
Interconnect Adapter State Migration
for Virtual HPC Clusters

Diplomarbeit
von

cand. inform. Simon Sturm
an der Fakultät für Informatik

Erstgutachter: Prof. Dr. Frank Bellosa
Zweitgutachter: Prof. Dr. Hartmut Prautzsch
Betreuende Mitarbeiter: Dipl.-Inform. Marius Hillenbrand

Dr. Jan Stöß

Bearbeitungszeit: 19. Juni 2012 – 18. Januar 2013

KIT – Universität des Landes Baden-Württemberg und nationales Forschungszentrum in der Helmholtz-Gemeinschaft www.kit.edu

Ich erkläre hiermit, dass ich die vorliegende Arbeit selbständig verfasst und keine anderen
als die angegebenen Quellen und Hilfsmittel verwendet habe.

Karlsruhe, 18. 01. 2013

Deutsche Zusammenfassung

Live-Migration von virtuellen Maschinen wird als eines der mächtigsten Werkzeuge im Be-
reich der Systemvirtualisierung angesehen. Es kann insbesondere in Rechenzentren erhöhte
Fehlertoleranz durch Ausfallsicherungssemantiken und dynamische Lastverteilung in einem
Cluster ermöglichen.

High Performance Computing Infrastructure as a Service (HPC IaaS) legte in der letzten
Zeit erheblich an Bedeutung zu. Es verspricht Elastizität und Flexibilität in den Bereich des
High Performance Computing (HPC) zu bringen. Im Gegensatz zu traditionellen Ethernet-
basierenden Cloud Rechenzentren, benutzen HPC Cluster typischerweise hochperformante
Verbundnetzwerktechnologien mit intelligenten Netzwerkkarten, wie beispielsweise Infini-
Band. Sie erreichen eine erstklassige Kommunikationsleistung durch aggressives Auslagern
des Protokollhandlings, OS-bypass-Techniken und erweiterte Funktionen wie Remote DMA.
Obwohl die neueste Generation solcher Karten bereits Hardwarefunktionen zur Verfügung
stellen, die ihre Virtualisierung erleichtern (bspw. mit SR-IOV), ist die Unterstützung für
transparente Live-Migration noch immer eine ungelöste Fragestellung der Forschung.

In dieser Diplomarbeit stellen wir ein neuartiges Design vor, welches gasttransparente Live-
Migrationen von virtuellen Maschinen ermöglicht, denen eine virtuelle Instanz einer selbst-
virtualisierenden Hardware direkt durchgereicht wurde. Wir nutzen dabei gezielt die Selbst-
virtualisierungsfunktion der Hardware aus um die eigentliche Zustandsmigration der durch-
gereichten Instanz durchzuführen. Obwohl wir uns auf HPC IaaS fokussieren, kann unser
Ansatz auch in anderen Szenarien verwendet werden. Eine prototypische Evaluation, die auf
einem Mellanox ConnectX-3 VPI InfiniBand Adapter und dem Linux KVM Virtual Machi-
ne Monitor (VMM) basiert, beweist, dass sich dieses Design in aktuelle VMMs integrieren
lässt.

Abstract

Live migration of virtual machines is considered as one of the most powerful tools available
in the context of machine virtualization. Specifically in data centers, it can enable higher
fault tolerance through fail-over semantics and better load-balancing within a cluster.

High performance computing infrastructure as a service (HPC IaaS) has gained substantial
momentum in the recent past, as it promises to bring elasticity and flexibility to the area of
high performance computing (HPC). In contrast to traditional Ethernet-based cloud data cen-
ters, however, HPC clusters typically use high-speed interconnects with intelligent network
adapters, such as InfiniBand. They provide cutting-edge communication performance and
use aggressive protocol offloading, OS-bypass techniques, and advanced features such as re-
mote DMA. While the latest generation of such cards already provides hardware capabilities
to ease their virtualization (with SR-IOV, for instance), support for transparent live migration
of these self-virtualizing adapters is still an open question in virtualization research.

In this thesis, we propose a novel design enabling guest-transparent live migration of a vir-
tual machine configured with a directly assigned virtual device instance of self-virtualized
hardware. We take advantage of the self-virtualization features to perform the actual state
migration of the assigned instance in software. Despite we focus on HPC IaaS, our approach
can be also employed in other scenarios. A prototypical evaluation, based on Mellanox’s
ConnectX-3 VPI InfiniBand HCA and the Linux KVM virtual machine monitor (VMM),
proofs that this design integrates with recent VMMs.

Contents

Deutsche Zusammenfassung v

Abstract vii

1 Introduction and Motivation 3

2 Background and Analysis 5
2.1 High Performance Computing in the Cloud 5

2.1.1 Challenges of Virtualization for HPC IaaS 7
2.1.2 VMM-based I/O Virtualization . 10
2.1.3 Self-Virtualizing Devices . 12
2.1.4 Interconnect Network Virtualization for HPC IaaS 14

2.2 Challenges of Live Migration for HPC IaaS 15
2.2.1 State involved in Live Migration 15
2.2.2 Live Migration Strategies . 17

2.3 InfiniBand as HPC Interconnect . 20
2.3.1 Subnets and Network Management 20
2.3.2 Queue Pairs and Transport Services 21
2.3.3 Remote DMA (RDMA) . 24
2.3.4 Fabric Partitioning . 24
2.3.5 Resource Sharing Logic of Self-Virtualizing HCAs 25

3 Design 27
3.1 Overview . 27

3.1.1 Live Migration for HPC IaaS . 28
3.2 Migration Strategies . 31

3.2.1 Local Migration Strategies . 31
3.2.2 Global Migration Strategy for HPC IaaS 32

3.3 Migration Assistance Interface (MAI) . 35
3.3.1 State Stabilization . 36
3.3.2 State Migration . 37
3.3.3 Emulation Assistance . 37

3.4 Hardware State Migration . 38
3.5 InfiniBand specific Hardware State Migration 40

3.5.1 Endnode Address and Port Configuration Migration 41
3.5.2 Slave Resource State Migration 43

1

Contents

4 Prototypical Evaluation 45
4.1 Overview . 45
4.2 Evaluation Platform . 46

4.2.1 Virtualization with KVM and QEMU 47
4.2.2 Mellanox ConnectX-3 VPI . 48

4.3 MAI Support in QEMU . 49
4.3.1 Guest Device Migration Framework in QEMU 51
4.3.2 PCI Pass-Through in KVM/QEMU 51
4.3.3 Extending QEMU’s pass-through code 56

4.4 MAI Integration in Master Driver . 57
4.5 Evaluating MAI Integraton . 58
4.6 Summary . 60

5 Related Work 61
5.1 Ethernet-based Approaches . 61
5.2 InfiniBand-based Approaches . 63

6 Conclusion 67
6.1 Future Work . 68

Glossary and Abbreviations 69

Bibliography 75

2

1 Introduction and Motivation

Virtual High Performance Computing (HPC) clusters, or also referred to as High Perfor-
mance Computing Infrastructure as a Service (HPC IaaS), is an upcoming trend in the com-
puter service industry. Renting a scalable virtual HPC cluster on-demand instead of operat-
ing and owning a physical cluster by oneself promises new possibilities and opportunities for
users and providers. However, HPC IaaS combines two different developments in computer
science with different and colliding key aspects: (1) Machine Virtualization and (2) HPC.
Virtualization focuses on machine abstraction, thus providing the guest an abstract view of
the machine on which it is actually running. In contrast to this, HPC benefits from using
huge amounts of parallel computing and memory resources as directly as possible to achieve
high performance. Typical HPC applications are computational fluid dynamics, seismic data
analysis, online transaction processing, and real-time control systems, amongst others [14].

Machine virtualization has developed over time and its beginning was primarily marked by
a publication of Popek and Goldberg in the early 1970s [61, 62]. They provided a set of
formal requirements for a computer architecture to enable machine virtualization. During
that time, IBM was one of the first companies that commercially published a virtual machine
environment for the IBM System/370 mainframe [18]. It allows customers to consolidate
multiple guest systems on a single physical host.

Machine virtualization is the key technology enabling IT infrastructure as a cloud service.
Advanced features, such as migration, sever the binding of a virtual machine (VM) to a
particular physical host. With live migration, which is seen as one of the most powerful
tools, a VM can be moved to another host almost seamlessly - even while it is currently
running. It enables higher fault-tolerance and is a useful feature for dynamically balancing
load within a datacenter.

Nowadays, virtualization is becoming increasingly relevant to the area of HPC. Since hard-
ware virtualization features became more and more publicly available, for instance with
Intel’s VT-x and AMD’s AMD-V technology, performance oriented virtualizing is possible:
They enable running a VM at almost native speed since most of the guest instructions can run
directly on the physical hardware. This way, virtualization provides scalability and flexibility
for HPC, as shown in recent research [21, 24, 33].

Supercomputing requires high performance interconnect technologies, since such computers
are typically built from a large number of computer nodes that are interconnected with each
other. The interconnect network becomes a vital part, since supercomputers achieve their
performance from extreme computing parallelism and huge memory resources. For this
purpose, these high-speed interconnects, such as InfiniBand, provide cutting-edge commu-

3

CHAPTER 1. INTRODUCTION AND MOTIVATION

nication performance by utilizing aggressive protocol offloading, OS-bypass technologies,
and advanced features such as remote DMA (RDMA). With HPC IaaS, however, those tech-
nologies substantially complicate the task of transparently migrating a VM to another host.
While the latest generation of such cards, such as the Mellanox ConnectX-3 VPI InfiniBand
host channel adapter [42], already provides hardware self-virtualization to ease their use
in virtualization scenarios with SR-IOV [59], for instance, transparent support for live mi-
grating directly assigned devices is still an open question in virtualization research. Direct
device assignment promises best I/O utilization results in virtualization [15] and migration
transparency is the important key to provide full flexible cloud infrastructures services, be-
cause it removes the dependency to particular systems for the guest which support running
on the according service.

In this thesis, we propose a novel design enabling guest-transparent live migration of a VM
with a directly assigned virtual instance of self-virtualized hardware. For this purpose, we
take advantage of the self-virtualization features of the hardware to perform the actual state
migration of the assigned instance in software at the virtual machine monitor (VMM) layer.
Despite we focus on HPC IaaS, we introduce our approach in a generic way, since we are
confident that this approach is also a base for migrating states of other self-virtualized de-
vices.

This thesis is structured as follows: We present some background information and analyze
the challenges of device state migration in Chapter 2 on the facing page. We focus on self-
virtualizing hardware in the area of infrastructure as a service (IaaS) and HPC. In Chapter 3
on page 27 we introduce our novel design. It consists of two orthogonal components that
are composed together. The first component is a migration strategy and the second is a
novel interface. Such a strategy coordinates the migration process in a way to enable mi-
gration transparency to the guest and also to remote nodes that are interacting through this
device. The interface, that we call migration assistance interface (MAI), provides necessary
mechanisms to a VMM to enable guest-transparent state migration of an assigned device. It
utilizes the self-virtualization feature of the hardware to break up device state opaqueness.
Additionally, we provide an InfiniBand specific slave device migration approach. In Chap-
ter 4 on page 45, we evaluate our proposed design with focus on the integrability on Linux’s
KVM VMM stack. After that, we discuss related work in Chapter 5 on page 61 and contrast
to our approach. Finally, in Chapter 6 on page 67, we conclude our work and summarize our
results.

4

2 Background and Analysis

In this chapter, we provide some background and analyze challenges of live migrating virtual
machines (VMs) to that a slave device of a self-virtualizing hardware is assigned. We focus
thereby on the area of High Performance Computing (HPC), especially on the scope of HPC
infrastructures as a cloud service. Since live migrating directly assigned devices covers a
wide range of area, we present our analysis and background as generic as possible.

First, we provide relevant background on HPC as a cloud service in Section 2.1. After that,
we point out how machine virtualization is utilized for HPC and what are the challenges for
its implementation in Section 2.1.1 on page 7. In this section, we also analyze recent virtual-
ization techniques, since machine virtualization covers resource virtualization of computing
time, memory, I/O, and the high performance interconnect network. I/O virtualization is
covered in more detail in Section 2.1.2 on page 10, because it imposes challenges for migra-
tion, especially to direct device assignment. After an introduction to self-virtualizing devices
and an overview of their potential for HPC in Section 2.1.3 on page 12, we analyze the live
migration process of virtual machines focused on virtual HPC clusters using self-virtualizing
high performance interconnect adapters in Section 2.2 on page 15. Finally, we give a brief
overview of InfiniBand and details of hardware-based InfiniBand adapter virtualization in
Section 2.3 on page 20. Since we primarily focus our scenario on HPC clusters built with
the modern InfiniBand interconnect, we shall introduce the concepts and properties of Infini-
Band.

2.1 High Performance Computing in the Cloud

HPC in the cloud, also called HPC Infrastructure as a Service (HPC IaaS) [21], fuses HPC
with the aspects of Cloud Computing. It delivers a flexible virtual HPC cluster as a service
which promises more flexibility and reduced operating costs compared to a physical owned
cluster. Furthermore, benefits of Cloud Computing are in general a better utilization, higher
energy efficiency, and lower overall operation costs by consolidating multiple users on a
single data center [13]. And because resources can be added or removed at a fine grain
within short time periods, these resources can be matched to workload needs more closely
[13].

Typical high performance applications are simulation, data mining, information access, or
information integration [14]. Examples are computational fluid dynamics, seismic data anal-
ysis, online transaction processing, and real-time control systems [14]. One of the most no-

5

CHAPTER 2. BACKGROUND AND ANALYSIS

ticeable properties of HPC workloads is the high degree of computation parallelism. This
parallelism is exploited by many computation threads which are spread over multiple proces-
sors and even multiple HPC cluster nodes. A fast interconnect network is used to exchange
interim results and for task synchronizations during processing (compare with Figure 2.1).
However, the characteristics of high performance workloads differ significantly from typical
server or workstation workloads in their high dependence on computational performance,
data storage access rates, as well as communication transfer speed and low latency [14, 19].

H
P

C
 w

or
k

lo
ad

T1

Task 1

T2 T3 Tn

...

Node 1

OS Interconnect
Adapter (IA)

T1

Task 2

T2 T3 Tn

...

Node 2

OS IA

T1

Task m

T2 T3 Tn

...

Node m

OS IA

Fast interconnect

...

Threads

Figure 2.1: Typical runtime environment of an HPC workload

The term of Cloud Computing stands for a new trend of computing, the realization of the
long-held dream of computing as a utility [13]. With new technologies, operators are now
able to deliver services at different programming abstraction levels that can be quickly scaled
on-demand and can be charged by usage [13]. Flexibility and illusion of infinity resources of
the service are achieved by virtualizing the underlying resources and hiding the implemen-
tation details from the users [13]. By using cloud services, end-users do not have to operate
the underlying infrastructure by themselves but rather can rent the needed services from a
cloud provider and scale the resources on-demand. Actually, this underlying infrastructure,
the datacenter hardware and software, is what is called a cloud [13]. Delivering a service at
an abstraction level, which can be accessed by users on-demand by themselves, follows the
Everything as a Service (XaaS) model [75]. The following three types are commonly known
[63, 75]:

Software as a Service (SaaS)
delivers service in form of web applications [63]. Prominent examples are the Cloud
Office Suites Google Docs1 and Microsoft Office 3652.

Platform as a Service (PaaS)
delivers service in form of a programming interface on which web applications can be
developed [63]. Because details about how data is stored or requests are processed are
hidden by the interface, such applications can easily be executed on different scales
of computing power and storage increments. Microsoft Azure3, for example, delivers
PaaS [75] for several programming languages, such as .NET, PHP, or node.js.

1http://docs.google.com
2http://www.microsoft.com/ofice365
3http://www.windowsazure.com

6

http://docs.google.com
http://www.microsoft.com/ofice365
http://www.windowsazure.com

CHAPTER 2. BACKGROUND AND ANALYSIS

Infrastructure as a Service (IaaS)
delivers service in form of an IT infrastructure and looks much like physical hard-
ware [13]. For example, Amazon EC24 is a service providing VMs on which users
can (nearly) control the entire software stack [13]. Furthermore, cloud storage belongs
to this category [63] which delivers data storage as a service. Examples are Amazon
S35 and Dropbox6 that can be used by end-users to store and access data from “every-
where”.

H
P

C
 w

or
k

lo
ad

T1

Task 1

T2 T3 Tn

...

Virtual Node 1

OS Virtual IA

Virtual fast interconnect

...

T1

Task m+1

T2 T3 Tn

...

Virtual Node m+1

OS Virtual IA

...Scalable

T1

Task 2

T2 T3 Tn

...

Virtual Node 2

OS Virtual IA

T1

Task m

T2 T3 Tn

...

Virtual Node m

OS Virtual IA

Figure 2.2: HPC IaaS pretends on-demand scalable HPC clusters to its users

HPC IaaS itself is understood as a special type of Infrastructure as a Service. This service is
implemented by using machine virtualization as well as interconnect network virtualization
(see Figure 2.2 and Figure 2.4 on page 9) [21]. It provides users an on-demand scalable
virtual HPC cluster which can be typically scaled on amount of virtual nodes, as well as
memory and storage per node.

2.1.1 Challenges of Virtualization for HPC IaaS

To deploy HPC IaaS, every HPC node and the interconnect of a virtual HPC cluster are vir-
tualized. The main goal is to pretend an independent and scalable cluster that acts closely
like a physical owned one. However, the requirements of HPC workloads differ significantly
from typical server and workstation workloads which requires special optimizations in the
virtualization setup. Typical HPC applications are compute intensive and task synchroniza-
tion points often require equally placed compute units in the whole setup [21]. Also these
workloads have higher demands on the underlying resources and on their guaranteed and
timely delivery [21].

Virtualization is done by a hypervisor, also named as Virtual Machine Monitor (VMM) [44,
61]. It is a small program that virtualizes computing time, memory space, and I/O devices
and therefore safely multiplexes the VMs onto the physical machine. Unfortunately, vir-
tualization introduces overhead that potentially slows down the execution speed of a guest

4http://aws.amazon.com/ec2
5http://aws.amazon.com/s3
6http://www.dropbox.com

7

http://aws.amazon.com/ec2
http://aws.amazon.com/s3
http://www.dropbox.com

CHAPTER 2. BACKGROUND AND ANALYSIS

system compared to its speed running on a bare-metal system. Major keys to improve the
guest performance are reducing the time of a processing unit spending in the VMM [15],
minimizing the number of VMM traps needed by virtualization, as well as execute the VM,
as long as possible, directly on the hardware [76]. This overhead is noticeable as delays in
the VM execution, also called VMM-noise. Figure 2.3 provides an intuition on the poten-
tial effects of delays on workloads that are running with barrier-synchronized computation
phases [60]: If noise introduces impact on a single thread, the computation phase of this
thread is delayed and it will probably reach its synchronization point later than other threads
of the workload. In such a case, the whole workload will run by this delay slower [60]. The
likelihood of having at least one delayed thread per iteration increases, when the workload
runs a large number of threads [60]. So, depending on the HPC workload, VMM-noise can
cause fatal overall performance impacts and limits the scalability of parallel applications
significantly [21].

T1

T2

T3

T4

T5

T6

T7

T8

T9

...

Tn

Noise suspends
computation

Sy
nc

hr
on

iz
ed

 c
om

pu
ta

tio
n

th
re

ad
s

Synchronization barrier

Computation

Delay (e.g. by VMM-noise)

Idle time

Key

time

Optimal phase without any
delay on each computation

Figure 2.3: Illustration of the impact of noise on synchronized computation (source: [60])

Most recent and popular processors, including the x86 models from Intel [27, Volume 3,
Chapter 23: Introduction to Virtual-Machine Extensions] and AMD [2, Chapter 15: Secure
Virtual Machine], provide hardware virtualization features that can be utilized by the VMM
to decrease some of these performance costs [15]. Most compute unit instructions can be
executed natively in the guest, with the exception of a few privileged operations that are
trapped by the VMM [40]. However, this overhead carries almost no weight because typical
HPC workloads seldom call them [40].

Furthermore, for instance, Hillenbrand et al. [21] reduce jitter, caused by timesharing and
memory overcommitment, by assigning dedicated compute resources to a virtual node for
exclusive access. Also memory assigned to a virtual node is completely allocated from phys-
ical memory of the VMM host which avoids preemption and paging activity by the VMM.
Kocolski et al. [33] even implement a dual stack virtualization approach to fuse HPC work-
loads with traditional workloads on a VMM and to retain workload consolidation [33]. For
this purpose, a single system is partitioned into zones to provide isolated environments for
the different workload requirements [33]. Each zone has its own underlying system software
to provide optimal behavior for its zone [33]. For example, a NUMA-based multi-processor

8

CHAPTER 2. BACKGROUND AND ANALYSIS

...

...

U
n

d
er

ly
in

g
d

at
a

ce
n

te
r(

s)

VMM

vN
od

e

...

Data center node

IA

vIA

vN
od

e

vIA

H
P

C
aa

S
 in

 t
h

e
cl

ou
d

Virtual Node 1

Virtual IA

Scalable

Virtual HPC cluster A

Virtual Node 1

Virtual IA

Virtual Node x

Virtual IA

Virtual Node 1

Virtual IA

Scalable

Virtual HPC cluster C

Virtual Node 1

Virtual IA

Virtual Node z

Virtual IA

Virtual Node 1

Virtual IA

Scalable

Virtual HPC cluster B

Virtual Node 1

Virtual IA

Virtual Node y

Virtual IA

VMM

vN
od

e

...

Data center node

IA

vIA

vN
od

e

vIA

VMM

vN
od

e

...

Data center node

IA

vIA

vN
od

e

vIA

VMM

vN
od

e

...

Data center node

IA

vIA

vN
od

e

vIA

VMM

vN
od

e

...

Data center node

IA

vIA

vN
od

e

vIA

VMM

vN
od

e
...

Data center node

IA

vIA
vN

od
e

vIA

VMM

vN
od

e

...

Data center node

IA

vIA

vN
od

e

vIA

Figure 2.4: HPC IaaS is implemented by using machine virtualization

system is partitioned in such a way that an HPC VM is executed in an own HPC context
on pre-selected processors and memory regions, while traditional applications are executed
simultaneously on the rest of processors and memory [33]. The partitioning of the system
is done in such a way that memory traffic is restricted as much as possible to the memory
contained in the NUMA zones of the corresponding processors and their contexts [33]. Such
an arrangement ensures that cross VM interference is minimized [33].

On the one hand exclusive resource usage leads to a decreased degree of virtual machine
consolidation per VMM host, but on the other hand, due to the compute-intensive character-
istics of HPC workloads, consolidation aspects are less relevant to HPC virtualization [44].
These aspects become beneficial whenever consolidation can be done with underutilized
VMs running, for instance, traditional workloads.

9

CHAPTER 2. BACKGROUND AND ANALYSIS

2.1.2 VMM-based I/O Virtualization

I/O virtualization (IOV) is still a challenge for non-HPC virtualization, especially for net-
work devices [53]. Moreover, it becomes a central role in HPC IaaS: Former research, such
as Kocolski et al. [33] and Gupta et al. [19], identified I/O network performance as the main
potential performance bottleneck. Gupta et al. [19] even evaluated several recent IaaS clouds
by running communication-intensive HPC workloads on them. Their results show that cost
benefits of Cloud Computing versus operating a physical cluster are overturning in this sce-
nario, caused by poor network performance. Furthermore, supercomputers are typically
built with special interconnect technologies [79], such as InfiniBand [25] and Myrinet [47]
(also see Section 2.3 on page 20). These interconnects match HPC demands of minimum
guaranteed bandwidth and bounded access latency [21], as well as low performance over-
head. They provide cutting-edge communication performance by using aggressive protocol
offloading, OS-bypass technologies (operating system bypass), and advanced features such
as remote DMA (RDMA). For instance, InfiniBand as such hardware, show in comparison
to typical Ethernet adapters lower latency and higher throughput [29]. Further, OS-bypass
technologies offer hardware interfaces directly to HPC workloads that can be used without
any OS-involvement during communication [21]. The OS is only involved in establishing
connections, registering memory buffers, and to ensure protection [21].

Because of these reasons, knowledge about IOV technologies performance and overhead
is vitally important for deploying HPC IaaS. Additionally, HPC workloads running on a
virtual HPC cluster would optimally benefit from direct access to communication buffers of
the physical hardware. In such a case, an HPC thread can circumvent all layers of system
software during interconnect communications [21]. Generally, recent IOV techniques that
are provided by the VMM can be classified into four different characteristics [39] which
have different advantages and disadvantages measured against different disciplines. Further,
Table 2.1 on page 12 shows a short comparison overview of these techniques.

Emulated devices
An emulated device, also called full virtualized device, simulates completely an ex-
isting hardware in software. Therefore, the VMM traps I/O operations issued by the
guest to such a device and completely emulates its behavior [76]. I/O operations may
also be issued on a connected physical, possibly different, device by the VMM [82] if
configured. For instance, packets from and for emulated network devices will be sent
and received through a physical network adapter in the VMM host by using the MAC
address of the emulated device [76].

Emulation is intended for compatibility [76], thus for use with guests that come already
with a driver software for this device and for those guest where para-virtualization (see
next technique) is not applicable. However, in terms of efficiency this technique offers
the worst performance in comparison [39]. The behavior of the physical hardware has
to be completely emulated by the VMM. Guests do not get any access to a underlying
hardware directly. But on the other hand, full device emulation is applicable for all
types of devices [39] and because only a pure software instance is instantiated per

10

CHAPTER 2. BACKGROUND AND ANALYSIS

device emulation instance, the number of emulated devices per VMM can easily be
scaled [39].

Para-virtualized devices
On para-virtualizition, guests are aware of virtualization. Para-virtualized devices are
intended to reduce dramatically the overhead caused by device behavior emulation
(compare with previous technique). They employ an optimized pure software interface
to the guest. Guests still do not have any direct access to an underlying hardware
and I/O operations may also still be issued on an connected physical device by the
VMM if configured. But various optimization of the VMM-guest interface in former
researches [36, 70] promises huge performance improvements compared to traditional
device emulation.

Unfortunately, recent implementations are focused on para-virtualized interfaces for
block devices (e.g., storage), char devices, and network devices [39], but similar to de-
vice emulation, the number of para-virtualized devices per VMM can easily be scaled
[39].

Accelerated para-virtualized devices
Accelerated para-virtualized devices are similar to para-virtualized devices, but pro-
vide guests direct access to I/O buffers of a physical underlying hardware [70]. It is
commonly implemented with shared pages, which avoids copying of data between
virtualized and physical device [53, 70].

For example, OS-bypass features of different I/O hardware can be utilized by the
VMM to implement VMM-bypass [23, 40]. Another example is Intel’s Virtual Ma-
chine Device Queues (VMDq) technology, which provides guests direct access to
hardware network work queues [6, 53].

Performance measurements of systems implementing this type of technique [6, 40, 70]
show that near direct I/O performance can be achieved [70]. Unfortunately, availability
of this technique depends on the I/O hardware and the VMM which has to support the
feature of this hardware [39]. Also the number of devices per VMM is limited by the
hardware [39].

Device pass-through
Device pass-through, also called direct device assignment, means that a VM sees and
interacts with a real device of the VMM host without software intermediary [82]. Main
advantages are that nearly bare-metal performance is possible [15] and all device fea-
tures are accessible by the guest.

However, hardware support in form of an IOMMU, an MMU for I/O devices, is at least
required to ensure overall system security and stability [81]. It can pretend a device
from accessing memory regions which are not belonging to its assigned guest, thus
retaining the isolation between the VMs. In virtualized environments VMs have their
own view of physical memory which typically distinct from the VMM host physical
memory [82]. The IOMMU, such as Intel’s VT-d [26] or AMD’s IOMMU [1], can be

11

CHAPTER 2. BACKGROUND AND ANALYSIS

Characteristics
Efficiency Applicability Scalability

Te
ch

ni
qu

e Emulation Low All devices High
Para-virtualization Medium Block, network High
Accel. para-virt. High VMM dependent Medium
Device pass-through High All devices Low

Table 2.1: Comparison overview of IOV techniques (source: [39])

programmed by the VMM to translate physical memory addresses into guest physical
addresses for each assigned device.

A limitation of bypassing the virtualization layer [82] is that the VMM looses com-
pletely control of the device and cannot observe the device state which imposes chal-
lenges to VM migration and device monitoring (we will go in a more detail in Sec-
tion 2.2 on page 15) [53, 70, 83]. Also recent implementations require the pinning of
the entire guest memory as long as no para-virtualized interface is implemented for
the guest to map and unmap guest physical memory regions for a device [15, 72]. On
the other hand, entire pinning introduces only minimal overhead [15] and we pointed
out that, in terms of HPC IaaS, an approach to avoid paging activity of guest physical
memory by the VMM pins this memory as well. Unfortunately, an assigned device
cannot be shared with other VMs because the intermediate layer, which could perform
resource multiplexing, is removed.

In terms of HPC IaaS, accelerated device para-virtualization and the device pass-through
technique will perform well for virtualizing interconnect hardware since they permit HPC
VMs to directly access memory buffers of the underlying hardware. These techniques fur-
ther introduce only a minimal virtualization overhead and fulfill the major keys to improve
HPC IaaS performance: reducing the time of a processing unit spending in the VMM and
minimizing the number of VMM traps needed by virtualization (review Section 2.1.1 on
page 7). Especially, device pass-through allows VMs to directly access I/O devices, without
VMM intervention for data movement resulting in high performance [35].

2.1.3 Self-Virtualizing Devices

Recent hardware enhancements move more and more I/O virtualization logic from the VMM
to the hardware [68], mainly to increase performance by reducing software virtualization
overhead [28]. Early studies on self-virtualizing devices [68, 80], which appear as multiple
separate interfaces, promised great performance improvements compared to software-based
IOV techniques. Such natively shareable devices also defeat the drawbacks of direct device
assignment, such as device sharing, potential underutilization, and scalability [35, 39]. These

12

CHAPTER 2. BACKGROUND AND ANALYSIS

devices typically provide unique memory space, registers, and interrupts for each exposed
virtualized device while utilizing shared resources in a resource sharing logic [28].

The former approach of Raj et al. [68], as well as the industrial standardization Single Root
I/O Virtualization (SR-IOV) [59] by PCI-SIG [58], an organization that releases and develops
the PCI [57] and PCI Express [55] standard, introduces an unequal device exposing scheme.
This scheme distinguishes master devices, also called physical functions (PFs), from slave
devices, also called virtual devices or virtual functions (VFs). Primarily, the master device
provides a special interface to manage and configure multiple slave devices and a slave device
is typically controlled by exactly one master device. Furthermore, each slave device is a
lightweight device that is intended to be assigned to a VM. It owns resources necessary for
data movement, including DMA, and a carefully minimized set of configuration resources
[28]. In terms of device drivers, this distinction leads to separate drivers, one for master
devices and one for slave devices. They do not have to be necessarily split into multiple
driver programs, we also observed combined drivers that execute separate program flows
depending on the device type (compare with Mellanox ConnectX-3 driver architecture in
Section 4.2.2 on page 48).

Slave device 1

Master deviceSelf-virtualized device

Slave device 2 Slave device n...

D
at

a
fl

ow

D
at

a
fl

ow

D
at

a
fl

ow

Data flow

Control flow

Visible entities
to the host

Interrupts

In
te

rr
up

ts

In
te

rr
up

ts

In
te

rr
up

ts

Communication
channels

Figure 2.5: Principle of a self-virtualizing device using unequal device exposure and com-
munication channels

In the SR-IOV standard, the basis on that we later introduce our migration approach, a
slave function needs only hardware for accessing performance critical resources while non-
performance critical resources are emulated by the master driver [10]. The idea is that the
master driver keeps control over the hardware while slave devices are lightweight access in-
terfaces to performance critical resources. For this purpose the SR-IOV standard suggests to
implement a communication channel between slave driver and master driver [28, 59]. VMM
independence is achieved by a hardware-based or hardware-assisted implementation. With
this channel, a slave driver is able to request operations through the master driver, as well as

13

CHAPTER 2. BACKGROUND AND ANALYSIS

able to receive event notification from the master [10]. The master can then inspect slave re-
quests and enforce policies concerning performance and security isolation as well as manage
and monitor the resources used by slaves [10]. For example, a slave may request operation
that would have global effects [28] or would affect isolation between VMs. In such a case
the master driver could take appropriate actions or even simulate a behavior. Furthermore,
the master driver may also need to notify changed resource status to its slaves (e.g., network
port link status change) [10].

The actual resource sharing logic and management is implemented in hardware or software
or even both. Typically, only the master driver has access to it for configuration (e.g., to
assign an I/O buffer to a slave device). The implementation of the logic depends highly on the
resource technology itself and on design decisions by the vendor of a specific hardware. For
example, self-virtualizing Ethernet devices typically implement a physical Layer 2 switch
with sort logic, to place incoming packets on receive queues dedicated to its target slave
device [28, 68]. We will provide a more detail of InfiniBand interconnects in Section 2.3 on
page 20.

In conclusion, using device pass-through with self-virtualizing devices has the following
benefits: (1) (almost) no VMM interceptions needed when VMs are performing I/O on slave
devices, (2) virtual guest can use device-specific hardware features that are only limited
by the vendors design, and (3) VMM still would have the ability to control device sharing
via a master driver interface. Unfortunately, assigned self-virtualizing devices still impose
challenges to live migration, which is one of the most important virtualization features [83].
We go in a more detail in Section 2.2 on the next page.

2.1.4 Interconnect Network Virtualization for HPC IaaS

Besides virtualization of the node resources computing time, memory, and I/O, each vir-
tual HPC cluster should get the impression of using the interconnect network by itself [21].
Therefore, each virtual interconnect has to be isolated from others running on the same cloud.
In general, the basic concept is similar between HPC IaaS and IaaS besides higher require-
ments on HPC IaaS, such as minimum guaranteed bandwidth and bounded access latency
[21].

Interconnect network virtualization, or network virtualization in general, is typically done
by partitioning the underlying interconnect network to isolate network traffic. Every virtual
interconnect adapter is associated to a single partition and all nodes of a virtual cluster are
bound to the same partition. However, how partitioning is implemented in detail, depends
highly on the deployed interconnect technology and its available isolation techniques.

14

CHAPTER 2. BACKGROUND AND ANALYSIS

2.2 Challenges of Live Migration for HPC IaaS

VM migration is seen as one of the most powerful features of virtualization [83]. It is used
to move VMs to different physical nodes, for example for maintenance, high availability,
consolidation, or load balancing. For these reasons, VM migration is an important tool for
running and maintaining a cloud data center for IaaS (thus, for HPC IaaS, too). There are
various different definitions of migration types [17, 64]. We categorize VM migration into
cold and live migration (also called hot migration): Cold migration stands for the traditional
way to migrate a VM by shutdown, moving its storage (if necessary), and then restarting
the VM at the destination host [17, 64]. Live migration means relocation of a running VM
to a destination host. Thus, it involves stopping the execution of the original VM, moving
the VM runtime state to the migration target, adapting the configuration of the interacting
environment, and at last resuming VM execution at the destination. Furthermore, a guest-
transparent migration must not involve a guest into state restoration during migration. It has
to be done completely at VMM layer.

We examine the feasibility of extracting and reconstructing a slave device state of a self-
virtualizing hardware at VMM layer in this thesis. Therefore, we give an overview of migra-
tion itself in this section. First, we discuss in Section 2.2.1 which components and states are
included by a VM live migration. After that, we provide more detail about several migration
procedures in Section 2.2.2 on page 17. Several designs of hardware that is migrated can add
further requirements and dependencies to migration. For instance, such a design involves
remote hosts in the environment configuration adaptation process. Therefore, we introduce
two different kinds of migration strategies: (1) common migration approaches, which are ap-
plicable whenever hardware migration can be implemented transparent to interacting parties,
and (2) cluster checkpoint approaches, whenever this transparency cannot be achieved.

2.2.1 State involved in Live Migration

A VM migration moves the machine state to a different host and adapts the configuration
of the interacting environment, so that all involved parties can continue operation (almost)
seamlessly after migration.

Adapting the configuration has to be done in order that all parties that are interacting with the
VM retain connectivity and reachability to the VM after a migration. In terms of networking,
this means that services provided by the VM are reachable after a successful migration in
the same way as before and communication connections are maintained during the migration
process or reestablished. For instance, approaches using conventional Ethernet migrate the
MAC address of virtual network interfaces together with the VM instance. After the migra-
tion proceeding, communications stay alive as long as the migration destination is connected
to the same subnet as the original machine [48]. In contrast to that, some popular intercon-
nects in HPC, such as InfiniBand, are managed by a dedicated network instance that sets up
routings and end point node addresses [25]. These addresses are bound to the physical hard-

15

CHAPTER 2. BACKGROUND AND ANALYSIS

ware, and thus, they cannot be migrated with the VM. In such a case, all involved parties in
connectivity have to adapt to the new situation.

Like Nelson et al. [48], we differentiate between three kinds of VM state:

Virtual device state
State of virtual devices of the VM, such as computing unit, system devices, graphic
adapters, network adapters, etc.

Location dependent resources
Location dependent resources are resources on the VMM host to which virtual re-
sources are connected. For example, virtual networking is often associated with real
network hardware that enables VMs to communicate with hosts on other physical ma-
chines.

Guest memory
Memory that is seen as physical memory by the guest.

In general, guest memory and virtual device states are just copied to the destination. Connec-
tions of virtual resources are reestablished to the new host-local resources. This reestablish-
ment of connection is dependent on the resource itself. Earlier works propose solutions to
solve issues on common full-virtualized or para-virtualized I/O, such as virtualized Ethernet
networking and storage [7, 48]. However, despite former research on live migrating VMs
configured with a pass-through device [17, 23, 30, 53, 71, 83], there is no generic approach
available yet. As described in Section 2.1.2 on page 10, the VMM loses control of an as-
signed device and is typically not able to copy the device state to the target. Internal device
states may not be accessible and state transitions may be still in flight at migration time [83].
But, as we pointed out, better results are achieved in terms of overall performance and lower
virtualization overhead, whenever VM gets direct physical access to the device. However,
the more state data is located or visible at the VMM layer, which applies for example to
emulated and para-virtualized devices, the straighter forward should be the implementation
of migration support. These correlations seem to be in conflict. Zhai et al. [83] identifies
that approaches for device migration have to be addressed either with a VMM having device
knowledge or with guests that are involved into migration to perform the device reinitializa-
tion. In the second case, a guest becomes aware of migration and thus, such approaches are
not guest-transparent [17, 23, 30, 53, 71, 83]. Giving up guest-transparency restricts users to
run modified driver, kernels, or even libraries in the guest that are implementing the mech-
anisms needed for reinitialization. Only they can guarantee errorless operation to the users,
whenever migrations are performed in the data center.

However, as we show in Chapter 3 on page 27, self-virtualizing devices implementing an
unequal device exposure (see Section 2.1.2 on page 10) can turn back control to the VMM
while retaining the performance benefits of device pass-through. We consider these self-
virtualizing devices as a hardware-implementation of accelerated para-virtualization, where
a VMM can manage and control the resources of slave devices by using the master device
interface.

16

CHAPTER 2. BACKGROUND AND ANALYSIS

2.2.2 Live Migration Strategies

Like Clark et al. [7], we consider live migration as a transactional interaction between two
VMMs (in the following: Host A and host B) that are involved into the migrating a VM. This
interaction is done by a process of five common stages starting on host A that runs the VM
that will be migrated to host B (also shown in Figure 2.6 on the next page):

Stage 1: Pre-Migration
A target host (called host B in the following) is selected that guarantees resource avail-
ability of host-local resources that are equal to the host-local resources currently con-
nected to the VM [7].

Stage 2: Reservation
Host B confirms that the requested host-local resources are available and creates a VM
container for the migration [7].

Stage 3: Stop-And-Copy
Host A stops the VM execution and copies the VM state into the container on host B
[7]. Host B also establishes connections to its host-local resources. Actions to adapt
the configuration of the interacting environment by the VMMs may also take place in
this stage. At the end of this stage the VM is cloned to host B and both instances is
stopped.

Stage 4: Commitment
Host B indicates to host A that the image was successfully copied and its copy is in a
consistent state [7]. After that, host A may now discard its VM instance that was hold
to resume it in case of migration failures [7].

Stage 5: Activation
Host B resumes VM execution.

Various improvements to the above-mentioned stop-and-copy approach were introduced to
reduce the long service downtime due to the copy process of memory while the VM is
stopped. Prominent examples are pre-copy [7], pure demand-migration, post-copy [22], and
even combined hybrid techniques (see [7, 22] for an overview). These improvements try to
shift a huge part of the memory page copy process into stages where the VM is running.
Only a required minimum is then transferred at the Stop-And-Copy stage. For example, pre-
copy copies memory pages in several iterations starting with copying all memory pages and
followed by multiple iterations copying modified pages while the VM remains running prior
the actual Stop-And-Copy stage. In doing so, the typical downtime is reduced, since only
a small set of remaining modified memory pages has to be copied when the VM execution
was stopped. Pure demand-migration migrates only a minimal required set at the Stop-And-
Copy stage and transfers remaining memory pages on-demand on their first access after the
VM is resumed on host B.

Nevertheless, recent improvements are not feasible with direct device assignment on com-
mon hardware platforms. For example, pure demand-migration suffers on devices that need

17

CHAPTER 2. BACKGROUND AND ANALYSIS

Pre-Migration
Alternate physical host may be preselected for
migration that guaranteses rerquired resources

Reservation
Initialize container on the target host

Stop-And-Copy
Suspend VM on host A
Synchronize all VM state to host B
Adapt configuration of interacting environment

Commitment
Host B acknowledges succesfully received VM state
VM state on host A is released

Activation
VM starts on host B and resumes normal operation

Downtime
(VM out of service)

VM running
on host B

VM running
on host A

time

Figure 2.6: Five common stages of live migration (derived from [7])

to access data from guest memory pages that are not already migrated. Dong et al. [11]
and Pan et al. [53] identified missing dirty page tracking in existing IOMMU that is needed
to track memory pages dirtied by device access, such as DMA, and which is needed by
pre-copy migration. Migrating an obsolete page state can cause fatal guest malfunction or
even system crashes. To avoid this, the VMM needs knowledge of potential memory pages
accessed by the device via device knowledge and resource monitoring or it has to view the
whole guest memory as dirty. This in turn makes memory migration optimizations useless.
Another problem may occur whenever the assigned device does not provide any suspend
mode that still allows access by a driver to load and store the hardware state. Especially
on devices using RDMA, it is difficult to get the device in a quiescent state to perform a
hardware state migration. In these cases, the hardware may still write to guest memory even
when the VM execution is stopped. But we believe that in most cases, when using pass-
through of self-virtualizing devices using unequal device exposure, it is possible to utilize
some device specific operations in the VMM to bring a slave device into a quiescent state.
In this state, the slave device stops accessing guest memory which ensures that the VMM is
able to migrate guest memory pages in a consistent state.

18

CHAPTER 2. BACKGROUND AND ANALYSIS

In addition, the presented approaches rely on the assumptions that interactions with the VM
are using an interconnect technology that can handle temporary service downtimes and that
adapting the environment configuration is transparent to interacting remote parties. The
second assumption is not necessarily valid in HPC: For instance, in InfiniBand intercon-
nects, end point node addresses are managed by a dedicated network instance and bound
to the physical hardware [25]. As long as such addresses cannot be migrated with the VM
in any way, interacting remote parties have to be involved in the reconfiguration process
of the interconnect (e.g., by reconnecting to a new end point address). Some alternatives
to pure VM-local considerations utilize checkpoint procedures, such as Checkpoint-restart.
Checkpoint-restart of a virtual HPC cluster, as proposed by Scarpazza et al. [71], involves
suspending the whole cluster and bringing it to a save point before further changes, such as
VM migration, are made. On failure, the environment can continue operating from its last
checkpoint. The migration itself is performed within a global silence phase where the HPC
cluster is completely stopped and all outstanding communication operations are completed
(including RDMA operations). This approach eliminates many side effects and reduces the
implementation complexity of the migration procedure of a VM. For instance, quiescence
of cluster interconnect devices, as we pointed out as requirement for special hardware in
Section 2.2.1 on page 15, is achieved automatically. No stopped VM is able to initiate new
communication operations (including RDMA). Furthermore, service downtime due to mi-
gration plays a minor role, since stopped VMs do not access services (e.g., tasks of HPC
workload) of migrated VMs any further. The actual environment adaption can then be per-
formed by all involved VMMs. Scarpazza et al. [71] describe Checkpoint-restart procedures
with a three-phase model:

Phase 1: Drain
The Drain phase begins with the suspend notification to the virtual cluster and covers
the time the cluster needs to reach global silence. It includes successfully suspending
all VMs as well as completing outstanding communication.

Phase 2: Global Silence
At this phase it is possible to simultaneously migrate multiple VMs to different VMMs
and to perform interconnect reconfiguration.

Phase 3: Resume
The Resume phase covers the time the cluster needs to go back into normal operation.
All VMs are resumed in this phase.

However, this approach does make downtime only invisible to interacting parties when they
are all under the control of a coordinating instance. This instance has therefore to be able
to suspend each party. Generally, these assumptions apply for HPC IaaS, where each HPC
node is virtualized and the according virtual cluster is managed by a data center management
instance. Furthermore, compared to traditional cloud jobs, HPC jobs are typically isolated
from third party communication and communication is used only within the cluster for syn-
chronization and intermediate stage coordination purposes.

19

CHAPTER 2. BACKGROUND AND ANALYSIS

2.3 InfiniBand as HPC Interconnect

InfiniBand is currently a popular and modern interconnect for HPC which is also reflected
by the TOP500 supercomputer list of November 2012 [79]: InfiniBand is used in 44.8% of
all listed installations and the most used one, even amongst the 15 highest ranged super-
computers. It is mainly designed for building system area networks (SANs). Such a SAN
is intended, like shared bus architectures, to connect processors nodes and I/O nodes to-
gether [25]. However, InfiniBand resolves scalability, expandability, and fault tolerance lim-
itations of bus architectures by utilizing bidirectional point-to-point links through switches
and routers [9]. Because InfiniBand utilizes massive protocol offloading, zero processor-copy
data transfer (also called RDMA), and OS-bypass techniques [25], it provides cutting edge
communication performance and low latency that meet the requirements for communication-
intensive HPC workloads running on multiple processor nodes [21].

In the following sections we give a brief overview of the InfiniBand architecture specification
[25] which was published by the InfiniBand Trade Association in November 2007. After that
we discuss in Section 2.3.5 on page 25 how self-virtualization is implemented on common
InfiniBand host adapters.

2.3.1 Subnets and Network Management

InfiniBand networks are organized in subnets, also called fabrics [73]. As represented in
Figure 2.7 on the facing page, they consists of multiple InfiniBand endnodes that are inter-
connected with bidirectional point-to-point links through switches or routers or are intercon-
nected directly [16]. Such an endnode is defined as a device, other than a network switch or
router, and is connected to the fabric with a channel adapter (CA) [73]. Such a CA may have
multiple ports. A CA of a host device is called host channel adapter (HCA) and a CA for
an I/O device, like a storage subsystem, is called target channel adapter (TCA). Each CA,
and also its ports, is uniquely identifiable with persistent global unique IDs (GUIDs). These
GUIDs are assigned by the CA vendor during manufacturing [25]. Switches route traffic
within its local subnet and router route traffic between different subnets [73].

For each InfiniBand subnet one subnet manager (SM) entity is responsible for configuring
and managing switches, routers, and CAs. When multiple SMs are active in a subnet, the SM
instances negotiate which of them will operate as master SM [16]. Such a SM is typically
implemented within a fabric device, more precisely on a CA or a switch. For instance,
OpenSM [51] is a popular open source software SM that can be run on a host configured
with a HCA. The master SM checks periodically, or on a incoming signaling message (trap),
the fabric for changes and assigns each port of every CA connected to the subnet with a
local ID (LID) and the subnet prefix. The LID is unique within the subnet and the subnet
prefix addresses the according subnet. Further, the master SM performs route calculations
and configures the switches of the according fabric [16]. Routers connected to the subnet
are informed about the subnet by the SM. Each CA, router, and switch of the fabric run

20

CHAPTER 2. BACKGROUND AND ANALYSIS

Figure 2.7: Exemplary InfiniBand network overview (source: [25])

a low level functionality which is called subnet manager agent SMA that responses to the
commands and queries sent by the master SM [9].

Within a subnet, remote CA ports are addressed with their LID. Outer-subnet addressing,
however, works a bit different: Routers are not completely transparent to the endnodes since
the source CA needs to specify the LID of the router port in the subnet and also the global ID
(GID) of the destination. This GID is assembled with the target port GUID and the assigned
subnet prefix.

2.3.2 Queue Pairs and Transport Services

Communication over InfiniBand interconnects takes place between two queue pairs (QP).
They form a virtual interface of the CA hardware to the consumers (e.g., an application on
a processor node). Each QP is isolated and protected from other QPs and can be considered
as a private resource assigned to a single consumer. Such a QP consists of two work queues
(WQ) where a consumer can post work queue elements (WQEs) on it: (1) a receive WQ

21

CHAPTER 2. BACKGROUND AND ANALYSIS

Figure 2.8: Communication stack of InfiniBand (source: [25])

and (2) a send WQ. Such a WQE describes a work request and is picked-up (according to
the FIFO principle) for execution by the CA [9]. The request is either a sending operation
request on the send WQ (e.g., data send, RDMA access) or a receiving operation request on
the receive WQ. However, there is only one receive operation currently available and it is to
specify a receive data buffer for data that will be received by a remote consumer executing a
send operation. When a CA completes a work request, it places a completion queue element
(CQE) on a associated completion queue (CQ) of the QP. This way, the status result of a
WQE is reported by the hardware. Such a CQ can be associated to multiple work queues and
has to be created by the consumer beforehand. The Figure 2.9 on the next page provides an
illustration of this QP interface concept.

Each QP instance is associated with a so called queue pair number (QPN) which uniquely
identifies it on a CA. There are only two predefined QPs that exist for each particular port
of a CA: QP0 is dedicated for the SMA instance of the CA as well as for a possible SM
application instance running on the according node. QP1 is reserved to be used by special
management service agents (on further interest, we refer to the InfiniBand specification [25]).

Before a consumer can use a QP and start to communicate through the InfiniBand fabric,
it must first create a QP instance and specify its class of transport service. In connection
oriented communication, each QP is bound to exactly one other QP usually on a remote
node. Further, a QP rejects every WQE that is not valid for the configured service class.

Like Ethernet, InfiniBand uses packet based data transport on the interconnect but imple-

22

CHAPTER 2. BACKGROUND AND ANALYSIS

Figure 2.9: Queue pair (QP) driven work requests (derived from [25])

ments mechanisms for transport services classes within the CA. A consumer can thereby
specify between, as shown in Table 2.2 on the following page, five different QP transport
services during QP creation:

Reliable connection
Reliable transfer of data between exactly two connected QP instances in the InfiniBand
network [9]. They are comparable with TCP connection in the TCP/IP standard [54]
which means that they include error recovery, flow control, and reliability due delivery
acknowledgement.

Unreliable connection
Unreliable transfer of data between exactly two connected QP instances in the In-
finiBand network. However, messages may be lost or delivered out-of-order or even
corrupted.

Reliable datagram
A QP configured in this mode can just send and receive messages from one or more
QPs without establishing a connection beforehand. Delivery of messages is error re-
covered and acknowledged.

Unreliable datagram
A QP configured in this mode can just send and receive messages from one or more
QPs without establishing a connection beforehand. Like unreliable connection, a data-
gram may also be lost or delivered corrupted. This type of transport service is compa-
rable with UDP datagrams in the TCP/IP standard.

Raw datagram
Raw datagrams are messages that are not interpreted and handled by the CA hardware.

23

CHAPTER 2. BACKGROUND AND ANALYSIS

Service type Connection oriented Acknowledged Transport

Reliable connection Yes Yes InfiniBand
Unreliable connection Yes No InfiniBand
Reliable datagram No Yes InfiniBand
Unreliable datagram No No InfiniBand
Raw datagram No No Raw

Table 2.2: Service types of InfiniBand QPs (source: [25])

Raw datagram QPs can be seen as an interface from the InfiniBand data link layer that
is directly exported to the consumer [9]. The properties of raw datagrams are the same
as unreliable datagrams: They can be sent and received from one or more QPs without
establishing a connection beforehand. Such a datagram may also be lost or delivered
corrupted.

The main purpose of raw datagram QPs are to send and receive messages for a
consumer-handled protocol other than InfiniBand, for instance, IP or Ethernet packets
[73]. This way, non-InfiniBand packets can be sent through a InfiniBand interconnect
[73].

2.3.3 Remote DMA (RDMA)

InfiniBand supports RDMA operations that perform directly a write or read access to mem-
ory of a remote endnode. Such a memory access operation is directly executed by the ac-
cording remote CA without further involvement or notification to the remote consumer. The
consumer requesting a RDMA access thereto submits a RDMA WQE on a send WQ of a
reliable connection QP or reliable datagram QP. Access permission is coordinated by the
remote consumer with a prior setup of host memory regions that shall be accessible via
RDMA. These regions are protected with pairs of memory keys, a local key (LKey) and a
remote key (RKey), generated by the CA during memory region registration. The LKey is
used internally in work requests to describe a memory region to a local QP. The RKey is
passed to every consumer allowed to perform RDMA, which then have to supply this key in
each RDMA WQE.

2.3.4 Fabric Partitioning

InfiniBand supports a way of subnet partitioning via partition keys (PKey). They are setup
by the SM which assigns corresponding keys to each port of a CA. In the result, QPs, except
QP0, QP1, and raw datagram QPs, are required to be configured for the same partition to
be able to communicate with each other. PKeys are therefore carried in every packet of the

24

CHAPTER 2. BACKGROUND AND ANALYSIS

InfiniBand transport (see Table 2.2 on the preceding page) and compared with the configured
PKey of the receiving entity. Received packets whose comparison failed are rejected.

2.3.5 Resource Sharing Logic of Self-Virtualizing HCAs

HCAs that implement self-virtualization using unequal device exposure (as introduced in
Section 2.1.3 on page 12) typically assemble this with the (1) virtual switch or (2) shared
port model. In the following we discuss these models based on a presentation by Mellanox’s
architect Liran Liss held on the OpenFabrics Alliance workshop in 2010 [39] and published
patches by Mellanox [46] to the Linux RDMA development mailing list [38]. These patches
add support for InfiniBand HCAs that implement self-virtualization with the shared port
model.

HW

QP0

QP1

1
2
3

GID
QP0

QP1

4
5
6

GID
QP0

QP1

7
8
9

GID

IBvSwitch

Figure 2.10: Slave HCAs (VFs) behind virtual switch (source: [39])

The InfiniBand virtual switch model (see figure 2.10) is comparable with virtual switch im-
plementations of self-virtualizing Ethernet adapters. In this model, the InfiniBand HCA
presents each slave device as a fully stand-alone HCA with own ports and own GUIDs to the
interconnect. The ports are connected together on a virtual switch logic implemented in the
physical HCA.

In the shared port model (see figure 2.11), however, the ports of the physical HCA get shared
between multiple slave devices. In the point of view of the InfiniBand network, there are still
only the physical HCA ports seen. Although, each slave HCA and slave port gets its own
GUID generated by the master driver and assigned LIDs and subnet prefixes of the master’s
HCA ports are passed to the depending slaves. Thus, they are shared between master HCA
and slave HCAs. Certainly, each virtual port GUID is registered as an alias at the master’s
physical port. So, each slave still has its own GID. Some other resources, however, are
necessarily shared between the master and slave devices. For instance, the QPN space is
shared between every HCA instance on a physical HCA and PKey configurations are shared
between master HCA and slave HCA when using the same physical port. Since QP0 is
coupled with the physical management of the subnet, QP0 is not exposed to slave HCA ports
and is totally owned by the master HCA. Slave HCA ports still have a QP0 but no data is

25

CHAPTER 2. BACKGROUND AND ANALYSIS

HW

QP0

QP1

1
GID

QP0

QP1

2
GID

QP0

QP1

3
GID

PF VF VF

Figure 2.11: Shared port model (source: [39])

coming from and all data that is put into is be dropped. This implies that a SM cannot be run
on a slave. All traffic to and from a slave’s QP1 is tunneled through the master HCA where
it can virtualize or forward certain requests. This way, the master HCA remains full control
of InfiniBand management and eventually exposes QPs instances to slave devices.

As discussed by Mellanox, the shared port model seems to be more attractive for Infini-
Band implementation, because it provides higher scalability and lower potential performance
degradation compared to the virtual switch model: Since the InfiniBand network is unaware
of slave HCAs, no additional LIDs are assigned per VM which would unnecessarily bloat
the LID space when a huge bunch of VMs configured with slave devices present in a fabric.
This way, no routing entries in switches are wasted and potentially associated caching effects
in the InfiniBand network components that slow down packet forwarding are circumvented.

26

3 Design

In this chapter, we propose our approach and tool sets to enable guest-transparent live mi-
grating virtual machines (VMs) configured with a directly assigned slave device of a self-
virtualizing hardware. Despite we target our approach for High Performance Computing
Infrastructure as a Service (HPC IaaS), we introduce our approach as generic as possible
since some of the introduced concepts are also valid in migrating other device states.

This chapter is structured as followed: In Section 3.1, we begin with a brief and global
overview of our migration approach and introduce our solution of live migrating in HPC
IaaS. After that, we describe the actual and two orthogonal components of our approach
for guest-transparent live migrating device states. The first component consists of migration
strategies introduced in Section 3.2 on page 31. They are coordinating the migration process
in a way to guarantee migration transparency to the guest and also to interacting remote
nodes. Because these strategies are based on virtual machine monitors (VMMs) that are
able to extract and restore the state of a directly assigned device, we introduce the second
component in Section 3.3 on page 35, a novel interface at the master driver that we called
migration assistance interface (MAI). This interface provides the necessary mechanisms to
enable guest-transparent state migration of a slave device and provide them to the VMM.
It thereto utilizes the self-virtualization to break up slave device state opaqueness. After
that, we define specifically which state data is migrated for directly assigned slave devices
in Section 3.4 on page 38. We also give some generic comments for implementing the
migration. Finally, in Section 3.5 on page 40, we introduce a InfiniBand specific approach of
slave device migration that is executed when the state is extracted and restored in our HPC
IaaS scenario.

3.1 Overview

As we analyzed in the previous chapter, we observe two aspects of live migrating a pass-
through device: migrating the hardware state itself (see Section 2.2.1 on page 15) and the
migration procedure (see Section 2.2.2 on page 17).

We propose two different basic strategies, named local and global migration strategy, to
perform a migration. The choice of a migration strategy (as well as the details of state
migration) depends highly on the actual implementation of the migrated hardware. The local
migration strategy performs the VM migration in the traditional way without any further
involvement of any remote parties in the migration process. It can be used whenever the

27

CHAPTER 3. DESIGN

hardware state migration can be performed in a way transparent to interacting remote parties
and the adaption of the environment can be induced by both VMM hosts that are involved
in the migration. A global migration strategy involves suspending of all interacting remote
parties of the VM that is migrated. These remote parties are also virtualized so that all VMMs
can work cooperatively together to reconfigure the environment interconnect accordingly.
Since all VMs are suspended, the reconfiguration process cannot affect any running VMs.

In both strategies, we perform guest-transparent hardware state migration by utilizing self-
virtualizing devices implementing unequal device exposure, such as introduced in Sec-
tion 2.1.3 on page 12. Such a device exposes a master and multiple slave devices where the
master device is used by a special master driver to manage and configure the slave devices.
A slave device is intended to be assigned to a VM and owns physical resources necessary
for direct data movement which leads to bypassing the virtualization layers for direct access
to the physical shared resource (e.g., a network). The master driver is typically running in a
special privileged VM running drivers (e.g., Dom0 on Xen) or even within the VMM itself
(e.g., the host Linux in KVM). For this reason, the driver is accessible by the VMM to assist
migrating a pass-through slave device state.

We propose a novel and generic interface in the master driver that we call migration assis-
tance interface (MAI). It is used by the VMM to perform state extraction and restoration of a
pass-through slave device. However, the actual extraction and restoration is done by routines
in the master driver. With this model, we break up device state opaqueness of assigned slave
devices and follow the basic approach to address device migration with a VMM having de-
vice knowledge which was identified by Zhai et al. [83]. However, we give the VMM device
knowledge in an indirect way. Device knowledge still remains in the device drivers, which
makes our solution more applicable to a wider range of devices (as well as for proprietary
and closed source drivers since implementation details are not carried out from the master
driver). Figure 3.1 on the next page illustrates the utilization of MAI during a live migration:
While the source VMM iterates through the virtual devices of the guest and transfers their
state to the destination host, the VMM utilizes MAI to extract state data for directly assigned
slave devices. The target VMM passes these received state data to its MAI to restore the
device states of equally assigned slave devices of the migration target VM container. This
complete procedure is done, as ensured by our proposed migration strategies, while the ex-
ecution of the migrated VM is stopped and the slave device state is stabilized by a foregone
drain phase.

3.1.1 Live Migration for HPC IaaS

In the following we give an overview of our approach to enable migration in HPC IaaS with
directly assigned interconnect adapters. As discussed in Section 2.1 on page 5, HPC IaaS is
deployed with physical machines running a VMM for HPC node virtualization. These ma-
chines are typically interconnected with each other by using a high performance interconnect
network, such as InfiniBand, that is also virtualized. We focus our approach on InfiniBand
in the following.

28

CHAPTER 3. DESIGN

Slave device

VMM A

Master
driver

Master
device

Slave
resource

states

Slave device

VMM B
Master
device

Slave
state

VM state
+ state of

slave devive

Host A Host B

Slave
resource

mgmt
state

Interface for VMM
to extract state of

slave device

Master
driver

Slave
resource

states

Slave
resource

mgmt
state

Interface for VMM
to restore state of

slave device

Virtual Machine

Migration target
container

Virtual Machine

Figure 3.1: Illustration of VM migration by migrating a slave device state by utilizing MAI
of the dependent master drivers

To guarantee transparent migration, a HPC VM instance configured with an InfiniBand slave
device has to be reachable under the same endnode addresses after its migration. Because of
this, such a migration in InfiniBand can only be performed if the migration target is connected
to the same InfiniBand subnet. Endnode addresses (LID, slave device GUIDs), and port
configurations (e.g. PKeys) are therefore moved with the according VM that is migrated.
During migration, the source host releases the assigned resources and identifiers, so that the
destination host can adept the settings to its host channel adapter (HCA) and without causing
any collisions. Guest-transparency is achieved by reallocating the equal hardware resources
for the target slave device while keeping the identifier identical.

As illustrated in Figure 3.2 on the next page, the migration process is coordinated with a
global migration strategy that involves suspending of all HPC VMs of the according virtual
HPC cluster where a migration happens. This way, InfiniBand reconfiguration due to migra-
tion can be performed in the VMM layer. Since all VMs are suspended, the reconfiguration
process does not affect any running VMs.

A central cloud management instance instructs and coordinates the whole migration process.
It has therefore a connection to each VMM of the HPC IaaS data center. These connections
are established on a dedicated network which is separated from virtual HPC interconnect,
for instance a dedicated Ethernet network. Also the migration data is transported over this
management network.

To be more specific, in our scenario, each VMM host is equipped with one or multiple In-
finiBand interconnect adapters that supports self-virtualization with the shared port model
(review Section 2.3.5 on page 25). This model is more scalable and has lower potential per-
formance degradation compared to the virtual switch model. In context of live migration, we
also benefit from the management of slave devices in the master driver. Each HPC VM node
is using a physical InfiniBand HCA exclusively while it still gets only a slave device assigned.
This way the master device is therefore only responsible for slave device management (re-
view Section 2.3.5 on page 25) and InfiniBand resources are not shared anymore. Resource
competition and noise is avoided which affects positively on communication-intensive HPC
jobs (compare with Section 2.1.2 on page 10). In terms of namespace and endnode address
migratability, it is possible to move addresses and identifiers with the device state in this

29

CHAPTER 3. DESIGN

C
lu

st
er

 M
an

ag
em

en
t

Physical data center(s) HPCaaS

Virtual HPC cluster

Slave
device

Virtual Node A

D
at

a
ce

nt
er

 n
od

e

VMM

Master
driver

Master
device

Slave
device

Virtual Node B

D
at

a
ce

nt
er

 n
od

e

VMM

Master
driver

Master
device

Slave
device

Virtual Node A

Slave
device

Virtual Node B

D
at

a
ce

nt
er

 n
od

e

VMM

Master
driver

Master
device

Slave
device

Virtual Node A

D
at

a
ce

nt
er

 n
od

e

VMM

Master
driver

Master
device

VM State Data

Free (currently unused)

V
ir

tu
al

 in
te

rc
on

ne
ct

Physical Interconnect

VMM controlled
by cluster mgmt

Migration target
container

Figure 3.2: Illustration of a live migration in HPC IaaS: Virtual node A is migrated to a
different data center node but appears unchanged in the virtual cluster

30

CHAPTER 3. DESIGN

approach. There are no remaining resources which cannot be migrated because they are not
shared. There are also no collisions of identifiers on the destination HCA while migrating
(e.g., queue pair numbers (QPNs)). However, this consequently implies that a live migration
is only be performable to a target VMM host that has a physical HCA available whose slave
device is not in use by another VM instance.

3.2 Migration Strategies

Based on our analysis on Chapter 2 on page 5, we propose two different approaches to re-
alize a transparent migration strategies classified on their degree of involvement. Therefore,
we distinguish between local and global migration strategies. We consider a strategy as lo-
cal, whenever a VM migration is performed without further involvement of remote parties in
the migration process. All necessary interconnect adaption is transparently induced by both
VMM hosts that are involved in the migration. In contrast to that, a global migration strat-
egy requires further involvements on remote parties in the reconfiguration process during a
migration.

3.2.1 Local Migration Strategies

In terms of local strategies, we refer to traditional stop-and-copy approaches and their coun-
terparts with reduced service downtime, as introduced in Section 2.2.2 on page 17. In doing
so, we propose modifications at the common stop-and-copy stage and the activation stage.
As a remainder, the common five-stage model consists of the following stage sequence: (1)
Pre-Migration, (2) reservation, (3) stop-and-copy, (4) commitment, and (5) activation.

Modified stop-and-copy stage:
The source host stops the VM execution and also suspends the devices assigned to the
VM. After a short drain phase that waits for device quiescence, the host transfers the
(preliminary/remaining) VM state together with the device state, including memory
pages shared by DMA, to the target host. At the end of this stage the VM and device
states are cloned and the execution of both instances is stopped. Also the devices
assigned to the VM copy are still suspended.

Modified activation stage:
The target host resumes VM execution and operation of the devices assigned to the
VM.

In doing so, we identify the following requirements for the hardware that is migrated. These
requirements ensure that a migration can be proceeded transparent for interacting remote
parties.

• On interconnect networks; hardware end point addresses are migratable with the VM
state.

31

CHAPTER 3. DESIGN

• On interconnect networks; redirection of communication to the new physical migra-
tion destination is performable in a way that it is transparent to all interacting remote
parties.

• On interconnect networks; temporary service downtime during the physical host
switch can be handled in a transparent to remote parties so that established communi-
cation connections are not closed.

• The pass-through device, whose state is migrated, has to be quiet so that state stability
during state extraction is ensured. The transfer in a quiescent device state, that we also
call device suspension, is done in a transparent way to all interacting remote parties.

Some of these requirements may be already fulfilled by the hardware design and used tech-
nology and do not need any further implementation. In typical TCP/IP networks, for exam-
ple, it is possible to migrate hardware end point addresses, called MAC addresses, with the
VM instance. This possibility also performs a redirection of ongoing communication to the
new physical target automatically. Also communication data loss associated with device sus-
pension is handled transparently by the TCP/IP protocol as long as the VM service downtime
due to migration does not hit any timeout mechanism.

However, if at least one of these requirements is not realizable, due to the design of the
assigned hardware and the used technology (e.g., network protocol), a migration cannot be
implemented transparent for interacting remote parties. In such a case, we refer to a global
migration strategy instead.

3.2.2 Global Migration Strategy for HPC IaaS

For HPC IaaS, we propose a global migration strategy with a four-phase model based on
the idea of Scarpazza et al. Checkpoint-restart approach [71]. In contrast, our model is
still guest-transparent and even transparent to interacting remote parties (compare with Sec-
tion 5.2 on page 63): While we also suspend the execution of all VMs of the virtual cluster
where a migration happens, we move device reinitialization of assigned slave devices com-
plete to the VMM layer by utilizing MAI. Furthermore, and as discussed in Section 2.2.2 on
page 17, HPC jobs are typically isolated from third party communication from outside of the
cluster. Communication is used only within the cluster for synchronization and intermediate
stage coordination purpose, so that we assume that no new communication is initiated on the
virtual interconnect of the suspended cluster. Prior the actual migration, a special drain phase
also ensures that the virtual interconnect is drained and becomes quiescent. Consequently,
the whole migration process is done in a phase of global silence where the state of the accord-
ing virtual cluster is stabilized. We suggest that this global migration strategy is managed by
a migration coordination instance that is part of the cluster management software, such as
OpenNebula [50] or Eucalyptus [12].

In detail, this coordination instance transfers the virtual cluster through the following four
phases to perform a VM migration (compare with Figure 3.3 on the next page):

32

CHAPTER 3. DESIGN

VMM host A VMM host B VMM host C VM1 on A VM2 on BMigr. coord.

Pre-Migration

Drain

Global silence
and migration

VM1 on C

Resume

Suspend VMs

Resume VMs

VM execution
stopped

Confirmation

Reservation VM container creation

State copy
+ interconnect adaption

VM execution
resumed

Migrate VM1

Discard VM copy

Migrate
VM1 to
host C

Check resource availability

Check for comm.

Check for comm. (2nd iteration)

VMM B signals ongoing outgoing
communication or yet unacknowledged

reliable communction on assigned slave device

No ongoing
communication reported

Spread delay Suspend slave devices

Resume slave devices

Assigned slave device is
in suspended state

after state copy

Figure 3.3: Illustrative sequence diagram of a live migration using our global migration strat-
egy for HPC IaaS: Migrating VM1 from host A to host C

Phase 1: Pre-Migration
At first, target hosts are selected that guarantee resource availability of host-local re-
sources that are equal to the host-local resources currently connected to the preselected
VMs that will be migrated. Also a migration sequence may be determined by the co-
ordination instance which defines in which order multiple VMs can be migrated.

Phase 2: Drain
At the beginning of the drain phase, the coordination instance instructs every HPC
VMM involved in the virtual cluster to suspend their VMs which are part of that clus-
ter. Afterwards, the drain phase waits until all remaining communication on hardware
buffers of the assigned slave devices (review Section 2.1.4 on page 14) are completed
to ensure device quiescence. For this purpose, the migration coordination instance
queries each VMM involved in the virtual cluster for ongoing outgoing communica-
tion on its slave devices assigned to VMs of that cluster. This procedure is repeated

33

CHAPTER 3. DESIGN

until no ongoing outgoing communications and no outstanding reception acknowl-
edgements from remote parties (on hardware implemented reliable communications)
are reported by each VMM. That means that every remaining communication was sent
out by the assigned slave devices. Then, the migration coordination interface stays a
further spread delay. This delay should give all remaining unreliable communications
the chance to spread out on the virtual interconnect, so that in the end all communica-
tion could be received by the slave devices. At last, every VMM involved in the virtual
cluster is instructed to suspend the slave devices assigned to VMs of that cluster.

If the actual spread delay, which depends highly on the virtual interconnect itself,
guarantees complete drain of communication on the virtual interconnect, the devices
assigned to the VMs do not have to be suspended afterwards. However, suspension in
this way is only optional as long as the hardware state of the slave devices is quiescent
and stable, when there is no traffic on the virtual interconnect.

Phase 3: Global silence and migration
In this phase, the migration processes are made. For each VM that has to be migrated
the following three-stage model performs the actual migration:

Stage 1: Reservation
The according target host creates a container for migrating the VM.

Stage 2: Copy
The according source host is instructed to copy the VM state together with the
device states to the target host. In this step also the necessary interconnect recon-
figuration processes are taking place. In contrast to our local migration strategy,
these processes can cooperate with remote VMMs (e.g., to reestablish connec-
tions).

Stage 3: Commitment
The target host indicates that the image was successfully copied and that the
virtual interconnect was successfully reconfigured. After that, the source host
discards its VM instance that was hold in case of migration failures. In the end,
the VM state was copied to the according target VMM and its execution, as well
as the assigned slave devices, is still suspended.

Phase 4: Resume
At last, the coordination instance instructs all VMMs involved in the virtual cluster to
resume the assigned slave devices assigned to VMs of that cluster, if they were sus-
pended in the Drain phase (2). Then the instance let the VMMs resume the execution
of all VMs of the virtual cluster, so that this cluster returns to normal operation.

Our introduced global migration strategy approach is only applicable if all interacting re-
mote parties are under the control of the migration coordination instance. For instance, in a
traditional IaaS virtual cluster this is not the case as long as the virtual nodes are providing
services for remote parties beyond the cluster itself, such as client computers in the Internet.
However, interaction with the remote parties in the Internet is based on TCP/IP protocol stack

34

CHAPTER 3. DESIGN

that gives a virtual view about the underlying network and utilizes connectionless packet de-
livery and that is designed to handle packet anomalies. Such anomalies are packet loss, out
of order delivery, and even packet duplication [54]. Thus, live migration in traditional IaaS
virtual clusters utilizes local migration strategies.

3.3 Migration Assistance Interface (MAI)

The actual extraction and restoration of the hardware state of a pass-through device and the
adaption of the interconnect is done by utilizing a novel interface that we introduce for both
strategy classes. We call it migration assistance interface (MAI) because it assists a VMM
in guest-transparent hardware state migration while the execution of the according VM is
suspended. This interface is implemented at a master driver of a self-virtualizing device using
unequal device exposure, as introduced in Section 2.1.3 on page 12. Such a device exposes
a master device and multiple slave devices where the master device is used by its master
driver to manage and configure the slave devices. Each slave device owns physical resources
for direct data movement and direct access to the shared resource. They are intended to
be assigned to a VM. Because we expect, that the master driver is executed in a special
privileged VM running drivers (e.g., Dom0 on Xen) or even within the VMM itself (e.g., the
host Linux in KVM), the VMM is able to access the driver. This way it is getting assistance
in migrating a pass-through slave device state. The slave device state, which consists of the
actual state of the resources of the slave device itself and the resource management state in
the master driver, is extracted and restored by routines in the master driver. Based on this
approach, we still benefit from near native performance of device pass-through. In the same
time, we break up device state opaqueness. The VMM gets device knowledge in an indirect
way, since device knowledge still remains in the driver but becomes utilized with MAI for
live migration.

For this purpose, MAI provides generic interface functions per slave device organized in
three groups: (1) state stabilization, (2) state migration, and (3) emulation assistance. We
intend the state stabilization group to guarantee that the slave device is in a stable and qui-
escent state for a state migration. The VMM calls methods of this group while the VM, to
which the according slave device is assigned, is suspended. In order to transfer the slave de-
vice state data between the VMMs involved in a migration process, the state migration group
provides functions to extract and load state data. These functions are called while the VM
execution is stopped. The VMM on the source host has also to ensure that the slave device,
from which the state is extracted, is in a quiescent and stable state before state extraction.
For this purpose, the VMM utilizes the previous mentioned state stabilization group. The
third group, the emulation assistance group, is additionally required for certain devices: Af-
ter a guest-transparent migration, some slave device register need special runtime correction
mechanism, because their states are not restorable by the master driver in any way (compare
with Pan et al. [53]). With the correction mechanisms, their state appears unchanged or at
least changed in a way that the driver in the guest can continue normal operation. Since the
VMM typically has the ability to trap device register access (e.g., KVM actual intercepts

35

CHAPTER 3. DESIGN

Group Method Description
St

at
e

st
ab

i-
liz

at
io

n
Resume Set slave device in a stable and quiescent state

Suspend Return slave device into normal operation

Check for ongoing comm. Check for ongoing or queued communication
on slave device hardware buffers

St
at

e
m

ig
ra

-
tio

n

Extract Return slave device state data

Restore Restore a slave device state with passed device
state data

E
m

ul
at

io
n

as
si

s-
ta

nc
e

Return register correction layout Returns the register correction layout (see Sec-
tion 3.3.3 on the next page)

Register access handler X Interface method to handle register access X in
the master driver

Table 3.1: Overview of MAI interface functions

some configuration registers, such as interrupt configuration, to ensure protection isolation),
MAI interfaces provide a method whose return value specifies a correction layout for the
depending device. This layout specifies which guest accessible device memory regions, also
called device registers, have to be handled by special access handler methods on access by
the guest. Such handler methods can be completely implemented in the VMM layer or also
be a special handler method of MAI to move a correction algorithm to the master driver.

A short overview of MAI interface functions is provided by Table 3.1. In the following, we
describe these groups in detail.

3.3.1 State Stabilization

The state stabilization group consists typically of two functions: suspend and resume. These
functions are required by local migration strategies. In case of our proposed global migra-
tion strategy for HPC IaaS these functions are also needed as long as the hardware state of
the slave is not automatically quiescent and stable after suspending the virtual cluster (see
Section 3.2.2 on page 32). This means basically that ongoing DMA transactions are com-
pleted (including RDMA), no interrupts are generated anymore and device register values
are stable. Furthermore in this strategy, we propose a ”check for ongoing communication“
method. It returns a Boolean value to the caller which specifies if the according slave device
is processing ongoing outgoing communications (on hardware implementing reliable com-
munications, this includes waiting for outstanding reception acknowledgements from remote
parties of these communication connections). So, this value reveals if all outgoing commu-
nications in slave device buffers were sent by the hardware. When the suspend method is
called, the related master driver transfers the specified slave device in a state that is in a way
quiescent and stable. This method guarantees that this state is achieved by returning of the

36

CHAPTER 3. DESIGN

method call. For instance, an Ethernet master driver could program a filter at the virtual
switch logic that effects virtually disconnecting from the network of the according slave de-
vice (all further incoming network packets are dropped by the resource sharing logic). Since
some outgoing device operation may still in-flight, such as ongoing network packet sending,
the suspend interface call returns after the operation ended and the quiescent state is reached.
Resume reverts the device settings that were done by suspend so that the slave device returns
to normal operation. The migration target VMM may also call this resume method after
a successful migration, since we consider device suspension as a part of the actual device
state that is migrated. So, whenever the device was suspended on the source host before,
the target device, on which the state is restored, has to be resumed prior the migrated VM
continues normal execution. Ideally, a slave device should be in a suspended state whenever
the execution of the depending VM is suspended.

However, suspend and resume methods become optional in our global migration strategy
proposed for HPC IaaS if the following two requirements are fulfilled: (1) The drain delay
(see Section 3.2.2 on page 32) guarantees complete drain of communication on the virtual
interconnect. No slave device involved in the virtual cluster receives a message that could
cause a hardware state change. (2) Such a slave device is also in a quiet and stable state when
no messages from the virtual interconnect are received anymore. In this case, a slave device
suspension is redundant so that it can be left out for simplicity.

3.3.2 State Migration

The state migration group offers a method to extract slave device state data and a method
to restore a slave device state by passing the previously extracted state data. These MAI
methods are called while the system emulator part of the VMMs iterates through all virtual
devices to transfer the (virtual) device states of the VM (illustrated in Figure 3.1 on page 29).
In this phase or stage (compare with Section 3.2 on page 31), the VM execution is stopped
and the according slave devices are in a quiescent and stable state. The master driver on
the migration source actually composes the state data that is in turn decomposed by the
master driver on target host. This means that the format of the state data is only created and
interpreted by the master drivers during the migration process. The VMMs involved in the
migration will handle this data as raw data and transfer them from the migration source to
the migration destination host. This way, MAI is a generic interface while keeping detailed
device knowledge in the master driver. This state data typical consists of state data of the
slave device itself and also some state data in the master driver that is part of slave device
management.

3.3.3 Emulation Assistance

We observe several types of guest accessible device memory regions, also named as device
registers in the following. Some of them impose further challenges in value restoration
because they cannot be restored with a simple value copy by the master driver during a

37

CHAPTER 3. DESIGN

slave device state migration. Such registers, which are basically read-only and write-clear
registers, require further runtime corrections after the first migration. A read-only register is
typically a register containing a statistical value, such as a network packet counter or a ring
buffer element pointer. A write-clear register is often a status indicator register that indicate
a specific device status by a set bit (e.g., pending interrupt). Software clears (acknowledges)
such a status bit by writing this bit back to the device register.

Our approach proposes correction mechanisms for those registers in the VMM layer be-
cause the VMM typically establishes the pass-through for the guest to the actual device
registers. For this purpose, the emulation assistance group provides a method that return a
standardized correction layout to the VMM and optionally multiple methods to handle cer-
tain device-specific register accesses. This correction layout specifies exactly which device
register regions have to be intercepted on access initiated by the guest. It also specifies in
these cases which handler shall be called. The actual handling routines rely in the master
driver and are accessible with methods of the emulation assistance group. Alternatively,
some handling routines can also be implemented in the VMM because of performance rea-
sons or reasons of implementation reuse for widespread register types on a large number of
different devices (e.g., status indicator registers).

The correction setup is instantiated with the returned information of the register layout getter
method of MAI when the device pass-through is established by the VMM. This process
normally happens when a VM container is created. Later and during VM execution, each
access to a device register that shall be handled is intercepted by the VMM. It calls the
according register access handler. Additionally, handler methods can also be utilized to
only monitor and protocol accesses to observed registers which may also a useful source of
information for a state restoration on certain devices (read Section 3.4).

However, how a register access handler is actually implemented depends on the according
register of the device itself. For a common set of register types, such as a read-only counter
register and a write-clear status register, we provide an exemplary approach in Section 3.4.

3.4 Hardware State Migration

In the point of view a guest VM execution life cycle, the moments of guest-transparent live
migrations happen seamlessly, at any point of time, and are completely unpredictable for the
guest. Because of these reasons, the assigned slave device on the migration target has to
appear in exactly the same or at least in a compatible state that is not unexpected to the guest
software when the execution of the VM continues. We expect that for most devices and their
drivers such a compatible device state is a state where all remaining work on the device is
suddenly completely processed (e.g., a network adapter sent all packets from its hardware
queues). This requirement should guarantee that the guest’s slave driver continue normal
operation and does not fail. Such a state should be automatically reached by the drain phases
of our proposed migration strategies.

38

CHAPTER 3. DESIGN

Nevertheless, we observe therefore two categories of state that has to be migrated: (1) the
actual device state data migrated with MAI and (2) device pass-through configuration data.
This device pass-through configuration data is related to the VMM and describes how it is
configured and mapped into the guest’s virtual machine platform. This includes, for instance,
on which guest’s virtual interrupt line device interrupts have to be routed, where mappable
device register memory regions are mapped into the guest memory, or under which address
(e.g., PCI device address) the device actual reachable in the guest. We suggest that the
according migration of this kind of state is done by the VMM directly since the VMM is
anyhow responsible for setup the pass-through configuration.

This way, the pass-through configuration state is migrated directly before the MAI interface
is called to extract the actual device state and after a foregone drain phase of the according
migration strategy. We notice that this configuration state also includes the state of pending
interrupts that occur during the drain phase when the VM was suspended. They are reinjected
to the migrated VM on the destination host, immediately after the VM was resumed. This
way, the guest’s device driver can still handle the events that occurred during the drain phase.

As discussed in Section 3.3.2 on page 37, the actual state device extraction is handled in
the master driver. It thereto goes through the resources according to the slave device state
and returns all data that are relevant to reconstruct the state on the migration destination.
Since it is impossible to evolve generic extract and restore methods due to the very specific
designs of devices (even devices of the same type), the hardware has to be analyzed in detail.
Knowledge about hardware interfaces and their behavior are required because wrong kind
of access for the purpose of state extraction and restoration may result in unexpected device
behavior. The actual implementation details of the MAI routines may also follow a device
dependent migration plan (such as proposed in Section 3.5 on the next page for InfiniBand
devices) due to device internal dependencies.

The actual device state that is migrated with MAI is likewise separable into three main
manifestations: (1) the direct observable device state in form of the state of the interac-
tion interfaces, (2) the hidden internal device state, and in case of self-virtualizing devices
implementing unequal device exposure (see Section 2.1.3 on page 12) also (3) the resource
management state for the according slave located in the master driver and device. The actual
fourth state, the guest’s driver software state, is automatically migrated with the VM instance
but is completely opaque to the master driver and thus to MAI.

The direct observable device state describes states of device components, for instance special
device registers for configuration, that do not have a direct dependency to the internal device
state. They can normally be copied or, at least, be emulated after migration when they are
not directly writable. For this purpose, Section 3.3.3 on page 37 the emulation assistance
group of MAI can be utilized.

The hidden internal device state has mainly to be reproducible by traversing hardware state
machines. However, if there are some states which are unreachable by traversing (local as
well as global) and there are no appropriate compatible states that could be handled by the
guest’s driver, the according hardware device seems not to be feasible for guest-transparent

39

CHAPTER 3. DESIGN

migration. This is because there is no chance to restore the previous state. Informing the
guest that his view about the device state is outdated would violate the the guest’s unaware-
ness of migration.

The resource management state in the master driver should be extractable as easiest, since full
access to the master device and master driver is given. The master driver can also be modified
in any way to support management migration, since this driver is aware of migration in our
approach.

3.5 InfiniBand specific Hardware State Migration

In this section, we provide a brief overview of the InfiniBand specific implementation part of
slave device migration that is executed with MAI’s restore and extract methods. As described
in Section 3.1.1 on page 28, we primarily focus on a transparent migration solution for self-
virtualizing InfiniBand HCA within a fabric. We further focus it on state migration of such
HCAs which utilizes the shared port model. A HCA is exclusively used by maximal only
one VM instance while it gets only a save device assigned. This way, the master device is
still responsible for slave device management, handling the special queue pairs (QP) QP0
and QP1 (review Section 2.3.5 on page 25). Endnode addresses (LID, slave device GUIDs),
port configurations (e.g. PKeys), and allocated resources are getting movable in the physical
InfiniBand fabric. Because these resources and namespaces are used exclusively, there is no
dependency to a local HCA due to sharing anymore.

Moreover, using the shared port model automatically introduces further protection and iso-
lation between multiple virtual HPC clusters running on the same InfiniBand fabric. For
instance, subnet managers (SMs) that are managing the fabric are protected from virtual
clusters because QP0 of a slave device has no function (review Section 2.3.5 on page 25).
This way, InfiniBand fabric configuration is enforced by the cloud management or provider.
Because usage of a HCA is exclusive for a VM, partitioning with PKeys that are bound to
physical ports could be used as a simple and efficient way to isolate virtual clusters from
each other (compare with [21]). We also expect slightly better InfiniBand performance re-
sults compared to a similar solution based on virtual switch implementation: When a single
VM is using a single HCA exclusively, the average amount of switches per communication
chain is reduced. Also the number of seen InfiniBand endnodes in a fabric is reduced by half
since slave devices are already represented by the master device node.

With our current knowledge (more details in Section 4.2.2 on page 48) we assume that the
master driver always keeps record of firmware resources allocated by the slave device. This
is required, for instance, whenever a slave device suddenly requests a reset. Then the master
driver is responsible to release all resources that were allocated by the slave. Further, slave
devices pass firmware command to allocate or release a resource through the communication
channel to the master driver (review Section 2.1.3 on page 12). The master driver then de-
cides which commands are directly passed to the hardware and which are simulated because
of protection and isolation reasons. Based on this assumption, the master driver is able to

40

CHAPTER 3. DESIGN

extract and reallocate the slave’s resources.

In the following, we introduce how several entities are migrated which is also illustrated
in Figure 3.4 on the next page. A remarkable property of our InfiniBand live migration
approach is that the entities are restored in a reverse order to the state extraction. This is
because there are several dependencies in the InfiniBand HCA design. For instance, working
with QPs requires a configured LID and the states of QPs have to extract before the LID is
released. In the point of view of the target master driver, migrating InfiniBand related state
data (1) starts with the endnode address movement, (2) continues with the reallocation of
hardware resources for the slave, and (3) finishes with the restoration and configuration of
the management resources needed by the master driver. The source master driver returns
related migration data in this order.

3.5.1 Endnode Address and Port Configuration Migration

From the point of view of the physical HCAs involved in a migration, the InfiniBand endnode
relevant addresses are GUIDs of the according slave devices, and LIDs. Port configurations,
such as PKeys are bound to a physical port. In our approach, both are released at the source
host and reassigned at the destination host. The reassignment is done by the SM of the fabric
where a key-based authentication is introduced so that the migration destination can verify
itself to the SM.

The moving process (illustrated in Figure 3.4 on the following page) is performed by re-
leasing the LID and slave GUIDs on the migration source before the migration destination
reassigns these values to the destination slave device. With an extension to the SM, the
source driver requests releasing the LID and PKeys and attaches a generated key to that re-
quest. Then, the SM stores these LID and PKeys together with the key for later reassignment
and assigns new identifiers to the requesting master driver. These new identifiers ensure that
the source HCA can return to a normal operational state after the migration procedure. Fur-
thermore, the master driver generates new GUIDs for the slave and replaces accordingly the
GUID alias on the physical port. The previous GUIDs, the released LID, the released PKeys,
and the generated key are passed together to the master driver at the migration destination
via MAI. There, this master driver requests the SM to assign this LID and these PKeys to its
HCA. For this purpose, the master driver passes the received LID and key to the SM. The
SM is then able to configure the HCA’s physical port with LID and PKeys that were stored
during the release request. Additionally, the master driver setups the slave GUIDs on the
HCA which were received via MAI

We notice, that by migrating the slave GUIDs, the slave GID gets automatically migrated,
because the GID is assembled from the virtual port GUID and the subnet prefix which should
be anyway equal between migration source and destination.

41

CHAPTER 3. DESIGN

State extraction of slave's allocated hardware
resources
Dump state of QPs, CQs, ... on a temporary buffer

Release slave device objects
QPs that are connection oriented are disconnected
and QPs, CQs, … are realeased

Return reuse permission key, old LID,
and old slave GUIDs

Return extracted state of hardware objects
Return previously dumped state of QPs, CQs, …
from temporary buffer

Subnet Manager

Retrieve and restore state of slave's allocated
hardware resources
Retrieve state data of slave device hardware objects
(QPs, CQs, …) and restore them,
QPs that are connection oriented are reconnected

Retrieve and restore/adapt state of slave
management resources

Return state of communication channel to slave
from temporary buffer

1.) Request release of
LID and PKeys with attached

key for reusage requests,
Inform about changed

GUID alias on phys. port

3.) Request assigning LID
and PKeys by passing the old

LID from master driver on
source and authentication key,
inform about changed GUID

alias on phys. port

4.) Assign old LID and
PKeys of master driver

on source

Master driver on migration source
extract() call by VMM

Master driver on migration destination
restore() call by VMM

Unidirectional state data
transport through VMMs (via MAI)

2.) Assign complete new
LID and Pkeys that do not

collidate (including
released LID)

Save state of slave of slave management resources
on a temporary buffer (e.g., communication channel
state)

Save LID, slave GUIDs
on a emporary buffer

Release LID, PKeys, slave GUIDs
Request SM about release of LID, PKeys due to
migration with a generated key attached so that SM
can authenticate the reusage request of the target,
Generate new GUIDs for slave so that slave device gets
a new GID

Retreive endnode configuration and apply it
Setup received slave GUIDs,
request SM about assigning LID and PKeys by
using received LID and reuse permission key

Figure 3.4: Principle of InfiniBand slave device migration

42

CHAPTER 3. DESIGN

3.5.2 Slave Resource State Migration

Hardware resources allocated by the slave (e.g., QPs, completion queues (CQs), memory
keys) and also the resources which are necessary for the slave management (e.g., master-
slave communication channel) are moved to the destination. However, they are extracted and
released before the endnode addresses and endnode configuration (e.g., LID, GID, PKeys)
are moved to the destination due to the dependency to these endnode settings. Because of
the same reason the restoration is done in reverse order, thus after endnode addresses and
endnode configuration has been applied on the target. For this purpose, the master driver on
the migration source temporarily buffers the resource states so that it can return the states
through MAI in the right order for the migration target (see Figure 3.4 on the preceding
page).

Established connections of connection oriented QPs are disconnected at the migration source
and reconnected at the migration target. For this purpose, all master drivers of the virtual
cluster (except those which are involved in the VM migration) get informed about the mi-
gration from the coordination instance. These master drivers can then react accordingly to
reconnection requests from the migrated endnode.

43

4 Prototypical Evaluation

In Chapter 3 on page 27, we proposed a novel design to perform a transparent live migra-
tion for High Performance Computing Infrastructure as a Service (HPC IaaS). A migration
assistance interface (MAI) is at this the key component of our approach that provides the
necessary basic mechanisms to enable hardware state migration. Orthogonal to this, migra-
tion strategies were introduced as a way to coordinate the migration process. We proposed
a global strategy for HPC IaaS that guarantees migration transparency also to interacting
remote nodes of a virtual high performance computing (HPC) cluster. Since the strategies
are directly based on MAI, we evaluate the feasibility of MAI, in this chapter, with focus on
integrability on Linux KVM and QEMU.

At first, we give a brief overview of our evaluation focus in Section 4.1 and introduce our
evaluation platform in Section 4.2 on the following page. In Section 4.3 on page 49, we
discuss how we extend QEMU with extra migration procedures to enable migration of pass-
through devices and how we integrated MAI. In Section 4.4 on page 57, we briefly introduce,
how the MAI interface is added to the master driver in order that QEMU can utilize it. After
that, we demonstrate the operability with some testings in Section 4.5 on page 58. Finally,
we summarize our evaluation introduced in this chapter in Section 4.6 on page 60.

4.1 Overview

As shown in Section 2.2.2 on page 17, when focused on HPC, cluster node virtualization
is typically built with interconnect technologies, such as InfiniBand, that effects interacting
remote parties on live migration. Because this makes complete transparent live migration im-
possible, we proposed a global migration strategy for HPC IaaS in Section 3.2.2 on page 32
which introduces a migration coordinating instance to enable at least complete transparent
migration at a virtual cluster layer. A therefore needed migration coordination instance is
typically anyway implemented in todays IaaS cloud management framework, such as Open-
Stack [52], OpenNebula [50], or Eucalyptus [12], which needs primarily only to be extended.

However, our proposed strategies are based on the assumption that states of directly assigned
hardware can be extracted and restored by the underlying virtual machine monitors (VMMs)
without involvement of the guest. For this purpose, we introduced MAI, a software interface
at the master driver of self-virtualizing devices (review Section 2.1.3 on page 12). This inter-
face is the key component in our approach of which we show the feasibility and practicability
in this chapter.

45

CHAPTER 4. PROTOTYPICAL EVALUATION

4.2 Evaluation Platform

We evaluated our approach with Mellanox ConnectX-3 VPI InfiniBand host channel adapters
(HCAs) [42]. They are one of the first available HCAs on the market that implements self-
virtualization in hardware. This self-virtualization feature is activated when the HCA is
operated by special driver software. For this purpose, we used an unofficial and prereleased
Linux driver1 provided by Mellanox Technologies as well as the according driver source code
and necessary HCA firmware2 [41]. This driver packet is intended by Mellanox to be used
on a typical Linux Kernel-based Virtual Machine (KVM) virtualization stack. Further, the
packet came with the OpenFabrics Enterprise Distribution (OFED) version 1.5.3, an open-
source software stack that provides RDMA and kernel-bypass communication interfaces to
applications on top of InfiniBand or iWarp fabrics [49].

Physical
function

Linux kernel

KVM

QEMU

Virtual
function

MAI

Slave driver

Guest Linux kernel

Guest

Master driver *

*D
ev

ic
e

pa
ss

-t
hr

ou
gh

Figure 4.1: Illustration of our evaluation platform

In addition, we used an official Linux kernel [77] for our experimental developments and
replaced the InfiniBand driver stack with the source code from Mellanox. In this context, we
tried several different kernel versions, but it turned out that Mellanox’s driver code, which
was originally shipped to be used for a 64 bits Linux kernel of a Red Hat Enterprise Linux
6.2 (RHEL 6.2 x86_64) [69] distribution, fits best to the stable kernel version 3.3.8. With it,

1Version: SRIOV-ALPHA-3.3.0-2.0.0008 of April, 2012 for Red Hat Enterprise Linux 6.2 64 bits (RHEL 6.2
x86_64). This driver enables the SR-IOV mode of the HCA, a standardized hardware I/O virtualization
mode for PCI Express devices.

2In the meantime, Mellanox published patches [46] for the official Linux InfiniBand stack to enhance their
public drivers with SR-IOV capability on the Linux RDMA development mailing list [38]. With mainline
Linux kernel 3.7.0 they came publicly available. We expect that our modification can be also ported to that
code base.

46

CHAPTER 4. PROTOTYPICAL EVALUATION

we could replace the kernel’s InfiniBand stack without further source code adjustments. So
we assume that Mellanox itself developed their driver on a close kernel release. The kernel
components of KVM are included in mainline Linux, as of version 2.6.20 [31]. Accordingly,
the KVM version we use comes with Linux kernel 3.3.8. Since the KVM kernel components
are only providing a Linux IOCTL interface to applications to utilize hardware virtualization
features, we used QEMU-KVM as the system emulator software. QEMU-KVM is a fork of
QEMU [4, 66] and is maintained by the KVM development team. This fork mainly adds
processor code that uses the KVM interface of the kernel instead of software emulation
[32]. Despite the current ongoing code merging process of the QEMU-KVM modifications
to QEMU project, QEMU-KVM still provides better performance [34]. Because of this fact,
we use QEMU-KVM3 version 1.0.1 in our prototype.

4.2.1 Virtualization with KVM and QEMU

Virtual
Machine

QEMU

Traditional
User

Process

Linux kernel
KVM

Virtual
Machine

QEMUQEMU

Guest

Figure 4.2: Typical KVM system with QEMU (source: [67])

A typical KVM-based virtualization installation consists of the KVM kernel components
itself and a system emulator application in user-space, such as QEMU (illustrated in Fig-
ure 4.2). KVM itself is a Linux subsystem which adds virtualization capabilities to the
Linux kernel and exposes a device node that can be utilized by user space applications to
create and run virtual machines [32]. QEMU emulates required system hardware to run un-
modified guests while utilizing the KVM kernel interface to execute a virtual machine (VM)
in a special guest mode accelerated by the host hardware. In this way, VMs appear as regular
Linux processes that integrate seamlessly with the rest of the system [32]. In the end, the
KVM implementation benefits from leveraging the large existing feature set of the kernel
[32], such as existing process scheduling, memory management, and driver implementations
[67]. QEMU processes can be instantiated manually by passing the virtual machine configu-
ration as parameter and can be monitored by regular Linux process management tools (such

3In this document, we term the QEMU-KVM fork as QEMU.

47

CHAPTER 4. PROTOTYPICAL EVALUATION

as the ps command of various Unix and Linux systems [65]). Management frameworks, such
as libvirt [37], create and monitor for each VM a QEMU process in this way.

4.2.2 Mellanox ConnectX-3 VPI

Mellanox’s ConnectX-3 VPI [42] is an InfiniBand HCA for the PCI Express bus. It im-
plements self-virtualization using unequal device exposure (as introduced in Section 2.1.3
on page 12) and conform to the SR-IOV standard [59]. This standard was proposed by the
PCI-SIG group [58], a consortium of nameable electronic companies, as extension to the
PCI Express standard. It defines which interfaces a self-virtualizing hardware provides and
defines that all slave devices appear in the system as a regular PCI Express device. This
way a VMM can directly assign a slave device to a VM by using the same pass-through
implementation as for traditional PCI/PCI Express devices [82].

The Mellanox ConnectX-3 VPI implements resource sharing with the shared port model,
as we introduced in Section 2.3.5 on page 25. In this model, multiple slave devices share
the physical port of the HCA. Because of this, the InfiniBand endnode address (LID) and
port configuration (e.g., PKeys) are shared among the master and slave devices. Also name
spaces, such as queue pair numbers (QPNs) or memory keys, are shared between all device
instances of the physical HCA.

Figure 4.3: Mellanox OFED stack (source: [43])

48

CHAPTER 4. PROTOTYPICAL EVALUATION

The OFED software stack, which is delivered with Mellanox’s ConnectX-3 VPI driver, is an
open-source software stack that provide OS-bypass interfaces and RDMA communication
to applications on top of InfiniBand or iWarp fabrics [49]. As shown in Figure 4.3 on the
preceding page, OFED supports a wide range of upper layer protocols (ULPs), such as IP
over InfiniBand (IPoIB), SCSI RDMA Protocol (SRP), on top of the core driver software
[43]. This core driver consists of the actual HCA driver module and the so called mid-layer
core [43]. This mid-layer, in turn, provides programming interfaces of the HCA hardware
for kernel and user space. Especially, the verb API of the InfiniBand architecture forms the
main interface to the message transport service of InfiniBand. As also illustrated in Figure
4.3, a typical OFED-conform HPC application is using the verbs interface exposed to user
space (called uverbs) directly or indirectly (for instance with MPI [78]).

The OS-bypass interface is therefore implemented on the Mellanox HCA as follows: As
introduced in Section 2.3 on page 20, an application instructs send and receive to by adding
work queue elements to an allocated queue pair (QP). While this data exchange is working
via DMA, the application has to inform the HCA about a new element in a QP. In Mellanox’s
implementation, a doorbell register is rung at a write-only device register region mapped into
the applications address space. Such a region is called user access region (UAR) whereof
multiple UARs exist on the hardware (see Figure 4.4 on the next page). Further, using polling
on the completion queue (CQ) to check for finalized HCA operation, removes also signaling
the process by the HCA through the kernel. This way, applications can excessively utilize the
InfiniBand HCA without concerning performance degradation due to too high arrival rates
of hardware interrupts that traverse the kernel [45].

As discussed in Section 2.1.3 on page 12, Mellanox implements a communication channel
between master and slave driver for passing firmware commands from the slave [41]. A
slave device has a small set of firmware commands available and writes them to a memory
buffer in the guest driver which is shared via DMA with the slave device. When the slave
driver writes to a special communication channel register, the master driver gets triggered to
process a command requested by the slave. For this purpose the master driver instructs a read
command to the HCA which copies the guest’s memory buffer contents to the master driver.
After that, the master driver simulates a command, modifies it to ensure slave isolation,
or passes it directly to the HCA. Finally, the driver let write the command result back to
the guest’s buffer and instructs the HCA to inject an interrupt at the slave device. This
interrupt notifies the slave that the requested command was processed. In general, firmware
commands are only used for allocation and removal of hardware resources, such as CQs,
QPs, and memory keys (LKeys and RKeys). The rest of interaction is performed with these
allocated hardware resources that utilize DMA, interrupts and directly mapped UAR pages.

4.3 MAI Support in QEMU

In this section we introduce our modifications made on QEMU to enable migration of pass-
through devices conforming to our approach (sec:prototype:mai-qemu:mods). For this pur-

49

CHAPTER 4. PROTOTYPICAL EVALUATION

...

MSI-X
Entry table

Comm. Channel

...

BlueFlame 1023

0x000000

0x001000

0x002000

0x003000

Header

BAR2

PCI configuration space

I/O memory @ BAR2 – 8M
(mainly write only UARs)

MSI-X
Pending bits

0x004000

UAR128

...

...

0x000004

Capabilities

BlueFlame 1023

0x000000

Header

BAR2

BAR0

PCIe configuration space

I/O memory @ BAR2 – 8M
(UARs, write only)

...

UAR0

...

Capabilities

Virtual
Function 0

Physical
Function

SR-IOV cap.

VFBAR2

0x000000
Port I/O @ BAR0 – 1M (DCS)

Extended PCIe
capabilities 0x100000

0x800000

HCR

0x00FFFF

Comm. channels
to VFs

BAR2 of VF0

BAR2 of VF1

0x0000000

0x0800000

0x1000000

BAR2 of VF2

BAR2 of VF6

...

0x1800000

0x4800000

0x5000000

I/O memory @ VFBAR2
(slave BARs by SR-IOV standard)

not device
memory,

pure software
buffer

in VF driver

MSI-X
Entry table

0x07c000

0x07d000
MSI-X

Pending bits
0x07e000

0x800000

0x080000

UAR1023

BlueFame 0

0x400000

0x081000

Until UAR127
for EQ doorbells

First 128 UARs
for EQ doorbells

UAR127

0x079000

BlueFlame 0

0x799000

0x799000

0x401000

0x399000

0x400000

0x401000

0x399000
UAR1023

Reserved UAR
Pages

(actually not used
as UAR pages,

partial readable)

Lower half of region
for UAR pages

Upper half of region
for BlueFlame pages

Lower half of region
for UAR pages

Upper half of region
for BlueFlame pages

BlueFlame is
disabled for VFs
of ConnectX-3

vHCR via DMA

Figure 4.4: Device register layout of Mellanox’s SR-IOV capable ConnectX-3 HCA (derived
from [41, 55, 59])

50

CHAPTER 4. PROTOTYPICAL EVALUATION

pose, however, we first provide further background of the already existing virtual device
migration framework in QEMU (Section 4.3.1) and how PCIpass-through is implemented
(Section 4.3.2).

4.3.1 Guest Device Migration Framework in QEMU

QEMU instantiates a device tree containing objects. Each of them represents a particular
device of the VM platform. During snapshot or migration, QEMU goes through this device
objects tree and calls consecutively registered state extraction handlers. On each call, an
abstract sequential writable data stream object (called QEMUFile) is passed to the handlers.
This object represents either a VM snapshot file or a communication connection to a remote
QEMU process as migration target. Each handler just writes its state data that it is needed
for restoration to that stream [64].

The VM device state restoration process is implemented in the reverse way. When restoring
from a snapshot file or receiving a migration stream, the state data source is also represented
by this abstract stream object, however as a sequential readable data stream, this time. This
object is passed to each restoration handler that was registered at an according device tree
object. Each handler picks their state data from the stream. The following handlers are doing
the same but start with the offset in the stream where the predecessor stopped.

4.3.2 PCI Pass-Through in KVM/QEMU

The KVM and QEMU version we used in our experiments support device pass-through of
PCI devices4. Such a PCI device provides three general types of interaction [10]: (1) device
registers, (2) interrupts, and (3) host memory regions that are shared with the device.

Device registers are accessed by software and form a simple interface to the device. In
the PCI standard, device register are subdivided into three types according to the address
space where they are appear [57]: (1) the PCI configuration space with a standardized layout
(type 0 for PCI endpoints), (2) device register regions accessible via the port I/O instruction
interface of the processor [27], and (3) memory mapped device register regions that are
directly mapped into the physical address space of a host.

The PCI configuration space (shown in Figure 4.5 on page 53) has the most important role
in device configuration. Its layout of registers is standardized and is also used in the device
detection process while a host boots up. Their registers are used to detect the device and its
capabilities, and to configure the interrupt and device register resources into the system. For
instance, so called baseline address registers (BARs) are used to detect and define the respec-
tive address locations of additional memory mapped I/O and port I/O regions of the device

4PCI Express was not supported yet. However, from the system software point of view, the main difference
between PCI and PCI Express devices is the extended configuration space of PCI Express (see [55, 57]).
Although the ConnectX-3 VPI HCA is a PCI Express device, its slave devices appear as fully compatible
PCI devices that do not use the extended configuration space.

51

CHAPTER 4. PROTOTYPICAL EVALUATION

Interaction type PCI interfaces

Device register PCI configuration space,
Memory mapped I/O,
Port I/O

Interrupts Interrupt pins (INT# lines),
Message signaled interrupts (MSI and MSI-X)

Shared memory DMA (including RDMA)

Table 4.1: Overview of interaction interfaces of a PCI device

[57]. A unidirectional linked list of capabilities is located at the PCI capability space. Such
a capability has its own defined layout and extends the PCI device with further functionality.
The address of the first capability of this list is defined with a particular capabilities pointer
register [57]. The layout of memory mapped and port I/O register regions is basically com-
pletely defined by the vendor. An exception is the interrupt configuration via MSI and MSI-X
(configured via a PCI capability). Because this PCI standard supports multiple interrupts per
device via PCI bus messages, each of the interrupt is configured through a MSI/MSI-X entry
table. The capability structure defines, for instance, in which additional register region the
table is located. It specifies the index to the according BAR (see Figure 4.7 on page 55).

Interrupts can be generated by the hardware and notify an event to the software. They inter-
rupt the current program flow of the processor (as long as it is not masked) to let it execute
a special service routine. This routine then handles the arrived device event and returns to
the normal program flow afterwards. The PCI standard introduces two different interfaces
of generating and passing interrupts to the processor: Interrupt pins (typically shared among
other devices) and message signaled interrupts (exclusive usage; MSI and MSI-X).

Host memory that is shared with a device is accessed by the device independently and hap-
pens also concurrently to the program flow by using direct memory access (DMA). DMA
transactions are typically controlled by a DMA entity on the device and are configured with
a device-specific register interface.

PCI device pass-through is mainly handled by KVM but established by QEMU. In general,
device assignment is achieved by registering or utilizing interaction handlers that connects
the according physical device interfaces provided by Linux with the device interfaces pre-
sented to the virtual machine platform (see Figure 4.6 on page 54). From the point of view of
the guest, a directly assigned device integrates seamlessly with the rest of the virtual system.
Because the physical device may appear with a different address and configuration in the
host system as in the guest system, QEMU and KVM are translating device accesses by the
guest and vice versa.

Figure 4.6 on page 54 illustrates in detail how QEMU establishes device pass-through. Since
the assigned device still appears regularly in the host Linux, QEMU has to ensure that an

52

CHAPTER 4. PROTOTYPICAL EVALUATION

Device ID (ro) Vendor ID (ro)

Status
(writing 1 resets bits)

Command
(partial writable (bits dev. depend.))

Class Code (ro) Revision ID (ro)

BIST (Self Test)
(optional) Header Type (ro) Latency Timer

(ro/rw (dev. dep.) Cacheline Size

0x00

0x04

0x08

0x0C

0x10

15 01631

0x14

0x18

0x1C

0x20

0x24

0x28

0x2C

Cardbus CIS Pointer
(optional; points to Card Information Structure CIS of CardBus card)

Subsystem ID
(Vendor specific)

Subsystem Vendor ID
(Vendor specific)

Expansion ROM Base Address 0x30

0x34

0x38

0x3C

0x40

...

Capabilities
Pointer

(optional)

Max_Lat (ro) Min_Gnt (ro)
Interrupt
PIN (ro,

INT#A, INT#B, ...)

Interrupt Line (rw,
only used by OS)

0x5C

0x60

...

0x98

0x9C

...

0xFF

PCI CONFIG SPACE (header type 0, 256 Bytes)

Baseline Register 0 (BAR0)
(memory/IO space definition)

Baseline Register 1 (BAR1)
(memory/IO space definition)

Baseline Register 2 (BAR2)
(memory/IO space definition)

Baseline Register 3 (BAR3)
(memory/IO space definition)

Baseline Register 4 (BAR4)
(memory/IO space definition)

Baseline Register 5 (BAR5)
(memory/IO space definition)

PCI capability space
(almost) complete direct readable

Read from/write to emulation buffer

Direct read and write of device register

Direct write of device register
and emulation buffer;
read from emulation buffer only
Direct read from device register;
write to emulation buffer (thus ignored)

Keys

Figure 4.5: Pass-through setup in QEMU of PCI config space (header type 0)

53

CHAPTER 4. PROTOTYPICAL EVALUATION

VM guest

Interrupts
(INT#, MSI,

MSI-X)

Device
configuration

registers
DMA engine

Device
register
regions

PCI device

Masked
emulation

VMM
(KVM/QEMU/
Linux)

Direct

Translation to
guest physical
addresses by

IOMMU

Trapped
and reinjected

Figure 4.6: Ways of device interaction and how QEMU handles pass-through

untrusted guest cannot configure the device in a way which would violate protection and
isolation of the guest.

Configuration registers are mainly emulated by QEMU. Access from the guest is only for a
few registered passed to the real hardware. The BARs, for instance, are completely emulated,
because modifications would change the location of I/O register regions in the host system.
QEMU actually reads the values from emulated registers and relocate the mappings only in
the guest memory. The QEMU configuration register emulation is thereto implemented by
an overlayed buffer, a write mask and a read mask. Each write access is written to that buffer
and also to the device as long as the requested register was not masked out. Each read access
is read from the device when the requested register was not masked out. Otherwise, the value
is read from the emulation buffer. Masking can be set bitwise and the masks are initialized
when QEMU initializes the depending pass-through device object.

Access to I/O memory regions (port and memory mappable) are directly passed to the device.
The memory mapped regions are therefore directly mapped into the guest memory space and
port I/O regions are trapped by QEMU. However, QEMU passes here the port I/O request
directly to the Linux’s port I/O interfaces [82]. The MSI and MSI-X configuration tables that
rely in one of the device’s I/O regions form also here an exception:. QEMU overlays the
according regions with extra emulation buffers. Each time, the guest modifies one of these
buffers, QEMU instructs KVM to resetup the interrupt routing accordingly.

Interrupts from the device are routed through KVM. KVM registers therefore for each inter-
rupt its own interrupt handler at the Linux host and configures the device accordingly. When
an interrupt arrives, KVM receives the interrupt and reinjects it to the guest according to the
guest’s view of the interrupt configuration. Every time when the interrupt configuration is
changed by the guest, QEMU instructs KVM to resetup the routing. This way, the hardware
register will always contain a interrupt configuration, that fits in the host configuration while
the guest gets only a emulated view about the interrupt configuration.

DMA access from the device is protected with a special virtualization hardware, the IOMMU

54

CHAPTER 4. PROTOTYPICAL EVALUATION

C
on

tr
ol

C
ap

ab
ili

ty
 I

D
(r

o)
 =

 0
x1

1

M
SI

-X
 T

ab
le

 O
ff

se
t (

ro
)

P
en

di
ng

 B
its

 A
rr

ay
 (

P
B

A
)

O
ff

se
t (

ro
)

0x
00

0x
04

0x
08

15
0

16
31

M
S

I-
X

 c
ap

ab
il

it
y

N
ex

t C
ap

. P
T

R
(0

x0
0

fo
r

la
st

)

0
1

2
3

4
5

6
7

8
9

10
11

12
13

14
15

re
se

rv
ed

Ta
bl

e
Si

ze
 N

 [
M

ax
. n

um
be

r
of

 E
nt

ri
es

]
en

co
de

d
as

 N
-1

 (
ro

)
(e

.g
. 0

01
1b

 in
di

ca
te

s
si

ze
 o

f
4)

B
IR

(3
 b

it
s)

(r
o)

MSI-X
Enable

+

A
dd

re
ss

 in
 B

A
R

B
IR

M
es

sa
ge

 lo
w

er
 a

dd
re

ss
0x

00

15
0

16
31

M
es

sa
ge

 u
pp

er
 a

dd
re

ss
0x

04

E
nt

ry
N

r
*

0x
10

h
+

 b
as

e

M
A

SK
 B

it
:

1:
 IR

Q
 d

is
ab

le
d

(m
as

ke
d,

 a
ft

er
 r

es
et

)
0:

 IR
Q

 e
na

bl
ed

M
S

I-
X

 t
ab

le

M
es

sa
ge

 d
at

a

re
se

rv
ed

0x
08

0x
0C

Mask

M
es

sa
ge

 lo
w

er
 a

dd
re

ss

M
es

sa
ge

 u
pp

er
 a

dd
re

ss

M
es

sa
ge

 d
at

a

re
se

rv
ed

Mask

0x
10

0x
14

0x
18

0x
1CB
IR

(3
 b

it
s)

(r
o)

Function
Mask

Entry 0 Entry 1

P
en

di
ng

 b
it

s
0-

31
0x

00

15
0

16
31

P
en

di
ng

 b
its

 3
2-

65
0x

04

E
nt

ry
N

r
*

0x
10

h
+

 b
as

e

M
S

I-
X

 P
B

A
 t

ab
le

P
en

di
ng

 b
its

 6
4-

95

P
en

di
ng

 b
its

 9
6-

12
7

0x
08

0x
0C

+

A
dd

re
ss

 in
 B

A
R

B
IR

Figure 4.7: MSI-X PCI capability layout (for MSI table layout or more information read
[56])

55

CHAPTER 4. PROTOTYPICAL EVALUATION

[82]. It is part of the hardware virtualization features and extend recent computer platforms.
Such a implementation comes with Intel’s VT-d or AMD’s IOMMU. The IOMMU works
like a typical MMU but translates addresses for devices instead of processes. In KVM, the
IOMMU is configured to translate each memory access by DMA for the pass-through device
into an access to a guest memory addresses. KVM pins therefore the whole guest memory,
since swapping is not supported yet [82]. In the point of view of the assigned device, the
guest memory address space appears completely as the host memory address space.

4.3.3 Extending QEMU’s pass-through code

We extended QEMU’s pass-through code with an extract and restore methods and gener-
ally unlocked migration of pass-through devices. These methods are migrating the device
configuration state and pass the state data of the according MAIs through QEMU’s migra-
tion stream. For this purpose, we implemented the following functionality to the restore and
extract functions:

First, the functions copy the PCI configuration space emulation buffer from the source to the
destination, since QEMU’s device configuration emulation implementation put each write
access also to the emulation layer. Except of the status register, each register value is also
written back to device when writing was not masked out. Because the status register im-
plement a Write-To-Clear semantic, each bit that is written to the register will reset the
according bit. Due to this fact, we added an additional emulation buffer for this register (see
Figure 4.8 and Figure 4.9 on the next page): During migration the actual status bits from
the device or’ed with the value of the emulation buffer on the source host is copied into the
emulation buffer at the migration destination. Whenever the guests accesses this particular
register, QEMU returns instead of the original device register the register value on the device
or’ed with the value of the emulation buffer. On write access, the Write-To-Clear semantic is
simulated on the emulation buffer while the request is also forwarded to the device. Further,
the restore and extract functions copy the contents of the overlayed MSI/MSI-X table buffers
to the destination, if there are any (see Figure 4.7 on the preceding page).

After this first migration process, the restore function calls all internal QEMU routines that
are also called when the guest changes a value of an emulated configuration register. This
way, QEMU reestablishes the interrupt routing setup and maps device register regions ac-
cordingly to the guest memory.

Finally, the functions call the according MAI methods so that the actual hardware state gets
also migrated (described in Section 4.4 on the next page).

The IOMMU setup is automatically established when QEMU instantiates the pass-through
device object. There is no data for the IOMMU configuration setup that needs to be ex-
changed to the destination. Because the mapping of guest memory pages to physical host
pages may be different on the target host, the IOMMU would contain different entries but
with the same effect in the point of the view of the guest an the assigned device. In their view
the layout has not changed. Further, guest memory pages shared with the device are already

56

CHAPTER 4. PROTOTYPICAL EVALUATION

migrated with QEMU’s iterative memory copy routines. As we discussed in Section 2.2.2
on page 17, the device should be in a quiescent state before QEMU does this.

I/O memory regions are not migrated within QEMU directly since this is a task of the master
driver with device knowledge. However, pending interrupts are not migrated yet, since we
did not need them for our tests. Pending interrupts are occurring when the VM execution
was stopped while the pass-through device still generates interrupts. We will do this in a
future work.

0 1 0 0 0 0 1 1

0 0 0 0 0 0 0 0

0 1 0 0 0 0 1 1

Device register

Emulation layer
(VMM)

Bitwise OR

0 1 0 0 0 0 1 1
Register state
appearing to

the guest

Migration source host

Register state
appearing to

the guest

Migration target host

Migration

0 0 0 0 0 0 1 0

0 1 0 0 0 0 1 1

Device register

Emulation layer
(VMM)

Bitwise OR

Figure 4.8: Migration of the status register in the PCI configuration space

0 1 0 0 0 0 1 0

0 1 1 0 0 0 1 0

Device register

Emulation layer
(VMM)

Write-Clear
access by guest

Write-Clear is performed on
emulation layer and

device register

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 10 0 1 0 0 0 1 1

Figure 4.9: Write access from the guest on the status register

4.4 MAI Integration in Master Driver

We implemented the actual MAI at the master driver with a Linux IOCTL device file. The
path of this file is passed as parameter to the pass-through configuration of the QEMU in-
stances. Each MAI method is encoded with an own IOCTL identifier (review Section 3.3 on
page 35) and gets accordingly called by the novel restore and extract methods of QEMU’s
device pass-through implementation (review Section 4.3.3 on the facing page). Further we
enforced the master driver to enable only a single slave device, as required by our InfiniBand
specific design (review Section 3.5 on page 40).

In the first place, we only implemented the extract and restore methods for our evaluation.
They look as the following:

57

CHAPTER 4. PROTOTYPICAL EVALUATION

The extract interface gets a pointer to a user-space buffer passed to where the master driver
writes its state data into. However, since the data length depends on the actual device state
(e.g. number of allocated QPs), we introduced a second interface which returns the expected
size of state data in bytes. This value matches the actual size, when the interface is called
after the device has reached its quiescent state. During this state the state data will not
chance.

The restore interface gets a gets a pointer to a user-space buffer passed from which the master
driver is reading the state data directly.

This means in the end, that QEMU’s migration implementation needs to temporarily cache
the device state data on buffers. We extended this to our restore and extract functions within
QEMU (see Section 4.3.3 on page 56) so that the following happen whenever one of the
two MAI methods gets called by QEMU: On the migration source, QEMU first requests the
expected state data size from MAI and then allocates a buffer accordingly. This buffer is then
passed to MAI’s extract method. After the IOCTL finished, QEMU puts first the size of the
buffer and then the buffer contents itself to the migration stream. On the migration target,
this size info is used to allocate a buffer where QEMU puts the incoming state data from
the stream into. This way, QEMU calls restore of MAI, after the device state data arrived
completely.

4.5 Evaluating MAI Integraton

Up to now, we integrated MAI into QEMU (see Section 4.4 on the previous page) and in-
troduced code for migrating the pass-through configuration (see Section 4.3 on page 49). In
this section we evaluate the functionality of these changes. For our tests we use two identical
hosts5 that are interconnected with each other through Ethernet and a InfiniBand interconnect
with a SM running on a third party. On these systems, as well within the VM, we installed
CentOS 6.2 x86_64, a RHEL 6.2 x86_64 compatible Linux distribution [5], and Mellanox’s
OFED stack including the HCA driver [41] (review Section 4.2 on page 46). On the physical
hosts, we use Linux kernel 3.3.8 with our modifications to the HCA driver (see Section 4.4 on
the preceding page). and the patched QEMU 1.0.1 (see Section 4.3.3 on page 56). The VM
is running a unmodified guest system. During migration the VM state is migrated through
the separate Ethernet network.

To show that pass-through configuration migration work, we check the state of the configu-
ration space within the guests, and list the interrupt handler registered by KVM at the VMM
hosts before and after a migration (/proc/interrupts). We also run a small tool from
the OFED stack [41], called ibstat. This tool communicates with the slave device driver,
which therefore utilizes the slave device to extract some device properties (e.g., HCA sum-
mary, port link state, GUIDs). The slave driver communicate therefore with the master driver
by passing firmware commands through the communication channel. The master driver ac-

5Intel Xeon E3-1230, 16 GiB DDR3 ECC main memory, Onboard Gigabit Ethernet adapter, Mellanox
ConnectX-3 VPI InfiniBand HCA PCI Express

58

CHAPTER 4. PROTOTYPICAL EVALUATION

tually passes the commands to the HCA and returns the results to the slave device. This
communication involves access to slave device registers in an I/O memory region to estab-
lish this channel, DMA when the master driver reads the according firmware command and
its arguments from a software buffer within the guests slave driver, and interrupts when the
master driver informs the slave driver that the command was processed and its result was
written (via DMA) back to this software buffer.

To perform the tests, we first start a guest instance on the first machine. After it
booted up, we run ibstat and then unload the HCA driver in the guest. We also
print the state of the guest visible configuration space via the Linux sysfs interface
(/sys/bus/pci/devices/****:**:**.*/config).

After that, we migrate the VM to the second host where we already instantiated a QEMU
container process to receive the VM state. The migration is performed through the Ethernet
connection and via the migrate command of the QEMU internal command line interface,
called QEMU monitor.

At the destination, we first compare the guest visible configuration space with its state before
the migration. We observe, that it is identical, even the status register bits appear equal. Then,
we reload the HCA driver, so that the new pass-through device gets initialized. However,
we repeat unloading and reloading the driver several times since unexpected values were
returned from the communication channel. After two or three times, the driver comes up.
We are currently not sure what exactly the issue is at this point, but we believe that it has
something to do with the slave management state of the master driver that is not migrated
yet. After the driver comes up, we start ibstat and compare the output with the previous
one: We observe that HCA dependent values, such as GUIDs, are changed in the output.
This proofs us, that the firmware commands could be processed by the master driver at the
destination and that the communication with this driver is working.

However, interrupt routing configuration migration could not be completely tested since we
had to unload the driver at the migration source. This disables interrupts at the device which
are only re-enabled when the driver is loaded again. When we migrate a VM without un-
loading the driver we observe that at the point of adaption of the pass-through configuration,
the interrupt routing gets reestablished by the KVM module at the destination. But because
the slave interface of the HCA was never initialized, we could not trigger any interrupts to
confirm that this setup is actually working. Even so, the observable registered handler con-
figuration (interrupt number to handler mapping) appears equal to the one that is established
when the guest driver comes up.

Further, we implemented returning a test string in the MAI’s extract interface. This data gets
transported on each migration which we observe at the migration destination: The MAI’s
restore interface is implemented to print the received test string to the Linux kernel output,
which it actually does.

59

CHAPTER 4. PROTOTYPICAL EVALUATION

4.6 Summary

We implemented the MAI interface at the master driver and integrated its usage in QEMU.
For this purpose, we extended QEMU to support migration of pass-through devices and
implemented state extract and restore routines. They first migrate the pass-through configu-
ration within QEMU and then the hardware state data originated from MAI’s methods.

In a test scenario we demonstrated that MAI integrates well in QEMU, migration of PCI
pass-through configuration state works with the Mellanox ConnectX-3 VPI InfiniBand HCA,
and state data can be transported via MAI from the master driver at the migration source
to the master driver at the destination. This way, MAI has the potential to extend QEMU
indirectly with device knowledge.

60

5 Related Work

Several recent studies have introduced methods and concepts that enable live migration of
virtual machines using a pass-through device. However, as we observed in our research,
there is no approach known to us that focuses on guest-transparency. Because early studies
of pass-through device migration were mainly focused on Ethernet network adapters we first
introduce their proposed techniques in Section 5.1. We point out the differences to modern
interconnect networks, represented by InfiniBand. After that, we introduce recent works in
live migration of InfiniBand adapters in Section 5.2 on page 63.

5.1 Ethernet-based Approaches

Approaches of live migrating directly assigned Ethernet devices, typically utilize implicit
assumptions of common TCP/IP networks. These assumptions fulfill our proposed require-
ments for local migration strategies (see Section 3.2.1 on page 31): End point addresses are
migratable with the virtual machine (VM) instance, ongoing communication can be transpar-
ently redirected to the new destination and network service downtime, as well as handling of
communication anomalies that may occur (e.g., package drops and duplication) is part of the
TCP/IP protocol stack. This means that a migration of a VM is transparent to communicating
remote parties as long as the VM service downtime does not hit any communication time-
outs. This way, the primary focus of these studies relies on reducing the total VM service
downtime caused by hardware reinitialization.

A common approach utilizes a kind of hotplug mechanism on the assigned device which no-
tifies the migrated guest about a replaced device [3, 30, 74, 83]. The device is hot unplugged
before migrating and a new device is plugged after a completed migration on the target host.
However, Kadav et al. [30] showed that hot device unplugging and plugging can cause a
considerable service downtime due to driver unloading and loading. They observed a load-
ing delay of over two seconds at the popular e1000 driver1 shipped with Linux2. To reduce
the downtime, Zhai et al. [83], who first introduced hot plugging by a virtual ACPI hotplug
implementation, propose a concept that uses Linux’s bonding driver in the guest. This driver
is originally intended to aggregate multiple interfaces into a single logical network interface
configurable with hot standby or load balancing [8]. Zhai et al. utilized this driver to en-
slave a para-virtualized interface as a hot standby device and the pass-through device as the
primary interface into a single network interface. This network interface has a single MAC

1For a wide range of Intel Ethernet adapters and Intel LOMs (LAN on Motherboard)
2The authors used a Linux kernel in version 2.6.18-xen in their tests

61

CHAPTER 5. RELATED WORK

address. With this setup, the para-virtualized device becomes active whenever the primary
pass-through device is temporary unplugged due to a live migration. An analogical approach
is also proposed by a solution brief of Solarflare [74]: They provide a driver implementation
of their SR-IOV capable 10 Gbit/s Ethernet server adapter family that introduces plugin-
based failover semantic. This driver is able, similar to the Linux bonding driver, to register
a para-virtualized network device as fallback and a pass-through device as primary device
(and thus as accelerated device).

VMware’s US Patent 8,146,082 granted by the United States Patent and Trademark Office
in March 2012 [3] replaces the pass-through device with a device emulation handler in the
virtual machine monitor (VMM) during a live migration. This handler simulates the device
experiencing hardware errors. When the migration procedure is done, the VMM generates
an error that reports the guest to reinitialize the corresponding hardware. Then the VMM
intercepts this reinitialization request from the guest to remove the emulation handler and
map the new pass-through device to the migrated VM. This way, the guest reinitializes the
new device while reusing the already loaded driver. Kernel data structures associated with
the device are kept in memory. In the end, this approach reduces VM downtime that was
caused by complete driver reloading. It also allows systems running on top of the driver to
remain connected to it since kernel objects are reused.

Kadav et al. [30] showed a complete different approach with similar benefits as the device
emulation handler of VMware, the bonding, and the plug-in driver implementation: In their
work they propose a passive shadow driver which mainly capture all function calls to the de-
vice driver continuously. This shadow driver becomes only active during a migration, when
the VMM injects an upcall after a migration: In this mode, the driver fields requests from
the kernel until the actual driver has been restarted or even a new driver for a different pass-
through device on the migration target host has been started. With the captured information
about the previous driver state, the shadow driver transforms the new device driver into this
state. After that, it returns itself back to passive mode. This way, software using the driver
is unaware that the network device has been replaced and a migration to a different (but
compatible) network device driver is also possible.

To our best knowledge, the first works that utilize self-virtualized devices (see also Sec-
tion 2.1.3 on page 12) for migration with PCI Express SR-IOV [59] were proposed by Pan
et al. [53] and Dong et al. [11]. However, Pan et al. CompSC study is not exactly focused on
SR-IOV but a prototype was implemented on it. Device reinitialization is completely done
by the guest’s driver on first device access after a migration. For this purpose, their approach
introduces a shared memory area between guest and the VMM. Every time when a migra-
tion happens, the VMM deposits a copy of device registers into this shared area. With this
information and the internal driver state, the driver is able to reinitialize the new hardware. A
counter variable, that is incremented by the VMM after a migration, indicate the guest driver
that the underlying hardware was exchanged. Their work showed that in case of SR-IOV the
master driver gets involved in slave device migration since a subset of the slave device state
is held and managed in the master driver (e.g., MAC address).

Dong et al. went a complete different with their ReNIC idea [11]: Their work proposes an

62

CHAPTER 5. RELATED WORK

architectural extension for SR-IOV capable Ethernet devices to support state migration in
the hardware. For this purpose, the master device is extended with an additional interface
to extract and restore the hardware state of a slave device. During a migration, the involved
slave devices are transformed into a newly introduced clone mode which is similar to our
device suspension that ensures state stability (compare with Section 3.3.1 on page 36). Then,
the VMMs utilize the hardware interfaces at the master driver to transport the hardware state
data during a migration. Additionally, Dong et al. introduced a dirty bit for IOMMU entries
so that the VMMs keep track of memory pages that were dirtied by device access, such
as DMA. With this architectural modification, pre-copy migration is applicable even with
device pass-through (compare with Section 2.2.2 on page 17). In the end, the idea of ReNIC
enables, like our approach, guest-transparent migration of self-virtualized devices.

5.2 InfiniBand-based Approaches

Migration of directly assigned InfiniBand adapters has been studied more rarely compared
to migration of Ethernet hardware. In contrast to Ethernet and shown in Section 2.3 on
page 20, the InfiniBand architecture assumes central network management, stable location
dependencies, and channel adapters (CAs) utilizing protocol offloading. For instance, Infini-
Band routers and switches are configured by a so called Subnet Manager (SM), a manage-
ment entity in each InfiniBand fabric. Moreover, address assignment is closely related to the
hardware adapter so that addresses cannot be simply migrated with the VM instance. Further,
InfiniBand’s protocol offloading introduces additional challenges, because some changes to
the local hardware states may also involve changes on remote parties (e.g., destroying a
queue pair (QP)). Recent InfiniBand migration approaches circumvent the actual problem of
hardware state migration by adding reinitialization routines at certain points of the guest’s
InfiniBand stack.

The earliest work of Huang et al. [23] concerning InfiniBand host channel adapter (HCA)
migration is based on an accelerated para-virtualized HCA implementation from Liu et al.
[40]. This implementation can roughly been seen as a software realization of the shared
port model introduced in Section 2.3.5 on page 25. It extends OS-bypass capabilities of the
hardware to get a VMM-bypass semantic. Huang et al. [23] introduce three parts to it to
support migration: (1) modifications to the user level communication libraries which allow
to suspend and resume communication, (2) modifications to the guest device drivers that
free and reallocate communication resources before and after a migration, and (3) a central
instance for coordinating a migration and keeping track of VM locations. The proposed con-
cept circumvents problems arising from namespaces that are bound to the local HCA (such
as queue pair numbers (QPNs), LIDs, and memory keys) with virtualization: Whenever an
application performs a request that returns or requires a QPN, memory key, or a remote LID
of communication partners, a virtual QPN, memory key, or LID is used instead of the real
one. Especially the virtual LID is unique within a cluster. It can also be seen as an identifier
of a VM. Whenever a VM migrates, the coordination instance triggers all endnotes that are
connected to the according VM to suspend the communication. Then, the VM that will be

63

CHAPTER 5. RELATED WORK

migrated frees the HCA resources and the VMM migrates the VM to another VMM host.
After this is done, the migrated VM resetups all dependent resources and reestablishes all
previous connections. At last, the coordination instance triggers all previously suspended
VMs to resume communication. This virtualization approach of resources has the advan-
tage that applications running on top of the communication libraries can still use the same
identifiers to address equivalent resources after a migration. Thus, this migration approach
is transparent at the application layer. However, a drawback is that communication between
endnodes are only reasonable when each endnode supports the introduced extensions.

Scarpazza et al. [71] used a different way. In their work, they propose an approach where
HPC applications are aware of migration and are responsible to reestablish their communi-
cation setup. Because of this, no translation mechanism is needed. In their virtual cluster
checkpointing approach, the complete cluster is suspended before VM migrations are per-
formed. However this proceeding is carried up to the application level. This way, also the
applications running on the cluster have to reach a special checkpoint. This checkpoint en-
sures that all communication was drained over the InfiniBand interconnect and each HPC
application has reached a quiescent state before the depnding VM gets suspended. After ev-
ery VM of the virtual cluster was finally suspended, the VM migrations are performed. Each
VM returns to normal execution afterwards. The still halted HPC applications are triggered
by a resume signal, so that they reestablish their communication setup and hit a synchroniza-
tion barrier afterwards. Only after all HPC applications reached this barrier which means that
the communication setup is finally reestablished the applications return to normal execution.
Especially, this prototype proposes a cluster-global view to perform a migration. However,
applications need to be implemented with explicit checkpoints.

To our best knowledge, the first work that utilized self-virtualized InfiniBand adapters, is
Guay’s et al. [17] live migration prototype with SR-IOV capable InfiniBand HCAs. Their
work was presented on a OpenFabrics Alliance workshop in 2012. It primarily analyzes
Mellanox’s SR-IOV capable InfiniBand HCAs implementing the shared port model for slave
device migration towards the hotplug approach of Ethernet-based works. Since this is not
directly realizable, they proposed two ways to introduce workarounds: (1) in a bottom-up
way and (2) a top-down way. In the bottom-up way, first workarounds are placed close to
the hardware and subsequently further workarounds are placed in higher levels of the Infini-
Band software stack. In the top-down way, this is performed in reverse order. In both ways,
the authors used a (almost) local three-stage strategy to perform the migration: (1) the slave
device is detached at first, then (2) the according VM is migrated and finally (3) the new
slave device is attached. In the bottom-up way, Guay et al. proposed changes up to the user
level library: With it, the hardware QP contexts are released before slave device unplugging
and reallocated after slave device plugging. Further, unplugging is performed when all send
operations were completed and the QPs are in a quiescent state. QPN and memory keys are
virtualized at user-library layer, so that applications can continue using their device handles
afterwards. Because connected remote QPs are normally transit in an error state when the
peer QP is just destroyed, the VM that is migrated generates an event to suspend the remote
QP beforehand. Finally, newly created QPs on the migration target reestablish the connec-
tions. In the top-down way, Guay et al. assumed that upper-layer protocols are responsible

64

CHAPTER 5. RELATED WORK

to provide fail-over mechanisms since the InfiniBand software interfaces are seen as a black
box. This way, they could only utilize datagram transport services which is also less generic
than the bottom-up approach.

Similar to Kadav et al. [30] measurements, Guay’s et al. results showed a comparable service
downtime of 2.7 seconds due to driver unloading and loading. In the authors opinion, the
virtual switch model seems to be a better architecture where performance optimizations are
more feasible because, for instance, namespaces are isolated per slave HCA.

To our best knowledge, there is no previous approach proposing InfiniBand HCA migration
in a guest-transparent way to get the full value of virtualization. Guay’s et al. analysis
was based on a local migration strategy assumption and was introducing their modification
starting at the user-library level. In contrast to that, we solved transparent live migration in
a software way by utilizing hardware self-virtualization at the VMM layer. Our design also
benefits from the shared port model of InfiniBand HCAs since the master driver has - per
design - control over the assigned slave devices (review Section 3.5 on page 40).

65

6 Conclusion

High performance computing infrastructure as a service (HPC IaaS) provides on-demand
scalability and flexibility, also referred to as elasticity, to the area of high performance com-
puting (HPC). It is an upcoming trend in the computer service industry that promises new
possibilities and opportunities for users and providers.

Since recent research identified I/O network performance as the main potential performance
bottleneck [19, 33] of running HPC workloads on traditional Ethernet-based clouds, former
research [21, 24] suggest to implement HPC IaaS with a high performance interconnect, such
as InfiniBand, and to thereby keep interconnect efficiency with low virtualization overhead.
Such a hardware provide cutting-edge communication performance by utilizing aggressive
protocol offloading, OS-bypass technologies, and advanced features such as remote DMA.
As we discussed in this work, they substantially complicate the task of transparently migrate
a virtual machine to another host. However, to get the full value for HPC virtualization, a
solution for transparent live migration of HPC virtual machines (VMs) using an HPC inter-
connect hardware is required.

We address this challenge by proposing a novel design for device state live migration that uti-
lizes recent interconnect adapter generations which implement hardware self-virtualization
with unequal device exposure (see Section 2.1.3 on page 12). This feature solves resource
sharing in hardware while a dedicated device interface, called master device, is responsible
for the management of the rest of exposed interfaces, called slave devices.

Our approach consists of two orthogonal components: (1) a migration strategy and (2) a
novel interface at the master device driver that we call migration assistance interface (MAI).

We analyzed that for a transparent migration, the strategy may involve remote parties in the
interconnect adaption process depending on the actual migrated hardware. In such a case,
we consider the strategy as global. In contrast to this, a local strategy performs necessary
interconnect adaption completely transparent to interacting remote parties. Since we assume
that in HPC IaaS each endnode of a virtual HPC cluster is virtualized, we proposed a global
migration strategy that suspends this cluster during migration and involves the remote virtual
machine monitors (VMMs) in the migration process.

MAI is thereto utilized by the VMMs for hardware state extraction and restoration of the
assigned slave device whose state is migrated. This way, the actual extraction and restoration
is done in the master driver so that device knowledge still remains in the particular device
drivers.

Since this interface is the key component of our approach, we evaluated the feasibility of

67

CHAPTER 6. CONCLUSION

integrating MAI in a recent VMM, KVM/QEMU. We showed that MAI integrates well in
QEMU by demonstrating it in a test scenario. This way, such an interface extends a VMM
indirectly with device knowledge.

6.1 Future Work

Since we know that a software state migration interface, such as MAI, integrates well in a
VMM design like KVM/QEMU, we will continue our research in the actual implementation
of state extraction and restoration. Specifically, the feasibility of our proposed InfiniBand
specific slave device state migration approach will answer our question if self-virtualization,
such as SR-IOV, can be utilized for guest-transparent slave device state migration in HPC
IaaS. Based on our observation, we are confident that the Mellanox ConnectX-3 VPI Infini-
Band HCA fits perfectly in our migration model. We aim at a complete prototype, based
on a existing cloud management framework such as OpenNebula [50] to demonstrate our
approach in future work.

Another open question that we will follow is if in general our approach can be utilized
for guest-transparent hardware state migrations of other self-virtualized devices. For this
purpose, we will analyze further device types and device implementations to get an overview
and a common statement.

68

Glossary and Abbreviations

API
Application Programming Interface

BAR
Baseline Address Register in the PCI and PCI Express standard [55, 57]

CA
Channel Adapter in the InfiniBand architecture [25]

CQ
Completion Queue in the InfiniBand architecture [25]

CQE
Completion Queue Element in the InfiniBand architecture [25]

DMA
Direct Memory Access; A hardware feature of modern hardware devices to directly
access physical memory of a host.

FIFO
First In First Out; A queueing principle where the elements are in the same order are
are picked-up from the queue as they arrived.

GID
Global ID in the InfiniBand architecture [25]

GUID
Globally unique ID in the InfiniBand architecture [25]

HCA
Host CA, Host Channel Adapter in the InfiniBand architecture [25]; InfiniBand Chan-
nel Adapter in a processor node [25]

HPC
High Perfomance Computing

HPC IaaS
High Perfomance Computing Infrastructure as a Service, a special type of IaaS for
HPC

69

Glossary and Abbreviations

IaaS
Infrastructure as a Service

IOMMU
MMU for I/O devices that translates

IOV
I/O Virtualization

IP
Internet Protocol; IP is a unreliable connectionless packet delivery protocol and hides
a underlying physical network (e.g. Ethernet) by creating a virtual network view [54]

KVM
Kernel-based Virtual Machine; Linux kernel interface providing machine virtualiza-
tion capabilities to user space [67]

LAN
Local Area Network

LID
Local ID in the InfiniBand architecture [25]

LKey
Local Key for local memory access in the InfiniBand architecture [25]

MAC
Media Access Control provides addressing and access control mechanisms that make
it possible for several network nodes to communicate within a multiple access network
on a shared medium [54]

MAI
Migration Assistance Interface, introduced by our approach to assist the VMM to ex-
tract and restore the hardware device state of a slave device of a self-virtualized device
(see Chapter 3 on page 27)

MMU
A Memory Management Unit is a hardware unit that primarily translates virtual ad-
dresses into host physical addresses to provide virtual address spaces for applications

MSI
Message Signaled Interrupts in the PCI and PCI Express standard [56]

MSI-X
Extended Message Signaled Interrupts in the PCI and PCI Express standard [56]

NUMA
Non-Uniform Memory Access, a multi-processor computer architecture where a com-

70

Glossary and Abbreviations

mon memory address space is assembled from processor-local memories. Thus, mem-
ory access performance depends on memory location related to the performing pro-
cessor [20]

OFED
OpenFabrics Enterprise Distribution, an open-source software stack that provides
RDMA and kernel-bypass communication interfaces to applications [49]

OS
Operating System

PaaS
Platform as a Service

PCI
Peripheral Component Interconnect [57]

PCI Express
Peripheral Component Interconnect Express [55]

PF
Physical function, also called Master Device [59]

PKey
Partition Key in the InfiniBand architecture [25]

QEMU
Quick EMUlator; a system emulation software [4]. In this document we term the
QEMU-KVM fork as QEMU [34]

QP
Queue Pair in the InfiniBand architecture [25]; A Queue Pair consist of a Send Work
Queue and a Receive Work Queue

QPN
Queue Pair Number in the InfiniBand architecture [25]; Numeric identifier of a QP

RDMA
Remote DMA; DMA that is initiated by a remote network instance

RKey
Remote Key for RDMA memory access in the InfiniBand architecture [25]

SaaS
Software as a Service

SAN
System Area Network

71

Glossary and Abbreviations

SM
Subnet Manager in the InfiniBand architecture [25]

SMA
Subnet Manager Agent in the InfiniBand architecture [25]

SR-IOV
Single Root IOV [59]

TCA
Target CA, Target Channel Adapter in the InfiniBand architecture [25]; InfiniBand
Channel Adapter in an I/O node [25]

TCP
Transmission Control Protocol; An upper layer protocol on top of IP. It provides a
connection-oriented communication to upper layer applications including error recov-
ery, flow control, and reliability [54]

TCP/IP
TCP/IP is a common short name for the Internet protocol stack. It names the two most
important protocols: TCP and IP [54]

UAR
User Access Region; A device register region of the Mellanox ConnectX-3 VPI HCA
which is typically mapped to user space [41]

UDP
User Datagramm Protocol; A simple upper layer protocol on top of IP which is not
connection oriented, provides no flow control or even error recovery [54]

ULP
Upper layer protocol in the InfiniBand architecture [25]

VF
Virtual function, also called Slave Device [59]

VM
Virtual Machine

VMDq
Virtual Machine Device Queues; A hardware virtualization technique for Ethernet net-
work cards proposed by Intel [6]

VMM
Virtual Machine Monitor, also called hypervisor. We term the complete software stack
that is required to provide virtual machine abstraction as VMM

WQ
Work Queue in the InfiniBand architecture [25]

72

Glossary and Abbreviations

WQE
Work Queue Element in the InfiniBand architecture [25]

XaaS
Everything as a Service

73

Bibliography

[1] Advanced Micro Devices. AMD I/O Virtualization Technology (IOMMU) Specifica-
tion. 2009.

[2] Advanced Micro Devices. AMD64 Technology AMD64 Architecture Programmer’s
Manual Volume 2: System Programming. Vol. 2. 2012.

[3] AM Belay. “Migrating Virtual Machines Configured With Pass-Through Devices.”
In: US Patent App. 12/410,695 (2009).

[4] Fabrice Bellard. “QEMU, a Fast and Portable Dynamic Translator.” In: 2005 USENIX
Annual Technical Conference (2005).

[5] CentOS. URL: http://www.centos.org.

[6] S Chinni and R Hiremane. “Virtual Machine Device Queues.” In: Intel Corp. White
Paper (2007).

[7] Christopher Clark et al. “Live Migration of Virtual Machines.” In: NSDI ’05: 2nd
Symposium on Networked Systems Design & Implementation 2.Vmm (2005). ISSN:
00371963.

[8] Thomas Davis et al. Linux Ethernet Bonding Driver HOWTO. 2011. URL: http://
www.kernel.org/doc/Documentation/networking/bonding.txt.

[9] VD Deshmukh. “InfiniBand: A New Era in Networking.” In: IJCA Proceedings on
National Conference on Innovative Paradigms in Engineering & Technology (2012).

[10] Yaozu Dong et al. “High Performance Network Virtualization with SR-IOV.” In: Jour-
nal of Parallel and Distributed Computing 72.11 (2012).

[11] Yaozu Dong et al. “ReNIC: Architectural Extension to SR-IOV I/O Virtualization for
Efficient Replication.” In: ACM Transactions on Architecture and Code Optimization
8.4 (2012). ISSN: 15443566.

[12] Eucalyptus. URL: http://www.eucalyptus.com/.

[13] Armando Fox and Rean Griffith. “Above the Clouds: A Berkeley View of Cloud Com-
puting.” In: EECS Department, University of California, Berkeley (2009).

75

http://www.centos.org
http://www.kernel.org/doc/Documentation/networking/bonding.txt
http://www.kernel.org/doc/Documentation/networking/bonding.txt
http://www.eucalyptus.com/

Bibliography

[14] GC Foxy, KA Hawick, and AB White. “Characteristics of HPC Scientific and Engi-
neering Applications.” In: Second Pasadena Workshop on System Software on Tools
for High Performance Computing Environments (1996).

[15] Abel Gordon et al. “ELI : Bare-Metal Performance for I/O Virtualization.” In: AS-
PLOS ’12: Proceedings of the seventeenth international conference on Architectural
Support for Programming Languages and Operating Systems (2012).

[16] Wei Lin Guay et al. “Host Side Dynamic Reconfiguration with InfiniBand.” In: 2010
IEEE International Conference on Cluster Computing (2010).

[17] Richard Guay, Wei Lin and Johnsen, Bjørn Dag and Torudbakken, Ola and Yen,
Chien-Hua and Reinemo, Sven-Arne, Frank. “Prototyping Live Migration With SR-
IOV Supported InfiniBand.” In: OFA International Workshop 2012 (2012).

[18] P. H. Gum. “System/370 Extended Architecture: Facilities for Virtual Machines.” In:
IBM Journal of Research and Development 27.6 (1983). ISSN: 0018-8646.

[19] Abhishek Gupta and Dejan Milojicic. “Evaluation of HPC Applications on Cloud.”
In: 2011 Sixth Open Cirrus Summit (2011).

[20] JL Hennessy and DA Patterson. Computer architecture: A Quantitative Approach.
Fourth Edi. Morgan Kaufmann Publishers, 2011. ISBN: 9780123704900.

[21] Marius Hillenbrand et al. “Virtual InfiniBand clusters for HPC Clouds.” In: CloudCP
’12: 2nd International Workshop on Cloud Computing Platforms (2012).

[22] Michael R. Hines, Umesh Deshpande, and Kartik Gopalan. “Post-copy Live Migration
of Virtual Machines.” In: ACM SIGOPS Operating Systems Review 43.3 (2009). ISSN:
01635980.

[23] W Huang, J Liu, and M Koop. “Nomad: Migrating OS-bypass Networks in Virtual
Machines.” In: VEE ’07: Conference on Virtual Execution Environments (2007).

[24] Wei Huang et al. “A Case for High Performance Computing with Virtual Machines.”
In: ICS ’06: Proceedings of the 20th annual international conference on Supercom-
puting. ACM, 2006. ISBN: 1595932828.

[25] InfiniBand Trade Association. “InfiniBand Architecture Specification Volume 1: Re-
lease 1.2.1 (Final).” In: 1.November (2007).

[26] Intel Corporation. “Intel Virtualization Technology for Directed I/O - Archticture
Specification.” In: Intel technology journal February (2006).

[27] Intel Corporation. Intel R© 64 and IA-32 Architectures Software Developer’s Manual -
Combined Volumes: 1, 2A, 2B, 2C, 3A, 3B and 3C. August. 2012.

[28] Intel Corporation. “PCI-SIG SR-IOV Primer.” In: Intel LAN Access Division: (2011).

76

Bibliography

[29] LE Jonsson and WR Magro. “Comparative Performance of InfiniBand Architecture
and Gigabit Ethernet Interconnects on Intel R© Itanium R© 2 Microarchitecture-based
Clusters.” In: 4th European LS-DYNA Users Conference (2003).

[30] Asim Kadav and Michael M. Swift. “Live migration of direct-access devices.” In:
ACM SIGOPS Operating Systems Review 43.3 (2009). ISSN: 01635980.

[31] Kernel-based Virtual Machine (KVM). URL: http://www.linux-kvm.org.

[32] Avi Kivity, Y Kamay, and D Laor. “KVM: The Linux Virtual Machine Monitor.” In:
Proceedings of the Linux Symposium (2007).

[33] Brian Kocoloski, J Ouyang, and John Lange. “A Case for Dual Stack Virtualization:
Consolidating HPC and Commodity Applications in the Cloud.” In: Proceedings of
the Third ACM Symposium on Cloud Computing. 2012. ISBN: 9781450317610.

[34] KVM - QEMU. URL: http://wiki.qemu.org/KVM.

[35] Joshua Levasseur et al. “Standardized but Flexible I/O for Self-Virtualizing Devices.”
In: ().

[36] Guangdeng Liao et al. “Software Techniques to Improve Virtualized I/O Performance
on Multi-Core Systems.” In: Proceedings of the 4th ACM/IEEE Symposium on Archi-
tectures for Networking and Communications Systems - ANCS ’08 (2008).

[37] libvirt virtualization API. URL: http://libvirt.org.

[38] Linux RDMA and InfiniBand Development. URL: http://www.spinics.net/
lists/linux-rdma/.

[39] Liran Liss and Mellanox Technologies. “Infiniband and RoCEE Virtualization with
SR-IOV.” In: OFA International Workshop 2010 (2010).

[40] Jiuxing Liu, Wei Huang, and Bulent Abali. “High performance VMM-bypass I/O in
virtual machines.” In: ATEC ’06 Proceedings of the annual conference on USENIX
’06 Annual Technical Conference Vmm (2006).

[41] Mellanox Technologies. ConnectX-3 prereleased Linux driver (SRIOV-ALPHA-3.3.0-
2.0.0008). 2012.

[42] Mellanox Technologies. “Mellanox ConnectX InfiniBand Adapter Brochure.” In:
(2013). URL: http://www.mellanox.com/related-docs/products/
IB_Adapter_card_brochure_c_2_3.pdf.

[43] Mellanox Technologies. Mellanox OFED Stack for Linux - User’s Manual. Mellanox
Technologies, 2008.

[44] Mark F Mergen et al. “Virtualization for High-Performance Computing Categories
and Subject Descriptors.” In: ().

77

http://www.linux-kvm.org
http://wiki.qemu.org/KVM
http://libvirt.org
http://www.spinics.net/lists/linux-rdma/
http://www.spinics.net/lists/linux-rdma/
http://www.mellanox.com/related-docs/products/IB_Adapter_card_brochure_c_2_3.pdf
http://www.mellanox.com/related-docs/products/IB_Adapter_card_brochure_c_2_3.pdf

Bibliography

[45] JC Mogul and KK Ramakrishnan. “Eliminating Receive Livelock in an Interrupt-
driven kernel.” In: Proceedings of the USENIX 1996 Annual Technical Conference
January (1996).

[46] Jack Morgenstein. Patch for linux-rdma project that adds SR-IOV support for Infini-
Band interfaces. 2012. URL: http://www.mail-archive.com/linux-
rdma@vger.kernel.org/msg11956.html.

[47] Myricom Inc. Myrinet. URL: http://www.myri.com.

[48] Michael Nelson, BH Lim, and Greg Hutchins. “Fast Transparent Migration for Virtual
Machines.” In: Proceedings of USENIX ’05: General Track (2005).

[49] OpenFabrics Alliance. OFED Overview. URL: https://www.openfabrics.
org / resources / ofed - for - linux - ofed - for - windows / ofed -
overview.html.

[50] OpenNebula. URL: http://www.opennebula.org/.

[51] OpenSM and InfiniBand diagnostic utilities. URL: http://www.openfabrics.
org/downloads/management/.

[52] OpenStack. URL: http://www.openstack.org/.

[53] Zhenhao Pan and Y Dong. “CompSC: Live Migration with Pass-through Devices.”
In: VEE ’12: Conference on Virtual Execution Environments (2012).

[54] Lydia Parziale et al. TCP/IP Tutorial and Technical Overview. 8th. IBM Corporation,
2006.

[55] PCI-SIG. PCI Express Base Specification Revision 3.0. 2010.

[56] PCI-SIG. PCI Local Bus pecification Revision 2.3 MSI-X ECN. 2003.

[57] PCI-SIG. PCI Local Bus Specification Revision 3.0. 2002.

[58] PCI SIG. URL: http://www.pci-sig.com.

[59] PCI-SIG. Single Root I/O Virtualization and Sharing Specification Revision 1.1. 2010.

[60] Fabrizio Petrini, Darren J Kerbyson, and Scott Pakin. “The Case of the Missing Super-
computer Performance.” In: SC ’03: Proceedings of the 2003 ACM/IEEE conference
on Supercomputing (2002).

[61] Gerald J. Popek and Robert P. Goldberg. “Formal requirements for Virtualizable
Third Generation Architectures.” In: Communications of the ACM 17.7 (1974). ISSN:
00010782.

[62] Tim Pritlove and André Przywara. CRE092 Virtualisierung. 2008. URL: http://
cre.fm/cre092.

78

http://www.mail-archive.com/linux-rdma@vger.kernel.org/msg11956.html
http://www.mail-archive.com/linux-rdma@vger.kernel.org/msg11956.html
http://www.myri.com
https://www.openfabrics.org/resources/ofed-for-linux-ofed-for-windows/ofed-overview.html
https://www.openfabrics.org/resources/ofed-for-linux-ofed-for-windows/ofed-overview.html
https://www.openfabrics.org/resources/ofed-for-linux-ofed-for-windows/ofed-overview.html
http://www.opennebula.org/
http://www.openfabrics.org/downloads/management/
http://www.openfabrics.org/downloads/management/
http://www.openstack.org/
http://www.pci-sig.com
http://cre.fm/cre092
http://cre.fm/cre092

Bibliography

[63] Tim Pritlove and Tobias Rodäbel. CRE176 Cloud Computing. 2011. URL: http:
//cre.fm/cre176.

[64] André Przywara. “Live und in Farbe: Live Migration.” In: Chemnitzer Linux-Tage
2010 (2010).

[65] ps(1) - Linux man page. URL: http://linux.die.net/man/1/ps.

[66] Quick EMUlator (QEMU). URL: http://wiki.qemu.org.

[67] Qumranet. “KVM : Kernel-based Virtualization Driver.” In: White Paper (2006).

[68] Himanshu Raj and Karsten Schwan. “Implementing a Scalable Self-Virtualizing Net-
work Interface on an Embedded Multicore Platform.” In: Proceedings of WIOSCA
2005 (2005).

[69] RedHat. RedHat Enterprise Linux (RHEL). URL: http://www.redhat.com/
products/enterprise-linux.

[70] JR Santos and Yoshio Turner. “Bridging the Gap between Software and Hardware
Techniques for I/O Virtualization.” In: Proceedings of the USENIX Annual Technical
Conference (2008).

[71] DP Scarpazza and P Mullaney. “Transparent System-level Migration of PGAS Ap-
plications using Xen on InfiniBand.” In: IEEE International Conference on Cluster
Computing (2007).

[72] Amit Shah et al. “PCI Device Passthrough for KVM.” In: KVM Forum 2008 (2008).

[73] Tom Shanley. InfiniBand Network Architecture. Addison-Wesley, 2007.

[74] Solarflare Communications. “Solarflare 10G Ethernet Server Adapters Deliver Unified
Single-Root I/O Virtualization (SR-IOV) for Redhat Linux KVM.” In: Solution Brief
().

[75] Andreas Ströbel. “XaaS – Everything as a Service?” In: bt magazin (2011).

[76] J Sugerman, G Venkitachalam, and BH Lim. “Virtualizing I/O Devices on VMware
Workstation’s Hosted Virtual Machine Monitor.” In: Proceedings of the General
Track: 2002 USENIX Annual Technical Conference (2001).

[77] The Linux Kernel Archives. URL: http://www.kernel.org.

[78] The Message Passing Interface (MPI) standard. URL: http://www.mcs.anl.
gov/research/projects/mpi/.

[79] TOP500 Supercomputer List: November 2012. URL: http://www.top500.org/
lists/2012/11/.

79

http://cre.fm/cre176
http://cre.fm/cre176
http://linux.die.net/man/1/ps
http://wiki.qemu.org
http://www.redhat.com/products/enterprise-linux
http://www.redhat.com/products/enterprise-linux
http://www.kernel.org
http://www.mcs.anl.gov/research/projects/mpi/
http://www.mcs.anl.gov/research/projects/mpi/
http://www.top500.org/lists/2012/11/
http://www.top500.org/lists/2012/11/

Bibliography

[80] Paul Willmann, Jeffrey Shafer, and David Carr. “Concurrent Direct Network Access
for Virtual Machine Monitors.” In: HPCA ’07: Proceedings of the 2007 IEEE 13th
International Symposium on High Performance Computer Architecture (2007).

[81] Xen PCI Passthrough. URL: http://wiki.xen.org/wiki/Xen_PCI\
_Passthrough.

[82] BA Yassour, M Ben-Yehuda, and Orit Wasserman. “Direct Device Assignment for
Untrusted Fully-Virtualized Virtual Machines.” In: IBM Research Report (2008).

[83] Edwin Zhai, GD Cummings, and Yaozu Dong. “Live Migration with Pass-through
Device for Linux VM.” In: OLS’08: The 2008 Ottawa Linux Symposium (2008).

80

http://wiki.xen.org/wiki/Xen_PCI_Passthrough
http://wiki.xen.org/wiki/Xen_PCI_Passthrough

	Deutsche Zusammenfassung
	Abstract
	Contents
	Introduction and Motivation
	Background and Analysis
	High Performance Computing in the Cloud
	Challenges of Virtualization for HPC IaaS
	VMM-based I/O Virtualization
	Self-Virtualizing Devices
	Interconnect Network Virtualization for HPC IaaS

	Challenges of Live Migration for HPC IaaS
	State involved in Live Migration
	Live Migration Strategies

	InfiniBand as HPC Interconnect
	Subnets and Network Management
	Queue Pairs and Transport Services
	Remote DMA (RDMA)
	Fabric Partitioning
	Resource Sharing Logic of Self-Virtualizing HCAs

	Design
	Overview
	Live Migration for HPC IaaS

	Migration Strategies
	Local Migration Strategies
	Global Migration Strategy for HPC IaaS

	Migration Assistance Interface (MAI)
	State Stabilization
	State Migration
	Emulation Assistance

	Hardware State Migration
	InfiniBand specific Hardware State Migration
	Endnode Address and Port Configuration Migration
	Slave Resource State Migration

	Prototypical Evaluation
	Overview
	Evaluation Platform
	Virtualization with KVM and QEMU
	Mellanox ConnectX-3 VPI

	MAI Support in QEMU
	Guest Device Migration Framework in QEMU
	PCI Pass-Through in KVM/QEMU
	Extending QEMU's pass-through code

	MAI Integration in Master Driver
	Evaluating MAI Integraton
	Summary

	Related Work
	Ethernet-based Approaches
	InfiniBand-based Approaches

	Conclusion
	Future Work

	Glossary and Abbreviations
	Bibliography

