NIT

Karlsruher Institut fur Technologie

Analyzing Duplication in Incremental
High Frequency Checkpoints

Bachelorarbeit
von

Jan Ruh

an der Fakultat fur Informatik

Erstgutachter: Prof. Dr. Frank Bellosa
Betreuender Mitarbeiter: Dipl.-Inform. Marc Rittinghaus

Bearbeitungszeit: 07. Juni 2015 — 06. September 2015

\

KIT — Universitat des Landes Baden-Wirttemberg und nationales Forschungszentrum in der Helmholtz-Gemeinschaft WWW. klt-ed U

Ich erklire hiermit, dass ich die vorliegende Arbeit selbstindig verfasst und keine
anderen als die angegebenen Quellen und Hilfsmittel verwendet habe.

Karlsruhe, den 7. September 2015

v

Deutsche Zusammenfassung

Die Simulation vollstindiger Computersysteme (Full System Simulation) leidet
unter einer schlechten Ausfiithrungsgeschwindigkeit, so dass sie fiir die Anwen-
dung auf zeitintensive Arbeitslasten (Workloads) ungeeignet ist. Um dieses Prob-
lem zu 16sen stellt SimuBoost eine parallele, verteile Simulation eines Comput-
ersystems, basierend auf hochfrequenten Checkpoints einer virtuellen Maschine,
zur Verfiigung. Eicher [§]] stellt einen schnellen inkrementellen Checkpointmech-
anismus mit Deduplikation zur Verfiigung, welcher fiir die Anwendung mit Simu-
Boost geeignet ist.

Die Auswertung von inkrementellen Checkpoints hat ergeben, dass viele Spe-
icherseiten und Disksektoren mehrfach auftreten. Da inkrementelle Checkpoints
nur Speicherseiten und Disksektoren in Betracht ziehen die sich verdndert haben,
stellt sich die Frage welchen Ursprung und welchen semantischen Hintergrund
diese Duplikate haben. Zu diesem Zweck wird eine Analyse des kompletten Sys-
tems durchgefiihrt (Full System Analysis) um relevante Daten der virtuellen Mas-
chine zu sammeln und auszuwerten.

Die Auswertung hat gezeigt, dass zwischen 30% und 60% der doppelten Spe-
icherseiten unbenutzt sind. Es wurde festgestellt, dass zwischen 40% und 50%
der Duplikate ihren Ursprung in ausschlieBlich Null enthaltenden Speicherseiten
haben.

vi

DEUTSCHE ZUSAMMENFASSUNG

Abstract

Full system simulation suffers from a bad execution speed making it unsuitable
for application with long-running workloads. To solve this execution speed issue,
SimuBoost provides simultaneous full system simulation based on high frequency
virtual machine checkpoints. Eicher [8] provides a fast checkpointing mecha-
nisms, using incremental checkpoints with deduplication for the application with
SimuBoost.

Evaluation of incremental checkpoints showed high duplication potential of
page frames and disk sectors. As incremental checkpoints only consider dirty page
frames and disk sectors, the question arises from which sources these recurring
dirty pages stem from and what semantic background they have. For this purpose
it uses full system analysis to collect relevant data from a virtual machine and
evaluates it.

The evaluation shows that between 30% and 60% of dirty and duplicate page
frames in incremental checkpoints are unused. It is found that between 40% and
50% of duplicates have their origin in page frames that contain only zeroes.

vil

viii ABSTRACT

Contents

[Deutsche Zusammenfassung|

[Abstract

Contents|

(L Introduction|

2

Background|

2.1 ~ Full System Simulation| 000,

[2.2.1 Incremental Checkpomting/.
[2.2.2 Characteristics of Main Memory Duplicates|
(2.3 Full System Analysis| Lo
[2.3.1 Operating System Introspection|

S Analysis

4

(3.1 Memory Semantics| oL
[3.2 Data Acquisition| Lo
(3.2.1 Timing Facility|

Desig
4.1 Closing the SemanticGap|
4.2 Checkpoint Metadata]
4.3 Intended Data Analysis|

Implementation|

[5.1 Operating System Introspection|
[5.1.1 Hypercall Interface;,
[5.1.2 Operating System Events|.

1

vii

13
13
16
17

19
19
21
22

[5.3 Checkpointing Metadata]
5.4 AnalysisTool

6 Evaluation|

[6.1 Methodology|

[6.1.1 Checkpointing Interval Adaption|.
[6.2 Evaluation Setup|
(6.3 Main Memory Increment Semantics|

[6.3.1 Semantics of Duplicate Page Frames|

[6.3.2 ZeroPages
6.4 Conclusionl

CONTENTS

Chapter 1

Introduction

Full system simulation is a valuable tool for system analysis. Unfortunately it
suffers from a bad execution speed making it almost unsuitable for analysis of
time consuming workloads. Rittinghaus et al. [17] developed a full system sim-
ulation solution that emulates a workload simultaneously on mutliple nodes. It
maintains one utilized node using virtualization to fast-forward system state and
taking periodical checkpoints, which are distributed to simulation nodes. As the
performance advantage by the simultaneous simulation highly depends on an ef-
ficient and fast checkpoint mechanism Eicher [8] presents a suited solution in his
thesis, combining incremental checkpoints and deduplication with asynchronous
storage.

Previous work on incremental checkpoints with deduplication by Baudis [5]]
showed a significantly high rate of page frame and disk sector duplicates, indi-
cating recurrent memory content. These results are confirmed by Eicher [8]. As
incremental checkpoints only consider dirty page frames and disk sectors, the
question arises from which sources these recurring dirty pages stem from and
what semantic background they have. Detailed information about duplicate page
frames could be used to further improve the performance of incremental check-
points. However, there is no research describing characteristics of duplicate page
frames in incremental checkpoints.

The objective of this thesis is to provide a survey of page frame character-
istics in incremental checkpoints and to analyze duplicate page frames in order
to find prospects for extensions or optimizations for incremental checkpointing
mechanisms.

The inspected system runs in its own context inside a virtual machine (VM).
To analyze page frame characteristics of the operating system that is encapsulated
in the VM, the so-called semantic gap has to be bridged. In the thesis at hand
this is achived by using operating system introspection, which actively sends op-
erating system events that can be used to reassemble page frame semantics to

4 CHAPTER 1. INTRODUCTION

the simulation host. The host processes received data and persists it for further
analysis.

An analysis tool is used to create a model describing the page frame semantics
by sequentially applying operating system events from the storage. By evaluating
statistics derived from the model, it is found that between 30% and 60% of dirty
and duplicate page frames in incremental checkpoints are unused. It is found that
between 40% and 50% of duplicates have their origin in page frames that contain
only zeroes.

Chapter [2] writes of full system simulation and their field of application. It
covers past work regarding the analysis of main memory duplicates and full sys-
tem analysis in general. Chapter [3| gives a definition on memory semantics and
analyzes requirements to solve the problem. Chapter @] explains how the semantic
gap is closed and provides an overview of the intended data analysis. In Chapter
3] is described how data is collected, transfered to the host and stored for later
analysis. It also describes the implementation of the analysis tool used to evaluate
collected data. Chapter [6| evaluates collected data and presents the results of this
thesis. Chapter [7|concludes the thesis and gives an outlook on future work.

Chapter 2

Background

This chapter covers the fundamentals of full system simulation and incremen-
tal checkpointing. It also explains and classifies already existing work regarding
memory analysis of operating systems and analysis of page frame duplicates.

2.1 Full System Simulation

Full system simulation provides developers and researchers with a useful tool to
take a deeper look on system internal behavior. It empowers them to install and
run unmodified operating systems (OS) in a self-contained, observable environ-
ment and make predictions and propositions about real systems. To enable the user
in doing so, full system simulators reproduce the behavior of real hardware includ-
ing processors, memory, peripheral devices, video and network interfaces [9].

The level of abstraction at which real hardware is simulated depends on the
specific requirements of the experiment. For system verification purposes or early
software development, when real hardware is not available yet, a functional full
system simulation is sufficient as it guarantees correct behavior of the systems
components. If accurate timing is needed additionally e.g., to evaluate the perfor-
mance of a system, a timing simulation is used as it assures correct time ordering
of generated functional events [3].

Full system simulators such as Simics [14] or QEMU [6] certainly can also
be used to run a virtual machine (VM). Still they differ from virtual machine
monitors, which are using specialized hardware extensions to achive a better per-
formance in comparison to full system simulators, which lack in performance but
emulate the hardware in more detail. The slowdown by emulating a system is
33 times compared to a virtualized solution. If the simulated system is inspected
additionally for analysis purposes, the slowdown increases to 165 times compared
to a virtualization [[17]].

6 CHAPTER 2. BACKGROUND

2.1.1 QEMU

QEMU is an open source full system simulator, capable of interfacing with the
linux kernel-based virtual machine (KVM), which executes on several architec-
tures. It runs unmodified OS versions and comes with debugging and system
inspection facilities [[18,/19]. In cooperation with KVM it uses virtualization ex-
tensions of the processor manufacturers to provide an execution speed compara-
ble to real hardware. In this case QEMU runs as a userspace process emulating
devices and using, if available, KVM which exposes the hardware acceleration
functions of the CPU from the kernelspace to the userspace.

However, originally QEMU was designed to execute code of an external CPU
architecture. Therefore it is able to emulate well-established CPU architectures
like x86, ARM or MIPS and more exotic oneq'| To offer this wide range of emu-
lation targets QEMU uses a dynamic code translator called Tiny Code Generator
(TCG). TCG translates guest code up to the next jump or virtual CPU state chang-
ing instruction. This basic blocks of code are called Translated Blocks (TBs).
QEMUs internal cache holds the most recently used TBs for faster translation.
Each target CPU instruction of a block splits into a couple of TCG operations that
get translated into host CPU instructions [20]]. A host instruction modifies the
guests system state as intended by the original guest operation.

There are guest instructions, which are not translated into host instructions
but rather handled by so-called helper functions. QEMU uses helper functions
to implement uncommon but complex architecture specific instructions so they
do not have to get implemented as large code blocks that are translated during
runtime, therefore affecting the execution speed negatively.

With the use of TCG, QEMU archives a better performance compared to other
full system simulators. Running a Linux kernel build QEMU is 24 times faster
than Simics. Even with analysis functionality activated QEMU is still 5 times
faster than Simics [17]].

The speedup compared to other full system simulators is achived by trad-
ing simulation precission and timing for execution speed benefits. Nevertheless
QEMU is sufficient to analyze for example memory access patterns or the oper-
ating system state. Still if a more precise simulation of the hardware is required
QEMU is of no more use and more accurate simulators, that lack in passable per-
formance, must be employed.

For a full list, see [18]]

2.2. SIMUBOOST 7

2.2 SimuBoost

Existing full system simulators lack in performance, as mentioned before. They
either simulate a system on an very abstract level to prevent major performance
loss or they perform a precise hardware simulation and suffer of a slow execution
speed. Compared to virtualization using KVM, Simics is 771 times slower and
QEMU 33-165 times slower than KVM [17]]. Therefore it would be desireable to
combine execution speed and the ability for full system analysis.

SimuBoost addresses this need by splitting the simulation in seperate intervals
that are simulated simultaneously. Obviously in order to enable a parallel execu-
tion of intervals the start system state of each interval has to be known. Therefore
SimuBoost utilizes a virtualization to collect system state information for each
simulation interval. This approach scales with the run-time of the simulation be-
cause the longer the simulation the more intervals are extracted and distributed to
parallel simulation nodes and the higher is the speedup by SimuBoost [[17]].

In order to provide the simulation nodes with system states, herinafter referred
to as checkpoints, SimuBoost requires a suited checkpointing mechanism.

vCPU
Node O

i[1] i[k] i[n] Virtualization

Node 1

Node k

Node n

Figure 2.1: Parallel execution of simulations at different points in time on mutliple
nodes [[17]]

2.2.1 Incremental Checkpointing

A checkpoint describes the state of a VM or full system simulation at a point in
time. In general this includes main memory, persistent memory, devices and the
CPU. In this thesis a checkpoint refers only to an exact main memory image at a
point in time.

When a checkpoint is taken, the VM is suspended and restarted after the
checkpointing mechanism is finished. The period of time while the VM is sus-

8 CHAPTER 2. BACKGROUND

pended is called downtime of the VM. If taking high frequency checkpoints, as
done in the application of SimuBoost, the downtime affects the overall runtime
of the VM. As a result the checkpointing mechanism affects the interval length
of SimuBoost, as a shorter interval results in a higher overhead due to downtimes
of the VM (because of more frequent checkpoints) whereas longer intervals influ-
ence the runtime of the simulation nodes negatively. Rittinghaus [17]] performed
calculations resulting in an optimal virtualization execution interval of 2 seconds.

Apparently saving complete main memory, persistent memory and devices
states leads to a high data amount. As the amount of data, which has to be pro-
cessed, correlates directly with the downtime, it has to be reduced to a minimum.
Baudis [5] achives this by applying incremental checkpointing in combination
with deduplication of main and persistent memory.

In page based incremental checkpointing only modified page frames, hence
page frames that have changed since the last checkpoint, are considered by the
checkpointing mechanism. As a result the data amount is decreased noticeably,
namely about 5-10% [5, 13]. However loading a checkpoint gets more time-
consuming given increments are scattered over previous checkpoints and have to
get reassembled.

The data amount can be further reduced by deduplicating checkpoint incre-
ments. As incremental checkpointing only considers dirty page frames per check-
point one would expect to see low numbers of duplicates. Still running incre-
mental checkpointing results in high duplication of page frames. Baudis [5, 15]
differentiates between two duplication types in his thesis:

¢ Intra-checkpoint duplication: Two or more page frames of the same check-
point contain the same data.

e Inter-checkpoint duplication: Two or more page frames at different check-
points contain the same data.

He states that intra-checkpoint duplicates are under 10% of dirty page frames
while inter-checkpoint duplicates are at 15-55% during a Linux kernel build [5,
15]. The high duplication rate in incremental checkpointing raises the question
for semantical properties of duplicate page frames, as detailed information could
be used to further reduce data amount and downtime or rather optimize systems to
produce less duplicates and use existing memory more efficently. Unfortunately
there are no analyses of page frame duplicates in incremental checkpoints.

2.2.2 Characteristics of Main Memory Duplicates

Despite absence of research regarding analysis of duplication in incremental check-
points, there is research describing characteristics of main memory duplicates in

2.3. FULL SYSTEM ANALYSIS 9

general. They are of interest in the context of virtual machines. If main memory
duplicates in simultaneously running VMs can be found, it is possible to dedupli-
cate them and save main memory. Therefore finding of sharing opportunities is
one of the main reasons for analysing main memory duplicates.

Baker et al. [4] installed a memory memory tracer based on a Linux kernel
module to collect data of interest. It walks through each page of memory, cal-
culates a hash based on the page content and collects additional data regarding
the content type of a page frame (e.g. stack, heap, file mapping) and the process
using the page frame. They used data resulting from their memory traces to an-
alyze sharing potential of VMs and real world systems and to look into sources
of redundant page frames. They found that 67% of page frames could be shared
(hence are duplicates) during a Linux kernel build and 45% of duplicate pages
come from file mappings and 55% from anonymous memory.

In a study performed by Kloster et al. [[13]] 93% of page frames during a kernel
build were assigned to the page cache, while under 1% were anonymous mem-
ory. They used introspection to collect information from the running VM. This
approach allows an event driven data recording and keeps the impact on the VM
as small as possible.

2.3 Full System Analysis

To analyse a computer system as a whole it is not sufficient to only collect data of
selected processes as the analysis misses interactions of operating system compo-
nents. Therefore it is necessary to collect and analyze data on a system level by
executing full system simulators, which are completely observable.

2.3.1 Operating System Introspection

Inspecting the main memory of a virtual machine cannot be done directly, because
the inspecting unit acts outside the virtual machines context. It has no understand-
ing of the information that is encoded in the VMs memory. To bridge this semantic
gap and gather semantical information from a guest system introspection is used.

In general there are three different methods to bridge the semantic gap. Each
with advantages and drawbacks.

Tracing facility in guest context By moving the tracing unit into the context of
the guest system there is no more semantic gap that needs to be bridged. Although
the approach is easy to use and very straightforward it has a huge effect on the
observed system as the tracing unit has to store collected data internally using

10 CHAPTER 2. BACKGROUND

ressources of the observed system thus falsifying trace data and results. Baker et
al. [4]] used this approach to analyse redundant page frames (Section [2.2.2)).

Gu [11]] et al. use an implanted process that executes inside the host under the
cover of an existing process to lower the semantic gap of anti-malware software
that is placed in the hypervisor of a VM.

Tracing facility outside guest context (with guest modification) In this sce-
nario the actual tracing facility is located outside the context of the inspected VM.
Nevertheless the guest operating system that is running in the VM has to actively
send data of interest to the hypervisor. The hypervisor receives data and stores
it for later analysis. The procedure still has an effect on the guest system as it
has to cooperate and send data, but the effect can be minimized dependent on the
implementation of the mechanism.

Rittinghaus [15]] uses this method to collect data required for a detailed analy-
sis of duplicated memory pages. He records fundamental operating system events
to recreate the operating systems memory semantics (including virtual memory
of processes) at each point in time. This allows him to make statements about
when memory duplication occurs and how long duplicated pages last in memory.
Besides that he gets information about how duplicates are distributed amongst
memory categories.

Groeninger [[10] uses the framework developed out of Rittinghaus diploma
thesis to analyze advanced page sharing opportunities. He applies a similar in-
trospection interface to collect data. Using a hidden markov model, he develops
heuristics to identify specific workloads that can be used to adjust the scan behav-
ior of a memory scanner to improve page sharing opportunities.

Tracing facility outside guest context (without guest modification) It is pos-
sible to move the tracing facility completely out of the guest system and even
resign guest modifications that send data to the hypervisor. Julino [12] achives
this by using debugging symbols and utilizing the static position of the operating
system kernel in the address space of every process to determine and differentiate
contexts.

As already mentioned this approach needs no cooperation of the guest system,
therefore an unmodified operating system can be executed. On the other hand the
use of debugging symbols results in an increased complexity of the implementa-
tion, as programm contexts are reassembled in the simulator.

2.3. FULL SYSTEM ANALYSIS 11

2.3.2 Simutrace

Simutrace [[16] is a flexible tracing framework conceived for efficient full system
memory tracing. It addresses the limitations of existing tracing frameworks which
are only able to track selected processes, therefore missing interaction with the
OS, system daemons or (kernel-mode) drivers. To avoid this restrictions, Simu-
trace captures events at hardware level using functional full system simulation,
thus including all user-space programs, operating system events, direct memory
accesses and system drivers. As a full system simulation is running an unmodi-
fied OS, the tracing has no impact on the observed system and is free of any side
effects [16].

Simutrace’s tracing capabilities are not limited to memory tracing only. Its
design is as general as possible allowing it to adapt to new tracing scenarios and
variable data. Simutrace architecture (Figure [2.2)) is reflecting this by splitting up
into components, representing a classical client server architecture, which allows
both local and remote tracing sessions.

IR Simutrace Storage

o
=
-
c
2
(=]
@
o
©
i
s
S
E
A

—
Q
>
j .
(7]
(Vs]
Q
o
1]
ol
et
35
£
w

@ Analysis Client

Figure 2.2: Simutrace general architecture

The Simutrace client library extends an existing full system emulator and
transfers collected information to the Simutrace server. An analysis client, that
uses the same client library as the full system simulator, can connect simutan-
iously, or after data gathering is finished, to analyze transferred data.

As main component the server manages client connections and presents traces
from and to clients. To reduce space consumption it compresses/decompresses
traces before they are written to or read from persistent storage.

Traces created by Simutrace consist of sequences of recorded events. Recorded

12 CHAPTER 2. BACKGROUND

event data is not interpreted by Simutrace, neither places Simutrace any restric-
tion on the data type. As a result it only needs to know the intended data size to
offer an event based data access. This is done by registering a new data stream
to which data of the specified size is committed. Managing fixed sized streams
has one drawback. The approach forbids tracing data whose size is not known in
advance such as strings. Therefore Simutrace provides variable sized streams too,
which are using references to store variable sized data [16].

There is a patch [21] for the full system simulator QEMU that fully integrates
Simutraces tracing capabilities into QEMU by extending its existing tracing back-
end. Source code concerning trace events, which are defined in a dedicated con-
figuration file, is generated during the QEMU build process and compiled so it is
useable immediately.

Chapter 3

Analysis

Baudis [5]] measures on average 17.50 % duplicate page frames per checkpoint
during a kernel build in a virtual machine with an incremental checkpointing
mechanism activated. If it is taken into account that he only considers dirty page
frames this number seems very high and raises the question what properties and
origin duplicates in incremental checkpoints have. Previous research analyzed
page frame duplicates at consecutive points in time to find sharing potential in
virtual machines. In the case of incremental checkpointing, deduplicateable page
frames concern mostly reappearing contents that already existed in memory at
previous checkpoints [S[][15].

Therefore existing work can only be taken as a hint at the features of page
frames deduplicated incremental checkpointing. Hence it is neccessary to take a
deeper look at the memory state during incremental checkpointing. As a result
the scenario of Baudis bachelor thesis has to get recreated and extended with
mechanisms to inspect the running simulation especially when a checkpoint is
made.

3.1 Memory Semantics

An operating system provides an abstraction from underlying hardware enabling
user programs to run. One of these abstractions is virtual memory. Each pro-
gramm gets a fixed range of virtual addresses. If actual memory is needed the
operating system maps a page frame to a virtual address. The content of a page
frame gains its semantics through the assigned process and the program that is rep-
resented by the process. Because the abstraction of the operating system makes it
difficult to infer exact semantics, this thesis uses an approximation. Memory that
is assigned to a process can be roughly divided into two types of usage.

13

14 CHAPTER 3. ANALYSIS

Virtual Memory of
Process A

Semantic Operating System
Gap
Page
Frame

Figure 3.1: Mapping of processes virtual memory to physical memory. Memory
semantics arise from opearting systems mapping.

Anonymous Anonymous memory is non-static memory that is used to hold data
arising during the execution of a process. It includes processes stacks and the
heap. Heap and stack can grow dynamically depending on the memory demand
of the process.

File backed Memory that contains file mappings from disk is called file backed.
File backed memory includes mappings of executeables like libraries or a pro-
grams binary code and files that are currently read and/or written by any system
component.

Therefore in this thesis, the semantics of a page frame consist of the process
that requested a physical to virtual memory mapping by the OS and the type of
usage, which is determined by the OS (Figure [3.1). Accordingly without the con-
text of the operating system (and the program/process the memory is assigned to),
memory semantics of page frames are lost or rather hard to recover.

This means in order to characterize duplicate page frames of incremental
checkpoints it is necessary to extract information from the operating system that

3.1. MEMORY SEMANTICS 15

can be used to distinguish between anonymous and file backed memory and to
determine the process a page frame is assigned to.

Modern operating systems implement page frame protection mechanisms on
top of the physical to virtual memory mapping facilities, to prevent unauthorized
manipulation. In fact various access rights for page frames are defined by the OS.
A page frame can be readable, writeable and/or executable. Depending on the OS
there can be more access rights. The access rights defined by the operating system
can be used to distinguish between anonymous and file backed memory.

In general page frames of a file backed memory mapping that targets binary
code are executable and read-only to prevent malfunction by overriding the page
frame accidentally. In case of a common file the memory mapping marks the page
frame readable and/or writeable but not executable.

If a physical to virtual memory mapping is not file backed, the targeted page
frame is identified as anonymous memory. Anonymous memory is readable and
or writeable though not executable.

Beside these process dependent memory types there is information in the ab-
sence of a physical to virtual memory mapping too. Therefore the dissolving of a
memory mapping by the OS, which results in a free, reuseable page frame carries
usage information as well. Furthermore the OS maintains file caches to speed up
file access by holding file references in unused page frames. Hence if a process
wants to access a file that is already located in a file cache, it gets mapped in to the
processes virtual address space. As the page cache in general is process indepen-
dent it is a second source of information about the usage of page frames, which
does not rely on the presence of a memory mapping.

In table [3.1] the derived page frame usage types, hereinafter called allocation
types, and their attributes are summarized. The attributes can be used to identify
data needed to determine a page frames allocation type.

Allocation type Attributes

anonymous memory readable and writeable, no file mapping

free memory no specific attributes, freed by operating system
file backed only readable, file mapping

operating system cache operating system dependend

Table 3.1: Allocation types and their attributes derived from operating systems
virtual memory abstraction.

16 CHAPTER 3. ANALYSIS

3.2 Data Acquisition

Basis for page frame usage is information derived from the different memory
mapping and operating system mechanisms (Figure[3.1). By evaluating the access
rights and testing if there is a file mapping established, it is possible to differantiate
between anonymous memory and file backed memory. As a result corresponding
data has to get collected from the guest system by tracing the operating systems
page frame allocation facility. By using data extracted from this mechanism it is
possible to define allocation types that determine memory semantics.

As there is no possibility to derive if a page frame got freed from the attributes
itself, the freeing mechanism of the operating system has to get identified and
traced as well. The same applies for operation system caches.

To this point the data acquisition approach does only record page frame allo-
cation therefore it is not possible to decide which process triggered the memory
allocation. Consequently scheduling operations of the operating system have to
get traced too.

Operating system facility Data of interest

process creation PID, executable filename

process scheduling PID

allocate page frame 64 bit page frame address, allocation type
free page frame 64 bit page frame address

add page frame to cache 64 bit page frame address, cache identifier

remove page frame from cache 64 bit page frame address

checkpointing event data of interest

insertion of a page frame 64 bit page frame address, checkpoint,
data hash

deduplication of a page frame 64 bit page frame address, checkpoint,
data hash

Table 3.2: Data needed for recreation of the memory semantics and correlation of
this data with the checkpointing information

To determine the actual running process, process information like process
identifier (PID) and an executable filename have to be known. They can be inter-
cepted during process creation. The running process can be identified by trapping
the OS scheduler and sending the PID of the running process to the hypervisor. As
a process had to be created before it can run, the received PID can be correlated
with an executable filename during analysis. In table [3.2] the key facilities of the
operating system, that need to be traced to recreate page frame usage at runtime,
are summarized.

3.2. DATA ACQUISITION 17

Even though mentioned data is sufficient to analyze page frame usage and ap-
proximate memory semantics there is no connection to the checkpointing mecha-
nism hence it is not known which page frames changed since the last checkpoint
and which of the page frames are duplicates. Insertion of new page frames and
deduplication of already known page frames is completed by the checkpoint stor-
age. Therefore these specific data has to get extracted every time a checkpoint
occurs. Additionaly it is possibly of interest which content a dirty or rather dedu-
plicated page frame has. As the overhead of saving the whole content of a page
frame is too big, it is sufficient to extract the calculated data hash, which is used
to find duplicates.

Table [3.2] states the data required to form a connection between checkpointing
and OS data. The correlation of checkpointing and OS data also needs a suited
timing mechanism to make sure the memory semantics get correlated with the
correct checkpoint.

3.2.1 Timing Facility

As a checkpoint occurs at a dedicated point in time a facility is needed that adds
timestamps to collected operating system and checkpointing meta data. Without
these timestamps there is no way to guarantee a correct temporal order of events.
Additionaly a timestamp is needed to correlate checkpointing metadata with oper-
ating system data. To do so all operating system events till the first checkpointing
event of the examined checkpoint have to get passed through. Afterwards it is pos-
sible to analyze semantics of page frames delivered by the checkpointing events.

18

CHAPTER 3. ANALYSIS

Chapter 4

Design

To analyze page frame duplicates of incremental checkpoints, the semantic back-
ground of page frames needs to be known. Unfortunately the data cannot be
extracted straightforward because of the semantic gap between the host and the
guest system. Therefore dedicated operating system facilities are traced to recre-
ate approximated memory semantics, as an exact reconstruction of the memory
semantics is too complex. The approximation describes the usage of page frames
by processes and the opearting system by defining allocation types.

4.1 Closing the Semantic Gap

To recreate memory semantics important operating system data has to be actively
transferred from the guest system to the host system.

There are two introspection methods to achive a data transfer from the guest
to the host system. The first approach makes use of debugging symbols and con-
necting a debugger to the virtual machine. A big advantage of this approach is that
an unmodified operating system can be used, which minimizes the effect on the
observed system. However, the implementation overhead is very high as a sim-
ple realization lacks in execution speed whereas fixing the execution speed issue
noticeably increases implementation complexity [12].

The second approach relies on modifications of the guest operating system
at relevant source code locations to collect data and send it so the hypervisor,
which processes and stores the data. The procedure of sending data is realized by
calling a special instruction that invokes the host. Apparently this approach has
an effect on the guest operating system as it is modified to collect and send data.
Nevertheless it is a good trade-off between the influence on the guest system and
a moderate implementation overhead.

The actual introspection process can be split up into two parts as shown in

19

20 CHAPTER 4. DESIGN

Virtual Machine
Monitor

Guest

dataofid =2

execute hypercall
id=2

Figure 4.1: Hypervisor invocation schema

Figure 4.1 The first part is to trap the operating system when an event of interest
occurs and send the virtual address of the data, which is collected in the guest
operating system, to the hypervisor. The second part includes address translation
and data fetching from the hypervisor.

As the guest is a self-contained system, virtual memory addresses received in
the hypervisor are invalid in the host system. To read the actual data, virtual guest
addresses have to get translated into virtual host addresses. When address trans-
lation and data access are finished and the data was send to the storage server the
control flow returns to execute the guest simulation. While bridging the semantic
gap the impact on the guest system should be kept as small as possible to prevent
maloperation and the apperance of wrong data.

As indicated in Figure[d.T]a finite set of recordable events has to get predefined
and supplied with an identifier to determine how many bytes of data are read from
the guests memory and how it is structured. To guarantee a correct temporal order
of events a timestamp is added to every event. It is sufficient if the used timing
mechanism gurantees a monotonic increasing order of events.

4.2. CHECKPOINT METADATA 21

4.2 Checkpoint Metadata

The events provided by the OS introspection are missing information about page
frames that got newly inserted in the incremental checkpointing or deduplicated
by it. To collect checkpointing metadata the deduplication mechanism has to get
instrumentalized.

The deduplication mechanism, which is embedded in the incremental check-
pointing, calculates a data hash of every page frame content that comes with a
checkpoint. The data hash is compared with data hashes of already inserted page
frame contents. If two data hashes match, which means a page frame is dedupli-
cated not newly inserted, an deduplication event is triggered and stored with the
OS introspection events. If there is no match with an already stored data hash, the
page frame is newly inserted and a insertion event is triggered and stored with the
OS introspection events as well.

Event hough the instrumentation of the deduplication mechanism provides
checkpointing events, which identify deduplicated and newly inserted page frames
per checkpoint, there is no reference point, which can be used to correlate check-
pointing events and OS introspection events. In Section {.1] it is stated that OS
introspection events get timestamps from a timing mechanism that guarantees a
monotonic increasing order of events. This timestamp is a suited reference point
for correlation of checkpointing events and introspection events, therefore check-
pointing events need a timestamp as well. To ease correlation every checkpoint-
ing event that belongs to a dedicated checkpoint gets an identical timestamp. As
a result a sequence of alternating OS introspection and checkpointing events is
produced. All OS introspection events that occured before the first of a sequence
of checkpointing events, determine the system state of the checkpoint described
by the current sequence of checkpointing events (Figure §.2)).

0S introspection events defining : .
system state at checkpoint n Checkpoint n

U
[+11]
©
(=3
%)
=
=L

Alloc page
Alloc page

@ [11]
EL ¥
Cla
l'.!= '
[51] S
w3
affl £

Insert page
Deduplicate
\\ page frame

| o
S
' 8
=
=
.=
o
=

Y

0S introspection Checkpointing Events of one checkpoint all with
event event identical timestamp

Figure 4.2: Sequence of alternating OS introspection and checkpointing events.

22 CHAPTER 4. DESIGN

4.3 Intended Data Analysis

Event based introspection, combined with event based checkpointing metadata
leads to a set of sequences of temporal ordered events (Figure d.2). The intended
analysis splits into two steps. First it reassembles the allocation type and the
process context in which an allocation took place for every page frame at every
checkpoint by iterating through the event sequence. This approximates the orig-
inal memory semantics, which existed at runtime. Afterwards the resulting data
model representing the abstract system state at every checkpoint is analyzed.
There are three different kinds of events.

Scheduling events include creation and scheduling of a process. When a new
process creation event occurs, the executable filename and the process ID are
getting saved and used if a scheduling event occurs that contains the same PID.
Process schedule events change the current active process to allow assigning of
arising allocation events to a process.

Allocation events include allocations, freeing of page frames and adding/re-
moving of page frames to/from operating system internal caches. Each allocation
event determines the current semantics of a page frame. When a allocation event
occurs the allocation type of the given page frame is changed to the new allocation

type.

Checkpointing events include events that mark an inserted or deduplicated
page frame at one checkpoint. All checkpointing events of a checkpoint con-
tain the same cyclecount as the virtual machine pauses when a checkpoint occurs.
When a checkpointing event occurs the referenced page frame and its data hash
are getting saved with the checkpoint they got inserted or deduplicated in.

While iterating through the event sequence, the inteded action of the current
event is executed by updating a data model, which represents the abstract system
state per page frame. The used data model splits into submodels, representing
the allocation type of each page frame, the known process IDs and corresponding
executable filenames and a model managing checkpoints and associated insertion
and deduplication events. As checkpointing events always appear bundled in the
event sequence (Section 4.2)), they indicate the occurence of a checkpoint. If a
checkpoint is noticed in the event sequence the current state of the data model is
related to the current checkpoint and its events, so it can be analyzed in a second
step.

4.3. INTENDED DATA ANALYSIS 23

When the reassembling step is finished, the analysis step creates statistics of
every checkpoint by using the data-model-checkpoint-relation created in the first
step. The intended analysis counts allocation types of inserted and deduplicated
page frames per checkpoint and calculates percentages to describe their distribu-
tion. To find distinctive features in the allocation behavior of specific processes
their allocation types over the course of the checkpoints are counted as well. In or-
der to find correlations between specific page frame contents and allocation types,
data hashes of the checkpointing events are analyzed by counting their occurence
in combination with the allocation types.

Because of the event based introspection approach and the resulting data model
at each checkpoint it is very easy to extend the analysis and adapt it to arising re-
quirements.

24

CHAPTER 4. DESIGN

Chapter 5

Implementation

The checkpointing mechanism used in this thesis was implemented by Eicher [8].
It is a modified version of the checkpointing mechanism that was integrated into
QEMU/KVM by Baudis [5]]. Eichers implementation replaces the storage back-
end used by Baudis with a faster storage mechanism by using Simutrace and asyn-
chronous data processing.

In this work KVMs virtualization and the speedup associated with it is re-
nounced, as the checkpointing mechanism is embeded in QEMUs VMM and ab-
stracted from KVM. It has the advantage that QEMUSs existing tracing infrastruc-
ture and functionality provided by the earlier mentioned Simutrace patch [21]] can
be used. This includes an cyclecount, which can be used as time source for events
and is only available in the TCG mode of QEMU. Hereinafter, QEMU with the
applied Simutrace patch is referred to as QSimu.

The use of QSimu to run the virtual machine allows the use of Simutrace to
store introspection and checkpointing events. QSimu is based on version 2.2.1 of
QEMU while the checkpointing mechanism of Eicher was implemented in QEMU
version 1.5.50. So the checkpoiting mechanism got ported to QSimu which made
it neccessary to disable disk checkpointing because of incompability, which is not
important for this thesis anyway.

The Simutrace server used in this thesis was extended by Eicher [8] to store
and deduplicate received incremental checkpoints.

The investigated guest system is a Linux system with the kernel 4.1.0 as its
source code is available and it is documented well. It runs on an emulated x86-64
CPU. The first problem that has to get addressed is bridging the semantic gap,
hence sending operating system events from the host to the guest system.

25

26 CHAPTER 5. IMPLEMENTATION

5.1 Operating System Introspection

The guest running in QSimu is a semantically closed system. QSimu does not
provide an earlier mentioned magic instruction that allows to make a call from the
guest system into the host system. As a result a custom mechanism has to be used.

The x86 CPU architecture provides two instructions, rdmsr and wrmsr, for
reading and writing model specific registers (MSR). MSRs can be accessed by
defining a 32 bit index that has to be loaded into the ECX register before the
MSR instruction is called. The MSR instructions define an unused register address
range from 0x40000000 to 0x400000FF that has not been used in any past
and will not be used in any future CPU implementation [1.

If a MSR instruction with an invalid register address is executed on a real
machine the CPU throws an exception. In QSimu a dedicated helper function
handles the rdmsr and wrmsr instructions. This fact can be used to trap the
simulator into receiving semantic information from the guest system.

In this thesis the rdmsr instruction is used to hook the simulator up to receive
data from the VM, as just reading a value from a MSR does not influence the
system as much as writing a MSR. The call of the VM into the simulator is referred
to as executing a hypercall.

5.1.1 Hypercall Interface

To ease the use of hypercalls a function that executes the hypercall is declared. It
takes two arguments, an 8 bit event identifier (EID) to differantiate between OS
events and a pointer to the data structure that is send.

As the size of the unused MSR address range is exactly 8 bit, the EID is trans-
ferred by adding it to the lower limit of the unused MSR address range. Therefore
there is no usage of an additional register to transfer the EID, hence less influence
on the running system and no guest memory access from the simulator to retrieve
the EID.

The event data getting transferred to the host is organized in a packed C struc-
ture. A pointer to the structure is passed to the hypercall function that stores it
in the 64 bit RDX register. By packing the structure containing the collected data,
hereinafter referred to as hypercall structure (HS), we prevent the compiler from
inserting paddings that could break data access from the simulator. In the sim-
ulator, the EID is interpreted and determines the HS that is read from the guest
memory. Hence the simulator, QSimu, has to have knowledge about the data
hypercall structures used for data transmission in the Linux kernel to gurantee a
correct access and interpretation of the data.

When a hypercall is triggered in the guest operating system, the rdmsr in-
struction is handled in QSimu by the dedicated helper function. It checks if the

5.1. OPERATING SYSTEM INTROSPECTION 27

value in the ECX register — the MSR address — is equal to the start of the reserved
MSR address range and extracts the EID. Afterwards it calls into a function trans-
lating the guest pointer stored in RDX into a host pointer that can be used to access
the data defined by the EID.

The address translation function uses QEMUs internal SoftMMU to get cor-
responding virtual host addresses from virtual guest addresses. In general, when
virtual guest addresses are translated into virtual host addresses, the translation is
accomplished in two steps. A translation from a guest virtual address to a guest
physical address and afterwards an translation to a host virtual address is executed.

The SoftMMU of QEMU is basically a translation lookaside buffer (TLB)
that caches the offset of a virtual guest address to a virtual host address. This
implementation disregards the fact, that a software implementation of a hardware
TLB would usualy only store the offset between virtual guest and physical guest
address.

If there is an entry for a virtual guest address in the Soft MMUs TLB, the offset

is used to receive the virtual host address directly, otherwise QEMUs t1b_fil1 (...

function is called to process the virtual guest address and store the calculated oft-
set in the TLB. This process has no impact on the VMs system state because it has
no knowledge of QEMUs SoftMMU.

The resulting virtual host address is passed to a hypercall handler function,
casting it to a pointer to the corresponding HS and storing the data via Simutrace.

This procedure affects the guest system state at a minimum, as all used regis-
ters are saved before a hypercall is executed and restored when the control flow
returns from the host.

Furthermore collected data is not stored on the guest system heap, as this so-
lution involves calls of kmalloc, the linux kernels memory allocation function,
which would influence the guest system state, in worst case triggering a page allo-
cation falsifying results. The collected data is stored on the current process’ stack
instead, as it minimizes the effect on the guest system memory state.

5.1.2 Operating System Events

The hypercall interface is used at particular locations in the Linux source code
where data of interest is available and can be intercepted.

In chapter[3.2]traced operating system events were stated. They are general de-
scriptions for specific, operating system dependend implementations which have
to be located in the Linux source code. Figure [5.1] gives an overview of installed
hypercalls and their source code locations.

The principal source for relevant semantic information are page frame alloca-
tions. As there is no central location in the Linux source code where the allocation

28 CHAPTER 5. IMPLEMENTATION

Event Intercepted function Source file
process creation do_fork(...) kernel/fork.c
process scheduling context_switch(...) kernel/sched/core.c

arch/x86/include/asmy/...

page frame allocation native_set_pte_at(...) pgtable.h
native_set_pmd_at(...) pgtable.h
native_set_pte(...) pgtable_64.h
native_set_pmd(...) pgtable_64.h

adding page frame add_to_page_cache_locked(...) mm/filemap.c
to page cache

removing page frame delete_from_page_cache(...) mm/filemap.c
from page cache

add page frame allocate_slab(...) mm/slub.c
to slab

removing page frame free_slab(...) mm/slub.c
from slab

Table 5.1: Source code locations of hypercalls installed in the Linux kernel

of page frames is dealt with, the hypercalls regarding general allocations are in-
stalled in the facility that establishes virtual page to page frame mappings. The
allocation type of a mapping is derived by evaluating the Linux kernels memory
descriptor structure (mm_struct).

It contains all information about a processes address space by holding a list
of memory regions. Linux describes a memory region by a structure of the type
vm_area_struct. It defines a contiguous linear address interval that never
overlaps with other memory regions of the same process. It is possible to retrieve
the corresponding vm_area_struct of a page frame by calling the function
find_vma (...) and passing it the page frame address and its memory descrip-
tor. Each memory region defines its own access rights by setting corresponding
flags. If a memory region is file backed, it contains a pointer to the related file
object. Therefore by checking if the file object pointer is NULL and evaluating the
access rights it is possible to differentiate between an anonymous memory region

5.2. FULL CODE GENERATION 29

and a file backed memory region.

Besides page frames that are allocated by processes there are page frames used
by operating system caches. The Linux kernels maintains two caches, the page
cache and a facility called slab allocator.

The page cache of the Linux kernel is a common disk cache. It is used to speed
up file accesses by keeping frequently used data in main memory. It is invoked
when a process wants to read from or write to a file. If a file is not already in
the page cache, the kernel adds new page frames to the page cache to satisfy the
request [7]]. The slab allocator allocates page frames to hold often used kernel data
structures. A slab only holds one specific data type. If the kernel requests such
a data type, instead of allocating and initializing a new memory area, the kernel
reuses an existing one of the slab [7]]. Both facilities contain hypercalls to gain
information which page frames are assigned to them.

The set of introspection events compromises many different kernel source
code locations that have to be modified. The modification in detail consists of
collecting needed data, creating the HS on the stack and executing the hypercall
with the EID and the HS pointer as arguments. For every operating system event
that is traced in the guest operating system, QSimu needs a handler function that
accesses the data and stores it in Simutrace. The procedure of creating a HS, ex-
ecuting a hypercall and processing it in QSimu is in general analogical. When
a HS is created the fields of a C structure are initialized with predefined, event
dependent values. The following hypercall execution is similar for all events and
the data access in QSimu only differs in the HS structure that is determined by the
EID. Finally the storage of received events is accomplished by calling functions,
which were generated from a configuration file by QEMUs tracing backend.

Because of mentioned similarities in the implementation of hypercalls and
data processing in QSimu, dynamic code generation is used.

5.2 Full Code Generation

As discussed in chapter [5] QSimu extends QEMUSs existing tracing infrastructure
to provide a storage interface for Simutrace. QEMUSs tracing infrastructure is
generated when QEMU is built. It reads its tracing events from a configuration
file that defines a tracing function name, function arguments and a standart text
output of the arguments and generates a callable C function. This function, in
the following referred to as tracing function, takes declared arguments and stores
them bundled into a dedicated Simutrace stream. Addtionaly it automatically adds
the cyclecount timestamp to the bundled data.

By inserting the corresponding generated tracing function into the event de-
pendent hypercall handler function in QSimu, mentioned in section [5.1.1] there

30 CHAPTER 5. IMPLEMENTATION

it is possible to generate data processing procedures for every event defined in
QSimus trace event configuration file.

As noticed in section [5.1.2] hypercalls from the guest operating system to
QSimu only differ in the HS used for data transmission and their initialization.
Information concerning the needed fields of a HS can be extracted from the trace
event configuration file as well. If the needed fields of a HS are known it is possi-
ble to generate a function for the use in the kernel, which initializes the HS on the
stack. As the hypercall itself is already encapsulated in a function it can be added
to the initialization function, taking a pointer to the recently created HS and the
corresponding EID. As a result the source code responsible for creating a HS and
invoking the hypercall with the pointer and EID as argument is fully dynamically
generated.

void send_<EVENT_NAME>_struct (<ARGUMENT_1> field 1, ...,
<ARGUMENT_n> field n) {

<EVENT_NAME>_t <EVENT_NAME>;y
<EVENT_NAME>.field_1 = field_1;

<EVENT_NAME>.field_2 = field_n;
execute_hypercall (HYPERCALL_TID_<EVENT_NAME>,

&<EVENT_NAME>) ;
}

Listing 5.1: Structure of a generated function that initializes a HS and executes a
hypercall

Listing shows the general structure of a function that is generated and
callable at appropriate locations in the Linux kernel. Because the counterpart
located in QSimu is completely generated as well this leads to a full code genera-
tion for operating system introspection events and their storage via the Simutrace
framework.

The full code generation provides an easy to use introspection tool for QSimu
running a an accordingly modified kernel. Adding a new trace event to QSimu
and the kernel is done by inserting the event definition into the trace configuration
file and running the build script as shown in Figure [5.1]

The build script first calls the introspection code generator that is written in
Java. It reads the trace configuration file and generates specified Linux and QSimu
source code and makefiles. Supporting source files are copied to the paths de-
clared in a generator configuration file. Afterwards, the build script starts building

5.2. FULL CODE GENERATION 31

Generation and Build Script

calls

Introspection Code Simutrace Backend

Generator Generator

coplies generates

Linux Hypercall Linux Source and

Trace Event Interface Header Files
S Linux Allocation Type Introspection Data
DEflnltH:'n Processing Structures
Q5imu Address Linux and QSimu
Translation Makefiles
QSimu Interface to
receive and store
Data via Simutrace

CSharp Structures for
and Qsimu source paths Analysis

Configuration file containing Linux

generates

Backend for committing data to dedicated Simutrace

Stream

Figure 5.1: Schema of the code generation mechanism. Blue represents generated
code.

QSimu which results in a call to the QSimu intern tracing code generator that cre-
ates the Simutrace backend from the trace event configuration file. Finally QSimu
is compiled and linked with the new introspection interface. In order to use the
newly generated events, the created Linux source files are copied to the operating
systelrﬂ that is running in the simulator and the kernel is rebuilt.

'In this thesis generated kernel source code is pushed to a version control system and pulled
inside the simulation

32 CHAPTER 5. IMPLEMENTATION

Furthermore, it is possible to extend the code generation to generate code for
an easier analysis. At this point it just generates additional HS in C# for later use
in an analysis tool that interfaces with Simutrace as well.

5.3 Checkpointing Metadata

Simutrace provides a flexible storage backend, which is adaptable to individual
requirements. In the Simutrace version that is used in this thesis two storage
backends are available. Checkpointing data is handled by a storage backend that
was implemented by Eicher [8]]. It includes a deduplication mechanism based
on a hash map, using a data hash over the page frames content as a key and the
content itself as value. Trace events are stored using the standard storage format
of Simutrace.

Simutrace is a client server architecture and QSimu just sends modified page
frames to the server without having knowledge of page frames that are dedupli-
cated by the storage backend. Therefore it is required to instrument the deduplica-
tion facility to gather checkpointing metadata. Checkpointing metadata includes
information about inserted page frames and deduplicated page frame. It is needed
to allow an analysis of modified page frames and duplicates in the incremental
checkpointing mechanism.

In chapter 4.2| it was derived that the cyclecount from QSimu is needed to
enable a correlation between checkpointing metadata and introspection data. As a
result this data has to be activily transferred from QSimu to the storage server. To
do so two new API calls are introduced in Simutrace:

StIntrospectionSetStore StIntrospectionSetStore justisinvoked once
when the checkpointing mechanism is started. It transfers the identifier of the in-
trospection storage to the Simutrace server, so checkpointing metadata and intro-
spection data are saved in the same storage.

StCheckpointCreateAtCyclecount StCheckpointCreateAtCyclecount
matches an existing API call but takes the cyclecount at which the checkpoint cre-
ation occurs as additional argument. Beside creating a checkpoint, it invokes an
Simutrace intern function that executes a predefined remote procedure call (RPC)
transfering the data from the client to the Simutrace server.

In the Simutrace server application a data collector class receives cyclecount
updates and manages the connection to the introspection storage. The class is
realized as singleton, to encapsulate the intercepting code and to seperate it cleary

5.4. ANALYSIS TOOL 33

from the Simutrace server. As the class is implemented as singleton, it does not
create new dependencies because of passing needed class references.

When a checkpoint occures, the deduplication mechanism iterates through
modified page frames received from QSimu. The deduplication mechanism checks
whether a page frame is inserted or deduplicated and invokes the data collec-
tor. The data collector accordingly creates a new insertion or deduplication event,
which consists of the page frame address, the data hash and the actual cyclecount.
Afterwards, the created event is stored in a dedicated stream in the introspection
storage.

This results in an storage containing combined data of introspection and check-
pointing. As all events that got persisted hold a timestamp it is possible to correlate
them in an analysis tool and recreate an approximation of the memory semantics
at each checkpoint.

5.4 Analysis Tool

For analysis of the collected data a tool is used that is based on a C# binding of
the Simutrace API. Simutrace stores collected data in dedicated streams, namely
one stream per event type. For analysis purposes it is of avail if data is merged
into one temporal ordered stream, because it facilitates the reassembly of memory
semantics. Merging available streams is achived by a Simutrace API call.

It builds a new stream ordered by cyclecounts whose entries are of the type
MultiplexerEntry, which consist of a stream identifier, a pointer to the ac-
tual data and the cyclecount itself. Consequently all events in the multiplexed
stream that were recorded by the OS introspection and the deduplication facility
of the checkpointing mechanism are in the same temporal order as they occured
in the running simulation. With this in mind it is feasible to iterate through the
stream’s events and reenact their effect on the semantics of page frames.

In order to reenact OS introspection events there has to be a data structure
maintaining semantical information for each page frame. For this purpose the
analysis tool uses instances of a class called PageFrameInformation. It
holds, as the name suggests, semantical information of the page frames including
the page frame address, the allocation type and a structure, named ProcessInfo,
representing the assigned process. To identify deduplicated page frames, the
PageFrameInformation class references aninstance of the CachedDataInfo
class.

It encapsulates the data hash and the checkpoint at which the data hash occured
for the first time. An additional hash map takes checkpoints as keys and lists of
referencing page frame addresses as values allowing the tracking of reoccurences
of data hashes. Table 5.2l summarizes introduced structures and classes:

34 CHAPTER 5. IMPLEMENTATION

Struct/Class Attributes

PageFrameInformation page frame address, allocation type,
CachedDatalInfo reference,
ProcessInfo instance

ProcessInfo process identifier (PID), executable filename
CachedDatalInfo data hash, checkpoint of first occurence, hash

map with checkpoints as keys and lists of
referencing page frame addresses as values

Table 5.2: Introduced structs/classes and their attributes

A hash map using page frame addresses as keys and PageFrameInformation
instances as values is maintained to keep track of changes while iterating through
the multiplexed stream. Another hash map is maintained to correlate PIDs and
ProcessInformation instances and a third one to correlate data hashes and
CachedDataInfo instances. In both cases the PIDs/data hashes function as
keys and the structure/class instances serve as values.

Given these data structures one is able to iterate through the multiplexed stream
and update the page frame information hash map according to read OS introspec-
tion events. The multiplexed stream provides its data by using a specific data type
(MultiplexerEntry) as mentioned earlier. As a result the identifier attribute
of the multiplexed stream is interpreted to determine the type cast that is applied
on the actual data pointer, before it is possible to access and reenact an event.

The analysis tool differantiates between three kinds of events as stated in [4.3]
scheduling events, allocation events and checkpointing events:

Scheduling events Scheduling events contain process creation and process schedul-
ing, updating the current running process and the process info hash map. When a
new process creation event is read from the stream, the analysis tool instantiates
anew ProcessInfo structure and inserts it into the process info map. When

a process scheduling event arises the current running PID gets updated. It is ref-
erenced when the allocation event occurs, to correlate allocation event and the
current running process.

Allocation events Allocation events involve all events that change the memory
semantics. Therefore they include page frame allocation/freeing by a process,
adding/removing of a page frame to/from the page cache and adding/removing a

5.4. ANALYSIS TOOL 35

page frame to/from a slab cache. When an allocation event is read from the mul-
tiplexed stream the exact event is determined and the allocation type and process
that triggered the allocation is updated in the page frame information map. On the
whole this results in an semantical memory image that is analyzed later on.

Checkpointing events Checkpointing events include insertion and deduplica-
tion of page frames. When a checkpointing event occurs the corresponding
CachedDataInfo instance is retrieved from the responsible hash map or a
new one is created. A reference to the page frame where the data hash ap-
peared is inserted and the correlated page frame information gets a reference to
the CachedDataInfo instance as well.

Checkpointing events of one checkpoint are always tagged with an identical
cyclecount. Hence it is possible to identify checkpoints in the multiplexed event
stream and copy the state of the page frame information map at every checkpoint
for analysis. As a result there is a hash map with PageFrameInformation
instances for every page frame address at every checkpoint that carries all informa-
tion needed to achive a detailed analysis of features of modified and deduplicated
page frames in incremental checkpointing.

36

CHAPTER 5. IMPLEMENTATION

Chapter 6

Evaluation

In this chapter the proposed approach is evaluated and discussed. As this thesis
deals with semantical features of modified and duplicated page frames occuring
in incremental checkpointing the thesis on hand targets to clarify which semantic
types of page frames are involved in incremental checkpoints and how they are
distributed. Furthermore, page frame hashes of deduplicated page frames are ana-
lyzed to discover eventual conspicuities in their occurence and determine whether
duplicates arise from a wide range of page frame contents or a small group of
recurring contents.

6.1 Methodology

This evaluation heavily depends on the checkpointing mechanism implemented in
the work of Eicher [8], it is assumed that it works correctly. Furthermore, mea-
surements regarding incremental checkpoints of the work of Baudis [5] are used as
reference points. To provide a reliable dataset for the evaluation, simulations with
different workloads are ran three times respectively and tracing data is collected.
The checkpointing mechanism is started when the execution of the workload in
the simulation starts and stopped when the 50th checkpoint was created, so col-
lected data is comparable with data of Baudis work, as he took 50 checkpoints in
his evaluation as well. QSimu is started in snapshot mode to prevent persistent
modifications of the running system and assure an exact same disc image at each
run.

An integrated facility is coupled with the checkpointing mechanism of Eicher.
It saves statistics of page frames into a text file. The statistics include dirty and
deduplicated page frame counts per checkpoint, which can be used to verify the
correctness of dirty and deduplicated page frame counts intercepted by the data
collector placed in the Simutrace checkpointing storage backend.

37

38 CHAPTER 6. EVALUATION

Suited workloads for the evaluation are given by the work of Baudis, as the
statistics created in his work serve as an important indication for comparable data.
By using a kernel build (version 4.1.0-rc2) and the SPEC CPU 2006 401.bzip2
benchmark two fundamentally different workloads are executed. A kernel build
stresses the CPU, memory and I/O devices as well. Whereas the 401.bzip2 bench-
mark compresses and decompresses six files, varying in size and file type, using
three different compression levels which leads to I/O activity when reading files
into memory and stresses the CPU during compression and decompression. As
the workloads of the 401.bzip2 benchmark does not last for the duration of 50
checkpoints, it will run repeatedly and every 10th run the page cache is flushed
by a script, so it has to get refilled. This procedure generates a high number of
duplicates, as the 401.bzip2 benchmark processes the same files three times and is
executed repeatedly. The flushing of the page cache should be visible in the trace
data by a decreased number of duplicates.

Tracing data collected during startup, workloads and shutdown is processed by
the analysis tool developed in this work. Since the tool reassembles per page frame
semantics at each checkpoint from the traced operating system and checkpointing
events, it is possible to run multiple analysis on each single trace. The analysis
tool processes the traces three times generating the following different statistics.

General statistics, that are based on page frame property counts, are created.
They describe dirty and deduplicated page frames per checkpoint. Furthermore,
the per checkpoint distribution of allocation types for all dirty page frames and for
deduplicated page frames is created.

Allocation types used to categorize page frames are derived from the semantic
information introduced in chapter [3.1] Therefore a page frame can be categorized
as:

e Anonymous memory: Memory that is assigned to a process and not file
backed. It stores process private data, which may change during execution.
Stacks and heaps are accounted to anonymous memory.

e File backed: Memory that is assigned to a process and holds a mapping
of a file. It includes libraries, files that are processed by a program or the
program binary code itself.

e Page cache: Page frames that are assigned to the page cache are not are not
mapped by a proces. It correlates highly with file backed page frames.

e Slab: Includes all page frames that are assigned to a slab allocator, hence
are used for kernel structures.

e Free: All page frames that are freed by the buddy allocator are summarized
as free page frames.

6.1. METHODOLOGY 39

e In transition: When a page frame is removed from the slab or the page
cache, it is categorized as in transition until the buddy allocator handles and
eventualy frees it.

To supplement these data and to gain information about page content oc-
curence frequency, the data hashes of page frame contents are counted per alloca-
tion type and checkpoint. Finally, to retrieve data describing the process usage of
allocation types in memory, a third analysis approach counts allocation types per
process. All used analysis approach are summarized in table [6.1] By evaluating
this data it is possible to make statements about characteristics of duplicate page
frames in incremental checkpointing.

Approach Resulting data

general allocation type distribution of allocation types per checkpoint,
analysis per checkpoint ~ general statistics concerning modified and
deduplicated page frames

data hash based analysis data hash counts per allocation type
including all checkpoints

process belonging allocation type distributions of processes

Table 6.1: Approaches used to analyze memory semantics provided by the analy-
sis tool.

Unfortunately, there are page frames, that are not captured by any installed
hypercalls or cannot be assigned an allocation type. They get a special allocation
types, which indicate the absence of semantic information:

e Not determined: The allocation types anonymous and file backed, are de-
rived from the Linux kernels memory descriptor when establishing a virtual
to physical memory mapping. However it is possible that there is no mem-
ory descriptor structure passed to the establishing function, hence the used
approach cannot derive an allocation type.

e Unknown: There are page frames that are modified and or deduplicated
with no collected semantic information at all. In that case page frames are
categorized as unknown page frames.

40 CHAPTER 6. EVALUATION

6.1.1 Checkpointing Interval Adaption

The benchmarks are executed inside the simulation with active checkpointing to
trigger duplication and collect semantical information for analysis of duplicates
and modified page frames. Baudis has measured on average 25000 dirty page
frames per checkpoint, taking 50 checkpoints during a kernel build with a check-
pointing interval of 2000ms and hardware virtualization with KVM [5]. As this
thesis concentrates on observability and therefore emulates the system, it results
in a slowdown and less dirty page frames per checkpoint leading to less duplicates
per checkpoint and no proportionate data.

-10*
T T T
[]
2.5F 4 |
3
= 2 o |
s
=
& 15| o |
8, .
2 1} 8
-5 o — linear regression
0.5 4 — # dirty page frames in KVM | |
r — threshold
| | | | | I
1632 64 128 215 256 320

Checkpointing interval in seconds

Figure 6.1: Average number of dirty page frames over 50 checkpoints during a
kernel build with various checkpointing intervals and the threshold for propor-
tionate data derived from checkpointing with virtualization and an interval of 2
seconds

Figure [6.1] shows the average number of modified page frames while running
a kernel build and creating 50 checkpoints of an emulated system using various
checkpointing intervals. A function approaching the dependency of checkpointing
intervals and dirty page frames is found by applying a linear regression. There-
fore an appropriate checkpointing interval for an emulated system can be found
by taking the intersection of the average dirty page frames measured by Baudis
in the virtualization and the regression curve that is generated using the tested
checkpointing intervals.

Experiments showed that an interval of 256 seconds results in an average dirty
page frames count between 24000 and 25000 per checkpoint that is matchable
with the average dirty page frames count noticed by Baudis.

6.2. EVALUATION SETUP 41
6.2 Evaluation Setup

The setup for data acquisition consists of a physical host system running a full
system simulator and a tracing framework to store data. During data acquisi-
tion, running a simulation using QSimu and maintaining three open Simutrace
connections plus running the Simutrace server itself, up to 6.2GB of RAM are
consumend.

Component Specification/Model

CPU Intel(R) Core(TM) i7 CPU 920
Frequency 1.6Ghz — 2.67Ghz

Available Cores 4 plus hyperthreading

Main Memory 24GB

Storage Intel SSDSA2M 160, 160GB

Host OS Ubuntu 15.04, 64 bit kernel
Simulator QSimu 2.2.1 with hypercall interface

Storage facility (tracing) Simutrace 3.1.1
Storage facility (analysis) Simutrace 3.2.1

Guest OS Linux Ubuntu 14.0.4.2
Guest kernel version 4.1.0-rc2 with hypercall extension
Simulated CPU single core x86_64

Simulation Main Memory 2GB

Table 6.2: Data acquisition and analysis configuration

Therefore, to serve the memory and computation requirements reliably, the
host system contains an Intel i7 CPU with four physical cores a 2.67Ghz with
hyperthreading and 24GB of RAM. One 160GB SSD arranges for fast persistent
memory. It runs Ubuntu 15.04 with a generic 64 bit kernel. QSimu is used in
version 2.2.1 and emulates a single core x86_64 system with 2GB of RAM run-
ning a Linux Ubuntu 14.04.2 with kernel version 4.1.0-rc2+ that is custumized
by the introspection facilities mentioned in chapter [5] For recording of operating
system and checkpointing events Simutrace version 3.1.1 is used, which includes
the checkpointing mechanism of Eicher. However reading and merging Simu-
trace streams for analysis requires version 3.2.1 or higher as version 3.1.1 does
not support stream multiplexing. Porting the checkpointing code to version 3.2.1
was resigned as created traces are compatible. Table [6.2] gives a review of the
complete system configuration.

42 CHAPTER 6. EVALUATION

6.3 Main Memory Increment Semantics

The execution of a Linux kernel build, taking a checkpoint every 256 seconds re-
sults in an average dirty page frames count between 24000 and 25000 per check-
point like expected because of the adaption of the checkpointing intervall, whereas
the repeated execution of the 401.bzip2 benchmark only results in an average dirty
page frames count between 13000 and 14000 (Figure[6.3).

Workload Avg. dirty page frames Standard error

Kernel build 24616 222
401.bzip2 13502 88

Table 6.3: Average dirty page frames per checkpoint using a checkpointing inter-
val of 256 seconds

In Figure [6.2] the average allocation type distributions of both benchmarks are
shown. The 401.bzip2 benchmark shows a lower percentage of dirty page frames
assigned to page cache than the kernel build. This can be explained by the fact
that once the processed files are available in the page cache they are not loaded
again until the page cache is flushed after every 10th run of the execution.

60%

mmm kernel build
S0% | | e 401.bzip2

40%
30%
20%
10%

0%

stack

slab

file backed
page cache
anonymous
unknown
free

=)
o
=
o=
[72]
=
<
=
=
=
o=

not determined

Figure 6.2: Average distribution of allocation types of dirty page frames per
checkpoint during runs of three kernel builds and three 401.bzip2 benchmarks,
taking 50 checkpoints

6.3. MAIN MEMORY INCREMENT SEMANTICS 43
[[I
F —— anonymous
%o 60% |- —— unknown | |
= free
o
& 40% | |
) / A
-) \/
g 20% [4 \/ /v 1
S
2
<
0% |- ! ! ! ! ! ! ! ! ! L]
0 5 10 15 20 25 30 35 40 45 50
Checkpoints

Figure 6.3: Average allocation type distribution for 50 checkpoints during mul-
tiple kernel builds. Only allocation types with average percentages greater than
15% are plotted.

Both workloads show a high percentage of page frames with unknown, hence
page frames that are not at all traced by installed hypercalls. Therefore, the Linux
kernel seems to often assign page frames without mapping them into a process’
address space, as hypercalls are installed in all physical to virtual page mapping
establishing kernel facilities.

Nevertheless, the most frequent page frames that are saved in a checkpoint, are
page frames that were already freed by the buddy allocator thus are available for
reallocation. This means the page frames were allocated and modified in between
two checkpoints and freed again by the buddy allocator before the creation of the
next checkpoint.

To further analyze allocation types, especially page frames marked as free,
the allocation type percentages of dirty page frames per checkpoint during both
workloads are plotted (Figure[6.3]and Figure [6.4). For simplicity allocation types
whose percentages are on average less than 15% are omitted. When examining
the plots of anonymous and free page frame percentages over time during a ker-
nel build, there is a negative correlation recognizable. These assumption can be
confirmed by calculating the Pearson correlation coefficent (PCC).

The PCC r,, describes the linear dependency between two variables x and
y. Its value ranges from —1 to 1. If r,, = —1 the correlation between x and y
is a negative linear correlation, this means all data points are lying on a line for
which y increases as x decreases or the other way around. If r,, = 0 there is
no linear correlation and if r,,, = 1 it is a positive linear correlation with all data
points lying on a line for which y increases as X increases or y decreases as x

4 CHAPTER 6. EVALUATION

N

60% i
— anonymous
40% > —— unknown |
free
0% - —— page cache | |

Allocation type percentages

0% |-

0 5 10 15 20 25 30 35 40 45 50
Checkpoints

Figure 6.4: Average allocation type distribution for 50 checkpoints during multi-
ple runs of the 401.bzip2 benchmark. Only allocation types with average percent-
ages greater than 15% are plotted (except page cache).

decreases. Hence the closer the PCC of two variables is to —1 or 1 the higher is
the correlation between both variables. The p-value, which is calculated with the
PCC, indicates the statistical significance of a correlation. A p-value p > 0.05
indicates a statistical insignificant correlation.

The PCC of anonymous and free page frame percentages over time during a
kernel build is r,, = —0.69 with a p-value of p = 0.235 - 10~7, which indicates
a moderate correlation with high statistical significance. Consequently it is valid
to conclude that most page frames marked as free during a kernel build were
allocated as anonymous pages frames before.

The plots of the 401.zip2 benchmark are less spread than observed in the plots
of the kernel build. As the setup of the 401.bzip2 benchmark flushes the page
cache periodically, the plot of the page cache allocation type reflects the periodic
flushing by oszillating between 0% and about 10%. The peaks represent phases
after flushing the page cache when it is filled again.

As the benchmark is working on the same files over and over again the distinct
regions between two zero-points have to have a similar surface area, representing
the size of the processed file, namely 8.07MB. The surface area is on average
2157.04 with a standard deviation of 129.07, which corresponds to an average
filesize of 8.84MB with a standard deviation of 0.52MB. The average difference
of 0.77MB between processed files filesize and the average number of megabytes
allocated by the page cache may be related to bzip2 itself.

Additionaly the plots of anonymous and page cache page frames indicate a
negativ correlation (r,,, = —0.64, p = 0.549-107%). A minimum of the page cache

6.3. MAIN MEMORY INCREMENT SEMANTICS 45

allocation type indicates the availabilty of all files in memory. Whereas a peak
in anonymous page frames denotes processing of files, because data processing
requires private memory to work with.

Further analysis of unkown page frames, by looking into process affinity of
allocation types, showed that 63% of all page frames marked with unknown were
allocated when the GNU C Compiler context was active. If differences between
the gradients of the unknown plot in the kernel build and the 401.bzip2 bench-
mark are taken into account, it can be assumed that the kernel build is triggering
particular, main memory changing operating system mechanisms more often than
the 401.bzip2 benchmark.

6.3.1 Semantics of Duplicate Page Frames

Section [6.3] presented a general analysis of semantics of dirty page frames during
incremental checkpointing, providing an informative basis. Further analysis is
going to examine duplicate page frames and their semantic characteristics.

60% | | mmm kernel build |

40%
30%
20%
10%

0%

free

=<
Q
<
-
[72]

slab

not determined
in transition
file backed
page cache
anonymous
unknown

Figure 6.5: Average distribution of allocation types of deduplicated page frames
per checkpoint during runs of three kernel builds and three 401.bzip2 benchmarks,
taking 50 checkpoints

Baudis [5]] measured on average 17% duplicates during multiple kernel builds
and on average 42% during multiple runs of the 401.bzip2 benchmark. The setup
of the 401.bzip2 benchmark in this thesis generates an even higher average dedu-
plication rate of 85%. The result is not surprising as the benchmark runs repeat-

46 CHAPTER 6. EVALUATION

[[I
| ——anonymous | |
- 60% —— unknown
:é;o free
=
3
5 40% |
&
(D]
= /\ 7A(\,/
E '\\/r
§ 20% |- \/ \/
2
<
O% i | | \7
0 5 10 15 20 25 30 35 40 45 50

Checkpoints

Figure 6.6: Average allocation type distribution of duplicates for 50 checkpoints
during multiple kernel builds. Only averages greater than 15% are plotted.

edly over the course of 50 checkpoints. However, the average duplication rate
during multiple kernel builds measured in this thesis is just 12%.

The evaluation of the average allocation type distribution (Figure[6.5)) of page
frame duplicates over 50 checkpoints of both workloads shows a similar pattern
like the distribution of the dirty page frames stated in[6.3]

Main memory duplicates arising from a Linux kernel build mainly consist of
page frames that are marked as free, are allocated as anonymous memory or have
not been traced by installed hypercalls. Despite past work, which state the page
cache as main source of page frame duplicates, only 8% of page frame duplicates
in incremental checkpoints during a kernel build have their origin in the page
cache. If it is taken into account that on average 11% of dirty page frames were
allocated by the page cache, a possible explanation for less page cache duplicates
is the relatively linear behavior of the page cache during a kernel build. Once files
are loaded, they are unlikely to beeing reloaded, hence produce no duplicates in
incremental checkpoints.

The 401.bzip2 benchmark indicates even less page frame duplicates located in
the page cache, as the 401.bzip2 benchmark setup can be divided in three reap-
pearing, overlapping stages with low duplication potential. First of all the page
cache is filled with predetermined data, which is unlikely to produce duplicate
page frames as loaded files usualy differ from each other. Afterwards, loaded
files are processed and page cache modifications recede. Finally, the page cache

6.3. MAIN MEMORY INCREMENT SEMANTICS 47

S 60%|
=
§ —— anonymous
S —\ —— unknown
o 40% |- free
2 —— page cache
&
s 20% |
Q
=
<

0% |-

| | | | | | | | | |

0 5 10 15 20 25 30 35 40 45 50
Checkpoints

Figure 6.7: Average allocation type distribution of duplicates for 50 checkpoints
during multiple runs of the 401.bzip2 benchmark. Only averages greater than 15%
are plotted.

is flushed and all files, hence deduplication potential, are removed and the page
cache is refilled again. This process is represented, by the oscillating curve of the
plot of the page cache in the graphs of allocation type distributions of dirty and
deduplicated page frames over the course of 50 checkpoints (see Figures [6.4] and
6.7).

In general the plots of allocation type distributions of duplicates over time
(Figures [6.6] and [6.6)) and the plots of allocation type distributions of dirty page
frames over time are much alike (Figures [6.3]and [6.4).

Therefore the obvious negative correlation of duplicate page frames catego-
rized as free and such categorized as anonymous memory is once again described
by the Pearson correlation. It results in r,, = —0.77 with a p-value of p =
0.59 - 1071°. The correlation of duplicate free and anonymous page frames is
even more significant than the correlation of dirty page frames marked as free and
anonymous respectively (1., = —0.69,p = 0.235 - 1077).

For a more detailed evaluation of duplicate page frame semantics, the analysis
tool procsses the data hashes of the deduplication process of the checkpointing
mechanism. By counting the number of their reoccurrences it is possible to obtain
an idea of memory contents that probably result in a big amount of duplicates.

Figure [6.8] shows the average data hash count of three kernel builds per allo-
cation type. It is noticeable that each allocation type has a peak in counts at the

48 CHAPTER 6. EVALUATION

-10%

1.5

data hash count

anonymous
file backed
not determined
page cache
slab

Figure 6.8: Count of data hash reoccurence per allocation type. Only data hashes
with a reoccurence count greater than 10 are showed

data hash 0xe488d4952d64521f. As there are not as many possible explanations
for this many reappearing identical page frames, the first assumption is that the
data hash represents the page frame entirely filled with zeroes. This page frame is
henceforward referred to as zero page frame or simply zero page. This assumption
is confirmed as calculating the data hash over a zero page results in the exact same
value.

6.3.2 Zero Pages

The outcome of the allocation type and data hash analysis regarding the zero page
frames raises the question for their share in page frame duplicates of incremental
checkpoints. Therefore their contribution to duplicate page frames per allocation
type is calculated for both workloads. Table[6.4]and Table[6.5|show the number of
reappearing data hashes, which were counted seperatly for each allocation type.
In this case reappearing means that only data hashes that occured more than once
were counted. The data hashes were counted regardless of the checkpoints they
occured at. The total number of reappearings is the sum of reappearings of data
hashes of all allocation types.

‘1019

6.4. CONCLUSION 49

Allocation type Number of reappearing Percentage zero page hash

data hashes

anonymous 23347 70,91%
file backed 3831 80,59%
free 38387 43,91%
page cache 10343 66,99%
slab 11874 0,32%

stack 242 55,84%
in transition 523 7,47%

not determined 5635 12,31%
unknown 37046 31,55%
total 131226 42,76%

Table 6.4: Number of reappearing data hashes, hence page frame duplicates, of
kernel builds and which portion of it belongs to zero page frames

The total number of reappearing data hashes, hence page frame duplicates,
of the 401.bzip2 benchmark is higher than the number measured during kernel
builds, because the 401.bzip2 benchmark has a higher duplication rate in gen-
eral. Obviously both workloads show a significantly high percentage of zero page
frames among duplicates.

An explanation for at least a fragment of the zero pages that are anonymous
or free, is given by programms that actively set allocated memory to zero. This
is often the case when buffers are initialized. However this does not explain the
high percentage of zero pages in file backed page frames or page frames that are
assigned to the page cache or slab.

A detailed evaluation of zero pages and their origin and lifetime in memory is
not within the scope of this thesis.

6.4 Conclusion

The evaluation showed that between 30% and 60% of dirty and duplicate page
frames in incremental checkpoints are marked free. Furthermore an correlation
between free page frames and anonymous page frames during a kernel build was
detected. Therefore most page frames that are marked as free during a kernel build
were allocated as anonymous page frames before.

50 CHAPTER 6. EVALUATION

Allocation type Number of reappearing Percentage zero page hash

data hashes
anonymous 81783 31,12%
file backed 1748 10,8%
free 352285 61,86%
page cache 25822 5,01%
slab 1266 0,06%
stack 130 42,67%
in transition 6646 80,22%
not determined 2969 9,92%
unknown 102410 44,05%
total 575059 51,38%

Table 6.5: Number of reappearing data hashes, hence page frame duplicates, of
401.bzip2 benchmark and which portion of it belongs to zero page frames

A more detailed evaluation of duplicate page frame semantics, by counting
data hashes per allocation type, presented zero page frames as main origin of page
frame duplication in incremental checkpoints. Namely 43% of duplicates during
a Linux kernel build and 51% during the 401.bzip2 benchmark were zero pages.

It has to be determined if incremental checkpointing mechansims like imple-
mented by Baudis [5] and Eicher [8]] could pass on deduplication and only exclude
zero pages as they represent between 40% and 50% of duplicate page frames de-
pending on the workload. An approach without deduplication but excluded zero
pages could save time that is used to calculate data hashes and deduplicate page
frames. Alternatively a combination of both approaches is imaginable as well. By
modifying the checkpointing mechanism to skip zero pages when sending dirty
page frames to Simutrace, the data amount and processing time could be reduced
noticeably.

The checkpointing mechanism of Aderholdt et al. [2] uses introspection to
locate unused (free) page frames, that are excluded from checkpoints. As between
44% and 64% of unused page frames are zero pages, it raises the question if
the introspection approach could be improved by ignoring zero pages or if it is
sufficient to scan the VM for zero pages to exclude and disregard the introspection.

Chapter 7

Conclusion

The checkpoints that were analyzed in this thesis originate from a framework that
targets a performance increase of full system simulation by the use of paralleliza-
tion. The checkpoints, which are created in a virtualized system, serve as starting
points for nodes, that simulate simultaneously. The checkpoint creation has to
meet specific requirements concerning duration of checkpoint creation and data
amount in order to provide a satisfying simulation speedup. Therefore, an in-
cremental checkpointing mechanism with deduplication of page frames and disk
sectors was developed by Baudis [S]] and Eicher [8]].

By acquiring semantical information of the virtual machine, it was possible
to perform a detailed analysis of page frames deduplicated in incremental check-
points. The virtual machine was inspected using operating system introspection.
This technique provides a good trade-off between usability and effect on the sys-
tem running in the virtual machine.The implemented introspection infrastructure
integrates into an existing tracing framework and interfaces with the QEMU full
system simulator.

The evaluation of collected semantical information showed characteristics of
dirty page frames during incremental checkpointing and delivered insights into
the source of page frame duplicates in incremental checkpoints. It showed that on
average between 30% and 60% of dirty and duplicate page frames in incremental
checkpoints are marked free, which is the majority of page frames. Furthermore
there is a correlation between anonymous and free page frames during a Linux
kernel build. Therefore most page frames that are marked as free during a kernel
build were allocated as anonymous page frames before.

Analysis of reoccurences of data hashes revealed zero page frames to be the
main origin of page frame duplication. Between 40% and 50% of duplicate page
frames are zero pages. This information can be used to improve existing check-
pointing mechanisms. The checkpointing mechanism implemented by Baudis [5]
and Eicher [[8] can be modified to skip zero pages when sending page frames to

51

52 CHAPTER 7. CONCLUSION

Simutrace for deduplication and storage. This would reduce the data amount no-
ticeably.

The checkpointing mechanism presented by Aderholdt et al. [2] uses intro-
spection to locate free page frames and exclude them from checkpoints. As be-
tween 44% and 64% of free page frames are zero pages there is also potential for
improvement.

7.1 Future Work

About 20% of dirty page frames were not traced by the hypercalls that were in-
stalled in the guest systems operating system kernel. Therefore it is required to
complete the operating system introspection used in this thesis, so the conclusions
of this work can be stated more precisely.

The knowledge of zero page frames beeing the main source of duplicate page
frames, can be used to implement an improved introspection based approach to
further reduce the data amount of incremental checkpoints and therefore increase
their use for parallel full system simulation. An detailed analysis of the occurence
and lifetime of zero page frames can be helpful in this context as well.

The existing incremental checkpointing mechanism of Baudis [S] and Eicher
[8] can be improved by considering exclusion zero pages as well.

Bibliography

[1]
(2]

Intel 64 and ia-32 architectures software developer’s manual.

F. Aderholdt, Fang Han, S.L. Scott, and T. Naughton. Efficient checkpoint-
ing of virtual machines using virtual machine introspection. In Cluster,
Cloud and Grid Computing (CCGrid), 2014 14th IEEE/ACM International
Symposium on, pages 414-423, May 2014.

Eduardo Argollo, Ayose Falcon, Paolo Faraboschi, Matteo Monchiero, and
Daniel Ortega. Cotson: Infrastructure for full system simulation. HP Labo-
ratories, 2009.

Sean Barker, Timothy Wood*, Prashant Shenoy, and Ramesh Sitaraman. An
empirical study of memory sharing in virtual machines. University of Mas-
sachusetts Ambherst, *The George Washington University.

Nikolai Baudis. Deduplicating virtual machine checkpoints for distributed
system simulation. Bachelor thesis, System Architecture Group, Karlsruhe
Institute of Technology (KIT), Germany, November2 2013. http://os.
itec.kit.edu/.

Bellard and Fabrice. Qemu, a fast and portable dynamic transla-
tor. In USENIX Annual Technical Conference, FREENIX Track, pages
41-46. USENIX, 2005. http://dblp.uni-trier.de/db/conf/
usenix/usenix2005f.html#Bellard05.

Daniel P. Bovet and Marco Cesati. Understanding the Linux Kernel.
O’Reilly, 2005.

Bastian Eicher. Virtual machine checkpoint storage and distribution for
simuboost. Master thesis, System Architecture Group, Karlsruhe Institute
of Technology (KIT), Germany, September30 2015. Will be published at
http://os.ibds.kit.edu/.

Jakob Engblom. Full-system simulation. European Summer School on Em-
bedded Systems, 2003.

53

http://os.itec.kit.edu/
http://os.itec.kit.edu/
http://dblp.uni-trier.de/db/conf/usenix/usenix2005f.html#Bellard05
http://dblp.uni-trier.de/db/conf/usenix/usenix2005f.html#Bellard05
http://os.ibds.kit.edu/

54 BIBLIOGRAPHY

[10] Thorsten Groninger. On statistical properties of duplicate memory pages.
Diploma thesis, System Architecture Group, Karlsruhe Institute of Technol-
ogy (KIT), Germany, October31 2013. http://os.ibds.kit.edu/.

[11] Zhongshu Gu, Zhui Deng, Dongyan Xu, and Xuxian Jiang. Process implant-
ing: A new active introspection framework for virtualization. In SRDS, pages
147-156. IEEE Computer Society, 2011. http://dblp.uni-trier.
de/db/conf/srds/srds2011.html#GuDXJ11.

[12] Jonas Julino. Lightweight introspection for full system simulations. Diploma
thesis, System Architecture Group, Karlsruhe Institute of Technology (KIT),
Germany, Marchl 2014. http://os.itec.kit.edu/.

[13] Jacob Faber Kloster, Jesper Kristensen, and Arne Mejlholm. Determining
the use of interdomain shareable pages using kernel introspection. Depart-
ment of Computer Science, Aalborg University, 2007.

[14] Peter S. Magnuson, Magnus Christensson, Jesper Eskilson, Daniel Forsgren,
Gustav Hallberg, Johan Hogberg, Fredrik Larsson, Andreas Morstedt, and
Bengt Werner. Simics: A full system simulation platform. 2002.

[15] Marc Rittinghaus. Runtime benefits of memory deduplication, July5 2012.
http://os.ibds.kit.edu/.

[16] Marc Rittinghaus, Thorsten Groeninger, and Frank Bellosa. Simutrace: A
toolkit for full system memory tracing. Operating Systems Group Karlsruhe
Institute of Technology (KIT), 2015.

[17] Marc Rittinghaus, Konrad Miller, Marius Hillenbrand, and Frank Bellosa.
Simuboost: Scalable parallelization of functional system simulation. System
Architecture Group Karlsruhe Institute of Technology (KIT), 2013.

[18] Qemu user documentation. http://gemu.weilnetz.de/qgemu-doc.html.
[19] Qemu/debugging with gemu. https://en.wikibooks.org/wiki/QEMU/Debugging_with_ QEMU
[20] Qemu internals. http://gemu.weilnetz.de/qgemu-tech.html.

[21] Simutrace. http://simutrace.org.

http://os.ibds.kit.edu/
http://dblp.uni-trier.de/db/conf/srds/srds2011.html#GuDXJ11
http://dblp.uni-trier.de/db/conf/srds/srds2011.html#GuDXJ11
http://os.itec.kit.edu/
http://os.ibds.kit.edu/

	Deutsche Zusammenfassung
	Abstract
	Contents
	Introduction
	Background
	Full System Simulation
	QEMU

	SimuBoost
	Incremental Checkpointing
	Characteristics of Main Memory Duplicates

	Full System Analysis
	Operating System Introspection
	Simutrace

	Analysis
	Memory Semantics
	Data Acquisition
	Timing Facility

	Design
	Closing the Semantic Gap
	Checkpoint Metadata
	Intended Data Analysis

	Implementation
	Operating System Introspection
	Hypercall Interface
	Operating System Events

	Full Code Generation
	Checkpointing Metadata
	Analysis Tool

	Evaluation
	Methodology
	Checkpointing Interval Adaption

	Evaluation Setup
	Main Memory Increment Semantics
	Semantics of Duplicate Page Frames
	Zero Pages

	Conclusion

	Conclusion
	Future Work

	Bibliography

