
A Persistent System in Real Use
- Experiences of the First 13 Years -

Jochen Liedtke

German National Research Center for Computer Science
GMD SET

53757 SaIikt Augustin
Germany

jochen.liedt ke@gmd.de

Abstract

Eumel and i t s advanced successor L 3 are operating
sys tems built by GMD which have been used, f o r 1 3
years and 4 years respectively, as production sys tems
in business and education. More than 2000 Euinel sys-
t e m s and 500 L.9 sys tems have been shipped since 1979
and 1988. Both sys tems rely heavily on the paradigm
of persistence (including fault-surviving persis tence) .
Both data and processes, i n principle all objects are
persis tent , files are implemented by means of persis-
tent objects (not vice versa) e tc .

In addi t ion t o the principles and mec1ianism.s of Eu-
nael/LS, general and specific experiences are described:
these relate t o the design, implementat ion and main-
tenance of the syslenzs over the last 1 3 years. For
general purpose t imesharing sys tems the idea i s pow-
erful and elegant, it can be e f ic ient ly implemented, but
making a s y s t e m really usable is hard work.

1 Historical background: Eumel and
L3

When the first 8-bit microcomputers became avail-
able in Germany, GMD started an effort to introduce
them, aa small workstations, into schools and univer-
sities. Since there was no really usable operating sys-
tem for these machines (only CP/M and similar con-
trol programs), GMD and the University of Bielefeld
decided to develop a new system from scratch.

Design and implementation of the Euniel (pro-
nounced 'oimel') operating system started i n 1979.
The initial hardware base was a computer with a Zilog
Z80 processor, 64 I<B of main memory and one or more
8"floppy disk drives storing 300 Kbytes each. Later,

more memory and a hard disk were added. In the
following years the system was ported to many differ-
ent niachines based on Zilog 280 and 28000, Motorola
GSOOO and Intel SO86 processors.

Unfortunately 8-bit and the early 16-bit processors
did not provide hardware to support a state of the art
operating system, in particular they lacked a memory
management unit. We, therefore, designed a virtual
machine with a powerful instruction set and virtual
32 bit addresses. Although the instructions and the
XlMU had to be implemented in software, the sys-
tem's overall efficiency was high enough that commer-
cial sites had up to 5 terminals per system.

Due to its non-standard architecture Eumel was
initially a one language system based on ELAN
[Honi 791. Later, some other compilers became avail-
able (CDL, Pascal, Basic, Dynamo) but these were not
widely used.

In due course processors came up with the neces-
sary hardware support for data security and virtual
addressing; the requirements of the virtual machine
could then be met directly by hardware. In 1987
we started the L3 development, principally aimed at
achieving higher performance and obtaining an open
system. The L3 architecture is an advancement and a
generalization of the Eumel principles, but built com-
pletely from scratch. Since L3 is upwards compatible
with Eumel, it inherited all of the existing tools and
applictions.

Both L3 and its predecessor Eumel are pure p-
kernel based systems relying heavily on the idea of
persistent processes. They are strongly influenced by
hlultics and have similarities to later systems, such as
Accent and Mach.

The first Eumel systems were shipped to end users
in 1980, and were mainly used for teaching program-

2
0-8186-5270-5193 $3.00 0 1993 IEEE

mailto:ke@gmd.de

ming and text processing. In the following years com-
mercial systems to support lawyers, and other spe-
cialised applications for small and medium sized com-
panies, were built on top Eumel. By the mid 80’s more
than 2000 systems had been installed.

Delivery of L3 began in 1989 and, to date, about
500 L3 systems have been shipped. Most of these are
used for commercial applications, others as Eumel suc-
cessors in schools. L3 is now in daily use in a variety
of industrial and commercial contents.

2 Related work

The Eumel/L3 model of virtual memory was
strongly influenced by the Multics [Ben 721 ideas. Lo-
rie [Lor 771 introduced shadow paging for checkpoint-
ing. A slightly more general variant of this method is
used in Eumel/L3 for both copying and checkpointing.

In 1979, most related work was yet to start (or not
yet widely known). Accent [Ras 811 and its successor
Mach [Acc 861 used copy on write techniques. These
and various other systems (e.g. Amoeba [Mu1 841,
Chorus [Gui 821, V [Che 841 and its predecessor Toth
[Che 791) are based on the message passing paradigm,
but not on the persistence paradigm.

The programming languages Elle [Alb 801 and PS-
Algol [Atk 821 already handled persistent and tran-
sient data uniformly. To date, partial data persis-
tence (without dealing with faults) is part of the the
Comandos [Cah 931 project. Data and process per-
sistence including faults is also supported in Monads
[Ros 871 and by the KeyKOS [Har 851 nano-kernel,
first released in 1983.

The Eumel/LS concepts and experiences have also
influenced the BirliX [Hir 921 operating system design
at GMD.

3 Principles

3.1 Everything is persistent

We did not find any concept(ua1 reason for anything
not to be persistent. Obviously all things should live
as long as they are needed; and equally obviously turn-
ing off the power should neither be connected with the
lifetime of a file nor with the lifetime of a local vari-
able on a program stack. There are files that are only
needed for a few seconds, and programs that run for
weeks.

Some data (e.g. files) have to be persistent, so we
decided that all data should be persistent. The basic

mechanisms used to achieve this are virtual address
spaces and m,apping. Benefits of this decision are that:

0 Only one general mechanism has to be designed,
implemented, verified and tuned for files, pro-
grams and databases.

0 New persistent data types can be built efficiently
using this mechanism.

0 A single, general, recovery mechanism can be con-
st,ructed.

0 Neither syntactical nor run time overhead is in-
curred when accessing persistent data.

Since data is persistent, the active instances oper-
ating on the data should be persistent too; so we de-
cided that processes would also be persistent. In fact
this only requires that stack pointers, program coun-
ters and other internal registers be regarded as data.
Consequences of this decision are that:

0 Program and system checkpoints are easy to im-
plement.

0 All running programs automatically become dae-
mons.

0 For more complex functions (e.g. protection and
synchronisation) active algorithms can be used in
place of conventional passive data structures.

Thus tasks - consisting of an address space, one or
more threads, and a set of data objects mapped into
the address space - are principally persistent.

Unfortunately not all tasks can be made persistent.
When beginning the L3 design we decided that all
device drivers had to be user level tasks. This idea
is natural, since there is nothing exceptional about a
device driver, and it proved to be flexible and powerful.
But, for hardware related reasons, most device drivers
must not be swapped out, or even blocked for long
enough to write back their status to the persistent
store. So tasks can be declared to be resident, which
also means non persistent.

3.2 Processes are first class objects

Most operating systems introduce passive data as
first class objects: they give unique identifiers or even
path names t>o them, permit low level access control
etc. However, when processes are also persistent, this
turns out to be upside down. An active process is more

3

general, flexible and powerful than a passive data ob-
ject (although the models are Turing-equivalent), es-
pecially when implementing objects with inherent ac-
tivity: e.g. traffic lights, floppy disk drives (turning
off the motor if no request for 3 seconds) or a terminal
handler which cleans the screen and requests new au-
thorization (like xautoolog), when no keystroke occurs
for some minutes (or the terminal camera no longer
“sees” the user). A simple example for this type of
object is a clock which shows the actual time on the
screen and can be switched to different local times
concurrently:

PROC configurable screen clock :
delay := 0 ;
do

do
show (t ime + delay) ;
t imeout := 60s - t ime niod 60s ;
receive (client, msg, timeout)

until msg received od ;
delay := msg.time shift

od
END PROC

This example also shows that Atkinson’s orig-
inal scale of persistence [Atk 831 (transient, lo-
cal, own/global, . . . outliving the program) must be
widened by a second dimension, the lifetime of the
process. Since the process itself is persistent, the vari-
able ‘delay’ lives forever, even though it is local to the
procedure.

Tasks maintain the data objects and exclusively
control access to them, and, in consequence, there are
no data objects outside a task. (If a data object is
not owned by at least one task, it no longer exists.)
Therefore, directories, file servers and databases are
most naturally implemented in Eumel and L3 as per-
sistent tasks containing persistent data and persistent
threads.
Tasks and threads are first class objects: they

have unique identifiers, which are even unique
over time (to date, 64 bibs a.re used per task or
thread id),

are active, autonomous and (in most cases) per-
sistent,

communicate via secure channels.

Thus global naming and binding problems a t the
p-kernel level are reduced, applying only to the field

of inter-process communication. The integrity of m e s
sa.ge transfer, the uniqueness of task and thread iden-
tifiers and one distinguished identifier are sufficient to
solve these problems. The last item can be used as a
root for higher level naming schemes.

Since all data objects are completely controlled by
tasks, local identifiers are sufficient, unique only per
task and not in time; this simplifies the kernel. Fur-
thermore higher levels gain flexibility, because they
are less restricted by kernel concepts. Some naming
and binding mechanisms that have been implemented
on top of the kernel are described in section 5 .

4 Details

This section gives a short overview of some details
of the support for persistence in Eumel and L3. More
details are described in [EUM 79, EUM 79a, Bey 89,
Lie 91, Lie 921.

4.1 Tasks, threads and communication

The L3-kernel is an abstract machine implementing
the data type task. A task consists of

a t least one thread
A thread (like a Mach thread) is a running pro-
8ra.m; up to 16384 are allowed per machine. All
threads, except resident (unpaged) driver or ker-
nel threads, are persistent objects.

up to 16383 dataspaces
A dataspace is a virtual memory object of size up
to 1 GB. Dataspaces are also persistent objects
and are subject to demand paging. Copying and
sending is done lazily. Physical copy operations
are delayed (copy on write) as in Accent, Mach
and BirliX.

one address space
Dataspaces are mapped dynamically into the ad-
dress space for reading or modification. For hard-
ware driver tasks, the address space is logically
extended by the IO ports assigned to the task.
(Recall that all device drivers are located outside
the kernel and run a t user level.)

As in hlach, paging is done by the default or exter-
nal pager tasks, hence all interactions between tasks,
and with the outer world, are based on inter-process
communication (ipc).

The Eumel/LS ipc model is quite straightforward.
Active components, i.e. threads, communicate via

4

messages which consist of strings and/or dataspaces.
Each message is sent directly from the sending to the
receiving thread. There are neither communication
channels nor links, only global thread and task identi-
fiers (ids).l L3 ipc therefore involves neither concepts
of opening and closing nor additional kernel objects
such as links or ports. This simple model differs in
two important respects from most other message ori-
ented systems:

absence of explicit binding (opening a channel)
One would expect additional costs, because the
kernel must check the communication’s validity
each time a message is sent, but, on the other
hand, there is no need for bookkeeping of open
channels. We consider that our approach is more
elegant, and, in fact, communication in L3 is fast
(see below).

0 no message buffering
Due to the absence of channel objects we have
synchronous ipc only; sender and receiver must
have a rendezvous. But practice has shown
that higher level communication objects, such as
pipes, ports and queues, can be implemented fles-
ibly and efficiently on top of the kernel by means
of threads.

,

As described in [Lie 931, L3’s ipc implementation per-
forms well: short message transfer is 22 times fast>er
than Mach and 5 times faster than QNX [Hi1 921. This
allows to integrate even hardware interrupts as ipc.

Local ipc is handled by the kernel, remote ipc by
user level tasks, more precisely by chiefs (see sec-
tion 4.2). Tasks and threads have unique identifiers,
unique even in time, so a server usually concludes from
the id of the message sender whether the requested ac-
tion is permitted for this client or not. The integrity
of messages (no modification, no loss, no sender id fak-
ing), in conjunction with the autonomy of tasks, is the
basis for higher level protection.

4.2 Clans & Chiefs

Within both the L3 system and other systems based
on direct message transfer, e.g. BirliX, protection is
essentially a matter of message control. Using ac-
cess control lists (acl) this can be done at the server

How does one acquire the id of a new partner for commu-
nication? This is achieved using one or more name servers.
Usually the creating task implants the id of at least one name
server into a newly created task. Using these or the root id
the new task can coinmunicate with some name server to get
further task/thread ids.

level, but maintenance of large distributed acls be-
comes hard when access rights change rapidly. So
Kowalski and Hartig [Kow 901 have proposed that ob-
ject (passive entity) protection be complemented by
subject (active entity) restrictions. In this approach
the kernel is able to restrict the outgoing messages of
a task (the subject) by means of a list of permitted
receivers.

The clan concept [Lie 921, which is unique to L3, is
an algorithmic generalization of this idea:

A clan (denoted as an oval) is a set of tasks (de-
noted as a circle) headed by a chief task. Inside the
clan all messages are transferred freely and the kernel
guarantees message integrity. But whenever a message
tries to cross a clan’s borderline, regardless of whether
it is outgoing or incoming, it is redirected to the clan’s
chief. This chief may inspect the message (including
the sender and receiver ids as well as the contents) and
decide whether or not it should be passed to the d e s
tination to which it was addressed. As demonstrated
in the figure above, these rules apply to nested clans
as well. Obviously subject restrictions and local refer-
ence monitors can be implemented outside the kernel
by means of clans. Since chiefs are tasks a t user level,
the clan concept allows more sophisticated and user
definable checks as well as active control. Typical clan
structures are

Clan per machine: In this simple model there is
only one clan per machine covering all tasks. Lo-
cal conimunication is handled directly by the ker-
nel without incorporating a chief, whereas cross
machine communication involves the chief of the
sending and the receiving machine. Hence, the
clan concept is used for implementing remote ipc
by user level tasks.

Clan per sys tem version: Sometimes chiefs are
used for adapting different versions. The servers
of the old or new versions are encapsulated by a
clan so tha.t its chief can translate the messages.

Clan per user: Surrounding the tasks of each user
or user group by a clan is a typical method when

6

- .

building security systems. Then the chiefs are
used to control and enforce the requested security
policy.

Clan per task: In the extreme case there are single
tasks each controlled by a specific chief. For ex-
ample these one-task-clans are used for debugging
and supervising suspicious programs.

In the case of intra-clan communication (no chief
involved), the additional costs of the clan concept are
negligible (below 1% of minimal ipc time). Inter-clan
communication however multiplies the ipc operations
by the number of chiefs involved. This can be tol-
erated, since (i) L3 ipc is very fast (see above) and
(ii) crossing clan boundaries occurs seldom enough
in practice. Note that many security policies can be
implemented simply by checking the client id in the
server and do not need clans.

4.3 Dataspaces and pagers

Data objects can be mapped into address spaces
and then arbitrarily addressed, therefore they are
called dataspaces. They are managed by either the de-
fault or their individually associated external pagers.
The default pager implementing persistent data ob-
jects was one of the key components of Eumel and
L3 from the very beginning (1979), whereas Ivlach’s
external pager concept was integrated later as a gen-
eralization. External pagers are user level tasks. They
may use devices (different from the default swapping
device) for paging as well as virtual objects which are
managed by other pagers, i.e. pagers may be stacked.

Dataspaces can be created, deleted, mapped, un-
mapped, copied and sent as parts of messages to other
tasks. Copying and sending are done lazily. Since copy
on write is supported by the kernel’s memory manage-
ment and the default pager, even file copies are cheap.
Lazy copying and lazy sending use techniques similar
to shadow paging [Lor 771 but are totally symmetric.
When modifying the original of a file the correspond-
ing page must be physically copied (or mapped to a
new backing store block) in the same way as when
modifying the copy.

4.4 Fixed points

Since processes are as persistent as data ob-
jects, checkpoint/recover mechanisms covering both
are needed: the most important one in Eumel and L3
is the j i zed point , which is also denoted by the slang
word fizpoznt. A fixpoint is a checkpoint covering the

complete system (of one node). I t includes a consistent
copy of all tasks, threads, address spaces and dataspa
ces (i.e. all processes, files, databases, terminal screens
etc.) taken at the same point of time. Due to copy on
write techniques, this atomic action is short enough
not to disturb the users. Writing the dirty pages to
the backing store is done afterwards, concurrently to
normal user and system activity.

To implement the fixpoint, all dataspaces of all
tasks and all thread and task control blocks are in-
tegrated into the ‘dataspace of all dataspaces’ (dsds).
So lazy copying can be applied to the system as a
whole. Using a slightly modified ELAN notation, the
fixpoint algorithm is:

begin atomic

end a tomic ;
for i from 0 u p t o m a x frame number do

new fixpoint dsds := actual dsds

if frame[i].dirty A frame[i].belongs t o fixpoint
then write t o backing store (frame[i])

fi
od ;
begin atomic

delete old fixpoint
make new fixpoint valid on backing store

end a t o m i c .

The first atomic action, copying the dataspace of
all da,taspaces, requires a physical copy of the system
root pointer (32 bytes) and flushing of all page frames
which are mapped with write permission in this mo-
ment. On a 25 MHz Intel 386-based machine with 12
MB main memory this costs between 2 and 5 millisec-
onds. The following cleanup phase runs concurrent to
the normal user and system activities at a relatively
low priority. On average, one third of main memory
contains dirty frames; depending to a great degree on
the actual workload, between 7 and 150 seconds are
needed for complete write back. The final atomic ac-
tion writes one sector to the backing store, this takes
about 15 milliseconds.

Since all active and passive objects of one machine
(including the terminal screens) are frozen consistently
at the same time, fixpointing and recovery is transpar-
ent for most applications. Clients and servers on the
same machine are always in a consistent state.

However, this mechanism is not sufficient for a
distributed system, since a “worldwide” fixpoint is
not reasonable, especially not in a heterogenous dis-
tributed system. Therefore explicit (and sometimes
a.pplication specific) recovery policies are necessary

6

whenever relevant partners are not included in t,he
fixpoint. Since the p-kernel itself is not distributed,
these policies must be implemented on top of it. Usu-
ally, general policies are based on the clan-mechanism.

Fixpoints occur periodically or user initiated, but
their latency limits their frequency. A practical lower
bound is one fixpoint all 3 minutes. A common
method for implementing more fine-granular check-
points is to use an external pager which supports
checkpointing each dataspace separately. By this, a
remote file server can also save each modified file in-
dependently of the various fixpoints in the distributed
system. But note that even such servers consist of
persistent tasks and threads which are fixpointed by
the default pager.

A regular shutdown consists of enforcing a fixpoint
and stopping all other threads. There is no relevant
difference to an irregular breakdown. In both cases
restarting the system is done by activating the last
valid fixpoint.

4.5 Fixpointing the kernel

Recovering a task or restarting a thread needs not
only user level data (stacks, dataspaces) but also
thread state, priority, mapping information, saved
processor registers etc. All these kernel data is held in
thread and task control blocks which are virtual ob-
jects. They are located in a kernel dataspace being
subject to paging, and the ordina.ry fixpoint mecha-
nism checkpoints them like all other objects. Thus
the control blocks are as persistent as user data, and
recovery is simple as far as only values and virtual
(kernel and user) a.ddresses are involved.

For illustration let us assume that a message trans-
fer running between two persistent threads is int,er-
rupted by a page fault (or t8ime slice exhaustion or
external interrupt) and that this situation is frozen by
a fixpoint. When recovering the system from this fix-
point, inspection of the thread states (part of the per-
sistent thread control blocks) leads to restarting the
message transfer. Recall that the data and the con-
trol block addresses are virtual so t1~a.t changes of real
memory allocation are transparent to ipc. While fix-
point/restart is transparent to ipc between persistent
threads (even to timeout handling), communicat,ion
with a transient thread (e.g. a resident device driver)
is aborted on restart.

In fact, holding the control blocks as virtual objects
does not solve all problems related to thread restarts:
Although kernel stacks are part of the control blocks
and therefore persistent, and stack addresses are vir-
tual addresses, simply loading the stackpointer does

not. work, since the stacks may contain real addresses
which necessarily come up when handling page faults.
Furthermore, changing the kernel code would invali-
date return addresses.

Therefore the restart algorithm inspects the kernel
stack bottom of each thread and decides how to restart
it:

Waiting for ipc: The thread remains waiting. Its
state is not changed but the return addresses on
the kernel stack are updated, since the kernel code
may have changed.

Ruiiiiiiig ipc: The thread state is not changed, but
its kernel stack is reset to the outmost level and
its instruction pointer set to a special ipc restart
routine.

Otherwise: The thread state is set to ‘busy’ and
restarted at user level. (This is possible, since
all system calls behave atomically, i.e. have no
effect until completion.)

5 Applicatioiis

5.1 Programs and procedures

One consequence of task persistence is that there
is no real difference between running a program and
calling a. procedure within a. program. Conventionally,
running a program means:

al locate space ;
copy p r o g r a m code f r o m load f i le into m e m o r y ;
re locate code ;
cal l (s tar t address) .

The first three actions are not required in a persistent
task. If the compiler takes advantage of this feature
(as Eumel’s ELAN compiler does), it simply generates
executable code at the appropriate virtual addresses.
Then running a program is

cal l (s ta r t address) .

By means of this mechanism, and by using lazy copy-
ing for its table initialization, the ELAN compiler
achieves noteworthy speed, especially when translat-
ing small programs. For example, to translate and
execute ‘ p u t (“he l lo wor ld ”) ’ costs 48 ms total elapsed
time on a 25 RIHz 38G based machine, 10.6 ms on a 50
RlHz 48G. This speed permits the translation of each

7

.

job control and editor command as a separate single
program.

If programs with conflicting addresses should sub-
sequently run in the same address space, and the exe-
cutable code of each program is contained in a file, a
program is executed by:

if required region o f address space already used
then unmap corresponding dataspaces

f i ;
m a p file t o required region o f address space ;
call (start address) .

5.2 Dataspaces and persistence

Dataspaces can be mapped into an address space
and may contain data of all types, i.e. Atkinson’s type
completeness requirement [Atk 83) is fulfilled. Vari-
ables located in mapped dataspaces are accessed by
the same mechanism (by virtual address) and with
the same efficiency than normal program variables. In
fact, programs are contained in dataspaces as well.

Note that persistence here does not require
open/close operations. Due to task persist,ence a da-
taspace may remain mapped arbitrarily long. Dis-
tributed applications use external pagers and remote
procedure calls (RPC) for synchronization a.nd/or re-
mote object access.

5.3 Files, directories and protection

By default, directories and file server are imple-
mented as tasks. These use simple arrays to hold the
catalogue (file names and attributes) and dataspaces
as files:

initialize catalogue as empty :
do {forever}

wait for order ;
if from authorised partner A access permitted

then if is file access order AND file exists

else
fi

od .

then send or map dataspace
elif is create order A 7 file exists

then allocate catalogue entry;
create dataspace

e l i f . . .
fi
reject

Here ‘access permitted’ can be an arbitrary al-
gorithm usable to support various security policies,
e.g. ‘free access’, simple ‘password protection’, ‘time
bound access’, ‘authorized user only access’ etc. The
mechanism permits optional as well as mandatory ac-
cess control.

6 Experiences

6.1 Stabilities and instabilities

We strongly recommend that system developers use
their own system as a workbench (not only for testing)
as early as possible. Only if they take the risk of their
own software instabilities and inefficiencies, will the
system soon become stable and fast enough for end
users. In particular, relying on the system will lead to
a realistic balance between stability and optimization.

When we began to use Eumel as a workbench, we
were part,icularly afraid of collapsing processes. Re-
call that the shutdown of a task makes all of its data,
i.e. all of its local files, inaccessable. Of course, we
could have held all files in a file server task, so that
t,liey would not be seriously affected by a collapsing
worktask. However, although the probability of shut-
down i n a file server task may be lower than in a task
used for editing, compiling and testing new programs,
the file server itself is also a task, potentially suffering
from the same threats. In fact, the very first Eumel
versions we (and only we) used, led to disasters like:

- subscript overflows in directory handlers resulting
in broken chains and unusable directories,

- stack overflows within the stack overflow exception
handler resulting in absolutely dead tasks,

- crashes of the virtual machine when executing in-
structions under special circumstances.

However, most of these crashes turned out to be
soft, i.e. recoverable. We cured them by simply reset-
ting the system to the last fixpoint. On average the
previous 5 minutes were lost, but serious harm had
been avoided and we could correct our software.

The fixpoint mechanism made the system more ro-
bust, not only in its early stages but also when it
became widely used for production. The majority
of faults survived by means of fixpoints, thereafter]
were the originally intended hardware related ones,
e.g. power failure, controller ha.ngups etc. and spuri-
ous kernel faults.

a

. ~ -- . ._ . .. -

The most prominent use of the fixpoint fa-
cility occurred when we gave a demonstration
for the German Minister of Research and Tech-
nology. Shortly before the minister entered the
room, a cleaner hurried in to remove the last
speck of dust. Of course, her first action was to
unplug our power supply cable and plug in her
vacuum cleaner. I t provided a perfect demon-
stration of fault tolerance in a persistent system
by fixpoint.

Besides such positive effects of stability and robust-
ness through fixpointing, we also had bad experiences.
Unfortunately the fixpoint stabilises a corrupted sys-
tem in the same way. In practice, this only hap-
pened in conjunction with kernel level errors. The
overwhelming majority of severe kernel errors led to
an immediate crash or starvation and did not hurt
the fixpointed system, but some errors in the areas
of memory management, paging and concurrent block
garbage collection led to serious and permanent low
level defects. In most cases synchronization errors re-
sulted in a multiply used block on disk: usually one
instance stored a page block table in a disk block,
while a different one used the same block for a text
file.

In the first years of Eumel these errors soon be-
came very rare, but three unpleasant effects became
noticeable:

Severe kernel errors tended to be extreme rare
and only to occur at one or two installations (far
away, of course), and not correlated with specific
actions.

0 About one third of these problems turned out
to be spurious hardware malfunctions, which in
most cases were hard to detect and to prove.

0 Improving the kernel algorithms and incorporat-
ing new hardware (memory bank switching, spe-
cific CPU features etc.) was required by the users,
but often led to new periods of higher instability.

By way of illustration, here is one example incident:

There was a machine tool manufacturing
plant using L3, which had on average (but not
periodically) one system breakdown every two
weeks. The crashes often occurred early in the
morning, when nobody was working and there
were no special system activities. Analyzing the
crashes did not give usable hints to us. At that
time about 200 other L3 systems were in use,
and none of them suffered from kernel instabil-
ity. We inspected the special application soft-
ware running on the crit,ical system, but we did

not find anything extraordinary. For two months
we racked our brains performing “dry” analy-
sis of potentially critical situations. Indeed, we
found two errors which certainly had never oc-
curred, but not the critical one. Then the in-
stallation was upgraded from 8 MB t o 12 MB
main memory, and the problem immediately dis-
appeared.

But: When simplifying the kernel algorithms
in the following year, we discovered three er-
rors, each of them being very very improbable
but able t o explain the spurious crashes. Since
the machine tool manufacturer did not want t o
return to his potentially unstable hardware t o
allow further tests, we will never know for cer-
tain whether the crashes were induced by those
errors. Intuitively I would give the odds 6 : 1 :
3 for ‘fixed L3 bug’ : ‘as yet unknown L3 bug’ :
‘hardware malfunction’.

Concluding the good and bad experiences of 13
years as far as stability in a persistent system is con-
cerned:

A persistent system can be made very stable.
With Eumel and L3 we have reached a state
where crashes (recoverable and unrecoverable)
due to software are less frequent than those due
to hardware.

0 The overwhelming majority of crashes are recov-
erable.

0 Even when the system is as stable as possible, if
you wait long enough there will still suddenly be
someone suffering from a really damaged system.

6.2 Performance

Frequently, people believe that persistence is expen-
sive, especially when taken together with fault toler-
ance. Due to our experiences with Eumel and L3, we
are convinced that it is relatively cheap, if the system
is carefully and thoroughly designed, from hardware
up to application level.

Unfortunately we cannot prove that persistence is
inexpensive, since there is no nonpersistent Eumel or
L3, but we are able to give two arguments that support
our claim:

Apart from fixpointing, there is no feature that
is required purely in order to provide persistence.
Virtual address spaces and paging are common
features of timesharing systems.

There are commercial 16-usersystems running
L3 on a single 486 monoprocessor.

9

Fixpointing, however, is not for free. It costs a
certain amount of backing store, additional swap outs
for storing the fixpoint and some free main memory for
copy on write actions taking place immediately after
starting the fixpoint and before its frames are written
back to disk.

Experience has shown that for most applications
these additional costs become negligible when 30%
more main memory - reducing normal paging cir-
cumvents the disk traffic bottleneck during fixpoint
- and a disk reserve of 3 times main memory size are
available.

Although measurements of a few special and singu-
lar mechanisms are not adequate when seriously dis-
cussing a system's performance, some are presented
here simply to give the reader a rough feeling. A 50
MHz 486 noname PC with 16 MB main memory was
used for these measurements:

null cross address space RPC
(user c) user)
copying 300 files to another task
(including directory updates)
create dataspace; map it;
write one byte; delete dataspace
fixpoint covering 1000 dirty page
frames (no concurrent activity)
translate and execute
'put ("hello world")'

10 ps

2.8 "file

2.0 ms

6.8 ms/page

10.6 ms

6.3 How programmers adopt the ideas

We have used Eumel to teach word processing to
university secretaries who had no previous comput-
ing experience whatsoever. were completely unexperi-
enced concerning computers. We soon learned that we
must not talk about persistence: they took persistence
for granted. It was a natural concept for them (paper
is persistent), but our complicated explanations of per-
sistence irritated them. When giving the next course
to secretaries we therefore reduced our explanation of
persistence to: "For obscure technical reasons an un-
expected power failure will destroy the work you have
done in the preceding few minutes."

Pupils or students learning programming using
ELAN over Eumel/L3, a t first look at files as some-
thing which can be edited. They regard persistence as
a natural but secondary effect. Later on, they write
modules which are naturally based on the persistence
of variables, e.g.:

test var actual password := "" ; {static variable]

proc set password (text old, new) :

then actual password := new
if old = actual password

fi
end proc set password ;

boo1 proc password ok (t ex t pw) :

end proc password ok :
(pw = actual password)

Although this type of application is produced as
a matter of course, students start to think explicitly
about persistence when they first write programs for
long running computation. For a beginner, the persis-
tence of a 'really executing' activity seems to be less
natural than that of a 'waiting' activity.

Things are different when experienced software en-
gineers first use Eumel/L3. They know about long
running jobs from their experience of mainframes, but
they tend to hold as much data as possible in files.
They soon start to map files/dataspaces holding ar-
bitrary data structures, but only construct applica-
tions, based on a multitude of persistent tasks, after
they have gained considerable experience. Often they
structure their system on tasks to separate responsi-
bilties. For example, the lawyer supporting system
has about 10 tasks per user. Sometimes this leads
to one task per developer in the same way that three
compiler writers working together tend to construct a
three pass compiler.

An unintended way using persistence is practiced
by some experienced users: having deleted the wron
file (despite the system asked back), pressing (resetl
resets the system to the last fixpoint and the deleted
file reappears. Usually, colleagues who are using the
same machine concurrently prohibit them from doing
this.

7 Conclusions

Persistence as a basic and universal principle cover-
ing data and processes has proved to be a good founda-
tion for Eumel and L3. Our experiences of the last 13
years have shown that programmers like persistence,
and both system level and .application programming
become easier. We have learned that realizing persis-
tence at the p-kernel level permits the construction
of an efficient and flexible system with a reasonable
amount of work for design and implementation. How-

10

ever, a system relying heavily on persistence needs sig-
nificant effort to make it stable enough for real use.

Acknowledgements

The development of Eumel and L3 would have been
impassible without the contributions and program-
ming efforts of Uwe Beyer, Dietmar Heinrichs and
Peter Heyderhoff. I would also like to thank Peter
Dickman for proofreading this paper and helpful com-
ments. This paper was written using UTEX on L3.

References

[Acc 861

[Alb 801

[Atk 821

[Atk 831

[Atk 871

[Ben 721

[~ e y 891

[Cah 931

[Che 791

[Che 841

[EUM 791

[EUM 79a]

M. Accetta, R. Baron, W. Bolosky, D. Golub, R.
Rashid, A. Tevanian, M. Young. Mach: A New
Kernel Foundation for UNIX Development. Pro-
ceedings Usenix Su"er'86 Conference. Atlanta,
Georgia, June 1986, pp. 93-113.

A. Albano, M. E. Occuchiuto, R. Orsini. A uniform
management of temporary and persistent complez
data in high level languages. Nota Scientifica, S-
80-15, September 1980.

M. P. Atkinson, K. J. Chisholm, W. P. Cockshott.
PS-Algol: A n Algol with a Persistent heap. Sigplan
Notices 17(7), July 1982, pp. 24-31.

M. P. Atkinson, P. J. Bailey, I(. J. Chisholm,
W. P. Cockshott, R. Morrison. A n Approach to
Persistent Programming. Computer Journal 26(4),
November 1983, pp. 360-365.

M. P. Atkinson, 0. P. Buneman. Types and Persis-
tence in Database Programming Languages. Com-
puting Surveys 19(2), June 1987, pp. 105-190.

A. Bensoussan, C.T. Klingen, R.C. Daley. The
Multica Virtual Memory: Concept and Design.
CACM,15, 5, May 1972, pp. 308-318.

U. Beyer, D. Heinrichs, J. Liedtke. Dataspaces in
L3. Proceedings MIMI '88, Barcelona, July 1988.

V. Cahill, R. Balter, N. Harris and Rousset de
Pina (Eds.). The Comandos Distributed Applica-
tion Platform. Springer-Verlag 1993 (to appear)

D. Cheriton, D. A. Malcolm, L. S. Melen, G.
R. Sager. Thoth, a Portable Real-Time Operating
System. CACM 22(2), February 1979, pp. 105-115.

D. Cheriton. The V Kernel: A Sojtware Base for
Distributed Systems. IEEE Software, pp. 19-42,
April 1984.

E UMEL Benutzerhand buch (German). University
of Bielefeld 1979.
EUMEL User Manual (English). GMD 1985.

EUMEL Referenzhandbuch (German). University
of Bielefeld 1979.
EUMEL Reference Manual (English). GMD 1985.

[Gui 821

[Hiir 921

[Har 851

[Hi1 921

[Hom 791

[Kow 901

[Lie 911

[Lie 921

[Lie 92a]

[Lie 931

[Lor 771

[Mu1 841

[Ras 811

[Ros 871

M. Guillemont. The Chorus Distributed Operating
System: Design and Implementation. Proceedings
ACM International Symposium on Local Com-
puter Networks, Firenze, April 1982.

H. Hiirtig, W.E. Kiihnhauser, W. Reck. Operating
Systems on Top of Persistent Object Systems -The
BirliX Approach -. Proceedings 25th Hawaii In-
ternational Conference on Systems Sciences, IEEE
Press 1992, Vol 1, pp. 790-799.

N. Hardy. The Keykos Architecture. Operating
Syst.ems Review, September 1985.

D. Hildebrand. A n Architectural Overview o f
QNX. Proceeedings Micro-kemel and Other Ker-
nel Architectures Usenix Workshop, Seattle, April
1992, pp. 113-126.

G. Hommel, J. Jackel, S. Jahnichen, K. Kleine,
C.H.A. Koster. ELAN Sprachbeschreibung. Wies-
baden 1979.

0. Kowalski, H. Hbtig. Protection in the Bir-
liX Operating System. Proceedings 10th Interna-
tional Conference on Distributed Computing Sys-
tems, 1990.

J. Liedtke, U. Bartling, U. Beyer, D. Heinrichs, R.
Ruland, G. Szalay. Two Years of Ezperience with
a @-Kernel Based OS. Operating Systems Review,
2,1991.

J. Liedtke. Clans €4 Chiefs. Proceedings 12.
GI/ITG-Fachtagung Architektur von Rechensyste-
men, Kiel 1992, A. Jammel (Ed.), Springer-Verlag

J.Liedtke. Fast Thread Management and Com-
munication Without Continuations. Proceeeding
Micro-kernel and Other Kernel Architectures
Usenix Workshop, Seattle 1992.

J.Liedtke. Improving IPC b y Kernel Design. Pro-
ceedings 14th ACM Symposium on Operating
Principles, Asheville, North Carolina, December
1993.

R.A. Lorie. Physical Integrity i n a Large Seg-
mented Database. ACM Transactions on Database
Systems, 2, 1, March 1977, pp. 91-104.

S.J. Mullender et al. The Amoeba Distributed Op-
erating System: Selected Papers 1984-1987. CWI
Tract. No. 41, Amsterdam 1987.

R. Rashid, G. Robertson. Accenf: A Communica-
tion Oriented Network Operating System Kernel.
Proceedings 8th Symposium on Operating System
Principles, December 1981.

J.L Rosenberg and J.L. Keedy. Object Manage-
ment and Addressing in the MONADS Architec-
ture. Proceedings 2nd International Workshop on
Persistent Object Systems, Appin 1987, available
as PRRR-44, Universities of Glasgow and St. An-
drews.

11

