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Motivation

Study properties of redundant memory contents [Miller13]

Origin? Lifetime? Sharing possible?

Analyze memory contents after each modification

But: Analysis should not affect workload

Analyze memory access patterns on system interfaces [Jurczyk13, Wilhelm15]

Detect vulnerabilities in Windows 8 and Xen (CVE-2015-8550) 

Trace individual memory reads and writes

Marc Rittinghaus - SimuBoost

We want detailed runtime information
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Motivation

Operating system research

Debugging

Application, OS, and hardware interaction

Malware and vulnerabilities

Functional Full System Simulation

But: It is slow

Marc Rittinghaus - SimuBoost

Virtualization Simulation

KVM QEMU Simics

~ 1x ~ 100x ~ 1000x
Average slowdowns for: kernel build, SPECint_base06, LAMMPS

• Not practical for long-running workloads

• Loss of interactivity (users and remote hosts)
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Basic Acceleration Approach

(1) Split simulation into time intervals

(2) Simulate intervals simultaneously

Does not trade accuracy for speed

Applicable to single-CPU simulations

Scales with run-time of workload

Marc Rittinghaus - SimuBoost

• How to bootstrap the simulation of i[1..n]?

• Still no interactivity
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SimuBoost

Leverage fast virtualization

Checkpoints at interval boundaries bootstrap simulations

Hardware acceleration provides full interactivity

Speed difference drives parallelization

Marc Rittinghaus - SimuBoost
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SimuBoost

Leverage fast virtualization

Checkpoints at interval boundaries bootstrap simulations

Hardware virtualization provides full interactivity

Speed difference drives parallelization

Marc Rittinghaus - SimuBoost
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Challenges: Preserve interactivity and speedup

(1) Fast Checkpoint Creation: <100ms [RbMiller68]

(2) Fast Checkpoint Distribution
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Stop-And-Copy

Marc Rittinghaus - SimuBoost

Virtualizationsuspended

i[k] i[k+1]
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Virtualization

Stop-And-Copy

Marc Rittinghaus - SimuBoost
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Virtualization

Stop-And-Copy

Marc Rittinghaus - SimuBoost

suspended

Checkpoint

i[k] i[k+1]
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suspended

Downtime depends on VM size

Not suited for interactive use

Limited parallelization

i[k] i[k+1]

downtime

30% speedup loss

We need to drastically speedup checkpointing
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Incremental Stop-And-Copy

Observation: Only some data modified per interval

Marc Rittinghaus - SimuBoost

Virtualization
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M
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i[k] i[k+1]

pts_build_linux_kernel spec_jbb

22000 pages/s (85 MiB/s) 53000 pages/s (200 MiB/s)
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Incremental Stop-And-Copy

Marc Rittinghaus - SimuBoost

Virtualizationsuspended
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Checkpoint

i[k] i[k+1]

Idea: Save only modified data

Track dirty pages via page protections

Use previous checkpoints to get unmodified data
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Incremental Stop-And-Copy

Marc Rittinghaus - SimuBoost

Virtualizationsuspended

Checkpoint

i[k] i[k+1]

Idea: Save only modified data

Track dirty pages via page protections

Use previous checkpoints to get unmodified data
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Incremental Stop-And-Copy

Marc Rittinghaus - SimuBoost

Virtualizationsuspended
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Incremental Stop-And-Copy

Marc Rittinghaus - SimuBoost
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mean =  77
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Virtualizationsuspended

i[k] i[k+1]

Reduced downtime

Less dependent on VM size

But: Downtime depends on

Interval length

Workload

But: Downtime strongly fluctuates

Saved

downtime

25% above 100ms

60% above 100ms

We need to further speedup checkpointing
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Incremental Copy-On-Write

Marc Rittinghaus - SimuBoost
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Incremental Copy-On-Write

Marc Rittinghaus - SimuBoost
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Write-protect 

pages

i[k] i[k+1]

Idea: Save modified pages asynchronously

Use write-protection to prevent modification
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Incremental Copy-On-Write

Marc Rittinghaus - SimuBoost
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Idea: Save modified pages asynchronously

Use write-protection to prevent modification
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Incremental Copy-On-Write

Marc Rittinghaus - SimuBoost

Virtualization

V
M

 R
A

M

Checkpoint

Page Fault

i[k] i[k+1]

Idea: Save modified pages asynchronously

Use write-protection to prevent modification

Copy and release protection on pagefault
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Incremental Copy-On-Write

Marc Rittinghaus - SimuBoost

Virtualization
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Incremental Copy-On-Write

Marc Rittinghaus - SimuBoost

Virtualization

i[k] i[k+1]

Drastically reduced downtime

Pagefaults do not impede 

interactivity

Less dependent on

Interval length

Workload

Almost constant downtime

We can do checkpointing fast enough
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Checkpoint Distribution – The Naïve Way

Nodes request full checkpoints from central server

But: Central server becomes bottleneck
Limits parallelization and speedup

Marc Rittinghaus - SimuBoost
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SimuBoost Evaluation

Marc Rittinghaus - SimuBoost

Prototype: 1GiB RAM, 1s intervals, 4 simulation nodes

SimuBoost delivers predicted speedup [Rittinghaus13]

But: Saturates 10 Gbit Ethernet

Need to avoid single bottleneck
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Future Checkpoint Distribution

Idea: Only send new data
Deduplicate and compress data

Use distributed file system (e.g., Ceph [Weil06])

Append new data to global file

Checkpoint = Map of VM addresses to offsets in file

Marc Rittinghaus - SimuBoost

Virtualization

Node 1
FS

Cache

Node 2
FS

Cache

Node 3
FS

Cache

Node 4
FS

Cache

pts_build_linux_kernel spec_jbb

22000 pages/s (85 MiB/s) 53000 pages/s (200 MiB/s)

5000 pages/s (20 MiB/s) 16000 pages/s (65 MiB/s)
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Conclusion

Slowdown of Functional Full System Simulation: >100x

SimuBoost: Accelerate simulation

Run workload with fast virtualization

Take checkpoints in regular intervals

Start parallel simulations on checkpoints

Challenges

Fast checkpoint creation

Incremental Copy-On-Write

Fast checkpoint distribution

Distributed file system

Marc Rittinghaus - SimuBoost
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Deterministic Replay

Marc Rittinghaus - SimuBoost
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= i[2] Simulation
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(1) Trap and log non-deterministic events in the hypervisor

(2) Precisely replay events in the simulation

Non-deterministic events (e.g., interrupts, timing instructions)

…appear at equal points in the instruction stream

…produce same data output

Existing work: Retrace [Sheldon07], V2E [Yan12]
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Speedup and Scalability

Right interval length is crucial

Too short (a):

Checkpoint time dominates

Too long (c):

Little parallelization

Long simulation of final interval

Example scenario:

100ms downtime, 8% logging, 100x slowdown

Optimal interval length: 2s

Best possible speedup for 1h workload:

84x @ 90 nodes (94% parallel efficiency)

Near linear speedup possible

Marc Rittinghaus - SimuBoost
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Selected Previous Research

Workload Reduction

MinneSPEC [KleinOsowski02]

Simulate samples and extrapolate

Truncated Execution

SimPoints [Sherwood02]

SMARTS [Wunderlich03]

Improve simulation engine

Optimize engine: below 5x speedup mark

Parallelize simulation of vCPUs [Ding11]

Divide simulation time

For microarchitectural simulations: DiST [Girbal03]

Marc Rittinghaus - SimuBoost
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