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Deutsche Zusammenfassung

Simulationen ganzer Systeme (Full System Simulation) haben aufgrund der erhöhten
Komplexität bei der Simulation eine viel geringere Ausführungsgeschwindigkeit
als hardwarebeschleunigte Virtualisierungen. Dies führt zu einer über tausendfa-
chen Verlangsamung. SimuBoost zielt darauf ab, diese Lücke in der Leistung zu
schließen, indemmithilfe von parallelisierten und verteilten Simulationen die Simu-
lationsgeschwindigkeit erhöht wird. Gestartet werden diese durch Checkpoints von
virtualisierten Systemen. Um einen optimalen Grad an Parallelisierung zu erreichen,
werden diese Checkpoints in niedrigen Intervallen von 1–2 s gespeichert. Dadurch
gelingt es, den durch das Speichern der Checkpoints entstehenden Overhead zu
minimieren.

In dieser Arbeit wird ein Checkpoint-Mechanismus vorgestellt, der die Anfor-
derungen für SimuBoost – eine minimierte Datenmenge und Downtime – erfüllt.
Der Checkpoint-Mechanismus speichert inkrementelle Checkpoints des in QEMU
virtualisierten Systems und kann dadurch diese Anforderungen erfüllen. Zudem
dedupliziert er sowohl Daten des Hauptspeichers als auch der Festplatten mithilfe
eines hashbasierten Caches. Die Checkpoints werden in einer NoSQL-Datenbank
gespeichert, damit sie auf einfache Weise an die Simulationen verteilt werden kön-
nen.

Die Evaluation zeigt, dass der hashbasierte Cache die Datenmenge erheblich
reduziert, vor allem durch Benutzung von in der Vergangenheit schon in Check-
points gespeicherten Daten: Bis zu 42% der Speicherseiten können durch die De-
duplizierung eingespart werden. Die Evaluation zeigt aber auch, dass die durch
Datenbankanfragen entstehenden Kosten für 40–60% der Gesamtlaufzeit, die für
Checkpoints benötigt wird, verantwortlich sind. Daher muss dieses Verfahren noch
mit CoW kombiniert werden, um eine bessere Laufzeit für die Checkpoints zu
erreichen.
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Abstract

Full system simulation su�ers – due to its increased complexity – from amuch lower
execution speed than hardware-accelerated virtualization, resulting in a slowdown
of over 1000. To close this performance gap, SimuBoost aims at increasing full system
simulation’s execution speed by performing parallelized distributed simulations,
which are started using checkpoints from a hardware-accelerated virtualization.
To reach an optimal degree of parallelization, checkpoints have to be taken at an
interval of 1–2 s, which minimzes the overhead of the checkpointing.

In this thesis, a checkpointing mechanism that meets the requirements for
SimuBoost – minimized data amount and downtime – is proposed. To meet these
requirements, the checkpointing mechanism performs incremental checkpointing
of virtualized systems in QEMU and deduplicates both memory and block device
data via a hash-based cache.�e checkpoints are saved in a NoSQL database for a
simpli�ed distribution.

�e evaluation shows that the hash-based cache greatly decreases the data
amount, especially by reusing data that was already checkpointed in the past: Up to
42% of memory pages can be saved through deduplication. However, the evaluation
also shows that the overhead caused by database queries is too high and that it is
responsible for 40–60% of the total downtime.�erefore, this approach needs to
be optimized by combining it with CoW to reach a suitable downtime.
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1 | Introduction

Full system simulation is a useful tool in operating systems development. By model-
ing the hardware of a full system, simulators can facilitate hardware-independent
development and provide a system that is inspectable and modi�able. For example,
breakpoints can be used to suspend the system on certain conditions and the system
state can be modi�ed. However, the execution speed of full system simulators is
much lower than that of hardware-accelerated, virtualized systems.�erefore, only
short workloads and simpli�ed hardware models can be simulated in a reasonable
execution time. SimuBoost aims at increasing the simulation speed through virtual-
ization and parallel simulation.�e workload is executed on a virtualized system,
while taking checkpoints in frequent intervals, which contain the full system state.
Based on these checkpoints, the workload is simulated on another system for one
checkpointing interval. By using multiple simulation nodes, the simulation can be
parallelized.

�e objective of this thesis is to develop a checkpointing mechanism that is suit-
able for the requirements of SimuBoost: To achieve a high parallelization speedup,
the checkpointing interval for SimuBoost is within a few seconds. To keep the
downtime as low as possible, incremental and deduplicated checkpointing is re-
quired. In addition to that, the checkpoints need to be suitable for distribution to
the simulation nodes, with distribution targets that are unknown in advance.�is
e�ect is due to �uctuating simulation speed of single workloads, which results in an
unpredictable order of distribution to the simulation nodes.

�e checkpointing mechanism developed in this thesis uses incremental check-
pointing and hash-based deduplication and stores checkpoints in a database for
distribution.�e implementation takes checkpoints of virtual machines running in
QEMU and KVM and stores them in MongoDB. To obtain all system states and to
make use of internal functions, e.g., for memory management, the checkpointing
mechanism is integrated into QEMU. Using these internal functions, incremental
checkpoints can be saved and loaded. To deduplicate the data during the checkpoint-
ing, a hash-based approach is used together with a cache to identify recurring data
that was already checkpointed.�e checkpoints are stored in a NoSQL database, so
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2 CHAPTER 1. INTRODUCTION

that checkpoints can be loaded even if the order of distribution targets is not known
in advance.

As the evaluation shows, this checkpointing mechanism deduplicates up to
42% of memory and 80% of block devices, depending on the workload. Also, the
e�ectiveness of the hash-based deduplication cache is shown, which causes a high
amount of previously checkpointed data to get deduplicated with the hashing hardly
increasing the downtime of the virtual machine, compared to the high costs of
database queries that was saved. However, the downtime has to be optimized by
combining the presented approach with CoW to reduce the sudden database load
during the checkpointing, which is accountable for the majority of the downtime.

In Chapter 2, the fundamentals of full system simulation, checkpointing, and the
concepts used in the checkpointing approach developed in this thesis are explained.
Chapter 3 further analyzes the use case and requirements for the checkpointing
mechanism and also the amount of modi�ed data in a checkpointing interval as well
as its deduplication potential. InChapter 4, the general function of the checkpointing
mechanism is described. Also, design decisions for the checkpointing concepts are
elaborated. Chapter 5 describes the integration into the virtual machine monitor
and how data is collected, deduplicated, and sent to the database. An Evaluation of
the checkpointing mechanism is performed in Chapter 6, showing the e�ciency
of the deduplication approach and the performance regarding deduplication, data
amount, and downtime. Chapter 7 concludes the thesis and gives an outlook of
future work.



2 | Background

�is chapter explains the fundamentals of full system simulation and checkpointing
and connections between concepts that are used in this thesis. Also, already existing
checkpointing mechanisms will be explained and classi�ed.

2.1 Full System Simulation

In operating systems (OS) development, tasks like debugging or memory inves-
tigation can be di�cult on real hardware or even impossible, if CPU or device
development is not yet fully completed [20]. Full system simulators o�er the ad-
vantage of development that is independent to physical hardware. Another point
is the increased inspectability, i.e., the complete state of the system can be investi-
gated [10], since full system simulation includes the whole system.�erefore, the
CPU, memory, and devices are modeled. One type of such simulation, functional
simulation, focuses on functional correctness and emulates the exact behavior of
the target system [2].

Simics is such a full system simulator that runs an unmodi�ed OS and emulates
di�erent devices and CPU architectures [20]. Several models exist to simulate
di�erent processors like x86, MIPS, ARM, etc., and to simulate devices. Additionally,
networks of simulated systems can be run and analyzed with Simics.

�eMARSSx86 simulator is based on QEMU and runs an unmodi�ed OS as
well [24]. It was designed – as the name would suggest – for x86-based architectures
and is able to perform cycle-accurate simulations of both single-core and multi-core
con�gurations.

Full system simulators can run a virtualmachine (VM) by emulating a full system
and using an unmodi�ed OS, similar to virtual machine monitors (VMMs).�e
main di�erence to VMMs is in the advanced analyzation tools full system simulators
provide: Full system simulators can use breakpoints and hooks, single step through
the execution, record user input, modify the systems, etc. [20]. However, this
increased feature set comes with additional complexity, resulting in a more resource-
intensive and time-consuming execution. For example, the slowdown of a Linux
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kernel build increases by a factor of over 1000 [26] when using Simics compared to
a hardware-accelerated virtualization, which uses processor extensions like Intel
VT-X or AMD-V to increase virtualization performance.

2.1.1 SimuBoost
To speed up functional full system simulation, SimuBoost [26] uses hardware accel-
erated virtualization. While the virtualization node executes the workload, it takes
checkpoints in �xed intervals.�ese checkpoints are later distributed to simulation
nodes, each of which simulates only one checkpointing interval, i.e., the workload
that accumulates between two consecutive checkpoints. By using checkpoints as
a starting point, the simulation can be parallelized and therefore accelerated. Fig-
ure 2.1 shows the virtualization node and three simulation nodes.�e workloads
i[1], . . . , i[k], . . . , i[n] are executed using hardware virtualization at �rst.�en, using
checkpoints to distribute the system state, the workloads are simulated as soon as a
checkpoint was taken on the virtualization node. Although workloads are based on
previous system states, this approach enables parallel simulation.

Figure 2.1: Virtualization and simulation of a workload using SimuBoost [26].�e
system state needed for the parallel simulations is aquired using checkpoints of the
virtualized system.

Because of the large di�erence in execution speed between hardware-accelerated
virtualization and full system simulation, a large speedup can be achieved through
parallelization. At the same time, SimuBoost needs to frequently create checkpoints
in order to generate independent intervals for simulation. Taking these checkpoints
results in an overhead for the virtualization node, which reduces the overall reach-
able speedup by parallelization, making it a crucial factor for performance. Another
important aspect is the interval length, which a�ects the temporal relationship be-
tween the checkpointing overhead and an actual simulated interval, i.e., e�ectively
the speedup.�is speedup decreases if the checkpointing interval is too low or too
high; an optimal speedup was found using an interval in the range of 1–2 seconds.
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Additionally, taking checkpoints at a high frequency results in a high data amount,
which has to be distributed to the simulation nodes.�us, SimuBoost depends on
both e�cient hardware-accelerated virtualization and and an e�cient checkpointing
mechanism.

2.2 QEMU

QEMU is a generic and open source VMM that can run a guest operating system in a
VM by emulating di�erent CPU architectures [4]. It supports full system emulation,
therefore no changes to the guest OS are required. Devices such as block devices,
displays, or network devices can be emulated to provide the guest OS with an entire
virtual system.

QEMU is o�en used together with Kernel-Based Virtual Machine (KVM), a vir-
tualization solution as a Linux kernel module [17]. KVM can substantially improve
virtualization performance by using the hardware extensions present in modern
AMD and Intel CPUs for processor state virtualization [13], if the same architecture
is used for the guest and host.

For memory management, KVM allocates the guest’s memory and uses shadow
page tables [17], which are hidden from the guest and maintained by the host.
It translates guest virtual addresses to the corresponding host physical addresses.
Additionally, Intel’sNested Page Table (NPT) and AMD’s Extended Page Table (EPT)
structures are used to quickly translate guest physical addresses to host physical
addresses without lookups to the host page tables [18].

Block devices such as hard disk drives and CD-ROM drives are emulated by
QEMU.�ey are typically managed as a single �le inside the host systems �le system.
While multiple block device formats are supported, the qcow2 format [22] o�ers
the most interesting features such as snapshot support and copy-on-write (CoW)
overlay images, which represent changes to the base image.

One advantage of virtualization is an encapsulated system that is easily accessible
through the VMM, e.g., to save the system state. �is can be achieved with a
checkpointing mechanism.

2.3 Virtual Machine Checkpoints

�e terms snapshot and checkpoint are o�en used interchangeably in the context
of virtual machines. In some cases – like the just mentioned qcow2 format – a
snapshot, however, refers to saving only the state and data of block devices, whereas
a checkpoint means that the entire system state is being saved. In this thesis, a VM
checkpoint is considered as containing a complete system state, which can later be
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used to restore a virtual machine to the exact state in which the checkpoint was
saved.�is includes CPU and device states, memory, and block devices.

In practice, checkpointingmechanisms are not only employed to restore a system
to a previous state, but also as key technology in VM replication and migration.
Over the years, previous work has proposed a variety of checkpointing mechanisms
for di�erent applications.�e Remus VM replication mechanism [7] targets high
availability via replication.�is is achieved by frequent VM checkpoints that are
transferred to a backup host. �e mechanism is optimized for high-frequency
checkpointing using a live migration approach, i.e., disk and memory changes are
stored in a bu�er while the VM is running until it �nally gets suspended to complete
the checkpoint. It is then sent directly to the backup host, where it is stored in
memory.

When taking a checkpoint, a consistent state needs to be saved, i.e., all data in a
checkpoint needs to be saved at the exact same point in time.�erefore, the VM
has to be suspended for a moment and started again later, which causes a downtime.
Sun and Blough describe a more general approach to a checkpointing mechanism
based on copy-on-write (CoW) [28], which writes a full checkpoint to a �le in
every checkpoint interval. By using CoW-bu�ers to copy memory while the VM
is running, the downtime is minimized. However, they found that duplicate data
constitutes the majority of the checkpointing costs, since the checkpoints are not
deduplicated.

Another general approach, libhashcpkt [11], performs incremental checkpoint-
ing, i.e., it only considers data that has actually changed for a checkpoint. Looking
at memory, this is called a page-based incremental approach. Additionally, the data
is hashed and compared to previously checkpointed hashes, making it hash-based
instead of page-based. To speed up checkpointing, the hashing is outsourced to the
GPU.

To conclude the overview of checkpointing mechanisms, a short classi�cation of
important applications and concepts follows. VMMs usually provide a mechanism
to save the VM state. However, they only save the state, typically to a �le, without
considering performance. More sophisticated checkpointing mechanisms can be
classi�ed by their intended application:

• General mechanisms such as default VMM checkpointing mechanisms or
the CoW-approach mentioned above merely save a checkpoint to a �le in
order to load it a�erwards.

• Migration or replication oriented mechanisms such as Remus transfer a
checkpoint to another host if an event or user command occurs in order to
clone a VM (migration), or keep a cloned VM up-to-date at a certain interval
(replication).
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• Other checkpointing mechanisms, such as the one developed in this thesis,
also require for a distribution of checkpoints or a checkpoint storage, from
which hosts can obtain checkpoints.

Another possible classi�cation can be made by the performance aspects that
were optimized by the mechanism:

Downtime High checkpointing frequencies, as required by SimuBoost, can be
achieved by decreasing the time required to save or transfer the checkpoint.�is
can be achieved by decreasing the data amount or by using a CoW approach.

Data amount When a high number of checkpoints is taken, the amount of data to
be saved, stored, and loaded becomes more important. To reduce the data amount,
two popular strategies are:

1. Incremental checkpointing: By only checkpointing data that was changed
since the last checkpoint, downtime and data amount can be greatly decreased.

2. Deduplication:�e amount of data to be collected, transferred, and stored
can be minimized, especially by deduplicating it prior to the checkpointing.
�is is accomplished by eliminiating duplicate data, i.e., memory pages or
block device sectors that exist more than once.

2.4 Hash Functions

Since the checkpointing approach presented in this thesis uses hash-based dedu-
plication, this section gives a short introduction to hash functions and collision
probabilities.

In general, a hash function is a compression function H ∶ {0, 1}∗ → {0, 1}n [16],
which relates the input of arbitrary length to a �xed-length (n) output. A good hash
function is considered having as few collisions as possible, i.e., only "few" collisions
H(x) = H(x′) exist for two distinct input values x ≠ x′. Also, as collisions obvi-
ously cannot be avoided completely, the hash function should distribute the output
well over all possible values. Similar to hash functions in cryptography, collision-
resistance is crucial to a hash function that is used for a hash-based checkpointing
approach: Since data is addressed by hash, a collisionwould result in at least one page
or sector that cannot be restored properly when loading the checkpoint, probably
rendering the checkpoint and subsequent checkpoints useless.�erefore, collisions
have to be avoided.�e problem of �nding a collision for k randomly chosen inputs
and codomain size N = 2n is related to the birthday problem [16].�e probability
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for such a collision, p, can be approximated with p > 1 − (1 − k
2N )

k−1 [27]. Using this
approximation, Table 2.1 lists collision probabilities for di�erent conditions, i.e., the
probability that – using an n-bit hash function – a collision occurs among k hashes.

N = 2n k p

232 8 ⋅ 104 0.52
232 107 1
264 8 ⋅ 104 1.73 ⋅ 10−10
264 107 2.71 ⋅ 10−6
2128 8 ⋅ 104 9.40 ⋅ 10−30
2128 107 1.47 ⋅ 10−25

Table 2.1: Collision probability of hash functions for di�erent output sizes and hash
count.

2.5 NoSQL Databases

Because the approach presented in this thesis uses NoSQL databases to store the
checkpoints, this section gives a short overview on di�erent types of databases and
popular examples.

To store large amounts of data, relational or non-relational databases are o�en
used. Non-relational databases can be classi�ed by the way they store data [9]:

• Key-value stores use a simple data model, which uses at least pairs of keys
and values to address data; some systems provide additional data types.�e
simpler data model usually results in better performance of queries. However,
key-value stores are not su�cient for every use case.

• Document stores use an ID to address more complex data (documents), for
example in the JSON format. Allowing nested objects and data types like
arrays, boolean values, etc., they can be much more complex than key-value
stores.

• Column-family stores

• Graph databases

NoSQL databases are generally simpler, faster, and more scalable than relational
databases, since no relational connections need to be maintained. Also, compared



2.5. NOSQL DATABASES 9

to relational databases, they do not su�er from the overhead resulting from com-
plex querying and management functionality and are much more e�cient and
resource-inexpensive [8]. To achieve such high e�ciency with storing and retriev-
ing operations, key-value stores o�en keep part of the data, e.g., the keys, inmemory;
some stores keep the complete data set in memory [5].

Redis is a popular, open-source key-value store, yet o�ering more powerful data
structures such as lists, sets, and hash maps [25]. It supports atomic operations for
appending to a list, incrementing values, etc. Redis is an in-memory key-value store,
i.e., it keeps the complete data set in memory. Additionally, the data is copied to disk
on certain conditions based on time or the number of writes, adding persistence to
the otherwise volatile storage.�e most important characteristics of Redis are very
fast operations, since they take place in memory, but also that the data set should
not exceed the memory available to Redis in order to keep the performance high.
Redis uses – being a key-value store – relatively simple text-based queries, such as
SET <key> <value> and GET <key>. To speed up multiple queries, Redis o�ers a
pipelining mode, where queries are collected and sent out in one block, i.e., instead
of multiple queries and responses, only a single query and response are used.�is
is particularly useful for inserting or retrieving data in bulk, because it reduces the
overhead of the network communication with the database server.

Another popular open-source database isMongoDB, which is an on-disk docu-
ment store [9]. Data is represented using the BSON format, which is JSON-oriented,
but supports binary data. It is then stored in tables that can contain multiple collec-
tions. MongoDB also provides capped collections, which are – contrary to regular
collections – limited in size and are represented similarly to a ring bu�er, thus
overwriting old entries if the maximum size is reached. Using such a collection
increases the performance of queries, but implies that data either not reaches the
maximum size or gets lost. Also, indices are used in order to increase performance.
Queries to MongoDB are more complicated compared to Redis queries, because of
the more complex data structures used. For example, db.<collection>.insert(
{ <key>: <value> } ) inserts data into a speci�c collection. Similar to Redis,
the MongoDB libraries support pipelining of data, either by concatenating multiple
BSON objects, or a more complex query including search terms, conditions, etc.
Another aspect that a�ects database performance is the write concern: For write
operations such as insert or update, MongoDB provides adjustable levels of ac-
knowledgement using two variables w and j: w causes MongoDB to ignore errors
(w = −1), perform an unacknowledged write (w = 0), i.e., not waiting for the data
to be written on disk, or an acknowledged write (w = 1), where the library waits
for a successful write. Additionally, the journaled write concern j = 1 can be used
together with w = 1 in order to wait until MongoDB has written the data to its
journal, which provides additional reliability.
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3 | Analysis

To speed up functional full system simulation, SimuBoost [26] uses a hardware
virtualization node and multiple simulation nodes. In a �xed interval, checkpoints
of a virtualized system are taken and distributed to the simulation nodes. Each of
the nodes then starts a simulation and analysis of the execution for one interval.

3.1 Requirements

�is use case leads to the requirements that are described in the following sec-
tions:�e checkpointing interval a�ects the data amount, which in turn in�uences
the virtual machine (VM) downtime. Furthermore, requirements to checkpoint
distribution are explained.

Checkpointing Interval Because SimuBoost distributes the checkpoints to multi-
ple simulation nodes, the virtualization node needs to provide multiple simulations
with checkpoints.�e checkpointing interval, i.e., the �xed time between two con-
secutive checkpoints, directly in�uences the data amount and therefore the time
each simulation interval consumes. For SimuBoost, a lower checkpointing interval
in the range of seconds (1–2 s) was found to result in a smaller overhead [26]. At
higher intervals, the parallelization becomes sub-optimal; at lower intervals, the VM
downtime becomes a greater overhead, since more checkpoints have to be taken.

Data Amount �e checkpointing mechanism has to take and store a high amount
of checkpoints, especially when the virtualization proceeds slower than the simula-
tions and the checkpoints accumulate. In order to save a large number of checkpoints,
the data amount has to be minimized. Additionally, a minimal data amount per
checkpoint allows for a faster distribution of single checkpoints.

Downtime While a checkpoint is taken, the VM usually has to be suspended for
a moment and started again later in order to save a consistent state of the system,
causing a downtime for the VM. For SimuBoost, this downtime should be as short

11
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as possible, because it constitutes a constant overhead in the virtualization stage
and reduces the speedup of the parallelized simulation.

Distribution Deduplicated and incremental checkpoints need to be stored tem-
porarily until requested by a simulation node and until they are not longer required
to restore subsequent checkpoints. On a request, the complete system state needs
to be loaded, i.e., not only the incremental checkpoint but also data from previ-
ously saved checkpoints is needed to restore the system state. �us, all previous
checkpoints that contain data used in a later checkpoint must still be available.

To meet the most important requirements regarding checkpointing performance,
data amount and downtime, incremental checkpoints can be taken. Incremental
checkpointing is a widely used technique in checkpointing mechanisms. By only
saving the modi�ed parts of a system state, e.g., modi�ed memory pages instead of
the whole memory, the size of a checkpoint can be reduced.

3.2 Modi�cation Rate

With an incremental checkpointing mechanism, the strongest impact on the data
amount is the rate at which memory pages and block device sectors are written per
checkpointing interval. �erefore, this section analyzes the modi�cation rate of
data for di�erent workloads during an interval.

�e modi�cation rate �rstly depends on the checkpointing interval, since obvi-
ously more data can accumulate in a longer interval.�e amount of accumulated
data per time, however, highly depends on the workload. Observing the amount
of dirty pages and sectors, e.g., during desktop usage, a kernel build, or bench-
marks, shows characteristics like memory-intensive or I/O-intensive workloads.
�e modi�cation rate is a �rst measure for the data amount of a checkpoint, since
it represents the incremental data amount. Figure 3.1 shows the amount of dirty
pages and sectors per 2000ms interval during desktop usage, i.e., starting and
using applications such as a �le manager, Firefox, LibreO�ce, etc. �e VM was
running Ubuntu 12.04, with 2GiB RAM and a 10GiB qcow2 image. It shows 3388–
54 269 dirty pages (avg=24 237, median=23 203, sd=13 993) per checkpoint with
multiple spikes, especially when applications are starting, and 0–15 104 dirty sectors
(avg=2165, median=768, sd=3232), with some spikes, e.g., when �les are saved.

In Figure 3.2, the amount of dirty pages and sectors during a kernel build is
shown, using the same setup as above. While having a higher average workload, this
workload shows less spikes. Also, signi�cantly more block device activity occured,
resulting in a higher number of dirty sectors. Dirty pages are at 4600–48900
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Figure 3.1: Dirty count of pages and sectors during desktop usage, running in a
single-core virtualized Ubuntu 12.04 with 2GiB RAM and a 10GiB qcow2 image.

(avg=25 352, median=22 777, sd=7878) and dirty sectors at 0–45 100 (avg=4474,
median=2112, sd=7536).
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Figure 3.2: Dirty count of pages and sectors during a kernel build, running in a
single-core virtualized Ubuntu 12.04 with 2GiB RAM and a 10GiB qcow2 image.

�ese measurements show a great potential of incremental checkpointing to
reduce the data amount, because only 5–10% of the total memory have to be check-
pointed. However, the data amount depends on the modi�cation rate, which in turn
heavily depends on the workload. Using workloads with a higher memory load
such as the STREAM benchmark, which is shown in Figure 3.3a, or a much higher
I/O load such as the Bonnie++ benchmark, which is shown in Figure 3.3b, results
in a heavily increased dirty count. Such high workloads can cause di�culties when
using short checkpointing intervals, because the data amount for every checkpoint –
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and therefore also the downtime – is higher.�ese benchmarks lead to dirty pages
of 290000–338000 (avg=303 675) and dirty sectors of 0–2 975 000 (avg=1 054 901)
in every 2000ms interval.
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Figure 3.3: Dirty count of pages and sectors during STREAM and Bonnie++ bench-
marks, running in a single-core virtualized Ubuntu 12.04 with 2GiB RAM and a
20GiB qcow2 image.

3.3 Data Duplication

In virtualization, memory o�en gets deduplicated to increase memory utilization,
e.g., to increase a host’s capacity for VMs. For example, Kernel Samepage Merging
(KSM) [1] is o�en used together with QEMU and KVM to �nd and share duplicate
memory pages in a system.�e KSM deduplication was improved by Miller et al.
by prioritizing deduplication of pages with typically high redundancy through hints
from the I/O layer [23]. Barker et al. found self-sharing opportunities, i.e., pages
that can be deduplicated in a single VM, to be on average at 14%, excluding zero
pages [3]. For multiple VMs, Gupta et al. measured that memory deduplication
potential between VMs lies between 50% for heterogenous workloads and 60% for
homogenous workloads [12].

Since VMs generally o�er potential for deduplication, this section examines
whether parallels exist between duplication among multiple VMs and among multi-
ple incremental checkpoints.�is deduplication opportunities could then be used
to further reduce the data amount for checkpoints. Among multiple checkpoints,
di�erent types of duplicates in memory and block devices exist that are potentially
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essential for this checkpointing approach and need to be di�erentiated. Similar to
the naming scheme of Barker et al. [3] for memory sharing opportunities, in this
thesis, deduplication opportunities are separated into two categories:

1. Intra-checkpoint duplication: Two or more pages or sectors contain equal data
at the same point in time, i.e., in the same checkpoint data is saved more than
once.

2. Inter-checkpoint duplication: At di�erent points in time, two or more pages or
sectors contain equal data, i.e., data is repeatedly written throughout multiple
checkpoints.

To show the potential of inter-checkpoint deduplication, both intra- and inter-
checkpoint duplication ismeasured alongwith the total number ofmodi�ed data, i.e.,
data of incremental checkpoints. Figure 3.4 shows the percentage of intra- and inter-
checkpoint duplication of memory pages during a kernel build. Page quantities were
measured in intervals of 2000ms using 2GiB RAM. Inter-checkpoint duplicates
were measured among the last ten intervals in each interval. Intra-checkpoint
duplicates are at under 10%, while intra-checkpoint duplicates are at 15–55%.

1 5 10 15 20 25 30 35 40 45 50
0

2

4

⋅104

Checkpoint

Pa
ge
s

dirty pages

0

20

40

60

80

100
D
up

lic
at
es

[%
]

inter-CP dupl. intra-CP dupl.

Figure 3.4: Percentage of intra- and inter-checkpoint duplicates in dirty pages during
a kernel build, measured at 2000ms intervals.

Such a large number of deduplication opportunities, especially that of inter-
checkpoint duplicates, suggests that deduplication can be used for the checkpointing
mechanism in this thesis to reduce the data amount beyond the savings achievable
through incremental checkpointing.
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3.4 Conclusion

�is chapter analyzed the requirements of a checkpointing mechanism for Simu-
Boost as well as the potential data reduction by examining typical modi�cation
rates and duplication.�e modi�cation rate showed that incremental checkpointing
reduces the relevant data amount to only 5–10%, depending on the workload. By
analyzing duplication in checkpoints, especially throughout multiple checkpoints, a
promising percentage of duplicates was found that can possibly be eliminated to
further reduce the data amount and downtime.



4 | Design

When taking checkpoints at a high frequency, it is vital to focus on optimizing the
performance, i.e., to keep data amounts and latencies small.�e following design
approach includes several concepts to optimize performance, which – besides a
general overview of the checkpointing mechanism – are presented in this chapter.

�emain focus of themechanism is in taking frequent checkpoints at an interval
in the range of seconds to supply full system simulations with system states, while
taking measures to optimize the data amount for distribution, and �nally enable to
distribute them.�e checkpointingmechanism is intended for a producer-consumer
use case: One virtualized system creates checkpoints, which are stored temporarily
in a database and are later retrieved by simulation nodes. �e amount of stored
checkpoints, however, heavily depends on the performance of consuming nodes,
since the speed at which checkpoints are produced and consumed has to be mostly
balanced.

4.1 Incremental Checkpointing

As shown in Chapter 3, incremental checkpointing can decrease the data amount
of a checkpoint to only 5–10%.�erefore, the checkpoints taken by the presented
approach are taken incrementally, only including modi�ed data in each checkpoint.
�e incremental checkpointing concept, however, makes loading of checkpoints
rather di�cult: To load a certain checkpoint, data that has remained unchanged for
a long period has to be collected from previous checkpoints, possibly reaching to
checkpoints taken at a much earlier interval.

4.2 Checkpoint Metadata

To solve the problem of di�cult loading, this design separates single data entitites,
i.e., memory pages and block device sectors, from the checkpoint metadata, which
describes the data entities belonging to a certain checkpoint.�en, references to the
entities instead of the actual data is saved in the checkpoint metadata.�is simpli�es

17
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both saving and loading: Data structures to keep track of pages and sectors can
easily be maintained and saved with the checkpoint; loading a checkpoint requires
retrieval of a �xed amount of metadata, independent of the modi�cation time of
pages and sectors. �is is accomplished by referencing all entities that belong to
the checkpoint, i.e., the complete set of pages and sectors in use at the time of
checkpointing are referenced.�e approach in this thesis collects this metadata in
three types of headers:

• Memory headers, which reference each page that is present in the system.

• Block headers, which reference each modi�ed sector not present in the initial
disk image, i.e., all sectors that di�er from the disk image.

• Device headers, which contain the complete information – besides memory
and block devices – needed to restore the system state. �is header is not
referencing information, since device states are relatively small, i.e., about
80KiB, depending on the VM con�guration.

However, this approach implies particular problems: By including references to
recurring data entities repeatedly regardless of modi�cation, checkpoint headers
include duplicate references.�is overhead can be considered small, since references
to the data entities are much smalller than the data itself. For example, a VM with
2GiB RAM and therefore 524 288 pages (using a page size of 4 KiB) that have to be
checkpointed and 10% of modi�ed pages (52 429) results in 205MiB of modi�ed
data, but – using a 64-bit hash function – in only 52 429 ⋅ 64bit = 410KiB. Another
problem are the references, which have to uniquely identify a data entity.

4.2.1 Hash Functions
Values that uniquely identify any data can be computed by using a hash function.
Applied on the data entities, a hash function – if chosen appropriately regarding
the collision avoidance parameters as explained in Section 2.4 – returns a unique
identi�er for this data. A�er hashing the data entities, they can be referenced by their
hash value.�is, however, leads to the problem of �nding the right hash function
to avoid collisions. Since the collision probability of a hash function depends on
both the codomain size and the quantity of data entities, the quantity needs to be
known in advance to choose an appropriate hash function.�e design presented in
this thesis does not generally limit the number of checkpoints, although most of
the measurements were taken with 50 checkpoints stored at the same time. Using
the average rate of modi�ed pages and sectors from Section 3.2 and the average
deduplication rate from Section 3.3, the amount of data entities that exists at the same
time can be estimated to not exceed 1.31 ⋅ 106 (= 0.75 ⋅35 000 ⋅50, with 25% duplicates,
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35 000 modi�ed data entities and 50 checkpoints). Using the approximation from
Section 2.4, this results in a collision probability of about 4.07 ⋅ 10−8 for a 64-bit hash
function. If more checkpoints need to be available at the same time, the choice of a
hash function has to be reconsidered.

4.3 Deduplication

Using hashes to identify single data entities brings another advantage: Hashes of
already stored data can be saved and used to deduplicate data in subsequent entitites:
By comparing a hash with all previously stored values, duplicates can be found.�is
can be accomplished by using a cache that stores sent hashes and allows search and
insert operations. �en, hashes are �rst searched and, if no duplicate was found,
inserted. Using such a cache results in hash-based deduplication of pages and sectors
as long as the corresponding hashes stay in the cache. Figure 4.1 shows the basic
procedure for deduplicating data. A data entity is �rst hashed, then its hash is used
to search the cache. If an entry with the same hash was found (cache hit), its index
is updated to denote the time of the cache hit. If no entry was found (cache miss),
the hash is added to the cache and sent to the database. In both cases, the hash is
added to the corresponding header a�erwards.

New data 
entity

Hash Cache hit Update index
yes

Add to cache

no

Insert into 
database

Add to 
header

Figure 4.1: Procedure for deduplicating data using a hash-based cache. On a cache
hit, its index is updated; on a cache miss, it is sent to the database.

4.4 Checkpoint Storage

A�er incrementally obtaining data and deduplicating it, the checkpoints have to
be distributed. For SimuBoost, it needs to be accessible in a central location, from
where simulation nodes can obtain checkpoints. To eliminate the need for prior
knowledge about the targets of distribution, the checkpoint mechanism should
simply provide checkpoints, and not control where the checkpoints are loaded.�is
requirements can be met by a shared �lesystem.�is way, however, data needs to be
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searched for by �lenames, e.g., to �nd a data entity with a speci�c hash.�erefore,
a database comes into consideration, because data can be stored and accessed
e�ciently with all advantages databases have over shared �lesystems. Selecting
an appropriate database type and storage model requires knowledge of downtime
and space consumption requirements of the checkpointing mechanism: Key-value
stores usually keep data in memory and therefore o�er faster access times, but also
limit the data set to the size of available memory. To save many checkpoints both
quickly and reliably in a database, an on-disk store can be used.

�e strategies described in Sections 4.1 and 4.3 require checkpoint headers and
checkpoint data to be saved separately. In order to increase the throughput of
queries, the database layout should also separate headers and data, since only a few
headers per checkpoint are created.�e layout used for this approach is shown in
Figure 4.2. Headers can be accessed by a sequentially increased index, while data
can be accessed by its hash.�e headers itself contain the hash values and in this
way reference the data needed for the checkpoint.

Checkpoints

DataHeaders

Block Headers

Index

Data (Hashes)

Device State 
Headers

Index

Data

Memory Headers

Index

Data (Hashes)

 

Hash

 

Data

Figure 4.2:�e database layout. Headers are accessed by a sequentially increased
index and reference data entities, which are accessed by their hash.

To keep the time needed for saving a checkpoint to the database as low as
possible, a fast insert mechanism needs to be used. As explained in Section 2.5,
such batch or pipelining operations can greatly improve the performance of large
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insert queries. Additionally, it is necessary to ensure su�cient disk space for the
checkpointing mechanism to work properly.

4.4.1 Retention Policy
A�er the simulations were started using the checkpoints and they are no longer
required, they cannot be easily deleted, since headers and data entities are separeted.
�is can be solved using a di�erent approach:�e amount of checkpoints stored
in the database is �xed and a retention policy is used. Only a �xed amount of the
most recent checkpoints is saved and data from previous checkpoints is deleted at
certain intervals.�is requires a retention value to be set as well as a mechanism
to search for and delete entries older than the retention value. Data that is used in
more recent checkpoints, however, must be retained: Because data is split from the
checkpoint headers and deduplicated, multiple headers can reference the same data.
Only data that is referenced by no checkpoint more recent than the retention value
can be deleted.

4.5 Conclusion

�is design includes the following checkpointing concepts:

• Incremental checkpointing

• Hash-based deduplication of memory and block device data

• Checkpoint distribution via a database

�e basic architecture is depicted in Figure 4.3. It shows a VMM, in which the
checkpointing mechanism resides for convenient access to all system states and
modi�ed data. Data is obtained incrementally, memory and block device data is
hashed and then compared with previous data for deduplication. �en, headers
and deduplicated data are sent to the database and can later be loaded from a
checkpointing mechanism that resides in a simulation node.
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Figure 4.3: Overview of the checkpointing mechanism inside the VMM and the
checkpointing operation, and the constellation of the saving virtualization node
and the simulation nodes.



5 | Implementation

Asmentioned in Chapter 4, the checkpointing mechanism should be integrated into
the virtual machine monitor (VMM) tomake use of internal functions for collecting
modi�ed data.�e implementation developed in this thesis usesQEMU 1.5.50/KVM
(Linux kernel 3.8.0) for virtualization and MongoDB 2.0.6 for storing checkpoints.
�is chapter describes the implementation, beginning with the integration into
QEMU. Further, data collecting as well as the structure of a checkpoint and database-
speci�c details are explained.

5.1 Collecting Data

�e �rst step for the actual checkpoint procedure is to collect all incremental data.
�erefore, this section describes how QEMU internally handles and represents
memory, block devices, and device states and how the presented checkpointing
mechanism collects the data that is needed for a checkpoint.

5.1.1 Memory

Since main memory that is available to the guest is – as explained in Section 2.2 –
managed by QEMU, its internal memory model can be used:�e memory allocated
by the QEMU process is organized inMemoryRegion objects, each representing a
contiguous region of memory. All memory that is available to the guest is organized
in RAMBlocks, which, for example, represent the main memory or video memory,
and each occupy oneMemoryRegion.�e RAMBlocks are organized as a linked list,
which allows iterating over them. Inside these RAMBlocks, pages can be accessed
using the base address of a RAMBlock’s MemoryRegion and an o�set to the actual
page, which is a multiple of TARGET_PAGE_SIZE (i.e., 4 KiB for x86 and x86-64
guests).�ese addresses are mapped inside QEMU’s virtual address space. Figure 5.1
depicts QEMU’smemorymodel, as well as the linked list structure and howmemory
pages can be accessed.

23
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Figure 5.1: QEMUMemoryRegions and RAMBlocks. Each RAMBlock is placed
inside aMemoryRegion and can be accessed with an address and o�set. RAMBlocks
are organized as a linked list.

Similar to the QEMU’s built-in checkpointing approach, the implemented check-
pointing mechanism uses QEMU’s QTAILQmacros to access the linked list elements,
e.g., QTAILQ_FIRST(&ram_list.blocks) returns the �rst RAMBlock in the list.
In order to save an incremental checkpoint of the memory, dirty pages in all RAM-
Blocks need to be saved, which requires a mechanism to detect modi�ed pages.
�erefore, pages are iterated over using the migration_bitmap, which is already
implemented in QEMU and used during the built-in pre-copy-based migration
mechanism for iterating over memory pages. When modifying a page, QEMU sets
the corresponding bit in order to mark the page as modi�ed. Using this bitmap,
QEMU provides e�cient functions, e.g., to �nd and reset the next dirty bit inside
the bitmap. Calling this function on a MemoryRegion returns the o�set of the next
modi�ed page, which is – besides the base address – all that is neeeded to access it.
QEMU provides a function to quickly check wheter a memory page is a zero page,
i.e., it contains only zeros. �ese zero pages can be handled di�erently. If a zero
page is found, its hash is saved and for all subsequent zero pages, the hash does not
need to be calculated again. Additionally, zero pages are saved di�erently: Instead
of saving a page of zeros in MongoDB, a boolean property in the memory data
documents is set to mark the hash as zero page hash. When loading a checkpoint,
zero pages are recognized using this property.�e hash of such a zero page is saved
locally during the loading process to identify subsequent zero pages, which makes
the loading more e�cient.

5.1.2 Block Devices

QEMU supports multiple block device formats and options for including them in a
virtualized system. For checkpointing of block devices, the implementation makes
a few assumptions to simplify the process:
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1. An identical initial version of block device images is already present on both
saving and loading hosts; a checkpoint includes changes since this base image.
Because these initial images can be very large, it would cause an excessive
load on MongoDB to store the complete image in the �rst checkpoint.

2. QEMU is started in snapshot mode by using the -snapshot option, which
holds all changes to an image in a temporary �le and only applies them when
the commit HMP command is invoked. Using this snapshot mode, dirty
sectors can be found much faster, since only the overlaying change image
needs to be iterated.

3. Only writeable and currently in-use block devices are checkpointed. Because
of the �rst assumption, an initial image of all block devices is already present
when loading a checkpoint and read-only block devices cannot be modi�ed.
Disabled block devices are not needed by the loading system and if they are
enabled later, they will get checkpointed as well.

With this assumptions, a very lightweight strategy can be used to perform
checkpointing of block devices. Figure 5.2 shows how block devices are accessed
if QEMU’s snapshot mode is used: All write operations are performed using the
temporary image �le. For a read operation, two cases are possible: If a sector is
allocated in the temporary image �le, it is read from there; if the sector is not allo-
cated, it is read from the backing �le, i.e., from the initial image. When committing
changes, the sectors from the temporary image are written to the initial image.

Temporary image file

Backing file

write

read
is allocated 
in temp file

yes

no

/tmp/image.img

~/image.img
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Figure 5.2: Block device read and write operations using QEMU’s snapshot mode.
Write operations are performed on the temporary image �le, while read operations
access both image �les, reading from the corresponding �le.

At the beginning of the checkpointing mechanism, dirty tracking is set up for all
eligible block devices. In every checkpoint, all block devices are iterated over, search-
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ing for dirty sectors. In the �rst checkpoint, all allocated sectors of writable block
devices are saved, essentially saving the changes made to the initial images. �is
works because QEMU’s snapshot mode is used, which creates BlockDriverState
objects with a temporary image �le for every initial image. If a sector in this tempo-
rary image is allocated, it is di�ering from the initial image. To collect incremental
data for consecutive block device checkpoints, only dirty and newly written sectors
of these temporary allocated sectors have to be iterated.

A�er �nding such a sector, QEMU’s functions for sequential reading and writing
are used to read a number of sectors at once, which saves more iterations. �is
number of sectors, n, is determined by a call to the bdrv_is_allocated() func-
tion, which checks whether the next sectors are allocated and returns the number
of consecutively allocated sectors n.�en, n sectors are read into a bu�er using the
bdrv_read() function.

5.1.3 Device States

�e approach mentioned above already covers memory and block devices. For a
loadable, complete system state, device states are also required. Since QEMU already
provides a checkpointing mechanism and device states constitute a very small data
amount (about 80KiB), this mechanism can be used to checkpoint all device states.
�is has advantages in terms of minimal required changes to the original QEMU
code, while the full range of devices with QEMU support is also supported by the
checkpointing mechanism in this thesis.

�e default checkpointing mechanism of QEMU iterates over all devices and
writes their state to a �le by either writing a bu�er using qemu_put_buffer() or
a certain amount of bytes, which leads to calls of the qemu_put_byte() function.
�ese calls need to be redirected into a bu�er that can later be sent to MongoDB
instead of a �le. To make use of QEMU’s checkpointing mechanism for only the
device states, invocations of the checkpoint function, savevm(), need to ignore
memory and block devices while the checkpointing mechanism is running, since
this is covered by the mechanisms explained above.�e implementation presented
here uses a dynamic array for the device states.�is way, the device states are not
limited in size and can easily be saved in the database.

To load the checkpoints, QEMU’s corresponding function for loading check-
points, loadvm(), can be used. �e changes to this function are reading from a
bu�er instead of a �le, which can be accomplished by changing theqemu_get_buffer()
and qemu_get_byte() functions analogous to the corresponding write functions.
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5.2 Checkpoint Structure

While the checkpointing mechanism collects data, a checkpoint has to be built. As
described in Section 4.2, three types of metadata are collected during the check-
pointing, which provide the information required to load a checkpoint, and saved in
headers.�e device state header consists of only the data described in Section 5.1.3.
For memory and block devices, more complex data is required, which is stored in C
structs.

5.2.1 Memory Headers
Listing 5.1 contains the C structs that hold the memory metadata. For each RAM-
Block, a RAMInfo is created, containing the ID string, which is used to identify
RAMBlocks, the number of pages in this block, and an array of hashes. For each
exisiting page – whether it was marked dirty at the time the checkpoint was created
or not – its hash value is included in the memory header.�is prevents searching
for data in previous checkpoints when the checkpoint is loaded and simpli�es the
saving process.�is does not decrease e�ciency, because only modi�ed pages have
to be hashed and written to a copy of the previous RAMInfo objects.

1 typedef struct {
2 char idstr [256];
3 uint64_t num_pages;
4 hash_t *hashes;
5 } RAMInfo;
6
7 typedef struct {
8 size_t size;
9 uint64_t num_blocks;
10 uint64_t num_pages;
11 RAMInfo *blocks;
12 } RAMHeader;

Listing 5.1: C structs for memory metadata. �e RAMHeader holds general
information and pointers to the RAMInfo objects, which in turn contain hashes for
each page of a RAMBlock.

To send the memory metadata as one contiguous binary entry to the database,
it is helpful to allocate a single block of memory for the structs, since their space
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consumption can be computed in advance: For each RAMBlock, a RAMInfo is
needed and for each page, a hash value is needed. Figure 5.3 shows how the memory
metadata is allocated in memory:�e blocks pointer in the RAMHeader object
references the �rst RAMInfo, which in turn contains a reference, hashes, to the
�rst hash value of RAMInfo.

RAMHeader  header

RAMInfo  info1

...

RAMInfo  infon

RAMInfo  info2

hash_t  hash1

hash_t  hash2

...

hash_t  hashm

n
m

blocks

hashes

Figure 5.3: RAMHeader and RAMInfo objects in memory.�e metadata contains a
RAMInfo object for each RAMBlock and a hash value for each memory page.

5.2.2 Block Device Headers
�e approach implemented for memory headers cannot be used for block device
metadata, because the amount of sectors that need to be included in the check-
point, i.e., the sectors that di�er from the initial image, constantly changes. Also,
preallocating a complete block device header would produce an unnecessary over-
head.�erefore, a more dynamic header is needed for block device metadata:�e
BlockHeader struct, which contains all information needed to restore a single
block device, is shown in Listing 5.2. It contains the block device’s name, by which
it is identi�ed, and sector addresses as well as hash values for each changed sector.
Both addresses and hashes are stored using dynamic arrays, which are increased in
size if they reach the maximum index.�erefore, index and size variables are used
to point to the �rst free �eld in the sector and hash arrays, and to keep track of
the maximum amount of �elds allocated for the arrays.

Saving the BlockHeaders in the database relies more on the database layout than
the RAMHeader, storing the checkpoint index, device name, sector array, and hash
array in a MongoDB document.
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1 typedef struct {
2 char device_name [32];
3 uint64_t index;
4 uint64_t size;
5 int64_t *sector;
6 hash_t *hash;
7 } BlockHeader;

Listing 5.2: C struct for block device metadata. For each device, a BlockHeader
contains the sector address and hash value of each sector that di�ers from the initial
image.

5.2.3 Data
�e data itself, i.e., actual memory pages and block device sectors, have to be read
from the VM’s memory and overlay images, respectively. A�er taking measures to
collect the data addresses and therefore gain access to the data itself as described
in Sections 5.1.1 and 5.1.2, the next step is hashing the data.�e hashing is accom-
plished using the CityHash64 function [6], which is an appropriate hash function as
discussed in Section 4.2.1. If the hash value leads to a cachemiss in the deduplication
cache (see Section 5.2.4), and the corresponding data is therefore eligible to be sent
to the database, the data is written to a BSON object and added to a temporary
bu�er. If the size of this bu�er reaches the previously de�ned limit CMD_LIMIT or
at the end of a checkpoint, it is �ushed, sending out all BSON objects to MongoDB.
�is usage of MongoDB’s bulk insert function reduces the number of single requests
and speeds up the inserting process.

5.2.4 Cache
In order to deduplicate the data, a hash-based approach is used, i.e., data is com-
pared by its hash value to �nd duplicates. Because of very fast search and insert
operations, trees are an appropriate data structure for this type of cache. For the
tree operations, the GNU libc tsearch functions [19] are used, which use red/black
trees.�e elements of the tree are structs containing the hash and an index, which
indicates the checkpoint number in which the corresponding data was last sent to
the database. �e following strategy is used to search and – if necessary – insert
hashes into the tree:

1. Run a search over the tree in order to �nd the relevant hash.
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2. If a hash was found (cache hit): Update its index to the current checkpoint
number.
If no hash was found (cache miss): Insert the hash into the tree.

Additionally, a cache cleanup is performed in each checkpointing interval in
order to meet the retention policy: If the hash was last touched (inserted, or updated
on a cache hit) at a checkpoint older than the retention value, i.e., if its index i
satis�es i < cur− ret, with cur = current checkpoint index and ret = retention value,
it is deleted from the cache. For SimuBoost, ret has to be set dynamically to keep all
checkpoints that were not already loaded.

5.3 Database

�e data that is collected, deduplicated, and bu�ered as described in the previous
sections, �nally has to be sent to the database. To decrease the downtime, all headers
are sent a�er the VM was resumed.�e memory and block device data is sent as
soon as the bu�er gets full, or at the end of a memory or block device checkpoint,
respectively. �is is done by using the mongo_insert_batch function, which is
capable of inserting an array of BSON objects into the database. All insert queries
are performed using a write concern [21] of w = 0 and j = 0, which results in
an unacknowledged query, i.e., the library does not wait for MongoDB to report
a successfull insert, but still handles network errors depending on the network
con�guration of the system.

5.4 QEMU Integration

�e checkpointing mechanism is implemented inside QEMU in order to use all
internal functions for checkpointing. Figure 5.4 shows an overview of the implemen-
tation. To start and stop the mechanism, commands and handlers for the QEMU
Human Monitor Protocol (HMP) are implemented. �e start-cp HMP handler
initializes data structures and the database connection and then starts a check-
pointing thread, which runs for the entire duration of the checkpointing. In this
thread, the actual checkpointing takes place in each interval: If the VM is currently
running, the checkpoint mechanism stops it.�en, it takes device states, memory
and block devices checkpoints. During the memory and block device checkpoints,
data is deduplicated and sent to the database. A�er taking the checkpoint, the
VM is resumed, the checkpoint headers are sent to the database as well, and the
checkpoint thread waits for the next interval. If the stop-cpHMP handler is called,
the checkpointing mechanism waits until the end of the current checkpoint and
then stops the checkpointing.
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5.5 Conclusion

�e implementation developed in this thesis relies on strong integration into QEMU.
�is bene�ts a simpler collection of incremental data. While collecting the data,
headers are built that contain information about which data has to be loaded into
a speci�c page or sector. Memory and block device data is �rst hashed and then
deduplicated using a red/black tree. Memory and block device headers use these
hashes to reference the data entities. For device states, the checkpointing mecha-
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Figure 5.4: Overview of the checkpointing mechanism implementation. Via HMP
Handlers, the checkpointing thread is started and stopped. It collects data, separating
headers from actual data entities, deduplicates it and sends both headers and data
to MongoDB.
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nism relies on QEMU’s built-in checkpointing function, savevm(), to make the
checkpointing mechanism work for di�erent device con�gurations. A�er collecting
and deduplicating the data, checkpoints are saved to MongoDB, where they can be
loaded from.



6 | Evaluation

�e checkpointing mechanism presented in the previous chapters takes incremental
and deduplicated checkpoints and stores them in a database.�is chapter performs
an evaluation of the checkpointingmechanism, �rst describing themethodology and
evaluation setup and later evaluating both correctness and important performance
aspects.

6.1 Methodology

To evaluate the checkpointing mechanism, di�erent workloads and benchmarks
were executed while taking checkpoints. For each checkpoint, performance data
is measured (e.g., dirty pages and sectors, pages and sectors sent, total downtime,
sending time, etc.) and written to log �les.

�e �rst criterion for the evaluation is the correctness of the presented check-
pointing implementation. Since with a checkpoint a system can be restored to the
exact state the system had at the time of checkpointing, this state can be compared.
Di�erent parts of the system can be examined to assess whether checkpoints restore
the system to the exact same state. Section 6.3 performs an evaluation of the check-
pointing mechanism’s correctness by comparing the system state at di�erent points
in time.

�e second criterion is the performance of the proposed checkpointing mech-
anism. Because SimuBoost requires a downtime as small as possible, di�erent
strategies were implemented to reduce both data amount by deduplication and
downtime of the VM during checkpointing. Using di�erent measurements, Sec-
tion 6.4 examines and evaluates the checkpointing mechanism’s performance.

�e benchmarks used for evaluation are a Linux kernel 3.11.6 build and the SPEC
CPU2006 401.bzip2 and 471.omnetpp benchmarks.�ese workloads were chosen
because a kernel build presents a workload that stresses memory, CPU and I/O
devices, and the two SPEC benchmarks present an easy as well as a di�cult case
for deduplication: In the bzip2 benchmark, six di�erent �les are compressed and
decompressed using three di�erend compression levels [14]. Since compression and
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decompression is performed entirely in memory, this is expected to include many
duplicates, e.g., because the same �le is decompressed three times and therefore the
same data is written to memory.�e omnetpp benchmark generates network tra�c
and simulates a large network.�is workload is less likely to produce duplicate data
and therefore to produce a higher data amount to checkpoint.

As described in Section 5.1.1, zero pages can be treated di�erently to increase
the performance. In the evaluation, zero pages are excluded in the total page count
and in the amount of deduplicated pages to only evaluate the deduplication cache
approach. Further, the presented numbers of dirty pages and sectors only include
incremental data, since this is the data amount that has to be deduplicated. At last,
the �rst checkpoint is excluded in the performance evaluation, because its data
amount includes the complete memory and overlay image, which does not yield
representative values.

6.2 Evaluation Setup

�e workloads used for the evaluation were executed on a test system, which is
equipped with an Intel Xeon E3-1230 CPU, 16GiB 1333MHz RAM, a 500GB Seagate
Barracuda 7200.12 hard disk and a 128GB Samsung 830 SSD, running a 64-bit
Ubuntu 12.10 system. Both the modi�ed version of QEMU 1.5.50 that includes
the checkpointing mechanism implementation and the MongoDB 2.0.6 server are
running on this test system. Using the modi�ed QEMU, VMs based on Ubuntu
12.04 are started, which execute the workloads and benchmarks. �e MongoDB
server is running on the same system as QEMU to achieve a faster transfer and
therefore a shorter downtime. For the simulation nodes that load the checkpoint,
this increased transfer time while loading is acceptable, since it does not have such
a strong impact on the speedup of SimuBoost as the checkpointing downtime [26].

6.3 Correctness

To evaluate the correctness of the checkpointing mechanism, the system state at the
time of checkpointing and at the time of loading is compared.�e proposed check-
pointing mechanism is considered as working correctly, if it restores the system to
its exact state when loading a checkpoint. Since device states are checkpointed using
QEMU’s built-in checkpointing function, it is assumed that they are loaded correctly.
To compare memory and block device state, QEMU’s HMP commands pmemsave
and drive_backup are used, which copy the complete memory visible to the guest
and the overlay image for a block device to a �le. First, a workload is executed to
reach a certain system state that di�ers from a freshly booted system. �e VM is
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then stopped to preserve this state, while taking a system image with pmemsave
and drive_backup.�en, a checkpoint is taken and the VM is resumed, executing
another workload to reach a second system state. A�er loading the checkpoint, a
second system image is taken.�e checkpoint mechanism is considered as correct
within this test, if the memory and block device image �les of the two system states
are identical.

Besides regular loading a�er di�erent workloads, the evaluation approach de-
scribed above is successfully performed. However, there is still a probability for
a hash collision as explained in Section 2.4 with N = 264 and k depending on the
workload, which could possibly render the complete set of checkpoints useless, if
it occurs in the �rst checkpoint for data that is rewritten in every checkpoint. A
collision-free functioning of the checkpointing mechanism cannot be guaranteed,
but a hash function can be chosen appropriately to keep the probability very small.

6.4 Performance

A very important aspect of the checkpointing mechanism proposed in this thesis
is its performance. In Section 2.3, the two performance aspects data amount and
downtime were speci�ed, which are evaluated in this section. Additionally, an
evaluation of the e�ciency of the hash-based cache used for deduplication follows.

6.4.1 Deduplication
�is section evaluates the deduplication strategy implemented in this thesis.�e
hash-based cache approach reduces both send time and data amount, therefore
its performance, i.e., the reduction of the data amount, is an important aspect. To
evaluate the deduplication performance, checkpoints are taken while executing
di�erent workloads and measuring the cache hit rate of both memory pages and
block device sectors.�e cache hit rate e�ectively re�ects the amount of deduplicated
data, since every cache hit eliminates the sending of one page or sector. For every
checkpoint, the deduplication rate of pages and sectors is measured.

Figure 6.1 shows dirty memory pages and the deduplication rate for 50 check-
points during multiple runs of a kernel build with 2GB of memory.�e deduplica-
tion rate in this runs is 11–52% (avg=17.50, median=16.38, sd=6.04).

In Figure 6.2, the deduplication rate for block device sectors during the same
benchmark is shown. Both dirty sectors and the deduplication rate have strong �uc-
tuations.�e deduplication rate in this run iswithin 7–71 % (avg=26.10,median=16.95,
sd=19.80).

Since the proposed hash-based cache approach for deduplication that can make
use of recurring data from previous checkpoints, the deduplication rate is signif-
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Figure 6.1: Dirty count of pages and percentage of memory deduplication during a
kernel build with a checkpointing interval of 2000ms and 2GB RAM.
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Figure 6.2: Dirty count of sectors and percentage of block device deduplication
during a kernel build with a checkpointing interval of 2000ms.

icantly increased. Figure 6.3 shows the percentage of intra- and inter-checkpoint
deduplication of 50 checkpoints during a kernel build with 2GiB RAM.�e amount
of inter-checkpoint deduplication is at 10–46% (avg=14.55, median=13.00, sd=5.94),
while the intra-checkpoint deduplication is only at 1–14% (avg=1.71, median=1.00,
sd=2.28).

To further evaluate the deduplication, the distance of inter-checkpoint duplicates
is measured, i.e., the di�erence of the current checkpoint index ccurr and the index
of the corresponding cache hit chit. �e measurement can be accomplished by
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Figure 6.3: Dirty pages and percentage of intra- and inter-checkpoint deduplication
of memory pages during a kernel build with 2GB RAM.

using a m × n matrix for cache size m and amount of checkpoints n with entries
mi j = ccurr − chit, which gives detailed information about the duplicate distance.
Figure 6.4 shows the amount of cache hits and their distance for nine checkpoints
with indices 5, 10, . . . , 45 during a kernel build. Most of the cache hits are within
a 5 checkpoint distance, but hits at the maximum distance occur, i.e., the oldest
checkpoint available in the cache, which is indicated by the dashed line.�e area
below the dashed line contains checkpoints that are not yet in the cache, therefore it
is only relevant for the starting phase where the number of cached checkpoints is
lower than the maximum number.

�is re�ects the functioning and e�ciency of the hash-based cache for dedupli-
cation. However, it does not accurately re�ect the actual distance of inter-checkpoint
duplicates.�is is because the cache updates the index chit on a cache hit, because the
element is used in the checkpoint at the current index: chit = ccurr.�is update causes
multiple accesses to cached elements to be only counted as an inter-checkpoint du-
plicate once per checkpoint (and counted as an intra-duplicate on further accesses)
and frequently accessed elements to constantly move backwards in the distance (i.e.,
they move towards the xz plane in the plot shown in Figure 6.4). To �nd out the
actual distance of inter-checkpoint duplicates, i.e., the time the duplicate data has
�rst been inserted into the cache, updating of indices can be disabled so that the
matrix mentioned above provides the actual values. Figure 6.5 shows the actual
distance of the duplicates and therefore the viability of inter-checkpoint deduplica-
tion during a kernel build.�e deduplication rate for the maximum distance is at
700–1000 pages per checkpoint, which is the majority of the duplicate pages.
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Figure 6.4: Memory page cache hits and their distance for nine checkpoints (indices
5, 10, ..., 45) during a kernel build.�e green areas show the amount of cache hits at
a certain distance for each checkpoint.
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Figure 6.5: Memory page cache hits and their distance for nine checkpoints (indices
5, 10, ..., 45) during a kernel build, without index updating.�e green areas show
the amount of cache hits at a certain distance for each checkpoint.

�e overall amount of deduplicated pages and sectors is important for reducing
the data amount.�is amount heavily depends on the workload: If checkpointed
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memory or block device data is reused later, it can be fully deduplicated. If, however,
only novel data is written, the deduplication rate is accordingly low. Table 6.1 shows
the average percentage of deduplicated pages and sectors in 50 checkpoints during
various benchmarks. Depending on the workload, the memory deduplication is
at 8.26–42.16% and block device deduplication is at 34.79–80.64%.�e two SPEC
benchmarks were chosen because of the percentage of memory write operations,
which amounts to 13 % for the bzip2 benchmark and to 25% for the omnetpp bench-
mark [15]. Additionally, the bzip2 benchmark compresses and decompresses six
di�erent �les using three di�erent compression levels for each [14].�e compres-
sion and decompression happens in memory, so recurring data leads to a large
amount of inter-checkpoint duplicates. In the omnetpp benchmark, network tra�c
is generated [14], which leads to fewer inter-checkpoint duplicates.

Benchmark Memory Block dev.
Avg. count Avg. % Avg. count Avg. %

Kernel build 3484 16.90% 1728 34.79%
SPEC bzip2 6766 42.16% 162 67.07%
SPEC omnetpp 2565 8.26% 155 80.64%

Table 6.1: Average deduplication of memory pages and block device sectors, and
average percentage of deduplicated data for various benchmarks. 50 checkpoints
were taken in an interval of 2000ms.

6.4.2 Data Amount

Another important aspect is the amount of data that has to be transferred and stored
in the database.�e data amount heavily depends on the number of checkpoints
to be stored and the workload of the VM during the checkpoints. Since the imple-
mentation in this thesis uses QEMU’s built-in checkpoint mechanism to checkpoint
device states, which saves all state variables without deduplication, this part of
the checkpoint is almost constant at on average 80KiB per checkpoint, which is
negligible in this evaluation. Memory and block device checkpoints, however, vary
in size, depending on the workload. Another factor is the deduplication rate, which
can greatly decrease the amount of data, and also depends on the workload.

To evaluate the data amount used by the checkpointing mechanism, multiple
runs per con�guration are executed using equally con�gured VMs with 2GiB RAM,
while taking 50 checkpoints at an interval of 2000ms.�en, the disk space used by
the MongoDB tables is measured and the deduplication amount is calculated.�e
average consumed disk space for di�erent workloads and the estimated amount of
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deduplicated data is shown in Table 6.2.�e estimated reduction is calculated using
the deduplication percentage from Table 6.1. Depending on the workload, the disk
space consumed by the checkpoints can be greatly reduced.

Benchmark Disk space used Reduced by dedupl.
Memory Block dev. Memory Block dev.

Kernel build 3.91 GiB 168.67MiB 795.25MiB 89.99MiB
SPEC bzip2 1.59GiB 122.61MiB 1158.05MiB 249.72MiB
SPEC omnetpp 5.92GiB 6.30MiB 532.90MiB 26.26MiB

Table 6.2: Average total disk space consumed by the database a�er 50 checkpoints
and amount of disk space reduced through deduplication for various benchmarks.

6.4.3 Downtime
As explained in Section 3.1, it is necessary to suspend the VM for a moment in
order to save a consistent system state, leading to a downtime. For SimuBoost,
the downtime needs to be as small as possible. �erefore, this section performs
an evaluation of the downtime, measuring the detailed execution time inside of
QEMU.

�e downtime heavily depends – besides on the workload – on the database
con�guration and the hardware of the database server. As explained in Section 2.5,
MongoDB can be used with di�erent write concerns. Another important factor is
the disk thatMongoDB uses: SSDs o�ermuch higher write performance thanHDDs.
To evaluate the performance of the checkpointingmeachnism for di�erent hardware
and write concern con�gurations, multiple runs were evaluated during a kernel
build. Figure 6.6 shows the downtime over 50 checkpoints for a MongoDB table
on a HDD using write concerns w = 1 and w = 0, and a table on a SSD with write
concern w = 0. �e HDD checkpoints with w = 1 lead to the highest downtimes
of 1200–5700ms (avg=2588, median=2364, sd=961) with wide �uctuations. Using
a write concern of w = 0 results in generally lower downtimes of 950–6300ms
(avg=2105, median=1886, sd=1122), still with wide �uctuations. �e lowest and
most stable downtimes are achieved by using a SSD with the w = 0 write concern,
resulting in downtimes of 700–2600ms (avg=1151, median=1001, sd=376).

To further examine the downtime, more detailed measurements are performed
for various parts of the checkpointing mechanism for each checkpoint:

• Total time:�e time needed to save a complete checkpoint, including all data
obtainment, hashing, and sending to the database. �is is essentially the
downtime of the VM.
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Figure 6.6: Downtime of the checkpointing mechanism with di�erent disks used
for the database and write concerns.�e checkpoints were taken during a kernel
build using a checkpointing interval of 2000ms.

• Hash time:�e sum of the time needed for calculation of the hash values for
pages and sectors.�is depends on the performance of the hash function and
the number of dirty pages and sectors.

• Cache time: �e additional time needed for searching and inserting in the
cache tree.�e cache time depends on the cache size itself and on the amount
of insert operations, which are executed a�er a cache miss and take additional
time.

• Send time: Waiting for the database query using a blocking request causes
a waiting time for the response, or at least for a successful sending of the
data.�e send time heavily depends on the database, which can cause delays
regardless of the checkpointing mechanism.

With these measurements, the actual downtime (i.e., the total time) can be
broken down into the time needed for certain parts of the checkpointing. �us,
time-intensive parts can be identi�ed. Figure 6.7 shows the percentage of the
di�erent checkpointing components, broken down into the single components:
Hash time, cache lookup time, and database send time.�e cache produces a hardly
detectable increase in downtime. Hash function invocation adds under 20% per
checkpoint, although this time heavily depends on the hash function.�e majority
of the downtime can be attributed to sending data to MongoDB, which takes about
40–60% of the time per checkpoint.�e remaining part, which is not displayed in
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the �gure, can be attributed to the data collection, copying of data to bu�ers, and
other components of the checkpointing mechanism.
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Figure 6.7: Time for sending, hashing and caching of memory and block device
data as percentage of the total downtime.

�e large part of downtime caused by sending the data can be explained by
looking at the mongostat program while checkpoints are saved: �e database
spends a long time in a locked state and with a write queue, which is caused by write
operations and causes other write operations to accumulate.�is also explains the
lower downtime when using a SSD, because data can be written at a higher rate and
less write operations accumulate.�e problem of accumulating write operations in
MongoDB can be solved by better distributing the insert operations for data:�is
can be accomplished by either using CoW to insert data while the system is running
and therefore distributing the insert operations time-wise, or by using a sharding
deployment of MongoDB. By sharding, the insert operations can be divided on
multiple servers, resulting in horizontal scaling and reducing the load on a single
server.

6.5 Conclusion

�e evaluation performed in this chapter showed that the checkpointing mechanim
is working correctly within the boundaries of hash collision probabilites. Further,
the performance aspects were examined, which showed that the hash-based mem-
ory and block device deduplication, especially the inter-checkpoint deduplication,
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greatly decreases the data amount of checkpoints.�e evaluation of the downtime
during checkpoints showed that most of the downtime stems from sending data to
the database and hashing the data.�is can be improved by using CoW or sharding
of MongoDB servers.�e average downtime is still under 2 s and therefore meets
the requirements for SimuBoost.
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7 | Conclusion

�e execution time of modern functional full system simulation is much higher
than virtualization due to more complex systemmodeling and extensive analyzation
tools. �erefore, SimuBoost aims at decreasing the execution time of simulation
through virtualization and parallelized simulation. In frequent intervals, check-
points of the virtualized system are taken, which provide the simulated systems with
a complete system state. A�er that, the simulated systems execute the workload for
one checkpointing interval.

In this thesis, a checkpointing mechanism capable of saving and loading dedu-
plicated incremental checkpoints was developed.�e requirements also included
easily distributable checkpoints, i.e., the di�culties with loading incremental check-
points needed to be avoided: Instead of searching previous checkpoints for data
until the checkpoint is loaded completely, the checkpoints in this approach were
separated into data and headers, which additionally bene�tted the deduplication.
A�er storing the checkpoint data and headers in a database, systems can obtain the
header and a�er that the checkpoint data regardless of previous checkpoints.

�e applicability of this checkpointingmechanism has been shown by evaluating
its performance:

By using a hash-based cache for deduplication, previously sent data was saved
from being sent again, which – depending on the workload – drastically reduced the
data amount that needed to be sent and later stored in the database.�e downtime
of the VMs was evaluated, showing that the downtime heavily depends on fast hash
algorithms and strategies speed up database inserts.

7.1 Future Work

�e approach presented in this thesis included a checkpointing mechanism capa-
ble of saving and loading checkpoints suitable for SimuBoost’s requirements.�e
loading mechanism, however, was only performed in QEMU and has to be ported
to a full system simulator in future research. Also, as mentioned in Section 3.1, the
downtime of the VM caused by the checkpointing should be as short as possible. Sec-
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tion 6.4.3 showed that the majority of the downtime was consumed by the database
insert operations. To address this issue, sharding can be used with MongoDB, i.e.,
multiple MongoDB servers share a collection and queries are divided between these
MongoDB instances. To further reduce the downtime, a CoW approach can be
used to collect data while the system is running.
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