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ABSTRACT
Server applications often experience many stall cycles because
their working set for individual requests exceeds the size of fast
private CPU caches. Existing solutions for this problem usually
involve refactoring the application to split it into multiple parts
with smaller working sets. Scheduling these parts on multiple cores
reduces the cache miss rate and increases performance. However,
such refactoring of existing applications is often too labor-intensive.

In this paper, we describe an automatic solution to partition
existing server applications and to execute the parts on individual
cores to improve cache locality. Our system records the memory
accesses of the application running representative input data and
uses the resulting memory access trace to repeatedly try out differ-
ent partitioning schemes in a cache simulator. The best-performing
solution is then used to generate code to automatically migrate the
application between cores. Our solution is already able to improve
the performance of the MySQL database by 8.6% and is able to re-
duce L2 cache misses by more than 50%, even though only minimal
developer interaction is required.

1 INTRODUCTION
Server and scale-out applications are often not able to efficiently
utilize modern out-of-order CPUs. Their working set exceeds the
size of fast private L1 and L2 caches, mostly due to the size of
the code, so instructions and data have to be frequently fetched
from slow L3 cache[7]. The resulting long-latency memory accesses
cause frequent pipeline stalls.

Existing solutions for this problem include more complex hard-
ware prefetchers to predict the memory access patterns produced
by these applications[16] as well as increasing the size of the L2
cache[10]. Both approaches are able to reduce the cache miss rate
of server applications. The approaches require hardware modifica-
tions, though, so deployment is expensive as existing CPUs have to
be replaced.

However, the nature of server and scale-out applications allows
for a different class of software-only solutions. To process incom-
ing requests, these applications repeatedly execute similar code
paths with a similar working set. Whereas the working set for each
individual request does not fit into the L2 cache, the applications
can be split and scheduled in a way that the system repeatedly
executes the same portion of the application on the same core[14].
As a result, if each part’s working set fits into the corresponding
L2 cache, the L2 cache miss rate is significantly decreased.
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Figure 1: If different execution phases of applications are
scheduled on different cores, the cores’ private caches each
hold parts of the working set. Therefore, such execution
with phase-based affinity (b) has lower cachemiss rates than
if threads are always scheduled on the same core (a).

This technique is used by cohort scheduling[14], which allows
the developer to describe the application as a pipeline of several
processing steps. The system defers processing of requests and
then executes each processing step on a group of requests, thereby
achieving up to 13% higher throughput compared to a traditional
server application which processes one request until completion
before processing the next request. However, cohort scheduling[14]
and similar approaches[8] require the developer to rewrite the ap-
plication to use fine-grained parallelism models which give runtime
libraries fine-grained control over scheduling. Applying these ap-
proaches to existing server applications is therefore excessively
labor-intensive, as large codebases need to be rewritten.

We present a system which automatically splits existing multi-
threaded server applications into suitable parts so that the overall
cache miss rate is significantly reduced when each part is executed
on a different CPU. As shown in Figure 1, in this scenario, each
core’s private caches would only hold part of the application’s work-
ing set, which reduces the number of cache misses in the private
CPU caches.

We describe a method to analyze the memory accesses of an
application to find such a split, and we present a solution which
repeatedly migrates the threads of the application between cores
according to the split, so that each part of the application is always
executed on a suitable core. Our contributions are as follows:



SFMA’18, April 23, Porto, Portugal Mathias Gottschlag, Christian Schwarz, Marc Rittinghaus, and Frank Bellosa

• We show that the fine-grained execution phase behavior
in database applications can be exploited to increase cache
locality by scheduling different phases on different cores.
• We present a technique to automatically determine function
calls in existing applications at which migrating the appli-
cation to a different core can reduce cache misses, and we
present a suitable efficient thread migration mechanism.

2 MOTIVATION
Existing database management systems show significant execution
phase behaviour. To show that executing different phases on in-
dividual cores can significantly reduce cache misses, we recorded
memory access traces for several database requests of the TPC-C
benchmark executed on top of MySQL 5.6. To record the mem-
ory accesses, we ran the database in an instrumented version of
the QEMU[3] emulator. QEMU was modified to record all memory
accesses caused by instruction fetches and explicit load and store in-
structions, both from the application and from the operating system.
As the slow emulation significantly changed the timing behavior
of the code, we executed MySQL on the lightweight OSv library
operating system[13] and reduced the frequency of all timer-based
activity such as OSv’s page access scanner or its preemption timer.
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Figure 2: Plot of all recorded memory accesses for a simula-
tion of the execution of two TPC-C database queries. Green
pixels represent instruction fetches, whereas red pixels rep-
resent load and store instructions. Simulating parts with
white background on one core and parts with blue back-
ground on a second core reduces L2 cache misses by 32%.

Figure 2 shows a plot of the memory accesses of two database
queries from the TPC-C benchmark. The first query has a working
set of 399 KiB, of which 225KiB are code, whereas the working
set of the second query is 382 KiB, of which 214KiB are code. On
modern CPUs with 256KiB of L2 cache[1], these working sets do
not fit into the L2 cache, which significantly limits reuse of cache
contents among different queries executed on the same core. How-
ever, our simulation shows that 228 KiB of memory is accessed by
both queries, so such reuse could be beneficial.

Both working sets would fit into L2 cache if twice the amount
of cache was available. To find out whether it is possible to utilize

the combined capacity of the caches of two cores, we simulate the
memory accesses of both database queries shown in Figure 2 in a
cache simulator. If all memory accesses are simulated on the same
core, the second query causes 6027 cache misses. We then repeat
the simulation 160000 times, each time simulating a different part
of each request on a second core instead. If the accesses marked
in blue are executed on the second simulated core, the total cache
misses of the second query are reduced to 4069 (32% less).

As the combined cache size is larger than theworking set for each
individual request and as more than half of the second request’s
working set has already been accessed by the first request, one
could have expected the number of cache misses to be even lower.
However, the cache miss count depends on several factors. First, the
two cores access a significant amount of shared data, so the effective
combined cache capacity is reduced. Second, whenever one core
modifies a shared cache line, the line is evicted from other cores’ L2
cache, thereby causing a cache miss on the next access. Therefore,
we expect that distributing the working set among multiple caches
only results in a net benefit if the overlap between the working sets
of different cores is sufficiently low. Such is the case in particular if
the application has different phases, where each phase performs
a different set of tasks and therefore accesses different memory
locations, but where multiple executions of the same phase have
similar working sets. Figure 2 shows that this condition is true for
database management systems, as the memory trace shows that the
access pattern of the application changes over the time of a single
network request.

Migrating threads between cores at execution phase boundaries
also reduces the TLB miss rate, as less pages are accessed per core,
and the branch misprediction rate, as each core only executes a
subset of all branches.

3 DESIGN
The cache miss rate of existing server applications can be sig-
nificantly reduced if each core only holds parts of the applica-
tion’s working set. Therefore, we expect a solution to perform well
which dedicates cores to application execution phases, migrating
the threads to a different core whenever the beginning of a different
application phase is reached. However, automatic solutions such
as the one we describe have limited information about the applica-
tion’s structure and its execution phases. Therefore, we employ the
two-phase approach shown in Figure 3.

During the first phase, as described in Section 3.1, our solution
determines an approximation of the execution phases. As we expect
that execution phases are usually triggered by function calls in the
program, we determine which functions are called periodically. We
also record all memory accesses while the application processes a
number of requests. In an off-line step, we then use the recorded
memory accesses to simulate the effect of migrating between cores
at different subsets of these function calls. We use the subset which
yields the lowest amount of cache misses as an approximation of
the application’s execution phases. Our solution then automatically
instruments the application binary so that the selected function
calls trigger the appropriate migration to a different core.

In the second phase, this instrumented application is executed.
Whenever execution hits the selected function calls, the thread
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Figure 3: The two phases of our approach: First, memory
traces are used to split the application into multiple parts.
Second, during normal execution, the application migrates
between cores at the boundary between different parts.

migrates to the corresponding core which already holds parts of the
working set of the following code if that code has been executed
before. Our thread migration mechanism is described in Section 3.2.

3.1 Estimating Execution Phases
Our solution treats most of the server application as a black box and
does not have information about execution phases. Therefore, we
analyze memory access traces to find good points in the application
at which to migrate to a different core.

This memory access tracing step is implemented as described
in Section 2: The application is placed in a virtual machine and is
executed in the QEMU[3] emulator which was modified to record
all the memory accesses triggered by load and store instructions
in the virtual machine. Additionally, the emulator records a mem-
ory access whenever a basic block – a straight-line sequence of
instructions which is always executed from the beginning and does
not contain any branch instructions except at the end of the block
– is executed. Recording executed code serves both to record in-
struction fetch accesses and to enable our analysis tool to recognize
function calls in the resulting trace by matching the addresses with
the function symbols of the application. For each of these accesses,
the virtual target address, the size of the accessed data and the cur-
rent value of the program counter are recorded. SimuTrace[17] is
used for efficient storage of these potentially large memory access
traces. Note that the emulator causes enough overhead to signifi-
cantly change the timing behavior of the application. Therefore, as
described in Section 2, we use OSv[13] in the virtual machine to
reduce the amount of concurrent background work, and we reduce
the frequency of timer-based background activity.

The application is modified by the developer to insert a marker
into the trace whenever a network request is received, and memory
accesses are recorded until a sufficient number of requests has been
processed by the server application. To reduce the amount of data
while still simulating representative behavior, we then filter the
result to keep only the accesses caused by 10 randomly selected
network requests. To find good points for thread migration, we re-
peatedly replay these accesses in a simple cache simulator, each time
migrating at different function calls. If, for example, we want to split

the working set of the application into 3 parts (suitable for execution
on at least 3 cores), we select a set of 3 different periodically called
functions from the application and, whenever the first instruction
of one of these functions is executed, switch to the corresponding
core and continue to simulate our memory accesses on that core.
The cache simulator simulates multiple cores with a three-level
inclusive cache hierarchy which uses the LRU replacement policy
at all levels. As the large number of simulations makes simulation
performance critical, we use a simple hand-written performance-
optimized simulator. After every simulation, we count the cache
misses. The set of migration points which produced the lowest
number of cache misses is then used to instrument the application.
At the beginning of each of the functions, the software automati-
cally inserts a call to a runtime library into the existing application
binary to migrate the thread to the corresponding core.

As this method is impractical for applications with a large num-
ber of functions, we have to limit the amount of functions which
are considered as candidates for migration points. Therefore, we
only consider those functions which are called at most once per
network request, as functions which are called with high frequency
are unlikely to signal major execution phase changes and would
only cause excessive thread migration. Note, though, that even
leaf functions can cause cache-thrashing working set changes, so
we do not limit our search to functions near the root of the call
tree. Also, we only consider functions which are called for at least
80% of all network requests. These restrictions cause the number
of candidates for migration points to drop to approximately 100
functions for MySQL, which reduces computational complexity to
acceptable levels for the scenario shown in our evaluation. In the
future, we plan to explore random sampling to further reduce the
number of cache simulations.

3.2 Thread Migration
The resulting instrumented program causes threads to migrate be-
tween different cores several times during the execution of every
network request. Most operating systems provide system calls for
such thread migration. For example, the sched_setaffinity func-
tion provides a mechanism on Linux to select the cores on which a
thread is allowed to run. However, we have found that function to
be too slow for our use case (9 µs - 14 µs[12]).

Instead, we have developed a fast thread migration mechanism
in the OSv library operating system. To perform a thread migration,
threads insert themselves into the migration queue of the target
CPU and let the current CPU switch to a different thread. The
target CPU’s scheduler then removes the thread from the queue and
resumes execution. Whenever a CPU becomes idle, it executes the
mwait instruction[2] on the address of the migration queue to wait
for incoming threads. This method does not require any costly inter-
processor interrupts or context switches and, as OSv executes all
code with kernel privileges, does not require any privilege changes.

Although our prototype is limited to OSv, most mechanisms
could likely be applied to other operating systems such as Linux as
these systems likely only lack optimization and do not have any
relevant fundamental differences. For example, Linux could intro-
duce similar per-cpu queues for incoming migrated threads and, if
one thread does not fully utilize its time slice and the cpu’s queue
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Figure 4: Performance of the TPC-C benchmark for various
numbers of database clients

holds another thread from the same process, could directly execute
that thread with no scheduler invocations or context switches.

4 EVALUATION
We evaluated our approach with the TPC-C benchmark executed
against the MySQL database management system, with the intent
to show whether our approach results in improved application
performance and whether such performance improvement can be
attributed to the cache miss reduction caused by distributing the
working set among multiple cores.

We conducted all experiments on a system with an Intel Xeon
E5-2620 v4 CPU, which contains 8 cores with 256KiB private L2
cache each. Both benchmark client and benchmarked application
were executed on the same system. The virtual machine with OSv
and the benchmarked MySQL instance was executed on 4 cores,
and the OLTPBench[6] TPC-C benchmark client was executed on
the other 4 cores. To reduce noise during the measurements, we
significantly slowed down all periodic background tasks of OSv
such as the page cache access scanner. For the experiments, all L2
prefetchers were disabled on the virtual machine’s cores, as they are
ineffective for many server workloads[7] and we observed them to
cause significant performance degradation for unmodified MySQL.

4.1 Performance
To measure the performance improvement caused by our solution,
we executed the TPC-C benchmark with varying numbers of data-
base connections and measured the throughput of the system. The
results of these measurements are shown in Figure 4. The line
marked with baseline shows the results for an unmodified instance
of the MySQL instance being executed on an unmodified version
of the OSv operating system, and the line marked with distributed
working set shows the results for a MySQL instance which was
instrumented with calls to migrate the threads between cores. As
our prototype of the analysis tool described in Section 3.1 does
not yet support automatic instrumentation of existing binaries, we
manually inserted the appropriate function calls exactly as sug-
gested by the tool. The modified MySQL instance is executed on
our modified version of OSv with support for fast thread migration.

The results show throughput to be improved by 8.6% on aver-
age, varying between 13.0% (1 database connection) and 5.2% (4
database connections). However, these results alone do not explain
whether the performance improvement results from the increased
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Figure 5: Cache miss counts per database transaction

cache locality or from other changes in the OS scheduler. For ex-
ample, as all application threads use our migration mechanism
and are therefore pinned to cores, we removed the load balancing
mechanism of OSv’s original scheduler. To determine the cause for
the performance differences, we executed the benchmark with our
modified version of OSv, but disabled thread migration in MySQL,
so that all code is executed on a single core. With a single database
connection1, this system performed 4.5% better than unmodified
OSv, but 7.5% worse than execution with thread migration. This
result shows that, whereas some of the performance improvement
has to be attributed to other changes to the OSv scheduler, most
of the performance difference is actually caused by migrating the
database application threads between cores.

4.2 Cache Misses
To demonstrate the effect of the thread migrations on cache locality,
we repeated the experiments from the last section and used the
CPU’s performance monitoring counters to measure the number of
L2 cache misses per executed database transaction. Figure 5 shows
the results of this experiment. On average, our solution reduced
the cache misses per transaction by 52.3%. Again, we repeated the
experiment with disabled thread migration, which showed that
simplifications in the scheduler in the case of a single database
connection are responsible for a cache miss reduction of 6.7%. The
vast majority of the cache miss reduction is caused by thread migra-
tion between cores, though, which indicates that the performance
improvement is caused by improved cache locality.

4.3 Discussion
Our prototype is able to significantly increase the performance of
MySQL, with only minimal manual modifications to the application.
However, as the goal of our prototype was only to demonstrate
the viability of automatic staged computation, the prototype has
a number of limitations. We list these limitations in the following
and discuss their impact on our evaluation results.

No automatic instrumentation. Due to a lack of time, our proto-
type does not yet support automatic insertion of migration code
into the application. Instead, we manually inserted migration func-
tion calls at the locations in the code according to the output of
the analysis tool described in Section 3.1. As our analysis, however,

1As restricting the application to one core prevents scaling to multiple network con-
nection, we only give the results for a single connection.
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currently only reports locations at the beginning of functions, auto-
matic insertion of code is easy to implement, and we plan to extend
our prototype accordingly. We also plan to reevaluate whether lim-
iting potential locations for thread switching to the beginning of
functions has significant impact on the quality of the results.

Overhead of memory access tracing. Currently, memory access
traces are generated by executing the application in an instru-
mented full-system simulator. The resulting overhead is significant,
and we have observed more than 50x slowdown due to emulation
for single-threaded execution. In some cases, this slowdown can
significantly change the behavior of the application. We plan to
evaluate use of a deterministic trace and replay solution such as
SimuBoost[18] to improve memory access recording performance.
Such a technique is able to generate accurate memory access traces
with negligible timing artifacts and provides enough performance
to be used to temporarily trace live production workloads.

5 RELATEDWORK
Several techniques have been developed to improve the cache local-
ity of applications whose working set does not fit into the processor
cache. Those techniques split the application into parts and change
the scheduling of these parts, similarly to our approach. However,
the techniques use different methods to split of the application and
use different scheduling techniques.

Staged computation. Larus and Parkes[14] describe a program-
ming paradigm where the application developer designs the appli-
cation as a set of stages, each containing a collection of operations
and the corresponding data. Multiple stages can be chained together
by passing a continuation from one stage to the next. Through that
mechanism, a server application can, for example, be implemented
as a pipeline of multiple stages, where each stage performs some
of the work required to process a request. The explicit separation
into stages allows the underlying runtime to employ cohort schedul-
ing[14] to delay or prioritize invocations of stages so that the same
stage is consecutively invoked multiple times on the same core,
thereby increasing cache locality. As a result, staged computation
results in reduced cache, TLB, and branch predictor miss rates.

Most approaches to staged computation, however, require exist-
ing server applications to be refactored to make use of the pattern[8,
14], which requires a significant engineering effort for complex
server applications. In contrast, and similarly to our approach,
STEPS[9] uses memory access traces to automatically inserts con-
text switches for cohort scheduling. However, STEPS requires man-
ual instrumentation of the application to inform the runtime about
the type of executed database operation at fine scale. We show that
significant performance improvements are possible even without
any manual analysis of the application.

In addition, the context switch locations produced by STEPS are
limited to cohort scheduling on a single core and are less suited to
be used in any approach similar to the one described in this paper
which schedules different stages to individual cores. STEPS does
not align context switches to execution phase boundaries, which
increases the number of L2 cache misses (as described in Section 2).

O2 Scheduling. Whereas staged computation enforces a fixed
mapping of code sections to application stages, O2 scheduling[4]

mainly places objects on different cores so that the operations on
these objects are executed on the core which has the required data
in its private cache. Thereby, large data structures are distributed
among multiple cores.

We argue that O2 scheduling is likely not well suited for server
and cloud applications, as these suffer from their large code working
set[7] and therefore especially profit from approaches which try
to distribute code among multiple cores. O2 scheduling, however,
executes operations wherever the data is, potentially causing the
same code to be loaded into multiple cores’ private caches.

Region Scheduling. Lee and Schwan[15] provide a method which
tracks the working set of applications on a per-page basis and uses
the information to assign each pages to a specific core. The pages
are unmapped from all other cores, and the application is migrated
to the appropriate core whenever a page fault occurs. In contrast, we
analyze the working set of the application in a separate offline step
and instrument the application accordingly to reduce the runtime
overhead of our approach.

Hardware-Assisted Approaches. Chakraborty et al.[5] migrate
applications between cores at finer timescales by executing user
code on one core and operating system code on a second core.
They implement thread migration in hardware in order to keep
overhead low. Kallurkar and Sarangi[11], in contrast, implement
a more flexible method to spread both application and operating
system code to multiple cores, but require hardware support to
determine changes to the working set. We show that similar results
can be achieved on existing hardware with a software-only solution.

6 CONCLUSION
Server applications frequently suffer from very high numbers of
CPU stall cycles because the working set does not fit into fast pri-
vate L1 and L2 caches. In such situations, partitioning the code
of the applications and distributing it among multiple cores can
significantly improve the cache miss rate by loading parts of the
working set into separate L2 caches. Existing techniques to do so,
however, either require the developer to refactor the application or
require custom hardware. In this paper, we demonstrate an auto-
matic approach to split server applications into parts and distribute
those parts across multiple cores to improve cache locality.

Our solution first generates a memory access trace of the server
application for several network requests and uses that trace to
simulate the effects of different splits of the application to multiple
cores on the number of cache misses. The best split is then used to
instrument the application with function calls to trigger migration
between cores at the appropriate places in the program. We have
evaluated our solution with MySQL and the TPC-C benchmark. In
this scenario, the solution was able to reduce cache misses by up to
52.3%, which resulted in a 8.6% performance improvement.

In the future, we will evaluate our approach with more server
and cloud applications. In addition, we will evaluate techniques
such as deterministic trace and replay to reduce the impact of mem-
ory access tracing via full-system simulation on the application’s
performance.
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