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Abstract

Shared Memory is an important mechanism for efficient inter-process communica-
tion. When one side of the communication has higher privileges than its counterpart,
the shared memory interface becomes a trust boundary and privileged code operating
on it needs to be audited for security vulnerabilities.

In this thesis we present an approach based on memory tracing to discover vulner-
abilities in shared memory interfaces. In contrast to other works in this area, the
presented implementation is based on hardware-assisted virtualization and uses
manipulation of EPT permissions to intercept memory accesses.

We evaluate our implementation against paravirtualized device drivers for the Xen
hypervisor, which use shared memory for inter-domain communication. Besides suc-
cessfully identifying the privileged components responsible for processing untrusted
shared memory data, the presented analysis algorithms are used to discover three
novel security vulnerabilities in security critical backend components.
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1Introduction

Memory pages shared between different execution contexts are a fundamental
communication mechanism of modern computer systems. In many cases one side of
the communication has higher privileges and needs to protect itself against malicious
behavior of its counterpart. Examples for this situation include communication
between userland and kernel space[20], sandbox implementations of modern web
browsers[44] and the inter-domain communication of popular hypervisors[8].

In addition to classic software vulnerabilities, such as missing validation and verifica-
tion, shared memory interfaces can suffer from a special type of race condition called
double fetch vulnerability. Bochspwn[20] first demonstrated how these issues can
be used for local privilege escalation attacks against the Windows kernel and how
memory tracing can be leveraged to identify these vulnerability types automatically.
While Bochspwn was successfully applied in the context of user-kernel interaction,
its reliance on an instrumented version of the Bochs CPU emulator leads to an
extremely high overhead and bad performance. This limits its suitability for the
analysis of more complex software environments.

The objective of this thesis is the discovery of software vulnerabilities in the inter-
domain communication interfaces of mainstream hypervisors. To achieve this goal,
this thesis presents and implements an approach to discover such vulnerabilities by
tracing and analyzing all privileged read and write accesses to shared memory pages.
We improve upon the research presented in [20], by designing and implementing
a toolkit for memory access tracing and pattern analysis using hardware-assisted
virtualization and modified page table permissions.

In comparison to approaches based on software emulation, this reduces the passive
overhead significantly and allows the targeted tracing of shared memory communi-
cation even in very complex environments. The presented implementation is based
on the open source Xen hypervisor[3] as platform for nested virtualization and uses
Simutrace[34] as highly efficient trace storage, allowing for the collection and offline
analysis of even long running traces. Furthermore, large parts of the design and
implementation are completely target agnostic, making them reusable for analysis
of different hypervisors and even other shared memory interfaces such as sandbox
implementations.

The effectiveness of the presented approach is evaluated by analyzing the secu-
rity aspects of paravirtualized devices in Xen. Besides being able to identify the
privileged components that can be targeted by an attacker, our implementation
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is able to discover three novel security vulnerabilities affecting the Xen hypervi-
sor. These vulnerabilities were reported to the Xen maintainers and were assigned
XSA-155[52].

The remainder of this work is structured as follows: Chapter 2 discussed several core
concepts required for this thesis. Besides introducing shared memory communication
and double fetch vulnerabilities in general, the different types of virtualization on
the Intel x64 architecture are presented. This is followed by an introduction into
the concept of virtual machine introspection and a detailed discussion of the overall
architecture of three mainstream hypervisors. Chapter 3 highlights the problem
of security for inter-domain communication and reviews several different ways for
discovering vulnerabilities in these interfaces. After this, the proposed design of our
solution is presented in Chapter 4. Important aspects of the implementation are
reviewed in Chapter 5, before the results of the performed evaluation are finally
presented in Chapter 6. The thesis finishes with a final conclusion and a discussion
of further research topics in Chapter 7.

2 Chapter 1 Introduction



2Background

This chapter introduces the technical concepts and terminology required for the rest
of this thesis. Section 2.1 introduces the idea of shared memory communication
and the reasons for its popularity. In comparison to other IPC mechanisms, shared
memory can suffer from a special type of vulnerability called double fetch, which is
introduced in Section 2.2. The chapter continues with Section 2.3, which describes
virtualization on the Intel x64 architecture, concentrating on the Intel VT-x exten-
sions. After an introduction into Virtual Machine Introspection (VMI) in Section 2.4,
the chapter concludes with an overview about the architectures of three mainstream
hypervisors in Section 2.5.

2.1 Shared Memory
Shared memory is one of most widespread inter-process communication (IPC)
methods[43, 41]. The main reason for its popularity is the performance advantage
in comparison to other message based IPC mechanisms such as pipes or message
queues, which are implemented on top of system calls.

Sender Receiver

user space
kernel

write() /
msgsnd() Pipe,/,

Message,
Queue

read() /
msgrcv()

Fig. 2.1: Memory copies during IPC.

As described in [41] and visualized in Figure 2.1, passing data between two processes
using a message oriented approach requires at least two additional copies: The
sender triggers a copy from user space to kernel, while the receiving side needs to
copy into the other direction from kernel back into the user space process.

For shared memory IPC there is no such overhead. Instead, there is a one time
setup cost when the shared memory section is created. While the exact APIs to
initialize differ between operating systems or hypervisors, the implementation is
always the same: One or more physical memory pages are shared by mapping
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them into the virtual address space of multiple execution contexts. When talking
about operating systems, an execution context normally just corresponds to another
user space process, but the mechanism stays the same when talking about different
virtual machines. After this page mapping is created, data transfers between two
contexts do not require any involvement of the kernel (or hypervisor). Instead,
simple memory reads and writes can be used, reducing the need for expensive copy
operations. Depending on the exact use case, zero copy protocols are possible, which
have very good performance characteristics.

Some kind of synchronization method between the communication partners is re-
quired when shared memory is used. To do this, all standard synchronization
techniques such mutexes, locks and semaphores can be used on top of shared mem-
ory[41]. However, there is an important limitation to note: These synchronization
methods require all communication partners to participate, they cannot enforce it.
No widespread shared memory APIs include functionality comparable to a mandatory
file lock, which is enforced by the underlying layer. This is normally not a problem
when all communication participants operate on the same privilege level. While a
misbehaving side could interrupt the communication, this cannot be considered a
security issue. If, however, the shared memory interface is a trust boundary and
one side has less privileges, such issues can become much more interesting from a
security perspective. Even though there is a large amount of research concerning
the safe use of shared resources, they concentrate on insecure behavior triggered by
incorrect use of synchronization primitives. A recent example is ThreadSanitizer[37],
an instrumentation based data race detector for C and C++ software. However,
this research is only partially applicable, because it does not take the existence of a
malicious communication partner into account. High-level synchronization methods
are not enforced in shared memory interfaces, which means they can simply be
ignored, triggering potential vulnerabilities.

One example for such a vulnerability type is called double fetch, which will be
introduced in the following.

2.2 Double Fetches
Double fetches are a special type of Time-of-Check-to-Time-of-Use (TOCTTOU) bugs[20].
TOCTTOU bugs exist when data can be manipulated between verification or valida-
tion - the time of check - and the time of use.

The probably best known examples of TOCTTOU bugs affect file system accesses[6]:
A privileged process, for example a setuid binary, checks that a file is owned by
an unprivileged user and then performs a modification to this file on behalf of the
user. If the permission check and the modification are separate actions, an attacker
can replace the file with a symbolic link to a system file. If the timing is right
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and this replacement happens right after the check is performed but before the
actual modification happens, unauthorized manipulation of important files might be
possible.

While, TOCTTOU bugs exist in different software layers and in different environ-
ments, the core principle is always the same. A description of this bug class can be
found in [1] published in 1976:

"Whenever there is a "timing window" between the time the control
program verifies a parameter and the time it retrieves the parameter
from shared storage for use, a potential security flaw is created. This
is because contemporary operating systems allow a user to have two or
more activities (processes) executing concurrently."

We use the term double fetch to describe potential TOCTTOU vulnerabilities where
the shared medium is a shared memory region. This terminology was introduced
by Fermin J. Serna in a post on the Microsoft Security and Defense blog[28]. One
of the main inspirations for this work is Bochspwn[20], a Bochs based toolkit to
discover double fetch vulnerabilities in the Windows kernel. While Bochspwn uses
software emulation to generate memory traces and does not target shared memory
communication, it introduces several of the core concepts of this thesis. Besides
being the first to try to discover double fetch vulnerabilities using memory access
tracing, they also introduce the ability to separate tracing and analysis steps. In
addition, the possible extension of the approach with more analysis algorithms
and by using hardware-assisted virtualization is mentioned even when no details
regarding the implementation of these extensions are given.

Most published examples of double fetch vulnerabilities affect the interface between
user space and kernel: Listing 1 shows a vulnerability in the sendmsg system call
handler of the Linux kernel fixed in 2005[10]. In line 5 the copy_user macro is
invoked to dereference a pointer into user space and copy the value of the cmsg_len
field into a local variable umclen. umclen is used to calculate a length for the final
data structure, which is allocated using a call to kmalloc in line 15. However, before
the data is copied into the allocated structure in line 20, umclen is again initialized
with the value from user space in line 18.

This is a classic example of a double fetch vulnerability. If an attacker is able to win
the race condition and exchange the value of cmsg_len between the first and the
second access, an exploitable heap overflow can be triggered. While this specific
bug can be easily identified in the source code, this is not always the case. Listing
2 shows CVE-2013-1278 first presented in [20]. The vulnerable code pattern was
discovered in multiple system call handlers, this specific example is extracted from
the nt!ApphelpCacheLookupEntry function. edi stores a user space pointer and
the ProbeForWrite function is used to make sure that the pointer at offset 0x18 of

2.2 Double Fetches 5



1 int cmsghdr_from_user_compat_to_kern(..)
2 {
3 [...]
4 while(ucmsg != NULL) {
5 if(get_user(ucmlen, &ucmsg->cmsg_len))
6 return -EFAULT;
7 [...]
8 tmp = ((ucmlen - CMSG_COMPAT_ALIGN(sizeof(*ucmsg))) +
9 CMSG_ALIGN(sizeof(struct cmsghdr)));

10 kcmlen += tmp;
11 [...]
12 }
13

14 if(kcmlen > stackbuf_size)
15 kcmsg_base = kcmsg = kmalloc(kcmlen, GFP_KERNEL);
16

17 while(ucmsg != NULL) {
18 __get_user(ucmlen, &ucmsg->cmsg_len);
19

20 if(copy_from_user(CMSG_DATA(kcmsg),
21 CMSG_COMPAT_DATA(ucmsg),
22 (ucmlen - CMSG_COMPAT_ALIGN(sizeof(*ucmsg)))))
23 [...]
24 }

Listing 1: Double fetch in sendmsg system call. Two calls to copy_from_user create a
double fetch vulnerability affecting the umclen variable.

edi is a writable user space address. When the arguments are passed to memcpy, this
pointer is fetched a second time from user space memory. If the data is exchanged
between these two accesses, arbitrary kernel memory can be corrupted. As shown
in [20], this can be used for a local privilege escalation attack against vulnerable
systems. Because no source code for nt!ApphelpCacheLookupEntry is publicly
available, it cannot be evaluated if the double fetch is the result of two C pointer
dereferences or of a compiler optimization.

The exploitability of double fetch vulnerabilities is discussed in detail in [20]. On
single core systems, races might not be winnable under all circumstances if a context
switch never occurs between the time of check and the time of use. However, for
multi core systems even very short race conditions can be exploited as long as a loss
does not trigger a system crash or a similar irreversible condition. Because modern
virtualization environments are always operating in a multi core environment, we
consider even short race conditions as exploitable for the purpose of this thesis.
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1 mov ecx, [edi+18h]
2 ;[..]
3 push 4
4 push eax
5 push ecx
6 call _ProbeForWrite
7 push dword ptr [esi+20h]
8 push dword ptr [esi+24h]
9 push dword ptr [edi+18h]

10 call _memcpy

Listing 2: Double fetch in nt!ApphelpCacheLookupEntry. An invalid value can be written to
edi+0x18, between the call to ProbeForWrite and the second memory fetch in
line 9.

2.3 x64 Virtualization
A core topic of this thesis is virtualization on the Intel 64bit (x64) architecture. The
main evaluation targets are the inter-domain communication mechanisms of popular
hypervisors and the proposed and implemented solution heavily relies on hardware-
assisted virtualization. Therefore, this section introduces the core challenges of
virtualization on Intel systems and discusses the hardware virtualization features
added in recent processor generations. In order to concentrate on mechanisms
relevant for this thesis, several topics such as interrupt virtualization and System
Management Mode are ignored in the following.

2.3.1 Virtualization Fundamentals

In a traditional system the operating system has full control over all hardware
resources. A virtualized system introduces a new software layer called virtual
machine monitor (VMM) or hypervisor. The VMM is responsible for managing access
to the hardware for each running virtualized system. Each virtualized system, also
called virtual machine (VM), consists of virtual memory, one or more virtual CPUs
and virtualized devices. In general, a VMM gives a guest operating system the
illusion to be running on real physical hardware. Hypervisor can be separated into
type-1 and type-2 hypervisors[43]: type-1 hypervisors run directly on the hardware,
while type-2 hypervisors run on top of a normal operating system.

One important requirement in general purpose virtualization is that one VM can not
influence the execution of other VMs running on the same physical host. This means
virtual memory, CPUs and devices must be isolated from each other and access to
privileged operations on the real hardware must be restricted. Privileges on x64
are implemented using a ring model[18]: A processor always operates in a ring
between 3 and 0, where ring 0 is the most privileged operation mode. Only code
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running in ring 0 has accesses to privileged instructions, the complete memory space
and memory mapped or port based IO. Of course normal OS kernels operate under
the assumption that they are running in ring 0. However, unrestricted access to all
these privileged operations violates the isolation requirement of isolation. There
are two practical approaches to solve this problem in software: binary translation
and pravirtualization. Binary translation was pioneered by VMWare[43]. The
hypervisor dynamically replaces privileged operations with emulated versions that
operate on the virtual hardware. Paravirtualization, first implemented by the Xen
hypervisor[3], requires modification of the guest operating system to replace all
privileged operations with calls to a hypervisor API. The guest kernel is then moved
to a less privileged ring, while the hypervisor is the only code still operating in ring
0. Both approaches are quite successful but they have important downsides. Binary
translation does not require modification of the guest operating system and can
reach a surprisingly high performance level, but the engineering effort for creating a
production ready hypervisor using this approach can not be overestimated. On the
other hand, paravirtualization uses the standard hardware protection mechanisms
and allows for a very small and simple hypervisor, but requires modification of the
guest system. Because of these difficulties with pure software based approaches
and the rising demand for virtualization on the x64 architecture, Intel introduced
the VT-x extensions[45] in 2005. Nowadays hardware-assisted virtualization using
the Intel VT extension or the similar implementation by AMD are by far the most
relevant virtualization types in productive use.

2.3.2 Intel VT-x

VT-x adds two additional CPU modes[45]: VMX non-root operations and VMX root
operations. The ring privilege level still exist in both operation modes, so code
could be operating in ring 3 in VMX root mode or in ring 0 in non-root mode. The
hypervisor runs in root mode, while all guests operate in non-root mode. Context
switches between root mode and non-root mode are called VM entries and VM
exits. These transitions and the operation of the processor in non-root mode is
managed using a newly introduced data structure called virtual machine control
structure(VMCS). The VMCS is separated into six logical groups[18]:
Guest-State. Saves the processor state on a VM exit. Is used to restore it on a VM

entry.

Host-State. Processor state is loaded from here on a VM exit.

VM execution control fields. These fields control processor behavior when oper-
ating in non-root mode.

VM entry control fields. These fields control the VM entry behavior.

VM exit control fields. These fields control the VM exit behavior.
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VM exit information fields. These fields contain information about the most recent
VM exit.

Management of the VMCS can be performed by using a number of newly introduced
instructions that are only available in root mode: They include VMPTRLD and VMPTRST
to load and store pointers to the currently used VMCS. VMREAD and VMWRITE to read
and write VMCS fields and VMLAUNCH or VMRESUME to trigger a VM entry.

Code executing in VMX root mode behaves the same way as before, but when
the CPU is operating in non-root mode, privileged operations can be trapped and
handled by the hypervisor. Certain instructions like WRMSR or CPUID always trigger
a VM exit, the behavior of others can be configured using the execution control
fields in the VMCS. Interestingly, many privileged instructions do never trigger an
VM exit because they transparently operate on VM specific data when executed
in non-root mode. This includes all instructions involving interrupt and exception
handling[18].

The trap and emulate approach enabled by these additions is sufficient to protect
the hypervisor and other guests from a misbehaving or malicious virtual machine:
All instructions that directly access hardware features can be trapped and emulated
safely. Because all accesses to the CR3 register are intercepted, the hypervisor can
enforce a strict separation between its own linear address space and those used by
different VMs. In early versions of Intel VT, the hypervisor was required to keep
track of the relation between a guest physical and the machine physical address
space using a mechanism called shadow page tables[39]. When using this approach,
a hypervisor is forced to intercept all page faults or page table updates in the VM
to keep the shadow page tables in sync with their virtual equivalent. Of course,
this triggers a high amount of VM exits, degrading the overall performance. To
improve performance, Intel decided to introduce an additional hardware feature
called extended page tables (EPT).

2.3.3 Intel EPT

Extended page table is Intel’s name for a hardware feature also known as second
level address translation or nested paging. EPT introduces the concept of guest-
physical address[18]. The guest is in full control of its own page tables and address
translation inside the virtual machine works the same as on a non virtualized system.
But after the normal address translation has finished, the processor performs an
additional translation step going from the guest-physical to the real physical address.
As shown in Figure 2.2, EPT translation uses an extended page table pointer (EPTP)
stored in the VMCS execution control fields and performs a 4 level deep page-walk
through EPT paging structures, very similar to the one performed for normal address
translation.

2.3 x64 Virtualization 9



Guest Physical Address

EPT 
PML4

EPT 
PDPT

EPT PD EPT PT

47-39 38-30 29-21 20-12 11-0

EPTP

PML4E

PDPTE

PDE

PTE

47-12

System Physical Address

11-0

Fig. 2.2: Intel EPT Address Translation. Guest physical addresses are translated into system
physical addresses using an additional address translation layer.

The main advantage of EPT is the reduction of VM exits and the offloading of
virtualized memory management to the hardware layer. This means the hypervisor
code can be significantly simplified and does not have to be concerned with any
page table updates performed by the guest. The memory separation is enforced by
the hardware as long there is no overlap between the EPT structures used by two
virtual machines or the memory pages of the hypervisor itself.

All EPT structures including the EPT page table entry contain fields controlling the
access permissions of the referenced physical memory page(s). For example, this
can be used by the hypervisor to share a read-only page with his guests. When a VM
performs a disallowed access on a guest-physical memory address, an EPT violation
is triggered leading to a VM exit. This behavior is completely transparent to the
virtual machine and can be used for implementing copy-on-write optimizations or to
collect data about the behavior of the VM.

2.3.4 Nested Virtualization

Nested virtualization describes the concept of running a hypervisor as a virtual
machine on top of another hypervisor. In order to keep the terminology unambitious,
we call the outer hypervisor the level 0 (L0) hypervisor and the inner one level 1
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L0 Hypervisor

L1 Hypervisor

L2 Guest
L1 Guest

L2 Guest

Fig. 2.3: Nested virtualization terminology.

(L1). The L1 hypervisor is just a special type of L1 guest and can run in parallel with
other guests and even additional L1 hypervisors. Finally, level 2 (L2) guests run on
top of the L1 hypervisor. Figure 2.3 visualizes these connections.

The main use case for nested virtualization is the ability to run a hypervisor in a cloud
environment[53]. More recently, Microsoft started to use its Hyper-V hypervisor as a
way to isolate security critical components from the normal operating system starting
with Windows 10[19]. Because this practically turns the Windows 10 operating
system into a Hyper-V VM, support for nested virtualization is required to install
additional virtualization software on the system. Currently most mainstream hyper-
visors only have partial support for nested virtualization, but current development
efforts[29, 53] indicate that this will change in the next years.

Mixing two different types of virtualization can often work without any problems. A
L0 hypervisor based on Intel VT can host a L1 hypervisor based on binary translation
or para-virtualization without any special support. It starts to get more complex
when two hypervisors based on Intel VT are nested, which of course is the most
relevant use case. The L1 hypervisor operates in non-root mode but stills needs the
impression that it is operating in root mode. This means all Intel VT management
instructions need to be trapped and emulated by the L0 hypervisor.

Recent extensions of Intel VT try to minimize additional VM exits introduced by
nested virtualization as much as possible[53]. For example, VMCS Shadowing enables
the L1 hypervisor to operate on a shadow VMCS structure without triggering VM
exits. Using these features, Intel states a performance loss of only 20% comparing a
L1 system to a L2 one[29].

2.3 x64 Virtualization 11



2.4 Virtual Machine Introspection
The concept of Virtual Machine Introspection (VMI) was first introduced in [15] and
was defined as an „approach of inspecting a virtual machine from the outside for
the purpose of analyzing the software running inside it“. VMI is traditionally used
in the context of malware detection and analysis. In this context it has a number
of advantages compared to more traditional host based intrusion detection systems
(IDS). In a standard host based IDS or sandbox, a software agent is running in the
same system as the malware. This requires the agent to rely on the trustworthiness of
the operating system, which might be a dangerous assumption if the malware is able
to compromise the OS kernel[15, 14]. Furthermore, a hypervisor based inspection
can be almost completely hidden from the analyzed system. This means that it is
difficult for a malware to simply detect that it is running in a protected or analyzed
environment and stop execution[49]. Other features offered by virtualization, like
the ability to create and restore snapshots of a running system are also very helpful
in the context of malware analysis, making VMI a logical next step.

The hypervisor has complete access to all state of the virtual machine, including
CPU registers, memory and the virtual hard drive. This means that at any point in
time the current state of the VM can be completely analyzed. In addition, the ability
to trap on specific actions of the running malware, is a requirement for efficient
analysis. This is quite trivial for software based emulation but more difficult for a
hypervisor based on hardware-assisted virtualization. While a very limited form of
this trapping could be implemented using software or hardware breakpoints, the
authors of [49] describe a more scalable approach by using EPT permissions: By
marking specific pages of VM memory as non-executable, the execution of the VM
can be traced by analyzing EPT violations. This idea of using EPT permissions as a
way to trap on actions performed in the virtual machine is a core concept used in
this thesis and will be discussed in-depth in later chapters.

2.5 Hypervisor Architecture
Even though all mainstream hypervisors for the Intel x64 architecture are at least
partially based on the Intel VT instruction set and the hardware virtualization support,
their overall architecture differs quite strongly. In this chapter the architectures of
three of the most popular hypervisors are discussed: Xen, Hyper-V and KVM. These
particular hypervisors were chosen for multiple reasons. First of all, all three are
widely used and have a mature and feature rich ecosystem. Second, due to the
open source nature of KVM and Xen, there architecture is very well documented and
implementation details can be easily discovered by reading the available source code.
While Hyper-V is a proprietary closed-source hypervisor, the overall architecture is
quite similar to the one of Xen. The paravirtualized device drivers used by Hyper-V
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are also implemented on top of shared memory[48], making it well suited for this
thesis.

In the following discussion, special focus rests on the interfaces used for inter-domain
communication as this part of the architecture is the most relevant one for the topic
of this thesis.

2.5.1 Xen

Xen$Hypervisor

dom0

Hypercall API

domU
(Paravirtualized)

domU
(HVM)

User$Applications User$Applications

Xen$
Management$

Stack

I/O$ring I/O$ring

QEMU$
System$
Process

Backend$
Driver

Modified$Kernel

Fronted$
Driver

Kernel

Fig. 2.4: Xen architecture.

Xen[3] is an open source type 1 hypervisor with support for ARM, x86 and x64.
Originally a research project at Cambridge University, the first version of the Xen
hypervisor was released in 2003. With no Intel VT instruction set available at that
point in time, the authors were the first to introduce paravirtualization on the x86
architecture. Instead of software emulation or complex binary translation as per-
formed by other implementations at this time, Xen’s paravirtualized virtual machines
run modified versions of the guest operating system. The modified kernels do not
rely on privileged instructions or direct hardware access and instead communicate
with the hypervisor using a set of APIs. Modern versions of Xen also support Intel VT
and unmodified guest systems, running as so called hardware virtualized machines
(HVM) guests.

Figure 2.4 gives an overview of the Xen architecture and the naming conventions
used. The core Xen hypervisor operates directly on top of the hardware and hosts a
number of virtual machines called domains. The management domain, called dom0 is
a normal linux system running all the management tools required for configuration
and operation of the hypervisor and its guests. The management tools communicate
with the hypervisor using the hypercall API, an interface very similar to the normal
system call interface used by operating systems. The decision to put all management
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software into a dedicated guest system makes it possible to keep the hypervisor itself
relatively simple.

Next to the privileged management domain, two normal unprivileged guests, called
domU are shown in the Figure. The first domU is a paravirtualized guest. It runs a
modified guest kernel, that does not interact with the real hardware in any way.
Instead, the kernel communicates directly with the hypervisor using the hypercall
API. Even though this is the same API that is also used by the management stack, all
privileged functionality is restricted to dom0, and the domU kernel is only allowed to
perform actions that affect its own VM.

The paravirtualized guest also requires virtual hardware devices. These are imple-
mented in two parts, the frontend and backend components: The frontend driver
runs in domU and plays the role of a normal hardware device driver in the guest
OS. When an action is performed on the virtual device, the frontend driver uses a
communication mechanism called XenBus to send a request to the backend driver
operating in dom0. Depending on the type of device the backend driver can process
the request completely in software or forward it to a real hardware device.

In comparison to paravirtualized guests, HVM domains do not require special support
for Xen. CPU and memory are virtualized with the help of Intel VT and EPT, but
the domain still needs access to hardware devices. To enable this, Xen uses device
emulation offered by the QEMU system emulator[4]. By default each running
HVM guest has a corresponding QEMU process running in dom0. QEMU emulates
old standard devices that are well supported by all mainstream operating systems.
Thanks to this, no special drivers are required and a completely unmodified operating
system can run in the domain. Still, in practice pure HVM guests are rarely used.
Instead of the relatively slow emulated devices offered by QEMU, the HVM guests
can use the same frontend drivers as paravirtualized guests. This means that the
inter-domain communication between frontend and backend drivers is a potential
attack surface irregardless of the domain type, making it particular interesting.

The core mechanism used for inter-domain communication in Xen is shared memory.
Sharing memory between two domains is implemented using a data structure called
grant table and the grant_table_op hypercall that operates on it[8]. Using the
grant table functionality, two domains can share physical memory pages between
each other. This mechanism is used by the paravirtualized drivers to implement I/O
rings for performing the actual communication. An I/O ring is a simple ring buffer
used for asynchronous communication. The same ring can be used for sending as
well as receiving data and a mechanism called event channel is used for notification
after new data was written into the I/O ring[8]. While the use of I/O rings based
on shared memory pages is not a hard requirement for paravirtualized drivers, the
protocol has been adopted by all standard Xen drivers. Device drivers that require
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large data transfers between domains like block or network devices often implement
on demand mapping of shared memory pages for bulk data transfers.

The split driver model used by Xen gives a large amount of freedom regarding
the implementation of the backend driver. Depending on performance or security
requirements, a backend driver could be implemented as an independent user space
process, a QEMU extension or as a Linux kernel module. In some cases this is even
configurable by the end user. For example, the backend component of the Xen
blkfront driver that is responsible for offering virtual block devices to a guest VM can
be the xen-blkback kernel module, the xen_disk implementation of QEMU or one
of multiple variants of blktap, a user space daemon.

From a security standpoint, the most relevant aspect of the Xen architecture is the
privileged role of the management domain dom0. Even though it is a virtual machine
it has access to the complete state of all other guests and can directly communicate
with the hardware. For most environments, this makes a compromise of dom0 as
critical as a compromise of the Xen hypervisor itself. Consequently, attacks on the
backend components of paravirtualized drivers are very relevant. Even more so for
backend components that are implemented in the kernel, because a vulnerability in
one of these can directly lead to a full dom0 compromise.

2.5.2 Hyper-V
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Fig. 2.5: Hyper-V architecture.

Hyper-V is a closed source type-1 hypervisor developed by Microsoft. In contrast to
earlier Microsoft virtualization products such as Virtual PC, Hyper-V is completely
based on hardware-assisted virtualization with support for Intel VT as well as AMD
SVM. Besides being advertised as the main virtualization solution for Windows
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servers, Hyper-V is used in the Xbox One console, the Microsoft Azure cloud[48],
and as an additional security layer on the client starting with Windows 10[19].

The Hyper-V architecture is strongly inspired by Xen as can be seen in Figure 2.5.
Instead of calling the guests domains, they are called partitions and the root partition
has the same role as dom0. Accordingly, domU’s are called child partitions. As in
Xen, all management components are running in the root partition, keeping the
hypervisor itself as small as possible.

While all partitions use hardware-assisted virtualization for CPU and memory, Hyper-
V differentiates between enlightened and unenlightened partitions, depending on their
use of paravirtualized device drivers and the hypercall API. Unenlighted partitions
depend on emulated devices and do not know about the hypercall API, while
enlightened partitions rely on paravirtualized devices and hypercalls to enable better
performance. Instead of using QEMU for device emulation, this functionality is
included in the VM Worker Process (VMWP). Each running child partition has a
worker process assigned, which is heavily restricted using the Windows permission
model[48]. The split driver model of Xen for paravirtualized devices is also used by
Hyper-V: The backend component is called Virtualization Service Provider (VSP) and
the frontend part is the Virtualization Service Client (VSC).

Communication between two partitions occurs with a communication mechanism
called VMBus and guest physical address descriptor lists (GPADL) used for data transfer.
The VMBus interface implements a ring buffer similar to the I/O rings used by Xen.
Large data transfers are implemented by mapping the guest pages into the address
space of the root partition.

In summary, the Hyper-V architecture is more or less identical with the one used
by Xen. Fully paravirtualized domains are not available, but other than that each
Xen component has a corresponding replacement in Hyper-V. Consequently, the
same security properties that were described in the last section also hold true for
Hyper-V.

2.5.3 KVM
KVM, which stands for Kernel-based Virtual Machine, is an open-source hypervisor
for Linux systems on the x86 architecture[22]. KVM requires support for hardware-
assisted virtualization and supports both the Intel VT and AMD SVM extensions. In
comparison to the textbook design of Xen and Hyper-V, KVM is deeply integrated into
the Linux kernel leading to a more unconventional architecture as visualized in Figure
2.6. It consists of a Linux kernel module (kvm.ko) that adds virtualization capabilities
to a Linux system. While this deep integration with Linux makes the architecture
less clean than the previous two examples, it has a number of advantages[21]: First
of all, large parts of the kernel code can be reused to implement the hypervisor
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functionality. This includes scheduling, memory and power management. In addition,
communication involving a guest VM, the host VM, and the hypervisor only requires
a single full context switch, because host and hypervisor share a single address space.
This can give a better performance than the completely isolated address space of the
Xen and Hyper-V hypervisors.

KVM also depends on QEMU for device emulation, similar to Xen. However, the
integration between QEMU and KVM goes much further: The complete physical
address space of each guest is mapped into its corresponding QEMU process. This
makes KVM virtual machines look similar to a normal user space process and allows
for easy enforcement of memory limits and swapping[21].

Paravirtualized drivers are implemented on top of the virtio mechanism. Virtio
is designed to be a hypervisor independent standard for the implementation of
paravirtualized devices[46]. The virtio specification describes how device initializa-
tion, teardown and configuration of virtual devices are performed and defines the
virtqueue structure as the main way to transfer data between frontend and backend
components. Again, the virtqueue is implemented on top of shared memory. Because
the guest memory is mapped into the QEMU process, no special way of mapping
guest pages is required. Instead, the host can simply access the queue memory using
the mapping provided by the QEMU process.

While the exact implementation of the virtio mechanism and the general architecture
of KVM differ quite a bit from Xen and Hyper-V, the attack surface and security
impact of virtio backend components is identical to the one of the other presented
implementations.

2.5.4 Summary
In summary, all of the three presented hypervisors have support for paravirtualized
device drivers. All implementations operate with a split driver model, where a back-
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end component is running in the management system while a frontend component
is executing in the virtual machine. Most importantly, the communication between
these two components always involves shared memory pages, making them an apt
evaluation target for this thesis. The security boundary enabled by the backend
components is well known by the hypervisors’ developers. All three discussed imple-
mentations offer ways to restrict the privileges of backend components to reduce the
impact of a vulnerability: Hyper-V uses the Windows permission model to restrict the
worker process responsible for implementing user space backend drivers. KVM uses
SELinux for the same purpose and Xen has the ability to move the QEMU process
to a single purpose stub domain with restricted privileges. Still, for performance
reason many backend components are directly implemented in the kernel of the
management system, making full isolation impossible.
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3Analysis

Shared memory, meaning memory pages simultaneously accessible from two differ-
ent execution contexts, is a core mechanism used for local inter process communica-
tion. Data transfers over shared memory pages do not suffer from any significant
overhead. In addition, arbitrary complex data structures can be exchanged without
the need for serialization. In some cases, the two sides communicating over shared
memory have different privileges, making the interface a potential target for attacks.
Examples for this situation include the communication between user-space software
and the kernel, and sandbox implementations of modern web browsers like Google
Chrome [44].

This thesis concentrates on shared memory communication in the context of system
virtualization: As discussed in Section 2.5, all mainstream hypervisor use shared
memory for high performance inter-domain communication. Most prevalent use
cases for virtualization have high security requirements. In many cases, some of
the virtual machines running on a physical host have to be considered malicious.
This could be because non-trusted consumers operate them like in a public cloud
system, the VM is used for malware analysis or simply because the applications
running inside the virtual system have a large external attack surface. Of course, this
makes the inter-domain communication interface a trust boundary and a particularly
interesting attack surface to analyze.

The goal of this thesis is the identification and implementation of an approach for
efficient vulnerability discovery in shared memory interfaces with a special focus
on inter-domain communication. In the following sections, different approaches
to discover vulnerabilities in these interfaces are compared. Following this, the
requirements of the memory tracing based approach chosen for this thesis and its
suitability for finding different vulnerability types are discussed.

3.1 Security of Inter-domain Communication
The discussion of hypervisor architectures in Section 2.5 already introduced the
concept of inter-domain communication: Besides offering a way to communicate
directly with the hypervisor, all discussed solutions also have a way to enable direct
communication between different virtual machines. These mechanisms are used
for the implementation of paravirtualized devices. In contrast to the traditional
emulation approach discussed in the last chapter, paravirtualized devices require
the installation of special drivers in the virtual machine. However, they compensate
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for this by offering a bigger feature set and much higher performance. For example,
[27] demonstrates a bandwidth improvement of more than 50% when comparing a
paravirtualized virtio device to an emulated network device.

Management
Domain

Guest

User0Applications

Kernel

Frontend

Kernel

Shared Memory

User0Applications

Backend

Fig. 3.1: Paravirtualized device architecture. The implementation is split into two compo-
nents: A backend running in the management domain and a frontend running in
the guest.

Paravirtualized devices are implemented using two components as shown in Figure
3.1:

1. A backend driver in the management domain is responsible for translating
virtualized requests like disk writes or network packets to actual actions. In
some cases this can be a simple as forwarding a buffer to the real hardware
devices, in others the resulting logic might be completely implemented in
software. Backend drivers can run in both user and kernel space.

2. A frontend driver in the guest plays the role of a normal device device driver.
Instead of communicating with actual hardware, requests send to the driver
are instead relayed to the backend driver using a shared memory interface.

Of these two main components, the backend driver is the security critical one.
Vulnerabilities in the backend driver that can be triggered from the frontend can
allow a malicious virtual machine to influence the execution of the management
domain. Depending on the vulnerability and the design of the backend the impact
of such vulnerabilities can range from information leaks over denial of service to a
complete compromise of the management domain. As our discussion in Chapter 2.5
demonstrates, full access to the management domain is practically equivalent to a
full compromise of the hypervisor. Due to their low-level nature, backend drivers
are generally implemented in C or C++ making them prime targets for classic
vulnerabilities like buffer overflows, out-of-bounds accesses and integer overflows.
Examples for such vulnerabilities in backend drivers are CVE-2011-1750 [11], a
heap-based buffer overflow in the disk backend driver of KVM and CVE-2015-
2361 [12], a unspecified buffer overflow in the Hyper-V storage backend. Because
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the communication between the two components needs to be as fast as possible,
shared memory regions are used for data transfers. This means that in addition to
the classic issues highlighted above, bug classes that are specific to shared memory
communication such as double fetches, which were introduced in Section 2.2, have
to be kept in mind. However, no such vulnerabilities in paravirtualized devices were
published until now, which leads to the impression that the underlying inter-domain
interfaces were not heavily audited for this type of vulnerability before.

In summary, inter-domain communication opens a significant attack surface in
virtualized environments. From an attackers point of view, the backend driver is not
too different from a remote network daemon with the added risk of using shared
memory as communication medium. The next section discusses different approaches
that can be used to discover vulnerabilities in these interfaces, as well as their
advantages and disadvantages. The lack of any public research about double fetch
vulnerabilities in inter-domain communication makes them a focus of our thesis.

3.2 Approaches for Vulnerability Discovery
The standard approaches for discovering security vulnerabilities such as manual
source code review, static analysis and fuzzing are also applicable to inter-domain
communication. In this section the three most popular techniques are evaluated
and an alternative approach based on memory access tracing and pattern analysis
is presented. Besides evaluating their general advantages and limitations, their
suitability to discover double fetch vulnerabilities is a main decision criteria.

3.2.1 Source Code Review
The classic approach for finding vulnerabilities in software is manual source code
review. While a skilled auditor can often discover vulnerabilities that are very hard to
identify using other techniques, a completely manual approach suffers from several
downsides: In-depth source code review is a very time-consuming and slow process.
This makes it almost impossible to get full coverage of a large application without a
significant resource investment. In addition, software as complex as a virtualization
solution includes many different components of which only some have a relevant
attack surface. Without an advanced understanding of the overall architecture,
even identifying these relevant components can be a difficult process. For example,
backend drivers in Xen can be implemented as Linux kernel modules, as QEMU
extensions or as independent user-space applications.

Certain types of vulnerabilities are very hard to detect using source code analysis.
Wang et al.[47] demonstrate multiple examples of so called unstable code that
incorrectly depends on undefined behavior of the C language. Because the compiler
has a high amount of freedom in the presence of undefined behavior, seemingly valid
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security checks can disappear depending on the optimization level used. Without a
full understanding of the C language reference, such issues will be missed by most
security reviewers. As described in Section 2.2, double fetch vulnerabilities can be
introduced by compiler optimization hiding them from an auditor doing pure source
code based analysis. Finally, source code might not even be available to a security
researcher. Proprietary applications like Hyper-V are only available in binary form,
making source code review impossible in practice. While a manual security review
of the compiled application is possible in theory, the difficulty and time requirements
rise significantly in comparison to a source code review.

Keeping these downsides in mind, manual source review is not an ideal first step
to identify vulnerabilities in inter-domain communication. The large amount of
involved components makes it hard to identify the relevant attack surface manually
and some interesting vulnerability types, such as the ones described in [47], are very
hard to detect on a source code level. In particular, source code review does not
seem to be sufficient to detect double fetch vulnerabilities introduced by compiler
optimizations. Still, code review is often needed to gain a better understanding of a
vulnerability or to discover more complex vulnerabilities that cannot be triggered
by other approaches. The identification of interesting attack surfaces by automated
means followed by a complementary source code review seems to be a good approach.
The two most prevalent automated techniques are fuzzing and static analysis, which
are presented in the next sections.

3.2.2 Static Analysis

An alternative to manual code review is the use of static analysis algorithms. In
Principles of Program Analysis, the authors characterize program analysis as "static
[..] techniques for predicting safe and computable approximations to the set of
values or behaviors arising [..] at run-time" [31]. While mainly used by compilers for
performing safe optimizations of source code, the same techniques can also be used to
discover security vulnerabilities. In theory, static analysis can be performed on either
source code or the compiled binary. In practice, the information loss involved in the
compilation process and the complexity of binary code makes it hard to perform
analysis on large binaries without additional information sources like debugging
symbols [40]. Even if source code is available, static analysis of virtualization related
code is difficult in comparison to high-level user space applications: For example
even parsing the source code of relevant functions, which is a prerequisite for any
further analysis, is difficult due to the heavy use of compiler specific extensions or
inline assembly [5].

In comparison to a dynamic approach, static analysis can get a much higher code
coverage. Because no execution is required, code paths that only trigger under rare
circumstances can still be covered. However, even ignoring classic problems such
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as the state explosion issues[31], this complete coverage is only possible when all
involved components are identified correctly. If the user of the static analysis tool
does not know that a certain user space application is part of the attack surface, it
will not be analyzed leading to potential false negatives. When using source code
based static analysis, vulnerabilities that are introduced by compiler optimizations
can also not be discovered.

There are a number of examples for sophisticated and security oriented static analysis
tools targeting C software[5, 38]. However, they are either commercial products
that are not freely available[5], do not have any available implementation [38] or
are not well suited for large software stacks such as hypervisors [9]. In addition,
these solutions generally operate on source code, making them unusable for analysis
of proprietary software. The development of a static analysis framework specialized
for this thesis would require a significant implementation effort. Furthermore such a
tool needs a correct model of the language semantics, which is non-trivial for high
level C code and much more difficult when low level implementation details like
Intel VT are involved.

In summary, static analysis requires correct identification of the involved components
and significant implementation effort. Source code based static analysis is not usable
for proprietary target systems and can miss vulnerabilities created by compiler
optimizations such as double fetches. On the other hand, binary static analysis
is still an open research area without significant results for system security. For
these reasons, static analysis is not the best approach for this thesis, which makes
investigating techniques based on dynamic analysis a logical next step.

3.2.3 Fuzzing
Fuzzing can be defined as a

"highly automated testing technique that covers numerous boundary
cases using invalid data (from files, network protocols, API calls, and
other targets) as application input to better ensure the absence of ex-
ploitable vulnerabilities"[32].

The relative simplicity of fuzz testing, the availability of powerful fuzzing tools
like sulley [42] or the more recent american fuzzy lop(AFL) [2] and their surprising
efficiency in discovering software vulnerabilities make fuzzing by far the most pop-
ular automated vulnerability discovery technique. Fuzzers targeting webbrowsers,
javascript engines and multi-media files are responsible for a majority of publicly dis-
closed bugs in these types of software. Fuzzing is nowadays considered an important
part of the software development cycle by vendors such as Microsoft[2, 16].

Fuzzers can be separated into two main categories: Black-box fuzzers are not
interested in the inner-working of their target and just feed input until it misbehaves
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or crashs. In contrast, white-box fuzzer try to optimize their coverage of the tested
application using various techniques. SAGE[16], a white-box fuzzer developed
by Microsoft, uses symbolic execution based on a SMT solver to generate input
that triggers as many code paths as possible. Besides the differentiation between
black and white-box testing, the method used to generate inputs categorizes fuzzer.
Generative fuzzer generate samples based on a specification[32] that describes the
structure of valid inputs in a parseable way. The alternative is mutation based
fuzzing that works by manipulating a known set of good sample inputs. Both
approaches have their advantages, but the lower implementation effort leads to a
higher prevalence of mutation based fuzzing. Recently, AFL has shown the high
success rate of fuzzing by combining mutation based fuzzing guided by detailed
code coverage and has discovered a high number of critical vulnerabilities in a wide
range of popular software [2].

These results make it seem like fuzzing is well suited to the problem of discovering
vulnerabilities in inter-domain communication. However, there are several important
downsides:
Stateful interfaces. The communication between frontend and backend drivers

often requires correct initialization and notifications to occur. Without a full
understanding of these requirements, a fuzzer will not be able to generate
requests that are considered valid. While this problem can be bypassed by
making sure the fuzzer behaves like a valid frontend driver, this requires
development time for each analyzed interface.

Fragility. The targeted paravirtualized drivers play a critical role in the stability
of the virtual machine[26]. Simply sending invalid data to the backend will
lead to an invalid state and crash the virtual machine almost immediately.
Even worse, if such an invalid state involves the corruption of persistent data,
for example when fuzzing a virtualized hard disk, a simple reboot is not
sufficient to get back to a valid state. This means that some mechanism for fast
restoration of a VM state is a requirement.

Unsuitable for certain vulnerability types. Fuzzer are not the best tool to find
race condition vulnerabilities such as double fetches, which where introduced
in Section 2.2. To discover such an issue, the fuzzer has to generate multiple
suitable requests in a very constrained time-frame and actually trigger the race
condition. For short races, this is pretty much impossible.

In summary, fuzzing is a promising approach to vulnerability discovery, but does not
seem to be well suited to our objective.

3.2.4 Memory Access Tracing and Pattern Analysis
Memory access tracing is widely used for development, debugging and performance
evaluations[34]. In addition, full system traces including memory accesses as well
as executed instructions can be used to identify and analyze malicious software
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or exploits[13]. Memory access tracing as a technique to discover vulnerabilities
was first presented in [20]. As discussed in Section 2.2, the authors use the Bochs
CPU emulator to generate traces of all virtual memory addresses accessed by a
running virtual machine. They analyze these traces to identify potential double
fetch vulnerabilities. As the authors mention, this approach can be generalized to
identify other types of vulnerabilities by performing different analysis algorithms on
the collected data. A related but not identical approach is the use of execution traces
to aid in vulnerability discovery, using dynamic taint analysis or concolic execution
as described in [36].

We define Memory Access Tracing and Pattern Analysis as a two step technique
for discovering vulnerabilities: First, a detailed memory trace is collected during
execution of the target application or system. This trace is then processed by one
or more analysis algorithms to discover potential vulnerabilities, privileged code
working with attacker controlled data or other information that can indicate the
existence of a vulnerability. The types of data stored in a memory trace depends on
the requirements of the analysis algorithm and limitations introduced by the tracing
approach. A useful separation can be created by discerning between algorithms that
require access to the actual memory content and those that only need meta data
like the accessed address and the accessing instruction. The simplest example for
the second type of analysis is an algorithm that extracts all privileged instructions
accessing attacker influenced memory address and uses these information to identify
the overall attack surface of a complex environment. On the other hand, a trace that
contains memory contents could be used to identify address leaks from a privileged
to an unprivileged context or the direct use of user controlled pointers. Of course
only a small subset of potential vulnerabilities can be directly identified by using
pattern analysis. However, the other discussed approaches can profit from insights
generated, making the approach more generally useful.

We consider memory access tracing as a suitable approach for this thesis due to two
main reasons: A limited implementation effort and the effectiveness in discovering
double fetch vulnerabilities. In comparison to the development of a full static
analyzer for hypervisor communication, a memory tracing and analysis toolset only
requires a moderate implementation effort. Additionally, double fetch vulnerabilities
are very well suited for discovery by memory access tracing as demonstrated by [20].
A potential double fetch vulnerability can be detected by searching the trace log for
at least two memory fetches from the same address in a single context. In comparison,
the other vulnerability discovery techniques presented above are less suitable for this
vulnerability type: Manual source code analysis does not discover double fetches
introduced by compiler optimization, which is also the case for source code based
static analysis. As already discussed, fuzzing is not a reliable way to discover race
conditions which only leaves static analysis of binary code as a sufficient alternative.
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However, statically identifying all references to shared memory regions is non trivial,
making memory access tracing a simpler alternative.

In summary, memory access tracing followed by pattern analysis is the most practical
approach for discovering double fetch vulnerabilities in the course of this thesis. Still,
the goal to trace hypervisor communication adds a number of requirements that
need to be kept in mind. The next sections discuss these requirements in depth.

3.3 Requirements for Memory Access Tracing
In general there are plenty of methods we could use to generate memory traces. How-
ever, the use case of analyzing inter-domain communication has special requirements
that limit the set of suitable approaches, as discussed in the following:

Low-level Communication. A fundamental requirement to use memory access
tracing for our purpose is the ability to collect low level communication.
Inter-domain communication can involve kernel modules and user space ap-
plications in all participating domains. Furthermore, depending on the exact
implementation even hypervisor code running in root mode might operate on
the exchanged data. This makes approaches like METRIC[24] or PIN tools[23]
that are restricted to user space tracing unsuitable.

Versatility. The chosen approach should be usable to analyze different hypervisors.
This discards all approaches that require significant patches or modifications
to the target software. In particular the existence of source for the target
hypervisor should not be a requirement to allow for the analysis of software
such as Hyper-V or VMWare ESXi.

Scalability and Performance. While most hypervisors can be configured in a very
minimal configuration, the goal to find vulnerabilities with dynamic analysis
requires us to execute as much of the existing functionality as possible. This re-
quires that the system can continue to execute with a manageable performance
overhead, even when tracing is performed. In addition tracing should not be
limited to short time-frames or small data amounts to identify vulnerabilities
in time and memory intensive functionality. In general we consider every
approach that prevents normal interactive use of the system as unfit.

Configurable. For our use case, only a very small subset of memory accesses is
interesting. Every access that does not operate on a shared memory region can
be safely ignored. Approaches that allow to only trace accesses to a number of
configured memory traces are therefore preferable to an approach that forces
indiscriminate processing of all memory accesses

As discussed in the last section, the data collected during memory traces varies based
on the requirements of the later analysis step. However certain data is required for
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almost all useful analyses. In the following, we list the mandatory data points that
need to be collected for each memory access:

Address. The accessed physical memory address. Because different virtual ma-
chines will access the same memory address using different virtual addresses,
storing the physical address is required for correlation.

Type. The type of access: read, write or execute.

Instruction data. The instruction triggering the memory access. Full access to the
instruction bytes is preferable to the storage of only the instruction address,
because it allows a complete offline analysis without access to the system
memory or binaries.

Size. On x64 memory can accessed with different byte granularity. To correctly
identify overlapping accesses and the accessed data we need to store this
information in the trace.

Context. Information that describe which virtual machine and which component is
responsible for the access. This can be a VM name and a process identifier or a
more low level information such as the address of the page directory.

In addition to these required information, approaches that allow the collection of
the transferred data are especially interesting. While not required to discover double
fetch bugs, several other vulnerability types can be detected when memory data is
available. If the chosen approach is able to collect this data, an extension of the
developed tool to include such algorithms is feasible for the future.

3.4 Conclusion
This chapter evaluated different approaches to discover vulnerabilities in shared
memory interfaces in the context of inter-domain communication. Based upon the
discussion of hypervisor architectures presented in the last chapter, the suitability
of different analysis methods were compared. Besides having a realistic imple-
mentation effort a main decision criteria was the ability to discover double fetch
vulnerabilities, which were introduced in Section 2.2. For this reasons, memory
accessing tracing followed by pattern analysis was chosen as the approach used for
this thesis. Following this decision, the requirements for memory access tracing of
inter-domain communication were enumerated. This leads up to the next chapter,
where the overall design of our proposed solution is introduced.
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4Design

Based on the analysis performed in Chapter 3 we consider memory access trac-
ing the most promising approach for discovering vulnerabilities in inter-domain
communication. In this chapter the proposed design of our toolkit for performing
memory access tracing and vulnerability analysis on these communication interfaces
is presented. A particular emphasis is laid on the efficient discovery of double fetch
vulnerabilities.

In the next Section, two analysis algorithms that operate on memory access traces
are highlighted. Based upon their requirements and the general requirements for
tracing inter-domain communication presented in Section 3.3, different approaches
to full system memory tracing will be compared. This is followed by a description
of the proposed design of our memory tracing toolkit and an introduction into the
different components involved. The chapter finishes with a walkthrough of the
tracing, storage and analysis of a single memory access.

4.1 Analysis Algorithms
Analysis algorithms operate on a collected memory trace. They should not require
access to the running target system, which makes it possible to perform the analysis
even after the target system is shut down or reconfigured. The algorithms work
by iterating over the collected memory access traces and searching for interesting
patterns. When needed, additional data like instruction bytes can be passed as
input to supplement the analysis. The final output of an analysis algorithm is a
human readable representation of results or a machine readable output suitable for
processing by other tools.

To validate the approach chosen for this thesis, we propose two analysis algorithms:
attack surface and double fetch. The attack surface algorithm simply iterates through
all logged read accesses and maps them to the responsible process or kernel module.
The double fetch algorithm tries to identify double fetch vulnerabilities in privileged
components. The design of both algorithms is highlighted below.

4.1.1 Attack Surface
The core idea of this analysis is very simple. By identifying all code segments that
operate on shared memory regions, the attack surface can be mapped. For the
purpose of this thesis, we define attack surface as all code that operates on attacker
controlled input. One of the main insights of the vulnerability discovery discussion
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in Section 3.2 was the problem of identifying all privileged components that are
involved during execution of a virtualized system. While not all of these components
will directly operate on shared memory, every component that does is an interesting
target for further analysis.

On its own the output of the attack surface analysis does not indicate the existence
of vulnerabilities, but it can support other analysis steps such as manual source code
analysis. In addition, the results can be used to compare different tracing runs and
their code coverage, indicating ways to trigger as much backend code as possible.

4.1.2 Double Fetches

The double fetch algorithm works similar to the one presented in [20]: Two or more
read accesses to the same memory address, that are performed in a single privileged
execution context can indicate the existence of a double fetch vulnerability. While this
approach sounds simple, there are a two potential issues that must be addressed:
Overlapping reads and the definition of an execution context. Overlapping reads can
happen due to the different memory access sizes supported by the x64 architecture.
A 4-byte read from the address 0x1008 and a 8-byte read from the address 0x1004
would both access the bytes at 0x1008 to 0x100C. This means that both the accessed
address and the access size needs to be known to perform the double fetch analysis.
Otherwise, potential double fetches could be missed when only matching addresses
are taken into account, introducing false negatives.

Unprivileged
Domain

Privileged
Domain

Write to address 0x10

Shared
Memory

Send request #1

Read from address 0x10

Send response #1

Write to address 0x10

Send request

Read from address 0x10

Send response #2

Fig. 4.1: Double fetch: False positive. The reuse of a single shared memory address for
multiple requests can mislead a naive double fetch analysis.

A second difficulty is the definition of a single execution context. When backend and
frontend drivers reuse the same shared memory pages for more than one request,
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multiple accesses to the same address will happen sooner or later. However, they do
not necessarily indicate a double fetch vulnerability and instead can happen when
multiple frontend requests are handled by the same backend function. Figure 4.1
shows an example for such behavior. The two read accesses to the shared memory
address 0x10 are triggered by two unique requests and do not have anything to do
with each other, but they still access the same memory address triggering a false
positive by a naive approach.

The proposed algorithm only considers multiple read accesses when no memory
accesses by the unprivileged domain happen in between. This is related to the
methodology used by Bochspwn, where only reads that occur during the handling
of a single system call are correlated[20]. The described approach removes the
mentioned false positives but can theoretically introduce false negatives. An example
for this is shown in Figure 4.2: When scheduling stops the execution of the privileged
domain right between two read accesses, the unprivileged domain starts to run and
performs some kind of unrelated operation on the shared memory page. Because
the two read accesses to 0x10 do not seem to happen in a single execution context,
they would be missed. However, chances for this behavior are quite low. The risk

Privileged 
Domain Hypervisor

Read from address 0x10

Shared
Memory

Read from address 0x20

Run domain

Pause domain

Unprivileged
Domain

Run domain

Read from address 0x50

Pause domain

Read from address 0x10

Fig. 4.2: Double fetch: False negative. Scheduler interrupts can lead to context switches
that hide double fetch vulnerabilities from the proposed analysis algorithm.

of false negatives becomes acceptable when keeping in mind that the described
scheduling must happen every time a vulnerable function is executed. Because
tracing is done over longer periods of time, most relevant functions will be triggered
multiple times.

Not every discovered double fetch can be assumed to indicate a vulnerability. For
example, a function could be repeatedly checking for a mutex, fetch a non security
critical value multiple times or perform sufficient validation after every fetch. This
means manual analysis is still required. To facilitate this, the double fetch analysis
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should print all instructions accessing a memory address, as well as the involved
module or process names.

4.2 Approaches for Full System Memory Tracing
The requirement to be able to analyze low level communication, as discussed in
Section 3.3, limits the number of approaches suited to our objective. We need
the ability to trace memory accesses on all software layers running on the system.
Because modification to the target software were ruled out due to the goal of
supporting multiple targets, performing some kind of system virtualization is the
only way to intercept all memory accesses. In the following three, virtualization
approaches are compared: The Bochs x86 CPU emulator used in [20], QEMU used by
[13] and similar tools and a hypervisor based on hardware-assisted virtualization.

4.2.1 Bochs

Bochs[25] is a highly portable x86 emulator entirely implemented in software. While
most other emulators focus on offering the best performance possible, Bochs’ main
goal is portability. To support running on as many host architectures as possible, it
does not use any advanced hardware features or dynamic recompilation and instead
relies on a pure emulation based approach. This makes it possible to run Bochs even
on embedded devices with a low amount of available memory.

The Bochs developer take great care to make the emulation as exact as possible,
allowing the execution of many different operating systems, including Windows 8 in
32- and 64bit versions. In particular the CPU emulated by Bochs includes hardware
virtualization features as discussed in Section 2.3. This means hypervisors such
as Hyper-V or Xen can be executed inside a Bochs VM making it a possible target
platform for our research.

Tab. 4.1: Tracing requirements: Bochs

Requirement Bochs
Low-level Communication X
Versatility X
Scalability and Performance
Configurable

Bochs offer a feature rich instrumentation API, which is used by [20] to trace memory
accesses. The biggest downside of Bochs is its slow performance in comparison to
other approaches. The memory access instrumentation added in [20] further slows
down the emulation by a factor of 5. A main reason for this overhead is the fact
that every single memory access has to be analyzed by the add-on, because the
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instrumentation API does not allow the targeted interception of a small sub set of
memory accesses.

Table 4.1 summarizes the advantages and disadvantages of Bochs. Thanks to full
system emulation and the capability to emulate Intel VT instructions, Bochs fulfills
the first two requirements: Low-level communication can be traced and Bochs
supports the emulation of all relevant hypervisors. The slow performance in general
and the missing capability of targeted memory interception means the requirements
for Performance and Configurability are not satisfied. Still, Bochs seems to be a valid
choice if the low performance can be accepted.

4.2.2 QEMU
QEMU is a fast system emulator with support for multiple architectures including
x86, ARM and MIPS as emulation targets and host platforms[4]. When emulating
x64 code on a x64 host, QEMU can operate in two modes: Software emulation
using a dynamic binary translator called Tiny Code Generator (TCG) or by using
hardware-assisted virtualization with the help of the KVM [22] hypervisor.

TCG operates by dynamically translating blocks of instructions. Privileged instruc-
tions are rewritten to safe alternatives as discussed in Section 2.3.1: Privileged
instructions are translated into a number of unprivileged ones that operate on the
virtual machine state. Because this translation process happens in software, it is
possible to add arbitrary instrumentation code that gets executed whenever certain
types of instructions are executed. This can be used for memory tracing[34] or
execution traces[13] and makes QEMU in TCG mode a popular implementation
target for these kind of software. A downside inherent to TCG, is a lower speed
in comparison to native or hardware-assisted virtualization. Even though, TCG
is much faster than Bochs it still adds a significant overhead. This overhead gets
noticeably larger when tracing instrumentation is added as documented in [35] and
[13] While the instrumentation capabilities of QEMU are very powerful, they adds a
general overhead to each instrumented instruction. For example, an instrumentation
of memory accesses can not simply be disabled or enabled for specific memory
addresses but will be triggered for every memory access. Of course, this overhead
can be partially reduced by keeping the added instrumentation as fast as possible,
but this is not trivial.

More importantly, TCG is not suitable for the use case of this thesis due to missing
support for modern CPU features: Because of the rising prevalence of hardware
virtualization, most of the current development effort for the x64 platform is concen-
trating on QEMU in combination with KVM. This means that emulation support for
modern CPU features is limited in TCG. Initial experiments showed that QEMU/TCG
was not able to install a 64bit version of Windows Server 2012, required as a base
system for the Hyper-V hypervisor, and that a Xen hypervisor running as a TCG guest
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did crash when starting level 2 guests. These first results triggered the decision to
not rely on QEMU for this thesis. However, it is important to note that compatibility
improvements are regularly added to TCG, making it potentially more suitable in
future versions.

Tab. 4.2: Tracing requirements: QEMU

Requirement QEMU
Low-level Communication X
Versatility
Scalability and Performance X
Configurable

Table 4.2, shows the summarized advantages and disadvantages of QEMU in TCG
mode: Whole system emulation and the possibility to add instrumentation code
makes it possible to trace low level communication. In addition, the offered perfor-
mance is sufficient for the described use case. Still, missing support for modern CPU
features restricts the systems that can be emulated using TCG and the instrumenta-
tion code is executed for each memory access adding a general overhead that can
only be partially mitigated.

4.2.3 Hardware-Assisted Virtualization
The final virtualization approach that could be used for this thesis is hardware-
assisted virtualization. The core concepts of hardware-assisted virtualization were
introduced in Section 2.3: Processors supporting Intel VT add the possibility to run
virtual machines natively on the hardware in a special operation mode called non-
root mode. All unprivileged instructions execute at full speed, whereas privileged
operations trigger a VM exit, which can be handled by the hypervisor.

Because only certain privileged instructions trigger a VM exit, hardware-assisted
virtualization does not offer as much instrumentation possibilities as the previous two
approaches out of the box. Still, memory access tracing is possible using Extended
Page Tables (EPT): As described in Section 2.3.3, EPT adds a second layer used during
address translation. By restricting the permissions of specific memory pages using
EPT entries, each memory access to these pages triggers an EPT violation and a VM
exit. The VM exit is handled by the hypervisor which can log it, revert the page
permissions for a single instruction and continue execution.

In comparison to the other proposed approaches, this has one important advantage:
Memory interception can be enabled and disabled dynamically on a page granu-
larity. This means that all normal system operation can execute natively and only
instructions operating on traced memory regions suffer from an overhead due to the
EPT violation and corresponding VM exit. While this overhead is quite significant, it
only occurs when an application uses the shared memory region. No large passive
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overhead is introduced. This EPT based approach is also suitable for a lot of diverse
shared memory interfaces in different types of software. The only requirement is
the possibility to extract information about the shared memory pages using virtual
machine introspection or a software agent running inside the VM.

Tab. 4.3: Tracing requirements: Hardware-assisted virtualization

Requirement Hardware-Assisted
Low-level Communication X
Versatility X
Scalability and Performance X
Configurable X

Still, the use case of tracing inter-domain communication between virtual machines
requires support for nested virtualization. The idea of nested virtualization, running
a hypervisor inside another one, was presented in Section 2.3.4. Because sev-
eral major hypervisors include support for nested virtualization, hardware-assisted
virtualization fulfills all our proposed requirements as shown in Table 4.3

4.2.4 Comparison
As Table 4.4 shows, memory tracing based on hardware-assisted virtualization is
the only approach that fulfills all our requirements. In particular, it allows for
configurable tracing, which adds overhead only to accesses to the traced memory
accesses while not significantly slowing the rest of the system down. For these
reasons, hardware-assisted virtualization was chosen as the approach for this
thesis.

Tab. 4.4: Tracing requirements: Comparison

Requirement Bochs QEMU Hardware-Assisted
Low-level Communication X X X
Versatility X X
Scalability and Performance X X
Configurable X

4.3 Proposed Architecture
Figure 4.3 gives a high level overview about the proposed architecture. All involved
components are running on top of the level 0 (L0) hypervisor. The hypervisor
runs two virtual machines: A privileged management domain called dom0 and a
unprivileged domain running a nested hypervisor called L1. The L1 hypervisor is our
target system. Because we want to analyze inter-domain communication, the level
1 hypervisor needs to host at least two L2 virtual machines: An unprivileged domU
running frontend drivers for paravirtualized devices and a privileged dom0 running
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Fig. 4.3: The proposed architecture. All components run in the L1 management domain and
communicate with the target system using APIs provided by the L0 hypervisor.

the corresponding backend drivers. The shared memory communication between
these drivers can be seen in Figure 4.3 and is the one that needs to be traced and
analyzed by our toolkit. The L1 dom0 hosts all self developed parts of our toolkit.
The trace collector is the core component of the proposed design. It needs to interact
with the virtual machine introspection (VMI) library to extract information about
shared memory ranges from the L1 hypervisor and to enable and disable memory
intercepts using EPT permissions of the L0 hypervisor.

When an EPT violation is triggered, the trace collector is notified. It extracts all
needed access information and stores them into the trace storage. After tracing is
finished, the analysis client can operate on the storage to identify potential malicious
traces. In theory, the analysis client does not require access to the VMI component,
allowing for a complete offline analysis when the trace stores all needed information.
Intercepted EPT violations are completely hidden from the L1 hypervisor. The virtual
machine is paused while a memory access is traced.

Due to the low overhead of hardware-assisted virtualization, even for nested envi-
ronments, all operations that do not involve the traced memory regions can operate
at almost native speed. However, traced memory accesses are very expensive in com-
parison because they will trigger a complete VM exit and multiple context switches.
This means the presented architecture is only feasible when the percentage of shared
memory accesses is a small part of the overall system activity. Of course, this is the
case for inter-domain communication but it makes this approach less fit for tracing
all memory accesses of a single process or even of the whole system.
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An important detail of the architecture is the fact that the level 1 hypervisor only
has a single (virtual) CPU. This might seem surprising due to the fact that Section
2.2 considers multiple cores as a requirement for reliable double fetch exploitation.
However, simply identifying these vulnerabilities does not require a multi core system
and by restricting the analysis target to a single core the implementation effort is
significantly reduced. Otherwise, EPT permissions and access tracing would need
to be managed on a per CPU basis while keeping the possibility of rescheduling to
different CPU cores in mind.

In the following sections, the requirements for the different involved components
will be discussed in more detail.

4.3.1 Hypervisor
For reasons described in Section 4.2, we choose to implement our toolkit on top of a
Intel VT based hypervisor. As discussed in the last section, the hypervisor needs to
be able to virtualize a second hypervisor, a concept called nested virtualization, as
described in Section 2.3.4. Nested virtualization is not in widespread production use
and is not supported by all major hypervisors.

The ability to run the L1 hypervisor is not sufficient for our use case, the proposed
design requires at least two hypervisor APIs usable by the VMI library: Read access
to the memory space and CPU state of the L1 hypervisor, and a way to manipulate its
EPT permissions. Furthermore, EPT violations triggered by our modifications should
be passed to VMI layer so they can be analyzed and logged by the trace collector.
When these APIs are available, no direct modifications to the hypervisor are required.
This indicates that even a proprietary hypervisor might be usable in the proposed
architecture, as long as nested virtualization is supported and sufficient APIs are
available.

4.3.2 Virtual Machine Introspection
The concept of VMI was introduced in Section 2.4. When looking at the requirements
of the proposed analysis algorithms and the overall architecture, the requirements
for the used VMI library are quite limited:

Memory Access. Read access to the VM memory is required to extract information
about the memory pages used for inter-domain communication. Depending on
the exact architecture of the target system, the easiest way to find this data
might differ but it generally involves identifying and traversing data structures
kept in the memory space of the L1 hypervisor or the involved L2 guests.
Furthermore, our proposed algorithms profit from access to the instruction
bytes because it allows better insight into which operation triggered the EPT
violation. While non the proposed algorithms require memory access traces
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that include the written content, such a feature would also be implemented on
top of this functionality when needed.

CPU State. Read access to the CPU state at the point of the EPT violation. Most
relevant is the address of the page table hierarchy base address, which specifies
the used page tables, and the current instruction pointer that will point to the
instruction accessing the shared memory pages.

Address Translation. As documented in Section 2.3.3, EPT violations are based
on guest physical addresses. This means that translation between virtual
addresses and physical addresses needs to be performed during trace collection
and initialization.

Breakpoints. Breaking on target specific management functions allows an efficient
handling of newly added or removed shared memory pages. While, breakpoints
can be implemented directly using EPT permissions, direct support by the VMI
library is preferable.

All other required features can be implemented on top of these features and the
aforementioned hypervisor API for manipulating EPT permissions and handling
violations. For example the memory access size, which is needed by the proposed
double fetch algorithm, can be extracted out of the disassembled instruction bytes.
On the other hand, the name or id of the domain responsible for the memory access
can be learned by extracting it out of hypervisor specific data structures stored in
memory. While a standalone hypervisor API for manipulation of EPT permissions
would be sufficient, a VMI library that already includes EPT events is more convenient
because it reduces the coupling to a certain hypervisor version and simplifies the
implementation effort.

4.3.3 Trace Collector

The trace collector is the core component of the proposed architecture. It is running
as a standard user space process in the management domain of the L0 hypervisor.
The collector uses the VMI library to extract information about the shared memory
pages out of the L1 hypervisor guests and subsequently removes read and write
permissions from these pages using the VMI library or a direct API offered by the
hypervisor. When an EPT violation is triggered, the trace collector is responsible for
extracting all required state information out of the target VM and storing this data
in the trace storage. While the trace collection functionality could be completely
implemented in the hypervisor itself, but this would increase the implementation
effort significantly because bugs would directly lead to a crash of the L0 hypervisor.
In addition, user space libraries can not be directly used from the hypervisor context.
By using an API from the privileged dom0, all needed functionality can instead be
implemented as standard user space utilities.
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The trace collector is designed to be as general as possible. The only target specific
component that is required by the trace collector is the code that is responsible for
identifying the physical addresses of shared memory pages. As we will discuss in
the next chapter, the difficulty of this step differs strongly depending on the target
architecture. A related functionality is the detection algorithm to decide if a memory
access was performed by the privileged level 2 domain or by the unprivileged one.
Because only vulnerabilities in the backend driver are a relevant security risk, only
memory accesses performed by the backend should be analyzed. This means that
some mechanism needs to identify which level 2 VM performed a memory access
by analyzing the state of the virtual CPU at the time of the EPT violation. Because
most VMI libraries were not developed with the use case of nested virtualization in
mind and hypervisors don’t expose the state of the simulated VT environment as
an API, this is not trivial and requires target specific code. The information which
domain performed a memory access, can either be stored inside the memory trace
or all memory accesses by unprivileged domains are simply dropped.

The final task of the trace collector is the relaunch of the instruction that triggered
the EPT violation. Simply restarting it without relaxing the EPT permissions would
result in an endless loop of violations, so single stepping can be used to enable access
to the memory address for only a single instruction. This ensures no accesses are
missed.

4.3.4 Trace Storage
In Bochspwn[20] all traced accesses are stored in a text file for later analysis.
However, the authors note that this simple manner requires large amount of disk
space and is limited by the IO performance of the disk backend. In order to minimize
the additional overhead introduced by storage, a partially memory backed storage
seems preferable. Additional actions like compression and persistent storage should
be performed independently and in a different thread than the actual trace entry,
so the trace collector can resume the virtual machine as fast as possible, without
waiting for these post processing steps to finish.

The tracing storage is the only component to be used by the analysis algorithms. This
means it has to store all data required by the algorithms and it should offer a easy
to consume library to iterate through trace entries. Furthermore, support to store
different data types should be available. In addition to normal trace entries, infor-
mation about the responsible instruction has to be stored. Storing this information
inside the actual trace entries is not optimal, because a single instruction potentially
triggers a large number of memory access making this approach inefficient.

An advantage of the proposed architecture is the low coupling of the different
components. In particular, the analysis clients only operate with the tracing storage
making them completely independent from the trace collector and the VMI interface.
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As long as the trace storage offers a standardized API, other methods for memory
access tracing can be used with the analysis clients.

4.4 Walkthrough

This section describes an exemplary tracing session with the proposed design, starting
with the initial page table parsing over the interception of EPT violations to the final
analysis.

1. The target L1 hypervisor is started, which in turn starts execution of the L2
management domain (dom0). The L2 domU is still stopped and no inter-domain
communication can occur.

2. The trace collector is started and uses the VMI interface to identify memory
pages that are shared between the L2 dom0 and other partitions. Because no
guest domains are running this will not return any results. The trace collector
sets breakpoints in the target hypervisor to get notified when new shared pages
are configured.

3. The L2 domU is started. When the operating system boots, para-virtualized
devices are initialized. This triggers initial hand shakes between domU and
dom0 and the configuration of shared memory pages.

4. The breakpoints registered in step 2 are triggered and the trace collector
extracts the (L1) physical addresses of the shared pages. It removes read and
write access from these pages to trigger an EPT violation whenever they are
used.

5. System activity in the L2 domU triggers the use of the para-virtualized device.
Depending on the device type this might happen automatically or manually,
for example by triggering a network connection.

6. The frontend driver in domU and the backend driver in dom0 try to exchange
data via shared memory. When the virtual CPU tries to access one of the
memory pages an EPT violation is raised and control is transferred to the L0
hypervisor. The L1 hypervisor and all its virtual machines are stopped.

7. The L0 hypervisor notifies the trace collector of the EPT violation. The trace
collector uses the VMI library to extract all required information out of the
paused VM and stores a trace entry in the tracing storage.

8. By relaxing the EPT permissions, single-stepping over the triggering instruction
and removing the permission again, the trace collector makes sure the target
system is not triggering the same EPT violation over and over again. Instead
execution can continue normally with the next instruction until the next
memory access occurs.
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9. Steps 5. till 8. repeat until the target system shuts down or the trace collector
is closed manually. Step 4 is triggered whenever a new shared memory page is
configured.

10. In the final step an analysis algorithm is started to iterate over the trace storage.
The output can be used for manual analysis or as an input into other tools.

An important advantage of this design is that step 10 can be executed at any time
tracing was finished. As long as the trace storage is not deleted, improvements in
the analysis algorithms can be directly tested on already collected data.

4.5 Limitations
There are several limitations that need to be kept in mind when comparing the
presented approach to different designs and when evaluating the discovered poten-
tial vulnerabilities. These limitations and their impact on the analysis results are
discussed in the following.

Tracing overhead. Every access to a monitored memory region triggers at least
2 VM exits, page table modifications, and multiple context switches. The
overhead for active tracing is therefore quite large. However, in comparison to
regular system activity, inter-domain communication occurs only rarely. Due
to that, a high overhead for active tracing is preferable in contrast to a lower
permanent overhead introduced by other approaches like software emulation.
This makes sense for the presented use case, but might not be the right choice
for analyzing shared memory interfaces with a high number of accesses. For
example, analyzing kernel-user space communication can be ruled out due
to the extremely high number of memory pages involved and the fast rate of
context switches.

Single core virtualization. Introducing support for more than one core in the
target system would significantly increase the implementation effort as high-
lighted in Section 4.3. In theory, this can lead to problems when vulnerable
code is only executed on multi core systems. For example, a frontend driver
could optimize for the number of available cores by choosing a different com-
munication method. Still, we consider the risk for missing vulnerabilities due
to this behavior to be acceptable in comparison to the greater implementation
effort needed for supporting multiple cores.

Target coverage. Dynamic analysis in general is limited to the code that is actually
executed by the target system. If a certain functionality is not used during
tracing, no vulnerabilities in it will be discovered. Code coverage can be
improved by triggering as much system activity as possible during tracing.
However, this is not a bullet proof approach, because some code might only be
triggered in special configurations or under unlikely circumstances
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Reliance on nested virtualization support. The proposed design relies on work-
ing support for nested virtualization. None of the presented hypervisors
considers this feature production ready, and bugs and instabilities have to be
excepted. While this might have an negative impact on the results of this
thesis, better support for nested virtualization will reduce the impact of this
limitation in the near future.

4.6 Conclusion
The design of our memory access tracing toolkit is built on top of hardware-assisted
virtualization and the use of Intel EPT to dynamically modify page table permissions.
By running a target hypervisor as a nested virtual machine and removing access
permissions from memory pages used for inter-domain communication, all accesses
to these pages can be logged. We use virtual machine introspection library to access
VM memory, identify the shared pages and to extract the state of the virtual CPU
whenever a memory access is detected. In order to keep the active overhead as low
as possible and to allow offline analysis, collected traces are stored in a dedicated
trace storage. The two proposed analysis algorithms operate directly on this storage,
leading to a largely decoupled architecture that allows for the replacement of most
components.
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5Implementation

In this chapter the implementation of the architecture proposed in Chapter 4 is
presented. The Xen[3] hypervisor was chosen as the hosting hypervisor using the
libvmi[33] library as the interface between hypervisor and trace collector. The
Simutrace[34] tracing framework is used as a trace storage, which only required
the trace collector and analysis algorithms to be developed from scratch. All used
third party components offer a C API, giving us as wide range of possibilities for
our implementation language. Due to the ease of integration and high performance
requirements C++ was chosen as implementation language.

Thanks to the decoupled design, large parts of the implementation are completely
target independent. As discussed in Section 4.3.3, only the trace collector requires
target specific code. For this thesis, support for three hypervisors was implemented:
Xen, Hyper-V and KVM, with Xen having the most mature implementation. In all
cases, the inter-domain communication mechanisms used by paravirtualized devices,
which were highlighted in depth in Section 2.5, were targeted. The following
section concentrate on the code paths that are target independent, the target specific
functionality is documented separately at the end of the chapter.

5.1 Components
The proposed design was split into five main components. Three of those could be
implemented by using off-the-shelf components: (a) The L0 hypervisor responsi-
ble for hosting the management domain, the target system and offering APIs for
introspection and EPT manipulation. (b) The VMI library that sits between the trace
collector and hypervisor and (c) the trace storage for persistent and efficient storage
of memory traces.

5.1.1 Hypervisor

The Xen hypervisor was chosen as L0 hypervisor for our implementation. For an
introduction to the general architecture of the Xen hypervisor see Section 2.5.1.
Xen is one of the two mainstream open source hypervisors (the other one being
KVM). While being open-source is not a requirement in itself, none of the available
commercial hypervisors offers an API that fulfills the requirements detailed in Section
4.3.1. In comparison to KVM, Xen offers a more feature rich API out of the box,
including support for EPT based memory interception using the memaccess API. All
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APIs can be used from user space applications running in the management domain
dom0 removing the need to perform direct modifications to hypervisor code.

Nested virtualization is considered to be a tech preview feature not suitable for
production use but supported for most configurations. The official Xen wiki[30] lists
Xen itself, KVM, Vmware and Hyper-V as working targets for nested virtualization.
While we were not able to replicate all of these results during implementation, the
main evaluation requirement of running Xen on Xen is well supported.

Most of the development was performed on Xen version 4.5, the current stable
version at the time of writing. However, API calls to Xen are wrapped using the
libvmi library for introspection, which offers a stable API, supporting all recent Xen
versions and hides Xen API changes from our toolkit. In addition, the libvmi interface
is less complex than the direct Xen API, reducing the implementation effort even
further.

5.1.2 Virtual Machine Introspection

libvmi is a open source C library for virtual machine introspection (VMI)[33]. It
offers a mostly hypervisor independent API to read and write memory of a virtual
machine, intercept hardware events and accessing the virtual CPU state. In addition,
utility functions that provide easy access to semantic information, such as the list
of running processes or a map from CR3 registers to process IDs, are available for
Linux and Windows guest systems. libvmi supports the Xen and KVM hypervisors
and can also operate on physical memory dumps.

1 addr_t read_ptr(vmi_instance_t vmi, addr_t dtb, addr_t va) {
2 auto phys_address = vmi_pagetable_lookup(vmi, dtb, va);
3 addr_t value;
4

5 if (vmi_read_64_pa(vmi, phys_address, &value) != VMI_SUCCESS)
6 { /*... */ }
7 return value;
8 }

Listing 3: Using libvmi to extract a pointer out of VM memory.

Listing 3 shows an example of using the libvmi API to extract an 8byte pointer
value out of the VM memory: The read_ptr function first translates the virtual
address val into a physical address using the vmi_pagetable_lookup function and
the address of the used page table structure dtb. The vmi_read_64_pa function is
then used to extract the bytes out of the VM memory and store them in the returned
variable value. The interesting aspect of this code is that it is entirely implemented
in standard user-space C++ code and works with all hypervisors that are supported
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by libvmi. This is more preferable than the potential alternative of adding code to
the hypervisor itself or interacting with a number of potentially unstable APIs.

The most useful feature of libvmi is its support for Xen’s memaccess API. This feature
is part of a more general functionality offered by libvmi, its event API. This API can be
used to trap on certain register writes, as well as on memory accesses. While trapping
on registers is limited to those where a write access triggers an VM exit, memory
traps use the Xen memaccess API, which itself is based on EPT permissions.

5.1.3 Trace Storage
Simutrace[34] is used for the storage and retrieval of memory access traces. It is
based on a client server architecture that allows for fast and asynchronous writing of
trace entries. The client component, which is running as part of the trace collector
communicates with the server component using shared memory. The server is
responsible for compression and storage of the collected data, reducing the work
that needs to be performed by the trace collector.

Simutrace was designed for ease-of-use and has a simple C API that can be easily
integrated into both the trace collector and analysis clients. In particular, reading
and writing of trace entries uses an almost identical API. A core concept of Simutrace
are streams. Each stream consists of a number of ordered entries of a single type
and streams can be created by the client whenever required. The separation of
semantically different trace entries into streams, allows for a number of useful
optimizations[34]: Because all entries in a single stream have the same size, unique
entries can be directly addressed by offset. Additionally, custom compressions
methods optimized for specific trace types can be implemented. This feature helps
our implementation to reduce the space requirements of long running traces.

5.2 Trace Collector
The trace collector is responsible for the identification of shared memory pages, the
tracing of memory accesses and the subsequent data extraction and communication
with the trace storage. It uses libvmi to communicate with the hypervisor and stores
the traces using Simutrace.

5.2.1 Identification of Shared Memory Pages
The first task of the trace collector is the identification of shared memory pages
used for inter-domain communication. This task could be done completely target
independent by walking through the extended page tables of the target system and
searching for physical pages that are mapped by different guests. However, this
approach is hard to implement correctly and very error prone. For example, as
discussed in Section 2.5.3, the KVM hypervisor maps the whole memory of each
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of its guest into the address space of the corresponding QEMU process. Simply
iterating over the page tables would indicate that all pages of the guest are shared
with the host system. Of course, almost none of these pages are ever used for shared
memory communication making the general approach unsuitable in the case of KVM.
Furthermore, without target specific code all updates to the EPT tables managed
by the L1 hypervisor need to be intercepted to make sure they do not create a new
shared memory mapping. This would create an large overhead, not acceptable for
our use case. For these reasons, our implementation requires target specific code to
identify the set shared pages and to intercept all updates to this set.

Regardless of the target hypervisor, the result of this step is an updated set of guest
physical pages of the L1 hypervisor memory. Every one of these pages is shared
between two virtual machines, which for our case normally means it is shared
between the management domain and an unprivileged guest. It is important to
note, that these characteristics are not important for the rest of the trace collector
implementation. As long as the page set is valid and updated regularly, tracing could
also be performed on a page that is shared between two user space processes or
used for kernel communication.

5.2.2 Tracing of Memory Accesses

1 event_ptr new_memevent(State *s, addr_t paddr,
2 vmi_memevent_granularity_t granularity,
3 vmi_mem_access_t access,
4 event_callback_t callback) {
5 auto event = new vmi_event_t();
6 event->type = VMI_EVENT_MEMORY;
7 event->mem_event.physical_address = paddr;
8 event->mem_event.npages = 1;
9 event->mem_event.granularity = granularity;

10 event->mem_event.in_access = access;
11 event->callback = callback;
12

13 if (vmi_register_event(s->vmi, event) != VMI_SUCCESS)
14 { /*... */ }
15

16 return event;
17 }

Listing 4: Creating a memory event in libvmi.

The tracing of memory accesses is implemented on top of the event API offered by
libvmi. Listing 4 demonstrates how this API can be used to intercept accesses to VM
memory. The event variable specifies the details about the registered event. This
includes the physical memory address that should be trapped, whether the whole
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page or only the exact address should trigger an interception and which types of
access should be handled. The callback function will be called whenever the event
is triggered. After event is initialized, it is registered using the vmi_register_event
function.

Even though the libvmi API hides a lot of the underlying complexity from the
developer, the underlying implementation uses the EPT based approach outlined in
the last chapter. The vmi_register_event call triggers the use of Xen’s memaccess
API to modify the EPT permissions of the physical page corresponding to paddr.
When an EPT violation on this page is triggered, Xen notifies libvmi, which passes
execution to the specified callback function. The generation and storing of a trace
entry is then performed inside this callback function.

extract domain id

extract RIP, CR3 create empty trace 
entry

privileged domain?yes

fetch from cachedisassemble 
instruction

new instruction?

no

yes no

add to cache / 
instruction stream create trace entry

add to tracing streamsingle step and 
continue

Fig. 5.1: Decision tree for the callback handler function.

The trace collector uses this API by registering a memory event that triggers on
read and write accesses for every shared memory page. All these events call back
to the xen_trace_event function when triggered. Listing 5.1 shows the layout of
this callback function. When the callback is executed, the target VM is paused. This
makes it possible to access the complete state of the virtual machine, which is used
to extract the id of the currently active L2 guest. By knowing the domain id, the
code can distinguish between memory accesses performed by the privileged backend
and the ones done by the frontend running in an unprivileged domain. When the
unprivileged domain performs the memory access, no further data extraction is
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performed. Instead, a fake trace entry with all fields set to zero is generated. These
fake entries can be later used by the analysis algorithms to detect context switches
between unprivileged and privileged domains.

If the privileged domain did perform the memory access, the trace collector needs
to collect all information used by the analysis algorithms. The accessed physical
memory address and the type of memory access is communicated by the triggered
EPT violation and automatically provided to the callback function. In addition,
the virtual RIP and CR3 register values are extracted using libvmi. Using these
information, the bytes of the accessing instruction can be fetched from VM memory.
As discussed in Section 4.1.2, it is important to store the size of a memory access
to perform a precise double fetch analysis. This information is not included in an
EPT violation and needs to be extracted out of the instruction properties. To do
this, the Capstone[7] disassembly library is used. Capstone is a multi-architecture
disassembly library with a powerful and easy to use C API. By using Capstone to
disassemble the instruction, its operand sizes and therefore the size of the memory
access can be learned easily. Fetching and disassembling instruction is relatively
expensive in comparison to the other performed actions. Initial evaluation showed
that almost all memory accesses are performed by only a small set of instructions,
with an even smaller subset of instructions accessing shared memory hundred of
times during even short traces. To reduce the overhead of superfluous fetching and
disassembling, a caching layer was introduced. In addition, the instruction bytes
itself are not stored directly in the trace entries but are instead stored in a specialized
instruction stream, which only uses a single entry for each unique instruction.

After all necessary data is fetched from the caching layer or the instruction itself, a
trace entry is created, which is then written to a dedicated tracing stream provided by
Simutrace. If the callback function would simply return after this, without modifying
the EPT permissions, the target VM would be stuck in an endless loop triggering an
EPT violation over and over again. Instead, the EPT permissions responsible for the
violation are relaxed temporarily and a single step is triggered in the target VM. After
this, EPT permissions are restricted again. This approach ensures that no memory
accesses are missed.

5.2.3 Trace Entries

As discussed in the last section, the presented implementation uses two separate
Simutrace streams to store memory access traces and instruction data. The first
stream is responsible for storing the actual memory access trace. To do this, it uses
the data type visualized in Figure 5.2, which is provided by Simutrace. By using this
pre-defined data type, SimuTrace is able to use an optimized compression algorithm
specialized on memory traces. This leads to an improvement in the compression
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ratio and reduced space requirements during long tracing sessions, as well as a faster
compression speed. The following data fields are stored in the trace:

tag

instruction pointer

memory address

data + size

cycle count f

32 bytes

Fig. 5.2: Layout of a memory trace entry.

Cycle count. A 48 bit steadily increasing time value. This can be used to correlate
events stored in different streams, but this is currently not required by the
implementation. Therefore, the trace collector just stores an incrementing
value in this field.

Full size flag. A 1 bit flag to indicate whether the memory access size is 64bit. This
is required for correct parsing of the combined data/size field at the end of the
entry.

Tag. A 15 bit value for storing arbitrary data which is not interpreted by Simutrace.
The trace collector uses this field to store whether a memory access was a read
or write.

Instruction pointer. The address of the instruction that performed the memory
access.

Memory Address. The accessed virtual memory address.

Data and Size. Simutrace uses a single 64bit field for storing the access size as well
as optional memory contents. A 64bit access can be indicated by using the full
size flag. Smaller accesses use the last 32bits of the field to encode the access
size and the first 32bits to store the data content.

Because the implemented analysis algorithms do not require access to memory
contents, the trace collector simply zeroes the data field of every trace entry. While
this makes the entry type more complex than needed, it allows the simple addition
of memory content when required. If a new analysis algorithm would require access
to the memory content, all existing algorithms could still be used without being
rewritten to support a new format. Furthermore, compression makes the storage
cost of the addition field negligible.

In addition to this memory access stream, a second stream is used to store semantic
information about the instructions that triggered a memory access. Because a single
instruction can be executed hundred of times during a single tracing session, there
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offset

instruction bytes

module_name

rip cr3

96 bytes

Fig. 5.3: Layout of an instruction trace entry.

is no one to one mapping between instructions and memory accesses. This means
storing the instruction data inside the previously discussed entry type would be
extremely inefficient. This second stream stores entries of the format shown in Figure
5.3. Besides including the virtual RIP and CR3 registers, the raw instruction bytes
are stored. In addition, the human readable name of the kernel driver containing
the instruction, and the instruction offset relative to the driver start address is added
when possible. This data is later used by the analysis algorithms to ease manual
analysis.

Even though the described usage of Simutrace is quite simple, it is sufficient for
our normal use case of tracing the communications between two virtual machines.
In theory, dedicated streams could be used for different shared memory pages or
paravirtualized devices. However, this added complexity does not have any clear
benefits as long as the size of the main stream does not get too large. On the other
hand, adding more streams to store more semantic information might be necessary
when implementing additional analysis algorithms. Due to the design of Simutrace
this is easily possible, without breaking backwards compatibility.

5.2.4 Attaching and Detaching
An optional feature that proved to be very useful during normal usage is the ability
to attach and detach the trace collector at arbitrary times. This allows to only
trace memory access during a certain time frame and to update the trace collector
without restarting the target virtual machine. Having the ability to safely detach the
trace collector is also a useful feature to handle exceptions: A goal of the collector
implementation was to not crash the target hypervisor because of premature exits of
the trace collector.

To enable this, one important assumption must always hold: All registered memory
events need to be deregistered, before the trace collector process exits. Otherwise, a
memory access to one of the traced memory pages will trigger a hypervisor intercept,
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which however is not able to pass the event further to the trace collector, leading to
a hang of the target system. To ensure correct behavior, the trace collector always
keeps a list of all currently active memory events in a global state object. The
destructor of this object is responsible for deregistering all active events. Enabling
interactive attaching and detaching only requires capturing user invoked signals send
to the process using the sigaction function and letting them trigger a controlled exit.
This will automatically call the state destructor, letting the target virtual machine
run unrestricted.

5.3 Analysis Algorithms
As previously discussed in Section 4.1, two algorithms were implemented for this
thesis: Attack surface and double fetch analysis. Both algorithms only communicate
with Simutrace, allowing for full offline analysis even if the target system is not
running anymore. This also means that the algorithms are independent of the exact
implementation of the trace collector. Switching from an EPT based trace collector
to a different approach based on software emulation would not require a rewrite of
the analysis components, as long as the same data is collected.

Both implemented analysis algorithms were developed as standalone C++11 tools.
They have no external dependencies besides the Simutrace library and communicate
with Simutrace using a small wrapper around the default API. The wrapper provides
a type-safe lambda based interface to iterate over streams and entries while not
performing any superfluous copies.

5.3.1 Attack Surface
The attack surface algorithm is very simple. We consider every function in a backend
driver that performs a read access to a shared memory region to be part of the attack
surface. This is because all code that operates on attacker controlled data can have
vulnerabilities and should be analyzed further.

To identify all instructions working on shared memory, the algorithm iterates of the
memory access stream until it finds a read access. Using the stored RIP instruction
pointer, the corresponding instruction is fetched out of the instruction_entry
stream and stored in the result set. This process continues until the whole stream is
enumerated.

The analysis tool supports two output modes: The first mode lists all discovered
instructions in a human readable output format. The second mode outputs in a
machine readable format that can be easily imported into other tools. A proof-of-
concept script was developed to import this output into a database file used by
the IDA[17] disassembler, allowing for efficient manual analysis of closed source
backend components.
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5.3.2 Double Fetches
The main analysis algorithm implemented for this thesis identifies double fetch
vulnerabilities by searching for potentially vulnerable access patterns. An overview
about the design of this analysis was already given in Section 4.1.2. Double fetches
can be discovered by finding multiple fetches from an address in a privileged single
execution context. Context switches, meaning a switch between the privileged and
unprivileged domain, are detected by looking for memory access performed by the
unprivileged domain. As described in the last section, when the trace collector sees
a memory access by the unprivileged domain an empty trace entry will be submitted.
The double fetch algorithm uses these artificial events to split the memory trace into
chunks that correspond to a single execution context. The algorithm can be further
configured in two ways:

Overlapping memory accesses. Depending on a configuration flag, the algorithm
identifies only multiple accesses to a memory address with an identical start
address, or also considers overlapping accesses with potentially different sizes
to be a sign for a double fetch vulnerability. Disallowing overlapping memory
accesses can be used to reduce the number of false positives, while at the same
time increasing the chance to miss a potential vulnerability. Only considering
accesses with the same start address reduces the noise level, because copy
operations that operate on blocks of data are filtered in most cases. Of course,
this setting raises the risk of false negatives.

Interweaved read and writes. Until now, our discussion of double fetch issues
mostly ignored the handling of privileged writes to the same address. Inter-
weaved reads and writes of a memory access often indicate a synchronization
primitive or a reuse of a memory area. There are two ways they can be handled:
Either they are ignored completely, or they reset the access count back to zero.
A reason for the second behavior is the fact that synchronization primitives,
such as mutexes, will be repeatedly read and written and might make the
analysis algorithm output more noisy. On the other hand, an application could
mistakenly use the shared memory region as temporary storage and removing
these accesses from the output can therefore lead to false negatives.

Figure 5.4 shows the code flow of the double fetch analysis in its most conservative
setting: Interweaved reads and writes are forbidden and only accesses with the same
starting address are considered as potential double fetches. The algorithm stores the
set of instruction pointers, that accessed a certain address, in a hash map which is
initialized to be empty. The code iterates over every trace entry and checks whether
it is an empty entry generated by an unprivileged memory access. Privileged accesses
are divided into reads and writes. A read triggers the addition of its instruction
pointer to the map entry of the accessed address. A write clears the map entry of the
address, as long as interweaved writes are forbidden. Otherwise, it is just ignored.

52 Chapter 5 Implementation



read next entry from 
trace

clear map[address]add instruction pointer 
to map[address]

yes no

analyze map 
clear map read access type

empty entry?yes no

read access?

Fig. 5.4: Conservative double fetch analysis. Interweaved reads and writes and overlapping
memory accesses are ignored.

Unprivileged accesses indicate that a context switch occurred and trigger analysis
of the hash map: Every map entry that consists of more than a single instruction
pointer, is added to the list of double fetch candidates. After that the map is cleared
again and the analysis continues with the next entry. When the stream ends, the
map is analyzed a last time and the list of double fetch candidates is returned.

Before printing this list to the user, entries that occur multiple times are removed.
In order to not miss potential interesting variants involving three or more memory
accesses, only entries that contain identical set of instruction pointers are considered
identical. The discussed configuration settings have a large impact on the number of
double fetches discovered, as well as their security relevance. Chapter 6 evaluates
the effect of these settings against real world targets.

5.4 Target Specific Code
As discussed in Section 5.2 our implementation requires target specific code in three
places:

Identification of shared pages. In order to trace memory access to shared mem-
ory pages, these pages need to be discovered first. This step normally requires
parsing and traversing of hypervisor data structures and is only feasible if such
a global data structure exists. The advantage of finding all shared memory
pages at a certain point in time is better support for attaching and detaching
of the trace collector. If this approach is not feasible, interception of shared
page creation as discussed below can also work without this mechanism.

Interception of shared page updates. Even if the feature to identify all shared
pages is implemented, doing so for every context switch would incur an
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unacceptable performance overhead. Instead, updates to the set of shared
pages, meaning their creation and destruction should be intercepted. This
makes it possible to keep a current set of shared pages without performing
unnecessary work. If shared pages are not stored globally, this mechanism can
also be used as a partial replacement. All pages that are created while the
trace collector is attached can be extracted and traced correctly. Of course, this
has the down side that shared pages might be missed if the trace collector does
not attach to a target system immediately during startup.

Domain identification. The trace collector requires the ability to differentiate be-
tween privileged and unprivileged memory accesses. This can be done by
identifying the currently active domain in the EPT violation handler. For L2
guests that are virtualized using hardware-assisted virtualization, this infor-
mation can be extracted by analyzing the currently active VMCS (see 2.3.1).
Unfortunately, Xen and libvmi do not provide an easy way to access this data
for nested hypervisors. This requires the use of target specific code.

Interestingly, the first two mechanisms have no explicit relationship to inter-domain
communication. The same functionality could also be implemented for two user
space processes performing shared memory IPC or for user space to kernel commu-
nication. The same holds true for the concept of domain identification, which is only
used as a mechanism to distinguish between privileged and unprivileged memory
accesses. Instead of identifying the domain responsible for the memory access and
deciding the handling of the access based on its privileges, the same could be done
with process privileges.

Still, the focus of this thesis lies on inter-domain communication, and the following
three targets were chosen as evaluation targets: Xen, KVM and Hyper-V. For reasons
discussed in the next section, the Xen implementation is by far the most mature one
and is the core focus of our evaluation. However, the outlined approaches for the
two other hypervisor architectures demonstrate that our general design is not target
specific and can be used to search vulnerabilities in different target software.

5.4.1 Xen

Identification of shared pages

Xen’s primary mechanism for inter-domain shared memory communication are
grant tables, introduced in Section 2.5.1. By using a special hypercall named
grant_table_op, domains can share their own memory pages with other domains.
With this knowledge, the code to extract shared pages and to get notified of possible
page changes is quite simple: In the first step, a list of all active domains running in
the target hypervisor is extracted by traversing through a global Xen data structure
named domain_list. For each of these domains, the location of the grant_table is
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read and all grant entries are processed. While the exact structure of a grant entry
is quite complex, the only relevant attribute for our implementation is the guest
physical frame number.

Interception of shared page updates

The described mechanism alone is sufficient for finding all shared memory pages at
a certain point in time. However, additional grant entries can be created on demand
by paravirtualized drivers. In order to get notified of changes to the grant tables,
we use libvmi to create a breakpoint at the end of the grant_table_op hypercall
handler. By breaking at the end, the new grant entries are already inserted into the
grant table and can be extracted as described before.

Due to the strict separation of memory spaces in the Xen architecture, all shared
memory spaces need to be implemented using the grant table functionality. This en-
sures that the described approach does not miss any shared pages that are established
using other means.

Domain identification

The aforementioned steps work regardless of the virtualization type used for the
L2 guest, because both paravirtualized guests and guests using hardware-assisted
virtualization rely on grant tables. In contrast the implemented approach for identi-
fying the currently active domain is specific to paravirtualized guests. This is valid,
because the management domain dom0 is always paravirtualized and we can freely
choose the virtualization type for the unprivileged guest. Furthermore, several par-
avirtualized device frontend do not support hardware-assisted virtualization based
guests. This makes paravirtualization the logical choice for the domU.

Paravirtualized guests share their address space with the hypervisor, which is globally
mapped at the high end of the address space. Every virtual CPU has its own
hypervisor stack specified in the MSR register SYSENTER_ESP. At the bottom of the
stack, a cpu_info structure is stored that contains a pointer called current_vcpu
that points to another management structure describing the state of the virtual CPU.
This structure has a pointer to the domain that is currently active in the domain
field, which in turn contains the domain id. Listing 5 shows how the trace collector
extracts this data by reading the SYSENTER_ESP and CR3 registers. After this the
described data structures are traversed by repeatedly fetching the memory of the
target system.
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1 uint16_t get_domid() {
2 reg_t rsp, cr3;
3 vmi_get_vcpureg(state->vmi, &rsp, SYSENTER_ESP, 0);
4 vmi_get_vcpureg(state->vmi, &cr3, CR3, 0);
5

6 const int stack_size = 4096 << 3;
7

8 addr_t current = (rsp & (~(stack_size - 1))) + stack_size - 24;
9 addr_t vcpu = vmi::read_ptr(state->vmi, cr3, current);

10 addr_t domain = vmi::read_ptr(state->vmi, cr3, vcpu + 16);
11

12 return vmi::read_word(state->vmi, cr3, domain);
13 }

Listing 5: Identification of the currently active Xen domain using management data struc-
tures stored by the hypervisor.

5.4.2 KVM
As described in Section 2.5.3, the complete address space of a KVM guest is mapped
into its corresponding QEMU process. This means that in theory every guest page
can be considered shared. In practice, only a small subset of these pages is accessed
by the management domain during the lifetime of the VM and tracing accesses to all
pages would introduce an extreme performance overhead. Instead a potential trace
collector implementation has to rely on trapping on the creation and destruction
of virtqueue data structures which are used by virtio drivers. This can be done by
intercepting calls to the QEMU virtqueue initialization and destruction functions,
and parsing the passed arguments.

Differentiating between the KVM host and unprivileged guests is easy to do in KVM,
because the KVM hypervisor is running in the same address space as the rest of the
host operating system. This means the privileged host domain can be recognized by
simply checking for a running KVM.

5.4.3 Hyper-V
As discussed in Section 2.5.2, the main mechanism used for shared memory com-
munication in Hyper-V are GPADLs. Mapping GPADLs into the address space of a
partition requires the partition to perform a hypercall. By intercepting this hypercall
shared memory pages can be identified.

Domain identification in Hyper-V can be implemented by identifying a unique and
constant physical memory address for all domains. While this requires some manual
analysis in the beginning, it allows fast and stable differentiation between the
different systems.
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6Evaluation

In this chapter, the presented approach to discover software vulnerabilities in inter-
domain communication is evaluated against a real world target. The goals of this
evaluation are threefold: (a) Analyze and discuss the performance overhead intro-
duced by the presented implementation. (b) Gain a better understanding of the
characteristics of inter-domain communication in Xen and most importantly (c) dis-
cover vulnerabilities in the privileged components involved in this communication.

In Section 6.1, the methodology chosen for this evaluation is presented. This is
followed by a description of the evaluation setup, including the used hardware,
software versions and configuration settings in Section 6.2. Section 6.3 describes
the results of our evaluation, including performance numbers, instruction statistics
and the results of our attack surface and double fetch analysis algorithms. Following
this, two of the more interesting results of our evaluation are discussed in greater
depth in Sections 6.4 and 6.5, before the chapter concludes in Section 6.6.

6.1 Methodology
The evaluation is split into two parts. In the first part, benchmarks for CPU, disk
and network performance were executed to gain a better understanding of the
passive and active overhead of nested virtualization in general and our tracing
toolkit in particular. In the second, more important part, the two implemented
analysis algorithms are executed on multiple collected traces and the results are
analyzed.

As discussed in the last chapters, the following hypervisors were chosen as potential
target systems: Xen, KVM and Hyper-V. Unfortunately, evaluation of KVM was heavily
restricted due to instabilities of the Xen L0 hypervisor when running L2 guests virtu-
alized by KVM. In the same vein Hyper-V did not start when running as virtualization
guest. Even though some time was spent trying to identify and patch bugs in Xen’s
nested virtualization support, this was not successful. Therefore, our evaluation was
only performed against a nested Xen hypervisor and its paravirtualized devices.

One of the inherent problems of dynamic analysis is the fact that only code that gets
executed can be analyzed for vulnerabilities. This means that as much functionality
as possible needs to be used in order to get useful results from the two analysis
algorithms. While no reliable automatic way for triggering all functionality of the
frontend driver was developed, device activity was triggered manually in several
ways: Tracing was active during the boot process and shutdown process. This

57



means all actions performed during device initialization and destruction were traced.
During runtime of the L2 domU, the functionality of the device was used as varied as
possible. For block devices this includes the reading, writing, creation and deletion of
files and directories, whereas a network device was used for network communication
using different protocols and traffic patterns. In addition, device configuration was
queried and modified when possible. To ensure that the performed activity lead to an
acceptable code coverage, the output of the attack surface algorithm was compared
to the source code of the backend driver. These comparisons indicated that our
approach was successful in reaching a good code coverage.

All discussed performance benchmarks were executed four times with the presented
results being the averaged results of the last three runs.

6.2 Evaluation Setup
Our evaluation setup consists of a single physical system running all components of
our architecture. Table 6.1 shows the configuration of this system and the version
numbers of all relevant components.

Tab. 6.1: Evaluation setup.

Component Model/Specification
CPU Intel Xeon E3-1271 v3 @ 3.60GHz
Memory 32GB DDR3-1600
L0 Hypervisor Xen 4.5.0
L1 dom0 OS Ubuntu 15.04
L1 dom0 Kernel 3.19.0-18-generic
Simutrace 3.2.2-1
libvmi Commit eeca74fe..

In theory, the version of Xen used does not have an impact on the implementation
of paravirtualized devices. Instead the frontend and backend components are part
of the virtualized guests. Still, we have chosen to use two different Xen systems as
L1 hypervisors in order to get full support for all supported paravirtualized devices:
With version 4.5 Xen removed support for its traditional management stack xend and
only supports the new xl management utility. However, several of the more exotic
paravirtualized devices such as SCSI and USB devices are only supported using the
older xend based management stack.

Tab. 6.2: Target systems.

Component Xen-Ubuntu Xen-SLES
L1 Hypervisor Xen 4.5.0 Xen 4.4.2_08-1.7
L2 dom0 OS Ubuntu 15.04 SLES 11 SP4
L2 dom0 Kernel 3.19.0-18-generic 3.0.101-63-xen
Management Stack xl xend
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This means efficient testing requires at least two target systems with different L2
management domains. Table 6.2 shows the configuration of these two target systems:
The first called Xen-Ubuntu is running the Xen hypervisor in version 4.5 using an
Ubuntu 15.04 system as management domain. The second system Xen-SLES is
running Xen in version 4.4.2, which is one of the last versions with support for xend.
The management domain is running Suse Linux Enterprise Server in version 11 SP4.
SLES was chosen as management domain because of its extensive support for some
of the lesser known paravirtualized device types.

A paravirtualized guest in Xen uses a number of paravirtualized devices under
normal circumstances. This includes devices required for normal operation such as a
block device representing the virtual hard drive, a virtual network interface and a
frame buffer. In addition, the following devices were explicitly added to the target
systems:

PVUSB. Paravirtualized USB Support enables the passthrough of USB devices to
a virtual machine. Xen’s implementation is implemented in the xen-usbback
(backend) and xen-usbfront (frontend) kernel modules. To enable testing of
these modules, the level 2 domU was configured to use a USB device accessible
from the L2 dom0. Support for paravirtualized USB devices was only available
on Xen-SLES.

PVSCSI. Paravirtualized SCSI allows the direct use of a SCSI device in a virtual ma-
chine. The functionality is implemented in xen-scsiback and xen-scsifront.
Only the older xend based management stack has support for this feature
making it only available in Xen-SLES.

PCI Passthrough. Allows the use of PCI devices in a virtual machine.
PCI passthrough is well supported in both management stacks and could be
tested on both Xen-Ubuntu and Xen-SLES.

Disk Backends. Frontend support for paravirtualized block devices is implemented
by the xen-blkfront kernel module. For the backend, there are multiple
options: A kernel based backend called xen-blkback, a separate user space
daemon named blktap and the xen_disk backend included in QEMU. All of
these backend devices were tested in separate tracing rounds.

6.3 Results
This section describes the results of the performed evaluation. In the first part the
performance characteristics of our approach are evaluated by comparing the results
of two benchmarks testing CPU and paravirtualized device performance. After this,
several data points concerning the characteristics of inter-domain communication
in Xen are highlighted. This includes the number of memory accesses performed
during our traces, as well as statistics about the types of instructions that operate on
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the shared memory regions. The section continues with an analysis of the output
of the attack surface algorithm, describing the different components that can be
potentially targeted by an attacker. Finally, the results of the double fetch analysis
algorithm are presented and the discovered vulnerabilities are discussed.

6.3.1 Performance
Two benchmarks were performed to assess the overhead introduced by our im-
plementation: CPU and memory performance was measured using the sysbench
benchmark utility. The assumption for this benchmark was that a small overhead is
introduced by nested virtualization, but no significant additional overhead should
be added when active tracing is performed. The reason is that the benchmark does
not directly interact with shared memory pages, so any additional slow down is
triggered by background activity of the paravirtualized devices. In addition, the
write performance to a paravirtualized device was evaluated by using dd to write
a 1GB file to a virtual hard drive. Because every data transfer is passed through
shared memory, a very large overhead introduced by active tracing was expected.
All of the tests were performed on Xen-Ubuntu running the previously discussed
configuration.
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Fig. 6.1: Sysbench CPU and memory benchmarks. Average runtime in seconds.

Figure 6.1 shows the results of the two performed sysbench benchmarks. In both
cases, native performance was compared to a system running under nested virtual-
ization without active tracing, as well as a nested guest whose inter-domain com-
munication was actively traced. The prime calculation benchmark was performed
using sysbench –num-threads=1 –test=cpu –cpu-max-prime=25000 run, which
involves the repeated calculation of all primes till 25000. As expected, there is
no significant overhead introduced by nested virtualization itself or active shared
memory tracing.

The memory write benchmark used sysbench –num-threads=1 –test=memory
–memory-total-size=10G run to calculate the memory performance by writing
10GB of data into memory. In this case, there is a clear overhead introduced by

60 Chapter 6 Evaluation



nested virtualization. Still, the active tracing of shared memory communication does
not introduce additional overhead as long as the written data does not touch the
watched memory pages.

Paravirtualized Device I/O

36,1

77100

1 10 100 1000 10000 100000

disk write no tracing
active tracing

Fig. 6.2: Paravirtualized disk benchmark. Write speed in KB/s.

Figure 6.2 shows the performance of a dd write of a 1GB file to a paravirtualized
hard disk. Because the complete 1GB file content is transferred over the traced
shared memory pages, write speed crawls down to 36 KB/s when active tracing is
performed. This shows the high active overhead introduced by our approach and its
limitation in tracing heavily used memory segments.

6.3.2 Inter-domain communication characteristics

A dedicated tracing run was performed using the Xen-Ubuntu target to gain a better
understanding about general characteristics of inter-domain communication in Xen.
Ten minutes of simulated system activity was traced, which includes paravirtualized
disk activity by searching through the file system, network traffic generated using
curl and ping, as well as interactive shell usage via SSH and the builtin Xen
console.
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Fig. 6.3: Ratio of different memory accesses to shared memory.
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During the trace, about 6.3 million memory accesses were logged. Figure 6.3 shows
the ratio of the different memory accesses. Half of the accesses were performed by
the unprivileged domain, while two thirds of the privileged memory accesses were
writes. The almost exact 1:1 ratio between privileged and unprivileged accesses
makes sense when thinking about the way data is transferred over shared memory: It
is written by one side and fetched by the other. The higher ratio of privileged writes
in comparison to reads can be explained with the performed system activity. Because
the performed file search and network download are read heavy activities, the
backend needs to transfer more data to the frontend than in the other direction.
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Fig. 6.4: Memory access sizes (logarithmic scale).

Figure 6.4 shows the count of the different access size using a logarithmic scale.
Because only privileged memory accesses are logged with these details, unprivi-
leged accesses are not included in this statistic. Surprisingly, more than 77% of
all memory accesses have a 8 bit size, with 22% accesses of size 32 bit and only
a few 64bit or 16bit accesses. The reason for these statistics becomes clear when
looking at the most frequently executed instructions shown in Table 6.3. Nearly
all of the single bytes memory accesses, are triggered by a single instruction in the
copy_user_enhanced_fast_string function, which is a kernel helper function to
copy an ASCII string from or to user space memory. Because this function operates
one byte at a time, it triggers a high number of memory accesses when copying
large strings. The second and third most frequent instructions are both parts of the

Tab. 6.3: Most frequent instructions operating on shared memory.

Hits Instruction Function
2420739 rep movsb byte ptr [rdi],byte ptr [rsi] copy_user_enhanced_fast_string

630387 mov esi, dword ptr [r8 + rsi + 0x400] handle_io (xenconsoled)
14074 mov ecx, dword ptr [rax + 0xc00] handle_io (xenconsoled)

xenconsoled daemon responsible for providing a virtual console. The reason for this
high ranking is the heavy use of the virtual console during the tracing run. Again
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the more frequent instruction is part of a copy loop that moves data between the
shared memory page and a private data structure.

6% 3%

91%

sub
cmp
mov

Fig. 6.5: Ratio of instruction opcodes accessing shared memory.

Finally, Figure 6.5 shows the ratio of the different opcodes used to access shared
memory. 91% of all unique instructions that operated on shared memory are a
variant of the mov instruction with 6% being a type of subtraction (sub) and 3%
comparisons (cmp). While the high prevalence of mov instructions was expected, the
existence of sub and more importantly cmp instructions are a potential indicator for
double fetch problems: A cmp operating on shared memory, followed by a mov from
the same address is a clear indicator for a potential double fetch vulnerability.

In summary, the collected statistics validate our initial assumptions about inter-
domain communication. Both frontend and backend operate heavily on the shared
memory pages, and while most of the accesses are simple copy operations there are
a number of occurrences where more complex operations are directly executed on
these shared addresses.

6.3.3 Attack Surface Analysis

The attack surface analysis algorithm was executed on two traces, collected on
Xen-Ubuntu and Xen-SLES. Xen-SLES was configured to run a L2 guest using par-
avirtualized USB and SCSI devices in addition to the default configuration. The
Xen-Ubuntu L2 guest had access to a paravirtualized PCI device and used two sepa-
rate paravirtualized hard drives, one corresponding to a raw file and the second to a
block device on the management domain. In both cases, tracing was performed over
60 minutes of active system usage.
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Xen-Ubuntu

The Xen-Ubuntu trace triggered 146 unique instructions accessing shared memory.
These instructions were part of the following components:

xen-netback. The xen-netback kernel module is responsible for handling net-
work traffic sent and received by our virtual machine over its paravirtualized
interface. Even though the backend driver and its corresponding frontend
xen-netfront communicate using a quite complex and feature rich protocol,
the xen-netback driver is actively developed and under heavy scrutiny, making
it a hard target to find vulnerabilities in.

xen-blkback. The xen-blkback kernel module is used for accesses to the paravir-
tualized hard drive that corresponds to a block device on the management
domain. This is in contrast to the paravirtualized hard drive represented by
a simple file, which is handled by the QEMU process discussed below. This
difference in the responsible backend components is an interesting example
to show the use case for the attack surface algorithm: A seemingly trivial
configuration change completely replaces a security critical backend compo-
nent with a different one. The xen-blkback code is heavily integrated into
the Linux block I/O layer, making in-depth source code review quite difficult.
Nevertheless, the code is not as actively developed as the xen-netback code
and is an interesting target for further analysis.

xenconsoled. The xen console daemon is responsible for providing a virtual console
to a paravirtualized guest. The xenconsoled code base is quite small, making
a full source code review possible. Still, on the Xen-Ubuntu management
domain, the daemon is running with full root privileges and without security
measures such as position-independent code (PIC). This is an unfortunate lack
of hardening for such a security critical component.

xenstored. This daemon provides the XenStore service to all domains running on
the system. XenStore is used an storage space shared between the domains and
can be described as an inter-domain key value store[8]. xenstored shares the
lack of defense in depth mechanisms like PIC with xenconsoled but has much
larger functionality. This makes it an interesting target for further research.

xen-pciback. The xen-pciback kernel module provides the backend for the paravir-
tualized PCI device running in the guest domain. Support for PCI passthrough
is becoming more relevant due to the support for GPU acceleration in popular
cloud environments. This makes this functionality a relevant target.

QEMU. While the QEMU system process is mostly for providing access to emulated
devices, it also includes a backend component to the xen-blkfront frontend
driver. As mentioned above, the QEMU backend is used when the paravirtual-
ized disk is represented by a single file in the management domain. Due to
the varying quality of QEMU’s emulated driver code, the QEMU process is a

64 Chapter 6 Evaluation



traditional target for attacks against Xen[50, 51]. In our evaluation QEMU is
running as root on the management domain, but uses position independent
code for its own executable, making Address Space Layout Randomization
(ASLR) quite effective. In addition, QEMU can be moved into a dedicated stub
domain as discussed in [8]. In comparison to the backend components im-
plemented in kernel space and the lesser protected xenstored and xenconsoled
processes, vulnerabilities in QEMU are generally much harder to exploit.

Xen-SLES

As expected, the tracing on Xen-SLES had large overlaps with our results for Xen-
Ubuntu: Only the QEMU disk backend and xen-pciback were not executed on this
system. Instead the following three new components were discovered:

xen-scsiback. This kernel module is the backend for the paravirtualized SCSI
device. With almost 2000 lines of code, this kernel module is one of the
more complex backends and is an interesting target for large scale enterprise
environments, where the high performance offered by direct SCSI access might
be preferred to a more standard approach.

xen-usbback. The xen-usbback kernel module offers paravirtualized USB devices to
a guest domain. In comparison to the other kernel based backend components,
this module is not included in the mainline Linux kernel. This indicates that is
is only rarely used in practice and makes it a less interesting research target.

blktap. The blktap kernel module and user space daemon are an alternative block
based backend that is used instead of xen-blkback or QEMU for guests running
on Xen-SLES. Again, this shows that small configuration changes can have
significant impact on the existing attack surface.

In summary, 9 separate privileged components working on shared memory could
be identified using the attack surface algorithm. Due to Xen’s open source nature,
these components could also be identified manually by reading source code and
documentation. However, the same algorithm also works on proprietary hypervisors
such as Hyper-V, where a manual analysis would be much more difficult.

6.3.4 Double Fetch Vulnerabilities
The double fetch algorithm was executed on the same traces used for attack surface
analysis in the last section. This resulted in 39 potential double fetch issues. In the
following, these results are analyzed and discussed.

False Positives

A large percentage of the discovered double fetches can be considered false positives,
because they do not indicate any type of security vulnerability or software bug. For
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this purpose we define false positive as a double fetch that happened but does not
cause incorrect behavior. False positives can be again separated into two overlapping
classes: The vast majority of false positives are repeated accesses to synchronization
variable ssuch as mutexes. The second case are double fetches from variables that
always include the necessary security checks after the fetch.

;Double Access for ffffc90000af8000
ffffffffc0367016 63f26000 (xen_netback): mov edx, dword ptr [rax]
ffffffffc0367955 63f26000 (xen_netback): mov eax, dword ptr [rdx]
ffffffffc03679c3 63f26000 (xen_netback): mov eax, dword ptr [rax]
ffffffffc0368218 63f26000 (xen_netback): mov eax, dword ptr [rdx]
ffffffffc036adaf 63f26000 (xen_netback): mov eax, dword ptr [rax]

Listing 6: Suspected double fetch in xen-netback. The report generated by the double fetch
algorithm shows repeated accesses to a single memory address.

Listing 6 shows a false positive reported in the xen-netback kernel module. Output
from the double fetch analysis always follows the same output format: The first
line lists the memory address that was accessed multiple times. After that, the first
row lists the virtual address of the instruction that performed the memory access
followed by the value of the CR3 register at that point in time. The third row lists
a human readable name of the responsible process or kernel module before the
disassembled instruction is printed at the end of the line.

When matching these trace entires to the source code of xen-netback it becomes
clear that the accesses are triggered by repeatedly querying for new requests on the
shared ring buffer. Of course, this does not lead to any kind of security issue.

A second example for a false positive is shown in Listing 7. The double fetch was
triggered by the handle_io function of the xenconsoled process. When looking at the

;Double Access for 7fa6f13c7c00:
403d7c 12b3d000 (xenconsoled): mov ecx, dword ptr [rax + 0xc00]
404123 12b3d000 (xenconsoled): mov edx, dword ptr [r14 + 0xc00]

Listing 7: Suspected double fetch in xenconsoled.

source code of this function it becomes clear that these memory access are triggered
by an inlined function whose simplified code is shown in Listing 8. The function
reads two values cons and prod from shared memory and correctly uses a memory
barrier to make sure the values are stored into registers. Listing 7 shows the double
fetch report for cons, while a second almost identical report was generated for prod.
After both values are stored in a register the unsigned size value is calculated and
validated against an upper limit. This code is safe, even when executed multiple
times. A vulnerability would only exist when one of the later accesses to out_cons

66 Chapter 6 Evaluation



or out_prod would not include the validation, but this is not the case making the
report a false positive.

1 cons = intf->out_cons;
2 prod = intf->out_prod;
3 xen_mb();
4

5 size = prod - cons;
6 if ((size == 0) || (size > sizeof(intf->out)))
7 return;

Listing 8: Safe size calculation in xenconsoled. The unsigned size variable is correctly
checked against an upper limit.

QEMU xen_disk

One of the more interesting findings returned by the double fetch algorithm af-
fects the block backend implementation in QEMU, also called xen_disk. QEMU
defines two more or less identical helper functions named blkif_get_x86_64_req
and blkif_get_x86_32_req for parsing and copying frontend requests from shared
memory to a private buffer. Listing 9 shows a simplified version of the first func-
tion. Knowing that the src variable points into shared memory, it is easy to see
that the three accesses to the nr_segments field in line 7, 12 and 13 are a typi-
cal example for a double fetch vulnerability. The two last accesses are the most
interesting ones, because they could potentially allow for a controlled heap over-
flow: The if condition in line 12 tries to enforce that n never becomes larger than
BLKIF_MAX_SEGMENTS_PER_REQUEST, but this could be bypassed by modifying the
value of nr_segments between the two accesses. This can be used to trigger a heap
overflow in the final for loop.

As it turns out, this code is not exploitable in the evaluated system: The reported
double fetch lists an access triggered by line 7 and a second one triggered by the
if condition in line 12. The assignment operation in line 13 is optimized by the
compiler and reuses the already fetched value instead of performing another costly
memory operation. Even though this bug does not have any security impact on our
target system, this might change if a compiler optimizes the code in a different way.
Therefore, this potential vulnerability was reported to the Xen maintainers and is
planned to be fixed as part of XSA-155[52]. This result validates our argument from
Section 3.2, that source code analysis is not sufficient to reliably identify double
fetch vulnerabilities. In this case an analysis based only on source code would rate
this vulnerability more critical as it is in most real world environments.
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1 void blkif_get_x86_64_req(blkif_request_t *dst,
2 blkif_x86_64_request_t *src)
3 {
4 int i, n = BLKIF_MAX_SEGMENTS_PER_REQUEST;
5

6 dst->operation = src->operation;
7 dst->nr_segments = src->nr_segments;
8 // ...
9 if (src->operation == BLKIF_OP_DISCARD) {

10 //..
11 }
12 if (n > src->nr_segments)
13 n = src->nr_segments;
14 for (i = 0; i < n; i++)
15 dst->seg[i] = src->seg[i];
16 }

Listing 9: Double fetch issues in QEMU block backend. src->nr_segments is fetched
multiple times.

xen-blkback

Another vulnerability was discovered in the xen-blkback kernel module. Listing 10
shows parts of the vulnerable function xen_blkbk_parse_indirect. In this case the
segments array is stored in the shared memory region. The if conditions in line 9 and
10 perform validation of the last_sect and first_sect attributes of the current
index. If this validation fails processing of the whole array is stopped. However, both
of the validated values are already used before the check and all of these uses are
translated into dedicated memory accesses. This means that an attacker can write
malicious values into seg[n].offset and seg[n].nsec and then modify last_sect
and first_sect back to sane values before the check executes. An exact analysis of
the impact of this vulnerability is difficult to perform due to the interdependency of
this code with the Linux block I/O layer. Still, this vulnerability was reported to the
Xen maintainers and is planned to be fixed as part of XSA-155[52].

xen-pciback

The most critical vulnerability discovered during our evaluation affects the backend
driver for paravirtualized PCI devices: xen-pciback. Listing 11 shows the output
generated for this vulnerability by the double fetch algorithm: Two memory accesses
to a single address are performed one is a comparison with the constant 5 and the
second access is a normal read.

Manual analysis shows that both accesses are part of the xen_pcibk_do_op function,
which mostly consists of a big switch statement as shown in Listing 12. op is stored
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1 for (n = 0, i = 0; n < nseg; n++) {
2 //...
3 i = n % SEGS_PER_INDIRECT_FRAME;
4 seg[n].nsec = segments[i].last_sect -
5 segments[i].first_sect + 1;
6

7 seg[n].offset = (segments[i].first_sect << 9);
8

9 if ((segments[i].last_sect >= (PAGE_SIZE >> 9)) ||
10 (segments[i].last_sect < segments[i].first_sect)) {
11 rc = -EINVAL;
12 goto unmap;
13 }
14 //...
15 }

Listing 10: Double fetch in xen-blkback. The segments array is stored in shared memory,
making the repeated accesses to last_sect and first_sect insecure.

;Double Access for ffffc90000afa004:
ffffffffc0343fe3 12b3c000 (xen-pciback): cmp dword ptr [r13 + 4], 5
ffffffffc0343ff1 12b3c000 (xen-pciback): mov eax, dword ptr [r13 + 4]

Listing 11: Double fetch in xen-pciback.

in shared memory, but looking at the source code alone does not show any signs of a
double fetch vulnerability.

However, the compiled code highlighted in Listing 13 quickly shows the root cause
of this issue: The switch case was compiled into an optimized jump table, which
incorrectly accesses the switch condition twice. Line 1 shows the first access to the
op->cmd variable as discovered by the double fetch analysis. The value is compared
to the constant 5 and if it is larger, a jump to the default case of the switch statement
is triggered in line 3. If this is not the case, op->cmd is fetched from memory a
second time and is used as an offset into the jump table in line 5. This is highly
problematic, because the second fetch can result in an arbitrary value giving an
attacker complete control over the indirect jump target.

This vulnerability was reported to the Xen security team and is planned to be
patched as part of XSA-155[52]. The next section gives an introduction about how
this vulnerability can be triggered and exploited to achieve arbitrary code execution
on the management domain.
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1 switch (op->cmd) {
2 case XEN_PCI_OP_conf_read:
3 op->err = xen_pcibk_config_read(dev,
4 op->offset, op->size, &op->value);
5 break;
6 case XEN_PCI_OP_conf_write:
7 //...
8 case XEN_PCI_OP_enable_msi:
9 //...

10 case XEN_PCI_OP_disable_msi:
11 //...
12 case XEN_PCI_OP_enable_msix:
13 //...
14 case XEN_PCI_OP_disable_msix:
15 //...
16 default:
17 op->err = XEN_PCI_ERR_not_implemented;
18 break;
19 }

Listing 12: Vulnerable switch statement in xen-pciback. op->cmd is stored in shared mem-
ory.

1 cmp DWORD PTR [r13+0x4],0x5
2 mov DWORD PTR [rbp-0x4c],eax
3 ja 0x3358 <xen_pcibk_do_op+952>
4 mov eax,DWORD PTR [r13+0x4]
5 jmp QWORD PTR [rax*8+off_77D0]

Listing 13: Assembly of the vulnerable switch statement in xen-pciback. The jump table
implementation fetches the case value twice. This allows an attacker to control
the jump destination in line 5.

6.4 Notes on Exploiting xen-pciback

The xen-pciback double fetch vulnerability discussed in the last section is particularly
interesting for multiple reasons: First of all it cannot be easily detected using source
code review. Even knowing that the op->cmd value is stored in shared memory does
not directly lead to the discovery of the vulnerability. In addition, the bug gives an
attacker immediately indirect control over the instruction pointer making it highly
probable that arbitrary code execution can be achieved. Lastly, the race condition
can be triggered as often as needed and does not cause any system instability. If the
race is lost, the PCI request will be considered invalid but this should not have any
impact on the overall guest system.
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Still, the vulnerability has one relevant downside: The time between the two memory
accesses is very small, because only two instructions are executed in between. Even
though one of them is a potentially slower branching instruction, the time span in
which the value has to be manipulated is quite small.

As discussed in Section 2.2, we only consider guests with at least 2 virtual CPUs.
Keeping this requirement in mind the first approach to trigger the vulnerability is
quite simple: The exploit starts two processes scheduled on different CPU cores which
both start executing an infinite loop. The first process is responsible for triggering
requests to the xen-pciback module, which is easily possible by generating some
activity on the PCI device. Due to the way the xen-pcifront driver is implemented,
these requests will always reuse the same shared memory area making op->cmd
always stay at the same address. By knowing this address, the second user process
can repeatedly iterate between the original harmless value for op->cmd and a
malicious value that triggers a jump to a different instruction pointer. As discussed
by [20], the easiest and fastest way to switch between these two variable states is
by using the xor instruction with a constant value depending on the chosen target
value.

Testing the presented approach demonstrates that the short race is no problem in
practice. In general, the race was won after less than ten PCI requests demonstrating
the effectiveness of the described approach.

By getting an invalid value past the upper limit check of the jump table implementa-
tion, an attacker has complete control over the lower 32 bits of the RAX register in
the jmp QWORD PTR [rax*8+0x0] instruction. This instruction performs an indirect
jump, meaning the pointer at the address rax*8+off_77D0 is fetched and written
into the RIP register. Successful exploitation depends on the ability of an attacker to
identify an offset which points to an attacker controlled value or a valid function
pointer. While a complete description of an exploit for this vulnerability is out of
scope for thesis, one possibly approach is outlined in the following.

On a modern Linux system the ordering and address ranges of kernel modules is
almost completely randomized. This means that the search for potentially interesting
offsets is restricted to the xen-pciback module itself. In addition the attacker only
controls the lower half of the rax register, making it impossible to insert a negative
value and search before the jump table at off_77D0. Still, there are several interesting
possibilities: Almost immediately after the jump table used by the switch statement
in the vulnerable xen_pcibk_do_op function, there is a second jump table used by
the xen_pcibk_frontend_changed function shown in Listing 14. Listing 15 shows
how the first of this switch statement is translated into assembly. The code copies the
value of the r13 register into rdi making it the first argument for the subsequent call
to xen_pcibk_attach. When this code is normally called, r13 points to a structure
of type xen_pcibk_device, but when it is instead executed as part of our exploit,
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1 void xen_pcibk_frontend_changed(struct xenbus_device *xdev,
2 enum xenbus_state fe_state)
3 {
4 struct xen_pcibk_device *pdev = dev_get_drvdata(&xdev->dev);
5

6 switch (fe_state) {
7 case XenbusStateInitialised:
8 xen_pcibk_attach(pdev);
9 break;

10

11 case XenbusStateReconfiguring:
12 xen_pcibk_reconfigure(pdev);
13 break;
14 //..
15 //..
16 }

Listing 14: "Reusable" switch statement in xen-pciback. The jump table generated for this
switch statement can be used to trigger a type confusion after exploiting the
xen-pciback double fetch vulnerability.

1 mov rdi, r13
2 call 0x3720 <xen_pcibk_attach>

Listing 15: Assembly of a reusable switch case. When exploiting the xen-pciback double
fetch vulnerability, r13 points to an attacker controlled location.

r13 points to the attacker controlled shared memory region. This means we can call
the function xen_pcibk_attach that would normally operate on trusted internal
input with an fake structure completely under our control. This opens up a significant
number of further approaches to reach the final goal of arbitrary code execution in
the management domain.

6.5 Restricting the Impact of Compiler Optimizations
Besides the vulnerabilities presented above, the large impact of compiler optimization
on double fetch vulnerabilities is a very interesting result of the double fetch analysis.
To the best of our knowledge the xen-pciback double fetch is the first published
vulnerability that is triggered by an (incorrectly) optimized switch statement. On
the other hand, the impact of the potential double fetch vulnerability discovered in
QEMU xen_disk is hard to assess without knowing exactly which combinations of
compiler, compiler versions and flags lead to a vulnerable or non vulnerable result.

An interesting aspect of this is the existence of code that could potentially become
vulnerable due to seemingly irrelevant changes to the rest of the function or the
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compiler itself. For example, Listing 16 shows a switch case from the xen-scsiback
backend. Even though it is very similar to the vulnerable one in xen-pciback and also
operates on a variable stored in shared memory, the compiler generated code does
not contain a double fetch. However, this could change when a new case is added,

1 switch (ring_req.act) {
2 case VSCSIIF_ACT_SCSI_CDB:
3 //...
4 break;
5 case VSCSIIF_ACT_SCSI_ABORT:
6 scsiback_device_action(pending_req, TMR_ABORT_TASK,
7 ring_req.ref_rqid);
8 break;
9 case VSCSIIF_ACT_SCSI_RESET:

10 scsiback_device_action(pending_req, TMR_LUN_RESET, 0);
11 break;
12 default:
13 //....
14 break;
15 }

Listing 16: Potentially vulnerable switch statement in xen-scsiback. ring_reg.act is stored
in shared memory but the compiler does not generate an insecure jump table.

or even if the register allocation of the overall function changes due to modifications.
This is of course not acceptable for such security critical code.

Code that seems vulnerable when looking at the source code, but is compiled
correctly due to unenforced compiler decisions, should be considered insecure and
must be fixed. In the case of the code shown in Listing 9, this is as easy as adding a
temporal variable for src->nr_segments and enforcing a single access to it using a
memory barrier.

For code such as the two discussed switch statements that only becomes vulnerable
due to compiler optimizations, there are two viable alternatives: First, all variables
stored in shared memory could be marked as volatile, which enforces a 1:1 map-
ping between variable and memory accesses. The other, more preferable approach
is to restrict the primitives performed on shared memory variables to two secure
ones: Direct accesses that copy a value into a local variable and which are protected
by memory barriers, and the use of byte based copies that move whole structures
from shared to private memory. This ensures that the compiler does not have the
possibility to generate double fetch vulnerabilities by accident, and also makes it
harder for a developer to introduce such vulnerabilities.
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6.6 Conclusion
The presented evaluation validates several assumptions stated in the earlier parts
of this thesis: The used memory tracing approach based on hardware-assisted
virtualization and EPT permissions is well suited for the purpose of tracing shared
memory communication. One of the main advantages to alternative approaches
based on software emulation is the very low passive overhead. However, the chosen
method introduces a very high active overhead when traced memory pages are
heavily used. For use cases where a lot of memory activity needs to be traced, other
approaches that try to improve the performance of software emulation are more
feasible.

The attack surface algorithm correctly identified privileged backend components that
operated on the traced memory regions. However, the evaluation demonstrated an
important limitation of this approach. Because the algorithm does not collect a stack
trace, only the immediate function that accesses shared memory can be identified.
This is a problem for cases where these memory addresses are only accessed using
generic copy functions, which makes it harder to identify the component responsible
for the access. A potential improvement of the algorithm could try to extract the call
stack when a memory address is performed. However, reliable detection of stack
frames is not trivial in all cases making this quite difficult in practice.

The double fetch algorithm was able to identify three novel security vulnerabilities
in popular backend components of the Xen hypervisor. This shows the feasibility of
our memory traced approach for vulnerability discovery and indicates that our as-
sumption about the lack of research in this area holds true. While the evaluation was
limited to the Xen hypervisor, these results imply that research on the inter-domain
communication of other hypervisors might be a good idea for further research.

Finally, the evaluation demonstrated the big impact of compiler optimizations on
double fetch vulnerabilities. This shows that even seemingly secure source code can
be compiled into vulnerable code and that developers have to be very careful when
writing code that operates on shared memory.
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7Conclusion

Shared Memory is an important mechanism for efficient inter-process communica-
tion. In many cases the shared memory interface is a trust boundary separating
privileged and unprivileged components. Examples for this include sandbox imple-
mentations and the paravirtualized device architecture of mainstream hypervisors.
This makes research on security vulnerabilities affecting these interfaces important,
especially because issues such as double fetches make implementing safe shared
memory communication non-trivial.

In this thesis an approach to discover vulnerabilities in hypervisor inter-domain com-
munication using memory tracing was presented, implemented and evaluated. In
contrast to previous work in this area the presented approach is based on hardware-
assisted virtualization and uses manipulation of EPT permissions to intercept and
analyze memory accesses. This enables targeted tracing of shared memory com-
munication with a very low passive overhead. The presented implementation is
also largely target independent. Support for analyzing a new hypervisor or more
generally a different shared memory interface can be easily added without a large
implementation effort.

The effectiveness of the presented approach was proven by performing an evaluation
against the paravirtualized device drivers of the Xen hypervisor. The evaluation
demonstrated that our implementation fulfills the performance requirements for
analyzing a real world hypervisor and that memory tracing can be used to map the
attack surface available to an attacker targeting shared memory communication.
Most importantly, the implemented double fetch analysis algorithm was successfully
used to discover three novel security vulnerabilities in backend components of
the Xen hypervisor. This demonstrates that the presented approach is capable of
finding security issues in well audited software and indicates that the currently used
approaches to secure hypervisor related code are not sufficient.

7.1 Future Work
One of the most promising areas for further research is the adaption of our imple-
mentation to support more hypervisors. Currently only the Xen hypervisor is fully
supported as a target, but this is mainly due to compatibility problems concerning
the nested virtualization of other hypervisors. Due to the rising significance of nested
virtualization these issues will be hopefully fixed in the near future, allowing for
analysis of these products. In addition, adding target support for popular sandbox
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implementations and other security critical shared memory interfaces seems to be a
promising extension of the presented work.

If the reliance on nested virtualization turns out to be a big road block for supporting
other hypervisors, an alternative implementation of the trace collector based on
software emulation could be evaluated. While this removes the advantages of
our implementation that depend on the use of hardware-assisted virtualization, the
decoupled nature of our architecture allows the reuse of all analysis components even
if the actual trace collection is implemented completely in software. Current research
such as Simuboost[35] tries to significantly improve the performance of software
based emulation and might be a well suited target for such an implementation.

An alternative extension of the presented approach is the implementation of other
analysis algorithms. While the presented attack surface and double fetch algorithms
are very effective for analyzing inter-domain communication, other algorithms might
be more suited for other use cases. In particular, it should be evaluated if the addition
of memory contents to the memory trace could allow the implementation of more
sophisticated algorithms enabling the discovery of other vulnerability classes.

Finally, future work should evaluate how memory access tracing can be used in
combination with other automated approaches for vulnerability discovery. For
example, the ability to identify code segments that operate on shared memory using
the presented attack surface algorithm could be combined with static binary analysis
to identify missing validation checks and other security issues. At the same time
mechanisms used for measuring and increasing code coverage during fuzz testing
could improve the performance of the double fetch algorithm by ensuring that all
interesting code paths are executed.
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