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Abstract 

Eumel  and i t s  advanced successor L 3  are operating 
sys tems built by GMD which have been used, f o r  1 3  
years  and 4 years  respectively, as production sys tems 
in  business and education. More than 2000 Euinel sys-  
t e m s  and 500 L.9 sys tems have been shipped since 1979 
and 1988. Both  sys tems rely heavily on the paradigm 
of persistence (including fault-surviving persis tence) .  
Both data and processes, i n  principle all objects are 
persis tent ,  files are implemented by means of  persis-  
tent objects (not  vice versa)  e tc .  

In addi t ion t o  the principles  and mec1ianism.s of Eu- 
nael/LS, general and specific experiences are described: 
these relate t o  the design, implementat ion and main-  
tenance of the syslenzs over  the last 1 3  years. For 
general purpose t imesharing sys tems the idea i s  pow- 
erful and elegant, it can be e f ic ient ly  implemented,  but 
making a s y s t e m  really usable is hard work. 

1 Historical background: Eumel and 
L3 

When the first 8-bit microcomputers became avail- 
able in Germany, GMD started an effort to introduce 
them, aa small workstations, into schools and univer- 
sities. Since there was  no really usable operating sys- 
tem for these machines (only CP/M and similar con- 
trol programs), GMD and the University of Bielefeld 
decided to  develop a new system from scratch. 

Design and implementation of the Euniel (pro- 
nounced 'oimel') operating system started i n  1979. 
The initial hardware base was a computer with a Zilog 
Z80 processor, 64 I<B of main memory and one or more 
8"floppy disk drives storing 300 Kbytes each. Later, 

more memory and a hard disk were added. In the 
following years the system was ported to many differ- 
ent niachines based on Zilog 280 and 28000, Motorola 
GSOOO and Intel SO86 processors. 

Unfortunately 8-bit and the early 16-bit processors 
did not provide hardware to support a state of the art 
operating system, in particular they lacked a memory 
management unit. We, therefore, designed a virtual 
machine with a powerful instruction set and virtual 
32 bit addresses. Although the instructions and the 
XlMU had to be implemented in software, the sys- 
tem's overall efficiency was high enough that commer- 
cial sites had up to  5 terminals per system. 

Due to its non-standard architecture Eumel was 
initially a one language system based on ELAN 
[Honi 791. Later, some other compilers became avail- 
able (CDL, Pascal, Basic, Dynamo) but these were not 
widely used. 

In due course processors came up with the neces- 
sary hardware support for data security and virtual 
addressing; the requirements of the virtual machine 
could then be met directly by hardware. In 1987 
we started the L3 development, principally aimed at  
achieving higher performance and obtaining an open 
system. The L3 architecture is an advancement and a 
generalization of the Eumel principles, but built com- 
pletely from scratch. Since L3 is upwards compatible 
with Eumel, it inherited all of the existing tools and 
applictions. 

Both L3 and its predecessor Eumel are pure p- 
kernel based systems relying heavily on the idea of 
persistent processes. They are strongly influenced by 
hlultics and have similarities to later systems, such as 
Accent and Mach. 

The first Eumel systems were shipped to end users 
in 1980, and were mainly used for teaching program- 
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ming and text processing. In the following years com- 
mercial systems to support lawyers, and other spe- 
cialised applications for small and medium sized com- 
panies, were built on top Eumel. By the mid 80’s more 
than 2000 systems had been installed. 

Delivery of L3 began in 1989 and, to date, about 
500 L3 systems have been shipped. Most of these are 
used for commercial applications, others as Eumel suc- 
cessors in schools. L3 is now in daily use in a variety 
of industrial and commercial contents. 

2 Related work 

The Eumel/L3 model of virtual memory was 
strongly influenced by the Multics [Ben 721 ideas. Lo- 
rie [Lor 771 introduced shadow paging for checkpoint- 
ing. A slightly more general variant of this method is 
used in Eumel/L3 for both copying and checkpointing. 

In 1979, most related work was yet to start (or not 
yet widely known). Accent [Ras 811 and its successor 
Mach [Acc 861 used copy on write techniques. These 
and various other systems (e.g. Amoeba [Mu1 841, 
Chorus [Gui 821, V [Che 841 and its predecessor Toth 
[Che 791) are based on the message passing paradigm, 
but not on the persistence paradigm. 

The programming languages Elle [Alb 801 and PS- 
Algol [Atk 821 already handled persistent and tran- 
sient data uniformly. To date, partial data persis- 
tence (without dealing with faults) is part of the the 
Comandos [Cah 931 project. Data and process per- 
sistence including faults is also supported in Monads 
[Ros 871 and by the KeyKOS [Har 851 nano-kernel, 
first released in 1983. 

The Eumel/LS concepts and experiences have also 
influenced the BirliX [Hir 921 operating system design 
at GMD. 

3 Principles 

3.1 Everything is persistent 

We did not find any concept(ua1 reason for anything 
not to be persistent. Obviously all things should live 
as long as they are needed; and equally obviously turn- 
ing off the power should neither be connected with the 
lifetime of a file nor with the lifetime of a local vari- 
able on a program stack. There are files that are only 
needed for a few seconds, and programs that run  for 
weeks. 

Some data (e.g. files) have to be persistent, so we 
decided that all data should be persistent. The basic 

mechanisms used to achieve this are virtual address 
spaces and m,apping. Benefits of this decision are that: 

0 Only one general mechanism has to be designed, 
implemented, verified and tuned for files, pro- 
grams and databases. 

0 New persistent data types can be built efficiently 
using this mechanism. 

0 A single, general, recovery mechanism can be con- 
st,ructed. 

0 Neither syntactical nor run time overhead is in- 
curred when accessing persistent data. 

Since data is persistent, the active instances oper- 
ating on the data should be persistent too; so we de- 
cided that processes would also be persistent. In fact 
this only requires that stack pointers, program coun- 
ters and other internal registers be regarded as data. 
Consequences of this decision are that: 

0 Program and system checkpoints are easy to im- 
plement. 

0 All running programs automatically become dae- 
mons. 

0 For more complex functions (e.g. protection and 
synchronisation) active algorithms can be used in 
place of conventional passive data structures. 

Thus tasks - consisting of an address space, one or 
more threads, and a set of data objects mapped into 
the address space - are principally persistent. 

Unfortunately not all tasks can be made persistent. 
When beginning the L3 design we decided that all 
device drivers had to be user level tasks. This idea 
is natural, since there is nothing exceptional about a 
device driver, and it proved to be flexible and powerful. 
But, for hardware related reasons, most device drivers 
must not be swapped out, or even blocked for long 
enough to write back their status to the persistent 
store. So tasks can be declared to be resident, which 
also means non persistent. 

3.2 Processes are first class objects 

Most operating systems introduce passive data as 
first class objects: they give unique identifiers or even 
path names t>o them, permit low level access control 
etc. However, when processes are also persistent, this 
turns out to be upside down. An active process is more 
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general, flexible and powerful than a passive data ob- 
ject (although the models are Turing-equivalent), es- 
pecially when implementing objects with inherent ac- 
tivity: e.g. traffic lights, floppy disk drives (turning 
off the motor if no request for 3 seconds) or a terminal 
handler which cleans the screen and requests new au- 
thorization (like xautoolog), when no keystroke occurs 
for some minutes (or the terminal camera no longer 
“sees” the user). A simple example for this type of 
object is a clock which shows the actual time on the 
screen and can be switched to  different local times 
concurrently: 

PROC configurable screen clock : 
delay := 0 ; 
do 

do 
show (t ime + delay) ; 
t imeout := 60s - t ime niod 60s ; 
receive (client, msg, timeout) 

until msg received od ; 
delay := msg.time shift 

od 
END PROC 

This example also shows that Atkinson’s orig- 
inal scale of persistence [Atk 831 (transient, lo- 
cal, own/global, . . . outliving the program) must be 
widened by a second dimension, the lifetime of the 
process. Since the process itself is persistent, the vari- 
able ‘delay’ lives forever, even though it is local to the 
procedure. 

Tasks maintain the data objects and exclusively 
control access to  them, and, in consequence, there are 
no data objects outside a task. (If a data object is 
not owned by at  least one task, it no longer exists.) 
Therefore, directories, file servers and databases are 
most naturally implemented in Eumel and L3 as per- 
sistent tasks containing persistent data and persistent 
threads. 
Tasks and threads are first class objects: they 

have unique identifiers, which are even unique 
over time (to date, 64 bibs a.re used per task or 
thread id), 

are active, autonomous and (in most cases) per- 
sistent, 

communicate via secure channels. 

Thus global naming and binding problems a t  the 
p-kernel level are reduced, applying only to the field 

of inter-process communication. The integrity of m e s  
sa.ge transfer, the uniqueness of task and thread iden- 
tifiers and one distinguished identifier are sufficient to  
solve these problems. The last item can be used as a 
root for higher level naming schemes. 

Since all data objects are completely controlled by 
tasks, local identifiers are sufficient, unique only per 
task and not in time; this simplifies the kernel. Fur- 
thermore higher levels gain flexibility, because they 
are less restricted by kernel concepts. Some naming 
and binding mechanisms that have been implemented 
on top of the kernel are described in section 5 .  

4 Details 

This section gives a short overview of some details 
of the support for persistence in Eumel and L3. More 
details are described in [EUM 79, EUM 79a, Bey 89, 
Lie 91, Lie 921. 

4.1 Tasks, threads and communication 

The L3-kernel is an abstract machine implementing 
the data type task. A task consists of 

a t  least one thread 
A thread (like a Mach thread) is a running pro- 
8ra.m; up to 16384 are allowed per machine. All 
threads, except resident (unpaged) driver or ker- 
nel threads, are persistent objects. 

up to 16383 dataspaces 
A dataspace is a virtual memory object of size up 
to 1 GB. Dataspaces are also persistent objects 
and are subject to demand paging. Copying and 
sending is done lazily. Physical copy operations 
are delayed (copy on write) as in Accent, Mach 
and BirliX. 

one address space 
Dataspaces are mapped dynamically into the ad- 
dress space for reading or modification. For hard- 
ware driver tasks, the address space is logically 
extended by the IO ports assigned to  the task. 
(Recall that all device drivers are located outside 
the kernel and run a t  user level.) 

As in hlach, paging is done by the default or exter- 
nal pager tasks, hence all interactions between tasks, 
and with the outer world, are based on inter-process 
communication (ipc). 

The Eumel/LS ipc model is quite straightforward. 
Active components, i.e. threads, communicate via 
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messages which consist of strings and/or dataspaces. 
Each message is sent directly from the sending to the 
receiving thread. There are neither communication 
channels nor links, only global thread and task identi- 
fiers (ids).l L3 ipc therefore involves neither concepts 
of opening and closing nor additional kernel objects 
such as links or ports. This simple model differs in 
two important respects from most other message ori- 
ented systems: 

absence of explicit binding (opening a channel) 
One would expect additional costs, because the 
kernel must check the communication’s validity 
each time a message is sent, but, on the other 
hand, there is no need for bookkeeping of open 
channels. We consider that our approach is more 
elegant, and, in fact, communication in L3 is fast 
(see below). 

0 no message buffering 
Due to the absence of channel objects we have 
synchronous ipc only; sender and receiver must 
have a rendezvous. But practice has shown 
that higher level communication objects, such as 
pipes, ports and queues, can be implemented fles- 
ibly and efficiently on top of the kernel by means 
of threads. 

, 

As described in [Lie 931, L3’s ipc implementation per- 
forms well: short message transfer is 22 times fast>er 
than Mach and 5 times faster than QNX [Hi1 921. This 
allows to  integrate even hardware interrupts as ipc. 

Local ipc is handled by the kernel, remote ipc by 
user level tasks, more precisely by chiefs (see sec- 
tion 4.2).  Tasks and threads have unique identifiers, 
unique even in time, so a server usually concludes from 
the id of the message sender whether the requested ac- 
tion is permitted for this client or not. The integrity 
of messages (no modification, no loss, no sender id fak- 
ing), in conjunction with the autonomy of tasks, is the 
basis for higher level protection. 

4.2 Clans & Chiefs 

Within both the L3 system and other systems based 
on direct message transfer, e.g. BirliX, protection is 
essentially a matter of message control. Using ac- 
cess control lists (acl) this can be done at  the server 

How does one acquire the id of a new partner for commu- 
nication? This is achieved using one or more name servers. 
Usually the creating task implants the id of at least one name 
server into a newly created task. Using these or the root id 
the new task can coinmunicate with some name server to get 
further task/thread ids. 

level, but maintenance of large distributed acls be- 
comes hard when access rights change rapidly. So 
Kowalski and Hartig [Kow 901 have proposed that ob- 
ject (passive entity) protection be complemented by 
subject (active entity) restrictions. In this approach 
the kernel is able to  restrict the outgoing messages of 
a task (the subject) by means of a list of permitted 
receivers. 

The clan concept [Lie 921, which is unique to  L3, is 
an algorithmic generalization of this idea: 

A clan (denoted as an oval) is a set of tasks (de- 
noted as a circle) headed by a chief task. Inside the 
clan all messages are transferred freely and the kernel 
guarantees message integrity. But whenever a message 
tries to cross a clan’s borderline, regardless of whether 
it is outgoing or incoming, it is redirected to  the clan’s 
chief. This chief may inspect the message (including 
the sender and receiver ids as well as the contents) and 
decide whether or not it should be passed to  the d e s  
tination to which it was  addressed. As demonstrated 
in the figure above, these rules apply to  nested clans 
as well. Obviously subject restrictions and local refer- 
ence monitors can be implemented outside the kernel 
by means of clans. Since chiefs are tasks a t  user level, 
the clan concept allows more sophisticated and user 
definable checks as well as active control. Typical clan 
structures are 

Clan per machine: In this simple model there is 
only one clan per machine covering all tasks. Lo- 
cal conimunication is handled directly by the ker- 
nel without incorporating a chief, whereas cross 
machine communication involves the chief of the 
sending and the receiving machine. Hence, the 
clan concept is used for implementing remote ipc 
by user level tasks. 

Clan per sys tem version: Sometimes chiefs are 
used for adapting different versions. The servers 
of the old or new versions are encapsulated by a 
clan so tha.t its chief can translate the messages. 

Clan per user: Surrounding the tasks of each user 
or user group by a clan is a typical method when 
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building security systems. Then the chiefs are 
used to control and enforce the requested security 
policy. 

Clan  per task: In the extreme case there are single 
tasks each controlled by a specific chief. For ex- 
ample these one-task-clans are used for debugging 
and supervising suspicious programs. 

In the case of intra-clan communication (no chief 
involved), the additional costs of the clan concept are 
negligible (below 1% of minimal ipc time). Inter-clan 
communication however multiplies the ipc operations 
by the number of chiefs involved. This can be tol- 
erated, since (i) L3 ipc is very fast (see above) and 
(ii) crossing clan boundaries occurs seldom enough 
in practice. Note that many security policies can be 
implemented simply by checking the client id in the 
server and do not need clans. 

4.3 Dataspaces and pagers 

Data  objects can be mapped into address spaces 
and then arbitrarily addressed, therefore they are 
called dataspaces. They are managed by either the de- 
fault or their individually associated external pagers. 
The default pager implementing persistent data ob- 
jects was one of the key components of Eumel and 
L3 from the very beginning (1979), whereas Ivlach’s 
external pager concept was integrated later as a gen- 
eralization. External pagers are user level tasks. They 
may use devices (different from the default swapping 
device) for paging as well as virtual objects which are 
managed by other pagers, i.e. pagers may be stacked. 

Dataspaces can be created, deleted, mapped, un- 
mapped, copied and sent as parts of messages to other 
tasks. Copying and sending are done lazily. Since copy 
on write is supported by the kernel’s memory manage- 
ment and the default pager, even file copies are cheap. 
Lazy copying and lazy sending use techniques similar 
to shadow paging [Lor 771 but are totally symmetric. 
When modifying the original of a file the correspond- 
ing page must be physically copied (or mapped to a 
new backing store block) in the same way as when 
modifying the copy. 

4.4 Fixed points 

Since processes are as persistent as data ob- 
jects, checkpoint/recover mechanisms covering both 
are needed: the most important one in Eumel and L3 
is the j i zed  point ,  which is also denoted by the slang 
word fizpoznt. A fixpoint is a checkpoint covering the 

complete system (of one node). I t  includes a consistent 
copy of all tasks, threads, address spaces and dataspa 
ces (i.e. all processes, files, databases, terminal screens 
etc.) taken at the same point of time. Due to copy on 
write techniques, this atomic action is short enough 
not to disturb the users. Writing the dirty pages to 
the backing store is done afterwards, concurrently to 
normal user and system activity. 

To implement the fixpoint, all dataspaces of all 
tasks and all thread and task control blocks are in- 
tegrated into the ‘dataspace of all dataspaces’ (dsds). 
So lazy copying can be applied to the system as a 
whole. Using a slightly modified ELAN notation, the 
fixpoint algorithm is: 

begin  atomic 

end a tomic  ; 
for i from 0 u p t o  m a x  frame number do 

new fixpoint dsds := actual dsds 

if frame[i].dirty A frame[i].belongs t o  fixpoint 
then write t o  backing store (frame[i]) 

fi 
od ; 
begin  atomic 

delete old fixpoint 
make new fixpoint valid on backing store 

end a t o m i c .  

The first atomic action, copying the dataspace of 
all da,taspaces, requires a physical copy of the system 
root pointer (32 bytes) and flushing of all page frames 
which are mapped with write permission in this mo- 
ment. On a 25 MHz Intel 386-based machine with 12 
MB main memory this costs between 2 and 5 millisec- 
onds. The following cleanup phase runs concurrent to 
the normal user and system activities at a relatively 
low priority. On average, one third of main memory 
contains dirty frames; depending to a great degree on 
the actual workload, between 7 and 150 seconds are 
needed for complete write back. The final atomic ac- 
tion writes one sector to the backing store, this takes 
about 15 milliseconds. 

Since all active and passive objects of one machine 
(including the terminal screens) are frozen consistently 
at the same time, fixpointing and recovery is transpar- 
ent for most applications. Clients and servers on the 
same machine are always in a consistent state. 

However, this mechanism is not sufficient for a 
distributed system, since a “worldwide” fixpoint is 
not reasonable, especially not in a heterogenous dis- 
tributed system. Therefore explicit (and sometimes 
a.pplication specific) recovery policies are necessary 
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whenever relevant partners are not included in t,he 
fixpoint. Since the p-kernel itself is not distributed, 
these policies must be implemented on top of it. Usu- 
ally, general policies are based on the clan-mechanism. 

Fixpoints occur periodically or user initiated, but 
their latency limits their frequency. A practical lower 
bound is one fixpoint all 3 minutes. A common 
method for implementing more fine-granular check- 
points is to use an external pager which supports 
checkpointing each dataspace separately. By this, a 
remote file server can also save each modified file in- 
dependently of the various fixpoints in the distributed 
system. But note that even such servers consist of 
persistent tasks and threads which are fixpointed by 
the default pager. 

A regular shutdown consists of enforcing a fixpoint 
and stopping all other threads. There is no relevant 
difference to an irregular breakdown. In both cases 
restarting the system is done by activating the last 
valid fixpoint. 

4.5 Fixpointing the kernel 

Recovering a task or restarting a thread needs not 
only user level data (stacks, dataspaces) but also 
thread state, priority, mapping information, saved 
processor registers etc. All these kernel data is held in 
thread and task control blocks which are virtual ob- 
jects. They are located in a kernel dataspace being 
subject to paging, and the ordina.ry fixpoint mecha- 
nism checkpoints them like all other objects. Thus 
the control blocks are as persistent as user data, and 
recovery is simple as far as only values and virtual 
(kernel and user) a.ddresses are involved. 

For illustration let us assume that a message trans- 
fer running between two persistent threads is int,er- 
rupted by a page fault (or t8ime slice exhaustion or 
external interrupt) and that this situation is frozen by 
a fixpoint. When recovering the system from this fix- 
point, inspection of the thread states (part of the per- 
sistent thread control blocks) leads to restarting the 
message transfer. Recall that the data and the con- 
trol block addresses are virtual so t1~a.t changes of real 
memory allocation are transparent to ipc. While fix- 
point/restart is transparent to ipc between persistent 
threads (even to timeout handling), communicat,ion 
with a transient thread (e.g. a resident device driver) 
is aborted on restart. 

In fact, holding the control blocks as virtual objects 
does not solve all problems related to thread restarts: 
Although kernel stacks are part of the control blocks 
and therefore persistent, and stack addresses are vir- 
tual addresses, simply loading the stackpointer does 

not. work, since the stacks may contain real addresses 
which necessarily come up when handling page faults. 
Furthermore, changing the kernel code would invali- 
date return addresses. 

Therefore the restart algorithm inspects the kernel 
stack bottom of each thread and decides how to restart 
it: 

Waiting for ipc: The thread remains waiting. Its 
state is not changed but the return addresses on 
the kernel stack are updated, since the kernel code 
may have changed. 

Ruiiiiiiig ipc: The thread state is not changed, but 
its kernel stack is reset to the outmost level and 
its instruction pointer set to a special ipc restart 
routine. 

Otherwise: The thread state is set to ‘busy’ and 
restarted at user level. (This is possible, since 
all system calls behave atomically, i.e. have no 
effect until completion.) 

5 Applicatioiis 

5.1 Programs and procedures 

One consequence of task persistence is that there 
is no real difference between running a program and 
calling a. procedure within a. program. Conventionally, 
running a program means: 

al locate space ; 
copy  p r o g r a m  code  f r o m  load  f i le  into m e m o r y  ; 
re locate code  ; 
cal l  (s tar t  address) . 

The first three actions are not required in a persistent 
task. If the compiler takes advantage of this feature 
(as Eumel’s ELAN compiler does), it simply generates 
executable code at the appropriate virtual addresses. 
Then running a program is 

cal l  ( s ta r t  address) . 

By means of this mechanism, and by using lazy copy- 
ing for its table initialization, the ELAN compiler 
achieves noteworthy speed, especially when translat- 
ing small programs. For example, to translate and 
execute ‘ p u t  ( “he l lo  wor ld ” ) ’  costs 48 ms total elapsed 
time on a 25 RIHz 38G based machine, 10.6 ms on a 50 
RlHz 48G. This speed permits the translation of each 
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job control and editor command as a separate single 
program. 

If programs with conflicting addresses should sub- 
sequently run in the same address space, and the exe- 
cutable code of each program is contained in a file, a 
program is executed by: 

if required region o f  address space already used 
then unmap corresponding dataspaces 

f i ;  
m a p  file t o  required region o f  address space ; 
call (start address) . 

5.2 Dataspaces and persistence 

Dataspaces can be mapped into an address space 
and may contain data of all types, i.e. Atkinson’s type 
completeness requirement [Atk 83) is fulfilled. Vari- 
ables located in mapped dataspaces are accessed by 
the same mechanism (by virtual address) and with 
the same efficiency than normal program variables. In 
fact, programs are contained in dataspaces as well. 

Note that persistence here does not require 
open/close operations. Due to task persist,ence a da- 
taspace may remain mapped arbitrarily long. Dis- 
tributed applications use external pagers and remote 
procedure calls (RPC) for synchronization a.nd/or re- 
mote object access. 

5.3 Files, directories and protection 

By default, directories and file server are imple- 
mented as tasks. These use simple arrays to hold the 
catalogue (file names and attributes) and dataspaces 
as files: 

initialize catalogue as empty : 
do {forever} 

wait  for order ; 
if from authorised partner A access permitted 

then if is file access order AND file exists 

else 
fi 

od . 

then send or map dataspace 
elif is create order A 7 file exists 

then allocate catalogue entry; 
create dataspace 

e l i f . .  . 
fi 
reject 

Here ‘access permitted’ can be an arbitrary al- 
gorithm usable to support various security policies, 
e.g. ‘free access’, simple ‘password protection’, ‘time 
bound access’, ‘authorized user only access’ etc. The 
mechanism permits optional as well as mandatory ac- 
cess control. 

6 Experiences 

6.1 Stabilities and instabilities 

We strongly recommend that system developers use 
their own system as a workbench (not only for testing) 
as early as possible. Only if they take the risk of their 
own software instabilities and inefficiencies, will the 
system soon become stable and fast enough for end 
users. In particular, relying on the system will lead to 
a realistic balance between stability and optimization. 

When we began to use Eumel as a workbench, we 
were part,icularly afraid of collapsing processes. Re- 
call that the shutdown of a task makes all of its data, 
i.e. all of its local files, inaccessable. Of course, we 
could have held all files in a file server task, so that 
t,liey would not be seriously affected by a collapsing 
worktask. However, although the probability of shut- 
down i n  a file server task may be lower than in a task 
used for editing, compiling and testing new programs, 
the file server itself is also a task, potentially suffering 
from the same threats. In fact, the very first Eumel 
versions we (and only we) used, led to disasters like: 

- subscript overflows in directory handlers resulting 
in broken chains and unusable directories, 

- stack overflows within the stack overflow exception 
handler resulting in absolutely dead tasks, 

- crashes of the virtual machine when executing in- 
structions under special circumstances. 

However, most of these crashes turned out to be 
soft, i.e. recoverable. We cured them by simply reset- 
ting the system to the last fixpoint. On average the 
previous 5 minutes were lost, but serious harm had 
been avoided and we could correct our software. 

The fixpoint mechanism made the system more ro- 
bust, not only in its early stages but also when it 
became widely used for production. The majority 
of faults survived by means of fixpoints, thereafter] 
were the originally intended hardware related ones, 
e.g. power failure, controller ha.ngups etc. and spuri- 
ous kernel faults. 

a 
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The most prominent use of the fixpoint fa- 
cility occurred when we gave a demonstration 
for the German Minister of Research and Tech- 
nology. Shortly before the minister entered the 
room, a cleaner hurried in to remove the last 
speck of dust. Of course, her first action was to 
unplug our power supply cable and plug in her 
vacuum cleaner. I t  provided a perfect demon- 
stration of fault tolerance in a persistent system 
by fixpoint. 

Besides such positive effects of stability and robust- 
ness through fixpointing, we also had bad experiences. 
Unfortunately the fixpoint stabilises a corrupted sys- 
tem in the same way. In practice, this only hap- 
pened in conjunction with kernel level errors. The 
overwhelming majority of severe kernel errors led to 
an immediate crash or starvation and did not hurt 
the fixpointed system, but some errors in the areas 
of memory management, paging and concurrent block 
garbage collection led to serious and permanent low 
level defects. In most cases synchronization errors re- 
sulted in a multiply used block on disk: usually one 
instance stored a page block table in a disk block, 
while a different one used the same block for a text 
file. 

In the first years of Eumel these errors soon be- 
came very rare, but three unpleasant effects became 
noticeable: 

Severe kernel errors tended to be extreme rare 
and only to occur at one or two installations (far 
away, of course), and not correlated with specific 
actions. 

0 About one third of these problems turned out 
to be spurious hardware malfunctions, which in 
most cases were hard to detect and to prove. 

0 Improving the kernel algorithms and incorporat- 
ing new hardware (memory bank switching, spe- 
cific CPU features etc.) was required by the users, 
but often led to new periods of higher instability. 

By way of illustration, here is one example incident: 

There was a machine tool manufacturing 
plant using L3, which had on average (but not 
periodically) one system breakdown every two 
weeks. The  crashes often occurred early in the 
morning, when nobody was working and there 
were no special system activities. Analyzing the 
crashes did not give usable hints to us. At that  
time about 200 other L3 systems were in use, 
and none of them suffered from kernel instabil- 
ity. We inspected the special application soft- 
ware running on the crit,ical system, but we did 

not find anything extraordinary. For two months 
we racked our brains performing “dry” analy- 
sis of potentially critical situations. Indeed, we 
found two errors which certainly had never oc- 
curred, but not the critical one. Then the in- 
stallation was upgraded from 8 MB t o  12 MB 
main memory, and the problem immediately dis- 
appeared. 

But: When simplifying the kernel algorithms 
in the following year, we discovered three er- 
rors, each of them being very very improbable 
but able t o  explain the spurious crashes. Since 
the machine tool manufacturer did not want t o  
return to his potentially unstable hardware t o  
allow further tests, we will never know for cer- 
tain whether the crashes were induced by those 
errors. Intuitively I would give the odds 6 : 1 : 
3 for ‘fixed L3 bug’ : ‘as yet unknown L3 bug’ : 
‘hardware malfunction’. 

Concluding the good and bad experiences of 13 
years as far as stability in a persistent system is con- 
cerned: 

A persistent system can be made very stable. 
With Eumel and L3 we have reached a state 
where crashes (recoverable and unrecoverable) 
due to software are less frequent than those due 
to hardware. 

0 The overwhelming majority of crashes are recov- 
erable. 

0 Even when the system is as stable as possible, if 
you wait long enough there will still suddenly be 
someone suffering from a really damaged system. 

6.2 Performance 

Frequently, people believe that persistence is expen- 
sive, especially when taken together with fault toler- 
ance. Due to our experiences with Eumel and L3, we 
are convinced that it is relatively cheap, if the system 
is carefully and thoroughly designed, from hardware 
up to application level. 

Unfortunately we cannot prove that persistence is 
inexpensive, since there is no nonpersistent Eumel or 
L3, but we are able to give two arguments that support 
our claim: 

Apart from fixpointing, there is no feature that 
is required purely in order to provide persistence. 
Virtual address spaces and paging are common 
features of timesharing systems. 

There are commercial 16-usersystems running 
L3 on a single 486 monoprocessor. 
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Fixpointing, however, is not for free. It costs a 
certain amount of backing store, additional swap outs 
for storing the fixpoint and some free main memory for 
copy on write actions taking place immediately after 
starting the fixpoint and before its frames are written 
back to disk. 

Experience has shown that for most applications 
these additional costs become negligible when 30% 
more main memory - reducing normal paging cir- 
cumvents the disk traffic bottleneck during fixpoint 
- and a disk reserve of 3 times main memory size are 
available. 

Although measurements of a few special and singu- 
lar mechanisms are not adequate when seriously dis- 
cussing a system's performance, some are presented 
here simply to give the reader a rough feeling. A 50 
MHz 486 noname PC with 16 MB main memory was 
used for these measurements: 

null cross address space RPC 
(user c) user) 
copying 300 files to  another task 
(including directory updates) 
create dataspace; map it; 
write one byte; delete dataspace 
fixpoint covering 1000 dirty page 
frames (no concurrent activity) 
translate and execute 
'put  ("hello world")' 

10 ps 

2.8 "file 

2.0 ms 

6.8 ms/page 

10.6 ms 

6.3 How programmers adopt the ideas 

We have used Eumel to teach word processing to 
university secretaries who had no previous comput- 
ing experience whatsoever. were completely unexperi- 
enced concerning computers. We soon learned that we 
must not talk about persistence: they took persistence 
for granted. It was a natural concept for them (paper 
is persistent), but our complicated explanations of per- 
sistence irritated them. When giving the next course 
to  secretaries we therefore reduced our explanation of 
persistence to: "For obscure technical reasons an un- 
expected power failure will destroy the work you have 
done in the preceding few minutes." 

Pupils or students learning programming using 
ELAN over Eumel/L3, a t  first look at  files as some- 
thing which can be edited. They regard persistence as 
a natural but secondary effect. Later on, they write 
modules which are naturally based on the persistence 
of variables, e.g.: 

test var actual password := "" ; {static variable] 

proc set password (text old, new) : 

then actual password := new 
if old = actual password 

fi 
end proc set password ; 

boo1 proc password ok ( t ex t  pw) : 

end proc password ok : 
(pw = actual password) 

Although this type of application is produced as 
a matter of course, students start to  think explicitly 
about persistence when they first write programs for 
long running computation. For a beginner, the persis- 
tence of a 'really executing' activity seems to be less 
natural than that of a 'waiting' activity. 

Things are different when experienced software en- 
gineers first use Eumel/L3. They know about long 
running jobs from their experience of mainframes, but 
they tend to hold as much data as possible in files. 
They soon start to  map files/dataspaces holding ar- 
bitrary data structures, but only construct applica- 
tions, based on a multitude of persistent tasks, after 
they have gained considerable experience. Often they 
structure their system on tasks to  separate responsi- 
bilties. For example, the lawyer supporting system 
has about 10 tasks per user. Sometimes this leads 
to one task per developer in the same way that three 
compiler writers working together tend to construct a 
three pass compiler. 

An unintended way using persistence is practiced 
by some experienced users: having deleted the wron 
file (despite the system asked back), pressing (resetl 
resets the system to the last fixpoint and the deleted 
file reappears. Usually, colleagues who are using the 
same machine concurrently prohibit them from doing 
this. 

7 Conclusions 

Persistence as a basic and universal principle cover- 
ing data and processes has proved to be a good founda- 
tion for Eumel and L3. Our experiences of the last 13 
years have shown that programmers like persistence, 
and both system level and .application programming 
become easier. We have learned that realizing persis- 
tence at  the p-kernel level permits the construction 
of an efficient and flexible system with a reasonable 
amount of work for design and implementation. How- 
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ever, a system relying heavily on persistence needs sig- 
nificant effort to make it stable enough for real use. 
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