Name Matriculation no. Tutorial no.

\ ! I O eratin S stems 20 1 3 14 Prof. Dr. Frank Bellosa
\ (I p g . y / Dipl.-Inform. Marius Hillenbrand
o ASSlgnment 1 Dipl.-Inform. Marc Rittinghaus

Karlsruhe Institute of Technology

Submission Deadline: Monday, November 18th, 2013 - 9:30 a.m.

A new assignment will be published roughly every two weeks, right after the last one
was due. It must be handed in before its submission deadline.

Please print out the pages containing T-Questions and answer them on your printout.
Clearly mark every page with your name, matriculation number and tutorial number.
Simply put it in the mailbox in the basement of building 50.34 (Info-Neubau).
P-Questions are programming assignments. Download the provided tarball from the
VAB and make sure to use the included templates and Makefiles. Do not fiddle with
the compiler flags. Submission instructions can be found in the introductory section
below.

In this assignment you will get familiar with the C programming language, particu-
larly with pointers, bit manipulations, and the representation of functions and local
variables on the stack.

Any assignment handed in after its deadline will be ignored!

hf & gl :-)

T-Question 1.1: Basics

a. Shifting a given integer value 12 bits to the right is equivalent with a division by
factor:

b. How does multiprogramming increase the utilization of resources?

c. How does timesharing extend multiprogramming to provide for interactive compu-
ting by several users?

1 T-pt

1 T-pt

1 T-pt

Name Matriculation no. Tutorial no.

T-Question 1.2: The User-Kernel Boundary

a. Are the following statements true or false? (correctly marked: 0.5P, not marked: OP,
incorrectly marked: -0.5P) 2 T-pt

true false

The trap instruction should be privileged.

Turning off interrupts should be privileged.

A system call is an invocation that crosses protection domains.
System call parameters may be passed via the kernel stack.
System call parameters may be passed in registers.

Devices signal the end of DMA operations with exceptions.
System calls are synchronous to code.

Interrupts are synchronous to code.

opooogooono
opDooooon

b. Why must the kernel carefully check system call parameters? 1 T-pt

T-Question 1.3: The C Programming Language

a. What is the size (in bytes) of a pointer on a typical laptop today? 1 T-pt

b. Give an expression that calculates the number of elements in the following array.
Use sizeof. 1 T-pt
uintl6é6_t arrayl[17];

c. Transform the given statements to equivalents that use square brackets. 2 T-pt
double a = x(array + 17); // array declared as double array[10];
intl6.t b = *(ptr + 4); // ptr declared as void =;

Name Matriculation no. Tutorial no.

d. You see several assignment statements. Write the resulting values of a into the

right column. 3 T-pt
Assignment (int a;) | Value assigned to a

a =1 && 2;

a=1¢& 2;

a=211|0;

a=21 0;

a="120;

a = 1==0;

e. Look up PRId64 & Co. in inttypes.h. What would you put in as ??? to complete
the code below in a platform-independent way? 1 T-pt

uintleée_t i = 23;
printf("i_in_hex_is_?°?°?", 1);

f. Briefly explain what the declared variables a to d are.

® char* a, b;
e float (xc) ();

e int xd[101];

2 T-pt

About the Programming Assignments

The following introductory words outline our expectations of your work and the re-
quirements your solutions have to fit.

Write Readable Code

In your programming assignments, you are expected to write well-documented, reada-
ble code. There are a variety of reasons to strive for clear and readable code: Code that
is understandable to others is a requirement for any real-world programmer, not to
mention the fact that, after enough time, you will be in the shoes of one of the others
when attempting to understand what you wrote in the past. Finally, clear, concise,
well-commented code makes it easier to grade your assignment! (This is especially
important if you cannot get the assignment running. If you cannot figure out what is
going on, how do you expect us to do it?)

There is no single right way to organize and document your code. It is not our intent
to dictate a particular coding style for this class. The best way to learn about writing
readable code is to read other people’s code.

Here are some general tips for writing better code:

e Split large functions. If a function spans multiple pages, it is probably too long.

e Group related items together, whether they are variable declarations, lines of
code, or functions.

e Use descriptive names for variables and procedures. Be consistent with this
throughout the program.

e Comments should describe the programmer’s intent, not the actual mechanics
of the code. A comment which says “Find a free disk block” is much more infor-
mative than one that says “Find first non-zero element of array”.

Write Compilable And Executable Code

Obscure code is bad, but uncompilable code is even worse. Your solution has to com-
pile successfully or you will not get points. To increase your coding awareness, we
expect you to use the GNU C compiler with some restrictions on warning-behavior as
written in the makefiles. Do not change these flags!

The Fedora OS as installed in the ATIS pool will be the reference platform for contro-
versial cases. If you are unable to write a fully working solution, at least make sure
that your partial solution does compile, even though it might not produce the correct
result. Document your intents and problems as comments in the source file to give
your tutor a head start in understanding your code.

Groups

We assume that you will complete the assignment on your own. Please feel free to
discuss your solutions with your colleagues, but do not share code. A plagiarism
detection system will be in effect this semester. We also check against last years’
submissions whenever possible!

Templates And Stubs

You will find templates for all programming assignments in the VAB. Untar them
with the command tar -xzf asstxX.tar.gz.The archives contain a directory for each
individual task, wherein you can find several files:

<taskname>.h A header file defining the function prototypes as listed in the assi-
gnment’s description. You should not modify this.

<taskname>.c Put your solution in here.

main.c Contains the entry point in the resulting program. While we provide trivial test
cases, you should write your own test code here. Note: This file will be replaced
by your tutor and thus not regarded as part of your solution.

Makefile Call make to build your sources.

These templates should ease your work as well as ours, so don’t change anything
unless explicitly allowed.

Assignment Submission

First of all, remove all the object files and binaries (run make distclean), but keep
the files needed to compile your solution. Before submission, you should guarantee
a well-formed directory structure using the bash script prep4submission.sh provi-
ded alongside the templates. Make sure that the resulting gzipped tarball is called
“asstl_<matriculationno>.tar.gz” and its directory structure matches the following
pattern: “asstl/<matriculationno>/".

Please email the resulting file to <os-praxis-2013@ira.uka.de> as well as the tutor
that was assigned to you via webinscribe before the deadline has passed, otherwise
your submission will not be graded. Include your matriculation number and assi-
gnment number in the subject line and make sure that your name is included in
your from line.

P-Question 1.1: More Hexadecimal
You may only modify the files hex.c and main.c.

a. Write a function that converts from a single hexadecimal digit in a char to an
integer. You may use neither a library function nor a lookup table for this task.
Return -1 if the parameter is not a valid hex digit

int hexDigitToInt (char hexDigit);

b. Write a function that converts from a hexadecimal string to an integer. Reuse your
function from above, but do not use any library function. Handle both strings
starting directly with a hex digit and strings starting with Ox. You may assume
that the resulting integers fit into an int. Return -1 if the given string is not a valid
hex number.

int hexToInt (charx hexString);

1 P-pt

2 P-pt

P-Question 1.2: Pointers
You may only modify pointer.c and main.c.

a. Write a function that returns the rounded-towards-zero, arithmetic mean over all
values in an array. The array is passed to the function via a pointer to the first
element of the array and is bounded by the parameter size (size > 0). 1 P-pt

int average (int xarrayPointer, unsigned int size);

P-Question 1.3: PowerPC Processor Status Word
You may only modify msr.c and main.c.

You already know that handling low-level control registers of the hardware is part
of an operating system’s regular operation. For example, the OS needs to make
sure that user applications run in non-privileged mode, whereas a system call,
exception, or interrupt is handled by the OS in privileged mode.

In this assignment, you will write functions for modifying (a simplified version of)
the PowerPC machine state register (MSR). The MSR is the most important con-
trol register of a PowerPC processor and controls whether the CPU is executing
in privileged or unprivileged mode, amongst others. We provide documentation of
its layout in msr.h. Build your functions from explicit bit manipulation operations
(<<, >>, ~, 7, & and |).

a. Write a function that determines from the MSR whether the CPU is running in
64-bit mode. It should return 1 in that case, and O otherwise. 1 P-pt

int is64BitMode (uint32_t «=MSR);
b. Write two functions that modify the MSR to enter or leave privileged mode. 1 P-pt

void enterPrivilegedMode (uint32_t =MSR);
void leavePrivilegedMode (uint32_t = MSR);

c. Sometimes it is necessary to stop a CPU from handling interrupt requests from the
HW. Write a function enablelInts that sets the interrupt enable flag in an MSR and
a function disableInts that disables the interrupt enable flag in an MSR. 1 P-pt

void enablelInts (uint32_t «MSR);
voilid disableInts (uint32_t *MSR);

d. Write a function assembleMsR that prepares an MSR value and sets the individual
fields as specified by the parameters. 2 Ppt

uint32_t assembleMSR (uint8_t compMode, uint8_t intEnable,
uint8_t problemState, uint8_t fpEnabled);

P-Question 1.4: Pushing Bits Around
You may only modify bits.c and main.c.

a. Given a large array a (e.g., 1 MB), write three functions getN, setN and c1rN that
return, set or clear the n’thbit (not byte!) in the array respectively. The first bit
(means O’th bit) should be the most significant bit of the first byte so the physical
mapping is contiguous in memory. You can find an example program that demons-
trates how bitshifts, functions, and such work and further gives you an example of
indentation/comment style (sudoku.c) in the VAB alongside this assignment. 3 P-pt

int getN (uint8_t xA, unsigned int n);
void setN (uint8_t =xA, unsigned int n);
)

void clrN (uint8_t %A, unsigned int n);

b. Write a function that rotates the bits of a 64 bit integer n bits to the right. Bits
rotated “out” of the integer shall be rotated “in” on the other side. Keep in mind
that n may be negative which shall rotate to the left. 2 Ppt

void rot (uint64_t *i, int n);

P-Question 1.5: Stack Magic

a. Calling a function builds a new “frame” on the stack, saving the state of the calling
function (caller). It is also used to return results of the called function (callee) back
to the caller.

We provided an assembler version of the following code (stack.s) compiled with
gcc -00 -s on a 32-bit x86-machine. Use that code instead of own compilations to
avoid irritations of differing platforms. Nevertheless, we encourage you to compre-
hend the compilation on your computer and watch potential differences. You can
find a short description of how to read assembler code at [1].

Annotate each line of the assembler code with a comment that explains why it is
executed (e.g., write “save old stackpointer” rather than “push esp on stack”).

[1] http://os.ibds.kit.edu/downloads/lehre_ss2010_mkc_ia32condensed.pdf 4 P-pt

#include <stdint.h> int main ()
uint64_t multiply (uint32_t x, uint32_ty) {
{ uint32.ta=3,b =05, z;
uint64_t res; z = multiply(a, b);
res =X x y; return O;
return res; }
}
Total:
16 T-pt
18 P-pt

