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Deutsche Zusammenfassung

In den letzten Jahren wurde die Vermeidung von Datenduplikaten als spezielle
Form der Kompression immer wichtiger. Besonders im Bereich großer gewerbli-
cher Anlagen zur Datensicherung und -archivierung soll Deduplikation den Ein-
satz von Festplattensystemen attraktiver machen und die etablierten Magnetband-
speicher ablösen. In diesen System werden typischerweise große Tabellen im
Hauptspeicher vorgehalten um eine schnelle Erkennung von Duplikaten zu ge-
währleisten. Entsprechend hoch sind die Ressourcenanforderungen.

Die vorliegende Studienarbeit untersucht, ob durch den Einsatz von Solid-
State-Drives (SSD) auf Tabellen und Caches im Hauptspeicher verzichtet werden
kann. Dazu wurde das Dateisystem ext4fs um eine cachelose Dedupliaktionsfunk-
tion erweitert und getestet. Die Tests ergaben zeitliche Mehrkosten von 7 bis 55
Prozent verglichen zum unveränderten Dateisystem. Basierend auf diesen Ergeb-
nisen scheint in Verzicht auf Caches in Umfeld von optimierten, gewerblichen
Speichersystemen auch bei einer zukünftigen Verfügbarkeit von günstigen SSDs
nicht sinnvoll. Dagegen könnte im privaten Einsatz der Verzicht vorteilhaft sein,
da hier verschiedene Dienste auf einer Hardware integriert sind und durch die
Hauptspeichereinsparung andere Dienste profitieren könnten.
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Chapter 1

Introduction

In the past decade lots of publications proposed deduplication of background stor-
age as a viable form of data compression, especially for secondary storage systems
to forward the replacement of magnetic tape systems. Most deduplication systems
require significant amounts of main memory to provide fast accessible deduplica-
tion related metadata, making these systems very expensive. With the rise of fast
and economically affordable Solid State Drives (SSD) some [3, 5] proposed to
store deduplication metadata partially or entirely on SSD storage, reducing the
in-memory structures.

The aim of this thesis is to evaluate, whether one could totally abandon any
dedicated caches for deduplication metadata and still keep in acceptable perfor-
mance. Cache-abandoning deduplication systems may be of particular interest for
smaller organisations’ data backup and archive purposes, as they suffer the most
from high hardware costs due to enormous main memory requirements.

To evaluate the feasibility of cache-abandoning inline deduplication systems
we designed and implemented an extension to the open-source filesystem ext4fs
[9] providing inline deduplication, which we call ext4fs+dedup. This system was
examined with several benchmarks and the results were compared to the unmod-
ified ext4fs to determine deduplication overhead. Cache abandoning would for
instance be infeasible, if it extends data transfer such that the system cannot meet
the deadline of completion. The contribution of this thesis is determining the over-
head of deduplication without the usage of any dedicated main memory cache.
Our benchmarks showed deduplication overheads of 7 to 55 percent, dedpending
on the workload.

This thesis proceeds as follows: In Chapter 2 we describe the design of our
system. Chapter 3 discuses of implementation specifics. In Chapter 4 we present
our evaluation setup and results. Chapter 5 provides an overview of related work
and proposes a categorisation of inline deduplication systems. Finally, Chapter 6
concludes the thesis.
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Chapter 2

Design

In this chapter we state our design goals and describe the alternative solutions. We
explain our prefered concept and how we integrate it into ext4fs.

2.1 Design goals and code base
There are various systems, which provide deduplication of data. These systems
differ mainly in their main memory and secondary storage consumption and the
deduplication point in time.

In contrast to existing deduplication solutions with inline detection, our system
does not use any dedicated main memory caches beside the buffer cache. Required
deduplication information is read on demand from the target filesystem itself.

A filesystem provides complete deduplication if no block is written out when
a block of the same content already exists on disk. Ext4fs+dedup provides such a
complete duplicate detection. Every block written out to the filesystem will find
a potentially present duplicate on disk no matter when or where the duplicate was
written in the past. We call these detections duplicate hits. Figure 2.1 outlines the
basic concept.

Furthermore, the design of ext4fs+dedup aims at an economical usage of stor-
age resources. We wanted to keep the additional meta data as small as possible.

We based our design on the open-source filesystem ext4fs because of its actu-
ality and its great deployment as well as because of its public sources.

2.2 Duplicate recognition
An efficient complete inline detection of duplicates depends on a fast recognition
of already stored block content.

There are three basic recognition approaches:

5
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Figure 2.1: Outline of the inline deduplication concept.

• Naive: Linearly scan the whole filesystem and bytewise compare the to-be-
written block to every used filesystem block.

• Ordered: The filesystem blocks are somehow (e.g., lexicographically) or-
dered according to their content on disk and thus one can use a binary
search.

• Referenced: One remember where the filesystem stored one what content
and maintain a content-location mapping.

The first two approaches are improper for our purpose: the naive one would
cause enormous I/O traffic and thus fails to meet out efficiency needs. The or-
dered approach would have to frequently move written blocks to other locations
to maintain the content order and therefore would stress the I/O device, too.

Consequently, we decided to realise the third approach. Therefore we need an
information base that provides the content-location mapping.

2.3 Information bases for content-location mapping
In the beginning of our design phase, we discussed two approaches:

Content ordered binary tree For each used filesystem block there is a tree
node located in the inode the block belongs to. The tree nodes are sorted (e.g.,
lexicographically by content). Figure 2.2 outlines the design.

However, the tree approach has some drawbacks:

• Tree search causes scattered I/O access, because the tree nodes are dis-
tributed over the filesystem.
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Figure 2.2: Outline of the ordered binary tree approach to map content to location.

• Deduplication causes shared blocks and therefore an unambiguous block to
inode assignment is not possible.

• With the introduction of the extent feature, ext4fs trends to avoid inode meta
data in block granularity. Putting the tree nodes into the inodes would thwart
this trend.

Hash table This is a centralised array of content-descriptor to block number
mapping with a static size. Figure 2.3 illustrates the basic hash table layout.

The drawbacks are the general hash table problems (e.g., collision handling,
degeneration).

We decided to use the hash table approach, because of the crucial drawbacks of
the tree design. Especially, the hash table allows—due to the grouping of mapping
information—to benefit from spacial locality effects.

2.4 Fingerprint as content descriptor

To identify the correct mapping in the hash table, one can either match each can-
didate’s content byte by byte with the to-be-looked-up content or one can use a
handier content identifier. Block fingerprints generated with a cryptographic hash
function like MD5 or SHA-1 are proper identifiers. They are highly injective and
collisions are unlikely.
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Figure 2.3: This figure shows the basic hash table layout and the home index
derivation.

The fingerprints need to be stored permanently. Otherwise, we would have
to gradually recalculate them during mount time, which contradicts the dedu-
plication design goal completeness, because one can not detect a duplicate in a
filesystem block, that was not yet accessed during the current mount period.

We chose the cryptographic hash algorithm SHA-1 to fingerprint the block
contents because of its common usage and support within the linux kernel. It
produces 160 bit long hashes. This length seems to be sufficient, because a hash
collision of two different contents is very unlikely (about 2−80, c.f. [12]).

2.5 Hash table

The hash table is subdivided into a number of slots, corresponding to the number
of filesystem blocks. Each slot has an identifier—we call it index. Figure 2.3
illustrates the subdivision into slots.

To locate the hash table slot, that contains the requested mapping to the block
number of the potential duplicate, a slot has a special meaning.
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2.5.1 Home slot

The home slot is the starting point of the lookup and the first possible mapping
location. The derivation of the home slot’s index is simple: the first 64 bits of
the fingerprint are extracted and that value modulo the filesystem size in blocks is
used as index.

home = fingerprint0−63 mod ]fs_blocks

This derivation is not injective and there are much more different SHA-1 fin-
gerprints (2160) than hash table slots. Therefore the home slot derivation of two
fingerprints can collide.

2.5.2 Collision handling

All fingerprints, whose 64 bit prefix modulo the amount of filesystem blocks are
mapped to the same home slot. This set of fingerprints is called a family. Due to
the fact, that one slot can only be occupied by one fingerprint, every later written
block with a fingerprint of the same family causes a collision and needs to be
located somewhere else. To keep the records close to their home slot—thus take
advantage of spacial locality effects—we use the next free slot after the home
(linear probing). At this location the fingerprint occupies the home slot of another
family of hashes. Therefore we call such occupants “strangers” (see Figure 2.4).

Without any further information it would be hard to find strangers during a
hash table lookup. If the fingerprint is not present in its home slot, one would
have to linearly scan the hash table to find the stranger. But one can never know
if it is in the next slot or not until you scanned the whole hash table.

Instead, we link all strangers into a linear list anchored in the home slot. For
that purpose every hash table slot has a 64 bit field to hold the hash table index
of the next member in the family list, the next reference. Additionally, every
slot has another reference field required for those slots, which are occupied by
strangers to point to the family of fingerprints actually having their home in that
slot. This is called the family reference. Figure 2.5 shows a hash table lookup,
which involves the family reference, because the corresponding home slot is
occupied by a stranger.

To indicate whether the next or the family reference fields contain valid indices
as well as to label the occupancy status of a slot, we use a 8 bit status field per
slot.
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Figure 2.4: Inserted record uses a foreign home slot as stranger, because its own
home slot is already occupied.

2.6 Deduplication Information Area

There are filesystem operations that require updates of deduplication related meta-
data but have no knowledge about the content of the affected filesystem blocks.
Thus they cannot calculate the fingerprints unless they read the context from disk,
which would cause extra I/O overhead plus the CPU overhead for the actual hash
calculation. But the fingerprints are essential to determine the index of the related
hash table records.

Such an unaware operation for example is the block deletion. If a filesystem
block is deleted, the related hash table record has to be removed, too. Otherwise it
would potentially cause false duplicate hits on such orphaned hash table records.
Without additional information every deletion would cause an extra I/O operation
for the fingerprint calculation. The same is true, if we would modify an existing
block. Therefore the fingerprint would change and a removal of the old hash
would be necessary, too.

Instead of an expensive read operation and hash recalculation, we put extra
mapping information into the filesystem, to allow a linkage (backlink) of each
used filesystem block to its corresponding hash table record.

We decided to use a dedicated centralised data structure similar to the hash
table, which we call Deduplication Information Area (DIA). The DIA contains
one record per filesystem block. But unlike the hash table, it is directly indexed
by the physical block numbers. However, we considered alternative approaches,
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Figure 2.5: This hash table lookup illustrates the usage of the family and next

references. The records within the slots d5 and d6 form a family. Their home slot
is occupied by a stranger.

which we depict in the following section.

2.6.1 Backlink alternatives

The following three solutions provide different ways to retrieve the hash table
record associated with a given filesystem block without knowing the block’s con-
tent.

Solution 1: Backlinks in inode

This solution does not require an additional data structure like the DIA, but it puts
backlink references into the inodes. For each filesystem block, that is mapped
to the inode we store the index of the related hash table record within the inode.
Figure 2.6 outlines the backlink in inode design.

This approach only make sense if the inode already contains per block infor-
mations. In this case you could extend the existing records by a 64 bit reference.
However, due to the introduction of extents—in contrast to the old indirect block
based mapping mechanism—ext4fs no longer maintains per block information
within the inodes.

Therefore we buried that approach, especially as it does not work with one of
the ext4fs core features.
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Figure 2.6: Backlinks in the inodes could allow the retrieval of hash table records
for content unaware operations.

Solution 2: DIA with fingerprints (Large-DIA)

The second solution stores the fingerprints in the additional Deduplication In-
formation Area. With that information, such fingerprint unaware operations can
indirectly retrieve the related hash table record. Thereto, one have to derive the
home index from the fingerprint and then search the corresponding record in the
family list (see Figure 2.7).

Figure 2.7: Indirect backlink via fingerprints in the DIA.

Solution 3: DIA with backlink (Slim-DIA)

The third solution uses the DIA as well, but as a container for the direct hash
table backlinks described in Solution 1. Thereby we save the index derivation and
especially the search within the family list (see Figure 2.8).
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Figure 2.8: Slim-DIA is a central array of direct hash table backlinks.

For later reference we call the second solution Large-DIA whereas the third
solution is called Slim-DIA.

Comparison

Regarding the memory consumption, Slim-DIA requires more storage than Large-
DIA, namely that part that stores the backlink references, which are not present
in the other solution at all. Slim-DIA does not economise the storage for the
fingerprints. The fingerprints are required in any case to prove the matching of
the found hash table record. Since the hash table index covers only a part of
the fingerprint, it is essential to store the complete hash somewhere to prove a
full match. If and only if the complete stored fingerprint matches that one of the
looked up block, we can assume a duplicate hit.

But in terms of required I/O operations the Slim-DIA is advantageous for hash
table lookups. As we saw above, a complete fingerprint must be present in mem-
ory to do a full match against the fingerprint given in the lookup request. That
match is required for every record that is linked into the family list.

Since the Slim-DIA stores the fingerprints directly in the hash table record it-
self, they are read together with the references, block number and complete record.
No additional I/O request is needed. The Large-DIA, that stores the fingerprints
in the DIA, requires an additional fetching of the block containing the DIA record
with the fingerprint. Without any further hash informations (cf. big tag vs. status
tag 2.8) these fetches are required for every family list member—at least until we
found a hit.

Beforehand, One more—not deduplication related—advantage of Large-DIA
can be adduced. If later implementations would optionally use the fingerprints for
data integrity checking, then the direct retrieval out of the DIA would be easier
and faster than the indirect backlink approach. The read of the related DIA block
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could be issued together with the read of the actual data block. But that’s not the
subject of this thesis.

2.7 Reference counters
As a result of deduplication, a physical filesystem block can be referenced mul-
tiple times. Thus that block has to remain untouched unless the last reference
is unmapped (e.g., inode truncate). To determine last unmap, we use per block
reference counters comparable to those used within inodes to support hard links.

2.7.1 Possible locations of the reference counters
We have two different data structures involved during the deduplication process,
and considered both for the location of the reference counters. The respective
strengths and weaknesses of each location depend on the used DIA design (Large-
DIA or Slim-DIA).

Ext4fs+dedup uses Large-DIA and thus locates the counters in the DIA. This
location saves a filesystem access compared to the hash table location. To under-
stand that fact, let’s have a look on the circumstances of reference counter updates.

When and why are reference counters accessed?

A reference counter is incremented whenever a duplicate block is found and ini-
tially set to one when the block is first written. In both cases we already know the
block fingerprint, as we previously calculated it for duplicate detection.

Furthermore, the counter is decremented whenever a block is deleted. When
deleting a block, we neither know its content nor its fingerprint.

Regarding the HT location, the latter access case would require the indirection
over the DIA to derive the hash table index by backlink or by fingerprint.

Favoured locations

A favourable location saves I/O operations. Table 2.1 shows the required reads
and writes for each operation that access the reference counters and each DIA
design variation and the reasons why they were issued.

Accesses after writing of new blocks

Writing an unique block requires an update of all related records. A new hash table
slot is occupied and its index respectively the fingerprint is put in the DIA record
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design /
operations

write unique block
�HT insert

duplicate hit
�refcnt inc

block deletion
�refcnt dec

total

Large-DIA
refcnt in HT

HT: r(s)+w(snc)
DIA: w(f)

HT: r(nc)+w(c)
DIA: r(f’)

HT: r(c)+w(c)
DIA: r(f’)

9

Large-DIA
refcnt in DIA

HT: r(s)+w(sn)
DIA: w(fc)

HT: r(n)
DIA: r(fc)+w(c)

HT: -
DIA: r(c)+w(c)

8

Slim-DIA
refcnt in HT

HT: r(s)+w(snfc)
DIA: w(b)

HT: r(fc)+w(c)
DIA: -

HT: r(c)+w(c)
DIA: r(b)

8

Slim-DIA
refcnt in DIA

HT: r(s)+w(snf)
DIA: w(bc)

HT: r(fn)
DIA: r(c)+w(c)

HT: -
DIA: r(c)+w(c)

8

Access reason abbr. meaning
b backlink reference (Slim-DIA)
c reference counter
f fingerprint for full match

f’ fingerprint only for HT entry retrieval (Large-DIA)
n block number to retrieve DIA record
s hash table record status (esp. occupation status)

Table 2.1: The upper table lists the required HT and DIA accesses for each opera-
tion and design. Within the parentheses, a combination of one letter abbreviations
indicates the reason for the read (r) or write (w) access. These abbreviations are
described in the lower listing.

of the used physical filesystem block. This case does not favour any location no
matter which DIA design we use.

Accesses after a duplicate hit

In the case of a duplicate hit, the counter is read and incremented. This at least
requires an update of the record containing the reference counter. Furthermore
reading the hash table record has already taken place during the duplicate lookup.
To verify matching fingerprints, the stored hash is fetched from its location. At
this, Slim-DIA favours the hash table as location for the reference counters, be-
cause if so, all required information (esp. fingerprints and counters) are bundled
in the hash table records. Accessing the DIA is then not required at all. However,
Large-DIA already demands fetching related DIA records for matching finger-
prints. Thus the counter location makes no difference in respect of the amount of
required filesystem reads and writes.
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Accesses during block deletion

Figure 2.9: This flowchart illustrates deduplication related housekeeping after a
block deletion request.

The remaining case of a block deletion can be subdivided according to the
resulting reference count after the decrementation (see Figure 2.9). If the last
reference is removed and the counter is zero, a status update of the related hash
table record is mandatory to avoid later duplicate hits on the orphaned record.
If the decremented counter is greater than zero, the block is still in use and the
hash table record can remain untouched, provided that the reference counter is not
located in the hash table. Putting the counters into the hash table would require a
read and write of the hash table record, but also a read of the DIA record to derive
the hash table index. Therefore the Large-DIA as well as the Slim-DIA favours
the DIA as the location for the reference counters, because it saves the second
read operation in the case of a non-final block reference deletion.

2.7.2 Conclusion
Putting it all together, the Large-DIA approach clearly favours the DIA as the lo-
cation for the reference counters, because we save on filesystem access, whereas
the hash table location doesn’t permit any savings. Regarding the Slim-DIA ap-
proach, the best reference counter location is not obvious. Both locations save
one access. We consider the hash table to be the better choice, because the saving
effects the block write path and there an increased performance may be benefi-
cial to the user. Furthermore the effects of the savings depend on the filesystem
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use cases. For example a backup system with an eternal history would frequently
cause duplicate hits but never cause block deletions.

2.8 Additional fingerprint information in the HT
The major drawback of the Large-DIA approach are frequent DIA access during
hash table lookups, that are required for fetching the fingerprints needed for full
fingerprint comparison. The more hash table collisions occur, the longer family
lists will be and hence the more such comparisons are required.

To mitigate this drawback, additional parts—called tags—of the fingerprints
can be placed in the hash table. Then the complete fingerprint only needs to be
fetched if the tag matches the corresponding part of the looked up fingerprint,
otherwise the complete fingerprints wouldn’t match either anyway.

The amount of actual full fingerprint comparisons can be influenced by the
length of the fingerprint tag in the hash table. The longer the tag, the less frequent
the comparisons are.

2.8.1 Implemented tag variations
We implemented and evaluated two variants of fingerprint tags. The “status tag”
uses the remaining bits of the status field to store a few fingerprint bits. Whereas
the “big tag” uses an extra 8 byte field. These 8 bytes fill up the hash table record
to the next power of two, which is beneficial in terms of block alignment.

However, big tag thwarts the storage savings of the Large-DIA approach com-
pared to the Slim-DIA. Nonetheless we implemented big tag, to show the degree
of performance influence of the tag length.

Figure 2.10 shows the resulting hash table and DIA layouts of the chosen
Large-DIA approach.

Hash table record:

DIA record:

Figure 2.10: Hash table and DIA record layouts for Large-DIA and both tag vari-
ants.
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2.9 Storage overhead
Depending on the used tag variant, ext4fs+dedup causes at least 1.2 percent of
meta data overhead in order to deduplicate data blocks. Table 2.2 shows the total
amounts of storage used for the hash table and the Deduplication Information
Area. The listed percentages assume the common block size of 4 KB and are
calculated as follows:

dedup data percentage =
HT record size+DIA record size

block size

status tag big tag
HT record [bytes] 25 32
DIA record [bytes] 24 24
Total per block [bytes] 49 56
Percentage 1.20 1.37
Deduplication data for a 1 TB
filesystem [gigabytes]

12.25 14

Table 2.2: Total storage overhead caused by meta data for deduplication.

2.10 Duplicate management operations
This section explains the various operations that are related to the detection and
management of duplicates. For each operation we describe what they do and the
circumstances under which they are issued. Note that the follow explanations are
based on the Large-DIA approach.

2.10.1 Duplicate lookup
First, ext4fs+dedup calculates the fingerprint for every block that is written to the
filesystem. Out of the fingerprint, it derives the hash table index of the home slot
and then fetches the corresponding hash table block. If the status field indicates
a valid family reference then we follow the reference to retrieve the head of the
family list to start the list walk. Thereby the home slot can be either occupied by
a stranger or can be free, anyway its not part of the family.

Otherwise, if the status field indicates an occupation by a family member we
can immediately walk the family list.

But if the status field labels the slot as free and the family reference is not set,
then we can stop the lookup and report that the requested fingerprint is not present
(cf. Figure 2.11).
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Figure 2.11: A stranger may occupy the home slot. Then the family reference
points to the first family member.

Family list walk

After ext4fs+dedup got the record of the family list head, it compares the finger-
print tag (status tag or big tag) to the given fingerprint. If they match, it does a
full fingerprint comparison fetching the fingerprint from the related DIA record,
otherwise it goes on to the next family list member referenced by the next field.
Ext4fs+dedup repeats this procedure until either the full fingerprint comparison
succeeds or it reached the end of the family list reference.

If ext4fs+dedup found a matching fingerprint during the family list walk, then
it reports the physical block number, that is stored in the found hash table record.
Figure 2.12 depicts the family list walk.

2.10.2 Insertion of a new and unique block

A block is unique if the previous duplicate lookup found no duplicate in the
filesystem. In this case ext4fs+dedup remembers the calculated fingerprint. Later
during write procedure (cf. 2.11) it puts that fingerprint and the newly allocated
block in the hash table and the DIA. Therefore the index of the home slot is de-
rived and if this slot is already occupied we use the next free slot after the home
slot and make it the new head of the family list. The counter is initialised to one.
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Figure 2.12: A family list walk follows the next reference until either the full
fingerprint comparison succeeds or no further list member is indicated.

2.10.3 Insertion of a duplicate

Every time a duplicate is found and used the reference counter needs to be up-
dated. Therefore the related DIA record is fetched to read the old reference
counter value. After the incrementation, the counter is written back.

2.10.4 Deleting blocks

Block deletions require at least the decrementation of the reference counter, which
is executed similar to the counter incrementation described above. Only after the
deletion of the last reference, further housekeeping needs to be done.

Removal of last reference

The last reference is removed if the counter is decremented to zero. Then the
corresponding record within the hash table has to be removed, too. We look this
record up by using the duplicate lookup routine described above. It is not required
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to compare the full fingerprints, because in consistent and uncorrupted hash ta-
bles there is only one non-free record with the required block number reference.
However, for the sake of simplicity and also for consistency checking we compare
fingerprints anyway.

Note, that the comparison of the block number registered in the hash table
record to the block number requested for deletion is essential. As it is possible
that there are multiple valid hash table records for the same block content but
for different physical blocks. This happens, if these blocks are flushed to the
filesystem at the same time and thus no duplicate can be found since none of
them is actually written yet and ext4fs+dedup does not detect duplicates within
the buffer cache (cf. Figure 2.13). Therefore, it is insufficient to simply remove
the first record, that has a matching fingerprint, but to regard the block number
field too.

Figure 2.13: If identical blocks are flushed at the same time, the duplicate recog-
nition fails to detect them.

2.11 Integration into ext4fs
Ext4fs has some features that are advantageous for inline deduplication. Es-
pecially the delayed allocation harmonises well with our deduplication process.
Without delayed allocation ext4fs and its predecessors allocate new filesystem
blocks at the begin of a write command, in others words the blocks are allocated
before the content is copied to the buffer cache and before the filesystem can see
the content. Later on, a detected duplicate within this content would save one
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filesystem block. Since the blocks are already allocated, the allocation has to be
undone again.

Delayed allocation makes this rescission unnecessary. The allocation is de-
layed to the end of the write. At this point the to-be-written data is already present
in the buffer cache and thus accessible to the filesystem procedures. With this
additional knowledge, duplicates can be detected before allocation took place.

In the following, we describe the integration of the deduplication ability into
the delayed allocation code path and the adaption of the extent management and
the block allocation by portraying the flow of a block through the code path.

2.11.1 Block write

The block writing path is complex. Figure 2.14 illustrates the following descrip-
tions of the basic integration concept.

Grouping to extents

An extent is an area of physically adjacent filesystem blocks that is originally
dedicated to one inode to store logically adjacent file blocks. Thereby the amount
of mapping meta data per inode is reduced to a few bytes per extent (logical offset,
physical offset, length) instead of one physical block number per logical block.

Therefore, at the beginning of the delayed allocation’s write end handling, the
to-be-written blocks within the buffer cache are grouped to extents. Blocks, that
are locally adjacent and share the same properties are bundled to an extent.

We extended this functionality by a more detailed property selection. There-
fore each block (represented by a buffer head) is passed to the duplicate detection.
The found duplicate blocks are labeled accordingly and the detected block number
is remembered within the buffer head structure.

The non-duplicate blocks have to be actually written to the filesystem. These
blocks can either be unmapped or already mapped. But a mapped block may
have previously been subject to deduplication and thus may be shared. Such a
shared block must not be directly overwritten, because the modification should
only effect the issuing inode and not the other ones that reference that block too.
Therefore we also label such shared blocks.

Now, these two deduplication specific block properties are also taken into con-
sideration. As a result, only adjacent blocks of equal properties—inclusive the du-
plicate status—are grouped together. Especially, two detected duplicates can only
be bundled, if they are not only logically, but also physically adjacent, because the
to-be-shared physical filesystem blocks are already mapped, but may be located
within totally different filesystem regions. In the latter case such duplicates cannot
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Figure 2.14: Basic deduplication procedure during a write.
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be merged to one extent, but have to be registered as two separate extents in the
inode’s extent tree.

Those dirty blocks, that are already mapped and unshared can be immediately
submitted for writing. No further allocation or mapping is required and an in-place
overwrite is possible.

Extent mapping

The collected extents are inserted into the inode’s extent tree. But previously,
those extents that weren’t already backed by physical filesystem blocks as well as
those that were shared have to allocate new blocks. The shared ones need them
for the so called ’copy on write’ (COW).

At this point we distinguish three further methods.

• Duplicates: If the extent is a group of duplicates, then an allocation is un-
necessary. We just remove old mappings from the extent tree and insert the
new extent.

• Shared: In the case of a shared extent, the old mapping is removed and the
extent pointing to the newly allocated physical blocks is inserted into the
extent tree. Now the blocks are submitted to the block layer for the actual
writing.

• Else: In all other cases the allocated blocks are inserted and are submitted
for writing.

2.11.2 Block unmapping and removal
Block removal is requested if an inode is truncated. Then the affected blocks are
removed from the extent tree and marked as free.

Due to deduplication we have another reason for removals: the detection of a
duplicate for a logical offset, that is already mapped and the consequent unmap-
ping of the old referenced block.

However, because of block sharing, no unmapping is allowed to cause a block
free until the last reference is deleted. Therefore ext4fs+dedup intercepts every
free request, to decrease the reference counter of every requested block. Only
those blocks, that got their last reference removed are actually passed to the free-
ing routine.



Chapter 3

Implementation

This chapter describes implementation details, especially difficulties that we have
faced during the implementation. Furthermore, we think about the effects of the
hash table occupancy rate and discus the drawbacks of the extent feature in com-
bination with deduplication.

3.1 Preallocations and doubly freed blocks

During first tests we have faced several consistency problems related to the free
blocks management. Discarding ext4fs preallocated spaces when handling dupli-
cates caused, that blocks were freed twice.

Ext4fs uses a sophisticated block allocation mechanism to avoid fragmenta-
tion. Preallocation is one fragmentation avoiding mechanism, which is based on
the insight, that data is often appended to previously written files. Therefore, the
allocator speculatively allocates more contiguous storage than requested enabling
later appends to be put in this preallocated area instead of into distant storage re-
gions. These preallocated spaces have an ambiguous allocation state. On the one
hand they are free, for they don’t contain valid data yet. On the other hand they are
occupied, for they are dedicated to a single inode and not available to subsequent
allocation requests. Consequently, ext4fs introduced an in-memory data structure
to handle this special allocation states.

Preallocation lists

Preallocated space lists are maintained per inode as well as per block group.
Therein, preallocated storage chunks are registered, which are leftovers, that ac-
crue when the allocator allocates more space than requested. This overallocation
is called normalisation and should optimise the allocation request in terms of size
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and alignment. It is a speculative preallocation, which intends to speed up later re-
quests and moderate fragmentation. Figure 3.1 illustrates an normalised allocation
request and the resulting preallocated space (PA).

Figure 3.1: Due to normalisation, the allocation request is over-served by one
additional block resulting into a new preallocated space (PA) which is registered
in the per-inode PA list. Regarding this preallocated block, the two block bitmaps
differ, for preallocations are not persistent.

Note, that preallocation lists have nothing to do with the user preallocation
done via the fallocate interface. The multiblocks allocator’s preallocations are
filesystem internal and not visible to the user at all.

Non-persistent allocation information

Ext4fs as well as its predecessors use persistent on-disk bitmaps to distinguish
used from free blocks. In addition, ext4fs uses non-persistent, in-memory bitmaps
that label additional blocks as occupied, namely those that are preallocated but not
used yet. In Figure 3.1 the one preallocated but yet unused block is occupied ac-
cording to the in-memory bitmap but free according to the on-disk bitmap. The
following equation describes the quantitative relation of marked-used blocks be-
tween the on-disk bitmaps and the in-memory informations.

on-disk bitmap = in-memory bitmap − free blocks in preallocations

If a request is normalised and served with more blocks than requested, then
the complete block range—not only the excessive part—is inserted into the preal-
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location list of the requesting inode—or in the locality group list (we don’t discus
the latter to keep it clearer).

The in-memory bitmaps mark the whole preallocated space as reserved and
the per-inode preallocation list exclusively dedicates it to the requesting inode. No
other inodes can allocate these blocks even if they are not in use yet, but marked
as free in the on-disk bitmap.

Discarding of preallocated spaces

Preallocations are originally discarded in the following situations:

• The filesystem runs out of free blocks.

• An inode is truncated.

• The filesystem is umounted.

Discarding marks the unused blocks of the preallocation space as free in the
corresponding in-memory bitmap. However a preallocated space list entry only
stores the amount of unused blocks within the block region and not the position
of these free blocks. To distinguish used from unused PA blocks, ext4fs reads the
corresponding on-disk bitmap, carries the free marks into the in-memory bitmap,
and deletes the PA list entry.

3.1.1 Problem
Originally, ext4fs does not partially free used blocks within an inode, but only
frees used blocks if the corresponding inode is truncated. In the latter case ext4fs
also discards all preallocations dedicated to that inode.

Figure 3.2: Timeline of a double free error.

Ext4fs+dedup additionally frees blocks when remapping them to shared blocks
after duplicate detection, provided that the previously mapped block has no fur-
ther references, hence is unshared. In this case ext4fs+dedup frees the block and
marks it as free in the in-memory and on-disk bitmaps. If such a freed block was
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part of a preallocated space, then a later discard of that PA would free the block
again (see Figure 3.2).

The following chain of filesystem events leads to a double free:

1. Inode A requests the allocation of n blocks, starting at logical offset l. The
request is normalised and n+k blocks starting at the physical block number
p are allocated. A preallocated space is registered (cf. Figure 3.3).

Figure 3.3: The allocation request has been served from physical storage offset p.
Normalisation led to a preallocation of k blocks.

2. A rewrites one block at logical offset l and a duplicate is detected at d.
Ext4fs frees and unmaps the unshared physical block p. Logical offset l is
mapped to d (see Figure 3.4).

Figure 3.4: Due to a duplicate detection, physical block p is no longer required.
Block d is mapped instead.

3. Later the inode A is truncated and its PAs are discarded. A still has the PA
that covers the blocks p to p+n+k. Ext4fs tries to free PA’s k preallocated
but unused blocks in the in-memory bitmap. Therefore all blocks within in
the PA range, that are free in the on-disk bitmap are freed in the in-memory
bitmap.
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4. Scanning the on-disk bitmap, ext4fs also tries to kill the bit of block p.
But the in-memory bitmap bit of block p is already killed, because p was
explicitly freed in-memory and on-disk before during the remap. Hence we
face a double free. This is an unexpected inconsistency and ext4fs treats
this as an error.

3.1.2 Solution
Double frees can be avoided by discarding related preallocated spaces during the
remap procedure. It is important to discard the PA covering block p (the old and
to-be-replaced block) before p is freed, thereby ext4fs+dedup delays the killing of
p’s on-disk bitmap bit to avoid a misinterpretation by the PA discard procedure,
which would otherwise cause the second free. Figure 3.5 outlines the previous
scenario.

Figure 3.5: Timeline with avoided double free problem.

Discarding all preallocated spaces

Ext4fs+dedup does not only discard the PA of deduplicated blocks, but every pre-
allocation that is dedicated to the corresponding inode. Discarding PAs is already
implemented in ext4fs and used during inode truncation, so it was easy to reuse
this functionality in the context of remapping.

3.2 Initialisation of hash table and DIA
An correct initialisation of the hash table (esp. the status field) and the DIA (esp.
the reference counter) is essential for ext4fs+dedup. Blocks, that are dedicated to
these data structures have to be zeroed out before usage.

Ideally, this happens when the filesystem is created, however the e2fsprogs
do not support extents so far (Version 1.42.3). Since we wanted to use extents for
the (hidden) inodes representing the hash table and the inodes, we looked for a
workaround.
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We tried two approaches: The first tried to zero out the blocks on demand and
used the fallocate feature for preallocation. The second one allocates and zeroes
out all blocks en bloc once the first access happens. In the following we describe
both approaches. We have finally chosen the second work around due to lower
metadata management overhead.

3.2.1 Zero out on demand

On the very first access to the hash table or DIA, the respective data structure
is preallocated. The preallocation is necessary to guarantee sufficient storage for
deduplication structures. We statically (pre-)allocate the maximally required num-
ber of blocks. Thereby we are prepared for the worst case and furthermore we
avoid fragmentation.

The preallocation was implemented through the fallocate interface. There-
with a file can be physically expanded to a requested size and the expansion is
marked as uninitialised. Fallocate requires the usage of extents, because only ex-
tents support the “uninitialised” label. Reads from the expanded and uninitialised
region should return zeroed out data. A write to such a block splits the effected
blocks from their extent and put them with new and initialised extents back into
the extent tree. Due to the random access character of the hash table and DIA us-
age, the extent trees are subject to frequent extent splits and inserts which lead to
heavy extent tree growths. This solution causes additional and avoidable metadata
management overhead.

3.2.2 Zero out en bloc

We decided to allocate and to physically zero out all blocks en bloc at the moment
of their first access. This results in a delay of the first access’ response time but
also results in a very flat extent tree and no further tree modifications and thus no
later delays due to initialisation.

3.3 Effects of hash table size and occupancy rate

In this section we discus the effects of the hash table occupancy rate to the filesys-
tem performance. The number of available hash table slots determines the maxi-
mum occupation rate. Therefore we describe the possible hash table dimensions
at first. Afterwards, we regard the performance implications.

To enable a content/location mapping ext4fs+dedup uses a hash table, whose
size corresponds to the number of filesystem blocks. The minimal number of
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required slots to handle the worst case of a filesystem, which is completely filled
with a disjoint data set, then every slot is occupied.

The occupancy rate of the on-disk hash table has the same performance effects
as known in the context of in-memory hash tables. A heavily occupied table tends
to more collisions and thus an increased probing effort.

However, one could also use a larger hash table, that never gets fully occupied.
The usage of a power-of-two-sized and block aligned hash table would also ease
the derivation of the home index out of the fingerprint, because one only would
need to take ld(hash table size) bits of the fingerprint (a simple bit shift) instead
of a more expensive modulo operation.

The power-of-two-sized hash table would cover n entries where n is the next
power of two greater than or equal to the number of blocks in the filesystem. Thus
the case with the smallest possible maximum occupation rate is met, when the
filesystem has n/2 + 1 blocks. Then this hash table would nearly occupy twice
the amount of storage that the unaligned variant does. Thus the occupancy rate of
the hash table is about 0.5 at most. Whereas the occupancy rate of the unaligned
hash table exactly corresponds to filesystem’s capacity utilisation.

Due to the variable maximum occupancy rate of the power-of-two hash table
design, such implementations would show significantly varying performances in
terms of access time depending on the number of filesystem blocks.

3.4 Drawbacks of deduplication with extents
In the context of deduplication with block granularity, the extent feature looses
attractiveness, because deduplication inherently tends to filesystem fragmentation
and thus to smaller contiguous block areas.

If a larger contiguous number of blocks is written to disk and we detect a du-
plicate block in the middle of that, we will break the extent into two pieces (the
one before and the one after the duplicate block) resulting into a file consisting of
three extents (part before, duplicate, part after) instead of one without deduplica-
tion (cf. Figure 3.6). Therefore deduplication as an intensifier of fragmentation
leads to larger extent trees. But the saved data blocks should compensate the in-
creased meta data.
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(a) Without deduplication

(b) With deduplication

Figure 3.6: Deduplication-inherent fragmentation causes a growth of the extent
tree.
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Evaluation

In this chapter we evaluate the performance of ext4fs+dedup. First we describe the
used evaluation environment and the benchmarks, then we present and interpret
the benchmarking results.

4.1 Evaluation environment and benchmark data sets

The following evaluation has been done on commodity PC. To ease development
and evaluation, the modified Linux kernel was tested and evaluated on a User
Mode Linux (UML) instance. UML ran Debian 6.0 Linux hosted on a Dell Lati-
tude E6500 notebook with an Intel dual core processor and 4 GB of main memory.
Therefrom 1 GB was assigned to the UML instance. A Samsung SSD 830 Series
solid state drive connected to the notebook over eSATA was formated with our
duplicate aware filesystem ext4fs+dedup. All samples taken are compared to an
unmodified ext4fs (as published with the 3.4.6 Linux kernel) run in the same en-
vironment. The examined filesystems had a size of 8 GB.

Deduplication mainly effects filesystem writes. We have tested the implemen-
tation in extreme conditions, with disjoint data sets on the one hand and redun-
dant data sets on the other hand, as well as in everyday copy operations and in the
filesystem benchmark bonnie++.

Corner cases To reliably create disjoint and redundant data sets respectively we
wrote a small programme ourselves. In the case of redundant data sets, every file
consists of 1024 identical blocks. In the case of disjoint data sets, every block is
unique in the filesystem. Both benchmarks write 1024 files of 1024 blocks each,
resulting into a total data set size of 4 GB (with 4 KB filesystem blocks).
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Copy benchmark This benchmark evaluates the performance of ext4fs+dedup
facing everday data sets. For the sake of confirmability we selected the public
DVD image of openSUSE 12.1 (64 bit version). It is 4.6 GB in size. We copy this
image once within each tested filesystem in this benchmark.

bonnie++ Bonnie++ offers two different benchmarks. One simulates random
read, write and rewrite operations in random access as commonly seen on filesys-
tems hosting databases. The other one focuses on stressing the filesystem im-
plementation with directory modifications with the creation and removal of many
files

The first benchmark is of interest, because it heavily uses the remapping func-
tionality triggered after a duplicate detection or after the overwriting of a shared
block (copy-on-write). The second benchmark is of no avail, for limiting modifi-
cations to directories does not benefit general throughput benchmarking.

Therefore we confined us to the first bonnie++ benchmark. We make one
benchmark pass with an effective file size of 4 GB and use the fast mode, which
skips the operations of character granularity. This is the resulting configuration:
-x 1 -s 4g -f -n 0. See Table 4.1 for descriptions of the command line
flags.

flag meaning
x number of testing passes
s size of file used for first benchmark
f enables fast mode avoiding character granular operations
n number of files created in the second benchmark (zero disables)

Table 4.1: This table explains the meaning of bonnie++’s command line flags.

4.2 Corner cases

Figure 4.1 illustrates the results of the corner case benchmarks.
The benchmark that writes only disjoint blocks took 754± 118 seconds in the

status tag variation and 488 ± 63 seconds using the unmodified ext4fs. For the
other benchmark that writes duplicates, we measured 520± 106 for status tag and
489 ± 69 for unmodified ext4fs. This results into a deduplication overhead of 55
percent for the disjoint write and about 7 percent for the duplicate write.
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Figure 4.1: Results of the corner case benchmarks. The boxplots show the dura-
tion of the benchmarks in seconds.
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4.3 Copy benchmark

Figure 4.2 shows the duration of copying the image for the unmodified ext4fs and
the two different tag variations of ext4fs+dedup.
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Figure 4.2: Results of the cp copy benchmark. The boxplots show the duration of
the copy in seconds.

The results for the two tested tag variations barely differ. Big tag shows an
average copy duration of 626± 17 seconds, compared to status tag with 618± 28
seconds. The unmodified ext4fs needed 495± 26 seconds to write the test image.
This implies deduplication overhead of about 25 percent compared to the baseline.

4.4 Bonnie++

Figure 4.3 shows the results of the bonnie++ benchmark. As in the copy bench-
mark, the difference between the two tag variations is marginal. The average
duration is 2967± 238 seconds for big tag and 2702± 194 seconds for status tag.
Benchmarking the unmodified version resulted into a duration of 433 ± 31 sec-
onds. Thereby the overhead of deduplication is about 530 percent. Writing takes
more than six times longer with deduplication.
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Figure 4.3: Results of the bonnie++ benchmark. The boxplots show the duration
of the benchmark in seconds.

4.5 Conclusions drawn from benchmarks

4.5.1 Tag variations
We expected the big tag variation to be at least slightly faster than the status tag
variation, but the opposite came out. Indeed, the differences are small, but status
tag was faster in every pass. The theoretical reduction of full fingerprint compar-
isons seems not to compensate the greater tag comparison effort.

Perhaps the larger record size contribute to this worse performance. Due to
the additional bytes for the big tag, less records fit into a filesystem block and thus
more block fetches may be necessary.

4.5.2 Deduplication overhead
According to our expectations, the duplication overhead vitally depends on the
treated data set. The duplicate write benchmark could nearly compensate the
deduplication overhead—caused by the fingerprint calculation and reference counter
management—with the saving of the actually repeated data write.

The other extreme of writing totally disjoint blocks maximises the deduplica-
tion overhead. In contrast to the duplicate extreme, the arising costs for fingerprint
calculation and hash table and DIA insertions cannot be compensated at all, be-
cause the data block still has to be written.
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Between these two extremes, the DVD image is classed. Ext4fs+dedup de-
tected up to 130 duplicate blocks depending on the moments of flushing. There-
fore, you can state the rule of thumb: the more and the larger duplicates there are,
the faster the data set is written out.

Regarding the extremely bad performance of the bonnie++ benchmark on
ext4fs+dedup, it is the result of the very frequent modifications. First, bonnie++
write a lot of identical blocks, which it partially rewrites next, which causes sev-
eral copy-on-write processes, whereas the unmodified ext4fs can easily overwrite
the to-be-rewritten blocks without any further allocation or mapping effort.
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Related Work

In this chapter we present publications proposing or describing implementations
to deduplicate data in background storage. Based on the categorisation of Srini-
vasan et al [11] we subdivide existing deduplication approaches according to their
primary optimisation objectives. According to Srinivasan et al, the subdivision
distinguishes between inline and offline as well as latency sensitive and through-
put sensitive systems (cf. Table 5.1).

In the following we first define the mentioned distinctive features. Afterwards,
we focus on inline deduplication systems, refine the subdivision accordingly, pro-
pose a categorisation, name exemplary implementations and compare them to our
approach. Finally, we regard offline deduplication and show collaboration posi-
bilities with inline systems.

inline systems offline systems
latency
focused

iDedup [11], dedupfs [4] NetApp [1]

throughput
focused

ChunkStash [5], EMC Data Do-
main [14], Deep Store [13], Hy-
drastor [6], Sparse indexing [8],
Symantec [7], Venti [10]

n/a (seems to be motiva-
tion for that)

general
purpose

ext4fs+dedup, ZFS [3] Btrfs [2]

Table 5.1: Tabular overview of related work.
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5.1 Distinctive features
The major distinctive features are the deduplication point in time and the perfor-
mance objective.

Deduplication time The deduplication either takes place during the data flush
to the storage—thus inline with the write path—or during idle times of the storage
system—thus offline to the write path. The latter approach requires and retroactive
deduplication.

Deduplication performance Depending on the use of storage system, shot la-
tency requirements outweigh high throughput requirements or vice versa. Pri-
mary storage systems host frequently accessed application data (e.g. databases),
which commonly serve latency sensitive remote requests. Therefore latency re-
duction optimises performance. Secondary storage systems are commonly backup
or archive (primary) data during idle times (e.g. over night). Therefore, through-
put is critical with respect to a timely completion.

5.2 Categorisation of inline deduplication systems
Focusing on inline deduplication systems we refine the above distinction by tak-
ing two additional aspects into account: deduplication completeness and memory
consumption. Including the already regarded latency aspect, the following three
characteristics determine the behaviour of an inline deduplication system:

• Degree of deduplication completeness: This is the ratio of typically detected
to actually present duplicates.

• Latency: This is the delay caused by duplicate detection, that is added to
the write path.

• Memory consumption: This is the amount of main memory, that the dedu-
plication system uses for duplicate detection related mechanisms (e.g. fin-
gerprint index).

These three properties are interdependent. One can only optimise two proper-
ties while the third has to be subordinated. For instance optimising the deduplica-
tion completeness and the latency, requires a fast accessible and complete index
of all stored data, thus consuming a lot of main memory. This optimisation in-
terdependency results in three coarse categories of inline deduplication systems,
which is illustrated in Figure 5.1. We call this the “inline optimisation triad”.
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Figure 5.1: Inline deduplication systems subdivide into three categories depend-
ing on which two properties are optimised at the expense of the third.

5.2.1 Category 1: Subordinating latency

This category comprises deduplication systems, which optimise deduplication
completeness and main memory economy, subordinating the latency aspect. Such
systems typically fulfil backup purposes with high throughput requirements and
huge datasets making in-memory deduplication indexes economically infeasible.
ChunkStash [5] locates its deduplication index on a flash drive as a compromise
between expensive DRAM and slow spinning disks. Zhu et al [14] describes the
employment of a Bloom filter to mitigate the duplicate lookup delay by avoiding
unavailing on-disk index lookups of not present fingerprints.

Bloom filtering can be a beneficial complement to ext4fs+dedup, but as it is
a kind of deduplication index cache, it contradicts our design objective not to use
dedicated caches.

5.2.2 Category 2: Subordinating memory economy

Deduplication systems in this category have to consume lots of main memory to
provide a high degree of deduplication at a minimal delay. The enormous memory
requirements either limit the system’s size or the latency goals. For example,
ZFS [3] has introduced a flash-based extension to its in-memory deduplication
index to make the deduplication of growing filesystems affordable at the expense
of the latency.

In-memory indices are inherently incompatible to our approach.



42 CHAPTER 5. RELATED WORK

5.2.3 Category 3: Subordinating deduplication completeness
Within this category deduplication systems focus on latency reduction and eco-
nomical main memory usage. Hence these systems typically maintain caches con-
taining a partial deduplication index. Dedupfs [4] and iDedup [11] use fixed-size
LRU caches comprising the recently observed deduplication metadata. Therefore,
the duplicate detection is not complete, as only duplicates within temporally lo-
cal writes are recognised. Both systems provide configurable cache sizes, which
allows tradeoff between memory consumption and deduplication completeness.
Furthermore, iDedup reduces fragmentation by introducing a threshold length
of deduplication-worthy duplicate sequences. Sequences that don’t exceed the
threshold are written and not deduplicated.

Again, in-memory caches contradict our objectives. A duplicate length thresh-
old is possible add-on to ext4fs+dedup to mitigate fragmentation at the expense
of completeness.

5.3 Offline deduplication systems
Deduplicating offline to the write path neither effects latency—excepting increased
read latency due to fragmentation—nor throughput, provided that sufficient idle
periods are present to not interfere with productive workloads. Exemplary systems
are [1, 2].

Offline mechanisms can complement inline systems, which don’t detect and
deduplicate every redundancy. Ext4fs+dedup can benefit by offline deduplication
in order to remove simultaneously flushed duplicates or deduplicate already writ-
ten data after belated activation of the inline deduplication feature.
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Conclusion

The aim of this thesis was to evaluate the feasibility of inline filesystem dedupli-
cation without main memory caches. Therefore we developed ext4fs+dedup, an
extension to ext4fs, which totally abandons any deduplication-dedicated memory
cache. Based on this system we ran several benchmarks on a recent Solid State
Drive. The measured overhead ranges from 7 to 55 percent depending on the data
set.

This performance may be acceptable for general purpose setups, which don’t
require throughput optimisations to, for instance, complete within narrow backup
windows. Decreasing prices, will lead to a wider usage of Solid State Disks in
PCs and commodity storage appliances. Therefore cache abandoning deduplica-
tion systems will be of particular interest for private use and small organisations,
which have no dedicated storage and backup systems. They commonly integrate
several services on one hardware and thus will benefit from the low memory foot-
print of our cache-abandoning approach, because the less memory is required for
deduplication, the more is available for other services.

6.1 Future work

To prove practicability of the cache abandoning approach, ext4fs+dedup should
be tested in real world storage environments, whose timing and throughput re-
quirements are less strict and which thus may tolerate up to 50 percent overhead.

Our implementation, as presented with this thesis, is confined to the very basic
features of ext4fs in order to provide a prototype for evaluation. In terms of de-
ployability, the support of the old indirect block mapping method should be added
as well as the support for ext4fs’ different journaling modes and its resize and
downgrade capabilities.

Resizing the filesystem requires a reordering of the hash table (HT) as the
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index derivation of the home slot depends on the filesystem size. To reorder, one
could lookup the full fingerprint for each valid record in the old HT, calculate the
new home slot and copy the record to the new HT. Afterwards one could discard
the old HT and use the new one.
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