. Even though we set the same P-state on all cores except the first, we
get different actual frequencies on the two core complexes (effective frequencies
are measured with APERF and MPERF [3]): On the CCX with the first core set
to P0, the other cores clock at 1440 MHz instead of 833 MHz. As we have to do
migration within one CCX due to Ryzen’s cache organization (see Section 2.3.2),
we cannot avoid the higher frequencies. Unfortunately, AMD does not document
any CPU core voltage sensors, so we cannot verify the per-core voltages.

For power monitoring, we have two alternatives. First, we measure overall
current at the wall socket with a multimeter. Second, we use the CPU’s built-in
running average power limit (RAPL) counters. Ryzen CPUs include one RAPL
counter for each core as well as a counter for the whole package [3]. We are
only interested in the CPU power consumption, but the multimeter measures the
whole system, so unrelated components may interfere with our measurement. The
RAPL counters only incorporate CPU power. However, AMD does not publish
any information about their accuracy and the data basis, for example whether the
data is produced by on-chip current sensors or an estimation based on energy event
counters [8]. To avoid these issues, we use the following methodology: As part of
each benchmark run, we measure power consumption with the multimeter while the
CPU is idle. During the benchmark workloads, we record approximately one reading
per second of both multimeter and RAPL data. We then calculate the average of
all values read during one benchmark run and subtract the idle power consumption
from the multimeter data. Finally, we compare the resulting multimeter value
with the per-core RAPL readings. We find that the multimeter and RAPL results

5.2. ADAPTING AN APPLICATION: MYSQL 29

correlate closely. The multimeter values are usually a bit higher than the RAPL
values, which is consistent with previous research on Intel’s implementation of
RAPL counters [15]. We see more noise in the multimeter data which we smooth
out by repeating the benchmarks.

5.2 Adapting an Application: MySQL
We now describe the concrete steps necessary to adapt a large real-world application
to use our system for single-threaded scheduling on asymmetric processors. We
want to demonstrate that the manual modifications our prototype requires are
reasonable even without prior knowledge of the code base. Finally, we compare the
resulting performance and power consumption with and without migration.

We chose the MySQL database [22] in version 5.7 as example application for
the following reasons. MySQL is a widely-used open-source SQL database server
and has a typical client-server architecture: Clients connect to the database via
network sockets to send SQL requests. MySQL parses, optimizes and executes
the requests and answers with the results. MySQL has a thread pool to handle
concurrent client connections. As our prototype only works with single-threaded
applications, we limit MySQL to maximum one connection at a time.

As explained in Section 3.2 and Section 4.1, applying our prototype requires
five steps:

1. Add measurement points to the source code.

2. Execute a benchmark and collect performance counter results.

3. Create control flow graph from performance counter data.

4. Process the graph into an application profile.

5. Run the application in “migration mode” using the profile.

In the following, we show the results from each of these steps.

5.2.1 Source Code Modification

As first step, we have to modify the application source code to link with our library,
perform initialization and cleanup, and to add measurement points. Listing 5.1
shows a summary of these changes. Our changes are very minor: For inserting seven
measurement points, we added 21 lines of code to the MySQL source files. For
each file, we had to add a preprocessor include to libswp’s header file, and inserted
SWP_MARK macro calls to interesting functions. We identified these functions with

30 CHAPTER 5. EVALUATION

libmysqld/CMakeLists.txt | 1 + - Adding libswp to the build
sql/CMakeLists.txt | 3 ++- - system
sql/mysqld.cc | 6 ++++++ # Initialization and cleanup
sql/sql_class.cc | 3 +++ -
sql/sql_insert.cc | 4 ++++ |
sql/sql_parse.cc | 7 +++++++ | Adding measurement points
sql/sql_select.cc | 4 ++++ |
sql/sql_update.cc | 3 +++ -
9 files changed, 31 insertions(+), 1 deletion(-)

Listing 5.1: Annotated summary of changes to the MySQL source code. The
numbers refer to lines of code.

basic knowledge about SQL: We separated request processing from different types
of SQL query execution and iterated on the exact measurement point placement
using the resulting control flow graph.

The remaining 10 new lines listed in Listing 5.1 are in the build system and in
initialization functions. MySQL uses the CMake build system [9], so we had to
modify its CMakeLists.txt build definition files to link with libswp. The C++
source file sql/mysqld.cc contains MySQL’s main function. We added calls
to swp_init() and swp_deinit() there. See Section 4.1 for a description of
these functions.

In summary, the manual source code modifications do not require much work
from the developer and are reasonable even without prior knowledge of the code
base.

5.2.2 Performance Counter Monitoring

To obtain an application profile, we run the database and execute the TPC-C bench-
mark from OLTP-Bench [11]. We only monitor the actual benchmark execution
and perform benchmark initialization with an unmodified MySQL instance.

When shutting down, our library prints the performance counter results to the
console. By processing the results with graphviz [13], we obtain the control flow
diagram shown in Figure 5.1. Using the graph, we do a first assessment of our
measurement point placement. There is only one edge with a very high amount of
cache misses, but that edge from do_command to send_statement_status
has only a single call. The mysql_execute_command function leads to multiple
measurement points, but those edges all have similar cache miss rates. These edges
are the shortest, with roughly 5000 instructions.

5.2. ADAPTING AN APPLICATION: MYSQL 31

do_command

mysql_execute_command

c=62742
i=41975
cpi=1.713944
l2=0.182842
l3=0.003649

send_statement_status

c=1
i=5175
cpi=8.878261
l2=0.779324
l3=0.842899

c=4443
i=31833
cpi=2.836814
l2=0.389876
l3=0.038721

execute [insert]

c=12683
i=5264
cpi=5.598001
l2=0.282901
l3=0.023227

execute [update]

c=16530
i=5122
cpi=5.740129
l2=0.279282
l3=0.020313

execute_sqlcom_select

c=29086
i=5751
cpi=5.723458
l2=0.366398
l3=0.021351

c=62743
i=25801
cpi=2.401345
l2=0.238328
l3=0.027210

c=12683
i=189541
cpi=1.172613
l2=0.150232
l3=0.004393

c=16530
i=173923
cpi=1.481282
l2=0.198939
l3=0.004121

handle_query

c=29086
i=7481
cpi=5.151496
l2=0.411987
l3=0.018912

c=29086
i=85832
cpi=1.934196
l2=0.258739
l3=0.005928

Edge annotations
c Number of calls
i Number of instructions (per call)
cpi Cycles per instruction
l2 Number of L2 cache misses per instruction
l3 Number of L3 cache misses per instruction

Figure 5.1: Slightly simplified MySQL control flow diagram from running the
TPC-C benchmark. Edges are colored by L2 miss rate.

32 CHAPTER 5. EVALUATION

"mysql_execute_command" 0.0226868
"send_statement_status" 0.02721
"execute [insert]" 0.004393
"handle_query" 0.005928
"do_command" 0.00366238
"execute_sqlcom_select" 0.018912
"execute [update]" 0.004121

Listing 5.2: Profile file used for migration. The values are based on L3 cache miss
rates.

Type Power Transactions per second
Constant 3.6 GHz 5.6 W 197
Migration 4.7 W 131
Constant 1.4 GHz 3.9 W 135

Table 5.2: Results from running the TPC-C benchmark on MySQL. Migration
performs worse than the constant lower frequency in both power consumption and
performance.

5.2.3 Application Profile

To create the application profile for MySQL, we take a weighted average of all
outgoing cache miss rates for each node (see Section 4.1). In this case, we are using
L3 cache miss rates; the L2 cache miss rates would yield similar results. Listing 5.2
shows the resulting profile for MySQL.

In order to perform migration, we have to decide on a threshold value. Figure 5.2
visualizes the profile values. There is a clear gap in values between roughly 0.02
and 0.005. With a threshold value of 0.01, three nodes execute on the slow core
and the other four on the fast core.

5.2.4 Migration Results

We then run the TPC-C benchmark with libswp_migrate in migration mode.
We record the benchmark metric, transactions per second, as well as the average
power consumption during benchmark execution. We configure the processor as in
Table 5.1: The first core clocks at 3.6 GHz and is the fast core, the second core
with 1.4 GHz is the slow core. For comparison, we also execute the benchmark
without migration using libswp_dummy on both the slow and the fast core with
the same processor configuration.

Table 5.2 shows the results. We can see that our migration technique is not
successful: Whereas power consumption with migration lies between the two con-

5.3. MICROBENCHMARK 33

 0

 0.005

 0.01

 0.015

 0.02

 0.025

 0.03

se
nd

_s
ta

te
m

en
t_

st
at

us

m
ys

ql
_e

xe
cu

te
_c

om
m

an
d

ex
ec

ut
e_

sq
lc

om
_s

el
ec

t

ha
nd

le
_q

ue
ry

ex
ec

ut
e

[in
se

rt
]

ex
ec

ut
e

[u
pd

at
e]

do
_c

om
m

an
d

L3
 c

ac
he

 m
is

s r
at

e

slow
fast

threshold

Figure 5.2: Profile values based on L3 cache miss rates from Listing 5.2, partitioned
with a threshold value of 0.01.

stant frequencies, the performance is worse than with the constant lower frequency.
We would have expected to see MySQL with migration getting performance results
somewhere between the two cases with constant frequency, but with lower power
than when running MySQL at a performance-equivalent constant frequency.

What does the loss of speed result from? Why does the power consumption
increase despite lower performance? In the following, we evaluate our prototype
at finer granularities with the help of a microbenchmark to obtain a better under-
standing of the issues.

5.3 Microbenchmark

Why does the migration technique not improve power consumption? Here are a
couple of possible root-causes.

1. CPI of memory-heavy code may not actually improve when migrating to the
slower core on our test system.

2. The cache miss counters may not be effective at finding memory-heavy code
where CPI improves.

34 CHAPTER 5. EVALUATION

(a) Pointer Chasing (b) Indirect Access

Figure 5.3: Illustration of the two memory-heavy functions in the microbenchmark.

3. Migration overhead may be too high.

4. Our test system may impose a high power overhead on asymmetric configu-
rations and our migration technique.

5. On our test system, migration may not be better than a fixed frequency even
for an optimal workload.

We now construct a microbenchmark to check these hypotheses. Our mi-
crobenchmark models the optimal case for the scheduling technique, as our inten-
tion is to find the maximum benefit our prototype can achieve. We construct a
CPU-heavy and two memory-heavy functions. By mixing these workloads, we can
also simulate less optimal cases. The CPU-heavy function executes integer- and
floating point instructions in a loop. It works with registers only and does not
touch the memory.

We implemented two variants with different memory access patterns for the
memory-heavy function. Figure 5.3 shows an illustration of these functions. For the
pointer chasing function, we fill a large buffer with consecutive pointers, then shuffle
the pointers. The benchmark then continuously follows the pointers through the
buffer. This construction prevents cache prefetching completely, as each memory
access depends directly on the preceding one and the buffer is too large to fit
completely into the cache. The indirect access function works with two buffers.
The first buffer contains a list of randomly generated, but unique pointers into
the second buffer. The benchmark walks sequentially through the first buffer,
dereferencing each pointer into the second buffer. This access pattern allows the
prefetcher to load the sequentially accessed pointers in the first buffer. Due to the
size of the second buffer, dereferencing the pointers will produce cache misses.

The microbenchmark alternately calls the CPU-heavy function and one of the
memory-heavy functions, simulating two code sections with differing characteristics.
Between these functions, the microbenchmark calls libultmigration’s migration

5.3. MICROBENCHMARK 35

function directly. It migrates to the fast core before calling the CPU-heavy function
and to the slow core before calling one of the memory-heavy functions. We chose a
constant overall amount of operations so that the microbenchmark runs for roughly
20 to 40 seconds, depending on the frequency.

We do not expect real programs to have as extreme behavior as the microbench-
mark. To approximate real programs, we implemented mixed benchmark functions.
These functions interleave calls to the CPU and memory functions with a given
ratio. For example, a memory ratio of 70% means that 70% of the usual memory
access iterations are mixed with 30% of iterations of the CPU function. Thus, the
benchmark still runs for a similar amount of time.

5.3.1 CPI

The core assumption behind efficiency specialization on frequency-based asymmetric
processors is that memory-heavy code executes more efficiently at lower frequencies
(see Section 3.1). In this section, we verify this assumption by comparing cycles
per instruction (CPI) of our microbenchmark on the fast and slow cores. For
memory-heavy code, we expect to see a lower CPI value on the slow core, as CPU
stalls from memory accesses take a constant amount of time whereas cycle duration
increases. We run the benchmark twice, once on the slow core and once on the
fast core. For each section, we monitor instructions retired and CPU cycles with
performance counters. In addition to our pure CPU and memory functions (100%),
we also compare mixed functions at 80% and 60%.

In Figure 5.4, we plot the results as CPIratio =
CPIfast
CPIslow

. For the pure CPU
workload (100%), there are no memory accesses and thus there is no CPI difference
at all (CPIfast

CPIslow
= 1). Mixing in memory accesses increases the CPI difference linearly

for both our memory-heavy functions. The memory workload behaves similarly,
with a larger CPI ratio than the CPU workload’s at any mixing ratio.

In summary, CPI behaves as expected: memory-intensive code has a large CPI
ratio, and CPU-intensive code has a small CPI ratio when comparing execution
on fast and slow cores. This result confirms our assumptions behind efficiency
specialization from Section 3.1.

5.3.2 Cache Miss Performance Counters

In the previous section, we ran the microbenchmark two times on different cores to
compare CPI values. For our application characterization, we want to avoid having
to run application benchmarks multiple times, so we monitor cache miss events
instead. We expect code sections with a large amount of cache misses to also have
a large CPI difference. We verify this expectation in this section.

36 CHAPTER 5. EVALUATION

 1
 1.2
 1.4
 1.6
 1.8

 2
 2.2

100% 80% 60%

CP
I r

at
io

CPU and memory ratio

CPU Memory

(a) Pointer Chasing

 1
 1.05

 1.1
 1.15

 1.2
 1.25

 1.3
 1.35

100% 80% 60%

CP
I r

at
io

CPU and memory ratio

CPU Memory

(b) Indirect Access

Figure 5.4: Comparison of CPI ratios from running the microbenchmark on the
fast and the slow cores, split between CPU function and memory function. At
100% mixing ratio, the CPU and memory functions are pure; at 80% and 60% they
are mixed with each other at that ratio. The CPI ratio behaves as expected and is
generally larger for the memory-heavy functions.

Figure 5.5 shows L3 cache misses per instruction for the microbenchmark’s CPU
and memory functions. Comparing with Figure 5.4, we can see that partitioning
by L3 cache miss rate will yield similar results as by CPI rate. Even for the mixed
cases, cache miss rates of the memory-heavy sections are larger than those of the
CPU-heavy sections within one memory access pattern.

With both memory functions, the CPU-heavy sections give very similar results
for CPI and cache miss rates. In contrast, the memory-heavy sections have some
outliers. For indirect access, we see a rise in CPI ratio at 80% whereas the L3 cache
miss rates only fall. For pointer chasing, both the CPI ratio and the cache miss rates
fall consistently when mixing in CPU work. However, we measure a surprisingly
high amount of cache misses at 100%. These differences are not problematic for
our classification, as the miss rates for the memory-heavy sections are still larger
than those of the CPU-heavy sections.

However, we believe that ultimately additional analysis of more diverse memory
access patterns is necessary, as we observed some conflicting results with the mixed
workloads when comparing our two memory access patterns. At 60%, the cache
miss rate of pointer chasing is lower than the rate of indirect access, but the CPI
ratio is larger. For our prototype, the L3 cache miss rate appears to sufficiently
differentiate between memory-heavy and CPU-heavy code sections.

5.3. MICROBENCHMARK 37

 0

 0.005

 0.01

 0.015

 0.02

100% 80% 60%

0.42

L3
 c

ac
he

 m
is

s r
at

e

CPU and memory ratio

CPU Memory

(a) Pointer Chasing

 0
 0.005

 0.01
 0.015

 0.02
 0.025

 0.03

100% 80% 60%

L3
 c

ac
he

 m
is

s r
at

e

CPU and memory ratio

CPU Memory

(b) Indirect Access

Figure 5.5: L3 cache misses per instruction while running the microbenchmark,
split between CPU function and memory function. Note that at 100%, the pointer
chasing memory function’s cache miss rate is off-graph. We can see that partitioning
by L3 cache miss rates will correctly assign CPU and memory functions in all cases.

5.3.3 Migration Overhead

In the previous sections, we demonstrated that libswp’s method of identifying
memory-heavy and CPU-heavy code sections is effective. As we found that our
prototype is not successful at reducing power consumption of MySQL, we now
analyze our migration method. We seek to find out how long a migration takes
and how much influence this overhead has on our benchmarks. Additionally, we
aim to confirm our previous assertion that a shared L3 cache is necessary and that
migration across CCX is not viable.

We measure time per migration with a simple benchmark that continuously
migrates between two cores and measures the overall time to do so. We test two
processor configurations: The asymmetric configuration from Table 5.1 with cores
in P-states P0 and P2, and a symmetric configuration in which all cores are in P0.
In our asymmetric configuration, the cores in P2 have different effective frequencies
on the two CCX. Thus, the symmetric configuration allows assessing the overhead
of cross-CCX migration better.

Figure 5.6 shows the results. At P0, migrating across CCX is approximately
three times slower than migrating within one CCX; with the asymmetric configura-
tion, it is approximately two times slower. Note that we only measure overhead
from libultmigration here. With real applications, there is additional overhead from
remote cache accesses for application data.

Migrating within a CCX with the asymmetric configuration takes approximately
1.75 µs per migration. The microbenchmark migrates 10000 times, so there is a
total cost of 17.5 ms for all migrations. At a total runtime of more than 20 seconds,

38 CHAPTER 5. EVALUATION

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

Same CCX

Across CCX

Same CCX

Across CCX

tim
e

pe
r m

ig
ra

tio
n

(µ
s) P0 - P0

P0 - P2

Figure 5.6: Time per migration between cores of the same CCX and across CCX
at different P-states.

this cost is negligible. Our modified MySQL from Section 5.2 migrates four times
per command. TPC-C executes approximately 27 commands per transaction and
achieved 131 transactions per second with migration. Consequently, there are
4 ·27 ·131 ≈ 14 ·103 migrations per second and for each second, we have a migration
overhead of 14 · 103 · 1.75µs ≈ 25ms which is 2.5%. Although not negligible, this
overhead is not high enough to explain the bad result in Table 5.2. Even with 2.5%
more transactions per second, MySQL with migration still performs worse than at
constant 1.4 GHz.

5.3.4 Overhead From Ryzen as Asymmetric Processor

We use AMD Ryzen processors with different frequencies per core as our test
platform. AMD did not design Ryzen to be an asymmetric processor, so the
processor is not optimized for this use. In this section, we analyze the power and
performance overhead from our use of Ryzen as an asymmetric processor. We
measure the power consumption of user space mwait, monitor the voltage supply
from the motherboard and calculate optimal performance with the microbenchmark.

The monitor and mwait instructions that our migration technique uses set
the CPU to sleep until a cache line changes. In Section 2.2, we noted that although
the mwait instruction takes a C-state number as argument, the processor most
likely ignores that request when using mwait in user space. We now measure the
additional power consumption from mwait while also monitoring motherboard
sensors for the CPU supply voltage. We test two CPU configurations: the asym-
metric configuration from Table 5.1 and a symmetric configuration with all cores in
P-state P2. In Figure 5.7a, we can see that the power overhead depends only on the

5.3. MICROBENCHMARK 39

 0

 1

 2

 3

 4

 5

fast slow

Po
w

er
 (W

)

core executing mwait

P-state of fast core
P0 P2

(a) Power consumption

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

none fast slow

su
pp

ly
 v

ol
ta

ge
 (V

)

core executing mwait

P-state of fast core
P0 P2

(b) Motherboard supply voltage

Figure 5.7: Power consumption and motherboard supply voltage while running
mwait on an otherwise idle system.

P-state of the fast core and does not decrease when the slow core executes mwait.
Figure 5.7b shows the minimum supply voltage from the motherboard during the
experiment as well as on a fully idle system. We can see that the voltage only
drops when the system is completely idle. As soon as any core executes mwait,
the motherboard supplies the full voltage for the highest active P-state, even if
the core with that P-state is idle. This behavior is not optimal for an asymmetric
processor. Just as the motherboard reduces the supply voltage when the whole
processor is idle, it should adjust the voltage only to the needs of the active cores.

For our work, the extra power consumption from mwait means that applications
adapted with our prototype are at an inherent disadvantage compared to unmodified
applications. If the application is idle at times, which is not uncommon in networked
server software such as the MySQL database, the 4 W extra power consumption is
significant.

To understand the overall overhead of migration and mwait on the Ryzen
processor better, we now run the CPU-heavy and memory-heavy parts of the
microbenchmark independently on the fast or slow core. The processor is configured
as usual (see Table 5.1). We combine the results by adding the durations and
taking the average of the power consumption weighted by duration of the individual
parts. In Figure 5.8, we plot these combined results as well as normal invocations
with migration. We show the graph for the pure workloads only, because the
mixed workloads produce very similar results. There is only negligible difference in
runtime between the independent and the migration-based runs, which confirms
our result from Section 5.3.3. In contrast, we can see an increase of 2 W in power

40 CHAPTER 5. EVALUATION

6

7

8

9

10

19 20 21 22
Duration (s)

Po
w

er
 (W

)

Memory Work

Indirect Access

Pointer Chasing

independent

migration

Figure 5.8: Comparison of microbenchmark running with migration and a synthetic
result from running memory-heavy and CPU-heavy parts independently on the
two cores. There is little performance overhead, but migration increases power
consumption by 2 W.

consumption for doing migration. This overhead is lower than what we have seen
when comparing mwait with an idle system (see Figure 5.7a). We assume this
difference stems from the fact that the CPU disables more components when
all cores are idle, allowing the motherboard to reduce the supply voltage (see
Figure 5.7b). In the benchmark here, there is still one active core when executing
the parts independently, so the motherboard has to supply the full voltage.

In summary, Ryzen processors have deficiencies as asymmetric platform that
lead to increased power consumption. This contributes to the bad result we have
seen for MySQL: With the 2 W overhead we have observed for the microbenchmark
removed, MySQL with migration would have a lower power consumption than at
constant 1.4 GHz (compare Table 5.2).

5.3.5 Comparison With Fixed Frequency

Is migration with the microbenchmark better than running at a constant frequency?
In the following, we show that AMD Ryzen systems are completely unsuitable
as asymmetric processors. To answer the question, we run the microbenchmark
without migration at five different processor frequencies, and once with migration
between 3.6 GHz and 1.4 GHz (our usual asymmetric processor configuration, see
Table 5.1).

In the previous Section 5.3.4, we have seen that the Ryzen processor we use as our
test platform always consumes additional power when using mwait. We now want
to assess our prototype without this influence. To improve comparability, we thus
execute mwait on another core on the same CCX during the constant-frequency
benchmark runs.

5.3. MICROBENCHMARK 41

CPU/Mem: 100% CPU/Mem: 80%

20 30 40 20 30 40

8

10

12

Duration (s)

Po
w

er
 (W

)

Memory Work
Indirect Access

Pointer Chasing

Frequency (MHz)
1440

1950

2320

2760

3450

constant frequency

migration

(a) Symmetric setup for the constant-frequency points.

CPU/Mem: 100% CPU/Mem: 80%

20 30 40 20 30 40

6

9

12

15

Duration (s)

Po
w

er
 (W

)

Memory Work
Indirect Access

Pointer Chasing

Frequency (MHz)
1440

1560

2150

2400

3090

3490

constant frequency

migration

(b) Asymmetric setup for the constant-frequency points.

Figure 5.9: Comparison of migration (triangle) with different fixed frequencies
(circle) in performance and power consumption.

42 CHAPTER 5. EVALUATION

CCX CCX 0 CCX 1
Core 1 2 3 4 5 6
Asymmetric P-state Setup P0 P1 P2 P2 P2 P2
Symmetric P-state Setup P0 P2 P2 P2 P2 P2

Table 5.3: P-state configuration with our two test setups. We vary the frequency
of the bold P-state and execute the microbenchmark on that core.

AMD designed Ryzen to be a symmetric multicore processor. On such processors,
the operating system usually sets high P-states only to boost active cores with high
CPU utilization and sets idle cores to low P-states to save energy [23]. In contrast,
our asymmetric processor configuration keeps one core at the highest P-state at all
times. To test whether this deviation from intended usage has adverse effects, we
use two different strategies for setting up the extra processor frequencies, illustrated
in Table 5.3. For the asymmetric setup, we set core 2 to the otherwise unused
P-state P1 whose frequency we vary. Thus, this setup has an inactive faster core
and is still an asymmetric configuration similar to the one we use for migration.
With the second symmetric setup, we start the benchmark on core 1 and change
the frequency of P-state P0. This setup mirrors what an operating system would
configure on symmetric multicore processors: The highest P-state for the active
core where the benchmark runs and lower P-states for idling cores.

For both setups, we start with the usual asymmetric core configuration (see
Table 5.1 and execute the microbenchmark with migration between core 1 and core
2. We then run the benchmark without migration on both of these cores, which
produces the first and last points on the comparison line in the graph. Finally, we
change the P-state configuration as described in the previous paragraph to test
additional frequencies.

Figure 5.9 shows the results for the pure microbenchmark functions and mixed
at 80%; in Appendix A, we include the complete results. The migration technique
is successful if it uses less power than the constant frequency with the same perfor-
mance. In the graph, this is the case if the triangle appears below the corresponding
line. For the symmetric setup in Figure 5.9b, migration is never successful. On
the contrary, we can see that migration is successful in the asymmetric setup
in Figure 5.9a for pointer chasing ; migration consumes slightly less power than
with the performance-equivalent constant frequency. In contrast, indirect access
consumes slightly more power with migration than without.

The processor’s power consumption changes differently with frequency in our
two setups. In the asymmetric setup, power decreases linearly with frequency,
whereas in the symmetric setup, it decreases cubically. Additionally, the lowest-
frequency point in Figure 5.9b has unusually high power consumption. This point

5.4. DISCUSSION 43

originates from running the microbenchmark on core 2 in the migration setup.
These results make evident that our Ryzen processor does not actually regulate
voltage per core (see Section 2.3.2). As long as there is a core with higher voltage
needs, as in the asymmetric setup or the lowest-frequency point in the migration
setup, all cores are supplied with the higher voltage and thus consume more power.
Only when reducing the P0 frequency, the processor also reduces the voltage and
allows higher power savings.

The results here show that our migration technique is not viable on AMD Ryzen
processors. We need—at the same time—both a core with high voltage to support
high frequencies on the fast core and another with low voltage to reduce power
consumption on the slow core. Without independent voltage domains, reducing
power consumption using migration on asymmetric processor setups is impossible.

5.4 Discussion

We have adapted the MySQL database with our prototype. We observed that
adapting complex applications is feasible despite the need of manual source code
modifications. However, we found that the adapted MySQL uses more power while
running slower than without migration. We then analyzed our system at smaller
scales using a microbenchmark. We successfully confirmed assumptions we made
in our design: executing memory-heavy code on a core clocked at a lower frequency
improves cycles per instruction compared to a high-frequency core, and we can
detect such code sections using cache miss performance counters. We measured both
power and performance overhead of our migration technique and concluded that
the performance loss is acceptable, but we observed high power consumption from
having an additional active core (in our case, from mwait). Finally, we confirmed
this result by comparing power consumption and runtime of the microbenchmark
with and without migration, observing that the microbenchmark at best performs
only slightly better with migration than without.

Thus, of the five hypotheses about why migration is not successful we proposed
in Section 5.3, we refuted the first two about the CPI difference and the cache miss
counters. This result shows that our application analysis works correctly and that
the bad result is due to inefficient migration.

Investigating performance overhead from migration, the third hypothesis, we
concluded that the raw delay per migration is sufficiently low. However, we only
analyzed the migration itself there and not delays due to L1 and L2 cache misses
in application code after migrating. As we observed the raw migration time across
CCX—without a shared L3 cache—to be three times slower, the costs from L2 cache
misses are likely significant as well. Consequently, developers adapting applications
for migration need to make sure that code sections between migrations are always

44 CHAPTER 5. EVALUATION

long enough. For our adaption of MySQL, this would mean reducing the amount
of measurement points.

So far, our evaluation did not find substantial issues with our prototype. Last,
we analyzed the suitability of AMD Ryzen processors for our system (hypotheses
four and five). We observed that our Ryzen processor does not appear to use its
per-core low-dropout voltage regulators that are part of the “Zen” core design [31].
As the processor also handles user space mwait inefficiently with a power overhead
of 2 W to 4 W, we conclude that Ryzen processors are not suitable as asymmetric
processors, especially in combination with high-frequency core migration.

All in all, we believe that our approach to save energy on asymmetric processors
needs more evaluation on another hardware platform. In sum, our results only
prove that Ryzen processors are not viable for our technique, but do not confirm
or refute the effectiveness of our approach and prototype implementation.

Chapter 6

Conclusion

Due to power constraints, modern processors can often power only parts of their
chips at the same time, which leads to dark silicon. Asymmetric processors are
a promising solution to this problem. By including CPU cores with different
power and performance characteristics, an asymmetric processor can deliver higher
performance per watt than a symmetric one. Efficiency specialization optimizes
for this metric by scheduling code on the CPU cores that can execute the code
most efficiently. In this work, we designed and implemented a method for doing
efficiency specialization within a single application.

Existing approaches to scheduling on asymmetric processors are hard to apply
to homogeneous server software, as they usually classify code at the granularity of
threads. Our main contribution is the design and the implementation of a system
that can utilize more fine-grained changes in application behavior found in this
type of software. It consists of libraries for characterizing applications and for
doing optimized, high-frequency CPU core migration to the optimal core in order
to save energy. Using the MySQL database server as an example, we showed that
a developer can use our library with moderate manual work to adapt real-world
applications to execution on asymmetric processors in a way that optimizes overall
cycles per instruction.

Our second contribution is the analysis of AMD Ryzen CPUs as asymmetric
processors. We developed software for configuring the processor’s P-states, allowing
us to create an asymmetric core configuration based on frequency scaling. However,
we observed that our core migration technique does not yield power savings on the
Ryzen processor in general. Although—according to design documents [31]—each
Ryzen core includes a voltage regulator, we found that the core with the highest
active frequency and voltage on the CCX determines overall power consumption,
even if that core is only idling. In comparison with a symmetric processor setup
without migration that properly allows reducing core voltage, our method will
therefore never save energy on Ryzen processors.

45

46 CHAPTER 6. CONCLUSION

In summary, we believe that our application analysis and core migration method
could effectively reduce power consumption, but we could not demonstrate this
effect on AMD Ryzen due to unexpected inefficiencies in that processor’s design.

6.1 Future Work
We found the AMD Ryzen processors we used in our evaluation to be unsuitable for
our system. Consequently, re-evaluating the system on a more efficient asymmetric
processor will likely yield new results. ARM’s future “DynamIQ” [33] processors
are a potential candidate. They combine cores with different microarchitectures
and include a shared cache for all cores. As we have shown in Section 5.3.3, such a
cache is crucial for acceptable migration performance.

In Chapter 3, we proposed extending our system with energy scaling. Currently,
our library decides on core assignments using pre-collected cache miss rates as only
metric. At runtime, the application developer could pass additional information
such as current processing deadlines to the library. This information would allow
choosing the slow core more often to further reduce power consumption at the cost
of performance, as long as the application can still meet its deadlines. Additionally,
the library could continuously collect performance counter events at runtime to
detect changes in behavior due to different input data.

Our prototype can only analyze and perform migration with single-threaded
applications. This limitation is not inherent to our design. Our application analysis
library would need synchronization to collect performance counters across threads
safely. The thread migration library would need extensions to work with more than
two cores and to schedule the threads across these cores. To handle blocking I/O
correctly, modifications to the kernel are necessary.

Developers applying our prototype need to work good migration points out man-
ually. Previous works have shown that fully automatic application characterization
is possible (e.g., phase-based tuning [32]). A similar approach may also work for
our system, although we migrate between shorter code sections than phase-based
tuning. A hybrid system that suggests migration points based on static analysis or
memory access traces could also help the developer.

Appendix A

Complete Power Graphs

Memory: 100% Memory: 80% Memory: 60%

CPU
: 100%

CPU
: 80%

CPU
: 60%

20 30 40 20 30 40 20 30 40

7

9

11

13

7

9

11

13

7

9

11

13

Duration (s)

Po
w

er
 (W

)

Memory Work
Indirect Access

Pointer Chasing

Frequency (MHz)
1440

1950

2320

2760

3450

constant frequency

migration

Figure A.1: Symmetric setup for the constant-frequency points.

47

48 APPENDIX A. COMPLETE POWER GRAPHS

Memory: 100% Memory: 80% Memory: 60%

CPU
: 100%

CPU
: 80%

CPU
: 60%

20 30 40 20 30 40 20 30 40

6

9

12

15

6

9

12

15

6

9

12

15

Duration (s)

Po
w

er
 (W

)

Memory Work
Indirect Access

Pointer Chasing

Frequency (MHz)
1440

1560

2150

2400

3090

3490

constant frequency

migration

Figure A.2: Asymmetric setup for the constant-frequency points.

Bibliography

[1] AMD. AMD Ryzen Master Overclocking User’s Guide for AMD Ryzen and
Ryzen Threadripper Processors. 2018. url: http://download.amd.com/
documents/AMD-Ryzen-Processor-and-AMD-Ryzen-Master-
Overclocking-Users-Guide.pdf.

[2] AMD. AMD64 Architecture Programmer’s Manual Volume 3: General-Purpose
and System Instructions. Dec. 2017.

[3] AMD. Processor Programming Reference (PPR) for AMD Family 17h Model
01h, Revision B1 Processors. Apr. 2017.

[4] AMD. Software Optimization Guide for AMD Family 17h Processors. June
2017.

[5] ARM. ARM Architecture Reference Manual ARMv8, for ARMv8-A architec-
ture profile. Dec. 2017.

[6] ARM. Cortex-A15 MPCore Processor Technical Reference Manual. 2013. url:
http://infocenter.arm.com/help/index.jsp?topic=/com.
arm.doc.ddi0438i/CACECFFA.html.

[7] ARM. Cortex-A7 MPCore Technical Reference Manual. 2013. url: http:
//infocenter.arm.com/help/index.jsp?topic=/com.arm.
doc.ddi0464f/BABDAHCE.html.

[8] Frank Bellosa. “The Benefits of Event-Driven Energy Accounting in Power-
sensitive Systems.” In: Proceedings of the 9th Workshop on ACM SIGOPS
European Workshop: Beyond the PC: New Challenges for the Operating
System. EW 9. 2000, pp. 37–42.

[9] CMake. url: https://cmake.org/.

[10] Benjamin Cownie. Intel R© Xeon PhiTM Product Family x200 (KNL) User
mode (ring 3) MONITOR and MWAIT. url: https://software.intel.
com/en-us/blogs/2016/10/06/intel-xeon-phi-product-
family-x200-knl-user-mode-ring-3-monitor-and-mwait.

49

http://download.amd.com/documents/AMD-Ryzen-Processor-and-AMD-Ryzen-Master-Overclocking-Users-Guide.pdf
http://download.amd.com/documents/AMD-Ryzen-Processor-and-AMD-Ryzen-Master-Overclocking-Users-Guide.pdf
http://download.amd.com/documents/AMD-Ryzen-Processor-and-AMD-Ryzen-Master-Overclocking-Users-Guide.pdf
http://infocenter.arm.com/help/index.jsp?topic=/com.arm.doc.ddi0438i/CACECFFA.html
http://infocenter.arm.com/help/index.jsp?topic=/com.arm.doc.ddi0438i/CACECFFA.html
http://infocenter.arm.com/help/index.jsp?topic=/com.arm.doc.ddi0464f/BABDAHCE.html
http://infocenter.arm.com/help/index.jsp?topic=/com.arm.doc.ddi0464f/BABDAHCE.html
http://infocenter.arm.com/help/index.jsp?topic=/com.arm.doc.ddi0464f/BABDAHCE.html
https://cmake.org/
https://software.intel.com/en-us/blogs/2016/10/06/intel-xeon-phi-product-family-x200-knl-user-mode-ring-3-monitor-and-mwait
https://software.intel.com/en-us/blogs/2016/10/06/intel-xeon-phi-product-family-x200-knl-user-mode-ring-3-monitor-and-mwait
https://software.intel.com/en-us/blogs/2016/10/06/intel-xeon-phi-product-family-x200-knl-user-mode-ring-3-monitor-and-mwait

50 BIBLIOGRAPHY

[11] Djellel Eddine Difallah et al. “OLTP-Bench: An Extensible Testbed for
Benchmarking Relational Databases.” In: Proc. VLDB Endow. 7.4 (Dec.
2013), pp. 277–288.

[12] Hadi Esmaeilzadeh et al. “Dark Silicon and the End of Multicore Scaling.”
In: Proceedings of the 38th Annual International Symposium on Computer
Architecture. ISCA ’11. 2011, pp. 365–376.

[13] Emden R. Gansner and Stephen C. North. “An open graph visualization
system and its applications to software engineering.” In: SOFTWARE -
PRACTICE AND EXPERIENCE 30.11 (2000), pp. 1203–1233.

[14] Vishal Gupta and Ripal Nathuji. “Analyzing Performance Asymmetric Multi-
core Processors for Latency Sensitive Datacenter Applications.” In: Proceed-
ings of the 2010 International Conference on Power Aware Computing and
Systems. HotPower’10. 2010.

[15] Marcus Hähnel et al. “Measuring Energy Consumption for Short Code Paths
Using RAPL.” In: SIGMETRICS Perform. Eval. Rev. 40.3 (Jan. 2012).

[16] Robert Hallock. AMD RyzenTM Community Update #3. Apr. 2017. url:
https://community.amd.com/community/gaming/blog/2017/
04/06/amd-ryzen-community-update-3.

[17] M. D. Hill and M. R. Marty. “Amdahl’s Law in the Multicore Era.” In:
Computer 41.7 (July 2008), pp. 33–38.

[18] Alex Hutcheson and Vincent Natoli. Memory Bound vs. Compute Bound: A
Quantitative Study of Cache and Memory Bandwidth in High Performance
Applications. 2011.

[19] LPC - EAS for Android. Nov. 3, 2016. url: https://linuxplumbersconf.
com/2016/ocw//system/presentations/3693/original/LPC-
%20EAS%20for%20Android.pdf.

[20] Anil Madhavapeddy et al. “Unikernels: Library Operating Systems for the
Cloud.” In: Proceedings of the Eighteenth International Conference on Archi-
tectural Support for Programming Languages and Operating Systems. ASPLOS
’13. 2013, pp. 461–472.

[21] msr(4) Linux Programmer’s Manual. Mar. 2009.

[22] MySQL Server 5.7. url: https : / / github . com / mysql / mysql -
server/tree/5.7.

[23] Venkatesh Pallipadi and Alexey Starikovskiy. “The Ondemand Governor.”
In: Linux Symposium 2 (2006).

https://community.amd.com/community/gaming/blog/2017/04/06/amd-ryzen-community-update-3
https://community.amd.com/community/gaming/blog/2017/04/06/amd-ryzen-community-update-3
https://linuxplumbersconf.com/2016/ocw//system/presentations/3693/original/LPC-%20EAS%20for%20Android.pdf
https://linuxplumbersconf.com/2016/ocw//system/presentations/3693/original/LPC-%20EAS%20for%20Android.pdf
https://linuxplumbersconf.com/2016/ocw//system/presentations/3693/original/LPC-%20EAS%20for%20Android.pdf
https://github.com/mysql/mysql-server/tree/5.7
https://github.com/mysql/mysql-server/tree/5.7

BIBLIOGRAPHY 51

[24] Krishna K. Rangan, Gu-Yeon Wei, and David Brooks. “Thread Motion: Fine-
grained Power Management for Multi-core Systems.” In: SIGARCH Comput.
Archit. News 37.3 (June 2009).

[25] R. Rao, S. Vrudhula, and D. N. Rakhmatov. “Battery modeling for energy
aware system design.” In: Computer 36.12 (Dec. 2003), pp. 77–87.

[26] Miguel Rodrigues, Nuno Roma, and Pedro Tomas. “Fast and Scalable Thread
Migration for Multi-core Architectures.” In: Proceedings of the 2015 IEEE
13th International Conference on Embedded and Ubiquitous Computing (EUC).
EUC ’15. 2015.

[27] Juan Carlos Saez et al. “A Comprehensive Scheduler for Asymmetric Multicore
Systems.” In: Proceedings of the 5th European Conference on Computer
Systems. EuroSys ’10. 2010.

[28] Samsung. Mobile Processor Exynos 5 Octa (5430). url: http://www.
samsung.com/semiconductor/minisite/exynos/products/
mobileprocessor/exynos-5-octa-5430/.

[29] A. Sembrant, D. Black-Schaffer, and E. Hagersten. “Phase behavior in se-
rial and parallel applications.” In: 2012 IEEE International Symposium on
Workload Characterization (IISWC). Nov. 2012, pp. 47–58.

[30] Daniel Shelepov and Alexandra Fedorova. “Scheduling on Heterogeneous
Multicore Processors Using Architectural Signatures.” In: Proceedings of
the Workshop on the Interaction between Operating Systems and Computer
Architecture (2008).

[31] T. Singh et al. “Zen: An Energy-Efficient High-Performance x86 Core.” In:
IEEE Journal of Solid-State Circuits 53.1 (Jan. 2018), pp. 102–114.

[32] Tyler Sondag. “Phase-based tuning: better utilized performance asymmetric
multicores.” 2011.

[33] Govind Wathan. Where does big.LITTLE fit in the world of DynamIQ?
url: https://community.arm.com/processors/b/blog/posts/
where-does-big-little-fit-in-the-world-of-dynamiq.

[34] Andreas Weissel and Frank Bellosa. “Process Cruise Control-Event-Driven
Clock Scaling for Dynamic Power Management.” In: Proceedings of the Inter-
national Conference on Compilers, Architecture and Synthesis for Embedded
Systems (CASES 2002). Grenoble, France, Oct. 2002.

[35] Lukas Werling. AMP Scheduling Prototype. url: https://github.com/
lluchs/amp-scheduling.

http://www.samsung.com/semiconductor/minisite/exynos/products/mobileprocessor/exynos-5-octa-5430/
http://www.samsung.com/semiconductor/minisite/exynos/products/mobileprocessor/exynos-5-octa-5430/
http://www.samsung.com/semiconductor/minisite/exynos/products/mobileprocessor/exynos-5-octa-5430/
https://community.arm.com/processors/b/blog/posts/where-does-big-little-fit-in-the-world-of-dynamiq
https://community.arm.com/processors/b/blog/posts/where-does-big-little-fit-in-the-world-of-dynamiq
https://github.com/lluchs/amp-scheduling
https://github.com/lluchs/amp-scheduling

	Abstract
	Contents
	Introduction
	Background and Related Work
	Previous work on AMP scheduling
	MONITOR and MWAIT
	Target platform
	ARM big.LITTLE
	AMD Ryzen

	Design
	Single-Threaded Efficiency Specialization
	Program Flow Analysis
	User-mode core migration

	Implementation
	libswp: Migration based on program flow analysis
	libultmigration: User-mode core migration
	Making an asymmetric processor

	Evaluation
	Test Setup
	Adapting an Application: MySQL
	Source Code Modification
	Performance Counter Monitoring
	Application Profile
	Migration Results

	Microbenchmark
	CPI
	Cache Miss Performance Counters
	Migration Overhead
	Overhead From Ryzen as Asymmetric Processor
	Comparison With Fixed Frequency

	Discussion

	Conclusion
	Future Work

	Complete Power Graphs
	Bibliography

