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Abstract

A program can be recorded and then deterministically replayed. This is used for
debugging applications and detecting the cause of bugs or errors after they were
observed.

During recording, all non-deterministic events are stored for later replay. Upon
replay, this allows the program to behave exactly like the recording, down to the
instruction level. A detailed analysis of the program is possible during replay. To
improve the analysis results, it can be done in a different environment than the
recording while preserving the exact instruction flow.

In this master thesis, the ability to extend a heterogeneous record and replay
system with multi-core support is evaluated. To make memory race conditions de-
terministic, a chunk based protocol is evaluated with which a transactional mem-
ory is simulated in the hypervisor. No hardware modifications are required for
this.

A prototype is implemented based on QEMU that records a virtual machine
and replays the recording in an emulator. It is shown that recording on a virtual
machine causes low memory overhead and acceptable performance overhead. The
scalability of the system is shown to be good for processor numbers that are cur-
rently used in virtual machines, although for high numbers of processors this so-
lution does not scale. It is validated that a correct replay is possible in an emulated
environment.
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Chapter 1

Introduction

Debugging programs often requires to go back in time and to trace the real cause
of an error. This can be the case for a normal program bug that is only recognizable
by the errors it causes in the following program execution. In this case, finding
the source of it is difficult. It may be useful to re-execute the program and trigger
the bug again. But reproducing the bug is not always possible for the user, since
small differences in program execution may lead to the bug not being triggered.
The same way, finding the entry path into the system of malicious applications
proves difficult, since those programs can alter system logs and other information
after they have infected a system. Once the user realizes that such a malicious
application is or was on the system, it may not be possible any more to find out
where it came from and what the application did. A record and deterministic
replay system that records the running system and then allows to re-simulate the
execution down to the instruction level can be used to debug such defective or
malicious applications [4].

When recording a system, all non-deterministic events are captured. They are
written to a log which is used during replay to make the replay deterministic. To
allow for high performance record and replay, hardware support can be used for
recording. This is done using virtualization extensions of modern CPUs and run-
ning the system that should be analyzed as a virtual machine. During replay, the
same hardware and the same environment can be used in order to ensure correct-
ness [10, 19].

But software emulation allows for a more detailed program analysis than hard-
ware virtualization [4]. So to allow the recording to be run in background with
high performance while having powerful tools to analyze it, a heterogeneous ap-
proach can be used. The recording of the system is done in a virtualized environ-
ment while the replay is done in an emulator.

For single-core systems, this has been implemented in V2E [24]. But modern
processors have multiple processors to increase performance through parallelism.

3



4 CHAPTER 1. INTRODUCTION

When executing programs in parallel, new problems occur. A common problem
are memory race conditions. Small differences in the time at which instructions
are executed on different cores may cause differing program results, including
crashes. Those problems cannot easily be reproduced since they do not occur
deterministically. To analyse them, record and replay can be used as well. This
is why a record and replay solution should support tracing and replaying multiple
processors. Such a multi-core record and replay has not yet been implemented in a
heterogeneous environment. Evaluating the possibility of such an implementation
will be the scope of this work.



Chapter 2

Background

This work is on recording and replaying applications in virtualized environments.
For this, the a basic knowledge of virtual environments is required. Special atten-
tion is on the support for multiple processors and memory synchronization, since
this will be one key aspect of this work.

2.1 Virtualization

Originally, an operating system is meant to run on the bare hardware. The operat-
ing system expects to have full control over the hardware. This prevents multiple
operating systems from running in parallel.

For debugging purposes, it is often required to pause an operating system and
to access it’s memory. In this case, there needs to be an mechanism that takes care
of the hardware in those situations. One solution to this problem is to run an other
operating system on the hardware and then run the system that should be analyzed
in a virtual, simulated environment.

2.1.1 Software Emulation

An emulator is a software that simulates a the complete computer hardware. It
allows the user to specify virtual IO devices like a serial console or a hard drive
that this computer then uses. The emulator then simulates a system start from that
hard drive. All instructions the CPU would execute to do this are interpreted in
software.

This full system emulation allows a operation system and normal applications
to be run inside the emulator without any modification. The program behaves
exactly as it would on a real system.

5



6 CHAPTER 2. BACKGROUND

Since the emulator is written in software, it can be instructed to perform addi-
tional operations in addition to simply running the program. This includes debug-
ging the application by pausing on a specific breakpoint. The current state of the
emulated CPU can then be inspected, including all register contents and the hard-
ware state. That way, full systems can be debugged without the need for hardware
debuggers.

The emulator can even do more complex operations like tracing all memory
accesses and analyzing them.

The big advantage of software emulators is their flexibility and the ability
to run any target architecture on any host architecture. An example for such an
emulator is QEMU running in the TCG mode [3].

Multi-core Emulation

There are two approaches to emulate multi-core applications.
The first approach is to run the processors in sequence and frequently switch

between them [3]. This approach is known from classic multi tasking applica-
tions. From a guest application point of view, all processors make progress. Since
the guest system usually does not expect an exact timing of the inter processor
communication, it will still work as it normally would on a full parallel system.

The switch may not happen during instructions that are considered atomic on
the emulated platform. A memory write of an 64 bit word is an example for
such an instruction on 64 bit systems. The emulator might need several native
instructions to emulate this write. During those instructions, the memory state
may only be half updated. To prevent this, a switch between processors is only
possible at the end of such instructions.

Since the emulator has full control over the environment, this is not a problem
in practice. The emulator does not rely on external interrupts to do the switch
but it can instead use an internal counter that counts the instructions executed on
the current core. It can switch to an other core after executing a given number of
instructions.

If the switch is not frequent enough, programs that rely heavily on inter pro-
cessor communication may be behaving differently. A spin lock for example may
block the program execution by a long time until the emulator switches to the pro-
cessor holding the spin lock. That way, real parallel program execution cannot be
emulated reliably.

An alternative to the sequential emulation is to emulate all processors in par-
allel on different host processors. [6, 8] For this, each host processor is emulating
one target processor. The host processors use the inter processor communication
mechanisms of the host to simulate inter processor communication of the emu-
lated system.
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Special care needs to be taken for memory accesses. Memory accesses on the
host system may not have the same granularity as the ones on the target system.
This may require the host system to use special locking in order to guarantee the
atomic instructions of the guest system to be atomic on the host system.

The emulator state synchronization needs to be taken care of as well. Pausing
the emulator to analyze it’s state requires to pause all processors simultaneously.
This requires a special management layer for the emulator in which it manages
the processors and pauses or resumes them as needed.

Emulation Performance Optimizations
While software emulation allows for an exact simulation of the target system,

it has a major disadvantage in speed. CPUs can perform complex operations in
one cycle. To simulate those operations, multiple CPU instructions on the host
system may be required. Emulating hardware access adds additional CPU time
which would not be required on the target system. This is why software emulation
is significantly slower than natively running the program.

There are various optimizations available to counter this. The most important
one is a just in time compilation of the guest code. The code is not interpreted but
instead dynamically translated to machine code for the host system. Using this
method, a program still needs several times longer to run than it would natively. [3]

An other major performance disadvantage of software emulation is the access
to hardware. System hardware runs in parallel to the main processor. The program
flow of a normal program can continue while the hardware is doing work. A
software emulator needs to emulate this hardware. This simulation is done in
software and is thus running on the CPU. Therefore, the CPU cannot continue to
emulate the guest program.

To improve this situation, the hardware access can be translated instead of
emulated. It then uses the resources of the host hardware and allows the CPU to
continue with the guest program. This makes hardware accesses - like disk reads
- asynchronous on the emulated system. While this is the same behavior as on the
host system, it is an unpredictable behavior since the hardware access time is not
deterministic.

2.1.2 Hardware Assisted Virtualization
While software emulation allows for a lot of flexibility, it has the major disadvan-
tage that it is several times slower than native execution. To avoid this issue and
allow for a new native performance when using virtualisation, hardware manufac-
turers added virtualisation support. This allows to run unmodified guest systems
directly on the host processor.

Those hardware extensions allow the guest operating system and it’s applica-
tion to use the CPU. The virtual memory layout can be controlled by the guest
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system, although it does not have complete access to the physical memory.
The part of the host system that controlls the virtual machines is called the

hypervisor. From a user perspective, it can be used in a similar way the emulator
is used to run the guest system. Instructions that operate on the virtual memory
can run without the interference of the hypervisor. When the guest operating
system accesses hardware, the hypervisor needs to filter the request to emulate a
real hardware access as if the guest operating system was running directly on the
hardware.

Hardware virtualisation requires the guest program to use the correct instruc-
tion set architecture for the processor. It is not possible to run programs that were
compiled for other architectures.

Guest Memory Access

While the guest system is running, will use instructions that access the main mem-
ory. The guest system should have it’s own, isolated memory area with contiguous
addresses starting at 0 for this.

If the guest would be given direct access to the host memory, this would lead
to conflicts. Therefore, a translation layer is added that translates between guest
physical and host physical addresses.

On modern systems like the Intel processors with virtualisation extensions,
this is done by mapping the memory addresses on a page granularity level. A
page table like the one for normal applications is used to map the addresses.

This table is called the extended page table (EPT). It is set up and controlled
by the virtual machine monitor. The guest can itself use the normal page table to
isolate it’s applications, which leads to a two level address translation as shown in
Figure .

The guest operating system itself uses page tables to distribute the guest phys-
ical memory among it’s processes. This lads to a two level translation in which the
virtual address of the guest process is mapped to the guest physical address first
and then to the host physical address, as described in Figure 4.1. Non-virtualized
processes running directly on the host do not need this two stage address transla-
tion. For them, the extended page table is not used.

The flags of the EPT and the guest page tables are independent from each
other. If the guest accesses a page, the corresponding access flags of both tables
are set. The guest handles the access flags in it’s page table. Since the EPT cannot
be seen by the guest, the access flags of the EPT can be evaluated and reset by the
host. The same applies to the dirty flag on page writes. In the Intel implementation
of the EPT, the access flags are set hirarchically on all page table levels. The dirty
flag is only set on the last level of the EPT.

The EPT has read, write and execute flags as well. When a guest attempts
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Figure 2.1: The memory addresses of guest applications are mapped to the guest
physical address. This memory address is then mapped to the host physical ad-
dress. Hardware can provide full support for this two stage process.

to perform any operation on a page, those flags are evaluated in the guest page
table first. If a violation is detected by the hardware, the processor traps. This
trap is forwarded to the guest operating system to handle the page fault. After
the permission tests for the guest page table have passed, the flags in the EPT are
evaluated. If there is a violation in those flags, the host operating system needs
to handle that page fault. It can then fix that corresponding page table entry and
re-evaluate the page table miss to provide a page to the client or it can emulate an
invalid memory access as if the guest would have accesses a non-existing physical
address.

Current hypervisors like KVM are built to run unmodified guest operating
systems. Those systems expect to have a contiguous memory starting at an address
near 0 and ending at a fixed size. This is why those hypervisors are designed to
give the guest system a large, contignuous block of memory. This restricts the
largest guest physical address to the total amount of memory given to that guest.

However, as virtualisation becomes more common, alternative approaches use
the flexibility of not running directly on the hardware to give sparse memory to
the guest system. This allows the guest to make use of the full set of theoretically
available physical addresses on modern systems. [2]
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Trapping

Whenever the hardware is not able to directly handle an instruction the guest sys-
tem executes, it traps into the hypervisor. The hypervisor is then able to handle
this instruction of the guest system.

Most instructions a guest application executes do not trap and can completely
be handled by the hardware. This includes memory accesses and some accesses
to machine specific registers.

Hardware accesses cannot be handled by the hardware itself directly because
there may be many guest operating systems running in parallel. This is why every
access to the hardware traps into the hypervisor. The hypervisor can then decide
to pass the request on to the real hardware or to emulate the hardware feature.

An example for this is network traffic: If a guest wants to send a network
package, it communicates with a virtual network device. That device is simulated
by the hypervisor. As soon as the guest instructs that virtual device to send the
package, the hypervisor decides whether to pass it on to the real network interface
or to handle the send request internally and e.g. send it on to an other virtual
machine.

An other emulated instruction is the CPUID instruction. This instruction al-
lows to get the id of the current core. Since a guest application can have a different
view of the cores and this view should be transparent to the guest, the id given to
the guest needs to be determined by the hypervisor. It returns the id of the virtual
CPU (vCPU) in this case.



Chapter 3

Analysis

The more complex applications get, the more complex it gets to reproduce errors
and trace the source of errors. To debug such an application in which erroneous or
malicious behavior was observed, a record and replay approach can help. Using
this, the application is recorded. The recording can then be executed again to
observe and analyze the exactly same program behavior.

3.1 User-Space Record and Replay

Conventional debuggers allow the user to set breakpoints to pause the program on
a specific condition. The program can then be inspected and the execution can be
resumed. They only allow the user to see the current program state and then to go
forward in time. It is not possible to go back in time. If an error did not directly
trigger the breakpoint but only the later effects of the error did, the cause of the
error cannot be examined any more.

A solution to this problem is to find a test case that always triggers the error
and then to run this test case and set breakpoints earlier in the instruction flow.

For modern, complex software, not all bugs can be reproduced. This especially
applies to fuzzing, a modern testing method in which the program is fed with
random input and the program behavior is examined. If a fuzzer triggers a race
condition or any other rare problem, the error may not happen in the next run even
if the same input parameters are used.

For this, developers require debuggers that can go back in time [4, 15]. Such
debuggers allow the analysis of a previous program state. They record a pro-
gram by storing the initial program state. The debugger then stores every non-
deterministic behavior of the application. That way, the debugger can replay the
exact program flow starting at a program start or a checkpoint. To go back in time,
the debugger restores the last checkpoint before the desired time frame and then

11



12 CHAPTER 3. ANALYSIS

replays the program until the desired state is reached.
One of those user-space record and replay systems is Jockey [21]. It runs on

an unmodified Linux by linking it into an existing binary. It then intercepts all
library calls of that binary that are non deterministic. On a Linux system, those
are the wrappers for system calls. All other program execution is expected to be
deterministic. This limits Jockey to single-core applications that do not use any
form of shared memory and that do not receive external signals.

The problem with receiving asynchronous events like signals is that they need
to be replayed at the exact same time they occurred during recording. A user-space
recording library has no possibility to record an exact time reference at which the
signal occurred. This prevents an exact insertion of the signal in the replay stream.

The second problem that Jockey faces is with concurrent memory access. If
there are multiple threads in the running program or if there are multiple processes
working on a shared memory segment, the order in which they access the shared
memory must be recorded to make a deterministic replay possible. This requires
context switches to be recorded. This would only be possible for a user-space,
non-preemptive threading library. Any preemptive thread switch would be an
asynchronous event that cannot be recorded in user-space.

Recording multiple processes at once and recording their interactions or even
recording a whole operating system is not possible, since there is no shared timing
information between the processes. That way, no synchronization during replay
is possible and each process could only be replayed independently.

3.2 Full System Record and Replay
An alternative to recording only a single process is to record the whole system
that process runs in. Such a recording would include the process itself but would
also allow to debug it’s operating system interactions and the communication with
other processes. This has the advantage that it is more platform independent since
it does not rely on a target application interface. In addition to this, it may cause
a lower overhead since there is no need to include the contents of inter-process
communications or the communication between a process and the operating sys-
tem.

3.2.1 Emulation
An emulator allows the implementation of record and replay relatively easily.
Since the emulator is completely simulating the target system, it has full con-
trol over it. All interrupts are triggered by the emulator and all communication of
the target system is doen through the emulator.
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A naive approach would be to let the emulator record every single instruction
it executes. This would lead to a very big log file and a lot of logging overhead.
Therefore, instructions that are fully deterministic given the current emulator state
do not need to be recorded. This includes instructions that read or write normal
memory, arithmetic instructions and branching instructions.

For recording an emulated system, all actions of the emulator that do not de-
pend on the current target state only need to be logged. This includes the times at
which the emulator decides to trigger an interrupt vector and the results the emu-
lator returns for IO operations that are mapped to external hardware like network
cards.

During replay, the interrupts are then inserted at the same place in the instruc-
tion flow. Since the emulator has full control over the target and emulates every
single instruction, it can count the instructions to determine the right place to in-
sert the interrupt.

Other events that were synchronous to the target execution are triggered by it
in the replay at exactly the same time as they were during recording. For those
events, the resulting operation of the emulator is read from the log. That way, the
replay behaves exactly as the recording system did.

3.2.2 Virtualization

The problem with emulators is that they are slow in comparison to running the
program on the original hardware. To trigger rare bugs that would require a replay
mechanism to reproduce them, the program needs to run a relatively long time. It
would even be best to run the recording in a production environment to be able
to trace bugs in production. Using an emulator there is not an option, since the
slowdown would severely reduce the throughput of the production system.

To get a performance close to a system that is running natively on the hard-
ware, virtualization can be used. A virtualized system can be recorded at low
memory overhead and a speed close to the one without recording [10, 23]

An additional disadvantage of emulators is that malware often contains mech-
anisms to detect an emulator and refuses to work in this environment. Virtualized
environments are used for web servers, so malicious software often targets those
environments. Therefore, no preventive measures against virtual machines are
implemented in many such applications [7].

In a virtualized environment, the hypervisor manages all communication of
the virtual machine with the outside world. If designed correctly, the hypervisor
is the only source of indeterministic behavior of the virtual machine. Therefore,
no modifications to the guest system are necessary to be able to do a full system
record and replay.
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During recording, a sequential log of hypervisor events is generated. Those
events record the non-deterministic input values and the timing and values of non-
deterministic events. Hardware performance counters are used to count the num-
ber of instructions the virtual machine executed. That way, the exact time of
asynchronous events can be recorded.

Since all asynchronous events are delivered by the hypervisor by default, there
is no additional interrupt or other hardware interception required. The event can
directly be stored by the hypervisor in it’s memory space. This allows a recording
overhead of approximately 5% on typical workloads [23].

During replay, the virtual machine is restored to the initial state. Then, it is
resumed. Since the virtual machine state is exactly the same as during the record-
ing, all future events are guaranteed to happen at exactly the same state during
replay. Whenever the virtual machine makes a synchronous call that involves the
hypervisor that requires a non-deterministic input value, that value is read from
the recorded log.

Asynchronous events are inserted by instructing the CPU to pause the guest at
a given instruction count. This is the same count that was stored in the recording
log. When the CPU hits that instruction count, the hypervisor is invoked. The
hypervisor reads the event information from the log and simulates it for the guest.

3.2.3 Heterogeneous Record and Replay
In a virtualized environment, recording introduces only a low overhead. But dur-
ing replay, there are no complex analysis tools available. For debugging, it is
required to extend the replay mechanism and run further analysis on the pro-
gram [5, 22, 23].

To combine the advantages of virtualisation during recording and emulation
during replay, a heterogeneous approach can be used. The recording is done in
a virtualized environment. The emulator is configured to exactly match that en-
vironment. This is not trivial, since the emulator needs to be able to emulate all
instructions of the source platform for every possible input parameters exactly,
including the flags registers and the unspecified behavior [6]. Current implemen-
tations have slight differences between the real hardware and the emulator. This
is the case for instructions that are not used by the C compiler or instruction result
bits that are usually ignored [13]. So for normal applications, there should be no
difference in the execution due to those differences in interpreting the instructions.
But a exact replay cannot be guaranteed. It is then loaded with the initial state of
the virtual machine. During replay, the events to be emulated are read from the
replay log.

In Decoupling dynamic program analysis from execution in virtual environ-
ments, a ht erogenous record and replay solution called Aftersight has been imple-
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mented and evaluated. The new aspect here is that the replay environment differs
from the source environment since replay can be done on an other machine. In
the previous virtual machine to virtual machine case, it was sufficient to record
the input parameters to external hardware as long as that hardware would behave
deterministically. Since the replay is done on a different hardware now, those
hardware components may not be available or may not behave exactly as they did
on the source system. To solve this problem, the output of the hardware needs to
be recorded as well [24].

It has been shown that a correct replay can be achieved for full modern oper-
ating systems like windows or Linux. The recording overhead was approximately
10% for a Linux kernel compilation.

Aftersight was used to detect bugs in the Linux kernel. One of their achieve-
ments was the detection of a uninitialized stack use in the network stack that was
present there for several years.

3.3 Multicore Record and Replay

The previous projects focused on record an replay on single-core systems. With
the arise of systems that contain multiple CPUs, new problems arise. For those
systems, the relative order of events that may influence other processors nees to
be recorded [12, 17]. The non-deterministic effects of concurrent memory access
is the greatest challenge.

3.3.1 Software Memory Tracing

An emulator can run multiple CPUs in parallel by running them in sequence and
periodically switching between them. The emulated system has the impression
that all CPUs are making constant progress. Since there is no actual parallel ex-
ecution, memory race conditions cannot happen. The emulator records the times
at which it switches processors during recording. During replay, the processor is
switched at exactly the same time. This ensures a consistent replay.

The disadvantage of this approach is that it makes no real use of multi-core
hardware and adds to the already present slowness of the emulator.

A faster emulation can be achieved by running the emulated CPUs on parallel
physical CPUs. [8] The memory model of the emulator needs to allow concurrent
access, especially for atomic instructions like the test-and-set instruction. This
can be achieved by synchronizing the access of the processors to the memory.

The problem with this is that the synchronization is non deterministic. An
example for this is if a guest uses a spin lock, there is no guarantee which emulated



16 CHAPTER 3. ANALYSIS

processor will get the lock. To ensure a consistent replay, this information needs
to be recorded.

Emulator

Memory

Application

VCPU VCPU

Memory
trace

Figure 3.1: The emulator inter-
cepts all memory accesses and
traces them.

Since the emulator does not know about the
semantics of a memory access the target system
does, the emulator needs to record the order of
every single memory access of the application to
replay them in the correct sequence. Creating
one log entry for every memory access and syn-
chronizing every single memory access would
result in a big log size and in a huge recording
time overhead.

During replay, the emulator only needs to en-
sure the correct ordering of the single memory
accesses. Each CPU is paused before the mem-
ory access until the time for this particular access
is reached. This makes a replay straight forward
in this situation.

While this ensures correct recording and re-
play, it adds a lot of performance overhead to
memory accesses. Since every executed instruction needs to be fetched from
memory, this adds a lot of performance overhead. Even when using a reader-
writer lock that allows for parallel and low-overhead read locks, there would be a
lot of writes to memory cells that would need to be locked. There would also be
a global clock that is shared by all processors and that would ensure the correct
ordering of memory accesses. All this reduces the scalability of this approach and
reduces the performance benefits from using multiple processors.

The disadvantage can be counteracted by grouping multiple memory accesses.
Those groups of instructions are called chunks by most implementations [14, 18,
19]. The memory is then not locked for each single memory access but for the
chunk as a whole.

A global time frame those chunks are referenced against is introduced [16]. If
a processor does a memory access that may cause conflicts with other processors,
that access is detected. On each such access, the global time is captured and in-
creased. This denotes the end of a chunk. During replay, the instructions that were
part of the chunks are replayed in the same order in which they were encountered
during recording.

While this reduces the size of the record, it still introduces a lot of overhead
since the emulator needs to check every single memory access for collisions. This
check is done in software and adds several CPU instructions per emulated instruc-
tion.
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3.3.2 Hardware Assisted Memory Tracing

To avoid the significant performance overhead of emulation, the memory trac-
ing mechanisms can be implemented in hardware. The computer hardware is
extended by modules that trace the interleaving memory accesses for later replay.

Cache Cache

Memory

Application

CPU CPU

Memory
trace

Figure 3.2: The communi-
cation between memory and
CPU caches is monitored and
the memory access order is
recorded.

Using this approach, it is not necessary to
trace every access to the CPU. CPUs do a sort
of memory synchronization on their own using
a cache coherence protocol. Hooking into the
cache coherence is sufficient to track each CPUs
view of the main memory. [11, 18]

Modern processors use a snoop cache coher-
ence policy. The caches snoop on the memory
address bus to detect cache conflicts.

In Architecting a Chunk-based Memory Race
Recorder in Modern CMPs [18], hardware mod-
ifications that allow the recording of interleaved
memory sequences are proposed. For this, the
cache coherence protocol is extended. A logger
for relevant memory events that synchronize the
memory between the CPUs is added, as shown
in Figure 3.2.

Events on the cache coherence bus do not
contain any timestamp. Since there is no global
synchronization on that bus as well, the order in
which the messages are viewed by each processor cannot be determined by simply
recording the messages.

To solve this issue, a logical clock is introduced for each processor. It tracks
the oder of the individual events. By appending the logical clock to the coherence
messages, the processors can record at which time the other processor sent the
event and at which time they received it.

The instructions that cause memory accesses are then grouped into chunks
between the cache coherence messages. Each instruction in the chunk has the
same view of the main memory except for the changes the local processor does.
Chunk termination is synchronized using the logical clocks which allows for a
replay in the correct order. The changes a processor does to main memory then
become visible to other processors after chunk termination, since this is the time
the processors first may have synchronized their caches.

In Rerun [11], such an approach was implemented. The single chunks are
named episodes in Rerun. An episode lasts at most as long as the core does not
access any memory that is referenced by the current episodes of other cores. To
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detect such conflicts, the the cache coherence bus is monitored. Similar to Intel,
the local clock of each processor has been added to the coherence protocol to be
able to record the order in which such events happened. This may detect false
positives if two bytes on the same cache line are updated, but those false positives
do not influence the validity of the result.

If such a reference happens, the core ends it’s current episode by writing the
current time to the log. During replay, the episodes are replayed sequentially in
the same order in which they have ended. This ensures a consistent view of the
memory for all processors during replay. There is no ability for a parallel replay
in this method since no chunk dependency information is stored.

In Karma [1], the concept or Rerun was enhanced by allowing a parallel re-
play. For this, the predecessors and the successors of each episode need to be
recorded. They can be extracted from the cache coherence protocol messages that
lead to a episode end.

During relay, this dependency graph is analyzed. Instead of ordering the
episodes by a global time frame and running them in sequence, the episodes of
each recorded processor are now run on their own processor. Episodes that do not
conflict can then be run in parallel. For conflicts, processors need to pause until all
episodes that their next episode depends on have ended. For this system, a record-
ing overhead on of 1% for typical applications and 10% for memory conflict
intensive benchmarks has been shown. The replay speed cold be increased to be
between 19% and 28% slower than the original recording on the same hardware.

Although this approach causes a low overhead during recording, the recording
is relatively complex. In DeLorean [14], a new coherence protocol that focuses
on recording is proposed. Implicit memory transactions are suggested to make the
deterministic recording easier. Within each chunks, the instructions are considered
to be atomic as seen from other processors. If there is a conflict, chunks may be
rolled back and the processor is reset to it’s previous view of the memory.

To allow for detecting conflicts and rolling back, changes to the processor
hardware and the memory bus are required. Therefore this approach requires
specialized hardware.

Some processor instructions, like accesses to machine specific registers, are
hard to roll back. To avoid this problem, the current chunk is committed before
each of those instructions and a new chunk is started afterwards. This ensures that
they do not need to be rolled back.

For a correct replay, the commit order of the chunks needs to be stored. The
chunks can then later be replayed in the same order in which they were committed
to ensure a correct view of the main memory. During replay, a commit protocol
needs to be used as well. In addition to this, DeLorean uses two separate logs
per processor to store non-deterministic events. One log is used for asynchronous
events like interrupt requests. For those events, the system needs to be paused at
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a specific time during replay. The other log is used to store the results of syn-
chronous operations like I/O operations. Those events are triggered by the guest
during replay at the exact same state as they were recorded.

The granularity in which memory accesses were logged are cache lines. This
makes two memory accesses conflict not only if they affect the same memory cell
but also if they are on the same cache line. This greater granularity is required
because the chunk coherence protocol only works on cache lines.

3.3.3 Virtualized Memory Tracing

Hypervisor

CPU CPU

Memory

VCPU

Application

VCPU

Memory
trace

Figure 3.3: The hypervisor in-
structs the CPU to provide it
with tracing information. It
then writes the traces to the
log.

With the emerge of virtualization technologies,
an additional layer is added between the hard-
ware and the operating system. It allows to
run an unmodified operating system in a virtual-
ized environment. This allows the memory trac-
ing mechanisms to be moved to the hypervisor
layer (Figure 3.3). Since the hypervisor is imple-
mented in software, no hardware modifications
are neccessary.

In Samsara [19], such a recording system
was implemented. It uses a memory chunk pro-
tocol that is similar to DeLorean. In contrast to
DeLorean, the recording is able to run on an state
of the art system and does not require hardware
modifications.

Modern processors with virtualization sup-
port use a separate extended page table to map
the memory of the guest to the physical mem-
ory. Normally, hypervisors use one table per vir-
tual machine for this mapping. Samsara instead
uses one table for each processor. This allows
the tracking of the accessed and dirty bits of each
individual processor to detect reads and writes to memory pages.

To simulate transactional memory, copy-on-write is used. On each write to
memory, that write operation is only performed to a copy of the actual memory
page. This page is then written back to main memory during the commit opera-
tion. Since the extended page tables are per processor, this allows a different view
of the main memory for each processor so that each processor sees it’s own writes
but not those of other uncommited chunks.

A chunk is ended when the processor switches from guest to hypervisor. Page
fault switches are ignored, since they occur frequently due to the copy-on-write
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required for writing memory. Other switches trigger a commit attempt of the
current chunk. If the chunk is committed, the set of accessed pages is determined.
It is then compared to the dirty map for the current processor. That map contains
a list of pages that were written to by other processors. If there is any intersection
because any of the pages the current processor accessed were written to by an
other processor, the commit is aborted and the processor is rolled back to the state
at which the chunk started. If there is no conflict, the chunk is committed by
writing all pages that were modified back to the main memory. Then, the written
pages are added to the dirty map of all other processors so that they get a conflict
if they attempt to commit a conflicting access.

Samsara puts a lot of effort in optimizing the recording and reducing the
recording overhead. This includes an optimized copy-on-write strategy that re-
uses copies from the previous chunk, double buffering of the conflict page set for
reduced locking conflicts and a commit protocol that reduces the time a global
lock needs to be held to a minimum. With those optimizations, Samsara adds
an overhead between 310% and 510% for a four core simulation. Although this
is a significant overhead, it is relatively low compared to other software based
solutions [17].

During replay, the same mechanism can be used to simulate a transactional
memory. To ensure a correct ordering, each chunk may only start if all previous
chunks have been committed. For this, the index of the chunk that was committed
last before the current chunk needed to be recorded. For page writes, copy-on-
write needs to be used as well. The changes may only be written back to main
memory on the current chunk commit. This commit may only happen after all
previous commits of the other processores happened to ensure a correct replay
order.

While Samsara puts a lot of focus on efficient recoding, the replay was not
implemented in their prototype and not evaluated in their paper.

3.4 Conclusion
Various ways of recording a system and replaying it later have been evaluated
in the past. The ability to record a virtual machine using normal consumer grade
hardware has only been evaluated lately. While the recording on this platform was
evaluated to work, it was not yet evaluated if such a recording can be analyzed
using an emulator to get a more detailed view on the recorded program.

For recording, a chunk based recording approach has been shown to have a
low overhead in general. In Samsara, such an approach was implemented for
recording a virtual machine. The ability to replay of such a multi-core recording
using an emulator needs yet to shown. This will be the primary goal of this work.
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Design

In this work, a record and replay system will be implemented that supports re-
play in a different execution environment than the recording. The focus of this
work is on supporting multiple CPUs that run in parallel in this heterogeneous
environment.

4.1 Recording

During the recording phase, non-deterministic events are captured for later replay.

4.1.1 Initialisation

When starting a recording session, the recoding infrastructure needs to be set up
before executing any guest code. A storage needs to be created and made accessi-
ble by the host kernel. This can be done before starting the virtual machine.

The recording state is only bound to the virtual machine. This allows the
recording of multiple virtual machines simultaneously. Therefore, the required
data structures need to be added initialized for the virtual machine. For each
processor, a event log storage that records the processor events needs to be created.

The initial state at which the system starts is usually the system reset state. In
this state, the processors are in a predetermined state. This state is set up by the
hypervisor and can be set up fully deterministically. Therefore, it is not required
to record the initial system state.

The virtual machine is then started. The loading of the BIOS, the boot vector,
and other IO events are then recorded so that the system boot can be replayed
exactly.

21
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4.1.2 Processor Events

During the execution of the virtual machine, the processor may generate events
that cannot be emulated during replay. Those events need to be detected and
recorded to an event log for later replay.

Synchronous Processor Events

Many processor instructions are deterministic. This includes memory accesses,
disk access and instructions that do register computations. The result of those
instructions can be fully emulated if the current state of the CPU, RAM and disk
are known. This is why those instructions do not need to be recorded.

The output of the remaining instructions cannot be fully determined by the
emulator. This includes reads and writes to IO memory and machine specific
registers. Since they are synchronous to the program flow, they will happen at
the exact same time during replay. Their input parameters are the same as well,
since they depend on the current CPU state which is fully known to the emulator.
So only the registers that were changed as a result of the instruction need to be
changed. A synchronous processor event containing those results is added to the
event log for those instructions.

For verification, it can be useful to record the input parameters and the pro-
cessor state when running the instruction as well. That way, divergences between
the recorded program and the replayed one can be detected early without adding
much overhead.

The processor events are then scheduled to be written to the event for syn-
chronous log. There is one log for each virtual processor. This avoids synchro-
nization problems.

Asynchronous Processor Events

Interrupts are asynchronous events that are passed on to the guest system. When-
ever those interrupts are generated, the guest application is paused by the hardware
and the hypervisor has to forward the interrupt to the guest. The time at which this
interrupt happens is independent from the current processor state. This means that
those events won’t be happening automatically during replay.

To be able to replay those events, they need to be recorded in a way that allows
inserting them at the exact same instruction during replay. To ensure this, the CPU
is instructed to count the number of instructions it executes in guest mode. This
count is then used to store the time at which an interrupt happened.

In addition to the instruction count, a part of the guest processor state is stored
as well. This allows a validation of the replay processor state on interrupts. Due to
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limitations of the hardware, the instruction count may be off by a few cycles. [9]
During replay, the processor state can be used to re-align the instruction counts of
the replay and the recording.

The event is then scheduled to be written to the asynchronous event log. The
event log for asynchronous events is separated from the one for synchronous
events. This makes handling the different cases during replay easier.

4.1.3 Chunk Based Commit Protocol
On single-core systems where the CPU is the only entity that accesses the main
memory, memory accesses are fully deterministic. A multi-core record and replay
requires to record the interleaving of the memory accesses. This is done using a
commit and rollback procedure that ensures that concurrent memory accesses can
be tracked.

Defining a Chunk

A chunk is defined as a sequence of instructions whose view of the main memory
is not influenced by other processors. Form the view of the instructions inside
a chunk, they have exclusive access to the memory. From a outside view, all
changes a chunk makes to main memory happen atomically.

The memory state at the beginning of a chunk is the memory state the instruc-
tions operate on. The instructions can then modify the memory and following
instructions in the same chunk see the modifications of the current CPU only.
Written memory is not made available to other processors but only stored locally.
Those dirty pages are visible globally after a chunk has ended successfully. Such
a successful end of a chunk is called commit.

Implementing this in practice introduces difficulties, since there is no hard-
ware mechanism that ensures this atomic protocol. A roll back approach has been
chosen to avoid this issue: Each chunk that cannot commit using those invariants
is rolled back instead. This may happen on conflicting writes. If two concurrent
chunks write to the same memory cell, their real write order is unknown. This is
why those chunks need to be rolled back.

For avoiding a full memory snapshot when starting a chunk, the chunk reads
are always done on the current main memory. This introduces the problem that
the chunk may read a memory area that was altered by an other processor after the
chunk started. This violates the assumption that a chunk always has an uninflu-
enced view of the main memory. For this reason, chunks such accesses are traced
and chunks with such accesses are rolled back.

To avoid overhead, a page wise approach is used for tracking memory ac-
cesses. This has the additional advantage of being able to track page reads and
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writes using the accessed bits of the page tables.

Processor Isolation

Whether a chunk is committed or rolled back is determined at the end of each
chunk. Therefore, other processors may not see any effects of the other processors
until after they have committed.

To ensure this, all changes the to the main memory during a chunk is not
written directly to memory but to a temporary memory area. To implement this
efficiently, copy-on-write is used.

All processors share a common memory that represents all guest memory con-
tents that have been committed. Each processor has it’s own page table that maps
in all this guest memory as read only. As soon as the guest writes to a memory
page, that memory page is duplicated for the guest and the writes are written to
the duplicate. The guest then does further reads and writes to that local page. That
way, changes to memory contents are not visible to other processors.

Handling machine specific registers and accesses to IO memory cannot be
delayed using this mechanism. The processor requires the hardware to do those
accesses immediately. To make this direct hardware interaction possible, it needs
to be done in a state in which a rollback may not happen. For this, the current
chunk is committed before such an access is done. The access is then executed
and the next chunk starts with the result of the access. That way, the access only
needs to be done once on the hardware. If the next chunk is rolled back later, the
results of the access can be re-used. For this, it is stored in the processor local data
structure that restores the processor state on rollbacks.

Tracking Chunk Memory Accesses

In order to determine whether a chunk can be committed, the pages that were
accessed in the chunk need to be tracked.

This is done by using the accessed flag of the extended page table. This flag
is set by the processor MMU on each EPT lookup at the corresponding page table
entry and all parent entries.

At the beginning of each chunk, the flag is reset. That way, the flag was set
by the hardware at exactly the memory pages that were accessed during the chunk
once the chunk has ended.

The the flags are read at the end of each chunk. For this, the EPT is walked
hierarchically. Since the accessed flags are set on all page table levels, a full scan
of all page tables is not required. The scan can be done efficiently in linear time
relative to the number of accessed pages.
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For memory writes, copy-on-write needs to be used. This requires all pages to
be set to read only. That way, the hypervisor is trapped on the first write access to
each page. The hypervisor then copies that page to a new memory page and alters
the EPT entry to point to the new page. It sets the accessed flag and sets a flag in
the dirty page set to indicate that this page was written to in the current chunk.

For storing the set of accessed and dirty pages, a data structure that holds a
set of pages and allows for a fast iteration of the page numbers and a fast check
if it contains a single page number needs to be used. Samsara uses a bitmap
in combination with a linked list. Both data structures always contain the same
information. This redundancy allows the fast lookup times of a bitmap to be
combined with the linear walk time of a linked list.

The disadvantage of this approach is that a bitmap takes as much space as
the highest possible virtual address is. For virtual machines with a contiguous
memory, this is not a big problem since the maps are still comparably small. But
as the virtual memory gets bigger, the size of the bit maps increases. Modern
systems may not even require a contiguous virtual memory. On those systems,
a memory bitmap mapping the full 48 bit address space that a modern Intel EPT
could address requires 248 bits (35 terrabytes) of memory.

To reduce this amount, that information can directly be stored in the page
tables. One of the reserved bits of the EPT can be used for this. The dirty flags
is set in the EPT of the current processor when a copy-on-write operation occurs.
The insert operation for this is no performance overhead, since the EPT entry
needs to be written to to update the page address any way.

An efficient walk of the dirty pages is only possible if all parent pages have the
dirty bit set correctly. The dirty bit cannot be set on the first page table walk that
determines the page address on a page fault, since it is unknown then if the page
should be copied. Therefore, the dirty bit is only set in the last level of the page
tables. For each page that was marked as dirty, the accessed flag is set as well.
Since the accessed flag is set in the complete page table hirarchy, the accessed
pages can be iterated efficiently. During the commit phase, such a walk of the
accessed pages is required. During that walk, the dirty pages can be tracked as
well with low overhead.

Detecting Chunk Conflicts

At the end of each chunk, a decision needs to be made on whether to commit the
chunk or to roll it back. For this, a conflict page set is used for each processor that
tracks the pages on which it might conflict with other processors.

For this, the commit conflict page sets are first locked globally. This ensures
that no other processors influence the computation. It also ensures that no other
commits happen while the current chunk is committed.
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Then, the read and write actions of the chunk are compared to other chunks
that were active while it was running. The chunk needs to be rolled back if any
chunk it has accessed was written to by an other processor during time the chunk
was active.

For this, each processor has a processor local map of pages that were modified
by other processors during the chunk. Other processors did modify this map when
they did commits, so this information does not need to be derived.

The processor then computes a list of pages it has accessed. It is then tested
if that list intersects with the conflict page set. If they do intersect, a conflict
happened and the chunk needs to be rolled back.

Chunk Commits

After determining that a chunk needs to be committed, the data required to replay
it is written to the replay log and it’s memory modifications are made available to
other processors.

First, the commit index is determined. For this, a global counter is used that
is incremented atomically. This commit index is used for the chunk end event so
that the chunks can be ordered correctly during replay.

Then, the list of the copy-on-write pages of the current chunk is determined.
Those pages can be found by either walking the extended page table or by tracking
them in a separate copy-on-write list. Those pages are written back. For each of
thoise pages, the corresponding page is added to the conflict page set of all other
processors.

During the chunk, all events were written to the temporary event log. On a
commit, this temporary event log is written to the persistent event log. In addition
to the processor events, a chunk start and a chunk end event is added. Those
events are added to the asynchronous log, since they have not been triggered by
the program flow. In Figure 4.1, this mechanism and the temporary event logs are
visualized.

The chunk start event contains the index of the last commit that happened
before the chunk was started. Since a chunk’s view of the main memory is de-
termined by the time it started, this information is required during later replay to
determine the time at which the chunk may start running. Due to the delayed addi-
tion of the events to permanent storage, the current commit counter can be added
to the start of the chunk as well. That way, the replay system can determine the
commit time at which a chunk ends easily. This makes ordering the chunks for
later replay on single-core processors easier.

At the end of the chunk, a chunk end event is added. It contains the commit
index of the chunk.

It would also be possible to store the list of accessed and written pages of
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Figure 4.1: The execution of the guest CPUs is periodically paused. The chunk
is then committed by storing it’s events to the event log. The chunk end event
contains an index that indicates the order in which the commits happend.

the current chunk. This might allow for further performance optimizations during
replay. Since replay performance is not the focus and a fast recording with low
memory overhead is desired, this is not done. A correct replay is possible without
this information.

Chunk Rollbacks

If a conflict was detected during the commit phase of a chunk, the commit is
aborted. The chunk is rolled back and the processor state is restored so as if no
instructions were executed since the last chunk.

All changes made to the memory are discarded by removing the copy-on-write
pages and restoring them with the current memory contents of those pages.

The processor state is then restored to the state that was stored at the chunk
start. This state includes the registers of the processor with the instruction pointer.
That way, the program resumes it’s execution at the point where the previous
chunk ended.

There might have been interrupts on the current processor for the chunk that
is to be rolled back. Since the chunk is rolled back, the guest needs to see a state
in which those interrupts have not been handled. For this to happen, the interrupt
flags are set again. This causes the processor to execute the interrupt handler for
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Figure 4.2: On memory writes, a local copy of the memory page is created. That
copy is committed at the end of each chunk. If it was accessed by other processors
in between, the chunk is rolled back and the changes are discaded. Chunk starts
and commits are stored to the event log.

the flag with the highest priority as soon as the processor starts executing the next
chunk. From a guest perspective, this causes the impression that the processor
was only paused by the hypervisor and the interrupt occurred while the processor
was paused. The guest will then execute the interrupt handler as if that interrupt
handler was never executed.

Forced Commits

Commits are normally done on a regular basis every several milliseconds. This
ensures that changes a chunk made become visible to other processors after a few
milliseconds. For this, a timer is used that traps the vCPU into the hypervisor after
a given time. The current chunk is then committed.

But there are situations that require an instant commit of the current chunk.
One such situation is the interaction with hardware. When the guest system ac-
cesses hardware, the hardware is not accessed directly. Instead, the hypervisor is
trapped to emulate the hardware access. The hypervisor normally forwards those
calls to the real hardware. This may be a network device or a hard drive. For
most devices, this forwarding means that the hardware state changes in a way that
cannot easily be undone.

State from one processors should only be visible to other processors after a
chunk commit. Since the hardware device is shared between processors, it would
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also mean that the commit protocol would need to be extended to hardware regis-
ters. The hardware would need to have the ability to be visible to other processors
in an older state and conflicts on the hardware would need to be detected.

When rolling back such hardware operations, all state needs to be restored.
This includes communication with external devices. For the network interface,
packages could be delayed. But other interfaces like the serial port might not be
able to delay the messages if the timing is critical or if the processor awaits a direct
response.

Therefore, the commit and roll back protocol cannot be extended to generic
hardware devices. To avoid this issue, whenever the hypervisor traps for an IO
operation, a commit is forced. The processor then either commits or rolls back the
current chunk. If the chunk was rolled back, the processor is restored to the old
state and the IO operation request is ignored by the hypervirsor. The processor
resumes the virtual machine execution at an earlier point. The guest chan then
attempt the IO operation again in hope that no conflict occurs.

If the commit was successful, the IO operation is performed. The hypervisor
then sets the guest registers to to correspond with the new hardware state and
loads the return value from the hardware into the desired register. After that, the
snapshot for later roll back is done. This ensures that a roll back always rolls back
to directly after the IO operation. The IO operation itself is not rolled back.

Since the guest was not resumed, no memory accesses may have been done
in the time between the commit and the rollback checkpoint. That way, this short
time does not need to be protected by the memory commit protocol.

4.1.4 Direct Memory Access

When other hardware has direct access to the main memory, the same problems
as with multiple processors arise. Therefore, that hardware needs to participate in
the commit protocol as well.

This may even happen in systems with only one CPU that support direct mem-
ory access (DMA). DMA allows the hardware to directly access the main memory.
In virtualized environments, the guest operating system has no direct control over
the DMA controller. Instead, all accesses are trapped by the hypervisor. It then
checks the access permissions and forwards the request to the controller. That
controller can then both read from and write to main memory.

The memory that is written by the DMA controller on a write operation can
be seen as deterministic as long as the state of the source hardware is known or
recorded. But while the read operation is in progress, the destination memory area
is written to by the DMA controller at an unknown time. Therefore all read of the
running CPU to the affected memory area can be considered non-deterministic.
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For operations where the DMA controller reads from memory, a similar prob-
lem may arise. While the DMA controller reads the memory, the processor may
modify that memory area. Therefore the values read by the controller are non-
deterministic.

Guest applications normally require a deterministic behavior of the DMA con-
troller. This is why they do not access the memory that was passed on to the DMA
controller while a DMA operation is still in progress. But this behavior cannot be
relied on to ensure a deterministic replay. It can be enforced by the hypervisor
by locking the affected pages for read/write access while the DMA operation is in
progress. That way, the guest application will need to be halted if it attempts to
access one of those pages.

An alternative is to buffer the DMA controller memory by using copy-on-write
while the controller reads from memory. For DMA writes, the data is written to
background pages and the pages are then made visible to the guest by re-mapping
them. This has the advantage of making the DMA operations atomic and allowing
a simpler replay implementation at the cost of reducing the DMA performance and
increasing memory requirements while recording.

4.1.5 Checkpointing
An alternative to starting the recording at the system start is to allow for it to be
started at a user defined time. This has the advantage that the log size is smaller.

To create a checkpoint and start a recording session from there, the virtual
machine needs to be paused. A memory snapshot needs to be taken. A hyper-
visor supports two modes to create a snapshot. In the stop-and-copy mode, the
virtual machine is paused, the snapshot is written to disk and the machine is then
resumed. In the copy-on-write mode, the virtual machine is only paused a short
time to save the processor state. The memory is then to set read only and uses
copy-on-write if the virtual machine attempts to write to a memory page. That
way, the virtual machine can continue to run while the snapshot is written to disk.
Once the snapshot is completely written, copy-on-write can be disabled again.
Since copy-on-write is used during the chunks, a stop-and-copy checkpoint can to
be done to not interfere with that protocol.

A copy-on-write snapshot is not possible the way copy-on-write snapshots are
usually implemented. Current implementations assume that there is only one EPT
per virtual machine. If a page write occurs during the snapshot, that EPT can be
changed to point to a new page location and preserve the original page contents.
This approach does not scale well since there is now one EPT per virtual processor.
To avoid this issue, the write back on chunk commits can be intercepted. Before
a page is written back, it is first checked if it needs to be preserved for an ongoing
checkpoint write. If it needs to be preserved, the original page content is copied
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to a different memory location before the new page content is written. The copied
page is then used for the snapshot.

After taking the snapshot, the system initializes the additional data structures
for recording. The extended page table is set up for the copy-on-write mecha-
nism. Then, all processors add the initial event to their recording log. That event
contains information about the initial processor state. This may include additional
information about the current CPU features to match this processor automatically
in later replay.

When allowing to start the recording while a virtual machine is running, it may
be desired to stop the recording after some time. To stop recording, all processors
need to be paused so that none of them writes to memory any more. The hyper-
visor then does a final commit or roll back operation for each processor. Since
the processors are paused, all processors have the same view of the main memory
after this is done. The hypervisor then closes the event log and removes all event
hooks. The EPT is restored to remove the copy-on-write flags.

After all processors are done with this, the virtual machine can be resumed.
The processors then continue to run the virtual machine in the normal, non-
recording execution mode from the point where the recording ended. A recording
can be started again at any time. This makes the recording system flexible.

4.2 Replay

The replay is done in an emulator that is able to exactly emulate the source system.
The emulator is started at the same state the recorded system was when recording
started. It then replays the exact instruction flow of that system. To replay non-
deterministic instructions and the correct order of memory accesses, the emulator
uses the recorded event log.

4.2.1 Initial state

The initial state of the replay needs to be exactly the same as the initial state of
the source system.

If the recording was started with the virtual machine construction, the emulator
needs to create the exact same system state. It needs to make the same number of
CPUs available. Each CPU needs to have the correct virtual CPU ID set and the
CPU features need to be matched to those of the source system.

The memory state is set to the initial, reset memory state.
No further setup is required since the non-deterministic actions that may oc-

cur during the system boot are all handled by the recording mechanism. This
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also includes the start of the non-primary processors that is triggered by the guest
operating system in the early boot process.

4.2.2 Chunk Ordering

During recording, the vCPUs were running in parallel. If memory race conditions
between the processors occurred during recording, the order in which the memory
was accessed was recorded by recording the order in which the processors com-
mitted their memory. When replaying, the memory accesses need to be replayed
with an order that ensures that the result of the memory accesses is the same.

For correctness, an exact ordering of all memory accesses is not required. It is
only required that all memory accesses to a fixed memory address happen in the
exact same order as they happened during recording.

During recording, the commit protocol ensured that no two threads accessed
the same memory at the same time except for reading. Moreover, it is even guar-
anteed that if a processor writes to a memory page, no other processor writes to
or reads from that page during the chunk. If this would have happened, one of the
two processors would have been rolled back.

This means that during replay, it needs to be ensured that all chunks that write
to a fixed memory address x are replayed in the correct order. If two there are
two chunks c1,2 accessing the memory page of x and c1 was committed before c2
started, the writes of c1 need to be replayed before the replay of c2 can be started.

Since there can only be one active chunk writing to that page, this ordering is
ensured if a chunk only starts to be emulated after all chunks that were executed
prior to it during recording have finished.

An emulator can emulate parallel processors by running them in sequence and
switching between them. This ensures that there are no direct race conditions
between the processors.

For such a single-core replay, those constraints can be met if all chunks are ex-
ecuted in the order in which they committed. If the commit order was stored along
with the chunk start event during recording, the processors are always yielded
whenever a chunk ends. The event logs of all processors then contain chunk start
events at their head. Since those chunk start events contain the commit index, one
of them needs to contain the next commit index. The corresponding processor is
then scheduled for execution.

That way, the replay can be done without any need for further, complex con-
flict logic.
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4.3 Conclusion
A multi-core virtual machine can be recorded using the virtualization hardware
extensions. During the recording, a transactional memory is simulated by splitting
the program execution in chunks of instructions. The changes each chunk does
to the main memory are then committed atomically. Conflicts are detected and
rollback mechanism is used in this case to drop the conflicting chunk.

This recording can then be replayed in an emulator down to the exact instruc-
tion level. The emulator needs to be able to exactly emulate the behavior of the
source system. For the multi-core support, only minor additions to a single-core
emulator are required. The chunks of the individual processors can then be sched-
uled in their commit order on that single-core emulator.
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Chapter 5

Implementation

To evaluate the possibilities of heterogenous, multi-core record and replay sys-
tems, a prototype is implemented. It supports recording a virtual machine with
multiple processors and then replaying it using an emulator. To evaluate the fea-
tures of this prototype, a special guest system is implemented that triggers memory
conflicts and makes evaluating race conditions possible.

5.1 Architecture
The implementation is based on QEMU using the KVM kernel module for a vir-
tualized recording and using QEMU in TCG mode for the emulated replay.

QEMU has a record and replay feature that supports recording and replaying
in the TCG mode only. This feature only supports a single vCPU. Therefore, a
new recording mechanism needs to be created that supports recording in KVM
and a replay mechanism that

5.2 Chunk Protocol Data Structures
To implement the chunk based commit protocol, additional data structures need to
be added to KVM. Those data structures are added to the virtual machine and to
the virtual processors. No host global data structures are used to allow for multiple
virtual machines to be recorded in parallel.

5.2.1 Page Set

The implementation needs to handle a set of accessed, dirty and conflicting pages
for each processor.

35
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For this, a generic interface is written. Each page is identified by it’s global
frame number. A library implementing the interface needs to support insertions
of single pages, a union of one page set into an other and intersection tests of two
page sets.

Since the page set data structures are used on each commit, the operations
should be as performant as possible. For this, a single page insertion time in the
order of O(1) is desired to allow for a linear run time scaling with the number of
pages written. The union operation and the intersection test should be possible in
O(n) where n denotes the number of pages in the page sets. The size of each page
set should be linear to the number of pages that are contained in the set. It should
not relate to the total size of the virtual address space of the guest, since full 48
bit address spaces should be supported.

In addition to those operations, a fast mechanism that clears the whole page
set is required. This mechanism is used when the chunk is committed and the
page sets need to be reset.
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Figure 5.1: Samsara uses a bitset
and a linked list to store the conflict
map. Both data structures contain
the same information.
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Figure 5.2: A hirarchical bitmap
solves the size problem of large ad-
dress spaces and removes unneeded
redundancy.

In Samsara [19], a data structure that provides those operations was imple-
mented. The data structure consists of a linked list that contains the indexes of
the pages that are in the set and a bit map in which the pages contained are repre-
sented as set bits. This data structure is shown in Figure 5.1. Both parts of the data
structure store the same information and are updated simultaneously. The linked
list can then be used to walk though the list of pages efficiently while the bitmap
allows for an efficient contains query.

On each addition of a page to the set, the corresponding bit in the bit map is
set. If that bit was not set before, the page index is added to the list. That way,
an add operation is possible in O(1) while maintaining the invariant that the page
may only be added to the linked list once.

To add all pages from one set to an other, the list of pages in the set that needs
to be added is traversed. They are then added to the other page set sequentially.
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This results in a total time for a union of O(n).
The intersection of two pages is computed by walking the linked list of one

page set. Each of the pages present in that list are then tested in the bit map of
the other page set. Since that test ist possible in O(1), the total page walk time is
O(n)

In Samsara, only a contiguous address range is used as guest physical memory.
That way, the bit map that spans all of the guest physical memory is reasonably
small. While this is sufficient for virtualizing a normal operating system, virtual-
ized systems can be more flexible and do not require the guest phyiscal memory
to be in one chunk [2]. In those situations, the bitmap would need to span the full
address space of the guest, which results in a bit map size of 8GiB on the 64 bit
system with 48 bit addresses that was used for the implementation. Although the
test system has a memory capacity of 64GiB, the space would not be sufficient
since Samsara uses four maps per processor. Therefore, the size of the page set
data structure needs to be reduced to allow for a recording on a consumer grade
host system.

The total number of pages in a 48 bit address space is approximately 69 mil-
lion. Since most tables are expected to have an entry count in the order of thou-
sands, this leads to a huge amount of wasted memory space. To reduce the size
of the data structure, the bitmap can be converted into a sparse tree structure that
resembles a page map with a bit set for it’s last level, as shown in Figure 5.2. The
granularity can be tuned by the number of levels the data structure has. For easy
convertibility between the page set and a page table, the same structure as a page
table is used. A 4kiB table with 64 bit pointers can hold a total of 512 pointers. 9
bits of the page address can be used as index in this table to access the next layer,
as it is done in the page table. But instead of a page table entry, the last level only
stores a bit set for the pages. This bit set has a size of 512 bit (64 bytes).

A read or write access to a existing page entry in this page set can be done
using a total of 4 memory accesses. New entries can be added using at most 3
memory allocations. Therefore, setting a bit in the table can be done in O(1). For
pages that are in contiguous areas of the memory, this number is smaller.

A further optimization could be to reduce the number of levels in the table by
one to reduce the walk time and while increasing the memory that is occupied by
a table with few entries.

Walking such a structure can be done efficiently in O(n) since the total walk
time is limited by the number of tables in the structure, which is itself limited by
the number of previous insertions times four. A union can be computed efficiently
by walking one table and inserting the entries into the other table. A intersection
test is possible by walking one table and testing against the other as well. It can
however be done more efficiently by testing the intersection in each level. For
the leaf bitmap, a bitwise comparison of the 64 bytes can be used. This is more
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efficient than walking the table for each bit of those 64 bytes. If an entry is not set
in a top level table of either page set, there can not be any intersection in the leaf
nodes of that part of the tree. That way, leaf nodes can be skipped entirely if their
parents are not in the other set.

5.2.2 Memory Access Maps

The memory accesses, writs and conflicts of each processor need to be stored
during each chunk.

For the access/dirty bits, the corresponding bits of the EPT the hardware de-
fines are used. On Intel, this is the bit 8 for the access and bit 9 for the dirty
flags.

KVM uses a separate EPT for each virtual processor. Normally, tables are
shared between those EPT structures. To prevent this and to have a accessed flag
per processor, KVM is instructed not to share tables between processors.

The access bits in the EPT can be set by hardware. This feature is activated in
this implementation to track read accesses without overhead.

For write accesses, the dirty bit is not tracked by the hardware. Since all pages
that are written need to be copied, that bit is set during the copy operation. The
accessed bit is set in the same operation, that way a dirty page is always marked
as accessed. Those copy-on-write pages are marked with an additional copy-on-
write flag. For this, bit 52 is used. That bit is ignored by the hardware and free for
custom use.

To store the conflicts with other processors, a page set is used. The set of pages
with accessed or dirty bits can be seen as such a page set as well. But using this
for operations like the intersection or union requires page table walks that are not
already implemented in KVM. To allow or a cleaner application implementation,
those sets are extracted to a separarte page set first. For this, the page table is
scanned. Since the accessed flag is hierarchical, unaccessed leaf tables do not
need to be scanned. That way, scanning is possible in linear time compared to the
number of accessed pages. Those pages are then added to the temporary accessed
page set.

Each accessed page is added to the accessed page set. Since only accessed
pages may be dirty, it is sufficient to check each accessed page if it was marked as
dirty as well. Those pages are then added to the dirty page set.

That way, there are three page sets present at the end of each chunk. The
accessed and dirty page sets contain the pages accessed or written by the cur-
rent processor. The dirty page set contains the pages that other processors have
committed to during the current chunk.
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5.2.3 Event Log

The event log needs to support the addition of events that have a small but variable
size. For each new event, a event object is allocated. The event meta data is written
to that object. That meta data contains flags about the event nature, especially if it
is an asynchronous event or not.

When the event is added to the event log, this flag is checked first. Then,
the correct temporary synchronous or asynchronous event log for the given vir-
tual processor is searched. That log is implemented as linked list. The event is
appended to that list.

Upon commit, the all events from the temporary event log are copied over to
a transfer event log. That log contains the events that should be moved to the
permanent storage on disk. This copy operation can be implemented fast since
the transfer event log is a linked list and moving items between linked lists does
not require any memory allocations. In this case, since the whole temporary list
is appended to the transfer log, the list does not even need to be walked and only
the pointers to last/first items need to be changed.

QEMU regularly sends a request to KVM to get the latest event log contents.
QEMU provides the kernel with a user-space memory are to write the new events
to for this. The kernel removes the events from the transfer queue after this. Those
events are then written on to the Simustore afterwards. That transfer mechanism
out of the kernel is based on the implementation in the Simutrace [20] project.

In addition to the events that are recorded for the replay, events that help restor-
ing the system state on rollback needs to be stored. For this, a list of APIC inter-
rupts that were triggered during the current chunk is used for each processor. This
list is cleared on each successful commit, since the events for replay are recorded
separately.

5.3 Recording
The recording is based on qsimu-linux from the Simutrace project [20]. It is ad-
justed to support recording multiple processors. The chunk based commit protocol
is added while parts from Samsara [19] could be re-used, although differences in
the KVM versions required a rewrite of some parts.

5.3.1 Creating an Initial Checkpoint

The implementation assumes that all processors are initialized upon recording
start. On system boot, only the first processor is started by the hardware. There-
fore, the recording can only be started once the guest operating system has initial-
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ized all cores. This is one of the first things modern operating systems do, so a
large part of the operating system startup and all of the running operation system
can be analyzed in this implementation.

The reason for starting the recording with all cores active is that the protocol
to start processors is complex and not well-documented by Intel. An emulator
implementation of this start mechanism that behaves exactly like the Intel im-
plementation for a given processor family is difficult to achieve. Since there were
differences in the way QEMU and the real hardware behave, it was decided to skip
this initialization and to focus the implementation on a running operating system
instead. The advantage of this is that a multi-core checkpointing mechanism can
be evaluated together with the chunk based commit protocol.

A command is added to QEMU that starts the recording. This start command
first checks whether the virtual machine is paused. If it is not, it pauses all proces-
sors and waits for them to halt.

Then, a checkpoint is done using Simuboost. The checkpoint is done syn-
chronously without use of the copy-on-write mechanism to not interfere with the
later commit protocol. Therefore, the start command needs to wait until the check-
point is done.

After creating the checkpoint, a recording session is started. The virtual ma-
chine can then be resumed afterwards if it was paused by the command.

5.3.2 Starting a Recording Session

A recording session can only be started directly after a snapshot. The processors
are still paused when starting the recording so that the system state is exactly the
same as the one in the snapshot.

The recording data structures are then initialized and cleared. This initializa-
tion is split into two parts. First, the virtual machine global data structures are
initialized. This includes the global locks used to synchronize the commits.

After that, each virtual processor initializes it’s local data structures. Each
processor has four event queues. They are used to store the temporary and the
committed events, each synchronous and asynchronous. They are simple linked
list and can be initialized on default.

Then, the data structures required to record the copy-on-write pages are ini-
tialized. They are then set to the empty, initial values for each chunk.

While recording, KVM needs to detect write accesses to pages. For this, pages
need to be set to read only. This flag is not updated directly on startup. Instead,
the shadow page table is invalidated. This makes KVM re-create the shadow page
table as soon as the virtual processor accesses memory. A flag is set internally to
indicate that newly created EPT entries should be set to read only.
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The bit 52, which holds the copy-on-write flag, is added to the list of allowed
bits in the shadow map. Otherwise, the page table validation of KVM would not
allow setting the bit. Since the validation is per processor, this needs to be done in
the processor start routine as well.

The state flag of the memory chunk protocol is then set to idle to indicate that
recording has just started. The virtual processor is now in the state in which it can
be resumed and starts with the chunk based memory protocol.

The preemption timer is set up to preempt the running virtual machine after
it executed for ea given time. This is used to restrict the chunk size. The chunk
end handling is done on VM exit, therefore the premption timer callback does not
need to be changed.

5.3.3 Processor Memory Access

As long as the virtual machine is recorded, each processor has it’s own view of the
main memory. Pages may be mapped differently on the different processors for
this. While the processor is executing guest code, this is achieved by separating
the EPT for each processor. But as soon as the guest traps to the hypervisor,
the hypervisor may need to read guest memory, too. KVM internally uses the
kvm_read_guest and kvm_write_guest functions to do such reads and writes.
Those functions translate the guest address into the host physical address and then
write to that address. For this, the functions receive the current virtual machine as
parameter.

Those functions are altered so that they do receive the virtual processor instead
of the virtual machine instead. That way, the memory access can be done using
the view of the current processor. The current processor that triggered the read
or write by entering the hypervisor needs to be tracked when those functions are
invoked.

There are some global operations in KVM that are not run out of a vCPU con-
text. They include copy-on-write remappings when doing a copy-on-write snap-
shot. The mechanism used by those snapshots now is to modify the corresponding
EPT mapping if a guest writes to a page that is under copy-on-write protected. Us-
ing separate EPTs for each processor, a copy-on-write operation without a vCPU
context would require all EPTs to be changed simultaneously. While this can be
implemented, it would require a lot of changes to the way KVM handles those op-
erations. Since copy-on-write snapshots are not required for the evaluation, they
are disabled in this implementation.
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5.3.4 Recording Events

After the recording session was initialized on all processors, the execution of the
virtual machine is resumed. Counters are installed to count the number of instruc-
tions the processor executes in guest mode. This count is used to allow for a replay
of asynchronous events.

All events that are non-deterministic need to be handled by KVM directly.
Therefore, no direct hardware access is granted to the virtual machine.

Whenever the virtual machine does an action or receives an event that intro-
duces non-deterministic behaviour, KVM needs to be hooked so that an event is
added to the replay log. For this, the kernel is modified to record the relevant
information for each of those events.

For interrupts, the number of the interrupt vector that was triggered and the
current instruction counter is stored. Storing only the instruction count is not
sufficient for locating the exact instruction at which the interrupt was triggered,
since that instruction count can be off by a few instructions on Intel platforms [9].
To allow for an exact location, the current instruction pointer and the exc register
are stored. The exc register is required for determining the iteration of a rep
instruction. Adding more registers to this landmark increases the accuracy of
locating the right time to insert the event during replay. In some cases this is not
enough, since the processor can be looping in an infinite loop using a relative jump
instruction with an offset of 0. In this case, the processor would execute the exact
same instruction over and over and the other registers of the processor would not
change. An exact insertion of the event may not be possible then. With the current
hardware, this situation cannot be prevented. In this case, an earlier insertion of
the event by a few cycles would probably not change the future instruction flow.
Although the risk of such a situation occurring in practice is low, there is still the
possibility of such a situation.

The interrupts do not only need to be recorded for the replay, they also need
to be recorded for rolling back the current chunk. If the chunk is rolled back,
the interrupt flags need to be set again so that the current processor handles the
interrupt again after the roll back operation. For this, all interrupts of the current
chunk are stored to a separate interrupt log that only stores the number of the
interrupt that occurred and not the time at which it occurred.

The results of several instructions that are non-deterministic are recorded to
the synchronous event log. The result of each accesses to machine specific regis-
ters and to the APIC controller is recorded. The content of writes does not need
to be stored since the writes will occur in exactly the same way during replay.
Only the values read back from those instructions are therefore added to the event
log. This also includes the cpuid instruction, the rtdsc instruction, and the rtdscp
instruction. The result of those instructions then does not need to be emulated by
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the emulator completely. In case of the time stamp counter, computing the ex-
act value might even be impossible for the emulator. This way, it is ensured that
the emulator can exactly reproduce the instruction results that occurred during the
recording.

After recording the events, they are added to one of the temporary event
queues. This queue stores the events for the current memory chunk. They are
passed on to the permanent storage once the chunk is committed.

5.3.5 Capturing Memory Access

On each access to memory though the page table, the MMU sets an accessed flag
for the given page. Having a table for each processor allows to track the accesses
of each processor.

Extended page tables allow huge pages with 2MiB or 1GiB instead of the
default 4kiB. KVM uses this optimization when a large, contiguous memory area
is allocated to the virtual machine. If such a large page would be written to, a lot
of data would need to be copied in order to perform the copy-on-write operation.
To avoid this situation, KVM is changed to only use small pages by disabling the
merge of such areas.

The memory writes need to be intercepted to do a copy-on-write operation.
For this, each memory page is set to read only as long as it is mapped to the
shared memory of the virtual machine. As soon as the guest attempts to write to
any page, the hypervisor is trapped to handle that page fault. It then checks if the
page could normally be written to. If this is the case, a processor local copy of
the page is made. The page table entry is then changed to point to that local copy
and to allow writes to that local copy. The virtual machine is then resumed. It
performs the memory access again, while this time it succeeds and accesses the
copied page. Further reads also read from the copied page and therefore read the
changes the current processor did to the memory but not the ones other processors
did.

Processor local data structures store the accessed, dirty and conflict state of
each memory page, as shown in Figure 5.3. Upon commit, the accessed and dirty
flags of the processor are collected into page sets. The accessed page set is then
compared with the local dirty page set. If they intersect, there are conflicts that
prevent the chunk from being committed. After the commit, the set of local dirty
pages is added to the dirty sets of all other processors. The sets are then reset for
the current processor after each chunk.
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Figure 5.3: When a vCPU accesses a memory page, the corresponding flag in
the accessed and dirty bitsets is set. On a commit, all dirty pages are committed
to memory and visible to other vCPUS. The dirty pages are therefore marked as
conflict on each other vCPU. vCPUs can then compare this conflict map with their
local accessed map.

5.3.6 Ending a Chunk
When the processor traps into the hypervisor, the function vcpu_enter_guest is
called. This happens for special instructions, page faults and a number of other
reasons. In this function, KVM handles the exit from the guest code. Guest oper-
ation is resumed upon function exit. Therefore, the commit and rollback protocol
needs to be hooked into this function.

At first, the action that should be taken for the current VM exit is determined.
This can either be to roll back, to commit, or to do nothing. Roll back and commit
both end the current chunk.

No action is taken on VM exits that occurred because of a EPT violation.
Because of the copy-on-write mechanism used during recording, those EPT vio-
lations are quite frequent. They should not end the current chunk.

If an action should be taken, it is determined if there are conflicts that prevent a
commit. As stated above, the memory accesses during the chunk are recorded by
the hypervisor for this. An evaluation function is called that returns whether there
is a conflict in the current chunk. A commit action is taken, if all the processor
has no conflicts with other processors. Otherwise, the processor is rolled back.

Determining this action requires to access the dirty page set. That page set is
guarded by a global commit lock which needs to be accquired for the test. After
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determining the action that is to be taken, it is executed while still holding the
lock.

Commit

For a commit, all pages for which copy-on-write was used are stored in a list. In
this list, the original and the copied page location are stored. Since a page was
only copied on a write page fault, the hypervisor can be sure that all pages are
modified and does not need to check for further modifications. The pages are
copied to the original position and thus become visible to all other processors.
The copies are then discarded and the original EPT entry is restored.

In addition to writing back the pages, the dirty sets of all other processors are
updated. For this, the list of processors is walked, skipping the current processor.
Since the list of copy-on-write pages is the same as the set of dirty pages, the set
of dirty pages is unioned into the conflict page set of each processor. Operations
on the dirty page set are guarded by the global commit lock, which is held in this
phase. It can be relased after the pages are written back and all conflict page sets
are updated.

The current processor state is then saved for possible future roll backs. This
includes the register contents, the contents of machine specific registers, the FPU
registers, and the MMU registers.

Roll Back

If a roll back occurs, the virtual machine state needs to be restored to the state at
which the chunk started. For this, all copy-on-write pages are discarded and the
original EPT entries restored for them. The accessed, dirty and conflict page sets
are cleared.

Then, the processor registers are read from the values that were stored when
the chunk was started. This value was stored on commit.

5.3.7 Stopping the Recording Session
To stop the recording and still continue the virtual machine execution, there may
not be any copy-on-write pages left. This is why disabling the chunk based pro-
tocol is only possible if all chunks were committed or rolled back. For this, the
virtual machine is paused by QEMU. QEMU then instructs KVM to set a global
flag that the virtual machine should stop recording. Then, it traps all processors
into the hypervisor. This triggers a commit of each of the chunks. Since the
commits are guarded by the global commit lock, they are done in sequence. The
commit or rollback operations then check the global exit flag. Since it is set, no
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preparations for starting the next chunk are done. Instead, the data structures are
freed. To unregister the copy-on-write mechanism, KVM flushes the EPT so that
it is re-created on the next page faults.

The events are then pulled by QEMU and written to the storage. The storage
for the event log can then be closed.

The virtual machine can then be resumed. All record and replay hooks are
then skipped.

5.4 Replay

For replaying a recorded virtual machine, QEMU is used in the TCG mode. This
this mode, QEMU uses binary translation to emulate the execution of the virtual
machine.

5.4.1 Restoring the Initial State

Before starting the replay, the emulator state needs to be restored from the check-
point that was created for the virtual machine during the start of the recording. For
this, the emulator is put in a paused state. The checkpoint is then loaded. This re-
stores the memory and register contents of the processor to the information stored
in the checkpoint.

Then, the event log store is opened. The event log contains two event streams
per processor, one for the synchronous and one for the asynchronous events.
Those streams are then matched to the correct processor. Matching the right pro-
cessor is required because each processor was restored to a different state when
loading the checkpoint and needs to be fed with the correct events for it’s state.
To match the processors, the virtual CPU ids are used. Both KVM and QEMU
in TCG mode use vCPU-ids that start at 0 and are consecutive. By computing
the stream index using the virtual CPU id, the same mapping the hypervisor used
while creating the event log is achieved.

After opening the event logs, the replay data structures are set up. No commit
protocol is used during the replay. Therefore, no data structures to hold copy-on-
write pages or page access information is required. Instead, only the instruction
count needs to be tracked in oder to emulate the asynchronous events at the right
instruction.

The current chunk commits are counted by the emulator. This count is set to
the intial value of zero. The emulator can then resume the gust system.
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5.4.2 Replay the Chunks
When emulating multiple processors, QEMU schedules the processors in sequence
instead of running them in parallel. This is required because the internals of the
emulator are not designed to work in a parallel environment [8]. A simple sched-
uler loops over the virtual CPUs and lets each CPU run a short time. This creates
the impression for the emulated system that it is running on a parallel hardware.

This scheduler is adjusted so that the order in which the processors are exe-
cuted is determined by the replay mechanism. The scheduler now always selects
the processor that will do the next commit. For this, the index of the commit event
at the end of each chunk was written to the start event of the chunk. Each asyn-
chronous event log contains such a chunk start event as head event. Therefore, the
scheduler can walk though all processors and select the one whose commit index
matches the next chunk that should be executed. This processor is then running
directly on the memory without any copy-on-write mechanism. The results of
non-deterministic instructions is read from the synchronous event log.

After each instruction that is executed, the processor checks if it has reached
the correct insertion point of the next asynchronous events. If it is reached, it
checks the type of the event. For interrupt events, an interrupt is simulated.
For chunk commit events, the global chunk counter is increased and processor
is yielded. The system is now at the same memory state at which it was when the
chunk was committed during recording. The scheduler then searches for the next
processor to execute, which is the one that committed next.

5.5 Conclusion
An implementation based on an existing hypervisor for recording and an existing
emulator for replay has been achieved.

The implementation showed that there are several changes to the hypervisor
required in order to use the commit protocol and that many mechanisms of the
hypervisor need to be adjusted in order to support the new per-processor view on
the memory. If those special features that would require further adjustment are
disabled, the changes to the hypervisor are mostly restricted to hooking into the
VM exit event. Depending on the exit type, that event is recorded for later replay
and memory is committed or rolled back in this event.

The multi-core replay implementation was shown to be possible with only
minor adjustments to the emulator in comparison to a single-core emulator. To
support the commit events, only the scheduler for the different cores needed to be
adjusted to schedule the cores in the right order.
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Chapter 6

Evaluation

The concept for heterogenous report and replay needs to be evaluated in situations
in which it will be useful. For this, scenarios that require full system debugging
are tested on the implementation.

The evaluation should show that a multi-core system can be recorded and that
the replay on the emulator matches the recording. Since scalability is an impor-
tant factor when supporting multiple cores, it should be evaluated how good the
implementation scales when using multiple cores.

The test is done using a Intel Xenon E5-2630 CPU with 16 cores. This proces-
sor is based on the 64 bit architecture and supports 48 bit virtual addresses using
it’s extended page table.

6.1 Evaluation Scenarios
Analyzing a full virtual machine makes sense in places in which there is not just a
single user-space program that needs to be analyzed. For this work, two scenarios
that both provide such a situation are used.

In the first scenario, a booting operating system is analyzed. When an oper-
ating system boots, it first runs some bootstrap code to set the processor and the
basic hardware to a known state. This first part of the boot process runs on the pri-
mary CPU. It is mostly the same for all system boots and always follows the same
pattern. The operating system then starts the other processors and the scheduler. It
then initializes the drivers, starts the system services, checks the environment and
loads additional modules. All those tasks are done in parallel to improve overall
throughput. This makes analyzing this phase of the system boot interesting. This
first scenario is operating system heavy and is expected to do a lot of different
hardware interactions.

For the evaluation, an ubuntu 16.04.2 guest was used. It was run on QEMU
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using two cores and 8GiB of memory.
An alternative scenario to analyze would be a running operating system with

multiple active processes. The nature of those processes severely influences the
evaluation results. Applications that rely heavily on spin locks in shared memory
to synchonize their memory access may trigger a lot of memory conflicts. Most
applications however have longer time frames in which they do not directly com-
municate with other processors but only do local computations. This includes
server applications, in which the main source of inter-processor communication is
the scheduler and the network or disk traffic. Those are the applications this work
focuses on. An example application that provides such a typical workload needs
to be found.

Building a Linux kernel provides such a typical and mixed workload. It con-
tains both hardware (disk) accesses and memory accesses from multiple processes
running in parallel. The individual builds are run as separate processes without
much interference, so only few memory conflicts can be expected from them. But
the underlying operating system has a disk cache and does a lot of process fork-
ing, both of which creates memory conflicts. The scheduler and other parts of the
operating system require synchronization mechanisms between the CPUs. That
way, this scenario provides a range of access patterns in a realistic balance.

The Linux kernel build is often used in evaluations. It is especially used int
he evaluation of Samsara [19], on which this recording implementation is based.
Therefore, it provides a good base for comparison with other solutions.

6.1.1 Analyzing the Scenarios

Analyzing the system boot may cause unreproducible results, since each boot may
be different depending on hardware reaction times and the internal scheduling of
the operating system. This makes it difficult to reliably analyze the influences of
the memory commit protocol.

Running a parallel kernel build is indeterministic as well. The build process
consists of several phases - from parsing the input files, compiling them to binary
code and then linking it - that all have different access patterns. The chunk based
commit protocol influences the timing for the processors any may delay code ex-
ecution that causes memory conflicts. This change in processor behavior might
itself change the behavior of the running program.

To be able to use a realistic evaluation scenario that does not rely on DMA, the
scenarios are first analyzed. They are run once and the memory access patterns
of this run are saved. A simple program is then written that mimics those access
patterns. That way, the overhead of the recording system can be analyzed in a
reproducible way..
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To analyze them, the scenarios are started in a virtual machine. This machine
then keeps track of the accessed and dirty pages by the reference bits in the EPT.
The preemption timer is set so that the thread is preempted when a commit would
happen. Additionally, the IO operation functions are instrumented. Since those
are the times at which a commit would happen, this allows to determine the num-
ber of accessed and written pages in each chunk.

Chunks are not rolled back in this scenario. It is assumed that a processor
resumes it’s operation after a roll back and therefore most processors do the same
memory accesses again after a roll back. Therefore, disabling roll backs should
only have a minimal impact on the recorded memory access statistics. The ad-
vantage of this is that the complex copy-on-write protocol can be disabled when
recording memory accesses. This allows for recording the access pattern of com-
plex programs such as a Linux during boot time without the need for a fully work-
ing DMA implementation.

The exact set of pages that was accessed does not need to be tracked. It is
sufficient to track the number of pages that were accessed since this corresponds
to the sizes of the page sets and to the number of copy-on-write operations.

Therefore, only the total number of accessed and dirty pages is logged for each
page table level.

For both scenarios - the Linux system boot and the Linux kernel build - this
list of chunks was created. For comparison, the same values were recorded on a
idle Linux system. Table 6.1 shows the numbers that were recorded on the test
system using two cores.

The number of accesses in the first level of the EPT corresponds to the number
of accessed pages. One can see that the number of accessed pages is below 10 in
most chunks.

The peak accesses were fluctuating a lot. The top values are around 400 ac-
cessed and 300 written pages but they only happening every few thousand ac-
cesses. In each scenario, less than 5% of the chunks was above 50 accessed and
less tan 5% was above 25 written chunks. This shows that most chunks only ac-
cess a few pages but that there are peak chunks in which a lot of pages are written.
The copy-on-write mechanism and the page set mechanisms need to be able to
handle this high number of pages. In the implementation, flexible data structures
that do not restrict the number of pages are used so the implementation is able to
handle this load.

In addition to the number of touched pages, the number of instructions that
were executed was recorded by recording the difference in the icount value.

Table 6.2 shows the icount differences for the chunks in the different test cases.
In the idle case, the processors spend most time in a halt instruction, which is why
only the active time of the processors is used in this statistic. The non-halted time
resembles the one at system boot, since the operating system is active then.
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Scenario Linux boot Kernel build Linux idle
Sample size 62976 chunks 27136 chunks 20992 chunks
1st level EPT accessed written accessed written accessed written
75% median 16 12 17 14 10 9
Median 6 5 5 4 6 5
25% median 1 1 2 2 2 1
2nd level EPT accessed written accessed written accessed written
75% median 8 6 10 8 6 5
Median 4 3 3 3 4 3
25% median 1 1 2 2 2 1
3rd level EPT accessed written accessed written accessed written
75% median 1 1 2 2 2 2
Median 1 1 2 2 2 1
25% median 1 1 2 2 1 1

Table 6.1: Number of access or dirty bits set per chunk. Level 4 is ignored since
the test address space of 8GiB only requires three levels.

Scenario Linux boot Kernel build Linux idle
Minimum 0 0 0
Median 255 873 239
75%-Median 3298 27927 1531
Maximum 749875 1436033 1436033

Table 6.2: Instruction counts per chunk in the different evaluation scenarios
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In each scenario, there are chunks that have a length of zero. Those are chunks
in which the virtual machine monitor was trapped twice for the same instruction.
This may happen e.g. if the guest trapps into the hypervisor because of a device IO
operation while an interrupt happens. The interrupt is then handled by the VMM
directly and a chunk with zero length is inserted.

The implementation is able to handle those zero length chunks by adding an
empty commit event. They cannot be dropped because they may indicate a barrier
at which the memory state needs to be updated by the other cores. Therefore, even
those zero length commits are recorded.

Most chunks have a length of a few hundred instructions. This happens for
example during IO operations of the operating systems. The OS communicates
with the hardware using several IO operations in sequence with a short sequence
in the virtual machine to read the IO results and compute the next IO operation.

Computation intensive chunks could probably have a length of several million
instructions. The preemption timer is used to restrict that maximum size. The
way it was set during the tests, the maximum achievable chunk size was 1436033.
Since the timer interrupt is not exact, there are various chunks a few cycles shorter
than this. While those chunks are few, they account for most of the computation
time and most of the memory accesses during a kernel build.

The maximum length of a chunk can be tuned by altering the preemption timer
value to ensure a good commit performance. Such tuning was done in Samsara.
In this work, the commit performance was not a primary objective and therefore
the chunk length parameter was not tuned.

Using those values, a small boot environment is built that simulates those ac-
cess patterns while not relying on unimplemented features like DMA. This allows
the validation of the prototype implementation.

6.2 Validation
The most important part of a replay is to ensure that the replay behaves exactly as
the recording does.

In a valid replay, all instructions should be executed in exactly the same way
as they were during recording. Validating this directly is difficult, since a trace of
every executed instruction would need to be done during recording. Doing this
using the hypervisor would interfere with the recording mechanism since the hy-
pervisor needs to be instructed to pause after every instruction. A valid evaluation
would not be possible this way.

There are several alternatives to this. One is to use a hardware tracing mecha-
nism. Hardware tracing is very complex as tracing the memory accesses requires
spcialized hardware.
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A simpler approach is to design the test program in a way that the execution
of the instrucitons can be validated by not looking at the instructions themselves
but only at the program results. For this, the test program is written so that it’s
instructions modify the main memory depending on the way or order they were
executed. For instructions that do not modify main memory directly, a subsequent
instruction can write their changes to main memory.

Instructions that access IO registers can for example write the results of that
access and the processor registers that were read to a predefined area in main
memory.

To evalute the correctness of the replay, the recording is paused at a random
point. A memory snapshot is taken at the end of the recording. That snapshot is
then compared to the memory state after the replay. Since the test program was
written in a way that the snapshots would differ if the execution of the program
was different, the validity of the replay is proven if the two snapshots match.

This test only needs to tell that the two snapshots contain exactly the same
memory content. Since no information about the individual memory cells is re-
quired, it is sufficient to compare a checksum over the memory content and com-
pare that checksum. For good checksums like SHA256, the likelihood of a check-
sum collision is minimal. This test is repeated multiple times. Since the point at
which recording is ended is chosen randomly, intermediate memory differences
may also be found with this approach.

Doing a snapshot during the recording is not possible. Each processor has it’s
own view of the main memory when recording. Only at a commit, the processor
memory state is the same as the main memory state. One could take the memory
state the committing processor sees, but this state does not include the changes
done by other processors since those processors use copy-on-write. Therefore, all
processors would need to be paused and a commit would need to be forced.

This is the same operation that is done at the end of the recording. Therefore,
instead of pausing the recording, the recording can be ended. Then, a checksum on
the main memory is computed. By repeating the whole recording multiple times
in different lengths the same effect as when pausing and resuming the recording
can be achieved.

To run this test, a small boot environment that boots multiple processors was
written. Each processor uses a pseudo-random number generator to compute the
memory pages it should access. This creates race conditions between the proces-
sors. Delay loops that only operate on the stack are used to simulate processor
local computations.

For this program, a recording session was started at a random point. It was
then running for a random time. Then, it was stopped. The memory checksum
was computed and printed to the serial output. Then, the program was replayed
and the same memory checksum computed. This step was repeated 10 times to



6.3. SCALABILITY 55

ensure for a valid replay.
In all those iterations, the checksum did match. This showed that the chunks

were recorded in the correct order.

6.3 Scalability
With the trend of increasing numbers of processors in consumer computers, it is
possible to allocate more processors to a virtual machine. The record and replay
mechanism works with a unlimited number of processors in theory. However, it
needs to be evaluated how well it scales with the number of processors.

6.3.1 Performance
There are two ways performance can be reduced when increasing the number of
processors.

The first way is by an increased chance for chunk conflicts which would in-
crease the number of rollbacks. If the client program uses more processors, the
chances of the processors producing a conflict may be higher. This depends on the
amount of shared memory accesses the processors do. Depending on the appli-
cation, the performance impact can be none if the processors do not work on the
same data or very high if it often uses synchronization mechanisms between pro-
cessors. Therefore, the commit protocol may scale well with some applications
like web servers but may not scale well with applications that have a lot of shared
memory access like database servers.

The second way the performance is reduced is by longer commit times. To
commit, the processor needs to acquire a global lock for the commit data struc-
tures and for updating the conflict maps of other processors. Holding this lock,
the processor needs to update the conflict map of each other processor and set it’s
own dirty bits in those maps. This way, the time the lock needs to be held by each
processor increases linear with the number of processors.

Assuming the chunk size stays the same when increasing the number of pro-
cessors, each processor still needs to acquire this lock in the same interval. Since
the lock is global, the number of times an entity wants to acquire the lock increases
linear with the number of processors.

So the total increase of the time the lock is held is squared when doubling the
number of processors. Samsara [19] evaluated this lock to be one of the main
performance problems. Their results showed that the time consumption while
waiting for the lock is 40% on a system with four cores for an unoptimized case
and still considerable high when using a parallel write back of the copy-on-write
pages.
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Event when using more fine-grained locking during the commit, the time to
update the dirty page sets scales linear with the number of processors. Therefore,
this may be the main issue when increasing the number of processors and an
alternative to the conflict detection protocol needs to be found in order to maintain
performance.

6.3.2 Memory Consumption
There are both global and processor-local data structures required for the commit
and rollback protocol.

The global data structures are the commit index counter and the commit syn-
chronization mechanism. They are of constant size, so an increased number of
processors does not increase the required memory.

The remaining data structures are required for each processor.
Each processors requires a local accessed, dirty and conflict map. The size of

the accessed and dirty maps is linear to the number of touched memory pages in
a chunk. That number is determined by the length of the chunk and the type of
work the processor did in the chunk. During recording, the a timer interrupt is
used to limit the length of the chunk. If it’s parameter is not changed, the maxi-
mum length of a chunk stays the same if the number of processors is increased.
Assuming the frequence of IO events that trigger a forced commit is not increased
by the target application, the same program can be expected to produce the same
number of touched pages on one CPU. The accessed and dirty page set each use
4kiB per set page in their last level if the bits cannot be grouped. The previous
levels of the map are ignored for this evaluation, since this is just a rough estimate
and previous evaluations showed that they are close to 1 page per level. As pre-
vious evaluation has shown, most chunks are well below 100 accessed pages. By
triggering a commit event when this limit is reached, that bond could even be en-
forced. Assuming a maximum of 100 accessed pages per chunk, the upper bound
for the memory used by the accessed page set Ma and by the dirty page set Md is
shown in equation 6.1.

Ma = Md = 4kiB · 100 = 400kiB (6.1)

The conflict page set is a union of all pages that were touched by other pro-
cessors during the current chunk. For this evaluation, it is assumed that any other
processor accesses 100 pages during the current chnk as well. As whit the lo-
cal accesses, this bound could also be enforced by rolling back chunks that have
grown to big or by using inter-processor communication to force a commit on the
other processor. Because it is a union, the size of the conflict set increases linear
to the number of other processors in the system. The memory consumption per
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processor for the conflict page set Mc is shwon in equation 6.2, where n is the
total number of virtual processors.

Mc = ((n− 1) · 100) · 4kiB (6.2)

For an increased memory, this depends on the way the program handles more
allocated memory. The previous evaluations showed that most chunks have a
memory access count of less than 100 for real world programs. For this evalu-
ation, a memory access count of 100 is assumed and the worst case scenario -
that those hits are distributed evenly over the memory and that there are no space
saving effects from storing multiple neighboring pages in one page set entry. This
number orders of magnitudes smaller than the total number of pages in the evalu-
ated system. So even increasing the main memory size will probably not increase
the total number of pages touched by the program in one chunk.

Each processor holds it’s own set of copy-on-write memory pages. Each of
those pages has a size of 4kiB. The number of extra pages a processor requires is
the same as the number of bits set in the dirty page set. As shown above, the size
of this page set is not expected to increase with an increased number of processors
or a increased memory size. Therefore, the total size of those pages Mcow can be
computed by multiplying the page size with the number of pages copied, as shown
in equation 6.3. For each processor, a constant overhead can be assumed for the
copy-on-write pages.

Mcow = 4kiB · 100 = 400kiB (6.3)

In addition to the constant size data structures and the memory maps, each
processor requires it’s own extended page table. This is required because the
accessed flags in those tables need to be tracked per processor and each processor
needs to have it’s copy-on-write pages mapped separately.

For each extra memory page that is made available to the guest, the EPT needs
an additional entry. If the guest uses a contiguous, like normal operting systems
do, no sparse entries are in the page tables. So the total size of the last leven page
tables is 8 bytes per such page, rounded up to the full page size since the table
for the highest address may not be fully filled. Additional memory is required
for the page tables with a higher level, but their total memory consumption is
limited in the same way by the number of lower level page tables. That way, their
number decreases by 512 on each level for contiguous memory allocations, so
their total number is far less than the number of last level page tables. Therefore,
the extended page table grows linear to the total number of pages that are made
available to the guest. For a contiguous area of m memory pages, the size required
for a contiguous EPT allocation Mept is stated in equation 6.4.
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Mept = (
⌈ m

512

⌉
+
⌈ m

5122

⌉
+
⌈ m

5123

⌉
+ 1) · 4kiB < m · 4kiB (6.4)

The linear growth of the page table size would also be the case if a sparse
memory is used. In that case, at most one page table per level is used per guest
memory page, which summs up to a page table size that is limited by 4 (the num-
ber of levels) times the memory size of the guest.

n · (Ma +Md +Mc +Mcow +Mept)

= n · (2 · 100 · 4kiB + (n− 1) · 100 · 4kiB + 100 · 4kiB +Mept)

= n · (200 · 4kiB + n · 100 · 4kiB +Mept)

< (200 · n+ 100 · n2 + n ·m) · 4kiB

(6.5)

Since the processors each require their own data structures, the memory over-
head for recording can be put in relation to n processors on m pages of contiguous
memory, as seen in equation 6.5. The memory consumption for the chunk based
memory data structures increases squared with the number of processors due to
the conflict page sets. It increases linear with the number of memory pages, since
the size of the EPT needs to be increased as well then.

Figure 6.1: This chart shows the additional memory required when recording a
virtual machine with 16GB of guest physical memory. The memory consumption
increases more than linear as the number of processors increases.

This is illustrated in Figure 6.1. For this virtual machine with 16GB of mem-
ory, the additional memory overhead would be 1.77% for a virtual machine with
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eight cores but 23% with 64 cores. For a 64GB virtual machine, the memory
overhead would only be 15%. The memory overhead is relatively high but still
well within acceptable sizes.

The memory for the temporary event lists is not evaluated, since the temporary
queue only contains the events for a few millisecodns. The events are written back
to disk in the order of seconds. The event buffer is required per processor. It can be
written back once it is full, so the total size occupied by the event buffer increases
linear to the number of processors.

6.4 Conclusion
The evaluation has shown that a correct replay of a recorded program is possible
on a different target platform.

The performance overhead for number of processors of a current consumer
PC is acceptable. For a higher number of cores, difficulties may be expected.

The memory overhead of the recording mechanism is low enough so that it
will scale with the number of cores that are to be expected within the next decade.
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Chapter 7

Conclusion

A heterogeneous record and replay is possible even with multiple processors. A
virtual machine can be recorded and later replayed using an emulator.

A chunk based memory access protocol can be used during the recording
phase to ensure a deterministic access to the main memory. While this can be
implemented in hardware [11, 18], a software only approach is possible using
the virtualisation features of modern processors [19]. While the software based
approach was evaluated in theory before, only a recording prototype was build
previously. No replay of such a recording has been done, neither on the source
system nor on a different system.

In this work, the possibility to replay such a recording was evaluated. With a
focus on memory race conditions, a prototype was build that records the memory
access orders and makes them deterministic that way. They were then replayed
using an emulator that simulates the source system. It could be shown that the
memory race conditions were detected successfully and replayed in the right order.

Since a key feature of multi-core programs is scalability, the scalability of the
record and replay solution was evaluated. It could be shown that the memory
required for tracking the memory access patterns lies within an acceptable size in
comparison to the memory size the virtual machine uses, even when tracking a
large number of cores.

The performance has been shown to not perform well on many processors,
mainly because of a global lock that prevents the application from scaling. In
further work, a more fine grained locking mechanism could be evaluated to solve
this issue.

The mechanisms to replay the application both on multiple hardware proces-
sors and on a emulated multi-processor system have been discussed. The replay
was implemented using an emulator that schedules the virtual processors all on
one physical processor. It has been shown that a correct replay can be achieved
using this. The ability to run the replay in parallel to achieve higher replay perfor-
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mance was shown to be possible. It can be further evaluated in future work on the
subject to measure the real performance benefits of this approach.
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