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Abstract

Over the last few years, GPUs have been finding their way
into cloud computing platforms, allowing users to bene-
fit from the performance of GPUs at low cost. However,
a large portion of the cloud’s cost advantage traditionally
stems from oversubscription: Cloud providers rent out more
resources to their customers than are actually available, ex-
pecting that the customers will not actually use all of the
promised resources. For GPU memory, this oversubscrip-
tion is difficult due to the lack of support for demand pag-
ing in current GPUs. Therefore, recent approaches to en-
abling oversubscription of GPU memory resort to software
scheduling of GPU kernels — which has been shown to in-
duce significant runtime overhead in applications even if
sufficient GPU memory is available — to ensure that data is
present on the GPU when referenced.

In this paper, we present GPUswap, a novel approach to
enabling oversubscription of GPU memory that does not rely
on software scheduling of GPU kernels. GPUswap uses the
GPU’s ability to access system RAM directly to extend the
GPU’s own memory. To that end, GPUswap transparently
relocates data from the GPU to system RAM in response to
memory pressure. GPUswap ensures that all data is perma-
nently accessible to the GPU and thus allows applications to
submit commands to the GPU directly at any time, without
the need for software scheduling. Experiments with our pro-
totype implementation show that GPU applications can still
execute even with only 20 MB of GPU memory available.
In addition, while software scheduling suffers from perma-
nent overhead even with sufficient GPU memory available,
our approach executes GPU applications with native perfor-
mance.
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1. Introduction

Over the last few years, the use of GPUs as compute accel-
erators has been constantly growing. Especially in the field
of high performance computing (HPC), GPUs are deliver-
ing unprecedented levels of performance for certain classes
of applications. Most recently, GPUs have also been finding
their way into cloud computing platforms, allowing users to
benefit from the performance of GPUs at low cost by re-
lieving them of the burden of purchasing and maintaining a
dedicated supercomputer.

Cloud providers often oversubscribe the resources of their
cloud platforms in order to reduce costs: In case of GPUs,
the provider can rent out more GPU memory to customers
than is actually available, expecting that the customers will
not actually use all of the promised memory. In doing so,
cloud providers carefully assign virtual machines to phys-
ical hosts such that the actual demand for GPU memory
will be close to — but not more than — the physical ca-
pacity of the GPU in order to maximize utilization and
application performance at the same time. However, cus-
tomers do not always behave as expected and may choose
to fully utilize the promised memory at any time, possibly
exceeding the GPU’s physical capacity. Though this kind of
over-utilization may rarely occur in practice, the cloud plat-
form must ensure that all applications still function correctly
and with acceptable performance even if memory is over-
utilized.

Currently, handling over-utilization of GPU memory is
difficult since current GPUs do not support precise ex-
ceptions and therefore cannot seamlessly continue execu-
tion after page faults. As a result, these GPUs typically
treat page faults as fatal errors. Previous attempts to han-
dle over-utilization of GPU memory, such as Gdev [11] and
GDM [18]] therefore rely on software scheduling of GPU
kernels in order to multiplex the available GPU memory.
When dispatching a kernel to the GPU, these solutions copy



the working set of the application that launched the ker-
nel into GPU memory, evicting memory from other ker-
nels if necessary. On the downside, these systems typically
software-schedule the GPU even while GPU memory is
not fully utilized. Since GPU software scheduling has been
shown to induce considerable overhead [11]], such software
scheduling should be avoided.

In this paper, we present GPUswap, a novel approach to
extending GPU memory, which uses the GPU’s ability to
directly access system RAM to transparently extend appli-
cations’ GPU address spaces. GPUswap relocates data from
applications over-using their memory quota to system RAM,
and then redirects the page table entries for the relocated data
to the copy in system RAM. Our approach keeps all data
permanently accessible to the GPU and does therefore not
require software scheduling of GPU kernels. In contrast to
previous approaches, our approach does not induce overhead
unless the GPU’s memory is actually over-utilized. Experi-
ments with our prototype implementation show that when
sufficient GPU memory is available, software scheduling
suffers from 3.5 — 30 % overhead, while GPUswap executes
GPU applications with native performance.

The rest of this paper is organized as follows: We first
provide a short overview of current GPUs in Section [2] and
introduce our design goals in Section[3] Then, we present our
proposed design in Section ] Section [5] describes the pro-
totypical implementation of our approach, while Section []
presents our initial performance evaluation of our prototype.
Finally, Section [7] presents related work and Section [§] con-
cludes the paper.

2. GPU Background

Modern GPUs are asynchronous in nature: Applications sub-
mit small tasks called GPU kernels to the GPU and are then
free to perform other work while the GPU processes these
kernels. Applications can submit work to the GPU by writ-
ing commands into command submission channels. Recent
GPU generations from both AMD and Nvidia feature mul-
tiple such command submission channels that can be used
by different applications concurrently. To guarantee protec-
tion between those applications, these GPUs confine every
application to its own address space, thus ensuring that an
application cannot access memory of other applications.

In this section, we give an overview of the relevant mech-
anisms for CPU-GPU interaction and protection. We start
with a description of GPU memory management, including
address spaces, in Section followed by a description of
the GPU command submission process in Section [2.2]

2.1 Memory management

Modern GPUs assign an address space to each application in
order to guarantee protection between GPU kernels from dif-
ferent applications. Each address space is defined by a page
table containing GPU-virtual to GPU-physical mappings.
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Figure 1: Access paths to GPU memory. GPU kernels access
both system RAM and GPU memory through the GPU’s
MMU. ((©) 2013 IEEE. Taken from [3]] with permission)

For the GPUs we examined, these page tables can contain
two types of memory pages: Regular pages of 4 kb and large
pages of 128 kb. GPU kernels only operate on GPU-virtual
addresses, which a dedicated MMU, depicted in Figure E],
transparently translates to GPU-physical addresses.

Current GPU software stacks manage memory using
Buffer Objects (BO). BOs are contiguous regions of GPU-
virtual memory spanning one or more page table entries.
While a BO is always contiguous in virtual memory, the
same does not necessarily apply to physical memory, as the
page table can map each page of the BO to an arbitrary page
in physical memory.

The memory management of current GPUs lacks some
features found commonly in CPUs: Current GPUs typically
treat page faults as fatal errors, and their page tables do
not contain reference- or dirty-bits. Therefore, well-known
memory management techniques like demand paging or tra-
ditional page replacement algorithms cannot be applied to
GPUs.

The GPU’s page tables are typically not limited to GPU-
physical memory. Instead, they can also contain physical ad-
dresses in system RAM. In that case, the GPU’s MMU trans-
lates any access to a GPU-virtual address mapped to system
RAM into a PCI-e bus transaction. Mapping system RAM
into GPU address spaces this way is transparent to GPU ker-
nels as these GPU kernels operate on virtual addresses only.
The only distinction between GPU memory-backed and sys-
tem RAM-backed virtual memory is speed: Operations tar-
geting system RAM are limited by the bandwidth of the PCI-
express bus, which is about 25x slower than the GPU’s native
memory bus. In essence, a GPU using both system RAM and
it’s own memory can thus be considered a NUMA system.

While extending the GPU’s memory with system RAM
is supported by current GPU software stacks, the applica-
tion must typically decide at allocation time where to store
a given buffer object. This implies that a single BO may
not span both GPU memory and system RAM. However,
this limitation stems purely from the current GPU software
stacks since BOs are a software construct. The GPU hard-
ware can map GPU-virtual addresses to GPU- or system
RAM with page granularity, independent of BO boundaries.
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IEEE. Taken from [5] with permission)

2.2 Command submission

For most modern GPUs, applications submit GPU com-
mands using command submission channels as depicted in
Figure 2} Each channel consists of a ring buffer holding the
actual GPU commands, and two pointers — get and put —
which reside in memory-mapped device registers and point
to the head and tail of the command queue inside the ring
buffer. The GPU driver can memory-map these command
submission channels — including both ring buffer and point-
ers — into the application’s CPU address space. Applications
can thus submit commands directly to the GPU, without in-
voking the GPU driver. An application wishing to send com-
mands to the GPU first writes these commands into the next
free slot in the command submission channel’s ring buffer,
and then advances the put-pointer, which signals the GPU
that a command was just submitted. The GPU processes the
commands queued in the ring buffer sequentially and ad-
vances the ger-pointer whenever a command has been con-
sumed.

On the downside, granting applications direct access
to the command submission channels also implies that all
scheduling decisions for commands from different channels
are left to the GPU alone. Therefore, if multiple applications
access the GPU concurrently, neither the applications nor
the GPU driver have any information about the ordering of
commands from different applications. In addition, once a
command has been written into the command submission
channel, it must execute to completion — it is not possible
to un-submit a command even if that command has not yet
begun to execute. Since applications cannot be sure when
exactly a submitted command will execute, each application
must thus ensure uninterrupted access to all data needed by
each of its commands until those commands have finished
execution.

3. Design goals

The main goal of GPUswap is to enable oversubscription
of GPU memory. However, in doing so, GPUswap should
not sacrifice application performance or compatibility with

existing applications. Besides enabling oversubscription, we
thus define the following objectives for our design:

Fairness From the GPU’s perspective, system RAM is sig-
nificantly slower than the GPU’s own memory. Relocating
application data to system RAM can thus result in signifi-
cant runtime overhead for the application owning the data.
Ideally, this overhead should be distributed fairly among ap-
plications. Unfortunately, we can not yet estimate the per-
formance impact of storing a given data structure in sys-
tem RAM. Therefore, our current goal is to guarantee a fair
share of GPU memory to each application. In the future, we
will investigate other relocation policies to instead divide the
overhead more evenly.

Performance Our goal is thus to optimize for the common
case: GPUswap should not induce overhead unless there is a
shortage in GPU memory. Our reasoning behind this goal is
that we expect relocation of data to system RAM to be rela-
tively rare. The goal of sharing GPU memory is to increase
the utilization of that memory. However, such sharing is in-
effective when a single application fully utilizes the available
memory by itself. Therefore, we expect GPU memory to
be shared mainly among applications using relatively small
amounts of GPU memory. In that scenario, system RAM is
only used to cope with the exceptional case that an applica-
tion requests more GPU memory than expected. However,
if GPUswap must relocate data to system RAM, overhead
is unavoidable due to the difference in speed between GPU
memory and PCI-e bus. GPUswap is therefore intended as
a short-term solution only. If a shortage in GPU memory
persists for an extended period of time, the cloud provider
should take additional action, such as migrating a VM to a
different host.

Transparency Most GPU applications are written under
the assumption that the application has exclusive access to
the GPU. In addition, modern GPU drivers map the GPU’s
command submission channels directly into the application
to maximize application performance. Our solution should
maintain this illusion of exclusive and direct GPU access by
keeping any relocation of GPU memory fully transparent to
the application in order to remain compatible with existing
applications. Specifically, the application should be able to
submit commands to the GPU at any time, without being
affected by memory relocation. Therefore, from the appli-
cation’s point of view, GPU memory should never become
inaccessible, and the contents of GPU memory should never
change unexpectedly.

4. Architecture

GPUswap uses system RAM as an extension to GPU mem-
ory. Modern GPUs can map system RAM into applications’
GPU address spaces, allowing GPU kernels transparent ac-
cess to system RAM. If applications allocate more GPU
memory than available, GPUswap transparently copies data
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from GPU memory to system RAM, and subsequently maps
that data in system RAM to the same virtual address it origi-
nated from. Applications can thus allocate more GPU mem-
ory than is physically available, while GPUswap ensures that
all data remains permanently accessible, even if it does not
reside in GPU memory. Therefore, in contrast to previous
approaches, GPUswap does not depend on software schedul-
ing of GPU kernels to enable oversubscription of GPU mem-
ory.

4.1 Overview

GPUswap consists of three main components as depicted
in Figure B} An accounting mechanism which tracks in-
formation about each application’s allocated memory, a re-
ducer that, based on information from the accounting mech-
anism, decides which memory to move to system RAM, and
a swapping mechanism which executes the reducer’s deci-
sions. Whenever an application requests GPU memory, the
accounting mechanism takes note of that request in order to
track the BOs and the total amount of GPU memory allo-
cated by each application. If there is insufficient free GPU

memory to serve the request, the reducer then decides which
memory should be relocated to system RAM to free up GPU
memory for the request. Finally, the relocation mechanism
performs the actual relocations. Conversely, whenever an
application frees GPU memory, GPUswap selects relocated
memory fitting into the available space on the GPU and
moves that memory back onto the GPU in order to main-
tain good memory utilization. GPUswap’s operation is com-
pletely transparent to applications, apart from a small delay
in the application’s GPU command execution during the op-
eration of the relocation mechanism.

GPUswap is designed to operate in the context of the
operating system kernel, either as an add-on to an existing
GPU driver, or as a separate module wrapping calls from
userspace into the GPU driver. Operating inside the kernel
gives GPUswap both information about and control over all
applications in the system, without requiring cooperation
from those applications. Therefore, running in the kernel
allows GPUswap to enforce allocation policies even against
uncooperative applications.

4.2 Memory accounting

Our accounting mechanism intercepts every request for
GPU memory. These requests are sent to the GPU driver
by the user-space CUDA runtime whenever that runtime
needs additional memory, for example to satisfy a call to
cudaMalloc (). Once activated, our accounting mechanism
logically divides the allocated BO into fixed-size chunks.
The chunk size is 2 MB by default, but can be configured to
different values if desired. The accounting mechanism main-
tains a list of all allocated chunks as well as the total amount
of memory allocated for each application. Whenever GPU
memory is relocated, the reducer informs the accounting
mechanism to keep each application’s total GPU memory
usage accurate.

GPUswap manages GPU memory in chunks rather than
pages or entire BOs. Relocating memory with BO granular-
ity could result in poor memory utilization since BOs can be
hundreds of megabytes in size: If GPUswap relocates a large
BO in order to make room for a small allocation, most of the
relocated memory would remain unused. Managing mem-
ory with page granularity limits the amount of wasted mem-
ory to the page size, but can result in high computational
overhead if each page of a large BO must be processed in-
dividually. We chose to manage GPU memory in chunks as
a compromise between the conflicting goals of minimizing
wasted GPU memory and minimizing computational over-
head: The amount of wasted memory is limited to the chunk
size — which is much smaller than the typical BO size — while
at the same time, the computational overhead is limited since
there are far fewer chunks than pages to process. Note that
the chunk size can be configured to the page size or the size
of the GPU’s memory — the latter resulting in each BO con-
sisting of one chunk — should the need arise.



4.3 Victim selection

If there is not enough free GPU memory for a request, the
reducer decides which memory to relocate to system RAM
in two steps: i) Select which application should give up GPU
memory (victim selection), ii) selecting a chunk of GPU
memory owned by that application for relocation (chunk
selection). The reducer repeats these two steps until the size
of the selected memory plus the size of the pre-existing free
memory is larger than or equal to the size of the new request.

The reducer uses data from the accounting mechanism to
select a victim. Since it is our goal to spread the available
GPU memory evenly among applications, the reducer cur-
rently chooses the application consuming most GPU mem-
ory as the victim. To determine which application uses most
GPU memory, the reducer considers all data currently re-
siding in GPU memory as well as the newly allocated BO.
Considering that new BO as well as existing memory en-
sures that the reducer can relocate memory owned by the
requesting application in case the new request causes that
application to exceed its fair share of GPU memory.

Once the reducer has selected a victim, the second step is
to select a chunk of GPU memory owned by that victim for
relocation. Ideally, since any access to the selected memory
will incur a significant performance penalty after relocation,
the reducer should select a chunk that the application will
not use in the near future. Unfortunately, typical algorithms
used to achieve a good selection — such as LRU or LFU
— are unusable on GPUs since the GPU’s MMU does not
implement a reference bit and is therefore unable to track
page accesses. Consequently, we currently revert to selecting
arandom chunk owned by the victim. Once a chunk has been
selected, the reducer marks that chunk for relocation and
reduces the victim’s accounted GPU memory consumption
by the size of the selected chunk.

4.4 Relocation mechanism

Once the reducer has selected appropriate chunks, the re-
location mechanism actually moves these chunks to system
RAM. During relocation, the mechanism must ensure the
consistency of the chunks’ contents. To that end, the relo-
cation mechanism performs the following steps:

1. Temporarily suspend GPU access for the application
owning the chunk

2. Copy the chunk’s contents to system RAM

3. Modify the application’s GPU page tables so that the
chunk’s location in the application’s GPU-virtual address
space maps to the new location of the BO in system RAM

4. Return to[2)if the application owns another marked chunk
5. Restore GPU access for the application
Suspending GPU access for the application is necessary

to ensure the consistency of the chunks’ contents during
relocation: If the application is allowed to execute GPU

kernels during copying, one of these kernels could write to
a chunk while that chunk is being copied. If such a write
occurs in a region of the chunk that has already been copied,
this modification is lost upon switching the page table to
the now outdated version of the chunk in system RAM.
Unfortunately, we cannot apply the classical techniques for
solving this problem to GPUs due to the limited capabilities
of the GPU’s MMU. For example, using write faults to
detect changes to the copied memory, as is typically done
for virtual machine migration [2], does not work on current
GPUs since these GPUs treat write faults as fatal errors.
Therefore, there is currently no alternative to suspending the
application’s GPU access altogether.

Our swapping mechanism uses the same technique as
LoGV [3] to suspend GPU access for an application: The
mechanism transparently unmaps all command submission
channels from the application’s address space, replaces those
channels with shadow copies in system RAM, and waits
for all commands in the unmapped command submission
channels to finish execution. For the application, the shadow
copies are indistinguishable from regular command submis-
sion channels, which maintains the illusion of uninterrupted
GPU access and thus keeps memory relocation transpar-
ent to the application. In particular, the application can still
submit commands without blocking, since these commands
are transparently written to a shadow copy. After the re-
location finishes, the mechanism restores the application’s
GPU access by synchronizing the contents of the shadow
copies with the physical channels — causing all GPU com-
mands submitted to a shadow copy to begin execution — be-
fore remapping the physical channels back into the appli-
cation’s address space. Our relocation mechanism only sus-
pends GPU access for one application at a time to prevent
the GPU from idling, and copies all marked buffers in the
disabled application’s address space at once while the appli-
cation is suspended.

Our relocation mechanism assumes that there is sufficient
system RAM to hold all selected chunks. We consider this
assumption reasonable since current server machines typi-
cally contain much more system RAM than GPU memory.
However, the mechanism cannot use ordinary application
memory for relocating chunks: The memory holding these
chunks must be non-pageable and DMA-accessible to make
the relocated chunks accessible to the GPU. Since appro-
priate memory is easy to allocate for a device driver, we
chose to allocate the memory for relocated chunks in the
driver’s memory space for simplicity. In principle, however,
GPUswap can use any memory with the desired proper-
ties for relocation. Allocating memory for relocation in the
driver is thus not a strict requirement if appropriate memory
can be obtained by other means.

4.5 Returning memory to the GPU

Before any data is relocated, the GPU memory must be fully
utilized to minimize the overhead associated with the use of



system RAM. Therefore, GPUswap attempts to move suit-
able chunks from system RAM back to GPU memory when-
ever an application frees GPU memory. GPUswap considers
a chunk suitable if i) that BO resides in system RAM, and ii)
the chunk’s size is less than or equal to the amount of free
GPU memory. GPUswap chooses which chunks to move
back to the GPU in two steps: First, GPUswap selects one
application owning at least one suitable chunk as the win-
ner. That winner is currently the application owning the least
amount of GPU memory to distribute GPU memory fairly
among applications. Then, GPUswap randomly chooses one
of that winner’s suitable chunks and marks that chunk for
relocation back onto the GPU. GPUswap repeats these two
steps until no suitable chunks remain.

Once GPUswap has selected a set of chunks, we employ
the relocation mechanism described in Section £.4]to move
the marked chunks back to the GPU. In essence, the relo-
cation mechanism repeats the same steps as for relocating
chunks to system RAM, only this time using GPU memory
as the destination. First, the mechanism chooses an applica-
tion owning at least one marked chunk and suspends that ap-
plication’s access to the GPU. Then, the mechanism copies
all marked chunks owned by that application back into GPU
memory, and modifies the application’s GPU page tables to
keep the chunks accessible in the same (virtual) locations.
Finally, the swapping mechanism restores the application’s
GPU access, and advances to the next application owning
marked chunks.

5. Prototype implementation

We integrated our prototype implementation of GPUswap
into the PathScale GPU driver (pscnv) [13]]. Pscnv is cur-
rently the only open-source GPU driver capable of mapping
the GPU’s command submission channels into user space.
Unfortunately, pscnv limits our current implementation to
Nvidia Fermi GPUs. In principle, however, our approach ap-
plies to all GPUs that feature virtual address spaces and mul-
tiple command submission channels, which includes newer
GPU generations from both Nvidia and AMD. We are cur-
rently working on an implementation based on the Nou-
veau driver which will support Nvidia Kepler- and Maxwell-
generation GPUs.

Most of GPUswap’s functionality is implemented as an
add-on separate from the main components of the origi-
nal pscnv driver. GPUswap is activated through a hook in
pscnv’s memory allocator which invokes GPUswap once for
each memory allocation request. GPUswap then operates as
described in Section .1} The reducer selects appropriate
chunks of GPU memory to relocate, before the relocation
mechanism copies the selected chunks into system RAM.
This process frees up enough memory to subsequently allow
pscnv’s original memory allocator to serve the original re-
quest. Since this entire process is implemented inside pscnv

without requiring changes to the driver’s API, GPUswap’s
operation is completely transparent to applications.

5.1 Memory accounting and management

The original pscnv driver manages memory as BOs, which
are contiguous in virtual GPU memory and can be hundreds
of megabytes in size. However, we prefer a smaller entity of
memory management as explained in Section4.2] Therefore,
we split each allocated BO into fixed-size chunks. If the size
of the BO cannot be evenly divided by the chunk size, the
remainder is put into a separate chunk that is smaller than
the configured size. We ensure that these chunks appear as
contiguous BOs towards user space to keep this modifica-
tion transparent to applications. Internally, we compose the
chunks of large pages whenever possible to minimize the
amount of page table manipulation.

Since each chunk may be placed in GPU or system mem-
ory individually, our accounting mechanism maintains per-
application lists of GPU memory chunks which GPUswap
can potentially move to system RAM, as well as chunks
that have already been moved. Since pscnv lacked any per-
application resource accounting, we introduced a new data
structure that contains these two lists as well as general
memory consumption statistics for each application. When-
ever an application allocates a BO, the allocator adds all
chunks of that BO to the application’s list of chunks that
can be moved to system RAM. Similarly, whenever our re-
location mechanism moves chunks to system RAM, it also
moves the appropriate entries to the list of already relocated
chunks.

5.2 Reducer

On each request for GPU memory, our reducer executes in
the kernel context of the thread that submitted the request.
Since relocating memory requires suspending GPU access
for the application owning that memory — which is a costly
operation — to guarantee the consistency of the relocated
memory’s contents, the reducer does not perform the relo-
cation immediately. Instead, it adds each selected chunk to a
list attached to the state data structure of the application own-
ing the selected chunk. After enough memory has been se-
lected, the reducer triggers the relocation mechanism which
then performs the actual relocations. The reducer then waits
for all enqueued relocation operations to complete, in order
to ensure that pscnv’s memory allocator will subsequently
find sufficient free GPU memory.

5.3 Suspending applications

GPUswap uses a similar mechanism as LoGV [3] to sus-
pend GPU access for applications: GPUswap unmaps all
GPU command submission channels from the application’s
address space and replaces those channels with identical
shadow copies in system RAM. To restore GPU access after
relocation, GPUswap copies all newly submitted GPU com-
mands from the shadow copies to the physical channels and



subsequently maps the physical channels back into the ap-
plication’s address space.

To avoid creating inconsistencies while a shadow copy
is being created or synchronized with a physical channel,
we must prevent the application from modifying both the
physical channel and the shadow copy while the operation is
in progress. Therefore, we perform these operations while
neither the command submission channel nor the shadow
copy are mapped into the application’s address space. If
the application accesses the unmapped channel, the resulting
page fault is directed to GPUswap, which stalls its response
until the operation is complete. Except for a possible delay in
the page fault handler, both suspending and resuming GPU
access are thus completely transparent to applications.

5.4 Relocation mechanism

After our reducer finishes operation, the relocation mecha-
nism iterates over all applications owning at least one se-
lected chunk, suspends each application’s GPU access us-
ing the mechanism described in Section [5.3] and copies all
chunks from the application’s selected chunk list to system
RAM. Note that only chunks that already exist in GPU mem-
ory are copied in this way: If chunks from the newly allo-
cated BO are selected for relocation, these chunks are allo-
cated in system RAM directly.

Since GPUswap is a part of pscnv, our relocation mecha-
nism can use utility functions that are part of pscnv, for ex-
ample to manipulate the GPU’s page tables. However, pscnv
assumes that the GPU’s command submission channels are
mapped into the application, and thus does not include im-
portant pieces of application logic. For example, pscnv itself
cannot submit commands to the GPU, which is necessary to
initiate DMA transfers. We therefore backported the missing
pieces necessary for DMA transfers from gdev and pscnv’s
userspace library into the pscnv kernel module. Our current
implementation supports asynchronous DMA, which allows
our relocation mechanism to relocate all queued chunks in
parallel while the application is suspended.

5.5 Returning memory to the GPU

GPUswap performs return operations in a separate thread
executing in kernel space. Since the GPU applications we
examined tend to free multiple BOs in short succession, that
thread checks for unused GPU memory in regular intervals.
These intervals should be as long as necessary to capture
each set of free operations in a single interval with high
probability, but otherwise as short as possible to ensure that
GPU memory does not remain unused for extended periods
of time. We currently set the interval to 50 ms, which fulfills
both conditions to our satisfaction. If our thread detects
unused GPU memory at the end of an interval, the thread
chooses a set of chunks to relocate back into GPU memory
and executes the appropriate relocation operation, which
involves the same steps as relocation into system RAM.
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Figure 4: Total amount of memory allocated by two
memory-intensive processes over time

6. Experimental Evaluation

GPUswap’s main goal is to enable oversubscription of GPU
memory while maintaining fairness, performance and trans-
parency. As described in Section [5} our approach achieves
transparency by operating completely inside the driver, not
requiring any changes to applications. To show the fairness
and performance of our approach, we conducted a number
of experiments using our prototype implementation.

6.1 Experimental setup

We used a Nvidia GeForce GTX 480 GPU as a testbed for
our experiments. The GPU is based on the Fermi microarchi-
tecture and features 480 cores and 1.5 GB of GDDRS5 mem-
ory. Our host system consists of a Intel Core i7-4470 CPU
and 16 GB of system RAM. For our experiments, we locked
both CPU and GPU at the highest available clock frequency.
For our benchmarks, we used Gdev’s CUDA implementa-
tion (ucuda) [9]], which supports both Gdev and pscnv. Our
host system ran Ubuntu 12.04.5, which is based on Linux
3.5.7.33.

6.2 Fairness

Since GPU memory offers much higher performance than
system RAM, the available GPU memory should be dis-
tributed fairly among applications. To that end, GPUswap
attempts to guarantee a fair amount of GPU memory to each
application. We created a synthetic benchmark application
called alloc to evaluate whether our approach fulfills that
guarantee. Alloc performs no computation, but instead con-



Application | Area
backprop Machine learning
bfs Graph computation

heartwall Image processing
hotspot Physics simulation
Iud Linear algebra
srad2 Image processing

Table 1: The benchmarks used in our evaluation

tinuously allocates BOs of 32 MB until it possesses a total of
2 GB of virtual GPU memory. Alloc then waits a pre-defined
amount of time before freeing all allocated memory at once.
Our reasoning behind this benchmark was to simulate the
behavior of a program containing a memory leak. In our ex-
periment, we started two instances of alloc — named allocl
and alloc2 — with alloc2 starting 20 seconds after allocl. We
then recorded the total amount of both GPU memory and
system RAM allocated by both instances combined. We set
the chunk size to 32 MB to make the relocation operations
more visible.

The results are shown in Figure[d Alloc1 starts at time 0
and gradually fills up all available GPU memory. When no
more GPU memory is available, our reducer starts moving
data to system RAM in response to new allocations. As a re-
sult, the amount of allocated system RAM starts to increase
until allocl owns a total of 2 GB of memory. 20 seconds af-
ter the launch of alloc1, alloc2 starts and attempts to allocate
memory. As the entire GPU memory has been allocated by
alloc1, our reducer chooses chunks owned by allocl — which
obviously exceeds its fair share of memory — for relocation.
As aresult, allocl’s amount of GPU memory decreases at the
same rate as the amount of GPU memory allocated to alloc2
increases until both instances own approximately the same
amount of GPU memory. Note that the amounts of mem-
ory owned by both instances are not exactly equal: Since
the 1400 MB of GPU memory available to applications do
not divide equally by 32 MB, alloc2 ends up with one more
chunk than allocl. Since this kind of imbalance is limited to
one chunk, we consider the amount of unfairness acceptable.

6.3 Performance

We used six benchmark applications from the rodinia bench-
mark suite [1] — which have been previously adapted to
ucuda [8] — to evaluate the performance of our prototype.
The resulting set of benchmarks is listed in Table[T]

We ran each of our benchmark applications multiple
times while gradually increasing the amount of available
GPU memory in 50 MB increments to evaluate the effect
of using system RAM instead of GPU memory. To limit the
available GPU memory, we modified the pscnv kernel mod-
ule, forcing pscnv’s memory allocator to ignore all GPU
memory above a configurable address. At each memory size
we tested, we started two instances of each benchmark ap-

plication simultaneously. Since our reducer selects 2 MB
chunks for relocation at random, we ran each benchmark
application 10 times to allow our reducer to select differ-
ent combinations for chunks. In addition, we modified our
benchmark applications to repeat their main computation
step 100 times in order to make the effect of using sys-
tem RAM in place of GPU memory more visible. To that
end, we added a loop comprising all GPU kernel launches
and as much of the application’s I/O as possible to each
of our benchmark applications. The only exception to this
modification was hotspot: Hotspot already executes its GPU
kernels for a number of iterations, which allowed us to re-
peat the main computation step by simply setting the desired
number of iterations appropriately.

For comparison, we ran this experiment on both GPUswap
and gdev. We chose gdev since it is currently the only freely
available tool for enabling oversubscription of GPU mem-
ory that we are aware of. Gdev enables oversubscription by
transparently sharing BOs between applications: Whenever
memory pressure occurs, Gdev selects two BOs of similar
size owned by different applications. Gdev then copies the
contents of one of those BOs into system RAM, and maps
the other BO into the GPU address space of both applica-
tions. Whenever a GPU kernel of one of the two applications
is then scheduled for execution, Gdev copies that applica-
tion’s data into the shared BO before starting the kernel. To
implement limiting of GPU memory, we added the same
modification we made to pscnv to the gdev kernel module.

Figure[5|shows the runtime for each of our benchmark ap-
plications for various GPU memory sizes on both GPUswap
and gdev. For each application, we recorded the runtime
of the slower of the two instances. As expected, our solu-
tion induces less runtime overhead than gdev for most of
our benchmark applications if all application data resides
on the GPU, which is the case for all applications at 500
MB GPU memory. Most notably, gdev’s overhead for back-
prop was more than 30% compared to GPUswap, followed
by srad2, lud and heartwall with 14%, 10% and 3.5% over-
head, respectively. The only notable exception was hotspot,
for which GPUswap showed an average overhead of 1.5%
compared to gdev. Bfs did not show any significant differ-
ence in runtime between GPUswap and gdev. Overall, we
conclude that GPU software scheduling, as implemented by
gdeyv, causes significant runtime overhead for most applica-
tions, while GPUswap — which only interrupts GPU compu-
tation in case of memory pressure — does not induce over-
head for most applications as long as sufficient GPU mem-
ory is available.

On the downside, our benchmarks also show the cost of
relocating application data to system RAM: At a total GPU
memory size of 20 MB — at which almost all application
data resides in system RAM — the runtime of all applications
increases significantly — from 50% for backprop to 786%
for bfs. For most applications, however, the overhead ap-
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Figure 5: The runtime of two instances of each benchmark application for various amounts of GPU memory. The x-axis shows
the amount of GPU memory available to applications, while the y-axis shows the average runtime of the slower of the two
instances. Unfortunately, Gdev caused all benchmark applications to crash under memory pressure. Therefore, results for Gdev
are only shown for cases where sufficient GPU memory is available.



pears to decrease exponentially as we add more GPU mem-
ory. Consequently, if only a small amount of application data
is relocated, the overhead becomes relatively small as well.
Unfortunately, we could not compare these results to Gdev
since all benchmark applications invariably crashed as soon
as Gdev detected memory pressure. However, since we ex-
pect all application data residing in system RAM to be an
exceptionally rare case and GPUswap is intended mainly as
a short-term solution, we consider GPUswap’s overhead ac-
ceptable overall.

Since GPUswap selects memory chunks for relocation
randomly, and different chunks may have a different impact
on performance when relocated, the runtimes of most of our
benchmark applications fluctuate heavily as soon as any ap-
plication data is relocated to system RAM. This fluctuation
is shown by the error bars in Figure [5] which show the stan-
dard deviation of the benchmark runtimes across all runs
at each memory size. It is important to note that for some
benchmarks, the low end of this standard deviation comes
close to the application’s runtime with sufficient GPU mem-
ory available, which indicates that GPUswap’s random se-
lection sometimes selects chunks for relocation which have
only a negligible impact on performance. Unfortunately, it
is currently not possible to detect these chunks beforehand
since current GPUs lack appropriate hardware support, such
as reference bits in the GPU’s page tables. However, we
believe that hardware support for detecting rarely accessed
chunks has the potential to greatly improve GPUswap’s per-
formance.

We repeated some of our experiments with up to five con-
current instances of our benchmark applications to assess
the scalability of GPUswap. Our results indicate that the in-
crease in computational overhead due to the larger number
of applications can be neglected — in practice, the runtime
overhead appears to depend only on the amount of relocated
application data. Our experiments also show that the over-
head is spread evenly among all running applications. These
results are consistent with our expectations: Since Fermi
GPUs run GPU kernels from different applications sequen-
tially, there is no additional contention on the PCI-e bus if
more applications are started in parallel. However, bus con-
tention could be a problem on GPUs capable of running ker-
nels from different applications concurrently.

6.4 Relocation delay

In addition to the direct cost of using system RAM in place
of GPU memory, GPUswap can also cause delays in appli-
cations while memory is being relocated. Specifically, each
allocation request can cause two types of delay: i) The allo-
cating application itself may have to wait for a relocation to
complete before the actual allocation can take place, and ii)
the GPU access for another application may be suspended if
memory owned by that application is relocated in response
to an allocation request.

We ran the same benchmark applications as in the pre-
vious experiment with the total amount of GPU memory
limited to 100 MB to measure the impact of these delays.
We ran each benchmark application five times, again start-
ing two instances of each application simultaneously. While
the applications were running, we recorded the amount of
memory relocated and the delay caused by each individual
relocation operation. The results are depicted in Figure [6]
Figure [6a] shows the delay experienced by applications re-
questing GPU memory, depending on the amount of GPU
memory that must be relocated to make room for the request.
Note that each of our benchmark applications allocates the
same buffers in each run, which is why the memory sizes
appear quantized in this figure. Figure [6b] shows the delay
experienced by applications that must give up memory in
response to an allocation request from another application.
Finally, Figure [6¢c| shows the time taken for the raw DMA
transfers taking place during relocation, depending on the
size of the transfer. The chunk size in this experiment was
set to the default of 2 MB, which causes the apparent quan-
tization in Figures [6b] and

The allocation requests we observed were generally de-
layed by less than 100 ms. We consider this delay acceptable
since most GPU applications tend to re-use previously allo-
cated memory instead of allocating and freeing buffers fre-
quently. However, the delay did not always mirror the time
needed for a DMA transfer of the same size. The reasons for
this result are twofold: First, GPUswap performs work of its
own in addition to the DMA transfer — for example to select
which chunks should be relocated — which can cause alloca-
tion requests to be delayed longer than the time needed for
the DMA transfer. Second, the delay may be shorter than the
time for a DMA transfer if chunks from the newly requested
memory are selected for relocation, which results in those
chunks being allocated in system RAM directly, without the
need for a DMA transfer.

The delays we observed in applications not allocating
memory themselves were even shorter on average than the
delay for allocation requests. This shorter delay is owed to
the fact that GPUswap performs almost all of its computa-
tion — such as chunk selection — in the context of the appli-
cation requesting memory. Therefore, the delay experienced
by other applications is dominated by the time needed for the
DMA transfer, which can be seen from the mostly linear re-
lationship between the amount of relocated memory and the
delay in Figure[6b|and Figure[6c| However, we observed that
some relocations delayed the application longer than aver-
age. We assume that these relocations ran concurrently with
computation on previously relocated memory and thus suf-
fered from contention on the PCI-e bus. However, even these
longer relocations generally completed in under 50 ms.

We again repeated these experiments with more than two
applications. Our results indicate that multiple concurrent
applications can introduce considerable jitter to the dura-
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Figure 6: The results of our measurements of relocation delay. The plots show the relocation delay experienced by an
application allocating memory (left) and an application that must give up memory due to an allocation request from another
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Figure 7: Total runtime of backprop for various chunk sizes

tion of the DMA transfers, and hence to both applications
requesting memory and applications losing memory due to
allocation requests from other applications. This increased
jitter was to be expected since more concurrent applications
increase the potential for contention on the PCI-e bus.

6.5 Chunk size

GPUswap manages GPU memory in chunks as a compro-
mise between granularity and computational overhead. In
order to study the runtime effects of the chunk size, we ran
two instances of each of our benchmark applications with the
available GPU memory limited to 100 MB, while gradually
increasing the chunk size from 128 kb — which equals one
large page — to 64 MB. For each chunk size, we started each
application ten times. We first measured the total runtime of
each application’s main computation step as described in our
second experiment (Section [6.3). Our results indicate that
the effect of different chunk sizes on the application runtime
depends heavily on the application. Some applications, such
as backprop (Figure[7), benefit from small chunk sizes, while
others, such as heartwall (Figure[8)), prefer larger chunks. As
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Figure 8: Total runtime of heartwall for various chunk sizes

the effect of the chunk size on the other applications was
generally weaker than on backprop and heartwall, we chose
not to show these results for brevity. However, the results do
not indicate a clear trend towards a specific chunk size. We
therefore conclude that there is no single chunk size that is
optimal for all applications in terms of total runtime. In the
future, we plan to investigate why specific chunk sizes are
optimal for certain applications, which will allow us to select
an appropriate chunk size dynamically for each application.

We also measured the average delay experienced by
memory allocation requests across all applications as de-
scribed in Section for chunk sizes from 128 kb to 64
MB. Our results, which are depicted in Figure [0] indicate
that a chunk size of 2 MB minimizes the allocation delay. At
smaller chunk sizes, GPUswap must consider a large num-
ber of chunks, which leads to a high computational over-
head if a large amount of memory must be relocated, while
at larger chunk sizes, the delay is dominated by long DMA
transfer times. For the moment, we therefore chose 2 MB as
GPUswap’s default chunk size.
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7. Related Work

Several previous projects have considered the use of GPUs
in a shared environment. GViM [6]], gVirtuS [4], TCUDA [3]]
and vCUDA [15] all work by intercepting high-level (e.g.,
CUDA or OpenCL) GPU commands in the guest VM
and forwarding those commands to the hypervisor. Time-
Graph [10] and PTask [[14] instead intercept GPU commands
at the operating system level, either by trapping accesses
to the GPU’s command submission channels, or by offer-
ing a custom APIL. GPUvm [16], gVirt [17] and LoGV [5]
take a hybrid approach, intercepting only commands re-
lated to GPU resource allocation, while granting the ap-
plication direct access to the GPU’s command submission
channels. Though all of these projects enable sharing of a
GPU between multiple guest VMs, to our knowledge, none
of them specifically address GPU memory. Note that while
GPUswap re-uses some techniques from LoGV — most no-
tably unmapping of command submission channels — the
two are completely separate projects: LoGV does not ad-
dress memory fairness, while GPUswap is not aware of guest
applications. However, the two could likely be integrated for
use in production cloud environments.

Gdev [[11]] implements software scheduling of low-level
GPU commands, and uses its control over GPU command
execution to enable a limited form of GPU buffer sharing be-
tween applications. Gdev extends the available GPU mem-
ory by alternating the contents of shared buffers between ap-
plications during scheduling, always copying the content of
the next application to run onto the GPU. GDM [[18]] later re-
moved virtually all of Gdev’s restrictions by instead copying
the entire application memory to the GPU during scheduling.
Both Gdev and GDM can thus allocate more GPU memory
than physically available; however, both also rely on soft-
ware scheduling, thus inducing considerable runtime over-
head even if enough free GPU memory is available.

Nvidia’s Unified Memory, which was integrated into the
CUDA SDK [12] in version 6, creates a single address space
shared between CPU and GPU by transparently synchroniz-
ing the contents of system RAM and GPU memory. How-
ever, to the best of our understanding, Unified Memory does
not enable oversubscription of GPU memory since all GPU
memory shared in this fashion must be allocated on the GPU.
In addition, Unified Memory is implemented in the user-
space CUDA runtime and can thus not evict other applica-
tions’ memory from the GPU, which makes it impossible to
enforce fairness.

RSVM [7] also manages GPU memory on the applica-
tion level. RSVM consists of a shared library which hides
the complexity of GPU memory management from the ap-
plication and is able to extend GPU memory using system
RAM. However, applications must use the RSVM library ex-
plicitly. RSVM thus depends on cooperation from the appli-
cation and is therefore not suitable for a cloud environment
containing multiple, mutually untrusted applications.

8. Conclusion

In this paper, we presented GPUswap, a novel approach to
enabling oversubscription of GPU memory that does not
depend on software scheduling of GPU kernels. GPUswap
transparently relocates application data from the GPU into
system RAM, while keeping this data permanently accessi-
ble to the application. Therefore, GPUswap allows applica-
tions to submit commands to the GPU directly at any time,
without involving the GPU driver or GPUswap. Experiments
with our prototype implementation indicate that the avoid-
ance of software scheduling in GPUswap increases perfor-
mance while sufficient GPU memory is available. However,
relocating large portions of application data to system RAM
has a significant impact on application performance.

GPUswap is under active development, and there are two
main issues that we plan to address in the future. First, since
GPUswap is still limited to Nvidia Fermi GPUs, we are
working on porting our prototype to the Nouveau driver,
which will allow us to evaluate GPUswap on Nvidia’s lat-
est GPU hardware. Second, it is currently difficult to select
appropriate memory for relocation due to the lack of appro-
priate hardware support — such as reference bits — in current
GPUs. We are currently exploring ways to limit the perfor-
mance impact of GPUswap by detecting particularly poor
selections — for example, the GPU’s built-in performance
counters could allow us to detect an increased number of
bus transactions in response to a chunk relocation.
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