
Virtual Machine Checkpoint Storage
and Distribution for SimuBoost

Master Thesis
by

Bastian Eicher
at the Department of Computer Science

Operating Systems Group
Karlsruhe Institute of Technology

Supervisor: Prof. Dr. Frank Bellosa
Supervising Research Assistant:Dipl.-Inform. Marc Rittinghaus

Created during: April 1st 2015 – September 4th 2015

KIT – Universität des Landes Baden-Württemberg und nationales Forschungszentrum in der Helmholtz-Gemeinschaft www.kit.edu

iii

I hereby declare that this thesis is my own original work which I created without
illegitimate help by others, that I have not used any other sources or resources than
the ones indicated and that due acknowledgment is given where reference is made
to the work of others.

Karlsruhe, September 4th 2015

iv

Abstract

While full-system simulation enables detailed analysis of workloads it is much
slower than hardware-assisted virtualization, with slowdown factors ranging from
30 to 1000. The SimuBoost concept aims to combine the benefits of full-system
simulation and virtualization. Checkpoints of a virtual machine’s state are cre-
ated in regular intervals and used to seed parallelized distributed simulations. To
reach an optimal degree of parallelization, checkpoints have to be created in short
intervals with low downtimes.

In this thesis we evaluate the viability of the SimuBoost concept. We improve an
existing checkpointing prototype to minimize the downtime by replacing the un-
derlying storage mechanism and performing asynchronous deduplication. We also
implement a cluster-distribution solution in order to measure the actual speedup
achievable by SimuBoost.

The evaluation shows that the new storage mechanism and performing deduplica-
tion asynchronously greatly reduce the downtime caused by checkpointing.

v

vi ABSTRACT

Deutsche Zusammenfassung

Full-System Simulation erlaubt eine detaillierte Analyse von Arbeitslasten. Al-
lerdings ist die Ausführungsgeschwindigkeit bedeutend langsamer als die von
Hardware-beschleunigter Virtualisierung, um Faktoren von 30 bis 1000. Das Si-
muBoost-Konzept zielt darauf ab, die Vorteile von Full-System Simulation und
Virtualisierung miteinander zu kombinieren. Checkpoints des Zustands der Virtu-
ellen Maschine (VM) werden in regelmäßigen Abständen erfasst und als Grundla-
ge für parallelisierte verteile Simulationen genutzt. Um einen optimalen Grad an
Parallelisierung zu erreichen, müssen die Checkpoints in kurzen Intervallen mit
möglichst kurzen Downtimes (Ausfallzeiten) der VM erstellt werden.

In dieser Thesis evaluieren wir Tauglichkeit des SimuBoost-Konzepts. Wir verbes-
sern einen existierenden Checkpointing-Prototypen, um die Downtime der VM
zu minimieren. Wir tauschen das zugrundeliegende Speichersystem aus und füh-
ren asynchrone Deduplizierung durch. Wir implementieren zudem eine Cluster-
Verteilungslösung, um den von SimuBoost tatsächlich erreichbaren Speedup (Be-
schleunigung) gegenüber klassischer Simulation messen zu können.

Die Evaluierung zeigt, dass das neue Speichersystem und die asynchrone Durch-
führung der Deduplizierung die durch Checkpointing verursachte Downtime deut-
lich reduzieren.

vii

viii DEUTSCHE ZUSAMMENFASSUNG

Contents

Abstract v

Deutsche Zusammenfassung vii

Contents ix

1 Introduction 1

2 Background 5
2.1 Virtual Machines . 5
2.2 Checkpointing . 7
2.3 QEMU . 11
2.4 Simutrace . 12

3 Analysis 17
3.1 Requirements . 17
3.2 Queuing . 19
3.3 Prototype . 22
3.4 Databases . 26
3.5 Conclusion . 31

4 Design 33
4.1 Checkpointing . 33
4.2 Distribution . 40
4.3 Conclusion . 42

5 Implementation 45
5.1 Virtual Machine Monitor . 46
5.2 Storage . 50
5.3 Cluster management . 56

ix

x CONTENTS

6 Evaluation 59
6.1 Methodology . 59
6.2 Evaluation setup . 60
6.3 Results . 63
6.4 Discussion . 76

7 Conclusion 79
7.1 Future work . 79

A Additional graphs 81

Bibliography 85

Chapter 1

Introduction

Full-system simulation is a useful analysis and development tool. For example,
individual memory accesses can be traced and recorded. The Undangle [1] project
uses a modified QEMU[2] version to record execution traces and allocation logs.
This data can then be analyzed to detect the creation of dangling pointers leading
to software vulnerabilities. The Bochspwn [3] project uses the instrumentation
API provided by the Bochs [4] CPU emulator to identify Windows kernel race
conditions via memory access patterns.

Unfortunately the execution speed of full-system simulators is often 30x to 1000x
slower than that of hardware-assisted virtual machines [5]. Therefore, only short
workloads can be simulated within a reasonable timespan. Interactive control of
workloads often becomes impossible due to long delays responding to user input.

SimuBoost [5] aims to increase simulation speed using parallelization. A work-
load is executed in a virtual machine while taking checkpoints in frequent intervals
and recording non-deterministic events. Based on these checkpoints each interval
of the workload is then simulated separately. By using multiple simulation nodes
the simulation can be parallelized. The authors of [5] present a formal model to
predict the appreciable speedup compared to traditional simulation.

Baudis [6] presents a prototype implementation of a checkpointing system for
SimuBoost. QEMU[2] was modified to create checkpoints and store them in a
MongoBD [7] database. This work does not cover recording non-deterministic
events or distributing checkpoint data to simulation nodes.

The existing work presents two main obstacles to evaluating the viability of the
SimuBoost concept. First, the prototype suffers from relatively long VM down-
times when checkpoints are taken. The formal model of [5] indicates that the

1

2 CHAPTER 1. INTRODUCTION

length of the checkpointing downtime has a significant impact on the speedup.
Second, the formal model assumes the number of available simulation nodes are
effectively infinite. It therefore cannot be used to predict the performance of a sys-
tem with a less than optimal number of available nodes which limits its real-world
applicability.

These limitations motivated our main objectives: We created a modified version
of the formal model that takes the number of available simulation nodes into ac-
count. Then, we expanded upon the existing prototype to reduce the downtime
and implemented a mechanism for distributing the checkpoints. This allowed us
to perform measurements that could be compared to the predictions made by the
new model.

We were able to significantly improve the write speed of checkpoints by replacing
the original prototype’s MongoDB storage with an append-only flat file. Addition-
ally, we modified the prototype to perform deduplication asynchronously rather
than while the VM is paused.

The SimuBoost concept achieves a speedup by distributing parts of a simulation
across multiple nodes which will generally manifest as several physical machines
in a compute cluster. To analyze this aspect of SimuBoost we implemented a sys-
tem for distributing the checkpoint data across a cluster as the prototype records
it.

We executed a number of different workloads using different checkpoint interval
lengths and measured a number of performance metrics such as the VM down-
times and the time required to transfer a checkpoint to a remote machine. This
enabled us to identify potential network, storage or processing bottlenecks.

This work presents a functioning prototype of SimuBoost’s checkpointing and
cluster distribution concepts. We demonstrate the ability to create checkpoints
with an interval of 2s with average downtimes of approximately 50ms, signifi-
cantly improving upon the existing prototype. Using real-world workloads such
as Linux kernel builds we were able to achieve speedup factors of 3.9 on clus-
ters with 4 nodes. Our measurements closely tracked the predictions made by the
formal model.

The remainder of this work is structured as follows: Chapter 2 provides an overview
of virtual machine checkpointing and introduces the SimuBoost concept in more
detail. In Chapter 3 we introduce the improved formal model and analyze the
existing prototype implementation. In Chapter 4 we design an improved check-
pointing prototype based on the analysis and evaluate a number of possible de-
signs for checkpoint distribution. Chapter 5 details our implementation of cap-
turing, storing and distributing checkpoints. An evaluation of our implementation

3

using multiple workloads and a comparison with the formal model predictions is
performed in Chapter 6. Chapter 7 concludes this work and provides an outlook
of future work.

4 CHAPTER 1. INTRODUCTION

Chapter 2

Background

In this chapter we explore the concepts of virtual machines, full-system simula-
tion and checkpointing. This then provides the basis for an explanation of the
SimuBoost concept.

We also present specific applications used in our analysis and implementation
such as the Virtual Machine Monitor QEMU and Simutrace.

2.1 Virtual Machines

Virtual machines simulate the hardware of an entire computer system, allowing
the execution of an unmodified operating system.

Commonly used terms are:

Virtual machine monitor (VMM) the software running and controlling the vir-
tual machines

Host operating system the operating system the VMM is running on

Guest operating system the operating system running within the virtual machine

There are many use-cases for virtual machines, such as reducing hardware costs
by consolidating multiple physical machines into a single one running multiple
virtual machines, testing and developing new operating systems and applications
without exposing the underlying system to possible side-effects and analyzing
malware by executing it in a tightly controlled environment [8].

5

6 CHAPTER 2. BACKGROUND

2.1.1 Emulation

When the architecture of the underlying hardware differs from the architecture of
the virtual machine the VMM fulfills the role of an emulator. It must translate
instructions from the VM’s instruction set to the host-machine’s instruction set.
Performing this translation on the fly is called Dynamic Binary Translation [9].
QEMU [2] and Bochs [4] are examples of simulators that use Dynamic Binary
Translation. This process generally causes a significantly slower execution com-
pared to running on native hardware.

When the hardware architecture of the underlying hardware is the same as the
architecture of the virtual machine most of the guest code can be executed directly.
However, the VMM must take care to intercept any sensitive instructions that
could escape the VM.

The x86 architecture realizes different privilege levels using so called rings. Ker-
nel code executes in ring-0 while user-code executes in ring-3. Therefore, running
x86 VMs usually means running ring-3 code unmodified but patching ring-0 code
to jump to the VMM for emulation instead [10]. VirtualBox [11] and VMware
Workstation [12] are examples of VMMs that use this kind of Dynamic Binary
Translation for x86.

In addition to handling sensitive instructions VMMs need to virtualize the Mem-
ory Management Unit (MMU). The guest operating system maintains its own page
tables for each process, mapping guest logical addresses to guest physical (virtual)
addresses. Each guest address corresponds to a specific host address. In order to
handle virtual addresses in the VM using the physical MMU the VMM main-
tains a shadow page table [13] for each guest page table, mapping guest logical
addresses directly to host physical (non-virtual) addresses.

2.1.2 Hardware virtualization

Hardware-assisted virtualization can be used to improve the performance of vir-
tual machines. Instead of scanning for sensitive instructions and replacing them a
trap-and-emulate approach can be taken: the CPU is configured to trap any privi-
leged instructions and return control to the VMM instead of executing them. The
VMM can then emulate the effect of the instruction before returning control to
the VM. Intel VT-x [14] and AMD-V [15] add hardware virtualization support to
the x86 architecture. These extensions add an additional mode of operation to the
CPU where such traps can be set up.

2.2. CHECKPOINTING 7

Hardware-assisted VMs are sometimes called Hypervisors: [16]

Type-1 native hypervisors running directly on the hosts hardware, eliminating
the need for a host operating system, for example Hyper-V [17].

Type-2 hosted hypervisors running on a conventional operating system just as
other computer programs do, for example newer versions of VMware Work-
station [12].

2.1.3 Full-system simulation

While hardware-assisted virtualization is mainly aimed at fast execution full-
system simulation is intended to provide accurate reproduction of physical hard-
ware and additional analysis tools. This generally results in considerably slower
execution. In the following we mainly concentrate on functional full-system sim-
ulation which, unlike microarchitectural full-system simulation, does not simulate
the internal implementation details of a CPU.

An advantage of functional full-system simulation over hardware-assisted virtu-
alization is the ability to perform analysis on the level of individual instructions.
Although a similar granularity may be achievable using hardware features such as
page protections the resulting overhead is high enough to warrant simply switch-
ing to full emulation anyway.

Unlike normal emulation (see Chapter 2.1.1) full-system simulators are design
for easy access to analytical data, e.g., by registering hooks for memory accesses.
Another criteria is the existence of a cycle counter to be able to place captured
events in time.

Bochs [4] is an example of a full-system simulator that provides these features.
MARSSx86 [18] is an open-source full-system simulator based on QEMU which
has been extended to support cycle-accurate simulations of x86 systems. Sim-
ics [19] is an example of a commercial full-system simulator that additionally
simulates memory access delays and caching effects.

2.2 Checkpointing

Virtual machine checkpoints capture the entire state of the encapsulated system.
This consists of:

RAM The contents of the VM’s system memory.

8 CHAPTER 2. BACKGROUND

Disk The contents of the VM’s disk. Usually a copy-on-write system is used
rather than creating a complete copy of the underlying disk image (e.g.,
with qcow2 on QEMU).

CPU The internal state and registers of the virtual CPU.

Devices The state of any other devices provided by the VMM, such as graphics
adapters, network interfaces or sound cards.

Checkpoints can serve as a mechanism for suspending a VM to on-disk storage.
The VM can then be resumed at a later point in time, potentially on a different
physical host. Checkpoints are primarily used for migration and replication of
VMs in data centers. By automatically creating checkpoints in short intervals the
state of a VM can be duplicated to another location and be kept in sync.

Migration describes the process of moving a virtual machine from one host to
another while it is still running. The goal is to minimize the interruption of any
services running within in the VM. The two main techniques for VM migration
are called pre-copy and post-copy memory migration.

In pre-copy memory migration the VMM copies all RAM pages from source to
destination while the VM is still running on the source. If some pages change
(i.e., become dirty) during this process they are re-copied until the page dirtying
rate reaches the copying rate. Next, the VM is stopped on the source and the re-
maining dirty pages are copied to the destination. Then the VM is resumed on the
destination. The downtime between stopping the VM on the source and resuming
it on the destination ranges from a few milliseconds to seconds depending on the
executed workload [20].

Post-copy VM migration starts by suspending the VM on the source. Then CPU
and device state is transferred to the target where the VM is resumed. At the
same time the source transfers the RAM pages of the VM to the target. At the
target, if the VM tries to access a page that has not been transferred yet this causes
a page fault. These faults are trapped at the target and redirected to the source
which responds with the corresponding page [21]. Bradford et al. [22] applies an
approach similar to pre-copy to the disk state. The write speed is throttled as
needed to keep it lower than the transfer rate.

Post-copy sends each page exactly once over the network while pre-copy can
transfer the same page multiple times if it is dirtied repeatedly during the mi-
gration. On the other hand, if the destination fails during migration pre-copy can
continue executing the VM whereas post-copy cannot. Clark et al. [23] present a
live VM migration strategy achieves downtimes of 60ms.

2.2. CHECKPOINTING 9

Liu et al. [24] present an alternative approach to VM migration. Rather than re-
transferring RAM pages that are dirtied during the initial copy phase ReVirt [8]
is used to record all non-deterministic events that occur within the VM. This log
is then replayed on the target causing the same pages to be modified in the same
way, thereby re-synchronizing the states of the two VMs.

Surie et al. [25] also employ logging and replay to synchronize the state of a source
and target VM during migration. However, rather than creating a complete log of
all non-deterministic, this approach only records UI interaction. This requires
less network bandwidth than transmitting complete traces. Any remaining diver-
gence is then handled by classic migration techniques. The paper mentions that
this approach is unsuitable for scenarios that affect the persistent state of remote
machines via a network connection. For example, replaying interaction with an
e-mail client could cause a duplicate e-mail to be sent to the recipient in addition
to recreating the state inside the VM.

Replication of VMs can be accomplished by creating checkpoints and transmit-
ting them to one or more remote machines. These machines load the checkpoints
but hold off the execution of the VM until a failover event occurs. The difficulty
lies in ensuring there is no "gap" between the state captured by the last checkpoint
and the state at the time of the failure.

Remus [26] is a checkpointing system that handles this by "hiding" the externally
visible state of a VM (i.e., delaying network traffic) until the next checkpoint has
been created and transferred. After creating a checkpoint the main VM continues
execution in a mode called speculative execution. Network output, disk persis-
tence, etc. is held back. At the same time the target VM loads the checkpoint
and resumes the execution. The output of speculative execution is only released if
migration to the target fails.

VM-microCheckpoint [27] is a framework for high-frequency checkpointing and
rapid recovery of VMs. By applying various optimizations, such as those dis-
cussed below, VM-microCheckpoint is able to create checkpoints as often as every
50ms while incurring an average slowdown of 6.3%. Unlike Remus this system
uses volatile storage on the same machine rather than persistent storage on re-
mote nodes for the checkpoints. It is therefore targeted at handling transient disk
failures rather than complete node failures.

10 CHAPTER 2. BACKGROUND

2.2.1 Optimizations

Some of the presented checkpointing use-cases require checkpoints to be created
at a high rate. Therefore, the downtime caused by taking the VM offline to copy
state becomes a major issue. Additionally, the amount of disk space required to
store entire VM states, usually containing complete RAM images in the gigabyte
range, can grow too quickly.

Incremental checkpoints avoid having to copy the entire state of a VM every
time. These checkpoints only store the state that has changed since the previous
checkpoint was created (e.g., only the RAM pages that were modified). This
reduces both the downtime and required storage space. A common method for
determining which RAM ranges have been written to (dirtied) during a checkpoint
interval is activating page protection to catch RAM write accesses [28].

Ta-Shma et al. [29] present a concept for creating checkpoints that capture consis-
tent RAM, disk, CPU and device state using Continuous Data Protection (CDP).
CDP provides a copy-on-write disk storage layer below the file system that allows
rollbacks to snapshots. The paper presents an architecture consisting of an VMM-
agnostic CDP server that keeps tracks of CDP snapshots and other checkpoint
data as well as a VMM-specific IO interceptor. This provides for fast incremental
checkpointing of VMs’ block storage.

Deduplication is another technique for dealing with the high volume of check-
point data that needs to be persisted on-disk. By identifying identical sets of data
such as RAM pages both within individual checkpoints as well as across check-
points these duplicates can be replaced with pointers to already persisted data.

libhashckpt [28] is hybrid checkpointing solution that uses both incremental check-
pointing with page protection and hashing on GPUs to detect and deduplicate
identical RAM pages.

Shrinker [30] extends the deduplication concept across the boundaries of a sin-
gle VM. When migrating multiple VMs from one data center to another via a
WAN connection the high degree of duplication between VMs running the same
operating system is exploited to reduce the total amount of data that needs to be
transferred between the two sites.

Introspection uses knowledge of the guest OS’ internal state to reduce the size
of checkpoints. For example, by determining which RAM pages are not currently

2.3. QEMU 11

allocated by the guest’s memory management system these pages can be skipped
when storing a RAM image [31].

Park et al. [32] describe a method for deduplicating RAM pages against copies
that were already written to disk storage by the guest operating system itself. By
tracking the relation between the guest operating system’s page cache and disk
sectors the amount of RAM data that needs to be copied for a checkpoint is re-
duced drastically.

2.3 QEMU

QEMU [2] is a popular open source VMM. It runs on Linux, Mac OS X and
Windows as the host operating system. Guest operating systems do not need to be
modified in order to run inside QEMU.

QEMU can operate in one of two modes: software emulation using a component
called the Tiny Code Generator (TCG) [33] to perform dynamic translation of
code from instruction set to another or hardware-assisted virtualization using the
Linux Kernel module KVM [34].

TCG works by translating blocks of instructions from one instruction set to an-
other dynamically at runtime. This enables QEMU to simulate a wide range of
processor architectures on completely different hardware. TCG also rewrites in-
structions when the source and target instruction sets are the same e.g., when run-
ning an x86 VM on an x86 host machine. Here, TCG rewrites ring-1 instructions
to ring-3 instructions among other things (see Chapter 2.1.1).

In addition to simply reproducing the functionality of one hardware architecture
on another TCG can also be extended to introduce instrumentation code to the
blocks it translates. This enables use cases such as adding counters to all instruc-
tions that perform memory access (see Chapter 2.1.3). This makes QEMU in TCG
mode a candidate for SimuBoost’s simulation component.

KVM is a Linux Kernel module that exposes a CPU’s native virtualization fea-
tures (see Chapter 2.1.2) to processes running in user-space. When running in
KVM mode QEMU no longer performs any CPU instruction translation, instead
instructing KVM via the /dev/kvm device to switch the physical CPU in and
out of a "virtualized" mode. Execution in this mode requires the host and guest
systems to share the same architecture. Additional instrumentation on an instruc-
tion level is not possible. The execution speed is significantly higher than in TCG
mode. This makes it a candidate for SimuBoost’s virtualization component.

12 CHAPTER 2. BACKGROUND

QEMU manages a set of virtual devices such block devices backed by disk images
and virtual network interfaces. Other than the CPU the virtual hardware presented
to a guest operating system is the same when operating QEMU in TCG or KVM
mode. This is what makes QEMU particularly interesting for SimuBoost: VM
states generated in a virtualized environment can potentially be transferred to an
equivalent simulated environment.

Disk images containing the guest operating system are usually stored in the qcow2
format. This format supports sparse storage, i.e., it only takes up disk space that
the guest operating system actually uses. This way, an emulated 100 GB disk
might occupy only a few hundred megabytes on the host. The qcow2 format also
allows the creation of overlay images that record the difference from a base image
file. This provides the possibility for reverting the VM disk’s contents to an earlier
state [35].

QEMU can save the entire state of a virtual machine in a so-called snapshot and
restore it a later point in time. This and many other actions can be controlled from
the QEMU Monitor console. This console provides a command-line interface
called the Human Monitor Protocol (HMP) with commands such as stop, cont,
savevm and loadvm [36].

QEMU creates snapshots by iterating over each virtual device and instructing it
to serialize its current state. For most devices such as the network interface this
consists of a simple copy of the memory used to hold its state. For the VM’s
RAM, which is also represented as a device in QEMU’s architecture, a complete
copy is dumped. QEMU’s default snapshot feature does not support incremental
RAM snapshots. For block devices the snapshot feature relies on the underlying
image format to preserve the state of a specific point in time e.g., qcow2’s copy-
on-write functionality. The other snapshot data is then embedded within the same
image file, grouping all data required to resume the VM’s execution later in a
single place.

2.4 Simutrace

Simutrace [37] aims at establishing technologies to overcome current limitations
inherent to full-system simulation, such as a lack of detailed tracing capabilities
and slow execution speeds.

2.4. SIMUTRACE 13

2.4.1 Storage Server

The main component of Simutrace is a framework for efficient tracing of memory
accesses and other system events.

The framework uses a client-server architecture. The client is implemented as an
extension of an existing full-system simulator, which traces the desired events and
submits them to the server. The server, called storage server, handles tasks such
as compression, storage and data retrieval for analysis.

The storage server uses a modular design, which makes it easily extensible:

Streams represent continuous sets of elements such as trace events. New element
types with fixed or variable lengths can be registered. They are identified
by Globally unique idendifiers (GUIDs).

Encoders process the elements of a stream. They can perform tasks such as
compression or deduplication. New encoders can be added to the storage
server. They are associated with specific stream element types.

Stores are responsible for the on-disk persistence of streams. New stores can
be added to the storage server. They are addressed by storage specifiers,
consisting of a prefix identifying the store to use and the file path controlling
where the store places its files.

2.4.2 SimuBoost

Another concept of Simutrace is SimuBoost [5]. SimuBoost aims to overcome the
execution speed limitations of functional full-system simulators.

Full-system simulation is generally not parallelizable because the specific instruc-
tions executed at any point of the simulation as well as the input and output data for
these instructions may depend on the results of previous instructions. However,
by running a workload using hardware-assisted virtualization (see Chapter 2.1)
and creating checkpoints in regular intervals (see Chapter 2.2) starting points for
multiple parallel simulations can be efficiently "precomputed".

Each of these simulations then re-executes the same instructions that were exe-
cuted by the virtualization during a specific interval of the workload, now option-
ally performing additional tracing. Figure 2.1 illustrates how multiple simulations
are executed in parallel distributed across nodes in a cluster.

14 CHAPTER 2. BACKGROUND

…

Interval 3Interval 2

Interval 2

Interval 1

Interval 1

Virtualization SimulationLegend:

Server

Node #1

Node #2

Figure 2.1: Checkpoints are created at the boundary of each interval and seed new
simulations.

In order to ensure that these simulations to not diverge from the original virtualiza-
tion any non-deterministic events that occur in the virtualization need be recorded
and then replayed at precisely the same time in the simulations.

There currently does not exist an implementation of SimuBoost. The SimuBoost pa-
per [5] provides a formal model that predicts the speedup achievable by an imple-
mentation.

Let n := the number of intervals, L := the checkpointing interval, slog := the
slowdown factor caused by logging non-deterministic events in the VM, tc := the
constant VM downtime for a checkpoint, ti := a simulation’s initialization time,
Tvm := the workload’s run-time with virtualization and Tsim := the workload’s
run-time with conventional full-system simulation.

The total run-time of a parallelized simulation Tps is assumed to be the run-time
of the entire virtulization including checkpointing followed by the simulation of
the last interval. Figure 2.2 visualizes this relation.

i[1] i[1]

Virtualization

i[k]

t

vCPU
Node 0

i[1]i[n] i[1]i[n] Simulation

Ltc ti

Tps

ssimLslog
1Tsim =n

Figure 2.2: "Overview of Parameters. The simulation of the last interval is sched-
uled on the virtualization node." [5]

2.4. SIMUTRACE 15

This can be expressed as:

Tps(L) = slogTvm(
tc
L

+ 1) + ti +
ssim
slog

L (2.1)

The achievable speedup would then be:

S(L) =
Tsim
Tps(L)

=
slogTvm · ssimL

s2logTvm(tc + L) + slogtiL + ssimL2

(2.2)

The paper calculates the number of nodes required to achieve an optimal degree
of parallelization as:

Nopt = N(Lopt) with

N(L) =

⌈
ti + ssim

slog
L

tc + L
+ 1

⌉
and

Lopt =

√
s2logTvmtc

ssim

(2.3)

As a guiding sample the paper’s authors chose Tvm = 3600s, ssim = 100,
slog = 1.08, tc = 0.1s and ti = 1s. Using these values Nopt is calculated to
be 90 with a speedup of 84. Baudis [6] presents a prototype implementation of
the checkpointing component of SimuBoost to help determine a real-world value
for tc.

16 CHAPTER 2. BACKGROUND

Chapter 3

Analysis

In this chapter we analyze the SimuBoost concept presented in the SimuBoost pa-
per [5] and the checkpointing prototype presented by Baudis [6]. We identify bot-
tlenecks in the current implementation and compare possible alternatives.

3.1 Requirements

SimuBoost uses hardware-assisted virtualization and checkpointing at regular in-
tervals to quickly generate snapshots of multiple points in time during the execu-
tion of a workload. These snapshots can then be distributed across a cluster of
worker nodes to perform full system simulation. This effectively parallelizes an
inherently sequential task (see Chapter 2.4.2).

The formal model presented in the SimuBoost paper [5] predicts the speedup achiev-
able compared to sequential execution of the entire workload in a full system sim-
ulator.

Downtimes caused by checkpointing prolong the execution of the virtualization,
which is a non-parallel process. This in turn delays the execution of simula-
tions thereby reducing the achievable speedup. Increasing the interval length and
thereby reducing the number of checkpoints reduces the relative impact of down-
times. However, the degree of potential parallelization is lowered. Figure 3.1
visualizes this relation.

This motivates our goal of minimizing the downtime caused by checkpointing.
We aim to achieve a downtime lower that 100ms because:

17

18 CHAPTER 3. ANALYSIS

60

75

90

0 10

a) c)

b) Max
Speedup

Lopt

a)

b)

c)

Virtualization

Virtualization

Virtualization

Sim

Simulation

Simulation

Lopt

tc L ti
ssim

TotalVrun-time Tps

Lslog

S
pe

ed
upV

IntervalVVLengthV[s]

Figure 3.1: "The right interval length is crucial for an optimal speedup (b). With
too short intervals (a) the VM downtime dominates and the speedup rapidly de-
creases. Too long intervals (c) do not parallelize optimally." [5]

• The original SimuBoost paper [5] assume a 100ms downtime in their theo-
retical model, based on the 100ms upper bound demonstrated in Remus’ [26]
implementation of a VM checkpointing system.

• Downtimes below 100ms would generally be perceived as instantaneous by
humans [38], allowing interactive use of a system. This is generally not
possible with full system simulation.

• Remus [26] shows that downtimes below 100ms generally do not affect a
VM’s network connectivity.

Thus, an effective implementation of SimuBoost depends on the ability to capture
the state of a VM in as little time as possible and then efficiently transfer it to
remote machines.

The recorded checkpoint data may be intended for deferred use rather than imme-
diate seeding of simulations. This necessitates long-term persistent storage.

Virtual machine RAM sizes are often in the gigabyte ranges. Therefore, storing
entire RAM snapshots on-disk is cost prohibitive. Also, the disk IO required
to capture these magnitudes of data will likely not complete within the 100ms
timeframe we allocated.

This motivates a secondary goal of our design: The amount of on-disk storage
used by a SimuBoost implementation must remain within "reasonable" limits.

3.2. QUEUING 19

3.2 Queuing

The formal model for SimuBoost presented in Chapter 2.4.2 assumes that there are
a sufficient number of simulation nodes available to meet any demands without
queuing (Nopt)). In this chapter we present a modified version of this model that
accounts for a limited number of available simulation nodes. This allows us to
evaluate the concept with a more constrained hardware setup and shows whether
it remains viable in such scenarios.

As shown in Figure 3.2, to achieve maximum parallelization new simulation nodes
are needed until the first interval simulation finishes. This means that, let N :=
number of available simulation nodes, the following condition must be met:

N ≥ Nopt(L) =
ti + ssim

slog
L

tc + L
(3.1)

i[1] i[1]

Virtualization

i[2]

i[1]i[1] Simulation

t

vCPU
Node 0

Node 1

i[1]i[k]

NodegN i[1]i[2] Simulation

ti +tc + L

i[1]i[n] i[n] ...

NodegN+1 i[1]i[k] Simulation

i[k] Simulation

ssim Lslog

Figure 3.2: "New simulation nodes are needed until the first interval simula-
tion finishes. Subsequent intervals can be scheduled onto previously allocated
nodes." [5]

This equation assumes that the checkpointing downtime always remains constant.
However, incremental checkpointing approaches as used by the prototype pre-
sented by Baudis [6] invalidate this assumption. Therefore, we decided to replace
the constant downtime factor tc with a checkpointing slowdown factor scp. This
allows us to accommodate for a checkpointing mechanism with a downtime that
depends on the interval length L. This represents the increased number of dirty
pages that accumulate during a longer interval. All instances of tc+L are replaced
with scpL.

20 CHAPTER 3. ANALYSIS

Applying this replacement and assuming the number of nodes is insufficient we
get the following condition for the applicability of our modified model:

N < Nopt(L) =
ti + ssim

slog
L

scpL
(3.2)

Figure 3.3 illustrates how simulation jobs could be queued and executed when the
number of nodes is insufficient.

Interval 4

Interval 4Interval 3

Interval 3

Interval 2

Interval 2

Interval 1

Interval 1

Virtualization SimulationLegend:

Server

Node #1

Node #2

Figure 3.3: When a new simulation job becomes available it is dispatched to a free
node in the cluster. If there are an insufficient number of nodes available this can
cause a backlog to form. Compare to Figure 2.1 where we assume an unlimited
number of nodes.

Since new simulation jobs are now generated faster than they can be processed
we can assume that the workload will be distributed roughly equally among the
available nodes. This means each individual node will be busy for a duration of:

Tbusy(N,L) =
n(ti + ssim

slog
L)

N

=

slogTvm
L

(ti + ssim
slog

L)

N

=
Tvm(slogti + ssimL)

N · L

(3.3)

The last node will start working when the N th checkpoint has become available
at:

Tlast(N,L) = N · scpL (3.4)

3.2. QUEUING 21

The simulation is finished when the last node is finished. Therefore the parallel
simulation time for a constrained number of nodes is:

Tps(N,L) = Tlast(N,L) + Tbusy(N,L)

= N · scpL +
Tvm(slogti + ssimL)

N · L
(3.5)

The achievable speedup can then be computed as:

S(N,L) =
ssimTvm
Tps(N,L)

=
N · L · ssimTvm

N2 · scpL2 + Tvm(slogti + ssimL)

(3.6)

To find the optimal interval length depending on the number of available nodes N
we solve δ

δL
S(N,L) = 0 for L and exclude negative results:

Lopt(N) =

√
scpslogTvmti

N · scp
(3.7)

In order to determine for which values of N our assumption of an insufficient
number of nodes holds we define the following helper function:

Ndemand(N) = Nopt(Lopt(N))−N (3.8)

Positive values for Ndemand indicate our model is applicable, negative values indi-
cate the original model presented in Chapter 2.4.2 is applicable.

Figure 3.4 plots Lopt(N) and Ndemand(N) using sample values for the previously
introduced constants. This illustrates that the optimal interval length quickly drops
as the number of available nodes increases.

This analysis only optimizes the total simulation runtime. It does consider the
downtime requirements specified in 3.1. While very long intervals may increase
parallelizability for a limited number of nodes they could also lead to noticeable
delays during checkpointing, limiting the interactivity of the system.

22 CHAPTER 3. ANALYSIS

N

40302010

60

50

40

30

20

10

0

Legend:

Lopt(N)

Ndemand(N)

ssim

slog

scp

Tvm

ti

:=731
:=71
:=71.024
:=7900
:=73.7

Figure 3.4: Given the sample values, our model is valid for up to 32 nodes
(Nopt(32.3) ≈ 0). Optimal interval lengths based on the number of available
nodes range from Lopt(1) ≈ 57 to Lopt(32s) ≈ 1.8s.

3.3 Prototype

The checkpointing prototype presented by Baudis [6] is implemented as a modifi-
cation of QEMU [2].

The prototype runs QEMU in KVM mode [34] to generate checkpoints. A check-
pointing thread pauses the execution of the virtual machine in regular intervals
and creates an incremental checkpoint. This is accomplished by iterating over all
RAM pages and disk sectors that have been modified since the last checkpoint
and storing them along with a cumulative view of the current state. The presented
implementation deduplicates the pages and sectors using an in-process hashmap
(see Chapter 3.3) before using MongoDB [7] as an external database for storing

3.3. PROTOTYPE 23

them.

3.3.1 Incremental checkpointing

Incremental checkpointing greatly reduces the amount of data that needs to be
stored for each checkpoint. This serves two of the requirements identified in
Chapter 3.1: keeping the VM downtime short and limiting the amount of on-disk
storage required.

Write accesses to RAM pages and disk sectors are tracked while the VM is run-
ning to avoid time-consuming checks during VM downtimes. Baudis [6] shows
that on average only 5 to 10% of a VM’s RAM needs to be saved for a checkpoint.

Using incremental checkpoints, however, makes loading an arbitrary checkpoint
more difficult since data from all previous checkpoints may be required to recon-
struct a complete VM snapshot. A linear walk through all checkpoints, applying
the recorded changes one by one, is unsuitable for SimuBoost since this would
cause a linear increase in simulation setup time.

Baudis [6] solves this problem by storing a complete map of the VM’s RAM and
disk states for each checkpoint. Rather than embedding the actual RAM pages
and disk sectors in these maps, the prototype stores keys that uniquely identify
the underlying data. This approach makes it possible to completely reconstruct
a checkpoints state without having to scan through all previous checkpoints. By
storing keys instead of the actual data for each checkpoint the space savings of
the incremental checkpointing approach remain intact. Figure 3.5 illustrates the
employed data structure.

Checkpoints

DataHeaders

Block Headers

Index

Data(Hashes)

Device State
Headers

Index

Data

Memory Headers

Index

Data(Hashes)

Hash

Data

Figure 3.5: "The database layout. Headers are accessed by a sequentially in-
creased index and reference data entities, which are accessed by their hash." [6]

24 CHAPTER 3. ANALYSIS

3.3.2 Deduplication

Chapter 3.3.1 introduced the concept of RAM and disk state maps that store keys
pointing to data rather than the data itself. Baudis [6] uses hashes of RAM pages
and disk sectors (using a hash function that is assumed to be collision-free for this
purpose) to generate these keys.

Using hashes over the actual contents of the pages and sectors enables additional
deduplication beyond the deduplication already achieved by excluding data that
was not changed since the previous checkpoint. Baudis [6] shows great potential
for deduplication of RAM pages and disk sectors both within single checkpoints
and across checkpoints. Using the incremental data an additional 15 to 55% could
be eliminated using inter-checkpoint deduplication.

Park et al. [32] demonstrate that there is also significant potential for deduplica-
tion RAM storage against disk IO. This may effectively reduce the checkpointing
problem to efficiently capturing RAM state.

3.3.3 Database

The RAM pages and disk sectors need to be stored in a way that meets the follow-
ing requirements:

Addressable The pages and sectors need to be addressable by a key (i.e., their
hash value as stored in the state maps) so that checkpoint states can be
reconstructed as described in Chapter 3.3.1.

Linear lookup speed Retrieving a page or sectors must be possible in linear time
to avoid checkpoint reconstruction becoming a bottleneck once a significant
amount of checkpoints have been recorded.

Network accessible The pages and sectors must be retrievable via the network
because the SimuBoost design executes simulations on remote worker nodes
in a cluster.

These requirements lead to choosing a database management system (DBMS),
specifically the subgroup of key-value stores. Baudis [6] uses MongoDB for this
purpose.

Prior to communicating with MongoDB via TCP the prototype uses an in-process
cache in form of a red-black tree for fast lookup. If an entry already exists in the
tree it can be pruned. If it is new the corresponding unhashed data is stored in the
database.

3.3. PROTOTYPE 25

We measured the average downtime of presented implementation with our refer-
ence hardware and workloads used in Chapter 6 to be approximately 500ms. This
fails to meet the requirements described in Chapter 3.1.

Baudis [6] shows that the downtime during checkpointing is dominated by com-
munication with the database, accounting for 40%-60% of the time per check-
point. In Chapter 3.4 we explore alternatives to MongoDB as potential solutions
for this issue.

3.3.4 Distribution

Once a checkpoint has been stored the execution of the virtual machine is re-
sumed.

Each checkpoint can then be distributed to a worker node running QEMU in
TCG[33] mode. The nodes acquire the checkpoint data directly from the Mon-
goDB instance via the network. Figure 3.6 illustrates the communication between
the components involved.

Node #1

QEMU

Server

QEMU + Cache

Database

TCP/in-process

Node #2 Node #3

…

TCP TCP

Process

Machine

Legend:

Incremental
checkpoints

Pages,
sectors, …

Virtualization SimuBoost

Simulation IPC

Deduplication

QEMU QEMU

MongoDB,
LevelDB,

Kyoto Cabinet

TCP

Figure 3.6: The checkpointing implementation presented in [6] implements dedu-
plication inside the QEMU process. It stores the deduplicated checkpoint data in a
database running on the same physical machine. Simulation nodes can reconstruct
checkpoints by retrieving the relevant data from the database via the network.

26 CHAPTER 3. ANALYSIS

The prototype implementation does not handle the automatic dispatching of newly
generated checkpoints to worker nodes. It also does not attempt to record and
replay non-deterministic events. Furhtermore, the underlying QEMU version is
not capable of loading snapshots generated in KVM mode when in TCG mode.

3.3.5 Goals

The analysis of the presented checkpointing prototype motivates the following
goals for this work:

We aim to reduce the downtime causing by VM checkpointing to ensure a high
speedup can be reached.

We wish to implement automatic dispatching of checkpoints to worker nodes in
order to measure the interactions between simultaneous checkpoint creation and
loading.

We wish to evaluate the overall feasibility of SimuBoost by performing complete
virtualization+simulation runs and comparing the achieved speedup with the the-
oretical predictions of [5].

3.4 Databases

The incremental checkpointing (see Chapter 3.3.1) and deduplication (see Chap-
ter 3.3.2) concepts have proven to be sound. However, as mentioned in Chap-
ter 3.3.3, the presented checkpointing approach suffers from too long downtimes.
In this chapter we analyze possible alternatives to the existing storage mechanism
to reduce this downtime.

The deduplication concept encodes checkpoints as maps of addresses (RAM pages
or disk secors) to hash values. This means means we need to account for two types
of storage: State maps and a hash table.

The state maps are a growing set of tables which are immutable once written. The
maps in the set must be quickly addressable by the checkpoint index they are as-
sociated with. The complete contents of individual maps will be read sequentially
when restoring checkpoints.

The limited number of individually accessible and sequentially addressable data
blocks map naturally to the concept of files in a file system. A distributed file

3.4. DATABASES 27

system such as the Network File System (NFS) could be used to share them with
distributed simulation nodes.

The hash table maps the hash values to the actual deduplicated data. New en-
tries are constantly added, necessitating fast insert operations. Each incremental
checkpoint provides only a subset of all pages and sectors required to reconstruct
a complete snapshot of a virtual machine’s state (see Chapter 3.3.1). Therefore,
fast loading of checkpoints requires fast random-access when reading from the
hash table.

Since each entry in the hash table needs to be individually retrievable classic file
system are unsuitable for the task. Their performance is usually severely degraded
when storing billions of individual files in a directory. Databases on the other
hand are capable of handling such large data sets while providing fast insert and
random-access retrieval operations. Many DBMS’ also provide network inter-
faces. Therefore a database would be suitable for storing both the state maps and
the hash table.

The amount of RAM of the host system may not be sufficient to hold the entire set
of checkpoints for the duration of the simulation, requiring some form of on-disk
persistence. Conservative estimations based on data provided by Baudis [6] show
that data from 30 minutes of checkpointing could easily exceed 16GB despite
deduplication. Additionally, the simulations may be spawned at a later point in
time rather than during the creation of the checkpoints. The system storing the
checkpoints may be taken offline in the meantime, again necessitating on-disk
persistence. Therefore, a DBMS to be used for SimuBoost must not be an in-
memory only solution.

3.4.1 MongoDB issues

Baudis [6] determined that storing checkpoint data in MongoDB accounted for
40%-60% of the downtime. Possible explanation for this observation might be:

MongoDB is a document database [39] rather than a plain key-value store. The
additional data structures associated with each entry in the database may cause a
certain overhead.

MongoDB encodes data using BSON (a binary-encoded serialization of JSON-
like documents [40]). While BSON is designed to be lightweight and efficient, the
necessity to wrap every single RAM page and disk sector in an additional data
structure may contribute to the slowdown.

28 CHAPTER 3. ANALYSIS

The journaling mechanism employed by MongoDB ensures on-disk consistency
in case of unexpected termination, e.g., caused by power failure [39]. While this
is usually a desirable trait for a database, it serves no purpose for SimuBoost since
any failure during the checkpoint writing phase would interrupt the execution of
the virtualization as well. MongoDB’s journal can thus be deactivated.

Baudis [6] executed QEMU and MongoDB on the same physical machine. How-
ever, the two processes communicated via TCP/IP on the loopback interface rather
than using a low-overhead IPC method such as shared memory.

3.4.2 Alternatives

Since we have established that databases, key-value stores in specific, are a good
match for our storage requirements in principle but MongoDB has proven to be
unsuitable, we attempted to identify potential alternative databases. We applied
the following criteria for our candidates:

Simple key-value design The database should be a simple key-value store rather
than a complex document store in order to avoid overhead caused by addi-
tional data structures or encodings.

On-disk persistence The database must provide on-disk persistence rather than
operate solely in-memory. This is required to enable deferred use of check-
points rather than immediate seeding of simulations (see Chapter 6).

Swapping to disk In addition to simply duplicating its entire state to the disk
the database should also be able to swap out currently unused parts of its
working set to reduce the amount of physical RAM required.

In-process In order to avoid the need for IPC altogether, the database should be
a library embeddable into a host application.

Network accessible The database should provide its own network interface. Oth-
erwise we would have to implement our communication scheme to transfer
RAM pages and disk sectors to remote worker nodes in a cluster.

In Table 3.1 we compare a set of commonly used key-value stores against these
criteria.

Redis is not a suitable candidate due to its inability to swap parts of its working
set to on-disk storage. The same holds true for Memcached.

LevelDB meets all criteria except providing a network interface. Kyoto Cabinet
meets all requirements. The in-process component is accompanied by a stan-

3.4. DATABASES 29

Simple Persistence Swapping Network In-process
MongoDB [7] No Yes Yes Yes No
Redis [41] Yes Optionally[42] No Yes No
Memcached [43] Yes No No Yes No
LevelDB [44] Yes Yes Yes No Yes
Kyoto Cabinet [45] Yes Yes Yes Yes Yes

Table 3.1: Comparison of the following database properties: Simple key-value
design, on-disk persistence, swapping to disk, network accessible and in-process
execution.

dalone server called Kyoto Tycoon [46].

3.4.3 Measurements

We replaced MongoDB in Baudis’ [6] implementation with LevelDB and Kyoto
Tycoon and measured each database’s respective impact on the downtime.

We executed a sample workload consisting of a Linux kernel build in QEMU
creating checkpoints in two second intervals using each of the databases. This
workload is similar to one of the workloads chosen for the evaluation in [6] and
taxes both RAM and the disk.

We also ran a modified version of the experiment where we write the dedupli-
cated RAM pages and disk sectors directly to an append-only flat file. Here, the
databases were only used to store the state maps. Writing the data to a flat file
provides a lower bound for the databases’ IO. This enables us to evaluate the
overhead caused by the databases on-disk indexing structures.

Finally, we ran another modified version of the experiment where we performed
a simple memcpy of all modified RAM pages and disk sectors rather than dedu-
plicating and storing them. The databases were again only used to store the state
maps (see Chapter 3.3.1). This scenario serves two purposes: First, by copying all
pages without first deduplicating them we are able to determine whether delaying
the deduplication until after the VM has resumed execution is feasible or causes
the copy phase to take too long. Second, memcpy provides a lower bound for
iterating over all modified pages and sectors.

The results are displayed in Table 3.2.

MongoDB, in its configuration as used in [6], took approximately 1.5s. By deacti-
vating the journal (see Chapter 3.4.1) we were able to reduce this to approximately

30 CHAPTER 3. ANALYSIS

Deduplicate + store Deduplicate + flat file memcpy
MongoDB (with journal) 1 475 ms - -
MongoDB (no journal) 1 004 ms 861 ms 327 ms
LevelDB 13 167 ms 896 ms 307 ms
Kyoto Cabinet 1 078 ms 987 ms 324 ms

Table 3.2: The average VM downtime using different databases and varying the
way the data is processed.

1s.

LevelDB, despite being a simple key-value store and running in-process, turns
out to be considerably slower than MongoDB for this use-case, taking over 13s
on average. This can likely be attributed to LevelDB’s on-disk structure being
lexicographically sorted [47]. While this improves the lookup speed for random
keys it considerably slows down write access and is not well suited to keys of
identical length such as hashes.

Kyoto Cabinet achieves performance similar to MongoDB. This indicates that
switching away from a document-oriented database and using in-process exe-
cution rather than loopback TCP/IP communication does not impact the perfor-
mance of our use-case significantly.

When using a flat file to store the actual RAM page and disk sector data the choice
of the database has only a negligible influence on the downtime. This is to be ex-
pected since the database is now only handling state maps. Creating checkpoints
in this fashion requires approximately 900ms on average for all databases. This
value is lower than those achieved by using any of the databases to store the actual
data. The databases’ on-disk indexing structures are stressed much more strongly
when storing key-value pairs for every RAM page and disk sector instead of just
state maps. Therefore we can conclude that these indexing structures contributes
significantly to the VM downtime with the MongoDB scenario taking 14% longer
when the database is used without a backing flat file. Kyoto performs slight better
with an 8% slowdown, while LevelDB’s lexicographically-sorted on-disk format
suffers the worst requiring 93% more time.

When performing a memcpy of all dirty pages and sectors without performing
deduplication first the choice of database also becomes largely irrelevant. The
process takes approximately 320ms on average. This result shows us that simply
copying all modified data during the downtime and performing the deduplication
later would significantly shorten the downtime.

3.5. CONCLUSION 31

3.5 Conclusion

Chapter 3.2 shows that the SimuBoost concept remains theoretically viable even
with a limited number of available simulation nodes.

Chapter 3.3 elaborates that the existing incremental checkpointing and dedupli-
cation schemes are highly effective and contribute to reducing the checkpointing
downtime.

However, as shown in Chapter 3.4, existing database solutions do not meet the
performance requirements specified in Chapter 3.1.

Performance measurements of flat file writing compared to databases indicate an
intrinsic overhead caused by database on-disk structures. While simply appending
data to a file optimizes write-performance databases also manage data structures
such as indexes to allow fast retrieval of specific datasets. Additionally databases
often provide network connectivity, enabling simultaneous retrieval of datasets
from multiple machines.

Performance measurements of memcpy indicate that simply copying the affected
RAM pages and disk sectors during the downtime for asynchronous processing
could decrease the downtime significantly.

32 CHAPTER 3. ANALYSIS

Chapter 4

Design

Based on the conclusions drawn in Chapter 3.5 we determined that the incremental
checkpointing and deduplication approaches are sound. However the database
employed by the prototype does not meet the performance requirements.

Our checkpointing design is based off of the existing prototype described in Chap-
ter 3.3. The primary goal of our new design is to reduce the length of the VM
downtime to 100ms or less to ensure SimuBoost achieves the desired speedup.
Based on our findings in Chapter 3.4 processing the checkpoint data asynchronously
is indicated to achieve this goal.

Using a simple append-only on-disk representation rather than a classic database
also promises to be beneficial. While this may harm read-performance, Chap-
ter 3.1 shows that write-performance has the greatest impact on the achievable
speedup. Since the reasoning for using a database presented in Chapter 3.3.3 still
holds we need a solution that provides equivalent functionality (e.g., network ac-
cessibility).

As an additional goal we wish to evaluate the viability of distributing simulations
across a cluster. The design must be able to determine when a checkpoint is
complete (i.e., available for simulation) and efficiently retrieve all data associated
with a checkpoint on a remote machine.

4.1 Checkpointing

The checkpointing prototype presented by Baudis [6] pauses the VM’s execution
in regular intervals. This allows for capturing a consistent snapshot of the VM’s

33

34 CHAPTER 4. DESIGN

state.

Checkpoints are created incrementally by storing only RAM pages and disk sec-
tors that have changed since the last checkpoint (see Chapter 3.3.1). Our design
keeps this concept unchanged.

Deduplicated RAM pages and disk sectors as well as maps of the RAM and disk
states for reversing the deduplication (see Chapter 3.3.1) are sent to a database for
storage and later retrieval.

4.1.1 Asynchronous processing

Baudis’ [6] design performs the following steps during the VM downtime:

1. iterate over all dirty RAM pages and disk sectors

2. calculate hash values for all dirty elements

3. deduplicate RAM pages and disk sectors

4. send the data to the database

In Chapter 3.4 we showed that copying all dirty RAM pages and disk sectors to
a separate area of RAM is considerably faster than performing deduplication and
then writing to a database.

Baudis [6] suggest using a copy-on-write mechanism to perform such a copy while
the VM has already resumed execution. For simplicity, our design uses the VM
downtime to copy all modified data and then immediately resumes the VM. The
data can then be deduplicated and stored asynchronously.

Figure 4.1 compares the previous design with our new design. This change moves
most of the slow work (deduplication and database access) out of the critical
path (i.e., the VM downtime) and replaces it with a very lightweight operation,
memcpy.

4.1. CHECKPOINTING 35

>
0

m
s

<
2

s
>

0
m

s
<

2
s

Ex
ec

u
ti

n
g

V
M

C
o

p
y

Ex
ec

u
ti

n
g

V
M

V
ir

tu
al

iz
at

io
n

Si
m

u
B

o
o

st
Le

ge
n

d
:

D
at

ab
as

e

R
A

M

2
s

1
0

0
m

s

D
ed

u
p

St
o

re

Ex
ec

u
ti

n
g

V
M

D
at

ab
as

e

2
s

~5
0

0
m

s

D
ed

u
p

St
o

re
Ex

ec
u

ti
n

g
V

M

2
s

2
s

C
o

p
y

Ex
ec

u
ti

n
g

V
M D

at
ab

as
e

2
s

1
0

0
m

s

D
ed

u
p

St
o

re

D
at

ab
as

e

2
s

~5
0

0
m

s

D
ed

u
p

St
o

re
Ex

ec
u

ti
n

g
V

M

Ti
m

es
p

an
:

1
m

s

C
ri

ti
ca

l t
im

es
p

an
:

1
m

s
O

n
-D

is
k

P
re

vi
o

u
s

d
e

si
gn

N
e

w

d
e

si
gn

V
M

 D
o

w
n

ti
m

e
V

M
 D

o
w

n
ti

m
e

V
M

 D
o

w
n

ti
m

e
V

M
 D

o
w

n
ti

m
e

A
sy

n
ch

A
sy

n
ch

Fi
gu

re
4.

1:
T

he
pr

ev
io

us
de

si
gn

[6
]

ha
lte

d
th

e
ex

ec
ut

io
n

of
th

e
V

M
to

de
du

pl
ic

at
e

di
rt

y
R

A
M

pa
ge

s
an

d
di

sk
se

ct
or

s
an

d
th

en
se

nd
th

em
to

th
e

da
ta

ba
se

fo
rs

to
ra

ge
.T

he
ne

w
de

si
gn

in
st

ea
d

co
pi

es
th

e
di

rt
y

pa
ge

s
an

d
se

ct
or

s
to

a
se

pa
ra

te
re

gi
on

in
R

A
M

an
d

th
en

re
su

m
es

th
e

ex
ec

ut
io

n
of

th
e

V
M

.T
he

de
du

pl
ic

at
io

n
an

d
da

ta
ba

se
st

or
ag

e
no

w
ha

pp
en

s
as

yn
ch

ro
no

us
ly

.

36 CHAPTER 4. DESIGN

Performing the checkpoint processing asynchronously introduces a new critical
path: The deduplication and storage should be completed before the next check-
point is created. There are a number of possible strategies for handling cases
where the previous checkpoint has not finished processing when the next one is
due.

We could accumulate checkpoint data for processing in a queue and handle it
using the producer-consumer pattern. This would ensure the checkpoint intervals
and VM downtimes remain uniform. If the problem persisted this might cause a
backlog of unprocessed checkpoints to form.

Alternatively, we could pause the VM and wait for the previous checkpoint to
finish processing. This would prevent a backlog from building up. However,
the increased downtime would have negative side effects: The speedup predicted
by the SimuBoost paper [5] would be lowered, interactive usage of the VM by
human operators might be impaired due to the VM becoming unresponsive at un-
predictable times, and network connections from inside the VM might be dropped
due to timeouts.

Finally, we chose an approach that prioritizes keeping the downtime short. We
keep the VM running and delay the next checkpoint until the previous one has fin-
ished processing. This sacrifices the uniformity of checkpoint intervals for rela-
tively constant downtimes. This approach also acts as a self-regulating mechanism
that effectively reduces the checkpointing frequency when the underlying system
is unable to cope with the volume of data captured. While it avoids queuing un-
processed checkpoints, the amount of data changed within a single checkpoint
created after a longer interval may be higher.

The asynchronous checkpoint processing can potentially compete for resources
with the execution of the VM. This can be easily mitigated by using a multi-
core system (SimuBoost’s design is only intended to handle single-core VMs [5]
leaving the other cores free to use) and using separate disks for storing the VM’s
disk image and checkpoints.

4.1.2 Storage

Chapter 3.4 indicates that while common databases provide interfaces suitable to
SimuBoost’s architecture, such as key-value stores, their performance characteris-
tics are unsuitable. We determined that writing to an append-only flat file instead
would achieve the desired performance.

Chapter 3.3.1 introduced the concept of RAM and disk state maps. These data

4.1. CHECKPOINTING 37

structures store deduplication keys for pages/sectors rather than the actual data.

Baudis [6] used the hashes of pages/sectors as keys, allowing for easy dedupli-
cation. A key-value store provides the means for storing the pages/sectors and
addressing them by their key.

If we were to apply the concept of flat file storage directly to the existing design we
would need to introduce an additional index data structure. This structure would
keep track of the offsets within the flat file that correspond to specific hash keys.
The index would need to be stored alongside the flat file. Figure 4.2 illustrates
such a set up.

Legend:
1 Address
Hash
Δ Offset
… Data

Array Fixed size

Variable size

RAM state
#
#
#
#
#
#

0
1
2
3
4
5

File

Flat
file

Δ

Table

Δ
Δ
Δ

#
#
#

Δ#

Index

Reference

Figure 4.2: The RAM state map is a fixed-size array that stores the hash key for
every VM RAM page. The index is an associative array mapping hash keys to file
offsets. The flat file contains all RAM pages in a continuous stream. The process
is equivalent for disk sectors.

We simplify this design by directly storing the offsets instead of the hashes in the
state maps.

The hash table still needs to be kept in memory to be able to perform deduplica-
tion. It makes it possible to quickly determine whether a specific entry has already
been encountered.

Our design does require the ability to reconstruct checkpoints after the system was
offline and volatile memory has been lost (see Chapter 3.4). However, we do not
need to continue recording checkpoints after the system was restored. Therefore,
there is no need to persist the hash table on-disk for later usage by the read phase.

Figure 4.3 illustrates the modified checkpoint writing process.

Elements (RAM pages or disk sectors) that were modified since the previous

38 CHAPTER 4. DESIGN

RAM
State

Checkpoint #2

Disk
State

User
data

RAM
state

Checkpoint #1

Disk
state

User
data

Checkpoint processing

…7

…

Incremental
checkpoint

Legend:

…3
…4

RAM pages

Disk sectors

User data

Array Fixed size

Variable size

RAM state
Δ
Δ
Δ
Δ
Δ
Δ

0
1
2
3
4
5

Disk state
Δ
Δ
Δ

2
7
9

Hashes

Δ
Δ
Δ

#
#
#

Δ#

File

Flat
file

Δ

Hash

Lookup/Add
3

7

…

…
#

Δ

Δ

Table

1 Address
Hash
Δ Offset
… Data Data flow

Figure 4.3: The checkpointing process deduplicates RAM pages and disk sectors
and stores them in a flat file.

checkpoint are hashed for deduplication. If a new element is added it is appended
to the flat file. The offset the element was stored at is recorded at the appropriate
index in the state map and added to the hash table. If, on the other hand, an exist-
ing element is encountered its offset is retrieved from the hash map. This offset is
then recorded at the appropriate index in the state map.

Once all elements of a checkpoint have been processed and applied to the state
maps a copy of these maps is stored on-disk. Creating these per-checkpoint file
copies of the state maps allows them to be easily restored when a checkpoint needs
to be loaded again. It also frees the in-memory representation of the state map for
further modification by the next incremental checkpoint.

Our design also includes a per-checkpoint storage space for "user data". This is
intended to hold any additional data that the VMM may require to completely
restore a VM’s state. This generally comprises various device states (see Chap-

4.1. CHECKPOINTING 39

ter 2.2) and VM metadata such as RAM size. Baudis [6] showed such data to
have a negligible size compared to other checkpoint data. Therefore, we apply no
deduplication to it and simply store the data unprocessed.

Baudis’ [6] design treats RAM pages and disk sectors in isolation from each other.
Park et al. [32] show that many RAM pages in a VM’s working set do not need
to be captured for a checkpoint because they have already been persisted to non-
volatile storage (i.e., disk sectors). The design presented by Park et al. detects
such deduplication opportunities by monitoring the state of the guest operating
system’s page cache.

We intend to achieve a similar deduplication of RAM pages against disk sectors.
However, unlike [32] our design does not use any knowledge of the inner workings
of the guest operating system. Instead we simply compare the hashes of dirty
sectors and pages against each other.

The size of a RAM page usually does not match the size of a disk sector. For
example, on the x86 architecture the page size is 4 KiB while the traditional size
for disk sectors is 512 bytes. In order to deduplicate these differently sized data
structures against each other we:

1. hash each RAM page as a whole for deduplication against other RAM
pages,

2. split each RAM page into equally sized parts (4 KiB / 8 = 512 Bytes) and

3. hash each of these parts separately for deduplication against disk sectors.

Due to the flat file and offset storage scheme introduced in Chapter 4.1.2 offsets
can reference parts of the file as disk sectors while another offset references the
same part as a RAM page. See Figure 4.4 for an illustration.

… … … … … … … …
…… …… …

Δ

Δ Offset

… Data

… Disk sector data

… RAM page data

Legend:

Figure 4.4: We store deduplicated RAM pages and disk sectors in a continuous
flat file. An offset within the file can point to a RAM page, a disk sector or both.

40 CHAPTER 4. DESIGN

4.2 Distribution

SimuBoost’s design calls for a mechanism for distributing simulation jobs across a
cluster (see Chapter 2.4.2). We use the following terminology for our distribution
design:

Server The machine running the hardware-assisted VMM producing checkpoints.
This machine is not part of the cluster.

Nodes The machines running simulation instances consuming checkpoints. These
machines are part of the cluster.

We distinguish between two main use-cases:

Immediate parallelization Simulations are dispatched to worker nodes as soon
as a checkpoint from the virtualization has been created and processed. Vir-
tualization and simulation run in parallel.

Deferred parallelization The virtualization is executed and checkpoints are
recorded without dispatching any simulations. The data is stored for par-
allel execution on a cluster at a later point in time. The system may be taken
offline in the meantime. The recorded data may also be transferred to a
different machine.

4.2.1 Transmitting checkpoints

The prototype presented by Baudis [6] stores the recorded checkpoints in a database.
This allows nodes to retrieve checkpoints via the database’s network interface.

First, the state maps for the specific checkpoint pointing to the deduplication keys
(see Chapter 3.3.1) are loaded from the database. Then every RAM page and disk
sector referenced in the maps is request from the database.

To avoid having to issue an individual database request for every single RAM page
(e.g., 262144 requests for 1GiB with 4KiB page size) and incur the associated
network roundtrip costs Baudis [6] uses:

Pipelining Combining multiple retrieval requests in a single database query.

Caching Keeping a cache of elements loaded from the database on the nodes.

In Chapter 4.1.2 we introduced flat file storage as an alternative to classic database
systems. Since we can no longer use a preexisting network interface we need to
design our own communication scheme. We considered a number of possibilities.

4.2. DISTRIBUTION 41

We could implement functionality equivalent to the database chosen by Baudis [6].
The node request individual RAM pages and disk sectors from the server. Pipelin-
ing and caching serve to reduce the number of requests sent over the network.
This option allows the network load to benefit from the checkpoint deduplication
performed earlier (see Chapter 4.1.2).

we could instead keep track of each node’s cache state on the server. The server
can then pair nodes with checkpoints in a way that minimizes the amount of un-
cached elements that need to be transmitted. This option reduces the network load
by grouping the execution of similar checkpoints together.

Finally, we could reconstruct entire snapshots of the VMs’ state on the server and
send them to the nodes en bloc. This option minimizes the number of network
roundtrips required as well as the amount of additional state that needs to be held.

We chose to reconstruct entire snapshots on the sever because this design makes no
assumptions regarding which checkpoints have how much state in common with
other checkpoints. It minimizes the amount of logic and additional RAM required
on the nodes. It also does not require fine-grained control over the distribution of
jobs to specific nodes. This makes it easier to use existing cluster management
tools.

However, this design does require a high-bandwidth network connection between
the server and nodes: For each simulation the system needs to transfer data equiv-
alent to at least the VM’s entire RAM size.

4.2.2 Loading checkpoints

Figure 4.5 illustrates process of loading checkpoints and reconstructing an en-
tire snapshot of the VM’s state. Compare this to the checkpoint creation process
illustrated in Figure 4.3.

The first step for loading a checkpoint in our design is to retrieve the RAM and
disk state maps (see Chapter 3.3.1) for the corresponding checkpoint from on-disk
files.

These state maps then provide the offsets needed to retrieve the actual data from
the flat file. By seeking in the flat file and copying the stored RAM pages to a
contiguous set of memory we can reconstruct the VM’s RAM.

When loading the VM’s disk state our design also intends for the reconstructed
snapshot to contain all relevant sectors rather than only the ones modified since
the last checkpoint. However, due to the very large size of disk storage compared

42 CHAPTER 4. DESIGN

RAM
State

Checkpoint #2

Disk
State

User
data

RAM
state

Checkpoint #1

Disk
state

User
data

Checkpoint
loading

…
…
…
…
…
…

0
1
2
3
4
5

…

RAM pages

Disk sectors

User data

Complete
snapshot

RAM state
Δ
Δ
Δ
Δ
Δ
Δ

0
1
2
3
4
5

Disk state
Δ
Δ
Δ

2
7
9

Flat
file

Δ

…
…
…

2
7
9

Reconstruct

Legend:

Array Fixed size

Variable size

File

Table

1 Address
Hash
Δ Offset
… Data Data flow

Figure 4.5: Checkpoints are reconstructed from RAM and disk states pointing to
flat file offsets.

to RAM, our design transfers a sparse set of sectors to the nodes rather than a
complete image as it used for the RAM state.

This sparse set contains all sectors that were modified since the start of the check-
pointing process but not necessarily all sectors contained in the original VM’s disk
image. Therefore, all cluster nodes must have access to an identical copy of the
disk image used by the server when originally creating the checkpoints.

4.3 Conclusion

The design we presented in Chapter 4.1.1 reduces the VM downtime caused by
checkpointing by performing the deduplication asynchronously. This contributes
to the speedup predicted by the original SimuBoost paper [5].

The flat file storage scheme introduced in Chapter 4.1.2 improves the disk write

4.3. CONCLUSION 43

speed. The deduplication of disk sectors against RAM pages further reduces the
amount of data that needs to be stored. These improvements help ensure the asyn-
chronous portion of the checkpointing process can be completed before a new
checkpoint is due.

The checkpoint distribution system designed in Chapter 4.2 allows us to expand
the checkpointing-only prototype to a full cluster-based solution. This enables
us to evaluate the complete SimuBoost concept and to observe the interactions
between the different components of the system.

44 CHAPTER 4. DESIGN

Chapter 5

Implementation

This chapter details how we implemented the design decisions from Chapter 4
and what difficulties we came across in doing so.

We use QEMU [2] as the VMM generating the checkpoints. This allows us to use
the existing implementation from Baudis [6] as a starting point.

In Chapter 4.1.2 we chose a flat file as an alternative to using a database such as
MongoDB for storage. In Chapter 4.2.1 we noted that we still need a network
interface for retrieving checkpoints on remote nodes.

We decided to implement our flat file scheme as an extension to Simutrace’s exist-
ing storage server (see Chapter 2.4.1). This allows us to use a preexisting network
infrastructure rather than having to develop our own.

Simutrace’s storage server supports communication via shared memory. This
means that sending checkpointing data to the server involves a memcpy. Since our
design for asynchronous processing of checkpoints in Chapter 4.1.1 already re-
quires such a copy step, we decided to move the deduplication logic from QEMU
to the storage server. This way QEMU can quickly offload all dirty RAM pages
and disk sectors to the storage server, which then, running as a separate process,
can deduplicate the data in parallel to the resumed VM.

We also use QEMU to run the simulations on the nodes. This simplifies loading
the checkpoints since no additional steps need to be taken to convert the VM
metadata used by the VMM (referred to as "user data" in our design) to a different
format.

In Chapter 4.2 we describe a concept for distributing simulation jobs across nodes
in a cluster. We use the Slurm [48] workload manager to manage the distribution

45

46 CHAPTER 5. IMPLEMENTATION

of these jobs. Slurm is widely used in computer clusters, making it a representative
choice for real-world usage.

Figure 5.1 illustrates the communication between the components of our imple-
mentation.

Node #1

QEMU

Node #2 Node #3

QEMU QEMU

Server

Storage Server

Shared Memory

TCP
TCP

TCP

Process

Machine

Legend:

Incremental
checkpoints

Complete
snapshot

Virtualization SimuBoost

Simulation IPC

Deduplication

QEMU

Figure 5.1: The QEMU instance running on the server is modified to send incre-
mental checkpoints to the storage server using shared memory. The storage server
performs deduplication and writes the data to disk. The QEMU instances running
on the cluster nodes are modified to retrieve complete snapshots reconstructed
from the checkpoints by the storage server via TCP/IP.

5.1 Virtual Machine Monitor

Our design calls for a Virtual Machine Monitor (VMM) for executing the hardware-
assisted virtualization. This VMM is to be extended with our checkpointing de-
sign.

5.1. VIRTUAL MACHINE MONITOR 47

We based our implementation on the modified version of QEMU 1.5.1 presented
by Baudis [6]. In principal, a different VMM could have been used if it supports:

• running VMs with hardware acceleration,

• pausing and resuming of VMs,

• capturing and restoring VM device states and

• tracking modifications to guest RAM pages and disk sectors.

5.1.1 Control

"When QEMU is running, it provides a monitor console for interacting with
QEMU." [36] Baudis’ [6] implementation added the following new commands to
this monitor:

• start-cp starts a checkpointing thread, which runs for the entire duration
of the checkpointing. It pauses the execution of the VM in regular intervals
to capture its state and then resumes it.

• stop-cp stops the checkpointing thread.

• load-cp loads the state of a previously captured checkpoint into the vir-
tual machine.

We extended these commands to take additional arguments such as the total num-
ber of checkpoints to record before terminating and where to store/load the check-
point data.

The monitor can be accessed from within QEMU or redirected to stdin/stdout.
We redirected the monitor in order to be able to automate the creation of check-
points on the server and the loading of checkpoints on the nodes.

5.1.2 Dirty tracking

QEMU’s snapshot feature does not support incremental RAM snapshots (see Chap-
ter 2.3). However, QEMU’s VM migration feature uses a data structure called
migration_bitmap. Whenever a write access to a guest page occurs QEMU
sets the corresponding bit in the migration bitmap. This makes it possible to
quickly identify all pages that have been modified within the last interval.

48 CHAPTER 5. IMPLEMENTATION

We enable this feature when checkpointing is active. During the downtime we
iterate over all pages indicated by the bitmap and copy them for later process-
ing. We then reset the bitmap before resuming the VM’s execution. For the first
checkpoint we consider all bits in the bitmap to be set. This ensures that the entire
snapshot of the VM’s RAM is available.

As mentioned in Chapter 4.2.2 our checkpointing design does not require check-
points to store an entire snapshot of the VM’s disk storage. Instead, only the
sectors that have been changed since the checkpointing process was started need
to be handled.

QEMU’s default disk image format, qcow2, supports sparse images (storing only
sectors that were actually written to) and copy-on-write (COW) for snapshots [35].
We use these features as follows:

1. We create a qcow2 base image on the server containing the workload to be
simulated.

2. We copy the image to each node.

3. When we are ready to activate the checkpointing feature we launch QEMU
with the -snapshot option, telling it to redirect all further modifications
to a temporary overlay file.

4. We configure QEMU to mark any modified sectors in the overlay image as
dirty.

5. We reset the dirty flags after each checkpoint.

This greatly simplifies tracking sectors that were modified during the execution of
an interval. We only have to iterate over the sectors allocated in the overlay image
when checking for dirty flags. Additionally, the initial checkpoint only needs to
include any sectors that were modified since the VM was started rather than all
allocated sectors.

Figure 5.2 illustrates the relation between the base image, the temporary overlay
image and the data stored for checkpoints.

5.1.3 Instruction count

Our design does not cover deterministic record and replay of events as it is re-
quired for a full implementation of the SimuBoost concept [5]. Therefore, execu-
tion in VMs loaded from checkpoints is likely to quickly diverge from the original
execution.

5.1. VIRTUAL MACHINE MONITOR 49

Copy-on-
write

Legend:

Dirty

1 Address
A Data

File

TableTemp

B
X
F

2
7
9

Base

d
e
f

7
8
9

a
b
c

1
2
3

X7
X
e
F

7
8
9

a
B
c

1
2
3

VM view Collected for
checkpoint

Figure 5.2: QEMU supports sparse disk images that only contain sectors that were
actually written to. The -snapshot option tells QEMU to redirect additional
modifications to a temporary overlay image. When searching for dirty sectors to
collect for a checkpoint only sectors contained in this overlay image need to be
considered.

QEMU running in TCG mode could act as a simulation system that can be ex-
tended with instrumentation code as described in 2.4. However, QEMU currently
does not support loading snapshots in TCG mode that were originally created in
KVM mode.

In order to be able to evaluate the SimuBoost concept we need to approximate
the execution of full-system simulations of each checkpoint interval. Execut-
ing instructions in a simulator generally takes much longer than execution with
hardware-assisted virtualization. We decided to measure the number of CPU in-
structions executed within the VM during each checkpoint interval. We use this
data as a basis for predicting whether the execution times of the simulations is
roughly constant for constant virtualization interval lengths.

We modified the Linux KVM kernel module [49] to count the number of CPU
instructions executed while in guest mode. We modified the vmx_vcpu_run()
function, which manages the context switch between host and guest mode. We
use the MSRs (model specific registers) for fixed-function performance counters
on the Intel Core architecture to enable the retired instruction counter [50]. We
capture the state of the counter immediately before KVM enters guest mode and
immediately after it leaves it again, accumulating the difference.

50 CHAPTER 5. IMPLEMENTATION

We measured the number of instructions executed between capturing the perfor-
mance counters and actually switching from and to guest mode and determined the
value to be constant at 69. By subtracting this value we gain an accurate measure
of the number of instructions executed by the VM.

Since KVM is a kernel module it cannot directly use the file system. Therefore,
we use KVM’s ioctl interface to pass the results back to QEMU in userspace.

5.2 Storage

In Chapter 4.1.2 we chose a flat file as an alternative to using a database such as
MongoDB for storage. In Chapter 4.2.1 we noted that we still need a network
interface for retrieving checkpoints on remote nodes.

We decided to implement our flat file scheme as an extension to the Simutrace
storage server (see Chapter 2.4.1). This allows us to use a preexisting network
infrastructure rather than having to develop our own. The Simutrace storage server
is designed to store traces generated during full system simulations. It enables the
selection of different storage backends that determine how the data is stored on-
disk.

We removed the deduplication and caching logic implemented in QEMU by
Baudis [6] and implemented it as new storage backend in the storage server in-
stead. This makes it possible to reuse the deduplication code with VMMs other
than QEMU.

Baudis [6] uses CityHash [51] as a fast, low-collision hash function for dedupli-
cation of RAM pages and disk sectors. We use FarmHash [52] instead, which has
been designated as the official successor to CityHash.

5.2.1 Timeline

Clients can communicate with the storage server using either shared memory or a
TCP/IP connection.

We use the shared memory functionality for communication between the QEMU
virtualization instance and the storage server. This removes the overhead of a
network stack when writing checkpoint data, the most time-sensitive part of our
design.

5.2. STORAGE 51

We use TCP/IP for communication between the storage server and the QEMU
simulation instances running on worker nodes. Using shared memory is not suit-
able here because the nodes are generally physically separate machines.

Figure 5.3 illustrates how we process checkpoint data in parallel.

1. The checkpointing thread in QEMU pauses the execution of the VM in reg-
ular intervals (see Chapter 5.1.1).

2. We copy any dirty (i.e., modified) RAM pages and disk sectors to the shared
memory used for communication with the storage server.

3. We use QEMU’s built-in snapshot feature to capture any additional device
states and VM metadata.

4. We resume the execution of the VM.

5. We "send" the collected data to the storage server. By virtue of using shared
memory this happens basically instantly, only requiring a buffer to be ex-
changed.

6. Our new storage backend in the storage server begins deduplicating and
storing the checkpoint data.

7. The checkpointing thread in QEMU blocks until the storage server finishes
processing the checkpoint.

8. The checkpointing thread sleeps the time remaining until the next check-
point is due.

52 CHAPTER 5. IMPLEMENTATION

R
cv

R
ec

o
n

st
ru

ct

R
cv

D
ed

u
p

R
cv

Sl
ee

p
C

o
p

y
Sn

d
Sl

ee
p

C
o

p
y

Q
EM

U
 C

o
n

su
m

e
r

#1

St
o

ra
ge

 S
e

rv
e

r

Ex
ec

u
ti

n
g

V
M

Pa
u

se
R

es
u

m
e

2
s

~2
0

m
s

~
0

~1
.8

s

Ex
ec

u
ti

n
g

V
M

2
s

P
ro

d
u

ce
r

C
o

n
su

m
er

 #
1 …

#n

Se
n

d

R
es

to
re

Ex
ec

u
ti

n
g

C
h

ec
kp

o
in

ti
n

g

TC
G

~1
0

s
~3

s

In
it

R
eq

u
es

t

R
es

u
m

e

C
o

m
p

le
te

Tr
ig

ge
r

Tr
ig

ge
r

…

…

K
V

M

C
h

ec
kp

o
in

ti
n

g

~3
0

s

~0
.2

s

V
ir

tu
al

iz
at

io
n

Si
m

u
B

o
o

st
Th

re
a

d
Si

m
u

la
ti

o
n

B
lo

ck
ed

Ex
ec

u
ti

n
g

V
M

Sn
d

D
ed

u
p

Sl
ee

p

Pa
u

se
R

es
u

m
e

2
s

~2
0

m
s

~
0

~1
.8

s

~0
.2

s

P
ro

ce
ss

Q
EM

U
 P

ro
d

u
ce

r

W
ai

t
C

o
m

p
le

te
W

ai
t

C
o

m
p

le
te

Le
ge

n
d

:

Fi
gu

re
5.

3:
W

e
pa

us
e

th
e

ex
ec

ut
io

n
of

th
e

V
M

in
re

gu
la

r
in

te
rv

al
s

fo
r

sh
or

tp
er

io
ds

.
T

he
st

or
ag

e
se

rv
er

pe
rf

or
m

s
de

du
pl

i-
ca

tio
n

in
pa

ra
lle

lt
o

th
e

ex
ec

ut
io

n
of

th
e

V
M

.S
im

ul
at

io
n

no
de

s
ar

e
se

rv
ed

by
se

pa
ra

te
th

re
ad

s
in

th
e

st
or

ag
e

se
rv

er
,w

hi
ch

re
co

ns
tr

uc
tt

he
ch

ec
kp

oi
nt

s.

5.2. STORAGE 53

If the deduplication process in the storage server takes longer than the intended
checkpointing interval the blocked checkpointing thread causes the next check-
point to be delayed, as intended by the design in Chapter 4.1.1.

Each simulation node is served by a separate thread on the storage server. This
makes it possible to reconstruct the checkpoints and send them over the network
for execution in parallel.

5.2.2 Streams

The Simutrace storage server uses data structures called streams for communica-
tion between the server and clients. Each stream represents a continuous set of
elements of a specific type (e.g., trace entries or in our case RAM pages).

When a client connects to the storage server it uses a storage specifier to control
how and where the data is persisted. The storage specifier consists of a prefix iden-
tifying the storage backend to use and the file path controlling where the backend
places its files.

Our new backend is identified by the prefix simuboost. It supports the follow-
ing stream types:

RAM pages This stream contains pairs of RAM page indexes (RAM addresses
divided by the page size) and the contents of the corresponding pages.

Disk sectors This stream contains pairs of disk sector indexes (disk addresses
divided by the sector size) and the contents of the corresponding sectors.

User data This stream contains an undifferentiated set of bytes. We use it store
QEMU’s built-in snapshots capturing any additional device states and VM
metadata.

Figure 5.4 illustrates how we represent checkpoints in these streams.

54 CHAPTER 5. IMPLEMENTATION

Q
EM

U
 S

e
rv

e
r

St
o

ra
ge

 S
e

rv
e

r

R
A

M
 p

ag
es

D
is

k
se

ct
o

rs

U
se

r
d

at
a

B
as

e
im

ag
e

COW

…… … … … … …

0 1 2 3 4 5

…

Q
EM

U
 N

o
d

e

R
A

M
 p

ag
es

D
is

k
se

ct
o

rs Overlay

…… … … … … …

0 1 2 3 4 5

… … … … … …

0 1 2 3 4 5

…

D
ed

u
p

St
o

re
Lo

ad

R
ec

o
n

st
ru

ct

In
cr

em
en

ta
l

ch
ec

kp
o

in
t

C
o

m
p

le
te

sn
ap

sh
o

t

Le
ge

n
d

:

Si
m

u
B

o
o

st
IP

C

P
ro

ce
ss

D
ir

ty
1

 A
d

d
re

ss
A

rr
ay

…
 D

at
a

…
3

…
4

Te
m

p

Fi
le

Ta
b

le

…
7

B
as

e
im

ag
e

U
se

r
d

at
a

Te
m

p … … …

2 7 9

… … …

2 7 9

… … …

2 7 9

Fi
gu

re
5.

4:
W

e
tr

an
sf

er
ch

ec
kp

oi
nt

s
as

st
re

am
s

of
R

A
M

pa
ge

s
an

d
di

sk
se

ct
or

s.
W

he
n

se
nd

in
g

da
ta

fr
om

th
e

se
rv

er
cr

ea
tin

g
th

e
ch

ec
kp

oi
nt

s
w

e
on

ly
tr

an
sf

er
di

rt
y

pa
ge

s
an

d
se

ct
or

s.
W

he
n

tr
an

sf
er

ri
ng

ch
ec

kp
oi

nt
da

ta
to

no
de

s
fo

rs
im

ul
at

io
n

w
e

se
nd

co
m

pl
et

e
sn

ap
sh

ot
s.

5.2. STORAGE 55

Simutrace streams are split into equally-sized segments. The default segment size
is 64MiB. Data from a stream is queued until a segment has filled up before it is
sent to the storage server.

Our current implementation processes incoming segments in the storage server
synchronously. This also causes the sending thread in QEMU to block until the
processing is complete. This does not block the execution of the VM since sending
segments is triggered on the checkpointing thread in QEMU after resuming the
VM’s execution (see Chapter 5.2.1).

However, if the amount of data accumulated by QEMU for a checkpoint exceeds
the size of a single segment this causes segements to be sent and execution to be
blocked before the VM is resumed. This would negate our parallelization efforts
and severely impact the downtime.

Therefore, we changed the segment size to accommodate the upper limit of the
expected number of dirty RAM pages for one checkpoint interval. Based on the
figures provided by Baudis [6] we chose a segment size of 256MiB. Optimizing
this value for different workloads may require a certain level of a priori knowl-
edge.

The first checkpoint is an intentional special case. Since it always captures all
RAM pages it is usually guaranteed to exceed the segment size. Keeping the VM
paused while this initial checkpoint data is deduplicated avoids overloading the
system with a backlog of data right at the beginning. Since this is a one-time
delay rather than occurring once for every checkpoint it does not contribute to the
slowdown significantly.

5.2.3 Data structures

We implemented the deduplication index described in Chapter 4.1.2 using the
C++11 data structure std::unordered_map. This data structure provides a
hash table with an amortized O(1) runtime for insert and lookup operations.

During early benchmarks we noticed periodic peaks in the checkpoint processing
time correlating with the workloads being executed in the VM. We were able to
determine that these peaks were caused by std::unordered_map reaching
an internal element count limit which triggered the creation of additional buckets.
The resulting rehashing of all previously inserted keys caused the process to stall
for up to 10s.

Switching to std::map, a balanced binary tree, would avoid these periodic de-
lays. However, the accompanying O(n log n) cost for inserts makes this choice

56 CHAPTER 5. IMPLEMENTATION

prohibitive for our insert-heavy usage pattern.

We were able to work around the issue by preallocating a sufficient number of
buckets for the std::unordered_map. Choosing an optimal value for the
number of buckets to preallocation requires a priori knowledge of the number
of unique (after deduplication) pages and sectors produced by a given workload.
However, conservative estimates should be sufficient for practical application.

5.2.4 IO

In Chapter 4.1.2 we described a scheme for writing the deduplicated RAM pages
and disk sectors to an append-only flat file. This serves to optimize IO throughput
by minimizing seeking. We use memory-mapped files to access the flat file.

When writing checkpoints this allows us to avoid issuing a system call for each
RAM page or disk sector to be stored, using simple memcpy calls instead.

When reading checkpoints any sectors that have not been swapped out to the back-
ing flat file by the operating system because of memory pressure will be accessible
instantly without having to issue a system call.

5.3 Cluster management

In Chapter 4.2 we describe a concept for distributing simulation jobs across nodes
in a cluster.

First, we need a tool that generates simulation jobs in response to the storage
server (see Chapter 5.2) finishing processing individual checkpoints.

We use the Linux daemon inoticoming [53] as a simple solution. inoticoming
monitors the file system for newly created files matching a specified pattern and
executes a custom command whenever one is found. We configured inoticoming
to detect the per-checkpoint state map files created by the storage server.

Next, we need a tool for managing the actual cluster. We use the Slurm [48]
workload manager to manage the distribution of the jobs created by inoticoming.
Slurm is widely used in computer clusters, making it a representative choice for
real-world usage.

In addition to using QEMU as our VMM for generating checkpoints (see Chap-
ter 5.1) we use QEMU to run the simulations. This simplifies loading the check-

5.3. CLUSTER MANAGEMENT 57

points since identical file formats are used for storing snapshots. Future imple-
mentations that add full-system simulation capabilities to the simulation stage
could operate QEMU in TCG [33] mode. These implementations would bene-
fit from the virtual hardware present in the virtualization and simulation stages
being very similar (see Chapter 2.3).

On the nodes Slurm starts instances of our modified QEMU version. These in-
stances then connect with the storage server and retrieve the data for the check-
point they were assigned. Each node has access to a copy of the VM’s original
disk image (see Chapter 5.1.2).

58 CHAPTER 5. IMPLEMENTATION

Chapter 6

Evaluation

In order to evaluate the implementation presented in Chapter 5 we performed a
number of measurements.

We analyzed the characteristics exhibited by different workloads during check-
pointing. This provides information on how different real-work use patterns im-
pact the performance of SimuBoost.

We measured the performance of our checkpointing implementation using criteria
like the VM downtime caused by checkpointing and the deduplication rate. This
data allows us to check whether the requirements set out in Chapter 3.1 have been
met.

We also measured the performance of our implementation when loading check-
points, i.e., the time required to distribute checkpoint data to simulation nodes.
This helps determine the kind of storage and network hardware required for our
use-cases.

Finally, we measured the total execution time of the distributed simulations. This
shows us the actual speedup achieved. Comparing these values with the predic-
tions made by the formal model presented in Chapter 3.2 allows us to assess the
viability of SimuBoost.

6.1 Methodology

As mentioned in Chapter 4.1 our implementation does not allow checkpoints cre-
ated by QEMU in KVM mode to be resumed in TCG mode. This restriction is

59

60 CHAPTER 6. EVALUATION

not due to a fundamental limitation but rather a thus-far unimplemented feature of
QEMU. For example, V2E [54] presents such an implementation.

In order to evaluate our implementation without such a KVM-to-TCG solution we:

1. completely transfer the reconstructed checkpoint data to the simulation nodes.
This ensures our evaluation accurately captures the IO interaction of writing
and reading checkpoints as well as any possible network contention.

2. artificially mark the nodes as busy for a precomputed time period. Ritting-
haus et al. [5] measured the slowdown factor of full-system simulation with
QEMU compared to hardware-assisted virtualization with QEMU to be 31
on average. Therefore, we use 31 · L as the artificial busy time for each
node, with L being the configured interval length.

In Chapter 4.2 we introduced two main use-cases for our design:

Immediate parallelization Simulations are dispatched to worker nodes as soon
as a checkpoint from the virtualization has been created and processed.
Virtualization and simulation run in parallel. To evaluate this use-case we
schedule a Slurm job for each checkpoint as soon as it is created.

Deferred parallelization The virtualization is executed and checkpoints are
recorded without dispatching any simulations. The data is stored for par-
allel execution on a cluster at a later point in time. To evaluate this use-
case we record all checkpoints and then shut down the storage server and
purge the operating system’s file system cache (e.g., by executing echo 3
> /proc/sys/vm/drop_caches on Linux). This recreates the con-
ditions after a cold-start and ensures our measurements are not distorted by
caching effects that would not be applicable in a real-world deferred sce-
nario. Finally, we restart the storage server and schedule Slurm jobs for all
checkpoints in one go.

During the execution the individual components (our modified QEMU and the
storage server) each write statistics to their own comma-separated values (CSV)
files. We use shell scripts to orchestrate the execution of the components and
collect all relevant CSV files at the end.

6.2 Evaluation setup

We installed our modified QEMU version, the storage server and inoticoming on
our designated server computer. We used a set of shell scripts to automatically

6.2. EVALUATION SETUP 61

launch and connect the three processes.

We used a preexisting Slurm cluster. We installed a minimalistic SimuBoost client
on the nodes. This client downloads a single checkpoint via the network and
then terminates. We used a shell script to add the artificial delay described in
Chapter 6.1. Figure 6.1 illustrates the relation between the components.

6.2.1 Hardware and OS

We ran our benchmarks with a single server and a cluster of 5 nodes. All comput-
ers were connected via a 10GBit Ethernet network. Table 6.1 lists the specifica-
tions of the individual computers. Table 6.2 lists the operating systems used.

CPU RAM Disk
Server 4x Intel Xeon E5-2630 64GiB 256GB SSD
VM Guest virtual single-core CPU 1 GiB 10GB virtual HDD
Node 1 Intel Xeon E3-1220 16 GiB 500GB HDD, 128GB SSD
Node 2 Intel Xeon E3-1230 16 GiB 128GB SSD
Node 3 Intel Xeon E3-1230 16 GiB 128GB SSD
Node 4 Intel Xeon E3-1230 16 GiB 128GB SSD
Node 5 Intel Xeon E3-1230 16 GiB 128GB SSD

Table 6.1: The server is a stand-alone machine connected to the cluster for our
experiments. The cluster consists of 4 identical nodes and one head node hosting
the Slurm controller.

OS Kernel version
Server Linux Mint 17 3.13.0-45-generic
VM Guest Linux Mint 17 3.13.0-24-generic
Nodes CentOS 6.6 2.6.32-504.12.2.el6.x86_64

Table 6.2: The server is an updated Linux Mint 17 installation. The guest OS used
for the workloads is a vanilla Linux Mint 17 installation. The cluster nodes share
an identical CentOS 6.6 installation.

62 CHAPTER 6. EVALUATION

Q
EM

U
B

as
e

im
ag

e
Q

EM
U

B
as

e
im

ag
e

Q
EM

U
B

as
e

im
ag

e
Q

EM
U

B
as

e
im

ag
e

Se
rv

e
r

N
o

d
e

 #
1

N
o

d
e

 #
2

N
o

d
e

 #
3

N
o

d
e

 #
4

TC
P

TC
P

TC
P

TC
P

C
h

e
ck

p
o

in
t

lo
ad

e
r

St
o

ra
ge

 S
e

rv
e

r

Sh
ar

ed
 M

em
o

ry
P

ro
ce

ss

M
ac

h
in

e

Le
ge

n
d

:

V
ir

tu
al

iz
at

io
n

Si
m

u
B

o
o

st

Si
m

u
la

ti
o

n

IP
C

Q
EM

U

C
h

ec
kp

o
in

t
fi

le
s

Sl
u

rm
C

o
n

tr
o

lle
r

Sl
u

rm
N

o
d

e

B
as

e
im

ag
e

in
o

ti
co

m
in

g

C
h

e
ck

p
o

in
t

lo
ad

e
r

Sl
u

rm
N

o
d

e

C
h

e
ck

p
o

in
t

lo
ad

e
r

Sl
u

rm
N

o
d

e

C
h

e
ck

p
o

in
t

lo
ad

e
r

Sl
u

rm
N

o
d

eFi
le

Tr
ig

ge
r

Fi
gu

re
6.

1:
in

ot
ic

om
in

g
ru

ns
on

th
e

se
rv

er
an

d
de

te
ct

s
ch

ec
kp

oi
nt

fil
es

cr
ea

te
d

by
th

e
st

or
ag

e
se

rv
er

.
It

se
nd

s
jo

bs
to

th
e

Sl
ur

m
co

nt
ro

lle
r(
s
l
u
r
m
c
t
l
d

)r
un

ni
ng

on
th

e
fir

st
no

de
.T

he
Sl

ur
m

co
nt

ro
lle

rm
an

ag
es

th
e

di
st

ri
bu

tio
n

of
th

e
jo

bs
ac

ro
ss

th
e

Sl
ur

m
no

de
s

(s
l
u
r
m
d

).
T

he
ch

ec
kp

oi
nt

lo
ad

er
in

st
an

ce
s

re
tr

ie
ve

da
ta

fr
om

th
e

st
or

ag
e

se
rv

er
vi

a
T

C
P/

IP
.

6.3. RESULTS 63

6.2.2 Workloads

We chose the following workloads for our evaluation:

Kernel build We perform a full build of the Ubuntu kernel 3.13.0. Kernel builds
tax both the system’s memory and disk.

Bonnie++ benchmark We run bonnie -x 1000 in an infinite loop. This
benchmark measures a computer’s hard disk performance. We execute it
to simulate heavy disk IO.

STREAM benchmark We run stream -W 1000 in an infinite loop. This
benchmark measures a computer’s RAM throughput. We execute it to sim-
ulate heavy memory usage.

These workloads cover a broad range of load behaviors and are closely aligned
with the workloads used in baudis’ [6] evaluation. Park et al. [32] and Liu et al. [24]
use similar workloads to evaluate their checkpointing mechanisms.

Each workload includes an approximately 20s operating system boot phase. After
booting the respective benchmark is executed automatically. The workloads are
run for 10 minutes each, not including checkpointing-induced downtimes.

6.3 Results

In this chapter we present the results of our measurements. First, we compare the
chekpointing-relevant characteristics of different workloads. Next, we present a
number of performance metrics for our checkpointing implementation. Finally,
we look at the cluster distribution and the resulting total runtime.

6.3.1 Workload comparison

The amount of data that has to be captured for a checkpoint depends on the number
of RAM pages and disk sectors that were modified since the last checkpoint was
taken (see Chapter 5.1.2).

These numbers vary based on the workload executed and the interval in which
checkpoints were taken. They strongly influence the VM downtime as well as the
runtime of the asynchronous processing (see Chapter 4.1.1).

64 CHAPTER 6. EVALUATION

Figure 6.2 and Figure 6.3 depict the number of dirty RAM pages and disk sectors
respectively that accumulate for varying workloads. The first ten checkpoints
show nearly identical values for all workloads. This is due to the 20 second boot
phase mentioned in 6.2.

0K

50K

100K

150K

200K

250K

1

1
2

2
3

3
4

4
5

5
6

6
7

7
8

8
9

1
0

0

1
1

1

1
2

2

1
3

3

1
4

4

1
5

5

1
6

6

1
7

7

1
8

8

1
9

9

2
1

0

2
2

1

2
3

2

2
4

3

2
5

4

2
6

5

2
7

6

2
8

7

2
9

8

D
ir

ty
 R

A
M

 p
ag

es

Checkpoint index

Kernel build Bonnie++ STREAM

Figure 6.2: Dirty RAM pages per checkpoint for varying workloads with interval
length 2s

The kernel build workload produces a relatively constant number of dirty pages
and sectors during its run, averaging at 21,710 pages and 29 sectors per check-
point. The Bonnie++ and STREAM benchmarks show periodic spikes due to the
same benchmark being executed repeatedly in a loop.

The Bonnie++ benchmark’s spikes repeat approximately every 32 seconds and
reach 224,400 pages and 13,770 sectors per checkpoint. These values are signif-
icantly higher than the averages of 89,500 pages and 4,000 sectors. This bench-
mark produces a large number of both dirty pages and sectors since it generates a
large set of random data in RAM and then writes it to disk.

The STREAM benchmark’s considerably less pronounced spikes repeat approxi-
mately every 45 seconds, reaching 14,120 pages per checkpoint compared to an
average of 8,900 pages. Although this benchmark is the most memory-intensive
workload in our evaluation it produces the lowest number of dirty pages. This in-
dicates that the same relatively small memory area is written to repeatedly within
each individual checkpoint interval. There is no noteworthy disk activity causing
dirty sectors in this benchmark.

Figure 6.4 charts the average dirty RAM pages per checkpoint that accumulate

6.3. RESULTS 65

0K

2K

4K

6K

8K

10K

12K

14K
1

1
2

2
3

3
4

4
5

5
6

6
7

7
8

8
9

1
0

0

1
1

1

1
2

2

1
3

3

1
4

4

1
5

5

1
6

6

1
7

7

1
8

8

1
9

9

2
1

0

2
2

1

2
3

2

2
4

3

2
5

4

2
6

5

2
7

6

2
8

7

2
9

8

D
ir

ty
 d

is
k

se
ct

o
rs

Checkpoint index

Kernel build Bonnie++ STREAM

Figure 6.3: Dirty disk sectors per checkpoint for varying workloads with interval
length 2s

for varying workloads and interval lengths. An increased interval length leads to
a limited growth of the number of dirty pages. Initially, more modified data accu-
mulates due to more instructions being executed per interval. Then a dampening
effect sets in when the same page is overwritten multiple times during a single
interval. For the same number of changes to a page fewer states are actually cap-
tured. This growth damping sets in slower for the Bonnie++ benchmark than for
other workloads since its larger data set is distributed over a larger number of
distinct pages.

Figure 6.5 charts the average dirty disk sectors per checkpoint that accumulate
for varying workloads and interval lengths. The kernel build workload produces
relatively few dirty sectors. The STREAM benchmark, being a RAM throughput
test, produces virtually none. The Bonnie++ benchmark produces dirty sectors
per checkpoint with a roughly linear relation to the interval length. Unlike with the
RAM pages there does not seem to be a significant dampening effect. This may be
attributed to the file system preferring to allocate previously unused sectors over
recently freed space.

In Chapter 6.1 we assume the slowdown of switching from virtualization to sim-
ulation is a linear factor. We recorded the number of CPU instructions that were
executed during each interval. Since the performance of simulations is mostly
CPU-bound the variance of this value indicates how well our assumption holds
for the chosen workloads (see Chapter 5.1.3).

66 CHAPTER 6. EVALUATION

0K

50K

100K

150K

200K

250K

1 2 3 4 5 6 7 8

Interval length (s)

Kernel build Bonnie++ STREAM

Figure 6.4: Average dirty RAM pages
per checkpoint for varying workloads
and interval lengths

0K

5K

10K

15K

20K

1 2 3 4 5 6 7 8

Interval length (s)

Kernel build Bonnie++ STREAM

Figure 6.5: Average dirty disk sectors
per checkpoint for varying workloads
and interval lengths

Table 6.3 list the average the number of CPU instructions executed within the VM
during a single interval for varying workloads. Figure A.1 provides a visualiza-
tion of the number of CPU instructions over time for complete workload runs.
The kernel build workload executes a relatively constant number of instructions
during its run. However, the Bonnie++ benchmark shows periodic spikes in CPU
instructions that correlate with the number of dirty RAM pages charted in Fig-
ure 6.2. This variation in the number of CPU instructions that are executed per
interval may invalidate our assumption of uniform interval simulation time made
in Chapter 6.1 for some workloads.

Workload Instruction count
Kernel build 7,281,163,691
Bonnie++ 3,091,970,490
STREAM 5,253,607,823

Table 6.3: Average number of CPU instructions executed within the VM during a
single interval for varying workloads with interval length 2s

6.3.2 Checkpointing performance

In this chapter we take a look at metrics relevant for the performance of creating
checkpoints. First we look at the deduplication rate, then the amount of required
disk storage space and finally the amount of time spent on processing during the
VMs downtime vs. the amount of time spent on asynchronous processing.

Deduplication rate: We recorded the rate of deduplication achieved for each
checkpoint. This indicates how effective our deduplication strategy is. It impacts

6.3. RESULTS 67

both the speed with which checkpoints can be taken and the amount of on-disk
storage required (see Chapter 4.1.2).

Table 6.4 lists the deduplication rates for varying workloads with interval length
2s. We split the workload runs into three distinct phases:

1. The OS boot process, which is the same for all workloads,

2. the first run-through of a benchmark and

3. all subsequent repetitions of the benchmark. This is combined with 2. for
the kernel build workload because it is not repeated in a loop.

RAM Disk
Workload Boot First pass Rest Boot First pass Rest
Kernel build 24% 17% 64% 76%
Bonnie++ 23% 67% 74% 78% 99% 97%
STREAM 21% 74% 86% 78% 89% 93%

Table 6.4: Deduplication rates during different phases for varying workloads with
interval length 2s

The overall deduplication potential is significantly higher for the Bonnie++ and
STREAM benchmarks than for the kernel build workload. After a largely identical
boot phase the deduplication rate for the first run-throughs of the benchmarks is
approximately 50% higher than for the kernel build, presumably due to the syn-
thetic nature of the workloads. The subsequent run-throughs show an additional
10% increase in deduplication rate due to similar or identical data being generated.

Figure A.2 and Figure A.3 provide a visualization of the deduplication rate over
time for complete workload runs. The benchmarks once again exhibit periodic
spikes correlating with the benchmark loop.

Figure 6.6 breaks down the disk sector deduplication per checkpoint for the work-
load kernel build into not-deduplicated, deduplicated against other disk sectors
and deduplicated against RAM pages (see Chapter 4.1.2). A large percentage of
the disk sectors were deduplicated against RAM pages. This is because, data that
is to be written to the disk is usually stored in RAM (e.g., in a file system cache)
first.

Figure 6.7 and Figure 6.8 plot the average deduplication rates for RAM pages and
disk sectors respectively for varying workloads and interval lengths. There is no
clear correlation between interval length and deduplication rate.

68 CHAPTER 6. EVALUATION

2%

86%

12%

Deduplicated against
other disk sectors
Deduplicated against
RAM
Not deduplicated

Figure 6.6: Disk sector deduplication breakdown per checkpoint for workload
kernel build with interval length 2s

0%

20%

40%

60%

80%

100%

1 2 3 4 5 6 7 8

Interval length (s)

Kernel build Bonnie++ STREAM

Figure 6.7: Average RAM page dedu-
plication rate for varying workloads and
interval lengths

0%

20%

40%

60%

80%

100%

1 2 3 4 5 6 7 8

Interval length (s)

Kernel build Bonnie++ STREAM

Figure 6.8: Average disk sector dedu-
plication rate for varying workloads and
interval lengths

Storage requirements: We recorded the amount of on-disk storage required
for each individual checkpoint and all checkpoints in total. This determines the
storage requirements for keeping checkpointing data for prolonged periods of time
to enable deferred or repeated simulations.

Table 6.5 breaks down the on-disk size of an individual checkpoint’s metadata.
This consists of the device states as captured by QEMU’s snapshot feature, a
fixed-size RAM state map (proportional to the amount of RAM in the VM) and
a variable-sized disk state map (see Chapter 4.1.2). Figure A.4 plots the on-disk
size of individual checkpoints’ metadata over time for complete workload runs.

A constant value of

1GiB RAM size
4KiB page size

· 16byte address size = 4MiB

is consumed for the RAM state map. Device states and QEMU metadata consume
around 80KiB.

6.3. RESULTS 69

kernel build ∆ Bonnie++ ∆ STREAM ∆
RAM state 4,130 KiB 0 4,130 KiB 0 4,130 KiB 0
Disk state 111 KiB 0.8 1,062 KiB 50, then 0 16 KiB 0
Device state 79 KiB 0 79 KiB 0 79 KiB 0
Sum 4,320 KiB 0.8 5,271 KiB 50, then 0 4,225 KiB 0

Table 6.5: On-disk sizes of specific individual checkpoints captured during differ-
ent workloads with interval length 2s and average growth rates during complete
workload runs

The size of disk state map remains largely constant for the STREAM benchmark
since it performs no disk writes. The disk state map slowly grows for the kernel
build workload for each new file created by the build process. The Bonnie++
benchmark continually creates and deletes files, causing the disk state map size to
rise rapidly until a point is reached at which previously dirtied sectors get reallo-
cated by the file system.

A number of peaks occur where the device state size temporarily increases from its
usually constant value to 207KiB. This may be attributed to additional transient
state in the virtual disk controllers caused by heavy IO.

Figure 6.9 plots the total on-disk size of all checkpointing data after 10 minutes
for varying workloads and interval lengths. Increasing the interval length reduces
the total data size with diminishing returns. While individual checkpoints capture
more dirty pages and sectors the longer intervals cause more intermediate writes
to be "missed", thus reducing the total amount of state recorded.

Figure 6.2 and Figure 6.3 show that Bonnie++ generates many dirty pages and
sectors. However, due to the periodic nature of the benchmark’s execution the
data is highly repetitive and can therefore be deduplicated very effectively, as
seen in Table 6.4. This causes Bonnie++ to require less total on-disk storage than
kernel build despite creating more memory and disk traffic.

Downtime: We recorded the downtime caused by each checkpoint. This im-
pacts the speedup achievable by SimuBoost and determines whether the workloads
remains interactively usable.

Figure 6.10 plots the average VM downtime per checkpoint for varying workloads
and interval lengths. Figure A.5 shows the VM downtime over time for complete
workload runs. Increasing the interval length also increases the average downtime.
This growth correlates with the number of dirty RAM pages accumulated per
checkpoint (see Figure 6.4) because the downtime is dominated by iterating over

70 CHAPTER 6. EVALUATION

0

5

10

15

20

25

30

35

1 2 3 4 5 6 7 8

R
ec

o
rd

ed
 d

at
a

(G
iB

)

Interval length (s)

Kernel build Bonnie++ STREAM

Figure 6.9: Total on-disk size of all checkpointing data after 10 minutes for vary-
ing workloads and interval lengths

and copying dirty pages.

The downtime for the workloads kernel build averages 44ms for an interval length
of 2s, remaining well below our target threshold of 100ms and thus ensuring in-
teractivity. This is a checkpointing slowdown of approx 3%. We gained similar
results for the other interval lengths we measured. The STREAM benchmark, gen-
erating less dirty pages, approximately halves the downtimes compared to kernel
build.

The Bonnie++ benchmark oscillates between downtimes similar to kernel build’s
44ms and extremely long downtimes reaching up to 5s. This happens when the
dirty pages accumulated in a single interval exceed the allocated segment size of
256MiB causing the virutalization to freeze until the pages have been deduplicated
and stored (see Chapter 5.2.2).

Figure A.6 compares the VM downtime between immediate and deferred simula-
tion for the kernel build workload. The average downtime is 44ms in both cases,
indicating that the additional work required to distribute checkpoints to simulation
nodes does not impact the performance of the checkpointing process significantly.

We recorded how long the processing running in parallel to the VM’s execution
took for each checkpoint. This determines whether our implementation is capable
of handling the volume of data generated by checkpointing with sufficient speed
(see Chapter 5.2.1).

6.3. RESULTS 71

0

500

1000

1500

2000

2500

3000

3500

0

50

100

150

200

250

300

350

1 2 3 4 5 6 7 8

A
ve

ra
ge

 d
o

w
n

ti
m

e
(m

s)
B

o
n

n
ie

++

A
ve

ra
ge

 d
o

w
n

ti
m

e
(m

s)
K

er
n

el
 b

u
ild

 a
n

d
 S

TR
EA

M

Interval length (s)

Kernel build STREAM Bonnie++

Figure 6.10: Average VM downtime per checkpoint for varying workloads and
interval lengths, split scales

Asynchronous processing: Figure 6.11 plots the average asynchronous check-
point processing time for varying workloads and interval lengths. Increased inter-
val lengths also lead to slightly longer asynchronous processing times. However
this growth rate is considerably lower than with VM downtime (see Figure A.5).
While the downtime is affected solely by the number of dirty RAM pages and
disk sectors that have accumulated during an interval the asynchronous process-
ing can benefit from more deduplication potential. The asynchronous processing
design presented in Chapter 4.1.1 can compensate for individual checkpoints tak-
ing longer to process than the desired checkpointing interval length by waiting
longer to create the next checkpoint. However, the average processing time must
remain below the interval length to avoid forming a backlog. In our measurements
all average processing times for the different checkpointing interval met this goal.

Figure A.7 breaks down the asynchronous checkpoint processing time for the ker-
nel build workload. The process is dominated by hashing the dirty RAM pages
and disk sectors for deduplication, which accounts for roughly 70%. 20% of the
time is spent on hash table lookups (see Chapter 5.2.3) and writing the dedupli-
cated data to the disk (buffered by the operating system’s file system cache). The
remaining 10% are writing the state maps (see Chapter 4.1.2) to the disk (also
buffered).

72 CHAPTER 6. EVALUATION

0

200

400

600

800

1000

1200

1400

1 2 3 4 5 6 7 8

P
ro

ce
ss

in
g

ti
m

e
(m

s)

Interval length (s)

Kernel build Bonnie++ STREAM

Figure 6.11: Average asynchronous checkpoint processing time for varying work-
loads and interval lengths

6.3.3 Distribution performance

We recorded the time required for the storage server to load all relevant data and
assemble it into a complete VM snapshot. This indicates how the append-only flat
file scheme we introduced in Chapter 5.2.4 in order to improve write speed affects
read speed.

Figure 6.12 compares the measurements for the two use-cases introduced in Chap-
ter 4.2 using a logarithmic scale:

• For immediate parallelization most checkpoints could be loaded within ap-
proximately 100ms indicating that these requests required only a moderate
amount of disk IO with most data presumably provided from a still hot file
system cache. Some checkpoints could be loaded in less that 10ms indicat-
ing that they were still available completely in-cache.

• For deferred parallelization loading most checkpoints took longer than 100ms
(ranging up to 10s in the extreme) indicating that these requests required
heavy disk IO. The file system cache started off cold and only slowly be-
came effective as cross-checkpoint deduplication caused data to be read
multiple times.

We recorded the time required to transmit the data for entire checkpoints from the
server to the nodes. This shows whether the network connection is a bottleneck in
our design.

6.3. RESULTS 73

1

10

100

1000

10000

1

1
2

2
3

3
4

4
5

5
6

6
7

7
8

8
9

1
0

0

1
1

1

1
2

2

1
3

3

1
4

4

1
5

5

1
6

6

1
7

7

1
8

8

1
9

9

2
1

0

2
2

1

2
3

2

2
4

3

2
5

4

2
6

5

2
7

6

2
8

7

2
9

8

R
ea

d
 t

im
e

(m
ill

is
ec

o
n

d
s)

Checkpoint index

Immediate Deferred

Figure 6.12: Checkpoint data from-disk read time comparison between imme-
diate and deferred simulation for workload kernel build with interval length 2s,
logarithmic scale

Figure 6.13 plots the network transfer time for the kernel build workload. The
minimum transfer time of 2.5s is achieved when there is no network contention,
i.e., only a single checkpoint is being transferred over the 10GBit link. Overlap-
ping distribution of checkpoints to different nodes over the same network inter-
face cause the slightly longer average transfer time of 3.5s. The maximum transfer
time of 7s is reached early in the simulation process when multiple checkpoints
are scheduled nearly simultaneously.

74 CHAPTER 6. EVALUATION

0

1000

2000

3000

4000

5000

6000

7000

0 50 100 150 200 250 300

N
et

w
o

rk
 t

ra
n

sf
er

 t
im

e
(m

s)

Checkpoint index

Figure 6.13: Checkpoint data network transfer time for workload kernel build
with interval length 2s

6.3.4 Total runtime

As the final step in evaluating our implementation we looked at the total runtimes
of workloads including the virtualization and the parallelized simulation phases.
By comparing these results with the expected runtime of a conventional, non-
parallel simulation we were able to determine the achievable speedup, the primary
indicator of SimuBoost’s viability.

We also compared our measurements with the predictions made by the formal
model presented in Chapter 3.2 using Equation 3.5. We chose N = 4 to match
our evaluation setup of 4 simulation nodes (see Chapter 6.2.1), Tvm = 600 for the
10 minute runtime of our workloads (see Chapter 6.2.2), ssim = 31 to match our
fixed simulation slowdown assumption (see Chapter 6.1) and slog = 1 since our
implementation does not yet perform any non-deterministic event logging. We
based the simulation initialization time ti = 3.7 and the checkpointing slowdown
factor scp = 1.024 on our existing measurements.

We measured the total runtime starting with the virtualization and ending with
the last running simulation node. Figure 6.14 plots these results against the pre-
dictions made by the formal model. Figure 6.15 transforms these results to the
achieved speedup using Equation 3.6. The choice of workload has no noticeable
impact on the speedup. Increasing the interval length increases the speedup with
diminishing returns. Our implementation’s performance tracks the predictions
made by the formal model very closely.

6.3. RESULTS 75

4700

4800

4900

5000

5100

5200

5300

1 2 3 4 5 6 7 8

To
ta

l r
u

n
 t

im
e

(s
)

Interval length (s)

Kernel build Bonnie++ STREAM Formal model

Figure 6.14: Total parallelized simulation runtime for varying workloads and
interval lengths, compared with formal model predictions for N = 4; ssim =
31; slog = 1; scp = 1.024;Tvm = 600; ti = 3.7

3,5

3,6

3,6

3,7

3,7

3,8

3,8

3,9

3,9

4,0

1 2 3 4 5 6 7 8

Sp
ee

d
u

p
 f

ac
to

r

Interval length (s)

Kernel build Bonnie++ STREAM Formal model

Figure 6.15: Speedup achieved for varying workloads and interval lengths, com-
pared with formal model predictions for N = 4; ssim = 31; slog = 1; scp =
1.024;Tvm = 600; ti = 3.7

76 CHAPTER 6. EVALUATION

6.4 Discussion

The results presented in Chapter 6.3 show that the choice of workload has a sig-
nificant impact on the number of dirty RAM pages and disk sectors that accumu-
late per checkpoint. This directly affects the length of the VM downtime during
checkpointing. Workloads that accumulate more data than provisioned for lead to
significantly longer multi-second downtimes (see Chapter 5.2.2).

Our measurements using a constrained number of available simulation nodes show
that the downtime has a negligible impact on the total speedup achieved, even for
extreme cases with multi-second downtimes. This stands in contrast to the pre-
dictions made by the SimuBoost paper [5] for an unlimited number of available
simulation nodes. In this scenario the downtime is one of the main factors deter-
mining the speedup.

Achieving a low downtime remains critical since it enables workloads to stay
interactive and avoids network connections being dropped. Our checkpointing
implementation is able to satisfy the requirement of downtimes lower that 100ms
layed out in Chapter 3.1.

The asynchronous processing of checkpoints as described in Chapter 4.1.1 always
finished before the next interval started in our test cases. This satisfies our sec-
ondary goal of ensuring uniform interval lengths. Our measurements show that
a significant amount of time is spent on calculating hashes of RAM pages for
deduplication. This indicates that additional parallelization of the hash calcula-
tions could help further increase the margin between asynchronous processing
time and interval length.

Increasing the interval length usually increases the number of dirty RAM pages
that accumulate per checkpoint. This leads to longer downtimes since more data
needs to be hashed for deduplication and potentially stored. On the other hand
longer intervals lower the total number of checkpoints recorded and thereby re-
duce the amount of on-disk storage required. For setups with a limited number of
simulation nodes longer intervals also improve the total speedup, as predicted by
the formal model introduced in Chapter 3.2.

We measured almost identical speedups for the different workloads. The measure-
ments closely tracked the predictions made by the formal model. This indicates
that the formal model correctly captures the performance characteristics of the
components of the SimuBoost process implemented in our prototype.

The average RAM deduplication rate of 15% for the kernel build workload indi-
cates reasonable effectiveness for real-world workloads. The 85% deduplication

6.4. DISCUSSION 77

rate for the benchmarks indicates very high effectiveness for synthetic workloads.
The very high rate of deduplication of disk sectors against RAM pages effectively
reduces the checkpoint storage problem to capturing dirty RAM pages.

The number of CPU instructions executed per interval vary considerably for some
workloads. This means our assumption of a constant simulation slowdown made
in Chapter 6.1 may lead to predictions that diverge to a certain degree from later
measurements made with a yet unimplemented complete SimuBoost solution.

Since checkpointing performance is the same for immediate and deferred paral-
lelization we can infer that distributing checkpoints while they are being created
does not harm the write performance. However, loading the checkpoint data later
without the benefit of still being cached slows down the read performance notice-
ably.

The network transfer times for checkpoints are distributed across a wide range
rather than all checkpoints being transferred in roughly the same (optimal) time.
This indicates that the available network bandwidth is the limiting factor for our
current design.

78 CHAPTER 6. EVALUATION

Chapter 7

Conclusion

The main objective of this work was to evaluate the viability of distributed system
simulation using the SimuBoost concept.

We improved an existing checkpointing and deduplication solution, reducing the
VM downtime in order to meet SimuBoost’s requirements. We also implemented
a system for distributing simulations in a cluster. The resulting prototype enabled
us to empirically measure SimuBoost’s speedup potential.

We evaluated our prototype by executing a number of workloads while record-
ing and distributing checkpoints. The evaluation showed that our improvements
greatly reduced the downtime caused by checkpointing. We were able to demon-
strate that a SimuBoost implementation can achieve significant speedups over con-
ventional full-system simulation.

7.1 Future work

Checkpoints created by QEMU in KVM mode cannot be loaded in QEMU in
TCG mode. V2E [54] presents an implementation capable of loading checkpoints
created by a virtualization system in a simulation system. Adding equivalent func-
tionality to our prototype would make it possible to execute parallel simulations
and record traces, albeit with reduced accuracy caused by simulations still diverg-
ing from the virtualization.

Additionally implementing the recording and deterministic replay of events pro-
posed by SimuBoost (see Chapter 2.4.2) would turn the prototype into a fully
functional SimuBoost implementation.

79

80 CHAPTER 7. CONCLUSION

In Chapters 5.2.2 and 5.2.3 we describe tuning parameters exposed by the imple-
mentation that require a certain level of a priori knowledge for optimal perfor-
mance. Future improvements of the implementation could aim to auto-tune these
parameters.

In Chapter 4.1.1 we decided to avoid queuing of checkpoint processing to prevent
backlogs from growing uncontrollably. An auto-tuning implementation might be
able to effectively counter this effect and could thus benefit from queuing to ensure
uniform interval lengths.

In Chapter 6.2 we describe our evaluation setup consisting of a limited number
of simulation nodes. Additional insight could be gained by performing similar
measurements using a set of nodes large enough to satisfy the "no queuing" as-
sumption made in the SimuBoost paper [5].

Chapter 6.3 showed that the performance of our design is limited by the cluster
network bandwidth. In Chapter 4.2.1 we decided to transmit complete snapshots
of the VM from the server to the nodes to minimize the amount of state kept on
the nodes. Future work could implement and evaluate an approach were the nodes
use local deduplication caches to reduce the amount of network traffic.

Appendix A

Additional graphs

The following graphs provide additional data from the measurements discussed in
Chapter 6.3.

0

2

4

6

8

10

12

1

1
2

2
3

3
4

4
5

5
6

6
7

7
8

8
9

1
0

0

1
1

1

1
2

2

1
3

3

1
4

4

1
5

5

1
6

6

1
7

7

1
8

8

1
9

9

2
1

0

2
2

1

2
3

2

2
4

3

2
5

4

2
6

5

2
7

6

2
8

7

2
9

8

G
u

es
t

in
st

ru
ct

io
n

s

B
ill

io
n

s

Checkpoint index

Kernel build Bonnie++ STREAM

Figure A.1: Number of CPU instructions executed within the VM during a single
interval for varying workloads with interval length 2s

81

82 APPENDIX A. ADDITIONAL GRAPHS

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

1

1
2

2
3

3
4

4
5

5
6

6
7

7
8

8
9

1
0

0

1
1

1

1
2

2

1
3

3

1
4

4

1
5

5

1
6

6

1
7

7

1
8

8

1
9

9

2
1

0

2
2

1

2
3

2

2
4

3

2
5

4

2
6

5

2
7

6

2
8

7

2
9

8

R
A

M
 d

ed
u

p
lic

at
io

n
 r

at
e

Checkpoint index

Kernel build Bonnie++ STREAM

Figure A.2: RAM page deduplication rate per checkpoint for varying workloads
with interval length 2s

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

1

1
2

2
3

3
4

4
5

5
6

6
7

7
8

8
9

1
0

0

1
1

1

1
2

2

1
3

3

1
4

4

1
5

5

1
6

6

1
7

7

1
8

8

1
9

9

2
1

0

2
2

1

2
3

2

2
4

3

2
5

4

2
6

5

2
7

6

2
8

7

2
9

8

D
is

k
d

ed
u

p
lic

at
io

n
 r

at
e

Checkpoint index

Kernel build Bonnie++ STREAM

Figure A.3: Disk sector deduplication rate per checkpoint for varying workloads
with interval length 2s

83

4,00

4,20

4,40

4,60

4,80

5,00

5,20

5,40

1

1
2

2
3

3
4

4
5

5
6

6
7

7
8

8
9

1
0

0

1
1

1

1
2

2

1
3

3

1
4

4

1
5

5

1
6

6

1
7

7

1
8

8

1
9

9

2
1

0

2
2

1

2
3

2

2
4

3

2
5

4

2
6

5

2
7

6

2
8

7

2
9

8

C
h

ec
kp

o
in

t
si

ze
 (

M
iB

)

Checkpoint index

Kernel build Bonnie++ STREAM

Figure A.4: On-disk size of individual checkpoints’ metadata for varying work-
loads with interval length 2s

1

10

100

1000

10000

1

1
2

2
3

3
4

4
5

5
6

6
7

7
8

8
9

1
0

0

1
1

1

1
2

2

1
3

3

1
4

4

1
5

5

1
6

6

1
7

7

1
8

8

1
9

9

2
1

0

2
2

1

2
3

2

2
4

3

2
5

4

2
6

5

2
7

6

2
8

7

2
9

8

D
o

w
n

ti
m

e
(m

s)

Checkpoint index

Kernel build Bonnie++ STREAM

Figure A.5: VM downtime per checkpoint for varying workloads with interval
length 2s, logarithmic scale

84 APPENDIX A. ADDITIONAL GRAPHS

0

10

20

30

40

50

60

70

80

90

100

1

1
2

2
3

3
4

4
5

5
6

6
7

7
8

8
9

1
0

0

1
1

1

1
2

2

1
3

3

1
4

4

1
5

5

1
6

6

1
7

7

1
8

8

1
9

9

2
1

0

2
2

1

2
3

2

2
4

3

2
5

4

2
6

5

2
7

6

2
8

7

2
9

8

D
o

w
n

ti
m

e
(m

s)

Checkpoint index

Immediate Deferred

Figure A.6: VM downtime comparison between immediate and deferred simula-
tion for workload kernel build with interval length 2s

0

200

400

600

800

1000

1200

1400

1600

1800

2000

1

1
2

2
3

3
4

4
5

5
6

6
7

7
8

8
9

1
0

0

1
1

1

1
2

2

1
3

3

1
4

4

1
5

5

1
6

6

1
7

7

1
8

8

1
9

9

2
1

0

2
2

1

2
3

2

2
4

3

2
5

4

2
6

5

2
7

6

2
8

7

2
9

8

P
ro

ce
ss

in
g

ti
m

e
(m

s)

Checkpoint index

Hashing Lookup+write data Flush state

Figure A.7: Breakdown of asynchronous checkpoint processing time for workload
kernel build with interval length 2s

Bibliography

[1] Juan Caballero, Gustavo Grieco, Mark Marron, and Antonio Nappa. Un-
dangle: Early detection of dangling pointers in use-after-free and double-
free vulnerabilities. In Proceedings of the 2012 International Symposium on
Software Testing and Analysis, ISSTA 2012, pages 133–143, New York, NY,
USA, 2012. ACM.

[2] QEMU website. http://www.qemu.org/.

[3] Mateusz Jurczyk, Gynvael Coldwind, et al. Identifying and exploiting win-
dows kernel race conditions via memory access patterns. 2013.

[4] Bochs website. http://bochs.sourceforge.net/.

[5] Marc Rittinghaus, Konrad Miller, Marius Hillenbrand, and Frank Bellosa.
Simuboost: Scalable parallelization of functional system simulation. In Pro-
ceedings of the 11th International Workshop on Dynamic Analysis (WODA
2013), Houston, Texas, March 16 2013.

[6] Nikolai Baudis. Deduplicating virtual machine checkpoints for distributed
system simulation. Bachelor thesis, System Architecture Group, Karlsruhe
Institute of Technology (KIT), Germany, November 2 2013. http://os.
itec.kit.edu/.

[7] MongoDB website. http://www.mongodb.org/.

[8] George W. Dunlap, Samuel T. King, Sukru Cinar, Murtaza A. Basrai, and
Peter M. Chen. Revirt: Enabling intrusion analysis through virtual-machine
logging and replay. SIGOPS Oper. Syst. Rev., 36(SI):211–224, December
2002.

[9] Mark Probst. Dynamic binary translation. In UKUUG Linux Developer’s
Conference, volume 2002. sn, 2002.

[10] VirtualBox Manual: Chapter 10. Technical background. https://www.
virtualbox.org/manual/ch10.html.

85

http://www.qemu.org/
http://bochs.sourceforge.net/
http://os.itec.kit.edu/
http://os.itec.kit.edu/
http://www.mongodb.org/
https://www.virtualbox.org/manual/ch10.html
https://www.virtualbox.org/manual/ch10.html

86 BIBLIOGRAPHY

[11] VirtualBox website. http://www.virtualbox.org/.

[12] VMware website. http://www.vmware.com/.

[13] Jim Smith and Ravi Nair. Virtual machines: versatile platforms for systems
and processes. Elsevier, 2005.

[14] Intel. Intel vanderpool technology for ia-32 processors (vt-x) preliminary
specification. 2005.

[15] AMD. AMD64 Virtualization Codenamed "Pacifica" Technology: Secure
Virtual Machine Architecture Reference Manual, 2005.

[16] Gerald J. Popek and Robert P. Goldberg. Formal requirements for virtual-
izable third generation architectures. Commun. ACM, 17(7):412–421, July
1974.

[17] Hyper-V website. http://technet.microsoft.com/en-us/
windowsserver/dd448604.aspx.

[18] Avadh Patel, Furat Afram, and Kanad Ghose. Marss-x86: A qemu-based
micro-architectural and systems simulator for x86 multicore processors. In
1st International Qemu Users’ Forum, pages 29–30, 2011.

[19] Peter S Magnusson, Magnus Christensson, Jesper Eskilson, Daniel Fors-
gren, Gustav Hallberg, Johan Hogberg, Fredrik Larsson, Andreas Moestedt,
and Bengt Werner. Simics: A full system simulation platform. Computer,
35(2):50–58, 2002.

[20] Stuart Hacking and Benoît Hudzia. Improving the live migration process of
large enterprise applications. In Proceedings of the 3rd International Work-
shop on Virtualization Technologies in Distributed Computing, VTDC ’09,
pages 51–58, New York, NY, USA, 2009. ACM.

[21] Michael R. Hines, Umesh Deshpande, and Kartik Gopalan. Post-copy live
migration of virtual machines. SIGOPS Oper. Syst. Rev., 43(3):14–26, July
2009.

[22] Robert Bradford, Evangelos Kotsovinos, Anja Feldmann, and Harald
Schiöberg. Live wide-area migration of virtual machines including local per-
sistent state. In Proceedings of the 3rd International Conference on Virtual
Execution Environments, VEE ’07, pages 169–179, New York, NY, USA,
2007. ACM.

[23] Christopher Clark, Keir Fraser, Steven Hand, Jacob Gorm Hansen, Eric Jul,
Christian Limpach, Ian Pratt, and Andrew Warfield. Live migration of vir-
tual machines. In Proceedings of the 2Nd Conference on Symposium on

http://www.virtualbox.org/
http://www.vmware.com/
http://technet.microsoft.com/en-us/windowsserver/dd448604.aspx
http://technet.microsoft.com/en-us/windowsserver/dd448604.aspx

87

Networked Systems Design & Implementation - Volume 2, NSDI’05, pages
273–286, Berkeley, CA, USA, 2005. USENIX Association.

[24] Haikun Liu, Hai Jin, Xiaofei Liao, Liting Hu, and Chen Yu. Live migration
of virtual machine based on full system trace and replay. In Proceedings of
the 18th ACM International Symposium on High Performance Distributed
Computing, HPDC ’09, pages 101–110, New York, NY, USA, 2009. ACM.

[25] Ajay Surie, H. Andrés Lagar-Cavilla, Eyal de Lara, and M. Satyanarayanan.
Low-bandwidth vm migration via opportunistic replay. In Proceedings of the
9th Workshop on Mobile Computing Systems and Applications, HotMobile
’08, pages 74–79, New York, NY, USA, 2008. ACM.

[26] Brendan Cully, Geoffrey Lefebvre, Dutch Meyer, Mike Feeley, Norm
Hutchinson, and Andrew Warfield. Remus: High availability via asyn-
chronous virtual machine replication. In Proceedings of the 5th USENIX
Symposium on Networked Systems Design and Implementation, NSDI’08,
pages 161–174, Berkeley, CA, USA, 2008. USENIX Association.

[27] Paula Ta-Shma, Guy Laden, Muli Ben-Yehuda, and Michael Factor. Vir-
tual machine time travel using continuous data protection and checkpointing.
ACM SIGOPS Operating Systems Review, 42(1):127–134, 2008.

[28] Kurt B Ferreira, Rolf Riesen, Ron Brighwell, Patrick Bridges, and Dorian
Arnold. libhashckpt: hash-based incremental checkpointing using gpu’s.
In Recent Advances in the Message Passing Interface, pages 272–281.
Springer, 2011.

[29] Paula Ta-Shma, Guy Laden, Muli Ben-Yehuda, and Michael Factor. Vir-
tual machine time travel using continuous data protection and checkpointing.
SIGOPS Oper. Syst. Rev., 42(1):127–134, January 2008.

[30] Pierre Riteau, Christine Morin, and Thierry Priol. Shrinker: Improving live
migration of virtual clusters over wans with distributed data deduplication
and content-based addressing. In Euro-Par 2011 Parallel Processing, pages
431–442. Springer, 2011.

[31] Jui-Hao Chiang, Han-Lin Li, and Tzi-cker Chiueh. Introspection-based
memory de-duplication and migration. In Proceedings of the 9th ACM
SIGPLAN/SIGOPS International Conference on Virtual Execution Environ-
ments, VEE ’13, pages 51–62, New York, NY, USA, 2013. ACM.

[32] Eunbyung Park, Bernhard Egger, and Jaejin Lee. Fast and space-efficient
virtual machine checkpointing. In Proceedings of the 7th ACM SIG-

88 BIBLIOGRAPHY

PLAN/SIGOPS International Conference on Virtual Execution Environ-
ments, VEE ’11, pages 75–86, New York, NY, USA, 2011. ACM.

[33] Fabrice Bellard. Qemu, a fast and portable dynamic translator. In USENIX
Annual Technical Conference, FREENIX Track, pages 41–46, 2005.

[34] QEMU Wiki: KVM. http://wiki.qemu.org/KVM, retrieved March
9th 2015.

[35] Wikibooks: QEMU: Images. http://en.wikibooks.org/wiki/
QEMU/Images, retrieved March 29th 2015.

[36] Wikibooks: QEMU: Monitor. http://en.wikibooks.org/wiki/
QEMU/Monitor, retrieved March 29th 2015.

[37] Marc Rittinghaus, Thorsten Groeninger, and Frank Bellosa. Simutrace: A
toolkit for full system memory tracing. White paper, Karlsruhe Institute of
Technology (KIT), Operating Systems Group, May 2015.

[38] Robert B. Miller. Response time in man-computer conversational transac-
tions. 1968.

[39] MongoDB website: Document Databases. http://www.mongodb.
com/document-databases.

[40] BSON specification. http://bsonspec.org/.

[41] Redis website. http://redis.io/.

[42] Redis documentation: Persistence. http://redis.io/topics/
persistence, retrieved March 26th 2015.

[43] Memcached website. http://memcached.org/.

[44] LevelDB website. https://github.com/google/leveldb.

[45] Kyoto Cabinet website. http://fallabs.com/kyotocabinet/.

[46] Kyoto Tycoon website. http://fallabs.com/kyototycoon/.

[47] LevelDB documentation: Implementation details. http:
//htmlpreview.github.io/?https://raw.
githubusercontent.com/google/leveldb/master/doc/
impl.html, retrieved March 9th 2015.

[48] Slurm Workload Manager documentation. http://www.schedmd.
com/slurmdocs/slurm.html.

[49] KVM website. http://www.linux-kvm.org/.

http://wiki.qemu.org/KVM
http://en.wikibooks.org/wiki/QEMU/Images
http://en.wikibooks.org/wiki/QEMU/Images
http://en.wikibooks.org/wiki/QEMU/Monitor
http://en.wikibooks.org/wiki/QEMU/Monitor
http://www.mongodb.com/document-databases
http://www.mongodb.com/document-databases
http://bsonspec.org/
http://redis.io/
http://redis.io/topics/persistence
http://redis.io/topics/persistence
http://memcached.org/
https://github.com/google/leveldb
http://fallabs.com/kyotocabinet/
http://fallabs.com/kyototycoon/
http://htmlpreview.github.io/?https://raw.githubusercontent.com/google/leveldb/master/doc/impl.html
http://htmlpreview.github.io/?https://raw.githubusercontent.com/google/leveldb/master/doc/impl.html
http://htmlpreview.github.io/?https://raw.githubusercontent.com/google/leveldb/master/doc/impl.html
http://htmlpreview.github.io/?https://raw.githubusercontent.com/google/leveldb/master/doc/impl.html
http://www.schedmd.com/slurmdocs/slurm.html
http://www.schedmd.com/slurmdocs/slurm.html
http://www.linux-kvm.org/

89

[50] Intel 64 and IA-32 Architectures Software Developer’s Manual.

[51] CityHash website. https://code.google.com/p/cityhash/.

[52] FarmHash website. https://code.google.com/p/farmhash/.

[53] inoticoming Manpage. http://manpages.ubuntu.com/
manpages/hardy/man1/inoticoming.1.html.

[54] Lok-Kwong Yan, Manjukumar Jayachandra, Mu Zhang, and Heng Yin. V2e:
Combining hardware virtualization and softwareemulation for transparent
and extensible malware analysis. In Proceedings of the 8th ACM SIG-
PLAN/SIGOPS Conference on Virtual Execution Environments, VEE ’12,
pages 227–238, New York, NY, USA, 2012. ACM.

https://code.google.com/p/cityhash/
https://code.google.com/p/farmhash/
http://manpages.ubuntu.com/manpages/hardy/man1/inoticoming.1.html
http://manpages.ubuntu.com/manpages/hardy/man1/inoticoming.1.html

	Abstract
	Deutsche Zusammenfassung
	Contents
	Introduction
	Background
	Virtual Machines
	Checkpointing
	QEMU
	Simutrace

	Analysis
	Requirements
	Queuing
	Prototype
	Databases
	Conclusion

	Design
	Checkpointing
	Distribution
	Conclusion

	Implementation
	Virtual Machine Monitor
	Storage
	Cluster management

	Evaluation
	Methodology
	Evaluation setup
	Results
	Discussion

	Conclusion
	Future work

	Additional graphs
	Bibliography

