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Deutsche Zusammenfassung

Die vorliegende Arbeit beschiftigt sich mit Speicherdeduplikation von Speicherseiten unter
Linux laufender Programme. Bei der Deuplikation von Speicher wird versucht, moglichst
viele Speicherseiten mit gleichem Inhalt zu finden und zusammenzulegen, sodass dieselbe
Seite von mehreren Programmen gleichzeitig genutzt werden kann und insgesamt weniger
Speicher fiir die Anwendungen bendtigt wird.

Im Arbeitsspeicher vorhandene Redundanzen konnen auf aktuellen Plattformen durch
zwei Ansitze erkannt und ausgenutzt werden: durch inhaltsbewusste Deduplikation und
die periodische Uberpriifung von Speicherinhalten auf Redundanzen. Die inhaltsbewusste
Deduplikation nutzt Eigenschaften der Daten, z.B. deren Quelle, um gleiche Speicherseiten
moglichst ohne aufwendige Analysen zu identifizieren. Die periodische Uberpriifung liest
die Speicherinhalte in regelméBigen Abstinden aus und sucht mit Hilfe von Hashwerten
nach Duplikaten.

Den Hauptteil dieser Arbeit bildet die Offline-Analyse von vier Lastszenarien. Diese
beeinhalten Desktopumgebungen mit in diesem Umfeld iiblichen Programmen (Benutzero-
berfliche, Webbrowser und Office-Programme) und ein Serverszenario mit einem dedi-
zierten Server eines Computerspiels. Die Szenarien wurden insbesondere in Hinblick auf
Redundanzen in Mehrbenutzerkonfigurationen untersucht, wie sie in Cloud-Umgebungen
tiblich sind. Die Offline-Analyse basiert auf Momentaufnahmen des Speicherinhalts, wel-
cher mittels Schnittstellen ausgelesen und archiviert wird. Diese Speicherausziige werden
dann ausgewertet, um Redundanzen gemél unterschiedlicher Vorgehensweisen zu finden.

Die Evaluation der Lastszenarien zeigt, dass Redundanzen im Speicherinhalt der unter-
suchten Anwendungen ausschlieSlich zwischen Dateien bzw. innerhalb von dynamisch
allokiertem Speicher auftreten, nicht aber zwischen diesen beiden Doméinen. Es bietet sich
daher an, diese Speicherbereiche getrennt voneinander zu behandeln, um eine effiziente-
re Deduplikation zu erreichen. Insbesondere wire auch die Deduplikation von Dateien
vorteilhaft, da diese bisher in Linux noch nicht implementiert ist.

Systemprimitive wie mmap sollten erweitert werden, um die Wiederverwendbarkeit von
Speicherkacheln basierend auf deren Inhalt zu ermoglichen. Unterschiedliche Dateien mit
gleichem Inhalt konnten so im Speicher durch die gleichen Kacheln dargestellt werden.

Linux unterscheidet dateibasierten und anonymen Speicher. Die Analyse hat gezeigt,
dass nicht nur die bereits implementierte Deduplikation von anonymen Speicher verfiigbar
sein sollte, sondern auch diejenige von dateibasiertem Speicher.
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1 Motivation

Computers ship with more memory every year. Whereas early applications tried to
use memory efficiently, common applications nowadays embrace the availability of vast
amounts of memory instead and use larger quantities of it. Many companies try to reduce
and optimize the time spent on programming instead of optimizing the resulting application
for speed or efficient use of resources. This keeps development cost down, as Random
Access Memory (RAM) is considered a cheap resource. However, what works on a small
scale on one desktop computer might not work in tomorrow’s world of cloud computing.

The advent of cloud computing caused more applications to run on central servers again,
not unlike the mainframes of the past. The central cloud server infrastructure provides
companies with virtual servers for their services. Services that can be used by small devices
like tablets to operate applications such as voice recognition or searching the internet that
need several times more computing power than the device has available. Most companies
let their employees use computers to boost their productivity. By providing them with
devices that are less powerful whereas the applications are hosted in a central efficient data
center, energy and overall costs can be reduced.

To increase this efficiency even more, the hosting of such central services is outsourced to
cloud data centers, where multiple companies can run their servers on top of an abstracted
infrastructure. To make efficient use of resources a single server machine can serve dozens
of different clients. This requires multi-tenancy support, the most popular one being
virtualization, but terminal servers are another option to consider. One bottleneck of
supporting even more clients per server is the amount of memory that can be provided per
physical host.

This is aggravated by the fact that virtual machines and applications often contain
redundancies in their memory content. For instance, multiple instances of similar or
identical operating systems contain portions of machine code that are identical. The same
application being run multiple times by different clients might require the same data in
memory to operate on. This redundancy that can be found and coalesced, resulting in
less memory required overall. This can free up memory to allow an increased density of
applications on a single host or enable programs to run more quickly by keeping more of
their data in memory.

All this is possible because memory is organized in fixed-sized tiles (so-called page
frames) that are not limited to single applications. This makes it easy to deduplicate
identical tiles in memory to a single copy. An intuitive way of deduplication is looking at
each tile, calculating a hash over the content, and comparing it to a list of already calculated
hashes. If a match is found, memory can be freed up by merging the corresponding pages.
It is also possible to infer knowledge about redundancies from certain observable actions.
If a single disk block is read multiple times by different entities, it is likely that it will
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be saved as duplicates in different memory locations. Common operating systems avoid
this, but virtualization reintroduced this problem as the host does not know how the guest
manages its file cache.

Current systems include methods to primarily deduplicate memory used by virtual
machines. Other scenarios, such as native applications or sandboxes, require a more
generalized view on memory deduplication. Deduplication enables us to need less memory
for applications. However, spending too many resources on this task, for example processor
cycles, might void the benefits.

One benefit is to serve more clients on one host, for instance by fitting an additional
virtual machine on it. Another benefit is being able to keep more disk content in mem-
ory, which can speed up applications. Disk I/O is costly, even more so in virtualized
environments, where content of many hosts is stored on busy storage systems.

Objectives

The objective of this thesis is to gain insight on memory sharing opportunities in native
applications and sandboxes on Linux. Previous works have focussed only on deduplication
of memory content in Virtual Machines (VMs). They did not look at the applications
within the VMs as to where redundancy is coming from. By eliminating the opaque layer
of virtualization and looking directly at native applications on Linux we can determine if
memory deduplication is beneficial even outside of the context of virtualization.

The scenarios we used to find redundancies in memory content include single-user
and multi-user desktop environments, as well as a game server. From this we deduce in
this thesis how memory deduplication techniques should be adjusted to cope with native
applications, on which the Operating System (OS) has more information than it has about
the memory layout of a guest OS within a VM.

Structure

This thesis is structured as follows:

Chapter 2 gives the reader background information on the creation of virtual memory
and how it is implemented in today’s most common processor architecture (x86-64).
Furthermore, it outlines how the Linux kernel manages physical and virtual memory
and how its file caching operates.

Chapter 3 focusses on related work in the field of memory deduplication. It presents two
different techniques on how to find duplicates in memory, either by using knowledge
about the data or by periodically polling the data for changes.

Chapter 4 describes three approaches that have been carried out in the course of this
thesis to gather insight on sharing opportunities: full-system simulation, adjustments
to a Linux implementation of memory deduplication and application snapshots. It
describes how sharing information can be deduced from such application snapshots.



Chapter 5 introduces the different scenarios in which we applied memory snapshots and
the results on memory content sharing within these snapshots.

Chapter 6 discusses the sharing opportunities within native applications, previous results
on memory redundancies in VMs, our own evaluation results and presents possible
improvements that could help with identifying memory redundancies in applications.

Chapter 7 concludes this and provides a summary of our findings and an outlook on
future work.






2 Fundamentals

This chapter introduces the fundamental concepts used in this thesis: an introduction to
the concept of virtual memory and how it is implemented. Section 2.1 explains how and
why virtual memory was created. The implementation of hardware-assisted paging on the
x86-64 architecture is described in Section 2.2. Section 2.3 describes the data structures
used by the OS to keep track of virtual memory layouts in tasks. Finally Section 2.4
explains the Unix mechanisms mmap and fork and the concept of Copy-on-Write (COW)
memory management.

2.1 Origin of Virtual Memory

Virtual memory was introduced in the 1960s as a means to ease programming. The
first computers started off with one contiguous chunk of physical memory in which a
single thread of execution operated. In addition to this, secondary memory in the form
of magnetic drums held data that did not fit into memory. When writing a program that
exceeded physical memory, the programmer needed to explicitly manage the fetches and
stores into secondary memory. Virtual memory eliminates this need by providing the
programmer with a large chunk of contiguous memory. This memory is called virtual
memory as it does not exist as-is in physical memory. Instead, the hardware is now
responsible for providing this virtual view on physical memory to the application. Content
that cannot currently be stored in memory or is not needed for a prolonged amount of time
is paged in and out by the hardware as needed.

This was based on the observation that most programs have a “working set” of data
that varies over time as data is being processed [Denn96]. The parts of the data that are
not currently needed by the program can be moved to some kind of stable storage system
(disks or tapes back then) to be retrieved at a later point as needed.

Conveniently, the introduction of virtual memory also solved the memory protection
problem. Two processes are commonly being run in separate address spaces, which isolates
their data from malicious reads and writes and inadvertent modifications of data in memory.
Only one address space is active at a time and a process cannot access memory content
beyond all the mappings defined by the address space. Protection flags like write or read
protect were included when virtual memory was integrated into the hardware, providing a
trusted base for an OS to rely upon.

In general, virtual memory serves as an abstraction of the available physical memory
that allows objects to be placed at any place within the available address space, relieves the
programmer from concrete memory configurations, provides protection, and makes use of
the memory hierarchy transparent. [Denn96]
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On the successors of the PC that we commonly use (based on the x86-64 Central
Processing Unit (CPU) architecture), the Operating System (OS) keeps track of all memory
segments an application requested. It then fills CPU data structures with memory mappings,
so that memory access can be resolved without further interaction with the OS. Both sides
are discussed in the next sections en detail.

2.2 Hardware Support for Paging

Current processor architectures provide virtual memory mechanisms to distribute the
available physical memory between multiple distinct processes, providing isolation and
flexible memory layouts to applications. The mechanisms are implemented in hardware
in order to reduce performance penalties introduced by the abstraction. Direct access to
memory needs to be converted to the hardware view on every load and store operation,
hence software interaction would be very costly. Physical memory is partitioned into page
frames of fixed size to avoid external fragmentation. This means that fixed boundaries are
used, regardless of the size of the data. This avoids memory areas that cannot be filled
because the allocations would be too large. The page frames can be allocated freely by the
OS kernel to processes and for its own use.

The mapping mechanism is provided by a Memory Management Unit (MMU) that can
be imagined as sitting between the processor and memory. One early instance of this
unit was provided by the TENEX Paged Time Sharing System for the PDP-10 (the “BBN
Pager”) [BBMT72]. By implementing this functionality in hardware it is also possible
to track referenced pages to get hints which pages can be paged out because they are no
longer part of the working set. The TENEX system also implemented page sharing: pages
that can be mapped (i.e., that can be accessed) by multiple processes. The hardware of the
PDP-10 already allowed trapping write accesses to protected memory which can be used
to implement Copy-on-Write (COW). A trap interrupts the currently running program and
gives the OS the opportunity to implement custom behavior before returning control to the
userspace program. Whenever a write access to a shared page is made, the OS can allocate
a fresh page frame, copy the content, and provide the resulting copy to the process to write
to. Other processes will not see the changes, still in the non-write case memory is saved.

Two different types of addresses are used within the hardware: physical and virtual
addresses. Physical addresses are used to address memory cells in Dynamic Random-
Access Memory (DRAM) and might be required by devices for Direct Memory Access
(DMA) operations. Userspace programs commonly use virtual addresses instead, which are
mapped by the hardware to their corresponding physical addresses. This is accomplished
by consulting paging structures in memory. One such structure exists for every protection
domain, the so-called “address space”, and only one is active on a core at a given point
in time. Every userspace thread belongs to one address space. If only one thread exists,
the combination between thread and address space is called a process. The OS retains
the absolute control over the paging structures and userspace programs commonly cannot
modify any page tables.



2.2 Hardware Support for Paging

The remainder of this section will deal with paging on x86-64, the processor architecture
used in the successors of the PC we use today.

Paging on x86-64

Application

Operating System Hardware
CR3
Task MM VMA 1
mm mmap start PTE PDE |[<*PDPTE [«pPML4E
code end PDE
brk file? /
stack TWX
shared? /
L / Page Page Page
current task PTE Directory  Directory Map
— . Pointers Level 4
Table
1
l Page
Table

Figure 2.1: OS-level and hardware-level paging structures.

Paging on the x86-64 architecture (x86’s “long mode”) uses a four-level page table for
the standard page size of 4 KiB, as depicted on the right hand side of Figure 2.1 on page 9.
Every address space has a distinct “Page Map Level 4 (PML4)”, to which a pointer is
stored in the processor control register CR3. This register is updated on every address
space switch. Traditionally this will also flush the Translation Lookaside Buffer (TLB) on
the x86 architecture. Page tables can be shared between processes.

To avoid costly TLB flushes, the OS kernel will operate under the currently selected
address space. Page tables provide special bits that restrict access to memory areas to
machine code running with special supervisor (“Ring 0”) privileges. Kernel memory can
be mapped into the address space of every process without risks of malicious reads or
writes. Furthermore, all available physical memory is mapped into a certain range of
virtual addresses that is identical in every address space. These mappings can easily be
shared by placing pointers to common paging structures in PML4.

These pointers point to the next level, as seen in Figure 2.1, to the Page Directory
Pointers Table (PDPT). This page directory in turn contains pointers to Page Directories
(PDs), which contain pointers to Page Tables (PTs). Their corresponding entries (Page
Map Level 4 Entries (PMLA4Es), Page Directory Pointers Table Entries (PDPTEs), Page
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Directory Entrys (PDEs), and Page Table Entries (PTEs)) are all one machine word (8
bytes) long and 512 of them fit into one page of memory. Every entry has a slightly
different format depending on the level within the page table and whether the mapping
terminates. This makes it possible to define pages larger than 4 KiB: termination at the
PD level will create a page of 2 MiB, termination at the PDPT level will create a page of
1 GiB. Commonly the PTE is the final entry to resolve the virtual-to-physical mapping.
The result of the resolving process is cached in the TLB to speed up further accesses to the
same page. [Int13]

Page Tables in Virtualization

Full-system virtualization introduces another layer of indirection into the process of
resolving memory locations. A complete second OS runs within a host OS, called the
hypervisor. This means that not only need memory access to be translated from the
application’s virtual addresses to physical memory access, an additional mapping from
a guest’s physical memory to the host’s physical memory is established. This is done to
abstract the host’s memory management from the guest and to look like real hardware
to the guest OS. Such a guest is called a Virtual Machine (VM), as a complete machine
with peripherals is emulated. The hypervisor sees each virtual CPU of each guest as a
schedulable process and allocates it system resources similar to normal processes. The
physical memory of the guest is hence userspace memory to the host (i.e., heap space),
with a few extensions in hardware to make the translation be handled more quickly. Such
memory can also be subjected to swapping if memory pressure arises. Different techniques
were used to accomplish the additional mapping, to arrive at the Nested Page Tables we
use today. They were as follows:

Paravirtualization Before the advent of hardware-assisted virtualization on x86 (Intel’s
VT-x and AMD-V), a hypervisor relied on paravirtualization, requiring changes to the OS
of the guest. Virtual memory management was explicit by the use of hypercalls (calls by
the guest OS to the hypervisor), with the hypervisor checking every page table modification
for correctness with relation to isolation and taking care of appropriate TLB flushes if
needed. The hardware page tables in use were the usual per-process page tables and
hypercalls were needed on every process switch. [BDFH03]

Shadow Page Tables Hardware extensions for Virtualization allow to trap the setting
of CR3 in the guest. This means that address space switches can be detected without
cooperation by the guest. However, the page tables provided by the guest still need to be
checked for safety reasons. The guest must not be allowed to write or read outside of its
confined boundaries. The hypervisor maintains an internal shadow copy of the guest’s page
table and provides this to the hardware. If a page fault occurs because a mapping is not
yet present in the hardware-accessible shadow copy, the guest’s page tables are inspected,
verified and a mapping inserted into the shadow page tables. [DeBR02]
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Nested Page Tables AMD’s Rapid Virtualization Indexing (RVI) and Intel’s Extended
Page Tables (EPT) provide a more intelligent TLB, which is aware of Virtualization and
the required additional mapping step. VM switches no longer need to flush the TLB as
VMs and their mappings are now identified by a new identifier. Furthermore, the guest is
able to set CR3 directly to its own set of page tables and the hardware extensions verify
that the boundaries imposed by the hypervisor are obeyed. [Int13]

2.3 Virtual Memory Representation in Linux

An OS has a high degree of freedom in how it manages the available memory. This section
contains the abstractions that Linux uses to describe its view of virtual memory.

VM Data Structures

Linux needs to keep track of processes, their address spaces and all individual mappings
within these address spaces. The left hand side of Figure 2.1 on page 9 shows a graphical
overview of the structures used.

Virtual Memory Area (VMA) A continuous mapped area in a process’ address space
is represented by a vim_area_ struct. It contains a start and end address (both naturally
virtual) for the mapping, page protection flags (read, write, exec, and shared) and a
reference to a backing file if the area is not anonymous. Hints set using madvise(2) are
kept in the VMA. Examples are mergeable (page can be merged using Kernel Samepage
Merging (KSM), as described in Section 3.2.2), sequential read (pages read by the process
are likely to be discarded sooner), or “don’t fork™ (do not inherit this area on fork). All
VMAs belonging to the same address space are part of the same linked list and red-black
tree, so that they can be retrieved. VMASs have a direct relation to /proc/<pid>/maps,
which is described in more detail in Section 4.3.

Memory Management (MM) mm_struct describes the entirety of an address space.
The structure is tied to a running task, it holds a reference to the binary that was loaded into
the address space. Information from the Executable and Linkable Format (ELF) header
of the binary are stored in this struct like the start and end address of the code and data
segments. The kernel keeps track of the “program break”, one way to allocate memory that
uses sbrk(2) and brk(2), and the stack size. When a program is loaded the environment
and command-line arguments are passed through defined memory locations, which are
also tracked for later retrieval through the proc filesystem. Counters are included to export
memory usage information to other processes in a quick fashion. The struct holds critical
locks like the page table lock, which needs to be acquired for every modification of the
process’ page table.

11
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Tasks For every task in the system a task_struct is kept to hold information rel-
evant to the scheduler. Among this information is a pointer to the task’s address space
(mm__struct), which is relevant for context switches and to resolve page faults of the
currently running process. Every CPU has a CPU-local variable called current_task
that points to the task_struct of the currently running task.

Page Frames

The Linux kernel distinguishes between named and anonymous page frames in memory.
For every page frame the kernel keeps a struct page that contains flags, for example from
Least-Recently Used (LRU) tracking or if the page is not currently allocated. A mapping
pointer signifies which type of frame it is, by pointing to either an inode (together with an
offset) or to a list of related VMAs. If KSM is in use the page frame can also point to a
merged page node in KSM'’s stable tree.

Anonymous page frames Anonymous page frames reference a list of related (anony-
mous) VMAs. The design of anonymous memory already includes copy-on-write seman-
tics, so the relationship is one of one page frame to many applications, possibly even
multiple locations within the same application. A VMA represents an area of virtual
memory within a single process. For anonymous memory the relevant information are
which virtual addresses are defined and page protection and flag bits (read, write, execute,
and several more).

The Linux kernel already supports merging anonymous pages using KSM. This is
implemented as a special case of anonymous page that coalesces multiple previously
unrelated anonymous VMAS to point to a single page frame, which is read-only. If write
accesses are allowed by the VMA a new page frame has to be allocated and the content
copied. This is described in more detail in Section 3.2.2. [BoCe05]

Named page frames Named page frames reference exactly one inode in a file system.
They are part of the page cache, an in-memory caching structure that holds the kernel’s
current view of all regular file I/O. Every file is represented by a radix tree of pages, which
can be partial if a file has not yet been completely read from disk. Applications using mmap
to map parts of files into their memory directly map the relevant part of the underlying
page cache. Regular I/O using read and write (that is without the O_DIRECT flag on
open(2) being set) modifies the page cache and is written back to disk after a configurable
amount of time or if the user initiates it. I/O bypassing the page cache has to be done in a
careful way as reading back from another file descriptor that does not have O_DIRECT set
might yield stale data.

File Caching

The Linux kernel maintains a view on all mounted file systems in memory. With normal,
non-clustered file systems the kernel’s view is authoritative and it is assumed that no

12
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changes can be made on the underlaying disk unless they are committed by the kernel.
This allows to provide a caching structure in memory into which content is read from disk
and kept there as long as there is no memory pressure. If the cache content is modified, a
periodic process will flush the changes to disk.

Such an in-memory caching structure is important when memory mappings are needed,
memory areas that are directly accessible by the CPU and allow the direct access of file-
backed data as memory. The read and write system calls could work with application-local
buffers, but for mappings there should be a consistent view onto a file’s content. This
also allows the implementation shared memory through the use of a shared backing file.
Modifications by writes into memory are tracked by the hardware and the page are marked
as being dirty.

For every inode in memory a struct address_space is created that references the source
device, contains the radix tree of all pages containing content of the file in memory, contains
function pointers provided by the file system for various operations (e.g., read, write, and
free) and allow to determine which processes have the specified file mapped.

The page frames are commonly populated by allocating a new one, submitting a DMA
request to the disk to fetch the corresponding content, and by inserting the result into the
radix tree. Page frames are first class objects that are passed to the file system layer directly.
There is no additional abstraction layer that allows some kind of indirection. One such
example would be the introduction of a Copy-on-Write (COW) logic when dealing with
duplicate content in frames belonging to the page cache.

Linking and Virtual Memory

The execution of programs on a Linux system extensively involves virtual memory. When
invoking an ELF binary on a Linux system, the Linux kernel will load its header into
memory to determine the dynamic linker needed to resolve all library dependencies. It
will then map all sections of the binary into memory that the header declares. The ELF
interpreter will be loaded in the same address space and the control of the process is
transfered to userspace, invoking the linker’s entry point. The linker maps all needed
libraries into the same address space and resolves all symbols in the application that
depend on dynamic linking (relocations). The libraries are also ELF files with header
containing information similar to binaries. Likewise libraries can depend on other libraries
that need to be loaded. Only when the expected working environment within the address
space is completely mapped and all relevant symbols resolved is the control transfered to
the program itself.

Address Space Layout Randomization Address Space Layout Randomization (ASLR)
is a technique that introduces randomness into the virtual memory layout of a process. This
is done for security reasons to make target addresses for malicious jumps harder to guess.
Exploits that try wrong jump addresses will cause their host program to be terminated and
hence running the exploit’s payload might be avoided.

For ASLR to be effective, it is required to compile applications as Position-Independent

13
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Executable (PIE) and libraries as Position-Independent Code (PIC), which means that
they can be loaded to any base address in virtual memory. This does increase the number
of relocations needed because less jumps can be pre-determined and be made absolute.
Instead additional tables (like Procedure Linkage Table (PLT) and Global Offset Table
(GOT)) and indirect jumps are needed to resolve the code and data locations at runtime.
Some of the runtime overhead can be eliminated by caching the symbol looking results
and providing small trampolines at known locations.

The tables will most likely differ for each application because the load addresses will be
picked at random on process creation, so only forking and preserving the process’ memory
image will retain the same tables. The application’s address space will also span a larger
area, which requires more page tables to be created in memory to cover these areas.

2.4 Sharing Memory Mappings

Virtual memory allows application to share memory by allowing multiple applications to
access the same page frames. Sharing might both be read-only, with sharing being broken
when an application tries to write, or completely read-write.

mmap(2) is a system call that provides applications with memory mappings within their
address space. They can either be file-backed (named) or anonymous (by specifying no
file, hence the name). Such mappings are created in the kernel’s view on the process and
reads and writes within these memory ranges are served on demand. This means that if a
mapping is file-backed the data is read from disk when needed, not when the mapping is
created, and the memory allocation for anonymous memory will commonly only happen
on first access. The memory’s protection bits (read, write, and exec) can be controlled
when the mapping is requested. Furthermore, mappings can either be shared, which means
that updates to a file will be visible to all processes mapping the same file, or private, which
keeps modifications confined to the application applying them. [mmal2]

Copy-on-Write (COW) is the technical term for the efficient sharing of significant
amounts of data which is duplicated whenever a private copy is necessitated through a
write operation. Such data can be stored on disk like base disk images of VMs with
modifications for each VM being stored differentially in another file.

In the context of physical memory the base page frames will be marked read-only within
the MMU’s data structures (i.e., page tables) for all applications that share the frame. A
write to the page frame by one of the sharing applications will cause a page fault and the
kernel will copy (and hence duplicate) the content into a new page frame. The page table
entry is then adjusted to point to the new page frame. This strategy also allows an efficient
preallocation strategy, which is used, for instance, with a global page containing all zeroes.
As this is a common pattern for allocation with programs written in C, one page frame can
be reserved to contain just zeroes, which is then mapped into the requesting application’s
address space on memory allocations.

14
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fork(2) is a Unix primitive that allows the creation of new processes based on the
process calling it. The call will return twice, once in the parent and once in the child. On
Linux, both processes will share memory in a COW fashion by default and inherit all
open files. If a memory mapping is set to being shared, modifications to the memory will
be visible in both processes. This works for both file-backed and anonymous mappings.

[forl2]
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3 Related Work

This chapter presents two different deduplication approaches that have been proposed by
the research community: content-aware deduplication that exploits knowledge about a
content’s origin to coalesce identical pages in Section 3.1 and periodic memory scanning
in Section 3.2.

3.1 Content-Aware Memory Deduplication

Contemporary OSs employ several means of avoiding duplicate content in memory. For
instance the content of files mapped into memory is shared among processes. Libraries are
loaded into memory once and their binary code is available for other programs that link
against them, as long as the linker resolves the dependency by using the same file on disk.
This exploits knowledge about data on disk to deduplicate memory without scanning all or
parts of the memory. Content-aware deduplication can extend this to other areas.

If content is fetched from a base system image that is shared by multiple VMs, a
hypervisor can keep track of requested disk blocks and the target memory locations they
were copied to. It can then refer further disk accesses from other VMs to the same locations
on disk to the content that is already in memory. Disk content requested by a VM will be
transfered to it by DMA, similar to what would happen on a real host talking to a disk. The
hypervisor can mark the target area pre-emptively read-only and track if the content of the
page frame changes. If not, it can simply be reused for another VM. [BuDR97]

On Unix-like OSs the fork operation will not copy every page of the forking process,
but instead will share as much content as possible “copy-on-write”. This means that child
processes will reference pages of the parent until they or the parent write to that specific
page in memory. It will then be copied and a new page frame be provided to the application.
This is realized by marking the page read-only in the process’ page table and resolving the
resulting page fault on write appropriately.

Android — which is based on Linux — provides a central process called the Zygote which
contains an instantiation of the Dalvik VM. Dalvik provides the runtime environment
to Android apps by providing a bytecode interpreter and access to the libraries provided
by Android. The Zygote forks a new process when a new app is started, sharing all
Dalvik code and all initial heaps copy-on-write with its child environment. This reduces
the memory footprint. [Brad08]

SnowFlock [LCWSP*09] implemented this similarly for complete OSs running within
VMs. They chose copy-on-access for the VMs based on a revision of a central base
memory image that is guaranteed to be immutable in memory. Further changes to the base
memory image will happen in a copy-on-write fashion.
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For security reasons pages newly allocated to a process should be initialized with zeroes.
This avoids leaking potentially sensitive content written by a previously run application to
other processes [Wald02]. An OS can do this lazily, by providing one single central page
filled completely with zeroes. This page can then be mapped read-only when an application
is requesting memory that can be satisfied with a full and aligned page. Modifications to
this page will be trapped (alike “copy-on-write”) and the page replaced with a separate
page frame that really is initialized with zeroes. The advantage is that memory that is never
written to but still allocated in advance does not need to be provisioned “for real” to the
process [BoCe05].

3.1.1 Disk Content Sharing in Memory

Different approaches to disk content sharing in memory have been proposed. One is to
be completely transparent. Examples of this are the interception of DMA and Multics’
approach of segments that will be retrieved on-access. Another approach is to require
cooperation of multiple entities like it is the case with IBM’s Execute-in-Place filesystem
or the Satori changes to the Xen hypervisor.

Intercepting DMA The Disco Virtual Machine Monitor (VMM) by Bugnion et al.
[BuDR97] implements memory sharing through the interception of disk DMA requests.
Disk blocks are read into memory once and kept in memory managed by the VMM. To
satisfy the VM’s DMA request, Disco will then map the memory location read-only into
the VM’s physical memory to the target location of the DMA request. In the VM, in this
case running IRIX, the memory area will become part of the buffer cache. This effectively
allows multiple VMs to share their buffer caches. Writes to the disk will be private to each
VM and be logged by the VMM, providing a copy-on-write disk environment. Disks can
optionally be made non-persistent, thus providing a snapshot-alike VM environment in
which VMs can be restored to an original state with little disk space and memory overhead.

Multics Multics provides the programmer with direct access to all on-line information,
by defining so-called segments that are transparently fetched from the I/O device containing
them when the processor accesses them. Memory is then a transparent disk cache. All
processes accessing the same data are using the same area in main memory. [BeCD72]

Execute-in-Place Filesystem IBM’s Execute-in-Place file system [IBM04] uses memory
segments that are shared between multiple VMs to eliminate multiple copies of binaries
in RAM. These segments are read-only and not backed by real disks. The key of this
solution is that the CPU is able to address those shared segments directly including code
execution without any need for previous load or fetch indirections. This eliminates the
page cache copies which are needed when the backing store cannot be addressed directly.
Pages of binaries found on this virtual disk are mapped from this segment directly into
userspace programs. To address files a simple file system based on ext2 is created in
memory. Similarly it is possible on IBM mainframes to split the Linux kernel into a
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shareable (read-only) and a private (read-write) part. The read-only part can be shared
between VMs running the same kernel version.

Satori Milds et al. [MMHFO09] propose in their paper additional “enlightenments” (para-
virtualization) that can be added to the kernels of VMs to arrange sharing of identical
content and to improve memory allocation to different VMs. One such modification is the
introduction of a “repayment FIFO” that contains pages the guest is willing to give up in
situations of memory pressure. The guest provides writeable private volatile pages that can
be taken away without synchronous involvement of the guest. If the host would otherwise
fail to allocate memory to a VM it can instead take a page out of such a FIFO instead of
implementing paging to disk.

The proposed change for actual memory deduplication is the introduction of sharing-
aware block devices. If multiple VMs run from the same disk image, only differences
are stored per-VM. The storage layer is aware of these differential images and will map
unchanged contents of the base image for all VMs to the same disk blocks. Such requests
are tracked and the result be mapped read-only into the guest’s memory. When another VM
requests the same block, the hypervisor can then check if the content is still in memory and
map the same page frame to the requesting VM, effectively saving a repeated read request
going to the disks and saving the duplicate in the other VM’s page cache. This approach
does not involve memory scanning and does not incur a significant runtime overhead. Their
sample implementation targets the Xen hypervisor.

3.2 Periodical Memory-Scan Deduplication

Another approach to find duplicate content in memory is periodically scanning it. The
following sections describe two example implementations of such memory scanners: one
in VMWare ESX and one in Linux.

3.2.1 Memory Scanning in VMWare ESX

Waldspurger [Wald02] describes how VMware ESX Server employs memory sharing
between VMs to reduce overall memory pressure and provide higher levels of memory
overcommitment on x86. It is assumed that modifications to the kernels within the VMs are
not possible, for instance, in the case of Windows, the source code might not be available.
Hardware virtualization extensions were not yet available in the CPUs of the time.

The general approach of Waldspurger is the following: Page contents are hashed with
a 64-bit hash function and the resulting hash is used as a key for a hash table of page
frames already marked as being read-only. Writes to these frames would cause any existing
sharings to be broken, the content copied and a new page frame be given to the VM
(“copy-on-write”). Hence their content is stable and not subject to changes. If a hash
match is found within said hash table, a full content comparison is performed. If and only
if both pages have the identical content, the redundant copy is reclaimed and the reference
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of the guest’s physical memory adjusted to point to the shared copy. At the same time a
reference counter on the shared page frame is increased.

To find sharings more quickly the page’s hash will be opportunistically cached as a hint
if no match was found in the hash table. If a later hash operation yields the same hash as a
hint, ESX Server will establish if the hinted page changed in the meantime and merge both
pages if this is not the case. Pages with identical hashes but diverging content will not be
shared on the grounds that the hash collision probability is low.

The author proposes several strategies on how memory can be scanned: sequentially,
randomly or by employing heuristics. Such heuristics can include pages marked read-only
by the guest OS or pages from which code has been executed. Both could indicate binaries
being present in those pages. VMware opted for a random scan strategy using a fixed rate
of pages being scanned per time interval.

3.2.2 Kernel Samepage Merging (KSM)

Arcangeli et al. [ArEW09] implemented memory sharing in the Linux kernel. The module
is called KSM and deals with the scanning for and merging of duplicate anonymous pages
in memory. A kernel thread scans n pages of memory every m seconds for duplicate
content.

Each page scan iteration involves checking the current page’s content against the stable
tree, a data structure containing all already merged pages. The corresponding page frames
are referenced at least once and write-protected in memory. If a match is found, the
reference to the page being scanned in the page table can be replaced with one to the
merged copy and the page’s frame can be reclaimed.

If no match is found, KSM checks if the page in question has not changed between two
consecutive scanning rounds. If this is the case, it is compared against the unstable tree,
containing all pages that have previously been scanned but not yet merged. If a match is
found, a new copy of the page’s content is created and both old copies are replaced with a
reference to the new page frame. If no match is found, the page is inserted into the unstable
tree.

KSM was designed with efficiency in mind: only pages that are likely sharing candidates
should be scanned and lookups in the various tree structures should incur a reasonably
low overhead. It relies on applications providing hints about which pages should be
merged. These hints are implemented through the madvise(2) system call: applications
set the MADV_MERGEABLE flag on such memory areas. This flag was introduced by
KSM. Applications need to be manually adjusted to take advantage of this facility; one
big user is gemu — originally a full-system emulator and now providing the hardware
emulation for virtualization —, which brings memory deduplication to virtualization on
Linux. gemu allocates the guest’s memory on its heap and hints it, so that duplicate pages
can be reclaimed. Arcangeli et al. cite scientific reconstruction jobs at CERN as a positive
example: they were found to create many equal pages. These could be deduplicated
by letting a wrapper around mal1oc(3) hint the resulting allocations. Furthermore, the
authors explicitly states that it is possibile to merge kernel memory and page cache contents
using one layer of virtualization, with KSM running on the host.
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Figure 3.1 on page 3.1 shows how the KSM thread operates. It sleeps a predefined
amount of time (sleep_millisecs) and then wakes up to scan a maximum amount of pages
(pages_to_scan) within the hinted areas of memory. The stable tree contains already
merged page frames, their content is stable and will not be changed. Modifications will
allocate new page frames. Scanned pages will be checked against this tree first and be
replaced with the merged copy if they are identical. If the page in question does not match
with any in the stable tree, KSM will do a comparision against the checksum results of the
last complete run. If a match is found the matching page needs to be rechecked, as it might
have changed in the meantime. Is this not the case, both references will be replaced with a
copy of the data placed in a newly allocated page frame. If no match is found, the page
will be added to the unstable tree. Finally, when the defined amount of pages was scanned
or if there is nothing more to scan, the thread will go back to sleep.

ksmtuned There is little research as to how the KSM parameters should be set. One tool,
ksmtuned, has been developed, which turns off KSM as long as some amount of memory is
still free and turns it on otherwise. The scanning frequency (the variable “pages_to_scan”™)
can be increased if more memory needs to be reclaimed. Still, ksmtuned does not have
or provide any more information about reclaimable memory itself, it just tries to reduce
memory usage at the expense of more CPU cycles spent scanning.

Exploiting Disk I/O for Scan Priorities XLH is an extension to KSM that introduces
a priority queue of page frames to scan, based on them being the target of DMA disk
I/O requests. These hints are stored in a bounded buffer and are considered as merging
candidates first, with non-hinted page frames only being considered when the list of hints
is exhausted. This approach can be implemented completely within the host without
assistance of the guest or the storage system. [MFGR " 13]

Difference Engine on Xen

Savage et al. [GLVS™10] add page sharing through memory scanning similar the ap-
proaches of ESX server as presented in Section 3.2.1 and patch-based memory deduplica-
tion to the Xen hypervisor. Patching allows to retain only one copy of the base content plus
a small patch in memory if it is similar to an existing other page in memory. This is only
beneficial if the patched copy is not currently part of the working set, as a memory access
to this page will require the hypervisor to create a copy and patch it to restore the original
content of the deduplicated page. Furthermore, Difference Engine adds page compression
of currently unused pages to Xen, which allows to save some memory without paging it
away to disk where it will be much slower to retrieve than an uncompress operation in
main memory.
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This chapter presents the different approaches we took to determine memory deduplication
opportunities of programs running on Linux. It documents in Section 4.1 an approach
that was initially taken to measure memory deduplication opportunities over time, which
did not succeed mainly due to the lack of trace files. Section 4.2 describes our efforts to
implement the merging of file-backed pages in Linux and how they failed. Section 4.3
describes the interfaces Linux provides to access another application’s memory image,
which our memory dumping tool uses. Section 4.4 presents our approach on measuring
the deduplication potential based on the data obtained by the memory dumping process.

4.1 Tracing Memory in a Full-System Simulator

We originally intended to use the memory access analysis framework developed by Marc
Rittinghaus [Ritt12] as the foundation for the work. It extends the full-system simulator
Simics by Wind River Systems, Inc. [Wind] with the possibility to collect and store any
memory write operation during the course of the simulation. Simics is a powerful simulator
that can emulate a wide range of CPUs and is commonly used as a virtual platform for
embedded development and debugging.

The extensions by Rittinghaus store all reads and writes executed by the virtual CPU.
Furthermore, the OS is instrumented to pass task information such as the currently running
process, task creation and destruction, and memory map information to the simulator via
the use of a special CPU instruction. This allows the inspection of the memory content at
any given time, annotated with precise information which processes have mapped which
page frames. For named page frames their source filenames are as well. A Graphical User
Interface (GUI) tool is provided by Rittinghaus which parses the information up until a
specific time code and provides the user with a visualization of this data.

Storing all reads and writes allows to see any sharing opportunity, even if it persists only
for a small amount of time. Furthermore, information from the future could potentially
be used. This would allow to implement a perfect oracle offline algorithm for memory
deduplication, yielding the minimum amount of memory in use for every point in time.
In addition one could distill prediction functions from the data that can be used by a
memory merging algorithm to check if a page is likely to be shared in the future. This
makes this approach a valuable data source, as it offers capabilities that go beyond running
experiments on current hardware. It is not possible to track every write access on today’s
CPUs; memory snapshots have to be taken after predefined timeslices instead.

The framework also includes the possibility for users to provide scripts written in C#
that analyze the data. The scripts receive every event sequentially in the order in which
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they have been recorded. The script is responsible for tracking all the state it needs for
conducting the analysis, based on the information it receives. Random access within the
data streams is not possible. Due to the vast amount of events and the time spent processing
each of them, this analysis process is lengthy and very memory-intensive. Rittinghaus
states that “for a single simulated minute of a single-core 20 MHz processor a billion trace
entries (10 bytes each) are generated” [Ritt12]. Even though they are stored compressed,
they still need to be decoded and fed into the analysis system. The scripts can only keep a
fraction of this data in memory.

The main drawback with the extension of Simics itself was that the instrumented
execution of any application within the OS on a simulated processor is very slow. A
Linux kernel build, a common workload to be analyzed as, for instance, by Miller et
al. [MFGR " 13], had to be terminated after a few weeks, as it progressed too slowly. The
slowdowns encountered were more than 5000 x, it would have taken ten months for the
build to compile in this setup [RMHB13]. Traces that were created only lasted a single digit
count of minutes of simulation (i.e., in real time as seen by the emulated 20 MHz CPU).
These already took hours to create. These early experiments suggested that it would not be
possible to generate meaningful traces in a reasonable time frame. Hence the amount of
available memory traces, created with this tracing framework, was severely limited.

Although the Simics-based solution provides a lot of the capabilities we needed, it
seemed impossible to generate enough different traces to draw meaningful conclusions
from the gathered data. This was the main reason why we did not pursue this approach
further. Instead we tried to improve Linux’s own memory merging capabilities.

4.2 Implementing Named Merging on Linux

After it became clear that using the extensions to Simics was not a viable solution, we turned
to merging file-backed pages and its integration into Kernel Samepage Merging (KSM)
on Linux. This would allow workloads that have an inherent duplication of files on disk
(e.g., zero-install or container environments) to benefit from memory deduplication. KSM
only handles the merging of anonymous pages at this time. Furthermore, benchmarking
would be based on an improved real-world algorithm. This would be a direct benefit for
workloads on Linux, as their memory use would be reduced. However it was clear that
it would provide less insight into what would be shared and why. Some debugging code
could help to at least list the source files or processes that participate in a given page frame
sharing.

A preliminary patch existed to implement the merging of file-backed pages, also called
named merging, developed at our chair for earlier research on this topic. However, it
proved to be too unstable for our purposes. It constantly crashed the kernel (through
kernel panics) or caused exceptional, unexpected conditions (i.e., a kernel oops). Page
frames were merged onto each other partially without write protections, that is, without
Copy-on-Write (COW), which caused page modifications to leak into other processes. A
deeper analysis revealed the following problems:
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The sharing of named page frames in Linux is difficult due to missing abstractions. There
is currently no abstraction in the kernel that could deal with one page frame containing the
content of multiple inodes and hence different files. Instead, file system code gets pointers
to a page struct, Linux’ page frame descriptor, passed into its functions. The file system
then needs to deduce the corresponding inode (through page—->mapping, which points
directly to it) and offset from it.

Whereas KSM was able to work with just modifications to the memory management
layer, the implementation of named merging would need various patches across the
kernel’s source tree to adjust for the changed semantics. To complicate matters further,
page—->mapping is directly accessed by some drivers. This situation is exacerbated by
kernel code implicitly assuming that these page frames are directly writeable by file system
code, to the degree that DMA requests are posted with these page frames as their target.
This makes intercepting changes and implementing COW on page frames belong to the
page cache difficult, especially in the absence of an /O MMU that could be programmed
to trap write accesses.

Modifying KSM to implement the merging of file-backed memory would have allowed
KSM merge the pages in various scenarios and to retrieve the resulting memory deduplica-
tion counts as a result — even split by type, that is, how many are file-backed, anonymous, or
mixed. The difficulties mentioned above let us refrain from the approach of implementing
file-backed merging into KSM. In principle the merging can already be accomplished by
running the workload in a VM, but the insight about the page type is then lost due to a
semantic gap. The hypervisor does not know how memory is used within the VM. We then
turned to an approach that dumps application memory content from within Linux.

4.3 Dumping Process Memory Contents on Linux

Instead of using either a full-system simulator or observing the runtime behavior of KSM
we settled on producing memory dumps of scenarios we defined as representative of some
of today’s workloads.

This section explains the workings of specific Linux system calls and interfaces to
present how memory content can be obtained. Further information about them can be
found in the corresponding manual pages or kernel documentation listed at the end of each
paragraph.

The Linux /proc file system, as documented in proc(5), provides data about the
memory usage of every process in the system. The file /proc/<pid>/maps (with
<pid> replaced in this and the following filenames with the process’ numeric ID) lists all
the “currently mapped memory regions and their access permissions” [prol2]. A sample
line of the virtual file’s content can be found in Figure 4.1, which shows a shell’s binary
being mapped into memory. The information found in this file includes the begin and end
address of every mapping, the permissions (read, write, execute, shared, and private) and
information about named mappings, if applicable (offset in the file, device, inode number,
and filename). [pro12]
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00400000-00424000 r-xp 00000000 fe:06 958495 /bin/zsh4

address range offset device inode# filename
protection bits

Figure 4.1: An exemplary line showing the information found in /proc/<pid>/maps.

Reading a process’ memory image It is possible to read and write a process’ memory
image by accessing /proc/<pid>/mem. To be allowed to use this facility from another
process, it needs to become the pt race parent of the process to be inspected. This is
accomplished by calling the pt race(2) syscall with PTRACE_ATTACH specifying the
target process identifier. ptrace itself also allows machine word-based access using
a peek/poke mechanism to the target process’ memory, but this would require calling
it many times, whereas /proc/<pid>/mem allows accessing the memory content by
using open(2), read(2) and 1seek(2). It is also possible to map memory regions of
the target application into the inspecting application’s own memory. The full memory
image cannot be mapped at once because both processes are constrained by the maximum
addressable virtual memory and one would require twice the available virtual memory for
the inspecting process. [prol2] [ptr12]

Attaching to a process with PTRACE_ATTACH will stop the process for subsequent
debugging. The kernel will send a STGSTOP to the attached process and waitpid(2)
can be used to wait until the process has actually stopped executing. This can be used to
retrieve a complete memory snapshot of the process. [prol2] [ptr12] [wail0]

If a process uses multiple threads and thus represents a thread group, only one thread will
receive the STGSTOP when attaching to the process using pt race. In this case all mem-
bers of the same thread group can be retrieved from the directory /proc/<pid>/task.
To prevent any thread from further modifying the process’ memory image they all need to
be stopped. This is accomplished by using the t gk 111(2) system call. As this system call
is not wrapped by glibc, it needs to be called directly for every thread ID in the specified
thread group ID, which is the process ID of the parent process. [tkil2]

Physical frame information Linux exports some information about a process’ page
tables through the /proc file system as well. /proc/<pid>/pagemap “contains
one 64-bit value for each virtual page” [pag09]. This value contains the number of the
physical page frame if mapped, a swap offset if swapped or indicates that no page frame
has been allocated yet for the specified memory address. This information can be used
to avoid allocating page frames for data that has not yet been needed by the inspected
application. [pag09]

Globally, for the use of the system administrator root, two procfs files describe the
use of the available physical memory: /proc/kpagecount contains one number per
physical page frame, describing how often the corresponding frame is mapped into a
process. /proc/kpageflags contains the in-kernel flags stored per page frame, which
describe a page frame’s content (e.g., if it’s a named page, or anonymous memory, or a
page shared by multiple processes through the use of KSM). [pag09]
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Conclusion By using all these components together, we can attach to multiple processes
at once and take a consistent memory snapshot of all of them, provided that swapping is
disabled. Memory areas for which no page frame has been allocated yet can optionally be
dumped, the default is not to force the kernel to allocate physical memory for these areas.
Files can also be mapped with MAP_PRIVATE and changes to such memory areas are not
visible to other processes or in the underlying files. To track such changes the original file
content can also be included in the memory dump. [mmal2]

4.4 Analyzing Offline Dumps

The data generated by the dumping process as described in the previous section is used
by an offline analysis process to determine sharing opportunities within a set of user
processes. To identify identical content it is enough to generate and retain hashes of the
page content in memory when iterating over the files’ content. For this work the MD5
hash algorithm [Rive92] was used, primarily for its size and speed. The analysis tool also
allows to dump the page content for a given hash, in case interesting hashes appear in the
analysis phase.

One interesting figure that can be deduced from offline memory dumps is how much
physical memory was actually allocated to the set of inspected processes. The length of
the set of unique page frame numbers that are found in the pagemaps across all dumped
processes is the allocated memory footprint.

Linux already includes techniques like fork(2) and mmap(2) that allow less physical
memory to be allocated (as described in Section 2.4). We can count how many processes
have a given page frame mapped in their address space. The sum of these numbers indicates
the amount of memory that would be needed to host the given applications without these
deduplication measures in place.

Let H be the set of all different page content hashes and P be the set of all page
frames. h is a single hash in H and p a single page frame found in P. p is assumed to
be uniquely identified by its page frame number. The following functions are useful to
describe properties of elements in P:

1 if page p is anonymous

anonymous(p) = { 0 otherwise 4.1)

named(p) — { 1 if page p is named (file-backed) 4.2)

0 otherwise

hash(p) = hash result of page p (4.3)
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1 if3 P : (hash(p) = h) A
anonymous_exists(h) = { ' pe. (hash(p) ) A\ anonymous(p) 4.4)
otherwise
if 3 P : (hash(p) = h) A d
named_exists(h) :{ ! pe. (hash(p) ) A named(p) 4.5)
otherwise

4.4.1 Offline KSM

The following two sections present two different deduplication strategies. Shared pages are
those remaining after applying such a strategy. Sharings denote the amount of pages that
no longer need to be kept in memory. When multiplying the two values with the page size
(in this work consistently 4 KiB), the memory amount of both values follows naturally.

KSM merges anonymous pages in memory by periodically scanning them for duplicate
content. We are primarily interested in content that can potentially be merged, regardless
if the content remains stable. Hence, assuming an ideal KSM scanner, we identify all
identical anonymous content and count such page content just once. The remaining pages
are added up as they have been deduplicated by normal Linux means, or not, which is the
case for named pages.

The count of pages that remain post sharing (“shared”) and the deduplication potential
(“sharings™) given a set of hashed pages are determined as follows:

KSM shared = Z (|{p € P : (hash(p) = h) A named(p)}|
hel (4.6)
+ anonymous_exists(h))

KSM sharings = Z < |{p € P : (hash(p) = h) A anonymous(p)}|
hell 4.7)
- anonymous_exists(h))

4.4.2 Full Content-Based Page Sharing

KSM is currently not able to deduplicate all application memory in page-sized blocks,
as it only considers anonymous memory. This is an engineering problem and hence we
can assume that a perfect algorithm could find all redundancies within the application’s
memory content. In this case, we can simply count how much different memory content
can be found in the dumps. The sum of different content hashes will yield the maximum
deduplication, if we do not consider sub-page sized blocks.

To determine the amount of unique page contents in memory we simply calculate the
size of the set of different hashes. The deduplication potential consists of all the other
pages that remain.

28



4.4 Analyzing Offline Dumps

CBPS shared = |H| (4.8)
CBPS sharings = |P| — |H| 4.9)
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5 Evaluation

This chapter presents the scenarios we used to determine memory deduplication potential in
native applications. Desktop scenarios can easily be expanded to multi-user environments
by invoking them multiple times on the same host machine. We also look at how a zero-
install environment, that is, one that lets the user provide applications instead of them being
centrally provisioned, impacts redundancy in memory. Section 5.1 describes single-user,
multi-user and zero-install scenarios, as well as a game server scenario, which we used to
represent realistic workloads. Section 5.2 presents the results we obtained by using the
redundancy analysis process as explained in Chapter 4.

5.1 Scenarios

In order to determine the memory redundancy within native applications, we constructed
four workloads. These consist of three desktop scenarios and one server scenario. All were
run on a 64-bit installation of a pre-release of Debian 7.0 (Wheezy).

5.1.1 Desktop Scenarios

We picked three similar desktop scenarios, that differ on the number of instances on one
host: single user desktop, traditional terminal server, and zero-install terminal server. Every
scenario shares the same applications, in the following paragraphs we will describe them
in detail.

Single User Desktop In our single user desktop scenario (visualized in Figure 5.1a on
page 32), one user logs in and starts his desktop environment (Xfce 4.8), a web browser
(Firefox 17) and a text processor (LibreOffice Writer 3.5). An instance of the X Window
System is needed to display the windows on the screen and to process input. This scenario
can serve as a baseline what memory could be saved on a traditional Unix development
workstation using different deduplication techniques.

Traditional Terminal Server With traditional terminal servers, multiple users log into
the same machine and have access to the same set of centrally installed software. Software
will be shared in memory, but the desktop environments and the applications will still
allocate data on the heap that might or might not be sharable. The concrete scenario
mimics the Single User Desktop case by starting the same programs, but in three different
X session. The binaries are provided by the system and are shared among the different
users. This is depicted in Figure 5.1b on page 32.
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Figure 5.1: The desktop scenarios we used to evaluate redundancy in memory content of
native applications. The scenarios differ in the number of users and which
parts of the system are shared.

Zero-Install Terminal Server On zero-install terminal servers users can provide either
just their own copies of all the applications or even core libraries they want to use. This
increases the flexibility of users, as they no longer depend on administrators installing new
applications or updating existing ones to specific revisions. This flexibility comes at the
expense of increased disk and memory use if multiple users run the same applications. The
OS kernel is still shared among the users. A visualization can be found in Figure 5.1c.
This scenario could gain a higher importance with the emergence of Linux containers that
provide full root access to users, while still being completely walled off from other users
on the same system. Such lightweight VMs might allow users to install their favourite
Linux distribution and hence duplicate the base OS and all applications on disk, causing
duplication in the host’s page cache as well.
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Test Setup The desktop scenarios have all been scripted, to provide an automatic and
repeatable way to gather memory content: a framebuffer-backed X server is started and
various clients connect to it. The test framework waits for some time for the programs to
settle and then starts taking snapshots. For the game server scenario three servers were
started manually and snapshotted after they settled. Between all measurements the VM
containing the tests was rebooted.

The framebuffer-backed X server has been provided by the xpra remote desktop tool
which starts Xorg with the dummy video driver. This is alike to the Xvfb server which

VNC uses, except that it uses an X server as released by the X.Org project instead of a
fork.

5.1.2 Game Server

Game servers traditionally do not support multi-tenancy. Free modifications to the game
tree are required, to incorporate new game content and functions. Often this is also used
to modify a game’s behavior, a process called “modding” (e.g., the introduction of new
game modes). Not all configuration settings are exposed through proper configuration files
or command-line switches, instead game files have to be modified directly. This implies
that game content needs to be duplicated on disk for every customer. This is depicted
in Figure 5.2. For licensing reasons, however, it was not possible to let different clients
connect to the servers.

14411441144
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Figure 5.2: Approximation of the workload scenario “Game Server”. Only few core
libraries are shared between the different servers, all other content is duplicated.

This offers opportunities to deduplicate binaries, possibly content in RAM, depending
on how the server is implemented (whether it is using mmap or not) and the heaps, which
might be similar between different server instances. In this case we are measuring the
memory consumption of Valve’s dedicated server for Counter Strike: Global Offensive
(CS:GO) on Linux. The reasons for picking this game are two fold: It is a recent game that
enjoys some popularity at the time of this thesis and it is hence a real-world scenario to
show if memory deduplication is worthwhile to apply in this setting.
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Multiple servers are started on the same host, each with their own copy of the game’s
binaries and content, but with identical configuration options. The measurements include a
few more processes like screen and bash, which only contribute a slight amount of memory
to the total consumption figures. No clients are connected to the server, it is in hibernation.

5.2 Results

This section presents the results of our evaluations. We obtained them using the memory
dump tool as described in Sections 4.3 and the following with the workloads outlined in
the previous section.

The resulting tables list the following values. Memory consumption is measured relative
to a base case that is noted in the caption of the table.

No sharing denotes the memory allocation if no pages were shared. This excludes
sharing that happens naturally like mmap and fork and breaks up all coalesced mappings
onto the same shared page frame.

mmap/fork stands for the actual memory allocation of the applications with swap
deactivated. All deduplication that was already applied by the OS (zero page frame, shared
memory, library sharing, etc.) is already accounted for. This means that page frames that
are allocated once in memory are also just counted once.

KSM hint all denotes what would happen if all anonymous pages with identical page
content were shared. All named pages are counted in the same way as mmap/fork. This
is an oracle figure of the best case of all identical content being found and deduplicated.

Full Content-based Page Sharing (CBPS) points out the full page-based deduplication
potential if all identical content could be shared, be it named or anonymous memory. This
finds duplicate content within named pages as well, as KSM hint all focusses exclusively
on anonymous pages.

Desktop Scenarios

The results of the analyzing process as described in Section 4.4 were normalized relative
to the single user, mmap/fork scenario, which allocated 480 MiB of RAM. The input
to the normalization was the median of 6 runs, to reduce the impact of possible outliers.
However, the results were pretty stable. They can be found in Table 5.1. As can be seen,
the

Figure 5.3 is a graphical visualization of this data for the one, two, and three user
Terminal Server workloads. The same for the Zero-Install case, where the applications
were not shared, can be found in Figure 5.4. It can be seen that the full CBPS sharings
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are more significant in the Zero-Install case, whereas KSM finds almost all sharings in the
plain Terminal Server workload.

1 user 2 users 3 users
single user | terminal zero-install | terminal zero-install
no sharing 1.10 2.20 2.20 3.32 3.33
mmap/fork 1.00 1.83 1.99 2.68 3.02
KSM hint all 0.48 0.64 0.83 0.81 1.20
full CBPS 0.45 0.60 0.61 0.77 0.78

Table 5.1: Relative memory consumption over the single user case that allocated 480 MiB
of RAM.

Page Types Table 5.2 shows the distribution of shareable pages by type. It is interesting
to note that there were no shareable pages across page types except for the special page
containing all zeroes (the one mixed page that can be shared). All sharings remain within
their own domain. This further discussed in Chapter 6.

luser 2users 3 users

anonymous pages 29707 43520 60480
named pages 25490 30564 35675
mixed pages 1 1 1

Table 5.2: Shareable pages by type, taken from the results of the zero-install scenario.

Game Server Workload

Looking at the game server workload, we see in Table 5.3 that it exposes large sharing
opportunities if multiple servers are started on the same host. There is, however, almost
no self-sharing (i.e., sharing within a single server) to be found (3% within anonymous
memory, comparing full CBPS with mmap/fork in the single server case).

The main data a game server works on is geometry information of a game environment
(the “map”). This particular implementation of a game server loads map data into memory
explictly instead of setting up memory mappings, likely because the map data is stored
on disk in compressed form. Large heaps (anonymous memory) are allocated to hold the
uncompressed map data. This makes hinting of all anonymous pages to be merged with
KSM very useful, saving 110% of the single server case when running three servers on the
same machine. Additionally a further 20% could be saved if the duplicated binaries and
libraries were merged in memory.

Due to the game server install being duplicated across users, the only libraries mmap
and fork are able to deduplicate are part of the system C library (glibc). Full CBPS can
deduplicate the other game binaries and libraries found in other directories as well.
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Figure 5.3: Memory consumption in the Terminal Server scenario in page frames. Full

CBPS only brings marginal benefits over KSM. KSM is able to reduce memory
use significantly.
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Figure 5.4: Memory consumption in the Zero-Install Terminal Server scenario in page
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frames. Full CBPS is able to reduce memory use to values similar to those
being found in Figure 5.3. KSM identifies less redundancy and mmap/fork is
less effective in this scenario.
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1 server 2 servers 3 servers

no sharing 1.00 2.00 3.00
mmap/fork 1.00 1.99 2.97
KSM hintall  0.97 1.44 1.90

full CBPS  0.97 1.34 1.70

Table 5.3: Memory consumption of CS:GO servers relative to the single CS:GO server
case that allocated 147 MiB of RAM.
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Figure 5.5: Memory consumption in the Game Server scenario in page frames. Almost
no sharing is accomplished by mmap/fork. KSM is able to identify most
redundancies and a few more are found by full CBPS.
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6 Discussion

This chapter discusses sharing opportunities within native applications on Linux in Sec-
tion 6.1. Section 6.2 presents previous studies on memory redundancies within VMs.
Section 6.3 discusses our own evaluation results (as found in Chapter 5) and their implica-
tions. Section 6.4 gives a list of improvements which are desirable to benefit more from
memory deduplication. Finally Section 6.5 provides a summary.

6.1 Sharing Opportunities in Applications

In the following we discuss common native applications, for which memory deduplication
might be desireable.

6.1.1 Desktop Applications

Desktop applications differ from server applications in that they are usually long-running
processes that load more libraries (graphical toolkits providing widgets, interface libraries
to the display server, and the libraries that they need to fulfill their intended behavior).
Server applications traditionally process many short-lived requests from various users,
whereas interactive desktop applications can justify a longer startup time and larger memory
allocations to provide immediate feedback to one single user once they are running.

Desktop applications Graphical applications typically rely on a GUI toolkit like GTK+
or Qt to provide a uniform appearance across multiple applications. A desktop environment
usually mandates one single toolkit. It is responsible for providing widgets like buttons,
menus, input fields and more, but also for window, color and buffer management. It also
provides a main loop where all input events are processed.

Most widget toolkits support theming to provide a common look. These themes provide
images, icons and color instructions that all influence how the application is rendered.
These images and icons will be loaded in all applications anew. The GUI toolkits GTK+
and Qt rely on icon cache files that are mapped into all applications to avoid further file
system lookups and to save memory. Large icon themes can take up to 150 MiB in size.

GUI toolkits also need a number of libraries to accomplish their task: interface libraries to
the display server X11, rendering libraries for graphics and fonts, image and configuration
parsers. They provide a rich development environment, which necessarily increases the
memory footprint. The GTK+ 3 library on a typical Debian system links against 45 other
libraries. Each of the libraries will be mapped in the process with at least one executable
area, one guard mapping, one static data area and one writeable pre-initialized data area.
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All except the latter can be shared with other processes that are using the library. The
Evince PDF viewer as invoked on the PDF file of this thesis has 300 library mappings and
40 cache mappings on Debian Wheezy, whereas the application itself only has seven.

For the anonymous memory of a GUI application it is less clear where it is coming from.
Libraries can allocate memory on behalf of the application or simply for their own use
when they are initialized.

Multi-threaded applications Multi-threaded applications on Linux run multiple schedu-
lable processes within one address space, each with their own Process ID (PID). The
overhead in terms of memory consumed within the address space is quite small: each
thread needs a chunk of heap for its stack. By default a process will receive 8 MiB of stack,
but the corresponding memory area is mapped by the Linux kernel on demand. The full
memory assignment is hence only visible in the process’ mappings if it has been used by
the process once. This is an exception to the usual handling of mappings and it is the only
type of memory for which such a mapping happens. For threads, the Native POSIX Thread
Library (NPTL) part of the C library requests the full 8 MiB on the heap from userspace,
but the Linux kernel will not actually allocate this memory unless it is being used. Data
on stacks is usually small and short-lived. It is therefore unlikely to find much sharing
potential within them.

Web browsers Web browsers are special among desktop environments, as more and
more diverse workload is shifted to web applications. This includes traditional desktop
applications like word processing and spreadsheets, but more intense calculations or access
of remote desktops are also happening within browsers.

To realize complex applications, a JavaScript engine executes scripts with a Just-in-Time
(JIT) compiler, which converts the platform-independent JavaScript source into machine-
runnable code. Memory needs to be allocated for both the compilation result and for data
used by the scripts, resulting in large heaps. Memory allocators in browsers are often
custom-built for the application to manage memory more efficiently. Heaps of 1 GiB or
more are common.

It is also typical for browsers to load plug-ins like Adobe’s Shockwave Flash, which
load other applications and render the result into a graphics area within the browser. These
contain their own input, video, audio, and graphics processing and again an own JIT
compiler. Depending on the browser this may happen in a separate process or within the
same address space.

Contemporary browsers also try to reduce the attack surface by employing sandboxing.
This involves creating a master process and forking a new rendering process for every
new tab not belonging to the same web site. Memory allocated by the master process will
be shared copy-on-write to its children. However, it still means that less memory can be
shared within a single process than what would be possible if all rendering would be done
in the same address space. For the communication between processes shared memory is
used.

40



6.1 Sharing Opportunities in Applications

Looking at current means to share memory, web browsers would need to cache their
compilation results across all sandboxes processes in files. This would allow the page
cache to deduplicate them in memory automatically. Memory merging approaches would
require that the results and, if we assume that multiple tabs with the same application are
opened (e.g., web searches), the JavaScript heaps are page-aligned.

6.1.2 Multi-User Environments

Traditionally Unix systems were multi-user environments. Multiple users logged onto a
single big system to execute their programs. Nowadays, when looking at workstations, the
focus is on graphical applications rather than shell applications. For ease of maintenance
these can be exported from a few powerful servers instead of being provided on each client
workstation. On the shell side Virtual Private Servers (VPSs) are a cheap and popular way
of getting one’s own Linux server. The provider has an interest to support as many users as
possible on one host.

Terminal Servers In the case of terminal servers multiple users login on the same
machine. They run a graphical shell (i.e., a desktop environment), most likely a web
browser and the applications they run to accomplish their tasks.

This scenario is often employed in thin-client environments, where few powerful servers
serve dozens of low-spec clients. However, it can also ease administration, as applications
are deployed and configured once on few hosts, instead of distributing them to many clients.
In other cases it can be a key tool to reduce licensing costs.

Another related scenario is allowing multiple logins on a desktop machine. This can be
realized through fast user switching, which allows only one user to use the machine at a
given point in time, with the applications of other users being preserved in the background.
Multiple users can even use the same machine at the same time through multiple graphics
adapters (i.e., a “multi-head” setup).

Zero-Install Environments In zero-install environments users install their own binaries
without any cooperation of the administrator. Two different degrees can be differentiated:
the case where a desktop environment is provided centrally and the case where users
maintain their own container with a full copy of the OS (except the kernel).

In these environments no file-based sharing is currently possible, due to Linux not
being able to identify redundancy between named page frames. Binaries and libraries are
hence duplicated in memory. Even caches that are intended to be globally shared will be
container-local and hence user-local. This redundancy in memory content should be found
and coalesced.

6.1.3 Virtualization

Virtualization is very important in cloud environments, to allow multiple users to use
one hosts independently and isolated from eachother. The advent of virtualization on
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commodity servers also caused the introduction of hardware extensions for virtualization
in consumer hardware. Two following two approaches are relatively novel, one using
full virtualization and one trying to be more efficient by reusing the same OS kernel for
multiple different user environments.

Virtualization Sandboxes Qubes OS [RuWo10] uses virtualization to provide isolation
between different work environments (e.g., online banking, work, and private mails) on a
single desktop. This can introduce redundancy not only on disk, which is solved by using
a template VM that is shared in a COW fashion. For instance, a web browser is likely to
be started in multiple isolated domains.

Container Environments Containers are a lightweight way of virtualization. A single
host kernel provides virtual views on file systems, networking, processes, and permissions.
This avoids the overhead of multiple kernels and allows more efficient use of the memory
available in the system. Containers can be spawned for a single application or service to
provide isolation and security. They can also contain full Linux distributions that will run
their own init, the basic set of system services and the user’s applications.

In the first case memory deduplication for file-backed pages is likely to happen in the
host’s page cache. In the second case, where binaries and libraries are duplicated on-disk,
this is not easily possible. GUI-related OS-global caches like icon or font caches will be
duplicated both in memory and on disk.

6.2 Previous Evaluations

Previous studies on memory deduplication potential focussed exclusively on Virtual Ma-
chines (VMs). They differentiate between intra-VM sharings, that is, sharings that can
be found within the memory content of a single VM, and inter-VM sharings, which show
redundancy of code and data between multiple VMs. Multiple systems were started on
one host, heterogeneous workloads with different guest OSs and homogeneous workloads
that basically executed the same OS and programs.

The VM’s memory is one contiguous amount of heap memory in the hypervisor applica-
tion. Periodical memory-scan deduplication on the host can share kernel and userspace
memory of the OS within the VM. The benefits are then dependent on the guest OS in use.

Virtualizing Windows The Windows kernel is special in that it zeroes page frames for
security and compliance reasons before returning them to the free memory pool, the “zero
page list”. Every page fault requiring a new page of memory will be served from this list.
Windows will also zero out the entire memory on boot.

Memory deduplication is particularly effective with this strategy. This means that a
hypervisor running Windows VMs which are not fully utilizing their memory allocation
can re-purpose the spare memory in the host for other applications or VMs. However, this
memory is only borrowed as the VM can, at any time, decide to request it by using it. If
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this strategy is employed to increase VM density, this might degrade performance a lot
once memory pressure increases, as the VM cannot tell how much memory is actually
available on the host.

Linux avoids this scrubbing in order to avoid increasing cache pressure: the zeroing
process could push valuable content out of the cache and the zeroes are more likely to be
read directly after a page fault is serviced, which would require that the caches refetch the
zeroes from memory.

Implementation in VMware ESX When Waldspurger [Wald02] measured the effects
of his implementation of memory deduplication in VMware server, he found significant
inter-VM sharings. However, he also attributed most of the sharings related to Windows
VMs to the aforementioned zeroing of free memory. This made it possible to reclaim
32.9% of the memory used by ten Windows NT guests (2 GiB in total) through the use of
periodical memory-scan deduplication. Intra-VM sharings were mostly a sidenote, with
12.5% of RAM being reclaimed from a single Red Hat Linux VM, again 55% of it being
sharing of the zero page.

Difference Engine Gupta et al. [GLVS™10] found 65-75% memory savings in their
benchmark consisting out of 1 to 6 VMs, each running Debian 3.1 and an e-commerce
benchmark. They note that “the bulk of memory savings comes from page sharing’
[GLVS*10]. They also implement sub-page sharings through patches, which makes it hard
to deduce CBPS sharings from their heterogeneous OS and applications scenario.

o

Empirical Study of Memory Sharing in VMs Barker et al. [BWSS12] conducted an
empirical study on memory images of different virtual machines to determine the source
of sharing opportunities. They observe that “absolute sharing levels (excluding zero
pages) generally remain under 15%” [BWSS12], which indicates that synthetic benchmark
situations might artificially inflate the sharing potential. The second important observation
of Barker et al. is that “sharing within individual machines often accounts for nearly
all (> 90%) of the sharing potential within a set of machines” [BWSS12]. Past research
focused on sharing as a means to support an increased count of virtual machines on a
single host. The study indicates that sharing opportunities that can be exploited within a
single non-virtualized operating system will alone contribute significant memory savings.

Assuming that self sharing would be possible for individual machines and that its share
is that significant, it states that the potential for additional inter-VM sharing is low. At
most one additional identical page per VM on the same host can be coalesced into a shared
mapping.

The study relies on two data sources for their study: real-world memory traces by the
Memory Buddies project [WTLSD09], which collected traces from desktop and server
machines at the University of Massachusetts Amherst and own traces of VMs running a
Linux desktop. Traces are taken by suspending the VM’s execution and taking a snapshot
of the guest’s memory image. Each page-sized is then hashed. The original content of the
page frame is not retained in the exported traces.

43



6 Discussion

To get more insight into the sources of sharing opportunities, a Linux kernel module
collects additional information from the inside of the VM. The module hashes the content
of all page frames, records the “content type of the page” (e.g., heap, stack or a named
page containing a library) and gathers a list of all processes mapping that specific page
frame. This is used for a case study of Linux desktop applications.

This case study consists of a VM running Ubuntu as its base OS and Firefox, GNOME,
OpenOffice and an X server as the user visible desktop environment. It finds that the
largest single source of sharing consists out of heap pages (“50% of all sharing within the
VM” [BWSS12]). Shareable library pages are “involved in 43% of all sharing” [BWSS12].
Stack pages are involved in less than 5% of all sharings. They observe that their memory
traces containing GUI applications have a higher level of self-sharing, “also likely due to
the tendency of GUI-related libraries to increase memory redundancy” [BWSS12].

As soon as the OS version did not match exactly, sharing opportunities significantly
reduced in the base system. Common desktop applications were less affected by this
version skew, however. In this work we did only evaluate identical applications.

The impact of Address Space Layout Randomization (ASLR) was explored by booting
the same workload four times each with ASLR turned on and with randomization disabled.
The study measures the negative influence of ASLR on both inter- and intra-VM sharing
separately and found an overall 10% sharing reduction with the Linux workload. Self-
sharing was reduced the most by about 15%, inter-VM sharing by about 8%.

The study also briefly covers variably-sized hashing. It suggests that sharing granularities
beyond a single page do not yield significantly more sharing opportunities. The range of
block sizes analyzed is from 0.4 to 2.4 times the system page size (4 KiB), in intervals of
0.1.

6.3 Evaluation Results

In the following we discuss the results obtained from the process described in Chapter 4.
The raw numbers can be found in Chapter 5.

6.3.1 Desktop Applications

The desktop applications we looked at (Xfce, Firefox and LibreOffice) did expose a
significant amount of redundancy in their heap memory areas In the single user case over
half of the memory can be recovered (52%, comparing the “mmap/fork” and “KSM hint
all” cases in Table 5.1 on page 35). The kernel does already take care of mapping fresh
allocations onto the zero page (i.e., the page that only contains zeroes) to save memory.
We find that most of this redundant content, 133 MiB, is found within the Xorg server as
started by xpra. This is likely framebuffer content that needs to be allocated in advance to
support large display sizes. This is consistent with the observation of Barker et al. that “the
single most shared page, with 597 distinct copies (2.3 MB shared) was a heap page used
by Xorg” [BWSS12]. It is followed by 1.7 MiB of sharing due to zero page deduplication.
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Due to the fact that a massive amount of memory is deduplicated within the X server,
additional merging across sessions only increases the sharing potential by about 7 — 9%.
All this redundancy can be found and merged by KSM, as only anonymous memory is
involved.

The zero-install scenario is one where the approach of full Content-based Page Sharing
(CBPS) can shine. Being able to deduplicate the page cache allows the memory usage
to drop to the same levels as the terminal server scenario (see Table 5.1 on page 35 for
details). As the binaries are identical, this is not surprising. With three users deduplication
with just KSM needs half of the allocated memory more than full CBPS.

6.3.2 Game Server

The case of the tested game server is particularly interesting from a deduplication point
of view. The savings that can be achieved by activating KSM for processes that do not
implement the hinting of their allocations, can be significant for some workloads.

In the three server scenario we see that it is able to merge more than the equivalent of a
full server instance together (memory usage going down from 2.97x to 1.90x the baseline
memory use of 147 MiB of RAM; Table 5.3 on page 37). Content-based page sharing
that picks up further redundancy in named pages only finds 20% more sharings than KSM
would. The numbers suggest that for every additional server 10% of the memory needed
can be shared with the existing instances.

Here it would be beneficial for the application to wrap the calls to malloc(2) to hint
all newly allocated memory areas. Alternatively it is possible to patch the Linux kernel to
hint all anonymous memory areas within all processes on the same host.

This particular server setup does not benefit at all from mmap and fork. While it does
use multiple threads, it does not use multiple processes. The sharings that can be found are
exclusively system libraries like glibc. Commonly these will already be mapped by other
applications, even though this was not the case in our setup as the server is shipped as a
32-bit binary which needs a 32-bit C library to run. All other binaries on the systems were
64-bit binaries.

6.4 Possible Improvements of Memory Deduplication

This section discusses possible improvements that would help to enable more efficient
memory deduplication with native applications on Linux.

6.4.1 Improving Sharing of Anonymous Pages

Heap pages could be marked to be scanned when they are requested by applications. This
would require no cooperation by the application, at the expense of scanning memory that
could be highly volatile and hence was explicitly not hinted. This would require spare
CPU cycles for the scanning process and cause more memory bandwidth to be used by
scanning. On the other hand it could increase performance by freeing up memory for other
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purposes. In both the desktop and game server scenarios this would have helped reducing
more usage significantly.

6.4.2 Multi-Tenancy as a Way to Avoid Duplication

Some programs avoid duplication by reducing the need of running multiple processes. Mail
readers now support multiple mail servers in one program. Web browsers are able to fence
off multiple windows against each other, not requiring the launch of multiple browsers
— for instance to separate online banking or private browsing for gifts). Back in the old
days connecting to multiple news servers required passing different configuration and state
files on the command-line — which is the case, for instance, for s1rn(1). Office programs
launch a single big application, regardless if you request a spreadsheet application or a
word processor. Documents are opened in existing windows.

Avoiding to invoke a process per file or task saves memory without elaborate deduplica-
tion mechanisms. Instead memory can be shared at least for one user. On servers this has
been commonplace for web servers, which are able to serve the content of multiple users
without the need of a dedicated web server per user.

The game server scenario would have benefited from this improvement, as one copy
on disk and in memory would scale much better to multiple servers on one host than the
current implementation of Counter Strike’s dedicated server.

6.4.3 Per-User Scanner

As noted in Section 6.3.1, most of the anonymous sharing potential comes from single
sessions, 1.e. from processes of the same user. Currently the run time of KSM is not
being accounted for and every user has to bear the costs. The fact that there is sharing
locality within the processes of one user can make a user-local scanner feasible and useful.
If interfaces were in place to allow special processes (e.g., ones that are in a debugging
relationship) to modify mappings of anonymous pages across address space boundaries,
such a scanner could periodically inspect the various address spaces of a user and coalesce
them on account of the user in question. Currently it is only possible to establish shared
memory through System V shared memory primitives [shmO8] or file-backed memory.
However, if this is extended, the user could spend some of his CPU time on merging, to
consume less memory or run yet another application.

6.4.4 Improving Memory Sharing through Hardware Support

Some extensions of the hardware to better support memory sharing have already been
proposed. It would be useful to incorporate such methods to reduce the load that periodic
scanning induces.

HICAMP Cheriton et al. [CFSS™12] propose a new hardware architecture called HI-
CAMP that identifies memory cells by their content. This allows sharing memory at the
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line level instead of the coarse-grained page level. Memory is organized in segments,
which are “variable-sized, logically contiguous regions of memory”. They are defined by a
Directed Acyclic Graph (DAG) of content identifiers.

The architecture inherently avoids all deduplication scanning, at the expense of treating
modifications of such memory vastly different than common DRAM. Instead of modifying
individual RAM lines, every line with unique content is immutable and a tree of references
needs to be updated on every write access.

Hardware-based Page Checksums The memory architecture could offer additional
memory lines containing a checksum of the page frame’s content. This would speed up the
scanning for duplicates, which would need to touch fewer bytes in memory.

To be efficient, the checksum used would need to be efficiently updateable on writes, so
that it’s not necessary to reread the whole page frame for the checksum generation.

6.4.5 Improving Sharing of Named Pages Using Storage
Deduplication

Bugnion et al. [BuDR97] used Copy-on-Write (COW) disks to deduplicate storage blocks
automatically. Nowadays, with content-addressable storage systems this could be extended
to the sharing of complete files in memory. File systems would merely keep a hierarchical
mapping of files in directories to content identifiers (e.g., checksums).

For the zero-install scenario this would make the identification of duplicate applications
and libraries very easy. As long as the files map to the same identifier, they can be shared
in a unified page cache.

The main problem with this approach is that filename identifiers need to be kept even
though content of different files in memory is being reused by multiple processes. The OS
needs to be aware which file was actually mapped by a process to instantiate the correct
COW mapping.

6.4.6 Efficient Caching of Currently Unneeded Pages

Currently unneeded pages are commonly swapped out. Gupta et al. [GLVS™10] propose
that pages that are relatively similar could be stored as patches to existing pages if they
are not currently part of the working set. Reconstruction of pages on access does require
some processing overhead, as does the fingerprinting of all pages to identify similarities
within pages. Furthermore, pages that were not recently used could be stored compressed
in memory, instead of being swapped, to be uncompressed whenever they are needed
again. Further evaluations should be carried out to identify the potential of patching and
compression of memory found in native applications.
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6 Discussion

6.5 Summary

We see that the means to deduplicate memory could still be improved. Not being able to
merge file-backed pages causes KSM to not find all redundancies in the native applications
we started. The game server we used should be modified to support multi-tenancy to put
less strain on the OS which then needs to deduplicate the memory content. What we have
seen has been consistent with what a preliminary analysis by Barker et al. [BWSS12] has
shown.
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7 Conclusion

We have shown in this thesis that memory deduplication is very useful in the context of
native applications and sandbox-like scenarios on Linux. The concept that was developed
with virtual machines in mind should be extended to cover applications running on a single
host as well.

We looked at a common desktop scenario that involved starting a desktop environment,
a web browser and an office suite to determine sharing opportunities. This has been
executed in parallel with varying degrees of duplication involved. We either reused the
system libraries and applications when multiple users were logged into the system or
we duplicated them all (except for the OS kernel) to simulate a zero-install scenario.
Furthermore, we looked at a game server that has been instantiated multiple times to serve
multiple users.

The evaluation led us to the following conclusions:

There are indeed redundancies in the scenarios we analyzed. Partly they are quite
significant, even deduplication of just anonymous memory can yield savings of up to half
the memory used without deduplication.

In the scenarios we analyzed there were very few sharing opportunities between anony-
mous and file-backed pages. Redundancy within anonymous memory was found to be
mainly within similar programs, a user’s session or a single VM, whereas file-backed pages
were more likely to be shared with programs outside of a user’s domain.

To improve memory deduplication across these domains, an improved mmap that uses
content deduplication in the block layer would help to catch redundancies between multiple
sessions in a zero-install scenario. For instance, simply basing the sharings on inodes is
not sufficient to deduplicate redundancies arising from user-local caches, that are identical.

Deduplication of anonymous memory as implemented in KSM already uses hashes to
avoid pairwise comparisons, which are in O(nz). However, data structures used for this
could be kept more local, to decrease lookup times and increase hit rates.

The implementation of named page sharing in Linux can be beneficial in single kernel
scenarios that do not employ full system virtualization. Lightweight virtualization like
containers commonly duplicate the base Linux distribution, of which parts can be merged
in memory if the operating system’s base version is identical.

A generic implementation of page frame sharing would be useful to achieve small
memory footprints. This is currently possible by moving the workload into a VM and
running KSM on the outside to coalesce identical pages. Introducing such a layer of
indirection seems disproportionate if the only goal is memory deduplication.
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7 Conclusion

Future Work

The benefits of memory deduplication are still dependent on how many CPU cycles can
be spared for scanning. A future analysis should look at new ways to deduce memory
characteristics from both a priori and a posteriori knowledge.

It is clear that a memory snapshot mechanism as presented in this thesis cannot predict
the future. Pages would need to be tracked and inspected as to what causes yield a sharing
opportunity.

A more efficient full-system emulator could give detailed information as to which writes
caused a sharing to appear or to disappear and how long a sharing would have persisted if
detected immediately.

It would be interesting to know why applications allocate pages that are for all means
and purposes empty (zero pages) and why these are not mapped onto the zero page frame
as provided by the operating system. Unfortunately, due to time constraints, we were not
able to analyse this in detail.
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List of Acronyms

ASLR Address Space Layout Randomization. 13, 44

CBPS Content-based Page Sharing. 34-37, 43, 45
COW Copy-on-Write. 7, 8, 13-15, 24, 25, 42, 47
CPU Central Processing Unit. 8, 10, 12, 13, 18, 19, 23, 24, 45, 46, 50

DAG Directed Acyclic Graph. 47
DMA Direct Memory Access. 8, 13, 17, 18, 22, 25
DRAM Dynamic Random-Access Memory. 8, 47

ELF Executable and Linkable Format. 11, 13
EPT Extended Page Tables. 11

GOT Global Offset Table. 14
GUI Graphical User Interface. 23, 39, 40, 42, 44

JIT Just-in-Time. 40
KSM Kernel Samepage Merging. 11, 12, 20-22, 24-26, 28, 34-37, 44-46, 48, 49
LRU Least-Recently Used. 12

MM Memory Management. 11
MMU Memory Management Unit. 8, 14, 25

NPTL Native POSIX Thread Library. 40
OS Operating System. 4, 7-11, 17, 18, 23, 24, 32, 34, 41-44, 47-49

PD Page Directory. 9, 10

PDE Page Directory Entry. 9

PDPT Page Directory Pointers Table. 9, 10
PDPTE Page Directory Pointers Table Entry. 9
PIC Position-Independent Code. 14

PID Process ID. 40

PIE Position-Independent Executable. 13
PLT Procedure Linkage Table. 14

PML4 Page Map Level 4. 9

PMLA4E Page Map Level 4 Entry. 9

PT Page Table. 9
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PTE Page Table Entry. 10

RAM Random Access Memory. 3, 18, 33-35, 37, 43, 47
RVI Rapid Virtualization Indexing. 11

TLB Translation Lookaside Buffer. 9—11

VM Virtual Machine. 4, 5, 10, 11, 14, 17-19, 25, 32, 33, 39, 4244, 49
VMA Virtual Memory Area. 11, 12

VMM Virtual Machine Monitor. 18

VPS Virtual Private Server. 41
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