
Name Matriculation no. Tutorial no.

Operating Systems 2013/14
0x4D4153 Assignment 4

Prof. Dr. Frank Bellosa
Dipl.-Inform. Marius Hillenbrand

Dipl.-Inform. Marc Rittinghaus

Submission Deadline: Monday, January 13th, 2014 – 9:30 a.m.

In this assignment you will study sychronization, deadlocks, and memory manage-
ment. All the organizational remarks of the first assignment are still valid!

Please print out the pages containing T-Questions and answer them on your printout.
Clearly mark every page with your name, matriculation number and tutorial number.
Simply put it in the mailbox in the basement of building 50.34 (Info-Neubau).

P-Questions are programming assignments. Download the provided tarball from the
VAB and make sure to use the included templates and Makefiles. Do not fiddle with
the compiler flags. Submission instructions can be found in the first assignment.

Any assignment handed in after its deadline will be ignored!

T-Question 4.1: Deadlocks
a. Analyze the code fragment below. Can a deadlock occur? Why, or why not? 2 T-pt

Mutex m1, m2, m3 = 1;

Thread1 () Thread2 ()
{ {

wait (m1) ; wait (m2) ;
// update some data // update some data
signal (m1) ; wait (m3) ;
wait (m2) ; // update some more data
wait (m3) ; signal (m2) ;
// update some more data wait (m1) ;
signal (m2) ; // update even more data
signal (m3) ; signal (m3) ;

} signal (m1) ;
}

b. Explain why an unsafe state does not always lead to a deadlock! 1 T-pt

1

Name Matriculation no. Tutorial no.

c. Given a system with 3 processes, P1 to P3, and three resource types R1 to R3.
Assume that there is only one instance of each type. Depict the resource-allocation
graph for the following situation: P1 has requested R1 and R2. P2 is holding R1 and
is waiting for R3. P3 has acquired R3 and is waiting for R2. 1 T-pt

d. Has a deadlock occured in the above situation? Why, or why not? (Assume that
resources can neither be shared nor preempted.) 1 T-pt

e. The processes P1, P2, and P3 described above only need the resources they have
already requested or acquired already. Is the system in a safe state? Prove your
claim! 2 T-pt

T-Question 4.2: Memory Allocation

a. What HW support is required for a simple partition-based memory management? 1 T-pt

b. What is the difference between internal and external fragmentation? 1 T-pt

2

Name Matriculation no. Tutorial no.

c. Why would you prefer the allocation policy first fit over best fit? 1 T-pt

d. Why might best fit produce more fragmentation than first fit in some scenarios? 1 T-pt

T-Question 4.3: Segmentation

a. What parts make up a logical address, when segmentation is used? 1 T-pt

b. Consider a system with 16-bit logical addresses that supports 4 different segments.
What is the maximum size a segment can have? 1 T-pt

3

Name Matriculation no. Tutorial no.

c. Assume a system with 16-bit logical addresses that supports four different seg-
ments, which uses the following segment table: 4 T-pt

segment no. base limit
0 0xdead 0xbeef
1 0xf154 0x013a
2 0x0000 0x0000
3 0x0000 0x4711

Complete the following table and explain briefly how you derived your solution
for each row in the table.

logical address segment number offset valid? physical address

3 0x3999
0x2020
0x9859

yes 0xf15f

T-Question 4.4: Bonus Questions

a. A spinlock that is frozen in place must be nuked from orbit. Explain why. 0 T-pt

b. How does an OS handle the diversity in the gap? (Note: There is no orbit around
the gap.) 0 T-pt

4

P-Question 4.1: Contiguous Allocation

You are in a team that implements an OS that uses contiguous allocation for pro-
cess memory. Your task is to write the allocator that allocates and frees memory
partitions of arbitrary sizes (with a granularity of 1 kB). You decide to develop and
test your allocator as a user-level process before integrating it into your new OS.

Your allocator will manage memory of size MEM SIZEkB that you first allocate on
the heap using malloc. Your allocator should label each memory partition with the
identifier of the process running in that partition. For easier testing, you chose to
identify processes with letters (A, B and so on). Make sure that your code works
independently of the actual value of the macro MEM SIZE.

Add your functions to the file allocator.c, but keep the function signatures in
allocator.h unchanged. You may add test code to main.c.

a. First, design and implement the data structures you want to use in your memory
allocator. Then, add a function that prints all current allocations in a memory map
to help you debug your code: For each kB in the managed memory, print the par-
tition it is assigned to, ordered from address 0 to MEM SIZE-1kB. Print unallocated
space as ’0’. For example, three partitions ’A’, ’B’, and ’C’, with sizes of 3, 1, and 2,
might occur in the memory map as AAA0CCB000...0. 2 P-pt

b. Implement the first fit allocation policy and place it in allocate partition first fit.
Test your solution using the memory map function. Try to provoke fragmentation. 2 P-pt

c. Your project management decides to use the best fit policy instead. Implement the
new policy in the function allocate partition best fit. 2 P-pt

d. Finally, also implement the worst fit allocation policy as a third alternative in func-
tion allocate partition worst fit. 2 P-pt

P-Question 4.2: Segmentation

Implement the address translation mechanism of segmentation. Follow the scheme
in T-Question 4.3: Use 16-bit logical addresses and four different segments.

Put your solution into segment.c. Do not change segment.h. The segment table
is filled in main.c where you may add arbitrary test code (try the values from the
theory question). However, your solution must work with any values in the segment
table.

a. Write code that calculates the following values from a logical address and a seg-
mentation table:

• the segment number,

• the offset,

• the validity of the logical address, and

• the physical address (or 0 for invalid logical addresses)

Fill out the function stubs in segment.c. 2 P-pt

5

P-Question 4.3: Shared Memory

Have a look at asst4-sharedmem/sharedmem.c. This code template forks a child
process that is intended to act as a client, while the parent process represents the
server. Your job is to implement both client and server and the communication
between the two, using POSIX shared memory.
Use the lecture slides on process coordination as a starting point to find out how
to use shared memory. Also, have a look at the man-pages of shmget, shmat, and
shmdt.

a. Establish a shared memory segment before forking the client so that both server
and client know the id of the shared segment. For every shared memory call you
do, write a comment, that explains what the passed arguments do and why you
pass them! You will not be accredited points for the calls that do not have this
mandatory comment. 2 P-pt

b. Implement the client() function to read two unsigned integer values from stan-
dard input and pass them to the server via the shared memory segment.
Wrap all values you pass through the shared memory segment in one single struct!
The shared memory segment may only contain a single variable (the struct) for a
legal solution! 1 P-pt

c. Implement the server() function to read the two values written by the client, cal-
culate the product of the two values, and print the result followed by a newline
to standard output. Limit the output of your solution to the mentioned elements.
Don’t print more! 1 P-pt

d. Use POSIX semaphores for signaling between the client and the server process: The
server must wait until the client entered two values before processing the input,
the client must wait until the server is done processing the input and printing the
output before prompting for new input values. Hint: Use two semaphores. 2 P-pt

e. Entering −1 for both values shall terminate both the client and the server process.
Take care of cleaning up the shared memory segment. 1 P-pt

Total:
17T-pt
17P-pt

6

