
Fine-Grained Estimation of Memory
Bandwidth Utilization

Masterarbeit
von

Florian Larysch
an der Fakultät für Informatik

Erstgutachter: Prof. Dr. Frank Bellosa

Zweitgutachter: Prof. Dr. Wolfgang Karl

Betreuender Mitarbeiter: Dipl.-Inform. Marius Hillenbrand

Bearbeitungszeit: 14. September 2015 – 13. März 2016

KIT – Universität des Landes Baden-Württemberg und nationales Forschungszentrum in der Helmholtz-Gemeinschaft www.kit.edu





The usefulness of a model is not what it can explain, but what it
can’t. [. . . ] Your strength as a rationalist is your ability to be more

confused by fiction than by reality. If you are equally good at
explaining any outcome, you have zero knowledge.

— Eliezer Yudkowsky





D E C L A R AT I O N

Ich erkläre hiermit, dass ich die vorliegende Arbeit selbständig ver-
fasst und keine anderen als die angegebenen Quellen und Hilfsmittel
verwendet habe.

Karlsruhe, den 13. März 2016

Florian Larysch





A B S T R A C T

Main memory bandwidth is a shared resource among applications
running on a system. Thus, the behavior of individual applications
can have performance implications for other applications running on
the same system. This makes main memory bandwidth utilization
a interesting characteristic of applications. Furthermore, the patterns
of utilization matter: Does an application use a constant amount of
bandwidth or does it cause bursts of high utilization separated by
phases of low utilization, for example?

As memory accesses are usually invisible to the operating system,
measuring the actual memory access behavior of applications in a live
system is difficult. In this thesis, we develop a system for capturing
main memory bandwidth consumption traces with a high temporal
resolution on commodity hardware. To build such a system, we an-
alyze existing hardware mechanisms for directly or indirectly moni-
toring memory access, such as Intel Memory Bandwidth Monitoring,
Performance Counters and Precise Event-Based Sampling (PEBS). We
pay special attention to achieving a high resolution while maintaining
a low overhead and implement a prototype system based on PEBS.

We evaluate our implementation using both synthetic and real-
world benchmarks and find that our system does indeed reduce the
incurred worst-case overhead compared to traditional approaches by
about 40%. We also find that the reduced overhead of our system
increases its accuracy by lowering interference with the measured ap-
plication.

vii





C O N T E N T S

1 introduction 1

2 background and related work 3

2.1 The Architecture of the Skylake CPU Family 3

2.2 Related Work 6

3 analysis 9

3.1 Criteria 9

3.2 Mechanism Selection 10

3.3 Experimental Verification 13

3.4 Further Experiments 17

3.5 Conclusion 21

4 design 23

4.1 Design Goals 23

4.2 Design Overview 24

4.3 Design Rationale 25

4.4 PEBS Configuration 25

4.5 PEBS Handler 26

4.6 Postprocessing 26

4.7 Ring Buffer 28

4.8 Trace Consumer 28

4.9 Conversion Between Overflow-Based and Sampling-Based
Representations 29

5 implementation 31

5.1 Choice of Operating System 31

5.2 Operating System Integration 31

5.3 PEBS Configuration 32

5.4 Performance Counter Configuration 33

5.5 PEBS Handler 33

5.6 User Space Interface 34

5.7 Trace Consumer 34

6 evaluation 37

6.1 Experimental Setup 37

6.2 Baseline Software-Based Approach 37

6.3 Accuracy 38

6.4 Overhead 44

6.5 Accuracy Implications of Overhead 44

6.6 Achievable Throughput 47

7 conclusion 49

7.1 Future Work 50

i appendix 51

bibliography 53

ix





1
I N T R O D U C T I O N

Main memory bandwidth is a shared resource like CPU time or IO
bandwidth, but while application consumption of the latter can be
readily monitored by the operating system itself (because for both
scheduling decisions and IO accesses, control usually passes from
the application to the operating system kernel), memory bandwidth
consumption is much harder to account for, as most memory accesses
(other than page faults and similar exceptions) are handled in hard-
ware, without involvement of the operating system.

Nevertheless, the memory bandwidth consumption of an applica-
tion is an interesting characteristic, as it directly influences the perfor-
mance of other applications: Not only does an application use up a
part of the finite resource that is the available memory bandwidth, but
the access patterns it produces over time also affect the queuing and
scheduling of memory accesses by the memory controller, thereby
possibly influencing other applications in a more complex fashion.

This thesis aims to evaluate the feasibility of using hardware per-
formance monitoring mechanisms to precisely measure the amount
of main memory bandwidth consumed by a particular application,
where “precision” means precisely measuring the amount of data
transferred, but more importantly also means precisely determining
the temporal characteristics of such accesses. We hope that this will
enable further study of the interactions between applications and the
memory subsystem and interference between applications caused by
their memory access patterns.

To that end, we develop a bandwidth monitoring system based on
the introduction of time stamps into the Precise Event-Based Sampling
(PEBS) mechanism of the Intel Skylake generation of CPUs and eval-
uate whether it yields an improvement over previous approaches.

The remainder of this work is structured as follows: Chapter 2

presents an overview of the underlying technologies and related work.
Chapter 3 reevaluates assumptions made in previous work about how
to measure memory bandwidth consumption using performance coun-
ters. In Chapter 4, we propose an improved mechanism for measuring
memory bandwidth consumption and describe its implementation in
Chapter 5. We evaluate our new mechanism in Chapter 6. Chapter 7

concludes this work and outlines future work.

1





2
B A C K G R O U N D A N D R E L AT E D W O R K

In this chapter, we introduce the concepts and technologies which
are relevant for understanding the work done in this thesis. We also
outline the scientific context of this thesis by reviewing related work.

As the main contribution of this thesis is based on advancements in
the current generation of Intel CPUs (called Skylake), we will focus on
presenting its architecture in this section. However, as detailed docu-
mentation is scarce, we will occasionally make assumptions based on
published information about previous generations.

2.1 the architecture of the skylake cpu family

The Skylake microarchitecture is a multi-core/multiprocessor archi-
tecture with out-of-order-execution and symmetric multithreading
(SMT, also known as Hyperthreading) support [10]. Since the departure
of the Front Side Bus and the Northbridge and their replacement by
the QuickPath Interconnect (QPI) and integrated memory controllers
(IMCs) in each CPU in the Nehalem generation of processors, Intel
CPUs have effectively become a NUMA (non-uniform memory ac-
cess) architecture, where the access to main memory connected to
a processor’s integrated memory controller occurs without the inter-
vention of other CPUs, while requests to remote memory must first
traverse a QPI link to another CPU [2].

Each core contains an L2 cache which is shared between instruc-
tions and data, and dedicated L1 caches for instructions and data
each. Additionally, each core contributes a slice of memory to the
L3/last-level cache (LLC), which is shared both between all cores on
a die and the graphics system [15]. All transfers between each of the
cores, the shared LLC and the system agent (representing the exter-
nal interface of the CPU and containing the IMC, PCIe and QPI con-
trollers) are mediated via a ring bus. All the subsystems of the proces-
sor which lie outside the individual cores are collectively called the
uncore.

As an out-of-order architecture, the cores do not necessarily exe-
cute instructions in the same order they occur in the program and
might even speculatively execute branches, only to discard these re-
sults should the branch not be taken. Thus, it is important to distin-
guish between instructions starting execution (being dispatched) and
actually finishing and having observable effects (retiring). This also
implies that later instructions might retire before earlier instructions
if there is no dependency between them and no explicit reordering

3



4 background and related work

barrier is inserted. As this process happens transparently, it is diffi-
cult to reason about the temporal sequence of events within a CPU.

2.1.1 Performance Counters

Modern Intel CPUs contain Performance Monitoring Units (PMUs) for
measuring the performance and behavior of the different subsystems
of the processor. PMUs contain sets of Performance Counters (PMCs),
which can either be configured to count various events, such as cache
hits or branch mispredictions or are hardwired to count a specific
event. These counters are exposed to the system software as Model-
Specific Registers (MSRs), which can be accessed using the rdmsr and
wrmsr instructions. Additionally, some of these counters can be con-
figured to cause an interrupt once they overflow.

In this thesis, we mainly use the on-core PMU, which deals with
performance-monitoring events caused by an individual core. These
counters can be also configured to only count events in specific execu-
tion modes, such as ring 0 or ring 3. Crucially, the overflow interrupts
generated by the performance counters contained in this PMU are al-
ways delivered locally, which means it is not possible to route those
interrupts to another core.

On the Skylake microarchitecture, each core contains 8 (or 4, if SMT
is enabled) 48-bit performance counters, which can be freely config-
ured to count almost any event (PEBS-capable events only work in
the first four PMCs, even if PEBS is not being used, see below for an
explanation of PEBS).

The available events are divided into architectural and non-architectural
performance events. Architectural events are abstract events which
ideally behave the same way across microarchitectures, whereas non-
architectural events are specific to each individual microarchitecture
generation.

Performance counters are usually used to find and analyze bottle-
necks in user space applications. This is done as follows:

1. The operating system configures a performance counter to in-
crement whenever a specific event occurs in ring 3 and preloads
the counter with a value, such that it will overflow after a num-
ber of events (called the threshold) have occurred.

2. Control is transferred to the application.

3. If the counter overflows, an interrupt is generated. The inter-
rupt handler records the overflow and also captures some of the
state of the executing application, such as its current instruction
pointer.



2.1 the architecture of the skylake cpu family 5

4. The interrupt handler once again preloads the performance counter
to overflow after a number of events and returns control to the
application.

5. If the application has used up its time slice or has to stop execut-
ing for another reason, the operating system stores the current
value of the performance counter to be able to restore it once
the application resumes execution.

Note that as there is a small but variable delay between the over-
flow occurring and the interrupt handler commencing execution, there
will usually be a certain overshoot of events within the counter which
has overflowed, which needs to be taken into account when calculat-
ing the next value to be loaded into the performance counter. Thus,
the interrupt handler also reads the current value of the performance
counter and uses it as an offset for calculating the next value to be
loaded into the counter.

The above algorithm is also the approach taken by the perf subsys-
tem in the Linux kernel, which is the standard high-level interface for
performance measurements and profiling in Linux.

While this approach works, it suffers from two problems: Firstly, as
the measurement framework has to run on the same core as the appli-
cation that is being analyzed, there is a positive relationship between
achieving higher accuracy (by using a lower threshold) and increasing
the slowdown of the measured application, because a larger fraction
of time is being spent handling the increased number of counter over-
flows. Also, the measurement process itself increasingly influences
the core’s state, for example by putting additional pressure on the
cache, thus distorting the measurements.

Secondly, when we are interested in the precise location in an ap-
plication’s code which caused an event, such as a branch mispredic-
tion, to occur, the aforementioned delay before the overflow interrupt
occurs causes the instruction pointer to advance an unpredictable
amount (called skid), before the sampling within the interrupt han-
dler can take place.

The second problem was solved by the introduction of Precise Event-
Based Sampling (PEBS) in the Core microarchitecture. While not its
stated goal, it also alleviates some aspects of the first problem by
reducing the overhead incurred by each overflow.

2.1.2 PEBS

PEBS is a hardware and microcode mechanism which implements
the previously described algorithm for sampling the machine state at
the time of a PMC overflow without the involvement of the operat-
ing system. The operating system only designates a buffer in mem-
ory and configures reload values for the counters of interest. Once



6 background and related work

PEBS is enabled, a microcode assist takes care of snapshotting the
various registers and resetting the performance counter to the config-
ured value. For each overflow event, a PEBS record is stored to the
configured buffer. Only when this buffer exceeds a configurable fill
level, an interrupt is signaled and the operating system will process
the collected records.

The main advantage of this approach is that, because the entire pro-
cess is under microcode control, asynchronicity inside the processor
can be more easily accounted for, allowing PEBS to pinpoint the in-
struction which caused the event to occur with a constant skid of one
instruction.

As PEBS focuses on events that are tightly causally related to the
instruction stream, only a few performance monitoring events which
mostly deal with the retirement of instructions are compatible with
it.

The number of elements in a PEBS record has grown over time [11].
Crucially for this work, as of the Skylake microarchitecture, these
records also contain the value of the Time-Stamp Counter (TSC), which
is a clock with a high resolution and constant rate, at the time the
PEBS assist was invoked.

2.1.3 Prefetchers

Prefetchers are a mechanism by which the processor recognizes mem-
ory access patterns and tries to reduce memory access latency by au-
tomatically fetching data from the predicted next access locations into
the cache. As we will want to deduce memory accesses causally re-
lated to application behavior from cache misses, prefetchers can add a
considerable distortion to our measurements if the workload lends it-
self to prefetching. Thus, it will be useful to disable prefetchers, which
is possible on Intel CPUs using the MSR 0x1A4 [16].

2.2 related work

One way to analyze the memory access behavior of applications is
simulation. Popular simulators such as QEMU[3] and gem5[7] suffer
from slowdown and inaccuracy. While QEMU is designed to mini-
mize the slowdown it causes when simulating a machine, it sacrifices
accuracy by only trying to be indistinguishable from a real machine
from the point of view of the application running inside of it, not
replicating the precise behavior of the memory hierarchy, for example.
This is reflected in its name, as it can be more readily described as an
emulator, rather than as a simulator. Gem5, on the other hand, tries to
be an accurate simulator with respect to the selected CPU model and
memory hierarchy. However, this makes it very slow, typically caus-
ing a slowdown of several orders of magnitude. Hybrid approaches



2.2 related work 7

such as MARSS[5] exist, which combine precise simulation with fast
emulation where such precision is not needed (for example, when
forwarding to an interesting point within a benchmark run).

We are, however, interested in analyzing the behavior of applica-
tions running on actual machines and replicating the exact environ-
ment inside a simulator is difficult. Furthermore, no models are avail-
able for modern CPU families, and probably never will be, as many
aspects of the behavior of these machines are kept secret.

In live systems, main memory bandwidth measurement has been
explicitly done as a part of other works, but they focused on building
resource allocation policies on top of mechanisms for memory band-
width measurement and throttling: Both Bellosa[4] and Yun et al.[17]
used performance monitoring to count cache misses, from which they
inferred the amount of read traffic towards main memory (thus ig-
noring memory writes and DMA) and used this information to throt-
tle applications which violate pre-set limits to achieve better perfor-
mance guarantees for real-time systems.

While our approach also monitors cache misses and is thus also
limited to read traffic, we focus not on resource allocation policies,
but on improving the process of measurement itself. We do this by
first analyzing the behavior of performance counters more rigorously
than done in previous work and then design a mechanism which
enables precise memory bandwidth measurements on a modern CPU
architecture without causing excessive interference.





3
A N A LY S I S

In this chapter, we analyze which hardware mechanisms enable us to
measure consumed main memory bandwidth and could be used as a
basis for a high-resolution tracing mechanism.

First, in Section 3.1, we establish some criteria which encompass the
goals for the system we are going to develop and which will enable
us to judge the usefulness of the available base mechanisms. We then
discuss the various mechanisms with respect to these criteria and
select a candidate in Section 3.2. Finally, in Section 3.3, we describe
the experiments which we used to verify that this mechanism does
indeed help us to measure memory bandwidth and conclude our
analysis in Section 3.5.

3.1 criteria

There are various hardware mechanisms available which could be
used for measuring memory bandwidth. However, these mechanisms
have very different characteristics, which make them useful for some
goals, but not for others. To guide our selection of a mechanism, we
establish a set of criteria which capture the characteristics which are
important for our goal:

• Precision: The values reported by the mechanism should closely
mirror the actual memory traffic caused by an application.

• Temporal accuracy: There should be a way to precisely deduce
the temporal pattern of memory accesses.

• Specificity: The mechanism should be usable in a way that will
allow us to analyze the memory access behavior of a single ap-
plication, that is, we should be able to filter for individual appli-
cations / cores, rather than observing the aggregated memory
traffic of the whole system.

• Availability: Hardware implementing the mechanism should be
readily available.

• Low interference and overhead: The measurement mechanism
should not interfere with the measured application too strongly,
possibly distorting the measurements and slowing down the
application.

9



10 analysis

3.2 mechanism selection

We now discuss the available mechanisms with respect to these crite-
ria.

3.2.1 Intel MBM

Intel Memory Bandwidth Monitoring (MBM) is a mechanism present
in a few Intel server processors, which, in cooperation with the oper-
ating system scheduler, allows individual threads to be tagged with
Resource Monitoring IDs (RMIDs), which can then be used to mea-
sure the main memory bandwidth consumed by those threads.

MBM is ideal insofar that it is a mechanism which is dedicated
to measuring memory bandwidth. Because of that, we would expect
a high precision and specificity from it. However, MBM only allows
the operating system to query for the currently consumed memory
bandwidth by reading from a MSR, rather than supplying a hardware
mechanism which automatically generates traces, which reduces the
achievable temporal accuracy. Also, processors supporting MBM are
not readily available: We were unable to acquire any such processor
and thus were unable to evaluate its feasibility for achieving our goal.

3.2.2 Mechanisms Based on Performance Counters

Previous work (see Section 2.2) has used cache-related performance
counters as an intermediary for determining the memory bandwidth
consumed by an application.

Modern x86 processors include facilities that allow for timestamped
tracing of performance counter overflows, allowing us to achieve
higher temporal accuracy than with manually recording timestamps
once an overflow occurs: Lightweight Profiling (LWP) by AMD and
Precise Event-Based Sampling (PEBS) by Intel.

3.2.2.1 PEBS

PEBS was already described in Section 2.1.2. As of the Skylake mi-
croarchitecture, each PEBS record includes the value of the timestamp
counter at the time of the overflow that triggered the PEBS assist,
which should allow for a high temporal accuracy.

3.2.2.2 LWP

AMD’s Lightweight Profiling (LWP [13]) was introduced with the
Bulldozer microarchitecture and is a similar mechanism to PEBS. As
the records written by LWP are much more compact than those writ-
ten by PEBS (32 bytes vs. 200 bytes), the memory traffic (and thus



3.2 mechanism selection 11

the interference) caused by LWP should be much lower than the one
caused by PEBS.

However, while we were able to acquire hardware which supports
LWP in general, the implementation present within that processor did
not support tracing cache-related events. Furthermore, AMD discon-
tinued support for LWP with the upcoming Zen microarchitecture.
Thus, this analysis and the remaining work done as part of this thesis
focus on exploiting PEBS on Skylake processors to achieve memory
bandwidth tracing.

In the rest of this chapter, we will analyze whether using perfor-
mance counters to measure consumed main memory bandwidth is
feasible on the Skylake processor family, as no such analysis is cur-
rently available: MemGuard [17], the most recent work in this area, in-
corporates memory bandwidth measurements through performance
counters, but has only been tested on Core2Quad and Sandy Bridge
processors, which, while recent, are based on different microarchitec-
tures and thus might exhibit different behavior than Skylake. Simi-
lar concerns apply to other publications which cover older processor
architectures. Additionally, all of these publications take the corre-
spondence between their chosen performance monitoring event and
memory accesses as a given and do not provide a detailed analysis of
that assumption.

3.2.3 Performance Monitoring Event Selection

A modern processor contains many different performance counters [11],
but only a small fraction are related to memory accesses. Based on the
above criteria, we can considerably narrow down the list of events we
need to evaluate.

Off-core/Uncore events within the memory controller or the CBos
(Cache-Boxes), which manage the LLC accesses, are very precise, but
not very specific. For example, the memory controller can count ac-
tual main memory accesses, but the information which core caused
the access to happen is not available as a filter. Furthermore, no off-
core event is compatible with PEBS and could thus only serve as a
comparison during the evaluation of other events, but will not be us-
able in the PEBS-based mechanism. Additionally, at the time work on
this thesis was begun, only the desktop processors of the Skylake fam-
ily were available, which have severely reduced uncore monitoring
compared to the server processors. Even now, documentation about
uncore performance monitoring on Skylake remains scarce. Thus, we
mostly exclude uncore performance monitoring from our further con-
siderations.

On-core events are very specific, as they only occur for transactions
that are relevant to each core. However, there is still some room for
error. For example, an event counting responses from the uncore to



12 analysis

a core might trigger after a context switch to another application has
happened in cases of high response latency. Thus, we should favor
events which occur as early as possible. This, however, affects preci-
sion. If we simply counted all memory access instructions as soon as
they are dispatched, we would not know whether they hit a cache or
actually caused a main memory transaction to occur.

Considering all on-core events for their ability to track main-memory
accesses, we are left with the following events (from here on we refer
to events using their official names as given in the Intel documenta-
tion):

• OFFCORE_REQUESTS.L3_MISS_DEMAND_DATA_RD

• The OFF_CORE_RESPONSE events

• The architectural LONGEST_LAT_CACHE.MISS event

• MEM_LOAD_RETIRED.L3_MISS

While some other events could be used in combination to calculate
memory bandwidth, only overflows of individual counters can trig-
ger PEBS and each counter can only track one event, so we focus on
individual events instead.

As our initial experiments showed that LONGEST_LAT_CACHE.MISS

and OFFCORE_REQUESTS.L3_MISS_DEMAND_DATA_RD behaved similarly,
we excluded the latter from further analysis, as the former is more
commonly used for monitoring last-level cache misses and would
thus benefit more from being included in our analysis. The group of
events represented by OFF_CORE_RESPONSE is interesting, as it affords
fine-grained control about which transactions are counted, for exam-
ple allowing us to selectively monitor prefetcher traffic, if desired.
However, this event miscounted and also exhibited spurious activity,
which caused us to drop it from further consideration.

As MEM_LOAD_RETIRED.L3_MISS is the only event in the list which is
supported by PEBS, it will be the one we have to select in our new ap-
proach. This event counts the retired instructions where at least one
micro-operation (uop) caused an L3 miss. This means that this event
will not count speculative executions if they do not eventually retire,
causing us to undercount when speculative loads get aborted. Addi-
tionally, some instructions contain more than one memory uop [9]
which might cause more than one L3 miss, only one of which would
be counted.

We now evaluate this event for its precision. As MemGuard uses
LONGEST_LAT_CACHE.MISS on most microarchitectures, we include it in
the evaluation for comparison. Note that there has been an erratum
concerning Skylake ([1], SKD019), recommending against the use of
the latter event, claiming that it might miscount cache misses, but this
erratum has since been withdrawn and is “under consideration” by
Intel, according to personal communication.



3.3 experimental verification 13

3.3 experimental verification

As the official documentation often does not explain what an event
actually means and, judging from previous errata, the performance
monitoring implementation within processors tends to contain many
bugs, we choose an experimental approach for verifying that prospec-
tive events do indeed correspond to memory traffic.

To be able to analyze the behavior of various performance mon-
itoring events during our initial experiments, we developed a user
space tool which samples the values of performance counter regis-
ters at regular intervals. This was easier to implement than the usual
overflow-based approach (see Section 2.1.1) and also has the advan-
tage of only creating a constant disturbance in the program under
observation, rather than one that varies with the frequency of events,
as in the overflow-based case. We reuse this tool for the following
experiments.

As the rdmsr instruction, which is used to read the performance
counters, is privileged, we need kernel support for sampling the per-
formance counters. While this could be done using the msr module
for the Linux kernel, this module only affords reading a single MSR
at a time. As we also wanted to analyze correlations between the var-
ious events, all PMCs should be sampled at the same point in time.
To this end, we used a customized version of the msr module.

To clearly see the behavior of the different events, we use a syn-
thetic benchmark, adapted from pmbw [6], which allocates a chunk of
memory and then linearly reads from successively larger areas from
within this chunk in a loop such that the total number of bytes read
for each size remains the same. This serves to exercise different parts
of the cache hierarchy, so we can also observe the behavior of events
for memory accesses which solely miss the lower-order caches. If an
event were to also trigger for those, it would not be useful for main
memory bandwidth monitoring even if it worked correctly in the later
parts of the benchmark.

As we do not know whether any event accurately represents mem-
ory traffic, we need to rely on another way to measure memory band-
width for comparison. While we could measure the achieved read
bandwidth from within our benchmark, this value represents the
bandwidth visible to the application, which means it is distorted by
the presence of caches and only begins to approximate main mem-
ory bandwidth once the size of the work area increases beyond the
capacity of the last-level cache.

However, the memory controller also supports rudimentary mon-
itoring [14] via the memory-mapped DRAM_DATA_READS and DRAM_DA-

TA_WRITES registers, which count the number of 64-byte read and
write accesses, respectively. While these counters are not core-specific
and thus count all the memory traffic of the system, we can still derive



14 analysis

a correlation, as the system will be otherwise idle during a benchmark
run.

As each cache miss does itself correspond to a 64-byte cache line
fetch and memory transactions are also counted in multiples of 64

bytes, we expect an occurrence of the cache miss event to also cause
a single increment of the read transaction counter in the memory
controller. Thus, the values reported by the memory controller and
those from the performance monitoring unit should merely differ by
a constant offset.

3.3.1 Experimental Setup

The previously described synthetic benchmark is run on an Intel Core
i5-6600K system running Linux 4.2. The first performance counter,
PMC0, counts MEM_LOAD_RETIRED.L3_MISS events while PMC1 counts
LONGEST_LAT_CACHE.MISS events for comparison. We disabled over-
flow interrupts, as well as any Linux subsystem that interacts with
performance monitoring. The measurement tool samples both coun-
ters as well as DRAM_DATA_READS at a frequency of 1 kHz.

We disabled Hyperthreading and any kind of CPU frequency scal-
ing. We also disable prefetchers, as those are not accounted for by
either last-level cache event. The fourth core has been isolated using
the isolcpu=3 kernel parameter and only the benchmark is run there
using taskset.

3.3.2 Results

Figure 1 shows a capture of the complete benchmark run. The plot
has been annotated with the respective work area sizes (represented
as log2(areasize)) that were being used during each time interval.
One can see that both events do indeed correlate with read memory
accesses as reported by the memory controller. The stepwise increase
of the memory read rate can be explained by taking into account
that, depending on the replacement policy of the LLC, a portion of
the loads can still be answered from the LLC until the area size gets
sufficiently large.

Note that the benchmark initially writes some data to the whole
allocated memory area to ensure that it is actually allocated by the
operating system, which also causes memory reads to happen, ex-
plaining the bump at 2200 ms.



3.3 experimental verification 15

0

5
0
0
0
0

1
0
0
0
0
0

1
5
0
0
0
0

2
0
0
0
0
0

2
5
0
0
0
0

3
0
0
0
0
0

0
2
0
0
0

4
0
0
0

6
0
0
0

8
0
0
0

1
0
0
0
0

1
2
0
0
0

1
4
0
0
0

Events/ms

Ti
m

e
(m

s)

D
R

A
M

_D
A

TA
_R

EA
D

S

8
9
-2

1
2
2

2
3

2
4

2
5

2
6

2
7

2
8

2
9

3
0

LO
N

G
ES

T_
LA

T_
C

A
C

H
E.

M
IS

S
M

EM
_L

O
A

D
_R

ET
IR

ED
.L

3
_M

IS
S

Fi
gu

re
1
:A

co
m

pl
et

e
be

nc
hm

ar
k

ru
n,

an
no

ta
ti

on
s

sh
ow

lo
g 2

(a
re

as
iz

e)
.



16 analysis

0

1000

2000

3000

4000

5000

1200 1250 1300 1350 1400

Ev
en

ts
/m

s

Time (ms)

DRAM_DATA_READS
LONGEST_LAT_CACHE.MISS

MEM_LOAD_RETIRED.L3_MISS

Figure 2: Detailed view of the idle portion of the benchmark run.

226000

227000

228000

229000

230000

231000

232000

233000

234000

10560 10565 10570 10575 10580

Ev
en

ts
/m

s

Time (ms)

DRAM_DATA_READS
LONGEST_LAT_CACHE.MISS

MEM_LOAD_RETIRED.L3_MISS

Figure 3: Detailed view of the main memory portion of the benchmark run.

Figures 2 and 3 show a detailed view of the same benchmark run
during the idle phase and while accessing main memory, respectively.
Figure 2 shows a relatively constant idle load of 3000 main memory
reads per millisecond; as this already includes the load generated
by the measurement framework and this load is independent of the
benchmark, we expect it to carry over to the active part of the bench-
mark.

Figure 3 supports our assumption that both performance monitor-
ing events correlate to main memory transactions caused by last-level
cache misses. The offset of 3000 events per millisecond carries over as
well. Curiously, the event rate of LONGEST_LAT_CACHE.MISS is higher
than the rate of main memory transactions, which should not be pos-
sible and might be related to the erratum recommending against the
use of this event.

To analyze the correspondence of MEM_LOAD_RETIRED.L3_MISS and
DRAM_DATA_READS from a statistical viewpoint, we look at the differ-
ence between those values at each point in time during the active part



3.4 further experiments 17

run event count equivalent memory traffic

1 1672675739 99.699 GiB

2 1672674122 99.699 GiB

3 1673078111 99.723 GiB

Table 1: MEM_LOAD_RETIRED.L3_MISS event counts after reading 100 GiB.

of the benchmark, that is, we subtract the number of retired memory
loads which missed L3 from the number of reads reported by the
memory controller. This yields a mean difference which is close to
the idle values reported by the memory controller, the relative error
being well below 1%. The maximum difference can be very high but
this is caused by spurious activity elsewhere in the system which in-
fluences the values reported by the memory controller. In the 95th
percentile of the difference, the error still is only about 1%.

To gain a better understanding of the predictive power of this event,
we run a linear regression on MEM_LOAD_RETIRED.L3_MISS with re-
spect to DRAM_DATA_READS, which yields an r2 value of 0.9997, indi-
cating that we can indeed approximate the number of memory read
transactions caused by an application by monitoring this event.

3.4 further experiments

To further characterize the behavior of the MEM_LOAD_RETIRED.L3_MISS
event, we run some additional experiments.

3.4.1 Lower Bound on the Error

Exactly assessing the accuracy of the event is difficult, as we usually
have no a priori knowledge of the amount of cache misses a bench-
mark will cause. To remedy this, we now run a benchmark which
sequentially reads from a one GiB area of memory in 64 byte incre-
ments, thus causing one cache miss per read. The large size of the
memory area ensures that no caches will contain the address which
is accessed next. This process is repeated 100 times, so a total of 100

GiB is transferred from main memory.
To determine a lower bound on the error introduced by measuring

memory accesses with this event, we ignore the temporal behavior of
the event and only compare the counter values before and after each
run of the above benchmark.

Table 1 shows the results of a number of benchmark runs. We notice
some variance, but it is low enough (COV = 0.014%) to be attributed
to the inevitable nondeterminism present within the system. We can
see that the event consistently undercounts by about 0.3%. The rea-



18 analysis

sons for this are not clear, but we expect this to be caused by load
instructions that were dispatched by the benchmark, but retire after
the processor has changed its execution mode either to ring 0 or sys-
tem management mode, causing them not to be counted because the
counter is programmed to only count ring 3/user-level events.

3.4.2 Behavior on Split Cache Line Reads

The description of the MEM_LOAD_RETIRED.L3_MISS event says that it
counts instructions which caused a cache miss, not cache misses. This
suggests that a situation where a single instruction causes multiple
cache misses would cause us to miscount the number of cache misses
and in turn lead to a wrong estimate of the subsequent main memory
transactions.

X86 supports unaligned memory accesses. Thus, one such situation
can be caused by unaligned loads which touch multiple cache lines.

Figure 4 shows a variant of the previous benchmark which reads
512 MiB from a one GiB area five times for each alignment relative
to a 64 byte boundary using a word-sized (8 bytes) read instruction.
As we are now interested in the behavior over time, we again use the
sampling mechanism as described in Section 3.3.1. We can see that
once part of the read crosses a cache line boundary, the event rate
drops off sharply to a fifteenth of the usual rate. The architectural
LLC miss event is not affected.

The Intel Optimization Reference Manual[10] says:

An access to data unaligned on 64-byte boundary leads
to two memory accesses and requires several µops to be
executed (instead of one). Accesses that span 64-byte bound-
aries are likely to incur a large performance penalty, the
cost of each stall generally are greater on machines with
longer pipelines.

This suggests that an unaligned read gets split into two aligned
read uops, only one of which will cause an event to be counted once
the whole instruction retires. However, even in this case we would not
expect the event count to drop so drastically in our benchmark, as the
steady state of a sequential read operation would still only cause one
cache miss per instruction.

However, cache line splits are rare enough not to cause excessive in-
accuracies: An experiment showed that the ratio between MEM_INST_RE-

TIRED.SPLIT_LOADS (counting memory instructions which involve split
loads) and MEM_INST_RETIRED.ALL_LOADS (counting all load instruc-
tions) in the memory-intensive Spec lbm benchmark[17] is lower than
1 in 350000.



3.4 further experiments 19

0

5
0
0
0
0

1
0
0
0
0
0

1
5
0
0
0
0

2
0
0
0
0
0

2
5
0
0
0
0

3
0
0
0
0
0

3
5
0
0
0
0

0
2
0
0
0

4
0
0
0

6
0
0
0

8
0
0
0

1
0
0
0
0

1
2
0
0
0

1
4
0
0
0

1
6
0
0
0

1
8
0
0
0

2
0
0
0
0

Events/ms

Ti
m

e
(m

s)

D
R

A
M

_D
A

TA
_R

EA
D

S

0
-5

6
5
7
-6

3

LO
N

G
ES

T_
LA

T_
C

A
C

H
E.

M
IS

S
M

EM
_L

O
A

D
_R

ET
IR

ED
.L

3
_M

IS
S

Fi
gu

re
4
:C

ou
nt

er
be

ha
vi

or
w

it
h

re
sp

ec
t

to
ca

ch
e-

lin
e

al
ig

nm
en

t.
A

nn
ot

at
io

ns
th

e
sh

ow
of

fs
et

w
it

hi
n

a
ca

ch
e-

lin
e.



20 analysis

0

0.5

1

1.5

2

2.5

gromacs lbm povray soplex zeusmp

Sl
ow

do
w

n

Benchmark

Figure 5: Slowdown caused by disabling prefetchers when running Spec

benchmarks.

3.4.3 Effects of Prefetchers

In all our previous experiments, we followed the precedent set by
previous works and disabled prefetchers. While doing so is certainly
necessary for reaching our goal of very precise measurements, as
prefetchers represent an unpredictable external factor in these mea-
surements, it comes at a performance penalty for certain applications.
While both effects are going to be very pronounced for simple syn-
thetic benchmarks as the ones previously used, how strong are they
going to be in practice?

To answer this question, we ran a selection of benchmarks from the
Spec CPU2006 suite of benchmarks: lbm, zeusmp and soplex, which
are relatively memory-intensive, and gromacs and povray, which are
not [17], both with enabled prefetchers and without. We then com-
pared both the run time and the total number of last-level cache miss
events that occurred for each benchmark and prefetcher mode.

We find that prefetchers generally increase performance measured
as the total run time of a benchmark in memory-intensive bench-
marks, having little effect in the others (Figure 5). Curiously, povray
runs marginally faster with disabled prefetchers.

However, enabling prefetchers does indeed reduce the accuracy of
our memory bandwidth measurements: In each case, the event count
drops by more than half, in the case of gromacs and lbm it drops by
multiple orders of magnitude (Figure 6).

We thus conclude that disabling prefetchers, while undesirable for
performance reasons, is nevertheless necessary when using last-level
cache miss events for memory bandwidth monitoring.



3.5 conclusion 21

1

10

100

1000

gromacs lbm povray soplex zeusmp

Ev
en

t
co

un
t

ra
ti

o

Benchmark

Figure 6: Number of events counted when running with prefetchers dis-
abled divided by the number of events counted when running
with prefetchers enabled (logarithmic scale).

3.5 conclusion

While far from ideal, using MEM_LOAD_RETIRED.L3_MISS in combina-
tion with PEBS is currently our only option for implementing hardware-
assisted memory bandwidth tracing. We hope that Intel might one
day extend the PEBS mechanism to be usable with more or even all
available performance monitoring events; this would not only suit
our purpose better, but would probably also benefit those who use
the performance monitoring subsystem for classical profiling.





4
D E S I G N

We now propose a design for a framework in which we can apply
PEBS for measuring memory bandwidth. As we also develop this
framework with the intention that it will enable detailed study of
the interactions between an application and the memory subsystem
rather than to be used as a data source for an automated mecha-
nism such as MemGuard, we settle for a design which will allow us
to capture memory bandwidth traces in a live system for later anal-
ysis. Figure 7 shows a high-level overview of the proposed design.
After summarizing our design goals in Section 4.1 we give a rough
overview of our design in Section 4.2. In Section 4.3, we explain the
reasons for some of the high-level design decisions. Finally, we de-
scribe each of the components of our design in more detail.

Figure 7: Design overview

4.1 design goals

In Section 3.1, we already defined some criteria which helped us se-
lect an appropriate hardware mechanism as the basis for our mech-
anism. The goals for our design reflect the same ideas: Our design
should enable precise reporting of the measured memory bandwidth
and the temporal accuracy should not suffer from the decisions made
as part of this design.

As we also want to disturb the measured application as little as
possible (low overhead), we would ideally completely separate the
components involved in the measurement process from the measured
application. However, this is not possible on multiple levels. As ex-
plained in Chapter 2, on-core performance counters can only be han-

23



24 design

dled on the same core, either using overflow interrupts or using PEBS;
PEBS buffer-full interrupts are also handled locally. Thus, some dis-
turbance is inevitable. Furthermore, as both the PEBS assist and our
measurement framework will have to write to memory, they will put
pressure on the caches and consume bandwidth on the on-chip in-
terconnect. Our evaluation system only contains a single CPU with a
single memory controller. While the memory controller supports mul-
tiple channels, it transparently maps addresses to both channels in
an interleaved manner, which means that the memory accesses from
the measurement framework will have to compete with the memory
accesses of the measured application. While these effects are unavoid-
able, we should try to minimize their consequences.

As PEBS might not always be the preferred mechanism for measur-
ing memory bandwidth, we should design our mechanism in a way
that can be easily adapted to a new mechanism, should one arise. As
PEBS itself is more generic than how we use it in the course of this
thesis, it would also be desirable if our mechanism could be reused
for other applications as well.

Our design should also be simple in the sense that it avoids unnec-
essary complexity.

4.2 design overview

Our design requires a multi-core CPU and tries to divert as much
work as possible from the core running the application to minimize
interference. While there is no reason why it could not support mul-
tiplexing among multiple applications running on a single core, we
chose not to implement this for the sake of simplicity. Thus, all user
space activity on the measured core is accumulated. However, this is
not a problem for our later evaluation, as we can force the kernel to
only run the process of interest on that core. No part of our design
precludes implementing multiplexing by integrating it with the oper-
ating system scheduler, should the need for such functionality some
day arise.

While we only use a single core for running measurements in this
thesis, we still symmetrically set up the measurement mechanism on
each core to maintain flexibility and avoid special cases.

We use the PEBS mechanism to acquire traces, which stores indi-
vidual PEBS records to a buffer in memory whenever a performance
counter overflows. Once this buffer fills up, an interrupt is signaled
on the same core, causing the PEBS handler to be executed. The han-
dler reconfigures PEBS to use another buffer, sends a inter-processor
interrupt (IPI) to invoke a postprocessor for the current buffer on an-
other core and then immediately returns.

As we are only interested in when each overflow occurred, the
trace postprocessor iterates over all PEBS records, extracting only the



4.3 design rationale 25

timestamp field of each fixed-size record and applying some com-
pression to further reduce the size of the generated data. This data is
then exposed to a consumer running in user space via a lockless ring
buffer. To relieve the consumer from having to continuously poll the
ring buffer for new entries, we also include a notification mechanism,
which allows the application to sleep until entries are available.

4.3 design rationale

Other designs than the above are certainly possible. For example, one
could directly map the PEBS buffers to user space and do all the
processing there, which would save at least one copy operation. How-
ever, our main goal is achieving low overhead. For this, it is necessary
that filled PEBS buffers are processed swiftly to avoid having to halt
the application when no buffer space is available or having to drop
records. Waking up a specific user space application and notifying
it of which buffer to process would take longer than remaining in-
kernel, as our proposed design does. The complexity with regard to
locking would also be much higher.

Another variation could have been drop the user space compo-
nent altogether, simply storing the collected traces by calling file sys-
tem operations directly from the kernel code. However, doing this
within Linux, the operating system chose to implement our design
on, would have incurred much additional complexity. Additionally,
it would have limited the flexibility of our approach. For example,
should we decide that storing records to disk was not desirable any-
more for efficiency or other reasons, switching an user space applica-
tion to stream this data over a high-speed network interface would be
easy; modifying an in-kernel implementation would be much more
difficult.

In summary, we favor a design which is more simple, modular and
obviously correct, rather than one which would theoretically be more
efficient. Our experiments conducted during implementing this de-
sign by enabling and disabling the whole processing chain show that
our design incurs next to no additional overhead to the one incurred
by PEBS itself. Additionally, our design has already been used as a
basis for another mechanism developed within our working group
which analyzes load latencies. This would have been more difficult to
integrate, if not for the loose coupling of these components. Thus, we
believe these design decisions to having been sound.

4.4 pebs configuration

We use PEBS to acquire events via the PMC0 performance counter. To
remain generic and reduce complexity, this counter is completely con-



26 design

figured from user space, although in this thesis, we will always use
the MEM_LOAD_RETIRED.L3_MISS event, as determined in Chapter 6.

PEBS allows for the configuration of an interrupt threshold, which is
the number of records contained within the PEBS buffer after which
an interrupt is raised. This is distinct from the size of the buffer, as
there is a delay between this threshold being reached and the inter-
rupt handler starting to execute, during which more records might
be written. If not for a separate limit, these records would have to
be discarded. We thus configure this threshold a little lower than the
capacity of the PEBS buffer.

4.5 pebs handler

Whenever the PEBS buffer fills up to the interrupt threshold, an inter-
rupt is raised and the PEBS interrupt handler is invoked.

Classically, all processing of PEBS records happens within this han-
dler, as PEBS was not primarily designed to reduce overhead, but
to enable precise snapshotting of the machine state whenever a per-
formance counter overflows. However, as we want to minimize the
overhead our approach incurs, we chose to deviate from the classical
approach: We use a double buffering scheme, where we allocate two
equally sized buffers for containing the PEBS records when initial-
izing our framework and only switch the active buffer in the PEBS
interrupt handler, submitting the now-frozen full buffer to a separate
core for processing using an inter-processor interrupt.

While the Intel manual [11] only describes configuring the location
of the PEBS record buffer while PEBS itself is disabled, reconfiguring
it from the interrupt handler does seem to work in practice.

As the buffer postprocessor runs asynchronously from the core
where the measurement is running, it could happen that the currently
active buffer fills up and needs to be replaced before the postproces-
sor has finished processing the other buffer. To detect this situation,
we use locks for each buffer. The only ways to handle this situation
are dropping the contents of the active buffer or waiting for the post-
processor to finish. For our implementation, we decided that causing
some additional overhead is a smaller problem than losing data. Thus,
the PEBS handler will spin until the second buffer is available.

While using a buffering scheme with more than two buffers is pos-
sible, we decided against doing so, as two buffers turn out to gen-
erally suffice in practice and adding more buffers would just further
increase the cache footprint of this mechanism.

4.6 postprocessing

The postprocessor fulfills the function that is traditionally implemented
within the PEBS interrupt handler: It iterates over the PEBS record



4.6 postprocessing 27

0 64 127

EFLAGS EIP

EAX EBX

ECX EDX

ESI EDI

EBP ESP

R8 R9

R10 R11

R12 R13

R14 R15

IA32_PERF_GLOBAL_STATUS Data Linear Address

Data Source Encoding Latency value

EventingIP TX Abort Information

TSC

Figure 8: Structure of a PEBS record as generated by the Skylake microarchi-
tecture.

buffer, extracting the data of interest. To distribute the load, a core’s
postprocessor is run on the core numerically preceding it, modulo the
number of cores.

Figure 8 shows the record format as of the Skylake microarchitec-
ture. While some of the other fields might have interesting applica-
tions as well, the field which is the most useful for the purposes of
this thesis is the TSC value.

However, the full width 64 bits is not necessary for exposing TSC
values to the subsequent components in this design. As the absolute
value of the TSC at the time a measurement is started is effectively
random, we just store the difference between the TSC values of subse-
quent records. These deltas fit into 32 bits, especially at the low over-
flow thresholds we are interested in. Thus, we only store unsigned 32

bit deltas to the ring buffer. Should a delta not fit into 32 bits, the post-
processor will cap it to the maximum representable value. However,
this does not happen in practice except during idle phases. Thus, the
accuracy of our system is not affected.

Should the ring buffer not be able to accept another delta because
it has reached its capacity, the postprocessor aborts and drops the
contents of the whole PEBS buffer to give the consumer a chance to
recover.



28 design

1

10

100

1000

10000

100000

1× 106
1× 107
1× 108

0
0

0
1

0
2

0
3

0
4

0
5

0
6

0
7

0
8

0
9

1
0

1
1

1
2

1
3

1
4

1
5

1
6

1
7

1
8

1
9

2
0

2
1

2
2

2
3

2
4

2
5

2
6

2
7

2
8

2
9

3
0

3
1

3
2

O
cc

ur
re

nc
es

Position of highest-valued set bit

Figure 9: Distribution of timestamp deltas in a representative trace, on a
logarithmic scale. The deltas are grouped by the number of the
highest-valued set bit.

4.7 ring buffer

To transfer data to the trace consumer, our design uses a ring buffer
in shared memory between the kernel and the trace consumer. There
is one such buffer per core, which is only written to by the postproces-
sor assigned to that core and only read from by at most one consumer.
Thus, the implementation of this buffer can be lockless, which simpli-
fies the interface.

To prevent the consumer from having to poll the state of the ring
buffer continuously, it also provides a notification mechanism, using
which the consumer can block during periods of low traffic, to con-
serve CPU time.

4.8 trace consumer

The trace consumer is a user space program which attaches to the ring
buffer for a specific core and consumes the data this buffer provides.
In our implementation, the consumer simply writes this data to disk,
but one can imagine other variants, which, for example, provide real
time analysis of the gathered data.

To further reduce the size used by each datum and thus reduce
the necessary bandwidth to store the generated traces, we apply an
additional step of lossless compression. For this, we use a simplis-
tic variable length encoding scheme, which, while consuming little
CPU time, still yields a compression of about 50%, compared to our
initial experiments with the LZ4 compression algorithm [8], which
only achieved a compression to 66% of the original size, while also
consuming too much CPU time for streaming data without dropouts.

We chose the parameters for this compression scheme based on
statistics gathered from the traces we commonly encountered during



4.9 conversion between overflow-based and sampling-based representations 29

testing our implementation (Figure 9): More than 99% of all entries
can be contained within 15 bit. Thus, we use the following represen-
tation, based on 16 bit words:

0x0000 - 0x7fff: 0b0xxxxxxxxxxxxxxx

0x8000 - 0x7ffffffe: 0b1xxxxxxxxxxxxxxx 0bxxxxxxxxxxxxxxxx

0x7fffffff-0xffffffff: 0xffff 0xffff 0xxxxx 0xxxxx

This means that entries below 215 are stored literally in one 16 bit
word and entries below 231 − 1 are stored as two words, where the
extended length is signaled by the highest valued bit being set in the
first word. The remaining entries are stored literally in two words,
prefixed by two all-ones escape words.

4.9 conversion between overflow-based and sampling-
based representations

Our approach records the time stamps of when a specific event, namely
the overflow of a performance counter, occurs. This is fundamentally
different from approaches such as the one used in Chapter 3, where
the value of a performance counter is sampled at regular points in
time: While an overflow-based approach with a threshold of 1 yields
equivalent data to a sampling-based approach with a sufficiently high
sample rate, the outputs of both approaches diverge as the threshold
and sampling interval get higher.

As representing the data as the number of events over time is more
natural for manual inspection, we need a way to convert the time
stamp traces generated by our approach to such a representation. This
can be achieved by binning:

1. Select the desired equivalent sampling interval (ts).

2. Divide the time interval covered by the trace into intervals of
length ts.

3. For each such interval: Count the number of trace time stamps
within this interval and multiply this number by the threshold
that was used when capturing the trace.

The end result of this process is a trace which is similar to one
captured by sampling a performance counter at regular intervals, but
where the number of events at each point in time is quantized to
multiples of the threshold.





5
I M P L E M E N TAT I O N

In this chapter we describe the most important aspects of our imple-
mentation of the design proposed in Chapter 4.

This chapter is structured as follows: We justify the choice of Linux
as the basis for our implementation in Section 5.1 and give some con-
siderations on how we chose to integrate our design with it in Sec-
tion 5.2. In Section 5.3 and Section 5.4, we describe the configuration
of PEBS and the corresponding Performance Counters, respectively.
We give details about the implementation of the PEBS interrupt han-
dler in Section 5.5. Finally, we explain the interface between the kernel
module and the user space components in Section 5.6 and detail the
implementation of the trace consumer in Section 5.7.

5.1 choice of operating system

We chose to implement our design as an extension to the Linux ker-
nel, for multiple reasons: Linux is an open-source operating system,
making it easy to extend and modify compared to closed-source oper-
ating systems, such as Microsoft Windows. Compared to other open-
source operating systems, Linux is also popular in cloud applications
and scientific computing, an area where a system such as ours might
be applied for analyzing application behavior. Finally, Linux was the
only open-source operating system supporting the Skylake genera-
tion of Intel CPUs and the associated chipset at the time we imple-
mented our design.

5.2 operating system integration

We implemented our mechanism as a kernel module instead by mod-
ifying the kernel itself. While this requires some more work, it also
affords easier development, as code modifications do not require a
reboot, and eases distribution, as the module can be independently
compiled on another system without requiring a kernel patch to be
applied, which would require a rebuild of the whole kernel.

While Linux already contains the perf subsystem for performance
monitoring, which includes tracing facilities and also supports PEBS,
we decided against basing our implementation on perf, as it incurs
a lot of complexity and includes some mechanisms, such as auto-
matically adjusting overflow thresholds depending on the event load
caused by the measured application, which are useful for classical
performance analysis, but not for implementing our design. Addition-

31



32 implementation

Figure 10: Layout of the Debug Store Area

ally, the PEBS support is very limited, only supporting buffers which
can contain exactly one record. Again, this is good enough for using
PEBS to accurately capture the state of an application that is being
profiled, but does not allow for the implementation of our design.

While it would have been possible to extend perf to be sufficiently
generic for implementing our design, this would neither have been
worthwhile for the purposes this thesis, nor would it have been an
efficient use of the time allotted.

The downside of this approach is that using perf while our imple-
mentation is active will yield unpredictable results.

5.3 pebs configuration

PEBS is configured via the Debug Store (DS) Area, which is a per-
CPU in-memory data structure, which also contains the configuration
for other tracing mechanisms, such as branch tracing. The location
of this area is communicated to the CPU using the IA32_DS_AREA

MSR. Figure 10 shows the layout of the Debug Store Area: PEBS
Buffer Base contains the address of the PEBS buffer and PEBS Buffer
End contains the address of the first byte after the end of the PEBS
buffer. PEBS Next Record contains the address where the next PEBS
record will be stored. If this pointer exceeds the value stored in PEBS
Interrupt Threshold, an interrupt is raised. Whenever a performance
counter overflows and PEBS is active for that counter, PEBS resets the
counter’s value to the reset value specified in the Debug Store Area.

The perf subsystem already configures a DS area on boot. As our
implementation needs to control the contents of the DS area, it allo-
cates a new one and only modifies the IA32_DS_AREA MSR to point



5.4 performance counter configuration 33

to the new structure, instead of modifying the existing one. This has
the advantage that we only need to restore the original IA32_DS_AREA
value for deactivating our mechanism.

Our design requires two PEBS buffers to be preallocated per core,
where the size of the buffers represents a tradeoff between reducing
the number of PEBS overflow interrupts over time (large buffers), and
reducing the cache footprint caused by these buffers (small buffers).
Additionally, larger buffers incur a longer delay between the time a
record is written to the buffer by the PEBS assist and the time we
can analyze its contents, but this latency is not a concern when just
capturing traces. The PEBS buffer size can be changed via a kernel
module parameter, but we found a default value of 3 MiB (corre-
sponding to 15728 PEBS records) to minimize the incurred slowdown
in our benchmarks.

5.4 performance counter configuration

As the configuration of performance counters is independent of the
configuration and handling of PEBS, our design proposes not to in-
clude facilities for configuring performance counters in the PEBS ker-
nel module. Instead, it expects them to be set up externally.

In our implementation, we do this by configuring the PERFEVTSEL

MSRs, which control the individual performance counters, using user
space scripts. To access these MSRs, we use the msr kernel module
and the wrmsr command line tool.

In our setup, we only count user space (ring 3) events to avoid
measuring kernel activity, which also includes activity caused by our
measurement framework, by setting bit 16 (USR), but not bit 17 (OS),
which would enable ring 0 counting, in the PERFEVTSEL register.

5.5 pebs handler

PEBS interrupts are delivered on the same core via the per-core in-
terrupt controller, the Local APIC (LAPIC). The Local Vector Table
Performance Counter Register (LVTPC) of the APIC determines how
the interrupt is delivered by determining the delivery mode (normal
or non-maskable interrupt, for example) and the vector number to
which the interrupt is delivered. Similarly to the DS area, we save the
original value of the LVTPC and restore it afterwards.

One complication with our approach is that Linux does not expose
an interface to register new interrupt vectors in the Interrupt Descrip-
tor Table (IDT) directly. As our implementation is a kernel module,
we cannot simply patch the code that initially fills the IDT. While the
unprivileged SIDT instruction would reveal the linear address of the
IDT, Linux creates a read-only mapping of the IDT at a fixed linear
address and stores this address in the IDT location register to avoid



34 implementation

leaking kernel addresses and to prevent the modification of IDT en-
tries (which is precisely what we need to do) to limit the scope of
security vulnerabilities in the kernel. Thus, similarly to the pmu-tools

package [12], we resort to resolving the address of the IDT using the
optional kallsyms symbol lookup mechanism, making running a ker-
nel built with the CONFIG_KALLSYMS_ALL option mandatory. We can
then patch the IDT and register our interrupt handler.

The interrupt handler itself exchanges the buffers as described in
Section 4.5, using spin locks to prevent concurrent buffer access with
the postprocessor. The postprocessor is then invoked on another core
using the asynchronous Linux SMP remote function call interface.

5.6 user space interface

The user space interface exposed by our implementation has two
facets, which are both exposed via the debugfs virtual filesystem: A
control and statistics interface, and the per-core ring buffers.

The statistics interface exposes per-core statistics of the number of
PEBS buffers and records processed, the number of ring buffer over-
flows and the number of PEBS records dropped as a result, and the
number of deltas which exceeded a 32 bit range.

As PEBS buffers are usually only processed when they are full, it
might be the case that, at the end of a measurement run, there are
still outstanding records in the currently active PEBS buffer. Thus,
the control interface also exposes a file that, when written to, forces
the active buffer to be exchanged and processed, whether or not it is
completely filled.

Each ring buffer is represented by a single debugfs file which can
be memory-mapped using the mmap() system call. This allows the
transfer of data from the kernel to user space without any additional
system calls, which is necessary to achieve a sufficiently high through-
put when streaming the event traces. To allow the consumer applica-
tion to go to sleep when no data is pending and avoid wasting CPU
cycles on polling the buffer, the file also implements support for the
poll() system call, which blocks the application until new data is
inserted into the buffer.

Again, buffer sizing represents a tradeoff, but for the ring buffer,
256 KiB, corresponding to the contents of about four PEBS buffers,
suffice not to cause any overflows in practice.

5.7 trace consumer

The trace consumer of our implementation compresses the trace en-
tries it receives and stores them to disk for later inspection. How-
ever, some optimizations were necessary to make it fast enough to



5.7 trace consumer 35

store traces without creating overflows in the preceding buffers of
the pipeline.

Firstly, it uses the sched_setscheduler() syscall to put itself into
the FIFO realtime scheduling class, preventing it from being inter-
rupted by any ordinary process. Secondly, it reserves enough space
for the trace using fallocate() and then maps that file to memory
using mmap(). Both operations make it difficult to dynamically resize
the file during runtime, so the user has to guess an appropriate size
beforehand. Should the file turn out to be too small, the consumer
logs a message to that effect and drops further incoming data. If the
file is too large, it can be truncated afterwards.

The consumer polls the ring buffer, consuming elements until no
further ones are available. If the ring buffer remains empty after mul-
tiple attempts to read from it, the consumer uses poll() to block until
new entries appear.

Ideally, the consumer is placed on the same core that runs the post-
processor, to exploit L2 and L1 caches when reading from the ring
buffer. While this could be forced using CPU affinity, the CPU mi-
gration mechanism of the Linux kernel automatically places the con-
sumer on the correct core.





6
E VA L U AT I O N

In this chapter, we evaluate our previously developed mechanism
with respect to our main design goals: Accuracy, and low overhead.

This chapter is structured as follows: First, we describe our experi-
mental setup in Section 6.1 and a software-only approach previously
developed in our working group in Section 6.2. This approach will
serve as a basis for evaluating whether our new mechanism actu-
ally yields an improvement over classical mechanisms for measuring
main memory bandwidth consumption.

We then proceed to evaluate the accuracy of our approach in Sec-
tion 6.3 and the overhead in Section 6.4. We describe a relationship
between overhead and accuracy in Section 6.5. Finally, we quantify
the maximally achievable throughput of our solution in Section 6.6.

6.1 experimental setup

We run all of the following measurements on a system with a In-
tel Core i5-6600K processor. Both memory channels are in use and
are each populated by two 8 GiB DDR4 SDRAM modules. For trace
recording, we use a 250 GB SATA 6.0 Gb/s SSD with a nominal write
rate of 500 megabytes per second, formatted with the ext4 file system.

We disabled any kind of CPU frequency scaling such as Speed-
Step and TurboBoost as a precaution against unpredictable processing
speed changes during the benchmark runs. We also disable prefetch-
ers, in accordance with Section 3.4.3. As hyperthreading has been
known to cause issues with respect to performance monitoring[1],
we also turned it off. Of the four available physical cores, the fourth
has been isolated using the isolcpu=3 kernel parameter and we only
run the benchmark there using taskset.

6.2 baseline software-based approach

The earlier approach developed in our working group (henceforth
called soft-tsc) also uses performance monitoring events to mea-
sure memory bandwidth. However, contrary to our new approach
(pebs-extract), it does not use a hardware assisted tracing mecha-
nism which also includes timestamps, but rather implements times-
tamping manually using overflow interrupts. It is also implemented
as an extension to the Linux kernel and will thus be easily compara-
ble to our new implementation. More precisely, it works as follows:

37



38 evaluation

A trace buffer is preallocated per core and exposed to user space.
User space communicates the desired event threshold to the kernel
and then configures a performance counter as desired, enabling over-
flow interrupts. It then once preloads the counter so that it will over-
flow after threshold events and enables the counter.

Once an overflow happens, an interrupt is signaled. The interrupt
handler reads the current TSC value and stores it to the trace buffer.
It then resets the performance counter value and returns from the
interrupt.

While this approach is straightforward and does not require any
hardware support beyond basic performance monitoring, we expect
it to have a number of disadvantages:

overhead As each performance counter overflow causes an inter-
rupt and a switch from user to kernel mode, a high overhead is
incurred, which rises with decreasing threshold values.

accuracy We expect the high interrupt load to distort the measure-
ments more strongly than our approach.

6.3 accuracy

To check whether our PEBS-based approach (called pebs-extract)
has retained the accuracy of the MEM_LOAD_RETIRED.L3_MISS event
as determined in Section 3.4.1, we reuse the benchmark from that
section, which causes 100 GiB of read traffic from main memory to
occur. The read loop in this benchmark is unrolled, so that 32 load
instructions are issued before a branch instruction occurs to ensure
the pipeline is filled with loads most of the time.

We use the first performance counter, PMC0, for PEBS, but also
configure the same event to PMC1 without activating PEBS on this
counter, for comparison. For this experiment, we disabled any post-
processing of PEBS records, that is, the PEBS handler only incre-
ments a record counter in the statistics interface, resets the write index
within the PEBS buffer to zero and immediately returns. We do this
to be able to argue more clearly that the effects we observe are due
to PEBS itself and not due to our implementation. However, accord-
ing to further experiments not detailed here, enabling postprocessing
does not change the behavior we observe in the following sections.

To count the original number of events seen by pebs-extract, we
count the total number of PEBS records written and multiply it by
the configured event threshold, after which such a record is written.
Running the above benchmark at various thresholds, we observe that
the number of events reported by PEBS drops from 96% of the ex-
pected amount at a threshold of 1000 to 37% at a threshold of 10.
Furthermore, the number of events reported by PEBS differs from



6.3 accuracy 39

0

20

40

60

80

100

120

10 100 1000

R
ep

or
te

d
to

ta
lt

ra
ffi

c
(G

iB
)

Threshold

PEBS
PMC

Figure 11: Inaccuracies incurred by using PEBS when measuring 100 GiB of
reads.

the number of events as counted by the regular performance counter
running in parallel, which also loses events (Figure 11).

Ideally, all values should be at 100 GB, but as Section 3.4.1 has
demonstrated, a minor error of about 0.3% is to be expected. However,
the results we have now obtained differ by more than 3% in the best
case and by more than 60% in the worst case, at the lowest threshold.

6.3.1 Discussion

Clearly, the cause of this inaccuracies must lie within PEBS itself: The
PEBS handler gets called only seldomly and does almost no work, as
postprocessing has been disabled.

The Intel Software Development Manual says:

When the hardware needs the assistance of microcode
to deal with some event, the machine takes an assist. [. . . ]
Assists clear the entire machine of ops before they begin
and are costly. ([11], Section 18.13.6)

This means that loads which have been dispatched but not retired
at the point the PEBS assist activates will be aborted and reissued
once the assist completes. This alone would not cause us to miscount
events, as those loads will just complete after being reissued. How-
ever, as the original loads already triggered memory fetches, those
complete even if the load instruction itself is subsequently aborted.
This means that the requested data is already present in the cache
hierarchy when the load instructions are reissued. These load instruc-
tions will then not cause an L3 miss anymore, causing us to under-
count.

Indeed, we observe most of the missing L3 misses as L1 hits: If
we run the same benchmark, but additionally count the number of



40 evaluation

0

20

40

60

80

100

120

10 50 100 200 1000

R
ep

or
te

d
tr

af
fic

(G
iB

)

Threshold

L3 misses
L1 hits

Figure 12: Migration of L3 miss events towards L1 hits at lower PEBS thresh-
olds in the 100 GiB read benchmark.

threshold pebs pmc1

PEBS disabled – 1677914879 (= 100%)

10 78.33% 100%

50 92.94% 100%

100 95.75% 100%

200 97.87% 100%

1000 99.54% 100%

Table 2: Number of MEM_INST_RETIRED.ALL_LOADS events caused by the 100

GiB read benchmark, using the raw event count when run with
PEBS disabled as a reference.

L1 hits using the MEM_LOAD_RETIRED.L1_HIT event in PMC2, the error
virtually disappears, supporting this assumption (Figure 12).

While this explains the reduction of event counts of the raw L3 miss
event in Figure 11, it is still unclear why the PEBS-based mechanism
counts even fewer events than the simple counter. Running the same
benchmark, but measuring an event which is not influenced by the
above cache hierarchy effects shows this more clearly. In Table 2, we
show the results of measuring the event MEM_INST_RETIRED.ALL_LOADS,
which represents all retired loads, regardless of which element of the
memory hierarchy supplied the data. While this is not useful for mea-
suring main memory bandwidth in a real application, it demonstrates
that PEBS still looses events relative to the raw count captured in
PMC1, which does not lose events in this setup. Thus, we are ob-
serving an additional effect, which is independent of the one just
described.

In Section 2.1.1 we described the algorithm for using performance
counters with overflow interrupts. A crucial part of that algorithm



6.3 accuracy 41

Figure 13: Activation delay. In this illustration, PEBS is configured for a
threshold of 10.

was to read the current value of the performance counter from within
the interrupt handler, as events continue to occur and get counted
until the interrupt handler code finally begins executing. Presumably,
something similar happens with PEBS (Figure 13): According to [11]
(Section 18.4.2), PEBS only gets “armed” when a counter overflow
happens; the “PEBS event”, which will then cause the PEBS assist to
execute, gets issued when the next underlying event occurs. We as-
sume that there additionally is a small delay between the PEBS event
being issued and the assist actually starting execution. Unlike the pre-
viously described algorithm based on overflow interrupts however,
the PEBS assist does neither record the current value of the perfor-
mance counter at the time of its execution, nor does it apply this
value as an offset to the value the counter is reset to at the end of the
assist. Thus, the events which occur during this activation delay are
irretrievably lost.

6.3.2 Upper Bound on Lost Events

Both the loss incurred by the machine clear caused by the PEBS assist
and the loss incurred by the activation delay are dependent on the
measured application: Both the number of loads in flight at the time
the PEBS assist activates, for the first effect, and the rate of retirements
during the activation delay in the second case are variable. However,
in both cases, the effect gets worse with a higher rate of loads which
will miss L3. Thus, the above benchmark should represent a worst
case, as nearly all its instructions are loads that will miss L3, allowing
us to deduce an upper bound for the incurred error.

When the event rate is constant, we can model both effects as caus-
ing the loss of a constant number l of events whenever the event
count reaches the threshold t. During each run of the benchmark,
approximately the same volume v of events should occur causing a

activations of the PEBS assist. Then,

v− a ∗ l
t

= a



42 evaluation

2

2.5

3

3.5

4

4.5

5

0 100 200 300 400 500 600 700 800 900 1000

Ev
en

ts

Threshold

Calculated activation delay

Figure 14: Estimated activation delay from our worst-case benchmark.

0

5

10

15

20

25

30

35

40

45

0 100 200 300 400 500 600 700 800 900 1000

Ev
en

ts

Threshold

Total calculated event loss

Figure 15: Estimated total loss per PEBS assist activation in our worst-case
benchmark.

holds, which allows us to calculate the loss as

l =
v

a
− t,

where a is the number of activations that has actually been observed.
The results from the experiment in Table 2 allow us to estimate

the number of events lost to the activation delay. Figure 14 shows
the results of this estimation with more data points within the same
threshold range. While our model breaks down for low thresholds, it
yields a stable activation delay of 4 to 5 for higher thresholds.

Similarly, the number of events lost to the combination of both
effects can be calculated from the data gathered in the first experi-
ment, beginning at 17 and averaging out at about 35 events for higher
thresholds (Figure 15). There is a slight linear upwards trend which
continues at higher thresholds; however, this is primarily caused by
the small loss incurred by the event itself (see Section 3.4.1). Clearly,
the effect caused by the machine clear dominates.



6.3 accuracy 43

0

5

10

15

20

25

30

G
em

sFD
T

D
bw

aves
cactusA

D
M

calculix
dealII
grom

acs
lbm
leslie

3d
m

ilc
nam

d
povray
soplex
sphinx

3

tonto
w

rf
zeusm

p

Ev
en

ts
1000

100

10

Figure 16: Total losses per PEBS assist activation in Spec benchmarks at dif-
ferent thresholds.

To see whether this is indeed an upper bound in practical applica-
tions, we run a similar analysis using the SpecFP 2006 set of bench-
marks (the gamess benchmark from that suite failed to run correctly
on our machine and was thus excluded). As we have no a priori value
for the number of main memory accesses caused by these bench-
marks, we first run them without PEBS, counting the number of L3

misses using a regular performance counter to establish a baseline.
Then, we run each benchmark with PEBS and apply the above for-
mula.

We find that the worst-case loss encountered by these benchmarks
are indeed less than the ones incurred by our assumed worst-case
benchmark, reaching only 20 events in the cactusADM benchmark (Fig-
ure 16).

These inevitable effects limit the usefulness of our approach and
make it mostly useless for our initial intent of precisely capturing the
memory access characteristics of an application. However, we now
compare it to soft-tsc and find that the latter suffers from similar
problems.

6.3.3 Comparison to the software approach

When running our synthetic benchmark under soft-tsc, we also ob-
serve a loss of events.
soft-tsc samples the current performance counter value after in-

terrupt entry has completed and thus can avoid the loss incurred by
the activation delay. We can confirm this by comparing the value it
reports to the value reported by an independent performance counter
running in parallel, noting that they match closely.



44 evaluation

However, similar to PEBS, we also observe a migration of L3 misses
to L1 hits with soft-tsc at lower thresholds, virtually identical in
quantity to the one observed with PEBS (see Figure 12).

Thus, our approach incurs only a slight additional loss compared
to soft-tsc, caused by the activation delay. We now compare both
approaches with regard to their overhead and find that our approach
significantly improves upon soft-tsc.

6.4 overhead

To evaluate the overhead of our approach under realistic circum-
stances, we again use benchmarks from the Spec suite. At various
thresholds, we compare the run time of each benchmark when ob-
served by our mechanism to the run time of the benchmark when
run unobserved. For comparison, we repeat the same measurements
with soft-tsc.

We find that there is virtually no difference between both approaches
at a threshold of 1000, but that the soft-tsc causes a significantly
higher overhead at lower thresholds, up to a slowdown of 150% com-
pared to a slowdown of 50% incurred by pebs-extract at threshold
10 for the bwaves and milc benchmarks (see Figure 17). While the
effects described in Section 6.3 skew this comparison in favor to our
new approach by losing events and thus causing fewer invocations
of the PEBS assist and the PEBS interrupt handler, our approach still
yields a net gain when factoring in these effects: In the case of lbm

at threshold 10, soft-tsc only counted 13% more counter overflows
than the PEBS-based solution, but still was 50% slower. Thus, our
approach affords lower thresholds, which means better accuracy, at
the same slowdown or a lower slowdown at a similar accuracy when
compared to a software-only approach.

6.5 accuracy implications of overhead

The overhead incurred per counter overflow with a particular mecha-
nism also influences the accuracy of that mechanism: As the number
of overflows per unit of time varies, so does the incurred overhead
and as such, the slowdown of the application. This results in a com-
pression or dilation of different phases in a trace. Figure 18 shows
the access patterns of a benchmark which alternates between phases
of high and low L3 miss rates as recorded by both pebs-extract and
soft-tsc, scaled in time to show corresponding phases. One can both
see that the benchmark takes longer to run with soft-tsc and that the
phases of high event rates are stretched compared to pebs-extract,
which has a lower per-overflow overhead.

Furthermore, soft-tsc causes an interrupt per counter overflow
compared to pebs-extract, which only causes an interrupt per PEBS



6.5 accuracy implications of overhead 45

1

1.5

2

2.5

3

G
em

sFD
TD

bw
aves

cactusA
D

M
calculix
dealII
grom

acs
lbm
leslie

3d
m

ilc
nam

d
povray
soplex
sphinx

3

tonto
w

rf
zeusm

p

Sl
ow

do
w

n

Threshold 10

soft-tsc
pebs-extract

1

1.1
1.2
1.3
1.4
1.5

G
em

sFD
TD

bw
aves

cactusA
D

M
calculix
dealII
grom

acs
lbm
leslie

3d
m

ilc
nam

d
povray
soplex
sphinx

3

tonto
w

rf
zeusm

p

Sl
ow

do
w

n

Threshold 100

soft-tsc
pebs-extract

Figure 17: Slowdown of Spec benchmarks caused by soft-tsc and our solu-
tion at different thresholds. Threshold 1000 is not plotted, as no
significant slowdown occurs with either approach.



46 evaluation

10000

15000

20000

25000

30000

35000

0 1000 2000 3000 4000 5000

Ev
en

ts
/m

s

Time (ms)

pebs-extract

6000

8000

10000

12000

14000

16000

18000

20000

22000

0 1000 2000 3000 4000 5000 6000 7000 8000

Ev
en

ts
/m

s

Time (ms)

soft-tsc

Figure 18: Stretching of phases of high event rates with soft-tsc compared
to pebs-extract, at threshold 10.



6.6 achievable throughput 47

26000

28000

30000

32000

34000

0 500 1000 1500 2000 2500 3000 3500 4000

Ev
en

ts
/m

s

Time (ms)

pebs-extract

16000

17000

18000

19000

20000

21000

22000

0 500 1000 1500 2000 2500 3000 3500 4000

Ev
en

ts
/m

s

Time (ms)

soft-tsc

Figure 19: Artificial IPI interference in the 100 GiB read benchmark, which
is not visible with soft-tsc.

buffer overflow. To demonstrate the relevance of this difference, we
run the 100 GiB read benchmark but additionally set up another core
to cause a short burst of inter-processor-interrupts to the core running
the application every second.

Figure 19 shows traces of this setup as captured by either mecha-
nism. One can see regular drops in the event rate in the trace captured
by pebs-extract, but not in the one captured by soft-tsc, where this
effect remains invisible.

6.6 achievable throughput

As our new solution—contrary to soft-tsc—also contains a mecha-
nism for streaming traces and storing them to disk, we also need to
evaluate whether this mechanism represents a bottleneck when try-
ing to capture traces with a high data rate.

We were not able to create a situation where any workload, even
at low thresholds, caused our mechanism to drop events because the
trace consumer could not keep up with storing them to disk.



48 evaluation

However, this is in part a result of the aforementioned event loss
caused by PEBS. To be able to determine a theoretical maximum event
rate, we modified our approach to simulate varying event rates by re-
placing the PEBS overflow interrupt as a trigger for postprocessing by
a high-resolution timer and modified the postprocessor to place arti-
ficial deltas in the ring buffer. This enabled us to evaluate the feasibil-
ity of our postprocessing chain without having to create a workload
which would cause a sufficiently high load.

We found that, with our experimental setup, our implementation
can easily handle 4000 PEBS buffer-full interrupts per second, corre-
sponding to an event rate of about 630 ∗ 10

6 events per second at a
threshold of 10. If each event represents a LLC cache miss, this would
be sufficient for monitoring transfer rates of up to 37 GiB per second,
which is close to the theoretical maximum of 37.5 GiB per second of
a DDR4 dual-channel system. However, in practice, our evaluation
system only reaches a throughput of about 32 GiB per second in the
best case, even with prefetchers enabled, as measured by pmbw [6].

Thus, our proposed solution achieves sufficient throughput for all
practical scenarios.



7
C O N C L U S I O N

Main memory bandwidth is a shared resource which is more difficult
to account for than resources under the explicit management of the
operating system, such as CPU time or IO bandwidth. Nevertheless,
the total memory bandwidth is limited and applications can thus in-
fluence each other through this bottleneck.

In this thesis, we developed a system for capturing fine-grained
memory bandwidth consumption traces for applications in a live sys-
tem with a focus on achieving a high accuracy while maintaining low
overhead and interference. To that end, we first analyzed the avail-
able technologies, settling on Precise Event-Based Sampling (PEBS)
in combination with last-level cache miss counters as the basis for
our system. We also determined that the assumption that last-level
cache miss counters can be used to measure the rate of main memory
accesses still broadly holds on modern CPU architectures: Split cache
line reads are a cause of undercounting, but they are rare enough not
to cause significant errors. However, disabling prefetchers is neces-
sary to achieve accurate measurements and does often reduce appli-
cation performance significantly.

We proposed a modular design based on PEBS for efficiently stream-
ing counter overflow timestamp traces and detailed our Linux-based
implementation.

The evaluation of this implementation revealed both a fundamental
issue with the PEBS mechanism and with using last-level cache miss
counters in combination with both PEBS and classical approaches
based on overflow interrupts: On the one hand, PEBS does not sam-
ple the current value of a performance counter when executing the
PEBS assist, which causes it to lose events due to the PEBS activation
delay. On the other hand, both the activation of the PEBS assist and
a classical counter overflow interrupt abort pending loads, causing a
migration of L3 misses towards L1 hits.

Based on these observations, we conclude that the currently avail-
able hardware mechanisms are not sufficient for reaching our goal of
capturing fine-grained main memory bandwidth traces. However, we
were able to demonstrate that hardware-assisted tracing does indeed
help reduce the overhead such a mechanism incurs: At threshold 10,
our solution reduced the overhead by 20% on average and never in-
creased the overhead.

We also demonstrated that lower overhead improves the accuracy
by virtue of causing less interference with the measured application
during periods of high application activity and that our approach

49



50 conclusion

also reveals application behavior which was previously masked by
the high interrupt load of classical interrupt-based approaches.

7.1 future work

Whether accurate high-resolution memory bandwidth measurement
will become feasibly hinges on the development of better hardware
support for doing so. Intel Memory Bandwidth Monitoring (MBM)
seems to be a step in the right direction; however, it does not include
any kind of tracing support, requiring manual sampling. For future
hardware generations, a combination of a mechanism such as PEBS
with MBM would be promising. Extending PEBS records to include
a sample of the counter value at the time the assist activates would
avoid the loss of events incurred by the PEBS activation delay.

Monitoring memory write bandwidth using performance monitor-
ing remains largely unexplored because the relationship between cache
events and actual memory traffic is more complex. Investigating this
relationship would also be worthwhile, although all approaches based
on performance counters will ultimately suffer from similar issues as
the ones detailed in this work.



Part I

A P P E N D I X





B I B L I O G R A P H Y

[1] 6th Generation Intel® Core™ Processor Family Specification Update.
Intel. Aug. 2015.

[2] An Introduction to the Intel QuickPath Interconnect. Intel.

[3] Fabrice Bellard. “QEMU, a Fast and Portable Dynamic Trans-
lator.” In: USENIX Annual Technical Conference, FREENIX Track.
2005, pp. 41–46.

[4] Frank Bellosa. Process Cruise Control: Throttling Memory Access
in a Soft Real-Time Environment. Tech. rep. TR-I4-97-02. July 1997.
url: http://os.itec.kit.edu/.

[5] SUNY Binghamton. “MARSSx86—Micro-ARchitectural and Sys-
tem Simulator for x86-based Systems.” In: State University of
New York at Binghamton, Binghamton, NY (2013).

[6] T Bingmann. Parallel Memory Bandwidth Benchmark. 2013. url:
http://panthema.net/2013/pmbw.

[7] Nathan Binkert, Bradford Beckmann, Gabriel Black, Steven K
Reinhardt, Ali Saidi, Arkaprava Basu, Joel Hestness, Derek R
Hower, Tushar Krishna, Somayeh Sardashti, et al. “The gem5

simulator.” In: ACM SIGARCH Computer Architecture News 39.2
(2011), pp. 1–7.

[8] Yann Collet. Lz4: Extremely fast compression algorithm. 2013. url:
http://lz4.org/.

[9] Agner Fog. “Instruction tables: Lists of instruction latencies,
throughputs and micro-operation breakdowns for Intel, AMD
and VIA CPUs.” In: Denmark (Lyngby): Technical University of
Denmark (2016).

[10] Intel® 64 and IA-32 Architectures Optimization Reference Manual.
Intel. Sept. 2015.

[11] Intel® 64 and IA-32 Architectures Software Developer’s Manual -
Volume 3: System Programming Guide. Intel. June 2015.

[12] Andi Kleen. pmu-tools. url: https://github.com/andikleen/
pmu-tools.

[13] Lightweight Profiling Specification. AMD. Aug. 2010.

[14] Monitoring Integrated Memory Controller Requests in the 2nd, 3rd
and 4th generation Intel® Core™ processors. Intel. Mar. 2013.

[15] The Compute Architecture of Intel® Processor Graphics Gen9. Intel.

53

http://os.itec.kit.edu/
http://panthema.net/2013/pmbw
http://lz4.org/
https://github.com/andikleen/pmu-tools
https://github.com/andikleen/pmu-tools


54 Bibliography

[16] Vish Viswanathan. Disclosure of H/W prefetcher control on some
Intel processors. Sept. 2014. url: https://software.intel.com/
en-us/articles/disclosure-of-hw-prefetcher-control-on-

some-intel-processors.

[17] Heechul Yun, Gang Yao, R. Pellizzoni, M. Caccamo, and Lui
Sha. “MemGuard: Memory bandwidth reservation system for
efficient performance isolation in multi-core platforms.” In: Real-
Time and Embedded Technology and Applications Symposium (RTAS),
2013 IEEE 19th. Apr. 2013, pp. 55–64. doi: 10.1109/RTAS.2013.
6531079.

https://software.intel.com/en-us/articles/disclosure-of-hw-prefetcher-control-on-some-intel-processors
https://software.intel.com/en-us/articles/disclosure-of-hw-prefetcher-control-on-some-intel-processors
https://software.intel.com/en-us/articles/disclosure-of-hw-prefetcher-control-on-some-intel-processors
http://dx.doi.org/10.1109/RTAS.2013.6531079
http://dx.doi.org/10.1109/RTAS.2013.6531079

	Declaration
	Abstract
	Contents
	1 Introduction
	2 Background and Related Work
	2.1 The Architecture of the Skylake CPU Family
	2.2 Related Work

	3 Analysis
	3.1 Criteria
	3.2 Mechanism Selection
	3.3 Experimental Verification
	3.4 Further Experiments
	3.5 Conclusion

	4 Design
	4.1 Design Goals
	4.2 Design Overview
	4.3 Design Rationale
	4.4 PEBS Configuration
	4.5 PEBS Handler
	4.6 Postprocessing
	4.7 Ring Buffer
	4.8 Trace Consumer
	4.9 Conversion Between Overflow-Based and Sampling-Based Representations

	5 Implementation
	5.1 Choice of Operating System
	5.2 Operating System Integration
	5.3 PEBS Configuration
	5.4 Performance Counter Configuration
	5.5 PEBS Handler
	5.6 User Space Interface
	5.7 Trace Consumer

	6 Evaluation
	6.1 Experimental Setup
	6.2 Baseline Software-Based Approach
	6.3 Accuracy
	6.4 Overhead
	6.5 Accuracy Implications of Overhead
	6.6 Achievable Throughput

	7 Conclusion
	7.1 Future Work

	Appendix
	Bibliography


