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ABSTRACT

The ongoing increase in software and hardware complexity
poses a challenge for researchers, system architects and soft-
ware developers who need to understand a system’s runtime
behavior. Traces of executed code paths and memory refer-
ences as well as interesting events for example in the area
of resource management are frequently used to support de-
velopment and debugging as they provide a valuable insight
into the execution. Memory traces place an extraordinary
demand on the tracing components due to the fact that the
rate at which the processor accesses main memory is inher-
ently higher than the rate of function calls, MPI messages
or other system events. While many tracing frameworks
for memory traces have been proposed in the past, a major
limitation of these frameworks is their restriction to track
only selected processes and their inability to monitor priv-
ileged system components. Profiles generated with these
tools therefore do not encompass memory references per-
formed by the operating system (OS), system daemons or
(kernel-mode) drivers. In this white paper, we present Simu-
trace, a tracing framework for efficient full system memory
tracing. Simutrace captures memory accesses at the hard-
ware level, using functional full system simulation for holis-
tic memory traces. Simutrace incorporates an aggressive but
fast compressor, making full length, no-loss memory traces
of long-running workloads possible.

Categories and Subject Descriptors
D.4.8 [Operating Systems|: Performance—Simulation
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1. INTRODUCTION

Traces are frequently used in the development and evalua-
tion of software components and operating systems. During
execution, events and state information of interest are cap-
tured in traces for later offline analysis. Traces can provide
valuable insight into the dynamic behavior of a software and
deliver empirical support to focus optimization and debug-
ging efforts. Depending on the intended use of a trace, the
type and number of collected events and properties vary.
Prominent types of traces are call graphs [28], which retain
information about a program’s executed function hierarchy;,
or domain specific traces such as communication profiles in

MPI applications [23, 35]. Memory traces, that is recordings
of a processor’s memory accesses, leap out from these types
of traces. While they proved to be very effective for driv-
ing memory hierarchy simulations [15, 17, 22, 26, 30, 31, 48,
50] or gathering statistics about an application’s memory
access patterns [37, 51], memory traces pose an extraordi-
nary demand on the tracing components. This is due to the
fact that the rate at which new events are generated—i.e.,
the rate at which the processor accesses main memory—is
inherently higher than the rate of function calls, MPI mes-
sages or other system events. Memory traces thus quickly
become very large in size, consuming gigabytes of storage. A
Linux virtual machine (VM) running a minimal Linux kernel
build for instance produces approximately 145 billion trace
entries. The same system completing the Postmark bench-
mark from Phoronix Test Suite[5] even generates around
175 billion write events alone. Memory traces therefore heav-
ily depend on an efficient encoding, a scalable trace format
and a tracing mechanism that is capable of dealing with a
high rate of incoming events.

Over the years, various memory tracing frameworks have
been developed [8, 15, 31, 39, 46, 54]. A major limitation of
these frameworks is however their restriction to track only se-
lected processes and their inability to monitor privileged sys-
tem components. Profiles generated with these tools there-
fore do not encompass memory references performed by the
operating system (OS), system daemons or (kernel-mode)
drivers. That raises questions concerning the accuracy of
results obtained through such narrow traces as the interac-
tion of tracked processes and the system is completely left
out [13]. Further distortions can originate from the incurred
slowdown through instrumentation and tracing, which influ-
ences the relative timing between processes and the system.
Tracing tools able to capture events in the OS kernel [6, 19,
52] on the other hand do not offer memory tracing capabili-
ties. These limitations make current tracing frameworks not
applicable to memory centric operating system research.

In this white paper, we present Simutrace, a novel trac-
ing toolkit, which has been conceived with full length, no-
loss memory tracing in mind. Simutrace captures memory
accesses at the hardware level using functional full system
simulation, thus including all user-space programs, the op-
erating system, drivers and direct memory access (DMA)
operations. Through the use of full system simulation, Simu-
trace fully supports tracing of just-in-time (JIT) as well as
self-modifying code and requires no special modification or
preparation of the target system. Tracing is non-intrusive



and free of any side-effects, as the simulation preserves the
timing between running workloads and the underlying OS.

Another difference to existing solutions lies in the choice of
recorded data. To be conducted, some analyses in the field
of operating system research (e.g., a study on the characteris-
tics of redundant memory pages to improve memory dedupli-
cation mechanisms [21, 33, 40]) require knowledge about the
content of memory pages. Existing solutions typically con-
strain traces to the referenced virtual or physical addresses.
Simutrace instead also tracks for each write operation the ac-
tual written data. That enables analysis tools to reconstruct
the content of the examined system’s physical memory for
any given point in time within the trace interval.

Although Simutrace is conceived with memory tracing in
mind, its design is not restricted to this type of data. In-
stead the architecture has been kept as general, flexible and
modular as possible to allow Simutrace to adapt to new trac-
ing scenarios and interface with different full system simu-
lators. We leveraged this ability in an evaluation of page
usage characteristics, in that additional OS introspection
events have been captured and included in the traces. That
allowed us correlating page usage to processes and threads.
In this white paper, we will therefore frequently refer to in-
trospection information as a valuable source of trace events
to supplement memory traces and describe where including
such data in traces resulted in certain design decisions.

The remainder of this white paper is organized as follows: In
Section 2, we present Simutrace, describe its design and ex-
plain the concepts behind key components. In Section 3, we
provide an overview of Simutrace’s native trace format. Re-
lated work is summarized in Section4. We finally conclude
and give a prospect on future plans in Section 5.

2. SIMUTRACE

The primary tasks of a tracing framework are the collection,
reduction and storage of traces and the ability to provide
access to the trace data for analysis[22]. In the literature,
various criteria have been suggested to further qualify these
tasks [48]:

e Flexibility: The framework should not restrict the
type of data that it is able to capture.

e Speed: The slowdown through tracing should be low.

e Accuracy: The collected trace should be free of any
distortions, it should be complete and include the in-
formation of interest in full detail.

e Portability: The tracing framework should be run-
nable on different host architectures and platforms and
easily interface with different simulators.

e Ease-of-Use: The amount of effort required by the
end-user to use the framework should be low. A con-
cise interface is a prerequisite for that.

e Expense: The cost of any hardware or software re-
quired solely for the purpose of collecting traces should
be low.

Simutrace has been designed with these criteria in mind
to address the shortcomings for operating system research
of previous approaches. In the next sections we highlight,

in what decisions these metrics have manifested. Although
Simutrace is capable of tracing arbitrary events to fulfill the
flexibility criterion, we focus in this white paper on memory
tracing due to its particularly high demands on a tracing
framework. We start by explaining the general architecture
laid out for Simutrace. We continue by illustrating how trace
data in Simutrace is logically organized and how events are
collected, submitted and eventually reduced. We close Sec-
tion 2 with an overview on multi-threaded tracing.

2.1 General Architecture

Existing tracing frameworks have been based on various de-
signs. SIGMA [15] encapsulates all tracing logic in a ded-
icated library and links it into the application that is to
be examined. A similar approach is taken by METRIC [31].
The authors of ScalaMemTrace [8], a recent work in the area
of application memory tracing, opted for a more modular
design. While they implemented the collection of events
in a library, they moved the compression and storage of
the gathered data into a separate process. In Simutrace,
we have adopted this approach and extended it to a full
client-server architecture as found in many database appli-
cations. The general design of Simutrace is depicted in Fig-
ure 1. A tracing extension in a full system simulator collects
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Figure 1: Basic architecture. An extension in a
full system simulator collects events. The Simutrace
server receives the data, stores it and provides access
for later analysis and inspection.

information on memory accesses (and other events) in the
simulated machine—the target—and transfers these informa-
tion to the Simutrace server. A simulator as well as peers
connecting to the server to analyze recorded data, thus are
Simutrace clients. The server is the central component in
Simutrace, managing the storage of and access to trace data
by receiving and presenting traces from and to clients. In
that role, it is also responsible for processing traces (e.g.,
compression/decompression) before they are written to or
read from persistent storage. The server thus carries out
the most compute and memory intensive operations in the
course of memory tracing. After trace reduction, analysis
clients can connect to the server and read the whole or only
specific time spans of the trace, filtered by the type of event
(e.g., only memory writes).

This design has several advantages over a pure library-based
approach. From a software engineering perspective, strictly
separating the trace processing and storage management
from the collection facilitates development and testing. It
also increases the portability of the tracing framework and
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Figure 2: Tracing with Simutrace. The client runs within the simulator and stores events received by the
VM in a buffer. On repletion, the buffer is transferred to the server for processing (e.g., compression). The
server finally saves the reduced data in a store (e.g., trace file). Configurations regarding the organization of
traced data are set by the simulator and are mirrored between the client and server.

eases interfacing different simulators. From a user’s perspec-
tive, another advantage comes to play in multi-tracing. Since
most simulations are single-threaded (even when simulating
a multi-core machine) and take considerable time to com-
plete, it is common to leverage the physical parallelism of
today’s hosts by running multiple independent simulations
in parallel (e.g., to examine different workloads or configu-
rations). A single server process with a shared worker pool
and a centralized job management can efficiently use the re-
maining host resources without requiring any balancing or
synchronization between multiple competing trace proces-
SOrS.

Figure 2 illustrates the design of Simutrace’s client and server
components in more detail:

Client Library and Configuration. The trace collection
is performed in the client library, which is loaded into a
full system simulator. The interface of the library has been
designed with a focus on ease-of-use. It encompasses around
20 methods to manage the connection with the server, create
or open traces, configure the tracing session and submit or
retrieve individual trace events. Before a client can start
tracing, it has to connect to a storage server, create a new
tracing session and specify the organization and type of data
that will be submitted as well as the type and location of
persistent storage that should be used. The client library
then propagates the configuration to the server.

Integration Layer. The simulator needs to be extended
with a thin integration layer (IL). This layer comprises hooks,
which communicate information on events in the simulation
to Simutrace. To implement the integration layer the full
source code of the simulator is usually not required as most
closed-source simulators already provide methods to hook
into operations carried out by the simulation (e.g., memory
accesses, instruction fetches, etc.). The integration layer
then only needs to generate a trace event from the infor-
mation supplied by the simulator and write the event to a
specifically allocated buffer. On repletion, the client library
sends the buffer to the server for asynchronous processing
and storage.

Communication. While in a pure library-based design, com-
munication between components of a tracer works on the

level of function calls and shared memory, transferring data
across process boundaries requires an explicit mechanism.
In Simutrace, the client and server follow a uni-directional
remote procedure call (RPC) model, where the client in-
vokes methods in the server and calls can carry arbitrary
payloads. To mitigate the overhead caused by the commu-
nication, Simutrace dynamically selects the communication
channel, based on the platform and the location of the server
process:

Local. Usually the server process runs on the same machine
as the client. In that case, a local pipe is used to perform
RPC calls. Although pipes already provide decent perfor-
mance, they still incur extra copies to transport data. That
is especially undesired when transferring large payloads such
as a buffer of collected trace entries. Simutrace therefore
utilizes shared memory for all buffers containing trace data.
This way, only information on where in the buffer new data
resides needs to travel the channel and the server can access
the trace data through its mapping directly, thus eliminating
all copies.

Remote. In some scenarios, for example if a single consis-
tent trace file is desired in a distributed simulation or if a
trace should be analyzed on a dedicated machine while it
is still being recorded, it is favorable to run the server on a
different host than the client. In these cases, Simutrace es-
tablishes a socket-based TCP/IPv4 or IPv6 communication
channel. The client and server then copy any payloads to
and from the socket implementation and explicitly transfer
them over the channel. We are currently investigating to
integrate support for remote direct memory access (RDMA)
found in modern network adapters. With RDMA, trace
buffers could be directly transferred into the main memory
of the peer, thereby saving any local copies.

Trace Processing and Storage. When the client success-
fully submitted trace data, the server asynchronously pro-
cesses it through a worker pool. The number of workers is de-
termined at the start of the server and is fixed throughout its
runtime. If the user did not supply any custom setting, the
server creates one thread per logical CPU. The operations
executed as part of the trace processing are defined through
the storage format and depend on the type of events sub-
mitted. They may range from a simple generic compression,



over data re-arrangement and information extraction to fa-
cilitate analysis, to optimized event compression schemes.

In any case, the trace data is eventually written onto per-
sistent storage. Simutrace comes with a storage provider
for a custom format that we developed to fully leverage the
features of our software and which is particularly suited for
traces with a high amount of entries. The provider saves
the trace to disk as a regular file, which can optionally be
moved or copied to other systems for inspection.

Accessing Traces. The steps involved in accessing traces
are almost identical to the ones taken to create the trace.
An analysis client makes use of the same library to connect
to the server, but opens instead of creates a trace. The
server then reads the trace’s organization and replicates it
to the client. When the client requests certain time spans,
the server decompresses the data and places it in the same
(shared) buffer that is utilized during recording. To keep the
latency low the server integrates caching and pre-fetching of
trace segments. However, since the size of traces is usually
significantly larger than the available system memory, only
short durations of the trace can be present in memory at any
time. The client needs to be designed with this constraint
in mind.

2.2 Trace Organization

The flexibility criterion suggested by Uhlig et al. requires
a tracing framework to place no restriction on the type of
events recorded [48]. That, however, introduces a new di-
mension of complexity compared to a design that has to
deal with a flow of uniform data only.

For each simulated event of interest, Simutrace has to record
the properties relevant for the anticipated analysis. For a
memory write issued by a simulated CPU, these might be
the (physical) address to which the operation was targeted
at, the size of the data written and potentially the data
itself. One use-case of the suggested type flexibility is to
supplement the recordings of memory writes with semantic
information from an operating system (OS) introspection
layer. Such a layer would for instance generate events on
process creation and context switches to allow correlating
memory operations to processes. Naturally, the properties
to record for such events will greatly differ from the ones
stored for memory writes. In consequence, events of differ-
ent types usually are of different size. That quickly leads
to multiple inefficiencies, when not considered early in the
design of a tracing framework:

e Accessibility: Trace events are typically recorded in
chronological order by simply appending entries to the
end of the already written trace. If the type and there-
fore the size of each event may vary, addressing or seek-
ing to a certain entry becomes difficult. A reader has
to scan through all previous entries to find the right
offset in the trace, degenerating the access to a costly
O(n) operation.

e Storage Efficiency: The effectiveness of compres-
sion schemes applied to the trace depends on the ac-
tual distribution of event types in the recorded flow.
This is rooted in the fact that most general purpose

compression algorithms (e.g., the LZ77-family [55]), al-
though able to work on arbitrary data and thus on
mixed traces, work with a sliding window in which the
schemes try to identify repeating patterns. The com-
pression ratio, however, is likely to decrease when the
variability of entry types (i.e., data layouts) within the
sliding window increases. Coping with different types
further complicates the application of custom compres-
sion methods that are specialized to deal with a certain
type of event.

e Locality: When examining a trace, it is often desired
to only inspect events of a certain type at a time. As
with the storage efficiency, the degree of locality for a
certain entry type depends on the actual collected data
and the ratio at which entries for the involved types
are generated. The locality for a certain type is low, if
the relative amount of events recorded for this type is
low and the entries are regularly distributed over the
full length of the trace. Such a characteristic applies
for instance to introspection events in a memory trace.
Accessing such events becomes a time-consuming oper-
ation as an unknown number of other entries have to
be skipped.

To mitigate these effects, Simutrace introduces the concept
of streams. Streams group semantically connected events
and present these as an independent flow of entries, while
each stream is restricted to contain data of a single type
only. Additionally, every stream is stored in its own region in
memory and on disk. When utilizing streams as abstraction,
each source of events in the simulation such as a memory
access hook creates one or more dedicated streams to which
it submits entries. Figure 3 illustrates the approach.
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Figure 3: Trace organization. Each event is assigned
to a stream of semantically connected entries. A
stream is limited to a single type.
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Separating event records of different types logically and spa-
tially avoids all of the aforementioned inefficiencies. Due to
the restriction to a single type per stream, all events within
a stream have a fixed size, enabling a reader to address an
entry by index in O(1). Type information per entry can be
omitted, saving storage space and avoiding interpretation.

The single-type semantic of streams makes it easy for the
server to apply type-specific processing, for instance special-
ized compression schemes. To that end, the storage format
can associate streams of a certain type to an encoder, which
the server will use to process the streams’ data. The logic of
the encoder is supplied by the implementation of the storage
format and invoked by the server in the context of a worker



thread. To define entry types, Simutrace employs 128 bit
globally unique identifiers (GUIDs). Accordingly, when a
client registers a new stream, it has to supply the GUID of
the desired stream’s data type.

Variable-sized Entries. While a fixed size for entry types
improves data accessibility, it also limits what data can be
stored in a trace. In general, the approach forbids any data
to be traced whose size is not known in advance and at the
same time is too variably sized to just reserve space in an
entry without wasting space in memory and on disk as well
as producing superfluous processing overhead. Taking in-
trospection events as an example, any strings such as the
environment or command line of a process fall into this cat-
egory. Another example are recordings of the simulation’s
screen output. The resolution might change (e.g., during the
boot phase) and is not necessarily known when designing the
tracing hook in the simulator. To solve this conflict without
compromising accessibility, Simutrace utilizes a combination
of referencing and specific encoding for variable-sized data.

An entry as a whole has a variable size, if one or more fields
in the entry (i.e., properties of the event) are of variable size.
The basic idea in Simutrace is thus to move any variable-
sized data to a dedicated stream and instead store a fixed-
size reference to the new location in the entry. That recovers
accessibility for the stream containing the recorded events
and which should provide optimal access characteristics.

Primary Stream

r} Hook

Secondary Stream

Figure 4: Handling of variable-sized data. When
tracing, the hook writes variable-sized data fields to
a separate stream, storing only fixed-size references
in the actual entry.

However, it also breaks the accessibility for the secondary
stream, which holds the variable-sized data. Moreover, with-
out using the references in the primary stream to identify
structure, the secondary stream is not even readable. Al-
though in practice, this would not be a problem, because the
data in the secondary stream can be accessed with a byte-
offset as reference in O(1) and the secondary stream does
not need to be read by its own, we extended the concept to
retain independent readability for the secondary stream.

To that end, Simutrace utilizes a special encoding in the sec-
ondary stream (see Figure5). The data is segmented into
equally sized blocks. Each block is preceded by a marker
that indicates if the subsequent entry is a continuation of
the current one, and a length field, which specifies how many
bytes in the block hold valid content. Any spare room in
a block is padded using zero-bytes. From the perspective
of the stream, each block represents an independent entry
with a fixed size. Accordingly, the reference in the origi-
nal entry points to the corresponding data’s first entry in
the secondary stream. Although a reader has to interpret
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Data (continuation)
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Figure 5: Encoding of variable-sized data through
chunking and padding. Continuation is specifically
marked (here in red).

the marker and length fields to retrieve the original data
(if it spans multiple blocks), splitting the data into blocks
preserves the stream semantic—i.e., streams only contain
entries of equal size, giving architectural consistency across
all types of streams. The optimal block size depends on
the length of the expected data, where a large input prefers
bigger blocks and vice versa.

2.3 Buffer Management

To be able to submit entries to a stream each stream needs
to be backed by a buffer, which on repletion is send to the
server for processing and storage. Since the server usually
runs on the same machine as the client, the buffer can be
shared between the client and server via shared memory to
avoid expensive transfers. In consequence, the client must
not overwrite the buffer of a stream, that is submit new
entries, until the server finishes processing the buffer. That
restriction, however, causes the simulation to stall if new
events for the same stream are generated during the phase
of processing. This is usually the case for memory tracing.

To comply with the speed criterion, a memory tracer should
provide an asynchronous processing model, which allows the
client submitting entries during processing. That can be ac-
complished by swapping a stream’s underlying buffer. Con-
sidering that a tracing session including supplementing intro-
spection information can easily encompass over 30 streams,
a certain degree of buffer management is required.

Figure 6 illustrates the buffer allocation in Simutrace. The
client and server create a (shared) stream buffer, which is
divided into equally sized segments. These segments are uti-
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Figure 6: Stream buffer. Each stream allocates a seg-
ment in a stream buffer to store incoming trace en-
tries. If a segment is full, it is send to the server for
asynchronous processing. To receive further events,
the stream allocates a new segment.



lized to back streams. When the client tries to write to a
stream for the first time, Simutrace transparently allocates a
segment from the stream buffer and assigns it to the stream.
The attempted write can then be completed, while any sub-
sequent writes within the segment directly succeed. When
a segment has been fully consumed, the client sends it to
the server and swaps it with a newly allocated one, thereby
allowing new events to be generated and submitted to the
stream. When the server finishes processing a segment, it
releases the segment, thereby making it eligible to allocation
again.

During the entire tracing session, the server stays in con-
trol of the allocation of segments. Although that introduces
additional communication overhead, it keeps memory man-
agement tied at one place. In practice, extra overhead is
avoided by combining the submission of a full segment and
the request of a new one into a single RPC call.

Another factor determining the communication overhead is
the size of the segments in the stream buffer. Larger seg-
ments can accommodate more events until they have to
be replaced and thus reduce the frequency at which the
server needs to be contacted for memory allocation and
processing. Furthermore, as the processing—in most cases
compression—of traced events is done at the granularity of
segments, the segment size also sets the bounds for the ef-
fectiveness of most general purpose compression schemes.
Larger segments, which allow a larger sliding window, usu-
ally tend to give a higher compression ratio. However, large
segments also have their shortcomings. Since Simutrace al-
locates at the granularity of entire segments, large segments
come with an increased memory consumption. That in turn
may limit the number of streams that a system is capable
of serving. The optimal configuration for the stream buffer
in terms of segment number and size thus depends on the
available system resources and the anticipated number of
streams. We empirically found 64 MiB to provide a good
balance between compression effectiveness and memory con-
sumption.

2.4 Multi-Threaded Tracing

A fundamental challenge for full system simulators is the
slowdown incurred due to the extensive emulation and the
inspection functionality provided by such simulators. To
facilitate the emulation and to offer fully deterministic ex-
ecution, system simulation is usually performed in a single
thread, which emulates each core in a round-robin fashion.
The slowdown for multi-core simulations thus increases lin-
early with the number of simulated cores. Recent work in
the field of full system simulation has shown that a viable
solution to accelerate multi-core simulation is to run each vir-
tual CPU core on a dedicated hardware thread [16, 29, 49].
While achieving good speedups (3.8x for a quad-core ARM
simulation [16]), the approach creates at the same time new
requirements for tracing frameworks.

When multiple CPUs are present in the simulated system,
one often wants to correlate memory accesses with the CPU
that invoked them. A possible solution to track this rela-
tionship is to express it through the structure of the trace,
that is separating memory access traces on a per-core ba-
sis. Simutrace supports this approach through the use of

one or more dedicated streams per CPU. Moreover, the API
exposed by Simutrace is fully thread-safe, thereby allowing
multiple threads to trace events simultaneously, that is al-
locate and submit stream segments. Another solution is to
create only a single stream, but include the originating de-
vice in the trace entry (e.g., through a CPU number). In this
configuration, the threads driving the simulation of the vir-
tual CPUs write to the same stream in parallel. Simutrace
supports thread-safe writes to a single stream with a special
set of tracing functions, which utilize atomic operations to
synchronize writes to the backing segment. However, such a
setup should be used with care. That is grounded in the fact
that frequent writes by multiple CPUs within the bounds of
the same cache line (typically 64 bytes) are likely to thrash
caches. Moreover, the interlocked operations required for
synchronization are expensive on today’s CPUs.

In Simutrace, to enable multiple threads in a tracing session
to safely participate in the recording of events, each thread
has to explicitly connect to the session. The benefit of this
semantic is that the client and server can establish a ded-
icated RPC channel per thread. For each channel in turn
the server creates a new worker thread, which executes RPC
requests in behalf of the respective client thread.

2.5 Conclusion

The criteria proposed by Uhlig et al. have manifested in
the design of Simutrace in multiple ways. Simutrace follows
a client-server design that allows efficient trace processing
in multi-tracing scenarios and eases the porting to new plat-
forms and simulators through modularization and functional
separation. A client—i.e., a full system simulator when trac-
ing or an analysis software when inspecting previously writ-
ten traces—utilizes an easy-to-use library to manage sessions
with the server, configure or retrieve the structure of a trace
and submit or read recorded events (e.g., memory accesses).

Traces in Simutrace are organized through streams that sep-
arate events according to their semantic background and
type. This concept provides a high degree of flexibility and
allows Simutrace to maintain fast O(1) (random) access on
read, without placing any restrictions on the type of events
captured in a trace. Moreover, the support for variable-sized
entries makes it possible to efficiently trace data whose size
is not known in advance without wasting storage space and
processing capacity. To prepare for emerging multi-core par-
allel simulators, Simutrace is fully capable of multi-threaded
tracing.

As speed is one of the most important criteria for a tracer,
segment buffers keep the overhead for submitting events to
a stream at the cost of filling a data structure in memory.
Processing tasks such as the compression of recorded events
are done asynchronously by the server, utilizing the full hard-
ware parallelism available in the host. For local tracing ses-
sions, the use of shared memory, pipes and a concise RPC
interface keeps the overhead for communication with the
server low.

3. SIMUTRACE STORAGE FORMAT

When a tracer receives new events it eventually has to write
them to persistent storage as the amount of data is usually
too high to keep in memory. Moreover, traces are often in-



spected over a long period of time (e.g., weeks), regularly re-
visited as research progresses and new questions arise. That,
too, makes holding traces in memory unfeasible. To store a
trace on disk, every tracing framework has to either support
an existing trace format, or define its own format. Which
format a framework uses heavily depends on the type and
amount of data it has to cope with as most trace formats
are optimized for a certain scenario and may not satisfy the
specific requirements. In that sense, a format developed to
encode message passing interface (MPI) packets is typically
unsuited to store memory traces and vice versa.

Simutrace uses a modular storage approach, which allows
both solutions—i.e., integrating existing formats or adding
custom ones—to be taken. To that end, Simutrace defines
an interface that a format implementation has to adhere to.
The user can then choose the format and storage location
with the help of a storage specifier in the form format:path
as part of the tracing session’s configuration. In the current
version, Simutrace includes a flexible custom format, named
simtrace after the 8-byte magic in its header, which we de-
veloped to support all features exposed by Simutrace. When
designing the format we laid out the following criteria:

e Flexibility: The storage format should not restrict
the type of data that it is able to store.

e Scalability: Traces should be able to grow as desired.
In particular, a trace should be partially readable and
the format should allow fast seeking to a specified time
span or a certain event (e.g., by index or timestamp).

e Storage Efficiency: The format should be capable
of employing a mixture of generic and specialized com-
pression schemes to achieve high compression ratios.

e Structuring: The format should provide means to
organize recorded events according to their source, se-
mantic background or type.

e Compatibility: Traces are sometimes archived to com-
prehend results at a later time. The format should
be able to evolve while maintaining compatibility with
previous versions.

To embrace these criteria we devised a generic trace format
that is able to store arbitrary data and types of events. It
employs Simutrace’s concept of encoders in the processing
stage to apply generic or specialized compression schemes

depending on the entry type reported for a stream. The cur-
rent version includes a special encoder for memory access
traces and defaults to a generic compression for all other
data types. As streams are Simutrace’s native abstraction
for trace organization, we adopted this primitive in the stor-
age format. To maintain backward compatibility with previ-
ous versions of the format in the future, a trace file includes
a version identifier in the header.

In the next sections we describe in more detail what mea-
sures are taken in the format to preserve fast access even for
traces with hundreds of gigabytes of size. We will further
elaborate on the specialized memory encoding integrated in
Simutrace’s storage format.

3.1 File Organization

Detailed memory traces can easily grow up to hundreds of
gigabytes in size, even when compressed. As traces that
huge need to be compressed before they are written to disk,
working with them requires a preceding decompression; at
least from the beginning to the point of interest. In practice,
that makes accessing information contained in contiguously
compressed traces unfeasible.

Wu et al. proposed a scalable log file format (SLOG) for their
MPI tracing facility on IBM SP systems [53]. The format is
tailored to allow fast random access to trace data. The key
idea behind SLOG is to divide the trace data into small
chunks and compress these frames individually. A directory
serves as a fast index into frames.

The same concept builds the foundation for the simtrace for-
mat. Figure7 (a) denotes its anatomy. A trace file is a col-
lection of independently readable frames where each frame
is owned by a particular stream and holds the data of a
single (compressed) 64 MiB stream buffer segment. Due to
the multi-threaded processing model, there is no guarantee
that the storage layer writes the frames in the correct order.
The server therefore assigns each frame a sequence number
specifying the chronological order in which the client filled
the segments. That allows the server to reproduce the origi-
nal flow. The sequence number is stored in a header which
the storage layer prepends to each frame. In addition, a di-
rectory at the beginning of the trace gives quick access to
individual frames without having to discover their positions
in the trace file first. The directory can store up to 1024
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Master Directory [dH Frame FH Frame FH Frame . Directory [38 Frame E
Header Stream 1 Stream 2 Stream 1 Stream 3
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Store L 2 00:00-09:59 10:00-32:00
— Compressed — _E v v \Z v
— = Node Node Node Node
Attribute 00:00-07:59  08:00-09:59  10:00-17:59  18:00-32:00
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Figure 7: (a) File organization. Trace files are built from variable-sized frames. Each frame is associated with
a stream and encompasses a set of attributes, one attribute being the compressed trace entries for the time
span covered by the frame. Directories allow fast frame discovery. (b) In-memory directories. Simutrace
builds an entry index based, per stream tree directory. Additional time-based indices are constructed for
streams with timing information. For fast sequential access, frames are hold in an array.



frame references (worth 64 GiB of trace data). On repletion
further directories may be allocated, while for the first 448
directories a direct link is included in the file header. In
contrast to the SLOG format, a frame does not only hold
actual compressed trace data, but instead comprises a list
of attribute-value pairs. Accordingly, the trace data itself
is capsuled within a data attribute. This flexibility makes
it easy to add encoder specific meta-data to a frame or to
enrich a frame with additional information (e.g., summary
data as generated by some tracers [14]). Simutrace also em-
ploys this feature to store a stream’s properties such as type
and name in a special frame.

3.2 Data Access

Although the directory helps to quickly find the location of
frames within a trace file, having to access each frame to
retrieve information on the time span it covers would be
a costly operation. Especially if the reader wants to jump
right to events generated at a certain point in the simulation.
Simutrace solves this problem by (a) including information
on what time span a frame holds in its header and mirroring
the header in the directory and (b) building for each stream
a set of in-memory red-black tree based indices to quickly
locate the right sequence number.

In addition to various meta-data, each frame header includes
the numeric indez of the first entry, the number of entries
contained, the start- and end simulation time (measured in
executed instructions) as well as the start- and end wall-clock
time. The latter can be useful if one for example knows
that a certain phenomenon occurred 30 min after starting
the tracing session but has no knowledge on the amount of
simulation time passed up to this point. Each one of these
index properties can be used to address ranges in a trace.
Since they are, as part of the header, mirrored in the di-
rectory, it is sufficient to read all directories within a trace
(each one occupying 128 KiB) to retrieve all relevant range
information, thereby keeping the time to open a trace file
low. The server can then build the respective index trees.
Figure 7 (b) illustrates the in-memory layout of the index
structures. An array stores the meta-data for each frame.
This information includes all of the aforementioned index
properties as well as the position of the frame within the
trace file. For each of the index properties (if provided) an
interval-tree is constructed to allow fast random access to
an arbitrary index or point in time. The underlying array
provides cheap sequential access. Note that these structures
are built in-memory per stream. Furthermore, they are not
explicitly saved in the trace file as creating them when open-
ing a file does not introduce a noticeable delay, even for large
traces.

3.3 Memory Trace Encoding

For memory traces, Simutrace comes with a built-in mem-
ory encoder, which accepts trace entries with the following
information:

e Cycle Count: A 48 bit monotonically increasing time-
stamp used to correlate entries chronologically.

e Meta-Data: A 16 bit field to save additional informa-
tion about each memory access. Currently, only one
bit is allocated to indicate if the CPU performed the
access with the architecture’s full register width.

e Instruction Pointer (IP): The 32/64 bit virtual ad-
dress of the instruction that issued the memory access.
On the x86(-64) architecture this is the value of the
eip or rip register respectively. The IP adds control
flow information to memory traces.

e Data Address: The 32/64 bit virtual or physical mem-
ory address, depending on the chosen entry type.

e Data: An optional 32/64 bit field for the read or writ-
ten value. For accesses below the architecture’s na-
tive width, this field also includes the access’s size.
In a write trace, this field allows reconstructing the
full main memory contents of the target, including ex-
ecuted code as well as all application- and OS data
structures such as page tables.

Note that it is not necessary to include the type or originat-
ing device (e.g., CPU number in a multi-core simulation)
in the trace entry, because different streams can be created
to separate accesses by type or device. To encode a single
memory access including the data, Simutrace thus generates
a data entry of 20 bytes for 32 bit and 32 bytes for 64 bit ar-
chitectures.

When working with memory traces, the amount of captured
data is usually so high that traces must be compressed. With
the presented format, tracing a minimal Linux kernel build
generates over 1.5 TiB of raw data for 53 billion write entries.
While general purpose compressors already provide decent
reductions in size, over the years, various schemes specifi-
cally for memory traces have been developed [8, 11, 18, 24,
25, 27, 32, 34, 36, 42]. These methods better take advan-
tage of the locality and repetition in memory traces and
thus achieve higher compression ratios. With VPC4[11],
Burtscher et al. proposed one of the leading compressors
for extended traces, that is traces, which contain hard-to-
compress values such as the read or written data. These val-
ues repeat less often, exhibit less patterns and span larger
ranges than instruction pointers and data addresses. In
Simutrace, we want to be able to capture these values. We
thus chose to use a modified version of VPC4 to form the
heart of Simutrace’s built-in memory encoder. Before we
highlight our modifications, we start with a short overview
of VPC4.

VPC4. At its core, VPC4 utilizes a set of value predictors to
identify patterns in value sequences (e.g., memory access ad-
dresses) and to forecast the likely next value. The algorithm
assigns each predictor a unique id. During compression, each
traced value is compared with all predictions. If one or more
predictors are right, the id of the successful predictor with
the highest usage count is written to a predictor id stream.
Otherwise, if all predictors are wrong, VPC4 writes a special
failure id to the predictor id stream and notes the (unpre-
dicted) value in a separate predictor data stream. A single
byte is used to encode the predictor id, while 4 or 8 bytes are
required for the extended data, depending on the simulated
architecture’s width (i.e., 32 or 64 bit). After a prediction
has been retrieved, VPC4 updates all predictors with the
current value and proceeds to the next trace entry. Decom-
pression works analogously.

Since the prediction rate is usually between 82% and 98% [10]



most values can be expressed by a shorter predictor id, thus
compressing the value sequence. In addition, the selection
rule that is applied when multiple predictors are right, shifts
the output to a small set of ids. That makes the id and data
streams eligible for further compression through a second-
stage compressor. Early versions of VPC included a custom
compressor, but the authors found widely used general pur-
pose algorithms to achieve better results. From version 3 on,
VPC thus employs bzip2 [1, 9] as second-stage compressor.

VPC4 uses a mixture of global prediction for instruction
pointers and local prediction for extended data (ED) such
as addresses. For the latter, the algorithm uses predictors,
which take the current IP as key to localize the prediction.
To forecast the likely next value, VPC4 implements three
types of predictors:

Last Value Predictor (LV). The last value predictor main-
tains a list of the last n seen values in least recently used

(LRU) order. The predictor provides all n values as predic-
tions and is consequently assigned a respective number of ids.

The last value predictor is particularly suited to forecast sim-
ple sequences of repeating or alternating n values. For local

prediction, the history of the last n values is extended to a

prediction table (PT) with 2° lines (see Figure8). The in-

struction pointer modulo 2 serves as index into the table.

We denote a last value predictor with the symbol LV[n];.
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Figure 8: LV[n]; predictor with n predictions and 2
value lines. The index is built from the IP [12].

Finite Context Method Predictor (FCM). The finite
context method predictor [43, 44] predicts the next value
based on a finite number of r preceding values—the context—
with the assumption that the next value will be equal to the
one that followed last time the same context. The history
length r is called the order of the predictor. To make a pre-
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Figure 9: FCMr[n]; predictor with order r, n predic-
tions, 2° history lines and 2! value lines. The index
is built from the IP [12].

diction, the FCM predictor hashes the context and uses the
hash as index into a prediction table. FCM predictors can
accurately forecast constant sequences of r arbitrary values,
however they must see a respective number of values before
they get matches. This phase is known as learning time [44].
For local prediction, the context is extended to a context ta-
ble (CT) with 2° lines. VPC4 uses FCM predictors for IPs
and ED and maintains n predictions per context in LRU or-
der, similarly to the LV predictor (see Figure9). The hash
is computed with the select-shift-fold-zor function [43]. We
use FCMr[n]; to describe a FCM predictor.

Differential FCM Predictor (DFCM). A DFCM pre-
dictor [11, 20] is essentially a FCM predictor, which stores
and is updated with strides, that is differences between con-
secutive values, instead of the absolute values. To form its
predictions, the predictor adds the last absolute value to
the predicted strides. In consequence, DFCM predictors are
able to forecast values that they have not seen previously.
Another key benefit of the differential predictor is a reduced
aliasing in the prediction table. Due to these properties,
DFCM predictors often outperform FCM predictors [20]. To
denote a DFCM predictor we write DFCMr[n];.

SVPC. To enable VPC4 to efficiently compress entries of
the previously presented structure and to improve compres-
sion ratio as well as compression and decompression time,
we modified VPC4 in multiple ways. From herein, we refer
to our variant of VPC4 as Simutrace VPC or simply SVPC.
SVPC differs from VPC4 in the following ways:

Transparency. VPC4 writes predictor ids and unpredicted
values into separate files on disk. SVPC instead leverages
the stream abstraction provided by our storage format. For
each memory stream to compress, SVPC creates two addi-
tional hidden streams to store the predictor ids and data.
The original memory stream is left empty in the trace file.
However, when the user accesses the empty memory stream
later, SVPC restores the content of the requested time span
by decompressing the respective ranges in the hidden streams.
The compression is thus kept transparent to the user.

Multi-Threaded Processing. To seamlessly integrate into
the trace processing model in Simutrace, SVPC has been
extended to perform multi-threaded (de-)compression by al-
lowing multiple submitted or requested time spans to be
processed in parallel.

Partial Decompression. VPC4 employs a tool to create
the final compressor based on configurable parameters such
as the structure of the data to process[12]. While these
generated VPC4 compressors always process the whole trace,
SVPC is capable of partial decompression at the granularity
of frames.

Second-Stage Compression. The compressors built with
VPC4 use pipelining to send the predictor ids and unpre-
dicted values to the second-stage compressor. In contrast,
SVPC fully integrates the second-stage compressor, which
has been shown to improve compression and decompression
speed [36]. In addition, we replaced the second-stage com-



Field Size (Bit) Predictors Key/Base
Cycle Count 48 DCFCM1[2]{;, DCFCM3[2]{y P
Meta-Data' 16 - -
Instruction Pointer (IP) 32/64 FCM1[2]%7, FCM3[2]%s -

Data Address> 32/64 FCM1[2]1§, DFCM1[2]i%, DFCM3[2]1§, LV[4]:5 1P

Data® 32/64 FCM1[2]1§, DFCM1[2]3?, DFCM3[2]1§, LV[4]:s 1P

L Only one bit used; indicates full-size data access.

2 Either physical or virtual address, depending on entry type.
3 Optional. If not full-size, Data also encodes the access’s size.

Table 1: Simutrace memory entry and SVPC predictor configurations.

pression algorithm. Burtscher et al. selected bzip2[1] as
default compressor and evaluated gzip [2] as an less effective,
but faster alternative[11]. We empirically found that for
trace data LZMA [4] usually achieves better compression in
less time than bzip2.

Differential Cycle FCM Predictor (DCFCM). SVPC
uses the same predictors and predictor configurations as
VPC4 (see Table1) with one exception. Simutrace adds a
48 bit monotonically increasing timestamp to every trace en-
try to correlate entries chronologically. Since we are using
a simulation on functional level, we do not have access to
the actual number of CPU cycles spent to reach a certain
event. We hence chose to approximate the cycle count with
the number of executed instructions and assume a cycles-per-
instruction (CPI) ratio of 1:1, which is sufficiently precise for
event correlation on instruction granularity. The compres-
sion of the cycle count takes advantage of this definition as
the cycle count will show similar patterns as the instruction
pointer. Because the cycle count is monotonically increas-
ing, we need to use DFCM predictors to extract the patterns.
When running benchmarks with the plain DFCM predictors,
we however found that adding the instruction pointer to the
stride further improved compression by reducing aliasing.

4. RELATED WORK

Tracing is a widely discussed topic in the literature and many
solutions have been proposed [8, 15, 3, 31, 39, 45, 46, 54].

Sigma [15] is a framework for memory analysis with a focus
on cache performance optimization. The traces recorded
with Sigma are constrained to memory addresses and control
flow information for correlation with program code. Sigma
utilizes static binary rewriting for program instrumentation,
that is instructions for capturing the memory access infor-
mation are added to the compiled binary ahead of execu-
tion. For full system analyses, however, this technique is
not suited.

With METRIC [30, 31], Marathe et al. presented a more re-
cent memory tracing tool, which uses dynamic binary rewrit-
ing. METRIC thus allows recording more complex program
behavior such as self-modifying or just-in-time generated
code. However, the authors designed METRIC for collecting
and processing partial access traces from user-space applica-
tions, only. That makes the tool as well unsuited for op-
erating system research. Nonetheless, METRIC employs a
sophisticated scheme for compressing memory access traces.
The algorithm encodes memory accesses as a sequence of
power regular section descriptors (PRSDs) [30]. Each de-

scriptor comprises a base address and information to com-
pactly express a (constant) stride pattern. PRSDs are linked

through control flow information, which METRIC compresses
with SEQUITUR [38]. For scientific applications, PRSDs

yield a higher compression ratio than VPC [11]—the family

of compression schemes we have chosen as basis for SVPC

in Simutrace—because the algorithm has been specifically

tailored to compactly encode memory access patterns origi-
nating from tight (nested) loops in a single thread and ex-
ecutable [31]. VPC on the other hand is targeted towards

efficiently compressing traces of general-purpose programs.
For whole system tracing, where memory accesses are is-
sued by potentially hundreds of threads spread across a mix

of applications as well as the operating system and drivers,
VPC is hence a more adequate choice. Compared to VPC,
PRSDs are also missing the capability to efficiently compress

extended data such as the read or written values.

ScalaMemTrace [8] is a recent memory tracer for MPI ap-
plications. The tool is able to monitor multiple threads or
processes and uses an extended version of PRSDs, called
EPRSDs, for compression. EPRSDs further reduce trace
size by leveraging recurring sequences of memory accesses
across the monitored scheduling entities. However, they are
still specifically tailored to compress memory traces of dense
algebraic kernels and are thus not suited for whole system
trace compression. ScalaMemTrace uses a similar architec-
ture to Simutrace in that the trace reduction is performed
asynchronously and in parallel. However, the degree of par-
allelization in ScalaMemTrace is limited to the number of
traced MPI processes. Simutrace, in contrast, parallelizes
the processing of stream segments and thus scales with the
rate of submitted or requested data.

To capture memory references from all (user-space) pro-
cesses on a system Kaplan et al. published a patch for the
Linux 2.4 kernel, which integrates a memory tracing facility
called kVMTrace [3]. The tool detects memory references
by write-protecting all but a small, fixed portion of each
process’s virtual memory mappings. Accesses to any pro-
tected pages trigger a page fault that kVMTrace handles by
logging the reference. The tool then unprotects the page to
let the memory access succeed, potentially missing further
accesses to the page. To reactivate monitoring, kVMTrace
periodically resets the write-protection. The principle has
been originally proposed by Uhlig et al. in Tapeworm II [47]
as an alternative to trace-driven cache simulation. A ben-
efit of this approach is its smaller slowdown compared to
dynamic binary rewriting and full system simulation. kVM-
Trace thus trades execution speed for precision. As a kernel



patch, kVMTrace is architecturally kept simple and provides
no compression or scalable storage format.

The presented memory tracing frameworks share a limited
applicability to operating system research grounded in their
restriction to monitor user-mode code only. Simutrace in
turn also records memory accesses issued by the OS kernel or
other kernel-mode code such as device drivers. Retrace [45]
is the work, which is closest to ours in that it also allows full
system tracing in VMware Workstation 6.0'. The tool splits
tracing into two separate phases. The workload is first run
in a regular virtual machine (VM) with hardware-assisted
virtualization. During this phase non-deterministic events
such as interrupts are captured. The second phase is called
the expansion phase, where the VM’s execution is determin-
istically replayed on the basis of the recorded events. The
hypervisor then runs in a simulation mode, which allows
tracing of memory accesses. In the presented form, Retrace
uses the expansion phase to record instruction traces in a
plain text format with gzip [2] compression. Retrace thus
misses most of the advanced mechanisms available in Simu-
trace such as a multi-threaded trace processing engine or
an advanced storage backend. In contrast to Retrace, Simu-
trace can also be used independently from any particular
full system simulator. In fact, reading previously recorded
traces requires no simulator at all.

A drawback of the full system simulation in Retrace as well
as in Simutrace is the immense slowdown of multiple orders
of magnitude. We are currently investigating an acceleration
method for scalable parallelization based on checkpoints and
deterministic replay [41]. Sheldon et al. suggested a similar
approach to mitigate the slowdown during their work on
Retrace [45].

An alternative to software-driven full system memory trac-
ing is the use of specialized hardware. HMTT [7] adopts a
DIMM-snooping mechanism that utilizes hardware boards
plugged into DIMM slots to capture whole system memory
accesses. As in Simutrace, HMTT correlates traced opera-
tions with processes with the help of additional introspection
information. A benefit of a hardware-based solution such as
HMTT is, that it does not impose a relevant overhead on
normal execution. However, the hardware has to advance
steadily to keep up with increasing memory bandwidth and
new memory standards. Hardware tracers are thus not only
bound to costs for purchasing the hardware, but also for
maintaining compatibility with new host technology. Simu-
trace instead can run on any standard PC and directly ben-
efits from faster CPUs, increased hardware parallelism, or
improved memory subsystems. As a software solution, Simu-
trace is also more flexible in what data is traced and how it
is encoded for later access.

S. CONCLUSION

Memory trace analysis provides a valuable insight into the
dynamic behavior of a system and delivers empirical sup-
port to focus optimization and debugging efforts. Memory
traces are, however, not trivial to attain and pose high de-
mands on the tracing components. In this white paper, we
presented Simutrace, a framework for full-length, no-loss full

IRetrace is no longer supported in recent versions.

system memory trace recording. Simutrace incorporates a
fully parallelized processing engine and combines fast, but
aggressive compression with a flexible and scalable storage
format. Pre-compiled packages for Windows and Linux as
well as the full source code and documentation of Simutrace
are available for download at http://simutrace.org.
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