
KIT – University of the State of Baden-Wuerttemberg and

National Research Center of the Helmholtz Association

OPERATING SYSTEMS GROUP

DEPARTMENT OF COMPUTER SCIENCE

www.kit.edu

Towards Scalable Parallelization of
Functional System Simulation with SimuBoost

GI Fachgruppentreffen Betriebssysteme (BS) 2016

Marc Rittinghaus, Frank Bellosa

Node 1Node 0

Virtualization
[Core 0]

Virtualization
[Core 1] Non-Det. Events

Non-Det. Events

C
h

ec
kp

o
in

ts
/L

o
gs

Tr
ac

e
D

at
a

C
h

ec
kp

o
in

ts
/L

o
gs

Tr
ac

e
D

at
a

C
h

ec
kp

o
in

ts
/L

o
gs

Tr
ac

e
D

at
a

C
h

ec
kp

o
in

ts
/L

o
gs

Tr
ac

e
D

at
a

C
h

ec
kp

o
in

ts
/L

o
gs

Tr
ac

e
D

at
a

C
h

ec
kp

o
in

ts
/L

o
gs

Tr
ac

e
D

at
a

C
h

ec
kp

o
in

ts
/L

o
gs

Tr
ac

e
D

at
a

C
h

ec
kp

o
in

ts
/L

o
gs

Tr
ac

e
D

at
a

Central Storage

Virtualization Node
Management Node Simulation Node

Simulation Node
Analysis Node

SimuTrace

Simulation
[Interval 0]

SimuTrace SimuTrace SimuTrace

Simulation
[Interval 1]

Simulation
[Interval 2]

Simulation
[Interval 3]

SimuTrace

Simulation
[Interval 4]

SimuTrace SimuTrace SimuTrace

Simulation
[Interval 5]

Simulation
[Interval 6]

Simulation
[Interval 7]

Si
m

u
Tr

ac
e

Si
m

u
Tr

ac
e

St
o

ra
ge

 P
ro

vi
d

e
r

St
o

ra
ge

 P
ro

vi
d

e
r

Virtualization Logs Simulation Traces

Checkpoints

In
p

u
t

P
ro

ce
ss

o
r

Trace Data

Results

Trace Data Si
m

u
Tr

ac
e

Si
m

u
Tr

ac
e

Custom Analysis

Custom Analysis

Analysis Results

Phase 1 Phase 2 Phase 3

Operating Systems Group

Department of Computer Science
2

Motivation

Study properties of redundant memory contents [Miller13]

Origin? Lifetime? Sharing possible?

Analyze memory contents after each modification

But: Analysis should not affect workload

Analyze memory access patterns on system interfaces [Jurczyk13, Wilhelm15]

Detect vulnerabilities in Windows 8 and Xen (CVE-2015-8550)

Trace individual memory reads and writes

Marc Rittinghaus - SimuBoost

We want detailed runtime information

Operating Systems Group

Department of Computer Science
3

Motivation

Operating system research

Debugging

Application, OS, and hardware interaction

Malware and vulnerabilities

Functional Full System Simulation

But: It is slow

Marc Rittinghaus - SimuBoost

Virtualization Simulation

KVM QEMU Simics

~ 1x ~ 100x ~ 1000x
Average slowdowns for: kernel build, SPECint_base06, LAMMPS

• Not practical for long-running workloads

• Loss of interactivity (users and remote hosts)

Operating Systems Group

Department of Computer Science
4

Basic Acceleration Approach

(1) Split simulation into time intervals

(2) Simulate intervals simultaneously

Does not trade accuracy for speed

Applicable to single-CPU simulations

Scales with run-time of workload

Marc Rittinghaus - SimuBoost

• How to bootstrap the simulation of i[1..n]?

• Still no interactivity

Operating Systems Group

Department of Computer Science
5

SimuBoost

Leverage fast virtualization

Checkpoints at interval boundaries bootstrap simulations

Hardware acceleration provides full interactivity

Speed difference drives parallelization

Marc Rittinghaus - SimuBoost

Virtualizationi [0] i [k] i [n]

t

Node 0 Simulationi [0]

Simulationi [k]

Simulationi [n]

i [n]

Node k

Node n

vNode

Operating Systems Group

Department of Computer Science
6

SimuBoost

Leverage fast virtualization

Checkpoints at interval boundaries bootstrap simulations

Hardware virtualization provides full interactivity

Speed difference drives parallelization

Marc Rittinghaus - SimuBoost

Virtualizationi [0] i [k] i [n]

t

Node 0 Simulationi [0]

Simulationi [k]

Simulationi [n]

i [n]

Node k

Node n

vNode

Challenges: Preserve interactivity and speedup

(1) Fast Checkpoint Creation: <100ms [RbMiller68]

(2) Fast Checkpoint Distribution

Operating Systems Group

Department of Computer Science
7

Stop-And-Copy

Marc Rittinghaus - SimuBoost

Virtualizationsuspended

i[k] i[k+1]

Operating Systems Group

Department of Computer Science
8

Virtualization

Stop-And-Copy

Marc Rittinghaus - SimuBoost

suspended

V
M

 R
A

M

Checkpoint

i[k] i[k+1]

Operating Systems Group

Department of Computer Science
9

Virtualization

Stop-And-Copy

Marc Rittinghaus - SimuBoost

suspended

Checkpoint

i[k] i[k+1]

Operating Systems Group

Department of Computer Science
10

101 193 301

825

1555

2667

4321

0

500

1000

1500

2000

2500

3000

3500

4000

4500

5000

256 512 1024 2048 4096 8192 16384

Memory Size (MiB)

D
o
w

n
tim

e
 (

m
s
)

pts_build_linux_kernel

Virtualization

Stop-And-Copy

Marc Rittinghaus - SimuBoost

suspended

Downtime depends on VM size

Not suited for interactive use

Limited parallelization

i[k] i[k+1]

downtime

30% speedup loss

We need to drastically speedup checkpointing

Operating Systems Group

Department of Computer Science
11

Incremental Stop-And-Copy

Observation: Only some data modified per interval

Marc Rittinghaus - SimuBoost

Virtualization

V
M

 R
A

M

i[k] i[k+1]

pts_build_linux_kernel spec_jbb

22000 pages/s (85 MiB/s) 53000 pages/s (200 MiB/s)

Operating Systems Group

Department of Computer Science
12

Incremental Stop-And-Copy

Marc Rittinghaus - SimuBoost

Virtualizationsuspended

V
M

 R
A

M

Checkpoint

i[k] i[k+1]

Idea: Save only modified data

Track dirty pages via page protections

Use previous checkpoints to get unmodified data

Operating Systems Group

Department of Computer Science
13

Incremental Stop-And-Copy

Marc Rittinghaus - SimuBoost

Virtualizationsuspended

Checkpoint

i[k] i[k+1]

Idea: Save only modified data

Track dirty pages via page protections

Use previous checkpoints to get unmodified data

Operating Systems Group

Department of Computer Science
14

Incremental Stop-And-Copy

Marc Rittinghaus - SimuBoost

Virtualizationsuspended

i[k] i[k+1]

Saved

downtime

Reduced downtime

Less dependent on VM size

0

50

100

150

200

256 512 1024 2048 4096 8192 16384

Memory Size (MiB)

D
o
w

n
tim

e
 (

m
s
)

pts_build_linux_kernel (interval = 16000 ms)

Operating Systems Group

Department of Computer Science
15

Incremental Stop-And-Copy

Marc Rittinghaus - SimuBoost

Virtualizationsuspended

i[k] i[k+1]

Saved

downtime

0

50

100

150

200

250

300

350

400

10
0

10
00

16
00

0

20
00

40
0050

0

80
00

Interval Length (ms)

D
o
w

n
tim

e
 (

m
s
)

idle

pts_apache

pts_build_linux_kernel

pts_postmark

spec_jbb

stressReduced downtime

Less dependent on VM size

But: Downtime depends on

Interval length

Workload

Operating Systems Group

Department of Computer Science
16

mean = 77

50

100

150

200

250

300

0

10
00

20
00

30
00

Checkpoint Index

D
o
w

n
tim

e
 (

m
s
)

spec_jbb (interval = 500 ms)

Incremental Stop-And-Copy

Marc Rittinghaus - SimuBoost

Virtualizationsuspended

i[k] i[k+1]

Reduced downtime

Less dependent on VM size

But: Downtime depends on

Interval length

Workload

But: Downtime strongly fluctuates

Saved

downtime

25% above 100ms

60% above 100ms

We need to further speedup checkpointing

Operating Systems Group

Department of Computer Science
17

Incremental Copy-On-Write

Marc Rittinghaus - SimuBoost

Virtualization

V
M

 R
A

M

i[k] i[k+1]

Operating Systems Group

Department of Computer Science
18

Incremental Copy-On-Write

Marc Rittinghaus - SimuBoost

Virtualization

V
M

 R
A

M

Write-protect

pages

i[k] i[k+1]

Idea: Save modified pages asynchronously

Use write-protection to prevent modification

Operating Systems Group

Department of Computer Science
19

Incremental Copy-On-Write

Marc Rittinghaus - SimuBoost

Virtualization

V
M

 R
A

M

i[k] i[k+1]

Idea: Save modified pages asynchronously

Use write-protection to prevent modification

Operating Systems Group

Department of Computer Science
20

Incremental Copy-On-Write

Marc Rittinghaus - SimuBoost

Virtualization

V
M

 R
A

M

Checkpoint

Page Fault

i[k] i[k+1]

Idea: Save modified pages asynchronously

Use write-protection to prevent modification

Copy and release protection on pagefault

Operating Systems Group

Department of Computer Science
21

Incremental Copy-On-Write

Marc Rittinghaus - SimuBoost

Virtualization

i[k] i[k+1]

0

10

20

30

40

50

60

70

80

90

100

10
0

10
00

16
00

0

20
00

40
0050

0

80
00

Interval Length (ms)

D
o
w

n
tim

e
 (

m
s
)

idle

pts_apache

pts_build_linux_kernel

pts_postmark

spec_jbb

stressDrastically reduced downtime

Pagefaults do not impede

interactivity

Less dependent on

Interval length

Workload

Operating Systems Group

Department of Computer Science
22

Incremental Copy-On-Write

Marc Rittinghaus - SimuBoost

Virtualization

i[k] i[k+1]

Drastically reduced downtime

Pagefaults do not impede

interactivity

Less dependent on

Interval length

Workload

Almost constant downtime

We can do checkpointing fast enough

mean = 7

10

20

30

40

50

60

70

80

90

100

0

10
00

20
00

30
00

Checkpoint Index

D
o
w

n
tim

e
 (

m
s
)

spec_jbb (interval = 500 ms)

Operating Systems Group

Department of Computer Science
23

Checkpoint Distribution – The Naïve Way

Nodes request full checkpoints from central server

But: Central server becomes bottleneck
Limits parallelization and speedup

Marc Rittinghaus - SimuBoost

Virtualization

Node 1

Node 2

Node 3

3

1

Node 4

4
2

Bottleneck

Operating Systems Group

Department of Computer Science
24

SimuBoost Evaluation

Marc Rittinghaus - SimuBoost

Prototype: 1GiB RAM, 1s intervals, 4 simulation nodes

SimuBoost delivers predicted speedup [Rittinghaus13]

But: Saturates 10 Gbit Ethernet

Need to avoid single bottleneck

1.0

1.5

2.0

2.5

3.0

3.5

4.0

10
00

20
00

40
00

60
00

80
00

Interval Length (ms)

S
p
e
e
d
u
p
 F

a
c
to

r

build-linux-kernel Analytical Model

Operating Systems Group

Department of Computer Science
25

Future Checkpoint Distribution

Idea: Only send new data
Deduplicate and compress data

Use distributed file system (e.g., Ceph [Weil06])

Append new data to global file

Checkpoint = Map of VM addresses to offsets in file

Marc Rittinghaus - SimuBoost

Virtualization

Node 1
FS

Cache

Node 2
FS

Cache

Node 3
FS

Cache

Node 4
FS

Cache

pts_build_linux_kernel spec_jbb

22000 pages/s (85 MiB/s) 53000 pages/s (200 MiB/s)

5000 pages/s (20 MiB/s) 16000 pages/s (65 MiB/s)

Operating Systems Group

Department of Computer Science
26

Conclusion

Slowdown of Functional Full System Simulation: >100x

SimuBoost: Accelerate simulation

Run workload with fast virtualization

Take checkpoints in regular intervals

Start parallel simulations on checkpoints

Challenges

Fast checkpoint creation

Incremental Copy-On-Write

Fast checkpoint distribution

Distributed file system

Marc Rittinghaus - SimuBoost

Virtualizationi [0] i [k] i [n]

t

Node 0 Simulationi [0]

Simulationi [k]

Simulationi [n]

i [n]

Node k

Node n

vNode

Operating Systems Group

Department of Computer Science
27 Marc Rittinghaus - SimuBoost

Operating Systems Group

Department of Computer Science
28

Deterministic Replay

Marc Rittinghaus - SimuBoost

i[1] i[2]

= i[2] Simulation

Virtualization

i[1] Simulation

States

match

Interrupt

Node 1 Node 2

Node 0

log

replay2

1

(1) Trap and log non-deterministic events in the hypervisor

(2) Precisely replay events in the simulation

Non-deterministic events (e.g., interrupts, timing instructions)

…appear at equal points in the instruction stream

…produce same data output

Existing work: Retrace [Sheldon07], V2E [Yan12]

i[1] i[2]

≠
i[2] Simulation

Virtualization

i[1] Simulation

States

mismatch

Node 1 Node 2

Node 0

Interrupt

Operating Systems Group

Department of Computer Science
29

Speedup and Scalability

Right interval length is crucial

Too short (a):

Checkpoint time dominates

Too long (c):

Little parallelization

Long simulation of final interval

Example scenario:

100ms downtime, 8% logging, 100x slowdown

Optimal interval length: 2s

Best possible speedup for 1h workload:

84x @ 90 nodes (94% parallel efficiency)

Near linear speedup possible

Marc Rittinghaus - SimuBoost

a)

b)

c)

Virtualization

Virtualization

Virtualization

Sim

Simulation

Simulation

Lopt

tc L ti
ssim

Total run-time Tps

L slog

Operating Systems Group

Department of Computer Science
30

Selected Previous Research

Workload Reduction

MinneSPEC [KleinOsowski02]

Simulate samples and extrapolate

Truncated Execution

SimPoints [Sherwood02]

SMARTS [Wunderlich03]

Improve simulation engine

Optimize engine: below 5x speedup mark

Parallelize simulation of vCPUs [Ding11]

Divide simulation time

For microarchitectural simulations: DiST [Girbal03]

Marc Rittinghaus - SimuBoost

Operating Systems Group

Department of Computer Science
31

References

[Miller13] K. Miller et al. XLH: More effective memory deduplication scanners through cross-layer hints. USENIX, 2013

[Wilhelm15] F. Wilhelm. Tracing Privileged Memory Accesses to Discover Software Vulnerabilities. Master Thesis, KIT,
2015

[Jurczyk13] M. Jurczyk et al. Bochspwn: Exploiting Kernel Race Conditions Found via Memory Access Patterns. 2013

[Rittinghaus13] M. Rittinghaus. SimuBoost: Scalable Parallelization of Functional System Simulation. WODA, 2013

[Weil06] S. A. Weil at al. Ceph: A Scalable, High-Performance Distributed File System. OSDI, 2006

[Bellard05] F. Bellard. Qemu: A Fast and Portable Dynamic Translator. USENIX, 2005

[Magnusson02] P. Magnusson et al. Simics: A Full System Simulation Platform. Computer, 35(2), 2002

[Sherwood02] T. Sherwood et al. Automatically Characterizing Large Scale Program Behavior. ACM SIGARCH, 30(5),
2002

[Ding11] J. Ding et al. PQEMU: A Parallel System Emulator Based on QEMU. ICPADS, 2011

[Wunderlich03] R. E. Wunderlich et al. SMARTS: Accelerating Microarchitecture Simulation via Rigorous Statistical
Sampling. Computer Architecture, 2003

[Girbal03] S. Girbal et al. DiST: A Simple, Reliable and Scalable Method to Significantly Reduce Processor
Architecture Simulation Time. SIGMETRICS, 31(1), 2003

[KleinOsowski02] A. J. KleinOsowski et al. MinneSPEC: A New SPEC Benchmark Workload for Simulation-Based
Computer Architecture Research. IEEE Computer Architecture Letters 1.1, 2002

[Sheldon07] M. Sheldon et al. Retrace: Collecting Execution Trace With Virtual Machine Deterministic Replay. MoBS,
2007

[Yan12] L. Yan et al. V2E: Combining Hardware Virtualization and Software Emulation for Transparent and Extensible
Malware Analysis. VEE, 2012

[RbMiller68] Robert B. Miller. Response Time in Man-Computer Conversational Transactions. 1968.

Marc Rittinghaus - SimuBoost

