
KIT – University of the State of Baden-Wuerttemberg and
National Research Center of the Helmholtz Association

A case for dynamic file system views
 Konrad Miller <miller@kit.edu>

Karlsruhe Institute of Technology
System Architecture Group
http://os.ibds.kit.edu

3. Existing approaches

Virtualization of entire operating systems or single applications

Sandboxes, chroot, jail, vserver

Zero-install systems, portable apps, backports

Purely functional and traditional package managers

1. Motivation

With classical file systems and package managers it is hard or
impossible to

Set different access rights for different applications of the same user
Ever tried to jail users to their
home for ssh sessions?
Allow Firefox to only see the
“Downloads” folder?

Install software from different distributions or multiple versions of the
same software side-by-side

Install software without administrator privileges
Automatically fetch and replace
packages on demand

Keep software up to date at all times and update across distribution
versions

Distribute and re-distribute files across device boundaries

Have a personalized software selection installed across multiple
machines and systems (“software mobility”)

5. Approach

Break up the unified file system namespace
Let every (user, app) tuple have their own namespace
Satisfy dependencies by making them visible to the
respective application’s namespace in the expected place

Make sharing and desktop integration explicit
Reduce installation and deinstallation to hooking into or
unhooking from the desktop integration
Govern access to user content

Clearly separate binaries, configuration, and user content
Make dependencies data specific, not nominal
Use local storage as a cache for application data

Application data is fetched and cached on demand
(e.g., on first run or when integrated into desktop)
Old data will eventually be replaced by new data
(i.e., old applications will fade away as new apps/new
versions are used)

Store user content persistently

Create meta-namespace for browsing application repositories and
starting applications

2. Vision

Automatically create minimal sandboxes for all applications
Avoid naming conflicts rather than resolving them
Allow different versions of files to coexist for different apps
Maintain maximal reuse of components among applications

Make sharing of user content optional and explicit
Every application only sees what it needs
Show user content on demand only
“If you can’t name it, you can’t touch it”

4. Shortcomings of existing approaches

The existing approaches only touch on the problems at hand or
fight the symptoms but not the causes

Many open questions remain
Desktop integration
Sharing across domain boundaries (e.g., among VMs)
De-duplication of components in memory and on disk
Automation
Reuse of existing systems

6. Challenges

How usable and intuitive is the approach?

How can you find the minimal dependency set?

How do you share data between applications and users?

How fast/efficient/scalable is the approach?

How much additional memory does the approach use?

What security implications does the approach introduce?

How can software mobility be implemented?

	A case for dynamic file system views�

