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3AbstractThis paper describes a Memory Management Unit (MMU) which can beused for implementing huge �ne-grained address spaces. Granularities downto 16-byte pages seem to be possible. Furthermore, a mechanism is describedwhichs permits fast and secure mapping operations on user level.
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7Chapter 1A high resolution MMUNote: this chapter corresponds to patent application \Verfahren und Vorrichtungzum Umsetzen einer virtuellen Adresse in eine reale Adresse", Deutsches Paten-tamt P 43 15 567.7 (�ling date May 10, 1993).The invention relates to a procedure and equipment for transforming avirtual address into a real address. An application of the invention is thememory management unit (hardware), also called MMU transforming a.o.the address in the virtual memory into an address of the physical or realmemory.Modern operating system developments (e.g. Mach, L3), the ideas ofobject orientation (many small objects) and especially the emergence of pro-cessors with large address spaces (64-bit addresses) have indicated importantshortcomings of the MMUs available so far. These shortcomings are in par-ticular� too coarse and uniform granularity;� immense costs for sparsely occupied address spaces (264-byte spaceswill always be occupied sparsely!);� insu�cient support of hierarchical structures.Brief description of the high resolution MMU (working title):



8 CHAPTER 1. A HIGH RESOLUTION MMU� 64-bit-wide virtual addresses (the methods can be used in the sameway for 128-bit or even wider addresses);� various page sizes starting with 8 bytes (8, 16, 32: : : , 1K, 2K, 4K: : : ),combinable in the address space;� for any occupancy of the address space, a maximum of 16 to 32 bytesof management information per allocated page (depending on the sizeof the virtual and the real address space).1.1 Conventional MMUsMMUs (MemoryManagement Units) are the hardware basis for virtual mem-ories, address spaces, paging and protection mechanisms. Consequently, theyare important to all applications which process large data sets (in particularin distributed systems or supercomputers) and/or require security character-istics on objects of complex structure.Conventional MMUs typically divide virtual address spaces into pages of4 KB or 8 KB. Mapping virtual addresses onto real ones is done either bymeans of multilevel page tables or an inverted page table. Usually, addresstransformation is accelerated by a TLB (Translation Lookaside Bu�er) or avirtual cache.Both usual multilevel page tables and inverted page tables are suitable toa restricted extent only or they are even not suitable at all for the realizationof really small (16 bytes) and/or huge sparsely occupied address spaces (264bytes or larger). Multilevel page tables need too much space (thousand timesthe user data seems to be quite realistic), inverted page tables disable allhierarchical operations (sharing, mapping, copy on write: : : ) and require verycomplicated and varying hash functions in the situation described above.1.1.1 Conventional Page TablesIn the case of conventional page tables, a virtual address is transformed inseveral steps. In this case, each level works with a page table whose entriesrefer either to page tables of the next level or (for the last level) to datapages. In this case, page tables and data pages are usually of �xed sizes 2i.We now consider a transformation step of a virtual (binary) address v foran action1 x by means of a page table with the address p. For this purpose,1For many computers, actions consist of the read/write or execute operation and theuser/kernel mode of operation. The access attributes which permit certain actions (in theextreme case, all actions or none) are constructed correspondingly. The set and semantics



1.1. CONVENTIONAL MMUS 9v is split into a higher part u (consisting of a speci�c number of higher bits)and a lower part v0 (consisting of the lower bits). Using u, we then selectan entry of the page table which includes an access attribute1a and a newaddress p0. p��x
?

v: u v0��a������- p0 �? ?If the access attribute prohibits the action (x � a), transformation isaborted and page fault is signaled.If the action is valid (x � a), x, p0 and v0 are passed to the next leveltransformation as input parameters. It is to be noted that v0 is shorter thanv by the bit width of u. As soon as the last level is achieved, p0 points to thebeginning of the data page and v0 is the o�set within the page. A two-leveltransformation produces the following picture:of concrete actions and access attributes and the method of checking action against at-tribute is irrelevant from the present viewpoint. The crucial point is that a circuit decidesonly on account of action x and access attribute a whether to allow or to abort the action.



10 CHAPTER 1. A HIGH RESOLUTION MMUp��x v: u v0��a�i�- p0 �? ?p0�� v0: u0 v00��a�i��- p00 �?datapage ��If 64 bit virtual addresses are to be transformed in this way and if theminimum page size is to be 16 bytes, this can be achieved, for example, bymeans of a ten-level transformation (4 KB per page table). However, sparselyoccupied address spaces thus require intolerable management costs. 1024 16-byte pages can be allocated in such a way that 36 KB of management dataare necessary per 16 data bytes which are 0.04% user data! By using a 60-level transformation (8 bytes per page table) management costs decrease tothe minimum, namely 400 bytes, which are however still only 4% user data.In addition, a 60-level transformation process would be too time-consuming.If we consider smaller address spaces with 32 bit addresses, for example,the corresponding values are getting better, but they are still intolerable. A14-level transformation (16 bytes per page table) would thus produce 11%user data.1.1.2 Conventional Inverted Page TablesInverted page tables consist of one entry per page frame of the real memorywhich contains the virtual address of the allocated page of the virtual addressspace. Access is performed with the aid of a hash function:



1.1. CONVENTIONAL MMUS 11x? v: u w
??���� �
hash�� p� -a������ v0 -����v0 = u?pr: p wUpon transforming the virtual address v into the real address r, the lowerpart w is adopted directly. The higher part u is mapped to a value p by meansof the hash function. This value identi�es the presumable page frame in thereal memory and is used for indexing the inverted page table. If the corre-sponding entry contains the correct virtual address u, it is a hit. Otherwise(not shown in the diagram) further page frames have to be examined bymeans of rehashing or linking until getting a hit or a page fault.Since, for inverted page tables, management information depends onlyon the size of the real memory (and the page size), but not on the size andnumber of virtual address spaces, space problems do not occur.Nevertheless, three striking disadvantages make the method useless for�ne grained huge address space:1. All pages must be of equal size2, i.e. they must be of minimum pagesize. A mixture of small pages (16: : : 256 bytes) and medium pages(2: : : 16 KB) would however be more favourable almost in any case.2. In the case of small pages, large real memories and huge address spaces,the used hash function must be extremely good to guarantee a suf-�ciently high hit rate. Procedures which change the hash functiondynamically such as universal hashing are likely to be necessary. Hard-ware and software overhead would be immense.2We could admit several page sizes by using a speci�c hash function and inverted pagetable for each size. Without a �xed division of the address space, however, several sizes(in the extreme case all sizes) would have to be tested sequentially upon each addresstransformation as a rule. On account of the table size, a parallel implementation seems tobe hardly possible.



12 CHAPTER 1. A HIGH RESOLUTION MMU3. Sharing pages or entire address space regions is not possible. Thehierarchical operations (lazy copying, copy on write, mapping, locking)required by modern operating systems are not feasible with acceptablee�ciency.1.1.3 Conventional TLBsFor cost reasons, the page table tree cannot be parsed upon each memoryaccess by a program. This overhead is avoided with the aid of a speci�c cachefor address transformation, a Translation Lookaside Bu�er (TLB). Generally,more than 90% of all address transformations are done by TLB hits at nocost. Only in the case of a TLB miss, the page tables are parsed.Conventional TLBs typically hold 32 to 128 entries each of which describ-ing the address transformation of a page. Some of them are fully associative,but often they are only 4-way-associative.Virtually addressed caches are sometimes used instead of or in additionto these TLBs.1.2 TaskConstruct an MMU which allows the realization of huge, sparsely occupiedaddress spaces (264 bytes or more) of an as �ne as possible granularity withacceptable memory and time cost. The advantages of the tree-like page tables(sharing of subtrees, support of hierarchical operations) described in 1.1.1are to be maintained.Granularity should not be uniform, i.e. the page size should potentiallyvary in the address space from position to position. The pages are alwaysaligned, i.e. v mod 2i = 0 always holds for the virtual starting address v ofa page of size 2i.A ratio of user data to management information (page tables) of 1:1 isconsidered to be still acceptable for the extreme case (only pages of minimumsize which are distributed randomly). The ratio should improve drasticallywith increasing page size. The time cost of conventional MMUs is regardedas acceptable for the new MMU.1.3 Guarded Page Tables1.3.1 Simple Guarded Page TablesThe central idea of guarded page tables is the supplementation of each pagetable entry by a bit string g of variable length which is referred to as guard.



1.3. GUARDED PAGE TABLES 13p��x
?

v: u w v0��a������- p0 g ?- ����g = wp0��? ?First a page table entry is selected by the highest part u of the virtualaddress upon each transformation step in the same way as with the conven-tional method, and the action x is examined against the access attribute a.However, the selected entry contains not only access attribute and pointerbut also the guard g. By means of the current length of g, the remainingvirtual address is split into a higher part w (of equal length as g) and a lowerpart v0. Then we check whether g = w holds. In the case of inequality,the transformation is aborted with page fault, in the case of equality, it iscontinued with x, p0 and v0 in the next level and/or p0+ v is delivered by thelast level as a real address.It is to be noted that the length of the guards may di�er from entry toentry. Their current length is therefore contained in the page table entryand is coded as a length �eld or in another suitable way. For guards oflength 0 (g = ;), the procedure works just as the conventional one. But inall cases where conventional page tables with exactly one occupied entry arerequired, a guard can be used instead. A guard can even replace a sequenceof such \one-element" page tables. This saves both memory capacity andtransformation steps, i.e. guards act as a short cut.As an example, we present the transformation of a 20-bit address whichuses 3 binary page tables (2 entries per table):



14 CHAPTER 1. A HIGH RESOLUTION MMUv = 0 � 1100100101100101100 0 1@@R���	g = 1100100101v0 = 1 � 00101100 0 1��	 @@@Rg = 00101v00 = 1 � 00 0 1��	 @@@Rg = 00 data pageEach page table entry contains not only the pointer to the next leveltable (in the part denoted by p), but in addition a size speci�cation s forthis object. In the case of page tables, s refers to the number of entries; allpowers of 2, i.e. 1,2,4,8,: : : , are admissible. The length of u is obtained fromthe current page table size.As shown in [3], on account of the thus enabled 
exible tree structure,page table trees can be constructed by means of guards in such a waythat a maximum of 2 page table entries is required per data page, inde-pendently of address space size and page size!Together with the data pages varying in size, more than 50% user datashould be thus attainable in almost all cases3As also shown in [3], address transformation trees can be constructedsuch that a maximum of n=2 levels is necessary for an n-bit addresstransformation without exceeding the above storage requirements.Consequently, a maximum of 30 levels is necessary for 64-bit addresses,for 32-bit addresses a maximum of 14 levels, to obtain 16-byte pages.3With 8 bytes per page table entry, guards of a maximum length of 30 bits can beused. A maximum of 16 bytes of management information per page are thus necessary for32-bit addresses. 64-bit addresses might need longer guards in some cases, then they arerealized by an additional entry of 8 bytes. In the worst case (never more than one pageper 231 bytes and only 16-byte pages), 40% of the data will be user data.



1.3. GUARDED PAGE TABLES 151.3.2 k-associative Guarded Page TablesIn the case of k-associative guarded page tables, not one page table entry isselected in each step, but k entries.4 The page table entry does not consistanymore of s simple entries, but of s=k clusters which consist of k simpleentries each. u is correspondingly shorter and selects a cluster.5 With k = 4,we obtain, for example: p��x
?

v: u w0 v00��g0p00a0 g1p01a1 g2p02a2 g3p03a3 ?----'&$%gi=wip0i��? ai �������- �v0i �?Here, the 4 selected entries are read in parallel and analyzed (in parallel).It is to be noted that the guards gi usually di�er with regard to their lengths,i.e. for the various comparisons, the bit string reduced by u is divided intodi�erent pairs wi; v0i.If no hit occurs (all gi 6= wi), transformation is aborted with page fault.In the case of exactly one hit gi = wi, the access attribute ai is checkedagainst the action x, and, if it is true, x, pi and v0i are passed to the nextlevel and/or returned as a real address. In the case of several hits, the resultis not de�ned.As shown in [3], 8-associative guarded page tables enable an n-bit ad-dress transformation within a maximum of n=4 steps with a maximumof 2 (simple) entries per data page.Consequently, for 64-bit addresses, a maximum of 15 levels is required,for 32-bit addresses 7 levels, to obtain 16 byte pages.4For the highest possible speed, we therefore need k parallel units and parallel datapaths for k page table entries.5If k > s holds for a page table, k is reduced for this transformation step, i.e. we workonly in an s-associative way.



16 CHAPTER 1. A HIGH RESOLUTION MMU1.3.3 k=j-associative Guarded Page Tablesk=j-associative guarded page tables show the same semantics as k- associativeones. However, they require only k=j-fold parallelism for realization.6 (Inthis case, k should be evenly divisible by j. In addition, these two should bepowers of 2.)The clusters comprising k entries are divided into j subclusters (which arecontiguous and of equal size).7 To maintain the semantics of k-associativity,the transformation operation is performed sequentially (k=j-parallel) on dif-ferent subclusters until a hit occurs or until all j subclusters are processed.If no hit is found, address transformation is aborted with page fault, in thecase of a hit, the procedure is continued as described in 1.3.2.Obviously, this method is only e�cient if possible hits are often foundat the very �rst attempt. To obtain a hint, after removing u, the highestlog2(k) bits of the remaining virtual address are taken as a hint. (However,the hint bits are also used further for building wi.)In the case of simple k=j-associative guarded page tables, we begin withthe subcluster addressed by h=j. The further sequence can be determinedby incrementing h=j modulo j.8p�� v: u w0 v00�� |{z}h��Cluster�rst subcl.6For highest possible speed, we therefore only need k=j parallel units and parallel datapaths for k=j entries.7If k > s holds for a page table, k is reduced to s for this transformation step. Ifs � k=j, work is s-associative, otherwise it is s=j0- associative. j0 is selected such that thelength of the subclusters remains unchanged, i.e. k=j = s=j0. This will make no problemsif s,k and j are powers of 2.8Other sequences are equally possible, e.g. from 0 to j � 1 with omission of h=j. Theyhave nearly no in
uence on e�ciency.



1.4. TLBS FOR GUARDED PAGE TABLES 17In the case of k=j-associative guarded page tables with hint, each p (inpage table entries, in the root and in the TLB's) is expanded by a �eld Hwith k hint elements. (This is relatively small with k log2(j) bits.) Onebegins with the subcluster addressed by p:H[h] = h0 in each step.p�� H v: u w0 v00�� z}|{h��?h0��Cluster�rst subcl.If a hit is not achieved in the subcluster addressed by h0 but in anothersubcluster of number h00, the hint element is reloaded: p:H[h] := h00. Conse-quently, hints adjust automatically.As shown in [3], 8=2-associative guarded page tables with hints allowan n-bit address transformation within a maximum of n=4 steps for amaximum of 218 entries per data page. In general, they need the sametime for this as 8-associative guarded page tables do, but they requireonly 4 parallel units instead of 8 and correspondingly narrower datapaths.1.4 TLBs for Guarded Page TablesTo achieve a su�ciently fast address transformation, guarded page tabletranslators have also to be supported by TLBs. The speci�c problems are asfollows:� di�erent page sizes;� larger working sets (more pages because of smaller granularity);



18 CHAPTER 1. A HIGH RESOLUTION MMU� deeper trees with huge address spaces (depth 15 for 60 bit addresstransformation), i.e. higher cost for TLB miss.A multilevel TLB is used for solution: root??...??...?data page
v?�� ��TLB0hit
� -

-miss �� ��TLB1hit� --miss
TLB0 is a more or less conventional TLB on page basis or a virtual-addressable cache; a hit delivers the corresponding real address directly.TLB1 operates on larger regions (e.g. 16 MB) so that entering into thepage table tree transversally is possible upon a near miss (TLB0 miss andTLB1 hit), and only a small part of the tree has to be parsed.If required, this method can be extended in a natural way by furtherTLBi levels.1.4.1 TLB0The pages varying in size are an essential problem of TLB0. Wellknownsolutions are as follows:� full-associative TLB (such as for MIPS R4000);� high circuit cost;� virtual-addressed cache;+ faster than a real-addressed cache� di�culties with synonyms� consistency problems with multiprocessors



1.4. TLBS FOR GUARDED PAGE TABLES 19A further solution is a virtual- and real-addressable cache. It combinesthe advantages of a virtual-addressed cache (TLB for small pages, for manypages of varying size) with those of a real-addressed cache (synonyms arepossible, suitable for multiprocessor systems).virt. addr. �a real addr. link real addr. data��-� - ������=v �
 �	map -�- ������=x
� - �������Here, �eld �a contains the resulting access attribute which is obtainedfrom the combination of the access attributes of the individual levels duringaddress transformation.1.4.2 TLB1 (a)Just as for TLB0, several solutions are possible for TLB1 (and for higherlevels).A speci�c cache (direct mapped or n-fold associative) can be used for theindividual regions:



20 CHAPTER 1. A HIGH RESOLUTION MMUvvirtualregion �a PT entryaddress bitdepth�
 �	map - region�
� - ������= � - ?�� ��strip o�highest bits?v0?p0

x
? -����� ��It is addressed with the region (e.g. v�224) and delivers the next possibleentrance to the page table tree in the case of a hit. This is the address of thecorresponding page table entry and its depth, i.e. the number of leading bitsof the virtual address which have already been decoded up to this entry9 andwhich therefore have to be removed from the virtual address v upon enteringinto the address transformation tree transversally. �a contains the accessattributes obtained by combining the page table access attributes during theaddress transformation up to the region.In the case of TLB1 hit and admissible action (x � a), the address trans-formation is performed step by step according to the methods describedin 1.3.1, 1.3.2 or 1.3.3. We begin with v0 as a virtual address and p0 as anaddress of a page table with only one entry (since TLB1 does not deliver thepage table but supplies the corresponding page table entry).In the case of TLB1 miss, a complete address transformation is performedas described in 1.3.1, 1.3.2 or 1.3.3. The best possible entrance to the regionfound in this way is then included in the TLB1 cache.1.4.3 TLB1 (b)When using a su�ciently large TLB0 respectively a virtual-addressable datacache, we can do without a speci�c cache for TLB1. We can use instead a9It is to be noted that the entry has not necessarily to be located on the \region depth",but it can also be positioned on a higher level due to the guards.



1.5. EXAMPLES OF HARDWARE IMPLEMENTATIONS 21two- (or more) level hierarchy of address transformation trees in accordancewith 1.3.1, 1.3.2 or 1.3.3. root���������� HHHHHHHHHHregion roots��� @@@ ��� @@@ ��� @@@If linearized, the address space is as follows, for example:root����� AAAAAregion roots������ HHHHA speci�c tree is used for each region. The roots of these trees are ac-cessible via a speci�c area in the virtual address space (`region roots'). Inthe case of a TLB0 miss, it is now attempted to address the correspondingregional tree via its virtual address in the area `region roots'.If we succeed by means of TLB0 hit for the corresponding virtual regionroot address, we get a TLB1 hit. Subsequently, we need only parse the (notvery deep) regional tree. Otherwise, a complete address transformation ofthe virtual region root address is executed beginning with `root', and theregional tree is parsed subsequently.This method requires less hardware, but, in the extreme case (only onepage per region), it may require one additional page table entry per accessiblepage101.5 Examples of hardware implementationsIn the following, the translator always works according to one of the proce-dures described in 1.3.1, 1.3.2 or 1.3.3.10If the smallest page is larger than a page table entry, the additional storage require-ments may increase because of the fragmentation of the `region root' area.



22 CHAPTER 1. A HIGH RESOLUTION MMU� -== data � -== data -addresses==-==x; v -- -== addresses� -== page tabledata6=TLB0data 6?=TLB1data
�����@@�6action!TLB0trans-latorTLB1� page fault

?miss6miss cache

TLB0 and TLB1 are available here as independent hardware. Instead ofthe cache, a normal memory could of course be connected also directly.If a virtual-addressable cache is used, it can adopt the functionality ofthe TLB0:



1.5. EXAMPLES OF HARDWARE IMPLEMENTATIONS 23� -== data � -== data -==x; v -- -== addresses� -== page tabledata6?=TLB1data
�����@@�6action!
trans-latorTLB1� page fault

TLB0-miss?6miss
virtualadresscachewithTLB0function

The block diagram becomes even simpler if the TLB1 is implemented bythe translator with the aid of Cache+TLB0 as described in 1.4.3:



24 CHAPTER 1. A HIGH RESOLUTION MMU� -== data � -== data -==x; v - -== addresses� -== page tabledata
�����@@�6action!
trans-lator� page fault TLB0-miss? virtualadresscachewithTLB0functionusedalsoas TLB1



25Chapter 2User Level Mapping byHardwareNote: this chapter corresponds to patent application \Verfahren und Vorrich-tung zum Umsetzen einer virtuellen Adresse in eine reale Adresse (Kennwort:Adressenumsetzung II)", Deutsches Patentamt P 43 19 842.2 (�ling date May27, 1993).The invention relates to a procedure and equipment for transforming avirtual address into a real address. An application of the invention is thememory management unit (hardware), also called MMU transforming a.o.the address in the virtual memory into an address of the physical or realmemory.The invention described in the following is correlated with patent appli-cation P 43 15 567.7 (�ling date May 10, 1993).Fine grained mapping enables an access control on the level of logicalstorage objects, e.g. program variables. In this way, it can be used reasonablyboth in the area of classical imperative programming languages and in object-oriented and declarative languages, in particular for distributed or massivelyparallel systems. Typical applications are as follows:� AliasingMapping a virtual storage object onto another virtual storage object.



26 CHAPTER 2. USER LEVEL MAPPING BY HARDWAREThis is used, for example, for object synthesis, but also for constructingalternative views or simply for parameter passing.� Call On ReferenceCalling a user-de�ned procedure upon access. This is to associate spe-ci�c access semantics to address space regions, for example, `delay uponread access' (variable value has not yet been computed), `signal uponwrite access', `remote object invocation', `access by proxies' or simply`access protocol'.Combining the two methods allows an e�cient realization of distributedmemories since access to potentially remote objects is feasible by means oflocal object invocation. Memory accesses are performed directly in the localcase and algorithmically in the remote case. Distinction is by hardware.On the functional level, the operating system (�-kernel) can realize allthis by means of software. Since, however, mapping is likely to be modi�edvery frequently with the mentioned methods, it is desirable to have a facilityfor modifying mapping directly within the user level program without usingthe operating system. This option should not a�ect the security paradigmof the operating system.2.1 Conventional and Guarded Page TablesThe extension of MMU presented in 2.2.3 and the instruction set requirethe use of tree-oriented methods for transforming virtual addresses into realaddresses. It is applicable to MMUs with conventional or guarded pagetables, but it is inapplicable to inverted page tables.Guarded page tables are an extension of conventional page tables andallow very small granularity in huge address spaces. Therefore, the combi-nation of user level mapping and guarded page tables seems to be of specialinterest. On the other hand, user level mapping does nowhere require guards,i.e. it is equally applicable to conventional page tables. For this reason, \sim-ple" conventional page tables are always used for describing the method inthe following.



2.1. CONVENTIONAL AND GUARDED PAGE TABLES 27@@R���	��	 @@@R��	 @@@R data pageVirtual addresses are transformed step by step into real addresses bymeans of a page table tree. Let us consider an individual transformationstep of a virtual (binary) address v for an action1 x by means of a page tablewith the address p. For this purpose, v is split into a high part u (consistingof a speci�c number of high bits) and a low value part v0 (consisting of lowbits). Using u, we select an entry of the page table including an accessattribute 1a and a new address p0.p��x
?

v: u v0��a������- p0 �? ?If the access attribute prohibits the action (x � a), transformation isaborted and page fault is signaled.1For many computers, actions consist of the read/write or execute operation and themode of operation user/kernel. The access attributes admitting speci�c actions (in theextreme case all actions or none) are constructed adequately. The set and semantics ofactual actions and access attributes and the method of examining action against attributeis irrelevant from the present viewpoint. The crucial point is that a circuit decides onlyon account of action x and access attribute a whether to enable or to abort an action.



28 CHAPTER 2. USER LEVEL MAPPING BY HARDWAREIf the action is admissible (x � a), x, p0 and v0 are passed as inputparameters to the next level transformation. If the last level is reached, p0points to the beginning of the data page and v0 is the o�set within the page.For security reasons, modi�cations of the page table tree and thereforemodi�cations of mapping can by convention be done only by the operatingsystem (or the �-kernel). If compared with address transformation, they aretherefore time-consuming.2.2 User Level MappingAs already mentioned above, user level mapping is of special interest to anMMU admitting �ne grained address spaces like presented in chapter 1. Themethod presented here can also be integrated into other MMUs showing �neor coarse grained mapping if they are based on the transformation of a virtualaddress into a real address by means of a page table tree.Page Table entries consist conventionally of an access attribute a whichde�nes the applicable actions on the address space region and a pointer �which is the real address p of the next page table level or the data page inthe case of normal address transformation.In addition, each page table entry has a type � which determines a.o.the interpretation of the pointer �. The conventional entries are of type� = translate. For user level mapping, new types and special instructions areintroduced for providing a secure modi�cation of mapping.2.2.1 � = aliasFor the alias type, the pointer � is interpreted as a virtual alias address _v. Ifaddress transformation meets an alias entry2 on any level, _v is added to theremaining address v0 not decoded so far.2whose access attribute a allows the access action x



2.2. USER LEVEL MAPPING 29p��x? v: u v0��a������- � alias _v �? ?_v + v0
Address transformation is restarted with the resulting _v + v0 which is avirtual address of full length. Consequently, the entire virtual region coveredby the alias entry is mapped virtually to another virtual region:@@@R���	 � ���?��	 @@@R��	 @@@R data pageThis is to be distinguished from conventional real aliasing where severalreal pointers meet on a page table or data page:



30 CHAPTER 2. USER LEVEL MAPPING BY HARDWARE@@@R���	 ���	��	 @@@R��	 @@@R data pageUnlike real aliasing, virtual aliasing is independent of real memory map-ping. In this way, it enables modi�cations of mapping by means of user levelsoftware� independently of current real memory allocation and paging;� without being able to violate the protection boundaries of the own orforeign address spaces;� without being able to weaken the access attributes pre-set by the op-erating system on pages or larger address space regions.2.2.2 � = call on referenceFor the type call on reference, the pointer � is interpreted as a virtual address�v of a procedure. If address transformation encounters a call on referenceentry3, the accessing operation is aborted and the speci�ed procedure iscalled instead. It gets the current instruction counter (ic) and the initiatingvirtual address vorig as input parameters. Just as with a page fault, theinitiating instruction can be restarted.3whose access attribute a allows the access action x



2.2. USER LEVEL MAPPING 31p��x? v: u v0��a������- � call on reference�v �?push (ic)push (vorig)ic := �vCall on reference mapping assigns algorithms to address space regions.These can skip the initiating instruction, they can emulate or handle it ina similar way as with page fault, i.e. to remap the address space region inquestion by alias and to restart the instruction. Sometimes, skipping andemulation of individual instructions can be accelerated by special processorinstructions (see 2.2.4).Processors with strict load/store architecture allow to improve emula-tion by additional parameters (besides ic and vorig) passed to the associatedprocedure:4� upon write access1. `write access' code2. operand size (byte, word,: : : )3. operand value� upon read access1. `read access' code2. operand size (byte, word,: : : )3. number (address) of the destination registerApplying the same idea to processors with more complex instructionsleads to slightly di�erent additional parameters:41. operation (mov, add, inc,: : : )2. operand size (byte, word,: : : )4idea: Martin F. Gergeleit, GMD



32 CHAPTER 2. USER LEVEL MAPPING BY HARDWARE3. source register/memory address4. destination register/memory address.2.2.3 The map InstructionThe instruction set of the processor is extended by the non-privileged in-struction map. This enables user level software to modify alias and call onreference entries directly.A page table entry is denoted unambiguously by the virtual address regionit covers precisely in the primary5 address transformation.6 The addressedentry is speci�ed accordingly by the virtual base address b and size s of thecorresponding address space region. The instructionmap ((b; s); (�; �))loads the addressed page table entry with � and � provided that � is alias orcall on reference7 and that the target entry� exists8 and� is accessible from the current mode (user/kernel)9 and� it is already of the alias or call on reference type10.Otherwise, map will lead to page fault. By this, user level software canmodify corresponding entries, i.e. switch between alias and call on referenceand/or change the alias or the associated procedure address. However, thisinstruction cannot be used either for creating new entries or for modifyingavailable virtual-real mappings or for weakening access attributes.Creating and deleting corresponding entries together with the necessarymodi�cation of the page table tree should be realized by system calls in theoperating system kernel.Alias and call on reference entries can be realized by the operating systemas long-living objects, since swapped-out entries lead to page fault both uponnormal access to the address space region and upon map access to the entry.5By primary address transformation, we here understand the translation process whichtransforms the original virtual address until a page fault is diagnosed, until an alias entry,a call on reference entry or an entry referring to a data page is found.6The reverse does not hold since an entry can be responsible for several virtual addressspace regions on account of real sharing.7Consequently, virtual-real mappings cannot be de�ned.8Consequently, entries cannot be created secretly.9Consequently, the operating system can protect itself.10Overlaying a translate entry in the user part of the address space by alias or call onreference is not security-relevant, but it would lead to dead subtrees without the operatingsystem noticing it.



2.2. USER LEVEL MAPPING 332.2.4 Supplementary InstructionsFurther processor instructions are not necessary, but they might be of interestfor speci�c processors and applications:getmap ((b; s); (�; a; �))reads a page table entry provided that it exists, is accessible from the currentmode and is of the alias or call of reference type.Skipping and emulation by means of a procedure associated with theaddress space region might get more e�cient by using instructions which re-turn the length of another instruction or which can execute it with a modi�edmemory address:getlength (dest, ptr)returns the length of the instruction which is located at the virtual address`ptr' in `dest'.execute (ptr, v)executes the instruction located at the virtual address `ptr' using howeverthe virtual address v instead of the memory address actually used in theinstruction.11Both instructions are not useful for processor architectures showing onlya few and simple instruction formats and addressing modes.2.2.5 � =call/aliasIn principle, the entry types alias and call on reference are su�cient (in addi-tion to translate). Combinations might also be of interest:� =call on write / alias on read� =call on read / alias on writeHowever, the page table entries must be enlarged in this case to include _vand �v together, or �v has to be the same for all these entries. Then the mapinstruction of course works on these two types too.Personal assessment: Both combination types are super
uous. They canbe emulated e�ciently enough by means of the original types.11For multi-address machines, more complex forms of the instruction might be necessary.



34 CHAPTER 2. USER LEVEL MAPPING BY HARDWARE2.2.6 � =lockedFor associating speci�c hardware actions with address space regions, e.g.activating complex bus protocols for access to a remote memory, an aliasentry can be used. It maps the access to a correspondingly sensitive hardwareaddress (memory mapped I/O).For multiprocessormachines with shared memory, an address space regionshould sometimes be locked so that accesses to it by other processors aredelayed automatically 12 until release. Locking can be done by associatingan empty routine to the address space region, i.e. by using a call on referencepage table entry pointing directly to a ret instruction. Unlocking is done bymodifying the mapping to alias.For some architectures, a speci�c new type locked may be useful. Insome cases, it can be implemented somewhat more e�ciently since it allowslock/unlock without reinterpretations in cache and TLB:p��x v: u v0��a������- � lockedp0
If address transformation encounters such an entry, it is restarted com-pletely. Only if another processor sets the entry to translate again or modi�esthe page table tree in such a way that the entry is no longer involved, thedelay is terminated. Locked entries di�er only in the type from translateentries. Changes between the two therefore only require a consistent modi-�cation of the types of the corresponding cache and the TLB entries13, butno modi�cation of the virtual-real mapping.Two further instructions are used for changing between locked and trans-late:12Of course, at least one processor should be able to access. This is done by virtual orreal aliasing.13For larger objects, a TLB 
ush is probably more e�cient.



2.3. POSSIBLE CODINGS 35lock (b; s) unlock (b; s)lock sets the addressed page table entry to locked and unlock sets it again totranslate provided that the target entry� exists and� is accessible from the current mode (user/kernel) and� is already of the type translate or locked.In all other cases, page fault will be triggered.2.3 Possible CodingsPairs (b; s) of n-bit-wide baseaddress b and size s = 2i (s � 2) can be codedas n-bit-value b+ s2 ;if the baseaddress is always s-aligned, i.e. b mod s = 0. Then the bitrepre-sentation looks as follows:bb : : : : : : : : : : : : : : : : bb 100 : : : : : : 00The method can be used for coding bitstrings of variable length up tomaximum n � 1 as well. E.g. guards of Guarded Page Tables can be codedby this. A bitstring b of length kbk is represented by the n-bit-number2n�kbkb+ 2n�kbk�1:In both cases, the decoding hardware takes the lowest 1-bit as delimiter. Ofcourse, the roles of 1-bit and 0-bits can be exchanged or the higher bits canbe used for the length coding:bb : : : : : : : : : : : : : : : : bb 011 : : : : : : 1100 : : : : : : 001 bb : : : : : : : : : : : : : : : : :bb
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