
LoGV: Low-overhead GPGPU Virtualization
Mathias Gottschlag∗, Marius Hillenbrand∗, Jens Kehne∗, Jan Stoess†, Frank Bellosa∗

∗System Architecture Group, Karlsruhe Institute of Technology
†HStreaming

Abstract— Over the last few years, running high performance
computing applications in the cloud has become feasible. At the
same time, GPGPUs are delivering unprecedented performance
for HPC applications. Cloud providers thus face the challenge
to integrate GPGPUs into their virtualized platforms, which has
proven difficult for current virtualization stacks.

In this paper, we present LoGV, an approach to virtualize
GPGPUs by leveraging protection mechanisms already present
in modern hardware. LoGV enables sharing of GPGPUs between
VMs as well as VM migration without modifying the host driver
or the guest’s CUDA runtime. LoGV allocates resources securely
in the hypervisor which then grants applications direct access
to these resources, relying on GPGPU hardware features to
guarantee mutual protection between applications. Experiments
with our prototype have shown an overhead of less than 4%
compared to native execution.

I . INTRODUCTION

Running high performance computing applications in the
cloud has become a viable alternative to buying and maintaining
dedicated compute clusters. At the same time, GPGPUs
have started to deliver unprecedented performance for HPC
applications. Cloud providers are thus facing the challenge of
integrating GPGPUs into their platforms, which typically make
extensive use of virtualization. However, integrating GPGPUs
into current virtualization stacks has proven difficult [1].

A straightforward solution employs a pass-through mecha-
nism that gives a VM direct, exclusive access to the GPGPU.
While this method can achieve near-native performance, it
also diminishes the advantages of the cloud platform: First,
exclusive access to a GPGPU makes sharing of a physical
GPGPU among multiple VMs impossible, leading to poor
resource utilization. Second, the hypervisor has no control over
the state of the GPGPUs, which makes VM migration difficult.

There have been multiple attempts to implement true
virtualization of GPGPUs [2]–[6]. However, these attempts
intercept all GPGPU commands in the guest in order to
maintain a consistent GPGPU state. While this method allows
for sharing of GPGPUs as well as VM migration, even the
most sophisticated previous approach (vCUDA) still adds a
runtime overhead of up to 21% [2].

In this paper, we present LoGV, a novel approach to GPGPU
virtualization, which leverages the protection mechanisms
already present in GPGPU hardware to fully virtualize GPGPUs
without adding significant overhead. LoGV only intercepts
commands related to resource allocation in the hypervisor,
which then maps allocated resources directly into the guest
VM, using the hardware’s protection mechanisms guarantee

protection between VMs. VMs can then access the mapped
resources without intervention from the hypervisor. Our initial
experiments show that the performance of LoGV is less than
4% below that of native execution for several common GPGPU
algorithms.

Furthermore, LoGV also allows for live migration of VMs
without interrupting currently executing GPGPU applications.
To that end, our virtualization solution temporarily unmaps
GPGPU resources from the VM and replaces them with shadow
copies. These copies are then synchronized with the physical
GPGPU on the destination system. From the application’s point
of view, this method maintains the illusion of uninterrupted
access to the GPGPU.

The rest of this paper is organized as follows: We first
describe some of the isolation features present in modern
GPGPUs in Section II. Then, we present our proposed design in
Section III. Section IV describes our prototype implementation
and our initial performance evaluation. Finally, Section V
presents related work and Section VI concludes the paper.

II . GPGPU OVERVIEW

Modern GPGPUs are typically usable by multiple appli-
cations at the same time. To guarantee mutual protection,
GPGPU commands execute within virtual address spaces on
the GPGPU. The CPU interacts with the GPGPU through ring
buffers called command submission channels. Each channel
is attached to exactly one address space on the GPGPU, and
commands submitted to a channel can only access data in that
channel’s address space. Recent Nvidia GPGPUs support both
multiple command submission channels and address spaces.
The driver can thus allow multiple applications to share a
GPGPU by allocating a separate set of address spaces and
command submission channels for each application.

A. Memory Management

In order to ensure protection between applications, the
device driver assigns a separate virtual address space to each
application. To that end, the GPGPU features its own MMU as
depicted in Figure 1. If a GPGPU command from an application
accesses any GPGPU memory, the GPGPU’s MMU resolves
that access using that application’s own page tables. Commands
from different applications therefore cannot access memory
outside their own address space.

Applications running on the CPU can also access GPGPU
memory directly. The device driver can enable that access in
three different ways:



GPU
processors

command
processor

GPU MMU

GPU
memory PCI BAR MMU

CPU

CPU MMU

system
memory

GPU

PCI Express

Figure 1. Memory access paths in a system consisting of a CPU and a GPU

application

GPU

commands

put

get

}
application submits a command

GPU executes a command

ring-
buffer

Figure 2. GPGPU command submission

1) Mapping a window of GPGPU memory into a CPU
address space. The application can then access that
memory in the same way as ordinary RAM.

2) Mapping a window of system RAM into a GPGPU address
space. GPGPU applications can then use that window like
regular GPGPU memory.

3) Using DMA data transfer between CPU and GPGPU mem-
ory. GPGPU applications can implement DMA transfers
by copying data from mapped system RAM into GPGPU
memory.

B. Command Submission

Modern GPGPUs work asynchronously to the CPU. The
GPGPU device driver allocates a ring buffer in the application’s
GPGPU address space and maps it into that application’s CPU
address space. Figure 2 depicts this command submission
channel. The application enqueues commands to the GPGPU
into that ring buffer. The GPGPU in turn detects submitted
commands through changes of the put pointer, which resides
in a memory-mapped device register. The application can thus
submit commands to the GPGPU without explicitly invoking
the device driver.

III . DESIGN

LoGV uses the protection mechanisms present in modern
GPGPUs to grant virtual machines direct access to GPGPU
resources. Modern GPGPUs support virtual address spaces for
GPGPU memory similar to those on the CPU. In LoGV, the
hypervisor performs resource allocations on behalf of the VMs
to ensure that the VMs only have access to their own address
spaces. Since each GPGPU command is confined to the address

GPU

host kernel

GPU
driver

GPGPU
application

hypervisor

virtual
device

guest kernel

guest
driver

Figure 3. Overview of our virtualization layer. The two components of LoGV
are highlighted.

space of the application submitting the command, the applica-
tions in the VMs can then be allowed to submit commands to
their own address spaces without hypervisor intervention. If the
GPGPU supports multiple command submission channels, the
hypervisor can grant each application its own set of command
submission channels, allowing applications in multiple VMs to
share one GPGPU while still guaranteeing mutual protection.

LoGV enables VM migration by allowing the hypervisor to
temporarily suspend access from a VM to the GPGPU. While
the GPGPU is suspended, no changes to non-mapped GPGPU
memory can occur. The hypervisor can then extract the VM’s
GPGPU memory for migration.

A. Basic architecture

LoGV consists of two parts as shown in Figure 3: An
extension to the hypervisor and a guest kernel driver. The
hypervisor extension processes all resource allocation and
mapping requests to ensure protection, while the guest driver
performs any operations directly related to the VM’s state.

In order to ensure protection, all requests for the allocation
of memory or command submission channels as well as
mappings between GPGPU and system address spaces must be
processed by the hypervisor. In LoGV, the application’s user-
mode software stack – typically CUDA or OpenCL – passes all
such requests to the guest driver, which forwards the requests to
the hypervisor. The hypervisor performs any necessary checks
to ensure isolation, and subsequently forwards the request
to the host driver, which performs the actual allocation. The
hypervisor then returns the result of the allocation to the guest
driver, which maps the allocated resource into the requesting
application’s address space. Since the application then has
direct access to the mapped resource, the user-mode software
stack can execute all other requests without intervention from
the hypervisor. Note that no changes to the host device driver
or the application’s user-mode software stack are necessary.

B. Memory Allocation and Mapping

In LoGV, the hypervisor manages the allocation of GPGPU
memory and maps that memory into system RAM. Handling
memory management in the guest would allow the guest to
affect other VMs, either by exhausting all available GPGPU
memory or by establishing mappings to GPGPU address
spaces of other VMs. By checking all allocation and mapping
operations in the hypervisor, LoGV can prevent such malicious
accesses without having to filter every subsequent memory
access.

To ensure that applications stay confined to their GPGPU
address spaces, the hypervisor processes all memory allocation



requests. Whenever an application requests GPGPU memory,
the guest driver forwards that request to the hypervisor. The
hypervisor records all allocation requests to track which
GPGPU memory segments are assigned to which VM. At
the same time, the hypervisor may also perform other checks,
for example to enforce memory quotas. Finally, the hypervisor
forwards the request to the device driver in the host, which
performs the actual allocation.

To prevent VMs from accessing other VMs’ GPGPU address
spaces, LoGV must also secure access to GPGPU memory
from the CPU. However, since the hypervisor tracks all memory
allocations, it can easily implement protection for the three
cases described in Section II-A:

1) When mapping GPGPU memory into an application
address space, the hypervisor can verify that the mapped
GPGPU memory was allocated by the same VM the
request originated from.

2) When mapping system RAM into a GPGPU address space,
the hypervisor can verify that the mapped RAM belongs
to the same VM that created the destination address space
on the GPGPU.

3) DMA data transfers are implemented as memory copies
on the GPGPU, with either the source or the destination
being a mapped window of system RAM. However, the
hypervisor already enforces protection when mapping that
window into the GPGPU address space.

However, the hypervisor can only implement protection be-
tween VMs in this way: Since the hypervisor has no knowledge
of individual applications within the VMs, LoGV currently
leaves protection between those applications to the guest driver.

C. GPGPU Command Submission

The hypervisor manages command submission channels for
different VMs in the same way as the device driver manages
channels for different applications. When an application in a
VM requests a command submission channel, the hypervisor
ensures that the GPGPU address space associated with the
request belongs to the requesting VM, forwards the request
to the host driver, and passes the allocated channel to the
guest driver, which maps the channel into the address space of
the requesting application. Since commands submitted to the
channel can only access memory in the address space associated
with the channel, it is then safe to let the application submit
arbitrary commands directly to the channel without further
intervention from the hypervisor. However, the hypervisor can
only ensure protection between VMs this way, while protection
between applications within the same VM is left to the guest
driver.

If the GPGPU supports multiple command submission
channels, the hypervisor can allow applications from multiple
VMs to share a single GPGPU by granting each application
its own set of command submission channels. The GPGPU
will then execute commands from all channels in a round-
robin fashion. However, since current GPGPUs do not take the
execution times of individual commands into account, LoGV
currently does not guarantee fairness.

D. Migration

LoGV has the ability to migrate virtual machines. During the
migration, access to the GPGPU must be suspended to extract
a consistent snapshot of GPGPU state. However, live migration
of the remaining VM memory is possible nonetheless.

Suspend and Resume: During the migration, the GPGPU’s
state must be transferred between the two involved physical
systems. However, GPGPU commands execute asynchronously
to the CPU and can change the contents of GPGPU memory at
any time. Furthermore, the CPU cannot monitor the execution
of GPGPU commands in real time, which makes it difficult to
predict when and where these commands will change GPGPU
memory. It is therefore difficult to save a consistent image of
that memory while the GPGPU is running. Therefore, LoGV
suspends GPGPU command submission from a virtual machine
before it migrates the VM.

Some GPGPUs allow the device driver to temporarily disable
a command submission channel. A disabled channel will
not execute any new commands after the currently running
command has completed. Once all channels in an address space
have been disabled, the hypervisor can migrate the remaining
commands in those channels along with the contents of the
address space.

If the GPGPU cannot disable command submission channels,
another way to pause a GPGPU is to prevent the application
from submitting new commands and wait until all queued
commands have completed. In order to prevent the application
from submitting new commands, the hypervisor unmaps all
command submission channels from the VM and replaces them
with shadow copies in RAM. All commands subsequently
submitted by the VM will be stored in these shadow copies.
The hypervisor can then wait for the real command submission
channels to drain before performing the migration.

On the destination system, the hypervisor replays any
migrated commands to newly allocated command submission
channels. If necessary, it then replaces the shadow copies with
the newly allocated channels before resuming the VM. The VM
thus has the illusion of uninterrupted access to its command
submission channels.

Migrating GPGPU memory: In order to reduce the down-
time of the VMs, most migration solutions transfer the memory
of running VMs using either pre-copy [7] or post-copy live
migration [8]. Since GPGPU commands are not preemptible
and potentially run for a long time, using live migration is
desirable for GPGPU memory as well. However, we found it
difficult to migrate GPGPU memory.

In theory, pre-copy live migration is possible as the CPU
has direct access to GPGPU memory even while the GPGPU
is executing commands. However, accessing GPGPU memory
from the CPU is typically orders of magnitude slower than CPU
memory, which makes monitoring an entire GPGPU address
space for changes infeasible. Using DMA instead is also not
possible: DMA transfers are initiated by writing a command to
a command submission channel. However, that command will
only execute after all other commands in that channel have



drained, at which point no further modifications to GPGPU
memory will occur.

On the other hand, post-copy live migration is driven by page
faults: Whenever the guest tries to access memory which has
not been transferred yet, it is paused by the page fault handler
until the memory has been fetched from the source system.
However, most current GPGPUs do not support page faults in
the same way as the CPU: Instead of interrupting the faulting
command while the fault is handled, the GPGPU simply aborts
the faulting command. A pagefault-driven approach is therefore
not possible on current GPGPUs.

Since we did not find a feasible approach to live migration
of GPGPU memory, our current design reverts to pausing the
GPGPU before migrating its memory. We hope to devise a
feasible strategy for pre-copy live migration in the future.

Migration Strategy: Even though live migration of GPGPU
memory has proven difficult, live migration of the VMs system
RAM is still possible. Our current design uses the following
strategy to migrate virtual machines:

1) Restricting access to the GPGPU: The hypervisor either
suspends the command submission channels or unmaps
them from the virtual machine and replaces them with
shadow copies in RAM. In the latter case, all commands
submitted after this point will be written into the shadow
copies.

2) Transferring system memory: The hypervisor transfers
the VM’s system memory using pre-copy live migration.
The transfer includes any shadow command submission
structures as well as any GPGPU memory currently
mapped into the VM. This step can be executed in parallel
with steps 3 and 4.

3) Pausing the GPGPU: The hypervisor waits until all
command submission channels of the VM have stopped
executing commands. After the last command has been
executed, the GPU is idle and no further changes to the
VM’s GPGPU address spaces will occur.

4) Transferring GPGPU memory: The hypervisor transfers
the parts of GPGPU memory which are not mapped into
the virtual machine. Since the GPGPU is already paused,
it cannot modify any data in these memory regions at this
time.

5) Transferring remaining virtual machine and GPGPU
state: The hypervisor halts the virtual machine and
transfers all remaining information about GPGPU memory
allocation and mappings. This data typically consists of
only a few bytes per GPGPU memory allocation.

6) Restoring GPGPU state: On the destination system, the
hypervisor initializes the GPGPU address spaces and
transfers the migrated memory content to the GPGPU.
If there are any outstanding commands in suspended
command submission channels or shadow copies, the
hypervisor replays these commands to newly allocated
channels.

7) Resuming the virtual machine: At this point, initializa-
tion of the virtual machine is complete and the state of
the GPU is the same as before the migration.

IV. INITIAL EVALUATION

In order to evaluate the feasibility of our design, we
implemented a prototype of our hypervisor extension. In this
section, we present that prototype as well as the results of our
initial experiments.

A. Prototype Implementation

We integrated our prototype implementation into the Linux
Kernel virtual machine (KVM). In the host, we used an
unmodified “pscnv” GPU driver [9]. Our guest driver provides
the same API as pscnv and forwards any calls to the host after
performing the appropriate checks. For the userspace parts
of the GPGPU stack, we used an unmodified Gdev CUDA
runtime [10]. For the sake of simplicity, the prototype is limited
to one specific GPU model (NVidia GeForce GTX480).

Our prototype implements all features described in Sec-
tion III except resource isolation. Furthermore, our migration
code is currently limited to CUDA applications. In principle,
however, it is possible to save and restore the state of
non-CUDA applications in the same way as that of CUDA
applications. We plan to implement support for non-CUDA
applications in the future.

B. Functionality

In order to evaluate LoGV, we followed the criteria proposed
by Dowty and Sugerman [11]:

• Fidelity: In the proposed design, the guest can send
arbitrary commands to the GPGPU without hypervisor
intervention. Thus, all features of the underlying GPGPU
are available to the guest.

• Multiplexing: In LoGV, a virtual machine behaves like an
application towards the GPGPU. Given the GPGPU sup-
ports multiple concurrently running applications, multiple
virtual machines can share one GPGPU.

• Interposition: While the proposed design does not sup-
port advanced interposition for example for live migration
of GPGPU memory, the hypervisor can temporarily revoke
access to the GPGPU without damaging the GPGPU’s
application state. Therefore, it is possible to implement
migration of VMs using the GPGPU.

• Performance: Our initial experiments show a perfor-
mance overhead of less than 4% compared to native
execution for several common GPGPU algorithms. We
believe that overhead to be acceptable.

C. Benchmarks

In order to measure the virtualization overhead of our
prototype, we selected four benchmarks from the test programs
of the Gdev CUDA runtime and from the Rodinia benchmark
suite [12]. We selected those benchmarks to represent a wide
range of GPGPU applications as well as to test specific parts
of the prototype implementation:

• mmul implements a simple matrix multiplication by
squaring a random matrix with 2048×2048 entries. The
benchmark executes only one rather long-running GPGPU
kernel. Therefore the benchmark mainly shows that the



Benchmark Host Guest Difference Overhead
mmul 2922ms 2920ms -1.72ms -0.06%

lud 868ms 864ms -4.88ms -0.56%
nn 26ms 26ms -0.08ms -0.33%

backprop 51ms 53ms 1.82ms 3.55%

Table I
VIRTUALIZATION OVERHEAD BENCHMARK RESULTS

performance of virtualized GPGPU applications does not
differ from that of applications running natively.

• lud implements LU decomposition, a common method to
solve systems of linear equations. Since the problem is
split into multiple shorter GPGPU kernel invocations, this
benchmark places more emphasis on the overhead during
GPGPU command submission.

• backprop implements a machine learning algorithm
which trains a layered neural network. The computation
of this benchmark alternates between CPU and GPGPU.
Therefore, this benchmark spends a large part of its time
transferring data between the two.

• nn computes the nearest neighbors from a set of points.
This benchmark launches multiple short-running kernels
and has a low total runtime.

All benchmarks were executed on a test system with two Intel
Xeon E5-2620 CPUs, 32GB RAM and a NVidia GeForce GTX
480. Both the host system and the VMs were running Ubuntu
12.04 with Linux 3.5.7. In all cases, we used the same host
GPU driver and userspace CUDA runtime. We conducted the
migration tests on a single physical machine. The migration
was performed through a loopback TCP connection, using
trickle [13] to simulate a network bandwidth of 100MB/s and
an average latency of 1 millisecond.

During all experiments, all but one CPU core were deac-
tivated in both the host and the virtual machine. With more
than one core, the benchmarks showed significant variations
which were not caused by GPGPU virtualization. We believe
that these differences were caused by scheduling effects which
are not relevant for the evaluation of our design.

D. Virtualization Overhead

To demonstrate the performance of LoGV, we executed all
benchmarks described above both natively and inside a VM.
Since we are only interested in the performance of the GPGPU
parts of the benchmarks, we measured the time from the first
call into the CUDA API until the completion of the last call.
We ran each benchmark 21 times and dropped the first result
as it was slowed down significantly by file system operations.

Table I shows the results of the virtualization overhead
benchmarks. Our results show that the performance of the
mmul, lud and nn benchmarks running in a VM is roughly
identical to native execution. The backprop benchmark ex-
perienced the highest overhead (3.55%) when run inside a
VM. This benchmark has a short total runtime; therefore, the
memory allocation overhead of LoGV has a larger impact on
backprop than on the longer-running benchmarks. Note that

GPU application

migration overhead

total migration duration

elapsed time

GPU application
(without migration)

GPU paused

 Migration

Figure 4. Relation between total migration duration and migration overhead

Benchmark Downtime Overhead
mmul 149.2ms 962.9ms

lud 196.0ms 1903.9ms

Table II
MIGRATION OVERHEAD AND DOWNTIME

the nn benchmark does not suffer from the same problem since
it allocates less memory than backprop. However, since in all
cases the total slowdown is well below 5%, we consider the
overhead to be acceptable.

We also ran the lud benchmark concurrently in two VMs.
We chose lud because it launches many short-running com-
mands which the GPGPU can interleave. Running two VMs
concurrently approximately doubled the runtime to 1696 ms,
which indicates that, as we expected, each VM receives about
half of the GPGPU’s computational resources.

E. Migration Performance

To evaluate our migration strategy, we measured both the
downtime of the VM and the total migration overhead for
running GPGPU applications. Here, as shown in Figure 4, the
migration overhead is the difference between the runtimes of
the application with and without migration. Since the GPGPU
application continues to run during large parts of the migration,
we expect the migration overhead to be smaller than the total
migration duration. The downtime of the VM is the maximum
period during which the VM is paused during the migration.

In order to measure the downtime as observed by the VM,
we took advantage of the fact that pausing a VM causes
a discontinuity in the clock of that VM: We sampled the
system time once per millisecond and computed the downtime
from the differences between consecutive clock values. Our
experiments have shown that this sampling introduces less
than 1% overhead to the runtime of the benchmark. As
Table II shows, the resulting downtimes for the mmul and lud
benchmarks were 149.2 and 196.0 milliseconds, respectively.
We believe these downtimes to be manageable for most
applications and therefore consider the migration to be live.

Benchmark Overhead Data Size
GPU Program

Runtime
Migration
Duration

mmul 962.9ms 48MiB 2801.8ms 3051.3ms
lud 1903.9ms 39MiB 660.9ms 2293.0ms

Table III
MIGRATION OVERHEAD COMPARED TO ALLOCATED MEMORY SIZE,

PROGRAM RUNTIME WITHOUT MIGRATION AND TOTAL MIGRATION TIME



To measure the overall migration overhead, we compared
the benchmark runtimes with and without migration. As seen
in Table III, we measured an average overhead of 962.9 ms for
mmul and 1903.9 ms for lud. Note that the overall migration
overhead of the two benchmarks is higher than the virtual
machine downtime because it includes times where the virtual
machine is still running but the GPGPU is already paused.

The overhead of the lud benchmark was particularly high
because that benchmark submits many short-running GPGPU
commands. Using the proposed migration strategy, our proto-
type unmaps the command submission channels from the VM
at the same time it starts to transfer the VM’s memory. If the
remaining commands in the unmapped channel finish quickly,
the GPGPU will then idle until the migration is complete. A
possible solution to this problem may be to perform some pre-
copy iterations before unmapping the command submission
channels from the VM.

V. RELATED WORK

Several previous projects have addressed GPGPU sharing
and migration. GViM [5] uses Xen’s mechanisms [14] to
enable efficient communication between guest VM and GPGPU.
rCUDA [4], gViruS [3] and VOCL [6] can forward GPGPU
commands to remote machines, which allows migration of
VMs in the sense that the GPGPU state need not be migrated
along with the VM. vCUDA [2] is a more recent approach
using an optimized RPC protocol between guest and host. In
addition to access to remote GPGPUs, vCUDA can also suspend
local GPGPUs and save their state, which is a prerequisite
for migration. However, all these approaches maintain state by
intercepting all GPGPU commands through modified CUDA or
OpenCL libraries in the guest and therefore share the same two
drawbacks: First, all of them only support applications using
one specific user-mode software stack. Second, intercepting
all commands adds processing overhead to every command
submitted by the guest. In contrast, our approach allows
guest applications to submit raw commands directly into the
GPGPU’s command submission structures and therefore i) is
not tied to a specific application software stack, and ii) does
not add any overhead to command submission.

Zhai et al [15] employ PCI pass-through to grant VMs direct
access to host devices, and then use ACPI S3 events to make
the VM save the device state for migration. While the same
approach could be applied to GPGPUs, its migration strategy
is neither transparent nor live. Furthermore, the approach does
not allow multiple VMs to share the same device.

VI. CONCLUSION

In this paper, we have presented LoGV, a novel approach to
GPGPU virtualization, which leverages the existing protection
mechanisms of modern GPGPUs. In LoGV, the hypervisor
performs resource allocation requests on the VMs’ behalf,
and grants the VMs direct access to the allocated resources,
relying on GPGPU hardware features to guarantee protection.
LoGV also supports live migration of VMs using GPGPUs by
temporarily unmapping GPGPU resources from the VM and

replacing them with shadow copies. Our initial experiments
indicate that LoGV achieves a runtime overhead of less than
4% compared to native execution.

For the future, we plan to implement resource- and perfor-
mance isolation in LoGV. To achieve resource isolation, we are
considering ways to swap GPGPU memory into system RAM
in order to guarantee each VM a fair share of GPGPU memory
while maintaining high utilization. Similarly, we are currently
examining more sophisticated scheduling techniques [16] to
guarantee performance isolation while sharing a GPGPU
between VMs. We also intend to reduce LoGV’s migration
overhead by keeping the GPGPU active during the first pre-
copy iterations. Finally, we plan to investigate the feasibility
of live migration of GPGPU memory.

REFERENCES

[1] M. Vinaya, N. Vydyanathan, and M. Gajjar, “An evaluation of CUDA-
enabled virtualization solutions,” in Proceedings of the 2nd IEEE
International Conference on Parallel Distributed and Grid Computing,
ser. PDGC ’12, 2012, pp. 621–626.

[2] L. Shi, H. Chen, J. Sun, and K. Li, “vCUDA: GPU-accelerated high-
performance computing in virtual machines,” IEEE Transactions on
Computers, vol. 61, no. 6, pp. 804–816, 2012.

[3] G. Giunta, R. Montella, G. Agrillo, and G. Coviello, “A GPGPU
transparent virtualization component for high performance computing
clouds,” in Euro-Par 2010 - Parallel Processing, ser. Lecture Notes
in Computer Science, P. D’Ambra, M. Guarracino, and D. Talia, Eds.
Springer Berlin Heidelberg, 2010, vol. 6271, pp. 379–391.

[4] J. Duato, A. Pena, F. Silla, R. Mayo, and E. Quintana-Orti, “rCUDA:
Reducing the number of GPU-based accelerators in high performance
clusters,” in International Conference on High Performance Computing
and Simulation (HPCS), Caen, France, 2010, pp. 224–231.

[5] V. Gupta, A. Gavrilovska, K. Schwan, H. Kharche, N. Tolia, V. Talwar,
and P. Ranganathan, “GViM: GPU-accelerated virtual machines,” in
Proceedings of the 3rd ACM Workshop on System-level Virtualization
for High Performance Computing, ser. HPCVirt ’09. New York, NY,
USA: ACM, 2009, pp. 17–24.

[6] S. Xiao, P. Balaji, Q. Zhu, R. Thakur, S. Coghlan, H. Lin, G. Wen,
J. Hong, and W. chun Feng, “VOCL: An optimized environment for
transparent virtualization of graphics processing units,” in Innovative
Parallel Computing, ser. InPar ’12, San Jose, CA, 2012, pp. 1–12.

[7] C. Clark, K. Fraser, S. Hand, J. G. Hansen, E. Jul, C. Limpach, I. Pratt,
and A. Warfield, “Live migration of virtual machines,” in Proceedings
of the 2nd Symposium on Networked Systems Design & Implementation,
ser. NSDI’05. Berkeley, CA, USA: USENIX Association, 2005, pp.
273–286.

[8] M. R. Hines, U. Deshpande, and K. Gopalan, “Post-copy live migration
of virtual machines,” ACM SIGOPS operating systems review, vol. 43,
no. 3, pp. 14–26, 2009.

[9] PathScale, “Pscnv,” https://github.com/pathscale/pscnv.
[10] S. Kato, “Gdev cuda runtime,” https://github.com/shinpei0208/gdev.
[11] M. Dowty and J. Sugerman, “GPU virtualization on VMware’s hosted

I/O architecture,” ACM Operating Systems Review, vol. 43, no. 3, pp.
73–82, Jul 2009.

[12] “Rodinia benchmark suite,” https://www.cs.virginia.edu/∼skadron/wiki/
rodinia/index.php/Main\ Page.

[13] M. A. Eriksen, “Trickle: A userland bandwidth shaper for unix-like
systems,” in Proc. of the USENIX 2005 Annual Technical Conference,
FREENIX Track, 2005.

[14] P. Barham, B. Dragovic, K. Fraser, S. Hand, T. Harris, A. Ho, R. Neuge-
bauer, I. Pratt, and A. Warfield, “Xen and the art of virtualization,” in
Proceedings of the 19th Symposium on Operating System Principles,
Bolton Landing, NY, USA, Oct. 2003, pp. 164–177.

[15] E. Zhai, G. D. Cummings, and Y. Dong, “Live migration with pass-
through device for Linux VM,” in Proceedings of the 2008 Ottawa Linux
Symposium, ser. OLS ’08, Ottawa, Canada, Jul. 2008, pp. 261–268.

[16] M. Bautin, A. Dwarakinath, and T.-c. Chiueh, “Graphic engine resource
management,” in Proceedings of the Annual Multimedia and Networking
Conference. International Society for Optics and Photonics, 2008.


