A{]]

Karlsruhe Institute of Technology

Karlsruhe Institute of Technology
System Architecture Group
http://os.ibds.kit.edu

A case for dynamic file system views

Konrad Miller <miller@Kkit.edu>

1. Motivation

With classical file systems and package managers it is hard or
Impossible to

B Set different access rights for different applications of the same user

e ——
— —_—

@ Ever tried to jall users to their 7
home for ssh sessions? / owronds P
secret
@ Allow Firefox to only see the ‘\

. : ~kmiller /
Downloads” folder? N

—
—-—____.__.-—-—"/

® Install software from different distributions or multiple versions of the

same software side-by-side @9 I a
Byl in VDR FoT

- e
® |Install software without administrator privileges

2.6
@ Automatically fetch and replace s)ﬁo apt-get install x
packages on demand

B Keep software up to date at all times and update across distribution
versions

® Distribute and re-distribute files across device boundaries

@ Have a personalized software selection installed across multiple
machines and systems (“software mobility”)

2. Vision

® Automatically create minimal sandboxes for all applications
® Avoid naming conflicts rather than resolving them
® Allow different versions of files to coexist for different apps
® Maintain maximal reuse of components among applications

® Make sharing of user content optional and explicit
® Every application only sees what it needs
® Show user content on demand only
® “If you can’'t name it, you can’t touch it”

5. Approach

@ Break up the unified file system namespace
@ Letevery (user, app) tuple have their own namespace

B Satisfy dependencies by making them visible to the
respective application’s namespace in the expected place

@ Make sharing and desktop integration explicit

@ Reduce Iinstallation and deinstallation to hooking into or
unhooking from the desktop integration

B Govern access to user content

® Clearly separate binaries, configuration, and user content
@ Make dependencies data specific, not nominal
@ Use local storage as a cache for application data

® Application data is fetched and cached on demand
(e.g., on first run or when integrated into desktop)

® Old data will eventually be replaced by new data
(.e., old applications will fade away as new apps/new
versions are used)

@ Store user content persistently

@ Create meta-namespace for browsing application repositories and
starting applications

KIT — University of the State of Baden-Wuerttemberg and
National Research Center of the Helmholtz Association

mplayer

Lli

3. Existing approaches

® Virtualization of entire operating systems or single applications
® Sandboxes, chroot, jall, vserver

® Zero-install systems, portable apps, backports

.

Purely functional and traditional package managers

O-install.net Klik clickOnce

backports

The MS App-V
collective

O-install GoboLinux

streaming resolving '\ NixoS
apps dll-hell
Dynamic Autopackage
! :
- FS VIeWS FreeBSD
Webstart C .
application sandbox jail
virtualization .
VMware MS Solaris chroot

ThinApp Evalizer Drawbridge Containers vserver

4. Shortcomings of existing approaches

® The existing approaches only touch on the problems at hand or
fight the symptoms but not the causes

® Many open questions remain

® Desktop integration
Sharing across domain boundaries (e.g., among VMs)
De-duplication of components in memory and on disk
Automation
Reuse of existing systems

libx264.s0 downloads

firefox

/ docs vim vim73/
/ bin/ / home/ b"/ h| /
mplayer/ —kmiller in/ share

b/ home/

/

user-data

3 -view m -view

X264-view

-View

. Challenges
How usable and intuitive Is the approach?
How can you find the minimal dependency set?
How do you share data between applications and users?
How fast/efficient/scalable is the approach?
How much additional memory does the approach use?

What security implications does the approach introduce?

g & &F &F & & FF O

How can software mobility be implemented?

	A case for dynamic file system views�

