\

NIT

Karlsruher Institut fur Technologie

Analysing Page Duplication on
Android

Studienarbeit
von

Jonas Julino

an der Fakultat fur Informatik

Erstgutachter: Prof. Dr. Frank Bellosa
Betreuender Mitarbeiter: Dipl.-Inform. Konrad Miller

Bearbeitungszeit: 24. Oktober 2011 — 27. Marz 2012

KIT — Universitat des Landes Baden-Wiirttemberg und nationales Forschungszentrum in der Helmholtz-Gemeinschaft WWW- klt-ed u

I hereby declare that this thesis is my own original work which I created without illegit-
imate help by others, that I have not used any other sources or resources than the ones
indicated and that due acknowledgment is given where reference is made to the work of
others.

Jonas Julino
Karlsruhe
March 26, 2012

iii

Deutsche Zusammenfassung

Gegenstand dieser Studienarbeit ist die Analyse der Seiten-Duplikation auf einem An-
droid Mobiltelefon und die Entwicklung der dafiir nétigen Werkzeuge. Des Weiteren gibt
diese Studienarbeit einen Uberblick iiber das Betriebssystem Android, Seiten-Duplikation
und bereits existierende Ansétze zu deren Messung.

Es nicht ohne Weiteres moglich Kernel-Module unter Android zu laden, da es dem Be-
nutzer auf unmodifizierten Gerdten normalerweise nicht méglich ist root-Zugriff zu er-
langen und dartiber hinaus der Kernel einiger Geréte das Laden von Kernel-Modulen
nicht unterstiitzt. So bietet der mit dem Android spK [4] gelieferte Emulator zwar
root-Zugriff, aber der mitgelieferte Kernel ermdglicht es nicht, Module zu laden. De-
shalb sind die bestehenden Losungen fiir die Messung von Seiten-Duplikation nicht ohne
Modifikationen am Geréat beziehungsweise Betriebssystem anwendbar.

Es ist aber moglich an das Speicherabbild eines virtuellen, im Emulator laufenden, An-
droid Gerites zu gelangen, ohne das virtuelle Gerat zu modifizieren. Um diese Daten-
quelle nutzen zu konnen, haben wir ein eigenes Programm entwickelt, das alle nétigen
Informationen aus einem Speicherabbild mittels Methoden der Computer-Forensik ex-
trahiert.

Die hierbei gewonnen Informationen beziiglich der einzelnen Seiten umfassen unter an-
derem die ID des zugehorigen Prozesses, virtuelle und physische Adressen, zugeordnete
Dateien (wenn vorhanden) und Zugriffsrechte. Des Weitern kénnen im Kernel als unbe-
nutzte gefiihrte Seiten markiert und aussortiert werden.

Mittels des entwickelten Programms ist es uns moglich die Seiten-Duplikation zu un-
tersuchen und das daraus folgende Einsparungspotential zu benennen. Unsere Messung
ergibt, dass es sich in einem normalen Anwendungsfall bei 9,5% der benutzten, das heifét
nicht als frei im Kernel markierten, Seiten um Duplikate handelt. (Genullte Seiten und
Seiten aus dem Benutzer-Adressraum, die fiir memory-mapped 1/0 genutzt werden, sind
in dieser Betrachtung nicht enthalten.)

Um die Quellen fiir diese Duplikate ndher zu betrachten, unterteilen wir das System
in mehrere Gruppen (u.a. in Kernel und Dalvik Virtual Machine (Dalvik vm)) und
analysieren die Duplikate innerhalb dieser Gruppen. Wir identifizieren die Dalvik vM
hierbei als Hauptquelle der Duplikate.

v

Abstract

Page duplication is often referred to as a problem of virtualized environments. In this
theses we argue that there are memory saving opportunities on mobile devices — in this
case on an Android device, too.

As loading kernel modules is problematic on Android devices (no root access and/or
the kernel does not support loading modules) we decided to measure by analyzing the
memory dump of the device. We use an emulated Android device [4], therefore we can
easily acquire the memory content from outside of the (virtual) device. Our measurement
method does not require any modification to the device or manual search in the dump;
all information is automatically extracted by reverse engineering the structures found in
the memory dump.

The information we can assign to each page includes the process id(s), virtual and
physical addresses, attached file (for named pages) and access rights. We are also able
to distinguish between used and free pages (i.e. marked as unused in the kernel).

Our evaluation depicts the total sharing opportunities and the opportunities within
certain groups (e.g., the Dalvik Virtual Machine (Dalvik vm)).

Contents

Contents

1. Introduction

2. Background

2.1. Terms . . .

2.2. Existing Tools L
2.3. Page Deduplication L

2.4. Android . .

3. Design

3.1. Choosing a Measurement Approach
3.2. Page Content Representation
3.3. Hash Collision Consequences v v v v ...

4. Implementation

4.1. Target . . .

4.2. Assumptions/Constants Lo
4.3. Preparation Stage
4.4. Output Stage

5. Evaluation

5.1. Total Sharing Opportunities
5.2. Classification of Sharing Opportunities

5.3. Conclusion
6. Conclusion
A. Appendix

B. Glossary

10
10
10
11
15

18
19
20
23

24
25

27

vii

CHAPTER 1. INTRODUCTION

1. Introduction

As software for mobile phones becomes more complex the amount of needed random
access memory (RAM) increases, too. While enlarging RAM-size of common desktop
computers is unproblematic and cheap, it is difficult for mobile device as it effects two
of their important attributes: power consumption and size.

RAM is a constant power consumer; even when a mobile phone is in standby mode
its RAM must be powered. For small amounts of RAM! its power consumption is low
compared to other components [13|, nevertheless increasing the RAM-size raises the power
consumption of mobile devices and increases their size, in case of using a larger battery.
As the single parts of mobile devices are packed together extremely narrowly, adding a
single (memory) chip might imply a larger housing in any case.

Multitasking operating systems (Oses) are prone to load the same pieces of data into
multiple physical pages (page duplication) as lots of programs, accessing partially equal
data, run in parallel. Reducing page duplication yields a reduction of memory consump-
tion, as all but one page containing the duplicated page content can be freed.

In this theses we measure the page duplication on Android mobile phones and analyze
the memory saving potential. We chose Android as it is a very widespread 0S for mobile
devices and its source code can be freely obtained.

The announcement of VMware to develop a virtualization environment for Android [21]
is an interesting aspect of this platform in future as running multiple Oses on a single
device is likely to significantly increase the page duplication.

This theses covers the design decisions made during the development of our measurement
tools (§ 3), implementation details of this tools (§ 4) and an evaluation of page duplication
on a (virtual) Android device (§ 5).

'The device whose RAM power consumption is measured in [13] is equipped with 128 MB of RAM.

1/ 30 J. Julino

CHAPTER 2. BACKGROUND

2. Background and Related Work

This chapter defines often used terms and provides an overview of existing tools (§ 2.2),
deduplication approaches (§ 2.3) and the Android 0s (§ 2.4).
2.1. Terms

Table 2.1 defines the most important terms used in this theses, for further definitions
see the glossary at page 27.

Term ‘ Description

Page Duplication Situation in which the content of multiple physical pages is

equal.
Page Deduplication | Reducing the count of duplicated pages.
Sharable Pages Pages whose content occurs at least twice in the system.

A subset of shareable pages, containing all but one page with
Duplicated Pages | the same content from the set of sharable pages; i.e., all pages
in this set could be freed without loosing the page content.
Shared Pages Pages referred to by at least two virtual addresses.

Address in the target system. Refers to physical addresses, un-
less stated otherwise.

Offset . : . . .
5 (We introduce this term to avoid confusion with addresses on
host system)
Delta Distance from the start of a structure to an entry inside this

structure.

Table 2.1.: Terms & Definitions

2.2. Existing Tools

This section covers tools that are able to measure page duplication and the algorithms
we can use as a base for own measurement approaches.

A suite for online page duplication measurement is available for Linux based systems.
A kernel module acquires the data inside, whereas a userland application does the eval-
uation offline. The information it passes to the userland covers meta data of the pages

J. Julino 2/ 30

CHAPTER 2. BACKGROUND 2.3. PAGE DEDUPLICATION

(e.g., owner, access rights, ...) and hashes of the page content, but not the content
itself. [19]
As loading kernel modules is problematic on Android, we cannot use this approach.

The Red Hat Crash Utility is a tool for debugging the Linux kernel by investigating
memory dumps. [5]

The supported architectures include ARM, however, there is currently no support for
investigating an ARM dump on an architecture other than ARM. [6] Furthermore, we did
not find any evidence of a successful usage of the crash utility on an Android memory
dump.

Volatilitux is a python tool for computer forensics which is able to detect structures
and their deltas in a memory dump of a Linux system. It provides functions for listing
running process and accessing applications’ memory, but it does not provide direct access
to all structures (i.e. the kernel’s free-lists) we need for our measurement.

The developer of Volatilitux successfully tested his program on Android devices. [17]

2.3. Page Deduplication

There are several approaches to merge duplicated pages; we divide them into active and
passive ones. While active approaches merge already existing duplicated pages, passive
approaches prevent duplicates from being established.

Active deduplication reduces the memory consumption at cost of CPU-time, as this
approach requires active scanning for merge-able pages. A widely used implementation is
Kernel Shared Memory (ksM), a Linux kernel module, which is able to merge duplicated
anonymous pages. It detects duplicates by periodically comparing the content of pages.
A common use case for KSM is the reduction of memory consumption on a Linux host
which runs multiple similar guest OSes as virtual machines. [7, 26]

Creating a new process by calling fork or mapping a file into multiple address spaces
can create a lot of page duplicates; passive deduplication avoids this by introducing copy-
on-write (COw). All passive approaches rely on a priori knowledge of the sources of page
duplication; we can only merge duplicated pages whose establishing we can observe.
Cow avoids page duplicates which would arise upon a fork. Instead copying the complete
address space, the pages of the creator can be marked as cow and mapped into the
address space of the created process. A page is only copied if one of both processes tries
to modify it (the split pages are normally no longer equal and therefore not a target for
deduplication anymore).

If a memory mapped file is mapped into multiple address spaces as shared or the single
pages are unmodified, it is not required to create multiple copies of the file’s pages in
the physical memory, as the content of the pages is equal in all address spaces. But in
case of an unmodified private mapped file, the pages must be marked as cow. [12, 24|

3/ 30 J. Julino

2.4. ANDROID CHAPTER 2. BACKGROUND

2.4. Android

Android is an 0s for mobile devices aimed to provide, among others, low power con-
sumption. It consists of a modified Linux kernel and userland programs known from
other Linux distributions, e.g., wpa_ supplicant.

An essential part of Android is the Dalvik vMm. All programs normally directly executed
by a user on Android are written in Java and run in this virtual machine (vMm). The
Dalvik vM does not directly execute jar-files; they must be converted to a more dense
file format called dex. [11] Each Java applications is assigned a different user id and
started in its own VM. [1]

On consumer devices the user’s access to the 0s is often restricted; acquiring root access
is only possible by exploiting software bugs!. The kernels of some devices (like the
emulator contained in the Android SDK [4]) are not configured to support loading of
modules. [4]

It is, however, possible to save a memory dump of a virtual Android device which is
run inside the Android emulator from the SDK. Acquiring a dump of a physical Android
device might also be possible e.g., by using a cold boot attack [20].

2.4.1. Peculiarities in Memory Handling

Every non file-mapped page containing valid data resides in the RAM as a common
Android device does not use swap. We validated the absence of swap space on our test
device by verifying there is not /proc/swaps.

To avoid the termination of current foreground applications the Android kernel replaces
the out of memory killer from Linux by its own implementation, the low memory killer.
It is started early before a low memory situation to allow applications to save their con-
text; the selection for termination is based on multiple attributes including the current
visibility to the user. [11]

Android 0s provides a device /dev/ashmem (Anonymous Shared Memory) which pro-
grammers can use to establish an anonymous shared memory region. As a region is set
up by memory mapping the device above, this region appears to be named. [11]

2.4.2. Page Deduplication in Dalvik vm

On Android a special process called Zygote is responsible for starting VMs; on system
boot this process loads the system libraries into its memory and runs their initialization
routines.

Anonymous pages created by the initialization are automatically shared among the vMs
as Dalvik VM starts a new VM by forking (pages are not actually copied but marked as

IThis is not true for the devices run inside the emulator, here it is possible to acquire root access. But
as mentioned in the text, the kernels of the emulated devices do not support loading modules.

J. Julino 4/ 30

CHAPTER 2. BACKGROUND 2.4. ANDROID

copy-on-write by the kernel). Shared memory mapped files (libraries) are also shared
among the processes. |9]

5/ 30 J. Julino

CHAPTER 3. DESIGN

3. Design

This chapter describes several decisions we made during the development of our tools,
concerning the choice of a measurement method (§ 3.1) and the page content represen-
tation (§ 3.2). As we choose to use hashes for the representation of page content, we
also cover the consequences of hash collisions (§ 3.3).

3.1. Choosing a Measurement Approach

We want to measure the amount of page duplication on an Android device. We are also
interested in the processes the duplicates belong to and information about their source
(e.g., named /anonymous).

The measurement can be done from inside, by using a kernel module [19], or from outside
the (simulated) Android device, by implementing a tool to make an offline analysis of a
RAM dump.

Table 3.1 describes the advantages and disadvantages of both approaches:

Kernel Module ‘ Offline Analysis

+ already implemented and tested on + root access not required

amd64 and x86 [19]
+ kernel sources/headers not required

+ ability to use kernel API
+ access to the complete page content

- module support must be activated
- more difficult to implement

- kernel sources/headers required
- only snapshot of one moment in

- measurement influences target time

! Root access might be necessary for acquiring the memory dump, if target is not run inside an emulator.

Table 3.1.: Comparison of Kernel Module and Offline Analysis

We use the offline analysis approach, as Android devices do not normally provide root
access (§ 2.4) and loading kernel modules is not supported on all devices. It is possible to
circumvent this limitations but this requires modifications to the target system. Another

J. Julino 6/ 30

CHAPTER 3. DESIGN 3.2. PAGE CONTENT REPRESENTATION

reason is that the hack of kernel.org made it difficult! to attained the official sources of
the Android kernel at the time of writing this theses.

We base our implementation on the algorithms used by Volatilituz (§ 2.2), as we known
it works using an Android dump. In addition to that Volatilitux allows us to analyze
an ARM memory dump on a foreign architecture, whereas this is not possible with the
Crash Utility (§ 2.2).

To easily gain a copy of a device’s RAM (§ 2.4) we decided to measure a virtual Android
device running inside the Emulator from the Android SDK and not a physical one.

3.2. Page Content Representation

When working with duplicates it is useful to have an identifier referring to all pages with
the same content, e.g., to request information on a certain page content and listing all
pages containing this content. As we want to interact with our tools, the identifiers for
the page content should be usable on the command-line.

An 0s does generally not provide such an identifier (besides the page content itself) as
it is not needed for the basic tasks of an 0S; we therefore need to introduce an identifier
on our own.

We considered the usage of the identifiers listed in Table 3.2:

Identifier Description

Page content (which is equal for all pages) repre-
sented by hexadecimal characters.

PFNs All PFNs of pages inside the set.

Hash A hash of the page content.

Hex Representation

Table 3.2.: Identifiers for Page Content Representation

The features of these approaches are listed in Table 3.3:

"We would have needed to access a certain version matching the kernel of our device, and a special
branch called goldfish when using the emulator, which was not possible.

7/ 30 J. Julino

3.3. HASH COLLISION CONSEQUENCES CHAPTER 3. DESIGN

‘ hex representation PFNs hash
length (for PFNs: highest number) page size - 2 S‘;Zg‘;% length of hash
hash collision possible no no yes
multiple identifiers for same content no yes no
identifiers are stable' over time yes no yes

! The identifiers of a content stays the same, regardless of a reboot, a closed application or a freed
page.

Table 3.3.: Features of Identifiers for Page Content Representation

We dismiss PFNs as they are not stable over time and this is very confusing when working
with multiple snapshots from different points in time; e.g., if we require information on a
page content known from dump a, we do not know if the PFN is still the same in dump b.
The hex representation is very long for common page sizes (e.g., 8192 characters long
for a 4096 byte page) and therefore hard to handle.

We chose using hashes as identifiers; the algorithm we use is Message-Digest Algorithm 5
(MD5), resulting in a 32 hex character long identifier. The possibility of a hash collision
and the resulting effects are covered in § 3.3.

As we already use hashes to describe the page content and we must therefore calculate
the hashes in any case, we use them to detect duplicated pages, too. This improves the
speed of the duplicate detection as comparing the hashes is faster than comparing the
complete page content.

3.3. Hash Collision Consequences

We currently use the MD5 as a hash function and because we use a hash there is the
possibility of a hash collision.
There are only minimal consequences of this possibility; see the following list of reasons:

Reason 1: Extremely Low Collision Probability

MD5 is not save to use for cryptographic issues [27], but as we do not have an active
attacker, we do not mind the possibility of intendedly created collisions.

The collision probability in our scenario (ignoring weakness of MD5, an active attacker
and assuming an equal distribution of hash-values) is extremely low, it can be estimated
by using the Formula 3.1 from [25].

1 n
Pcollision(N7 n, 3) < No—1 (S) (31)
N = Count of different hash values (for MD5: 2128)
n = Count of pages to hash (we assume 4 GB of RAM and 4KB page size — 220 pages)

s = Number of pages with the same hash to consider as a collision (2)

J. Julino 8/ 30

CHAPTER 3. DESIGN 3.3. HASH COLLISION CONSEQUENCES

L 128 520 1 220 ~ . —26
PCOHISIOI](2 72 ,2> S 72128 9 ~0.16 - 10

Reason 2: Little Effect On Measurement Results

If at all only a few pages should be detected as false-duplicates as the probability for a
collision is low; this would pose only a minor modification to our results.

Reason 3: Active Check For Hash Collision

Our tools are able to detect hash collisions as we have access to the complete page
content. (See § 4.4.2 for how this detection is implemented.)

9/ 30 J. Julino

CHAPTER 4. IMPLEMENTATION

4. Implementation

Our tools reverse engineer an (Android) memory dump to provide information on the
pages and they detect and classify duplicates based on this information. The algorithms
we use for the reverse engineering are extended/modified reimplementations of Volatil-
ituz’s algorithms [17]. Our tools are implemented in ¢/C++ to reduce their runtime!
compared to Volatilitux.

As the basic detection approaches are adopted from Volatilituz they are only addressed
shortly and the main focus is on the extended detection abilities and the measurement
code.

4.1. Target

The machine dependent part of our code is implemented for the (simulated) hardware
listed in Table 4.1:

CPU | ARM 32-Bit (ARM926EJ-S rev 5)
OS | Android 2.3.1

Table 4.1.: Target (Simulated) Hardware

4.2. Assumptions/Constants

The algorithms used for detecting deltas and offsets of structures need some low-level
constraints. It is possible to reduce the number of constants but this reduction signifi-
cantly increases the amount of work for the detection.

Table 4.2 contains the most important constants we use:

'E.g., listing all processes on a 256 MB dump takes approx. 0.30 seconds using Volatilitux whereas our
tools need about 0.05 seconds. Printing details on duplicates inside the same dump takes about 4.4
seconds with our tools. As Volatilitux does not implement this functionality we cannot measure its
runtime, but if we assume the same speed up ratio from the previous measurement, we can suppose
that Volatilitux would need about 26.4 seconds. We do not consider such a delay to be interactive.
(We do not use configuration files, which could speed up their execution time when executed multiple
times on the same memory dump, during these measurements named above.)

J. Julino 10/ 30

CHAPTER 4. IMPLEMENTATION 4.3. PREPARATION STAGE

Name Description Default Value

This offset describes the start of the kernel memory
inside virtual address spaces.

PAGE OFFSET 0xC0000000

The count of bits used to represent pointers, inte-
Bit-Count gers, etc. This is actual not a single value, but a 32 bit
value per data type.

Page-Size The size of a page 4096 byte
Endianness The endianness of the target architecture little-endian
Struct Max Size | The roughly (over-)estimated size of a structure individual'

! We assign a different maximum size to every structure we detect. E.g., the maximum size for
task_struct is 4096 byte.

Table 4.2.: Important Assumptions and Constants Used for Detection

To ease the detection of some structures needed to distinguish empty pages from other
pages we assume that our target provides uniform memory access (UMA) and the kernel
is configured to use FLATMEV; this implies that a single entity of the pg_data_t structure
covers the whole physical memory.

This is a reasonable assumption for an Android device.

4.3. Preparation Stage

The preparation stage is responsible for the acquisition of entry points (§ 4.3.1), offset
and delta detection (§ 4.3.2) and setting up structures which translate virtual addresses
to physical ones (§ 4.3.4).

For an overview of the used structures and their connections see Figure A.1 on page 26.

4.3.1. Acquisition of Entry Points

An entry point describes an instance of a structure which we use as a starting point for
detecting further structures and instances.

We currently need the offsets of two entry points for our tools. The first one is the
task_struct owned by the thread swapper. Candidates, whose validation is addressed
in § 4.3.3, are revealed by a string search for 'swapper’ inside the memory dump (see [17]
for details).

The search for the second entry point, the memory zone descriptor pg_data_t, is more
time consuming as it does not contain a rarely used identifier such as a name and the
detection algorithms are therefore more complex.

Table 4.3 describes the entries of pg_data_t which are used to find candidates for its
offset. [23] The assumptions for their values are based on [17, 10, 22, 23|.

11/ 30 J. Julino

4.3. PREPARATION STAGE CHAPTER 4. IMPLEMENTATION

Name Description Assumed Value !
node_start_pfn Number of first frame in this node small (< 255)
node_spanned_pages ~ %
node_present_pages ~ %
node_id Global node identifier 0

! Assumed values are only valid if the target complies with the assumptions named in § 4.2.

Table 4.3.: Entries of pg_data_t Used for Our Detection of This Structure

Using these assumptions combined with the knowledge that this four entries should
sequentially reside in memory we can generate a set of candidates.

The structure pg_data_t, and structures referred by it, often directly include other
structures into their memory range. As avoidance of pointers significantly complicates
the detection of deltas, we need multiple complex algorithms for the elimination of wrong
offsets which can be found in our source code (see § 4.3.3 for the basic idea of validation).

4.3.2. Offset and Delta Detection

To extract information from the memory dump we need to know the layout of multiple
structures used inside the kernel (e.g., task_struct, pg_data_t, ...) and where we can
find instances of them.

The layout of structures is represented by the deltas of their entries. Based on the way
the deltas are detected we can divide them into three groups (ordered by portability
starting with best):

dynamic deltas These deltas are detected dynamically based on information on the
entry they represent. This is the most portable solution across different kernel
versions, as this does not make any assumptions on the order inside a structure.

Example: A delta refers to a pointer which points to a known string. To detect
the value of this delta we assign all possible values to it and check whether the
memory, the delta refers to, is a valid pointer to our known string.

mixed deltas Mixed deltas are dynamic deltas whose search area is restricted to only
a part of the structure.

Ezample: A delta refers to an integer whose values is known, but this value occurs
twice in the structure; one time at a delta of 0 and one time at the delta we search
for. We can now ignore delta values 0-4 (bytes) to exclude the first integer (on a
32-bit system) from our detection.

static deltas As some parts of the kernel’s structures stay stable over time, it is possible
to hard-code the location relative to the start of the structure or an other delta
inside the structure.

J. Julino 12/ 30

CHAPTER 4. IMPLEMENTATION 4.3. PREPARATION STAGE

Although we call them static deltas they are often defined in units of size of int,
pointer, long, etc. and not in bytes.

Example: The first entry in the page structure is known to be a long integer
containing the flags for the page and this does not change for different kernel
versions. So we know the delta for the flags is 0.

Choosing dynamic detection is not always possible as the high portability implies high
requirements for the detection algorithm. It is generally a difficult and costly task to
detect a delta, therefore it is advisable to reduce the amount of used deltas as far as
possible.

The detection code for deltas traverses the structures inside the kernel, as a result we
automatically detect most of the offsets, which represent the single instances of the
structures, while we detect the deltas.

4.3.3. Offset and Delta Verification

The main problem of the preparation stage are the dependencies among different deltas
and offsets.

The detection of a delta is done by assigning multiple values to it and validating the
choice. In most cases it is not possible to validate each delta one by one, instead we have
to make multiple assumptions and validate the assigned values all together.

The resulting code, containing n nested loops where n is the count of deltas to be detected
at once, can still be executed in an acceptable amount of time due to the small ranges
of the single loops, caused by the limits on the structures’ sizes we assume in § 4.2.

The detection of offsets does not generally provide a range limit, in worst case it is
necessary to search the complete memory dump byte-per-byte. But the amount of
offsets without any range limits is extremely low.

Example: Validation using a Pointer

This is an example on how we are able to reduce the number of possible offsets for a
structure which contains a pointer. The following items describe several situation in
which we can make use of a pointer:

e We can exclude an offset if we know the address the pointer is to point to and this
value does not occur within the area of our supposed offset.

e If we do not know the address the pointer should point to, we can try all possible
values of the pointer’s delta and check whether it points to a valid structure of a
type we expected. Implementing this check is difficult but often we are interested
in the structure pointed to, so this effort is necessary in any case.

13/ 30 J. Julino

4.3. PREPARATION STAGE CHAPTER 4. IMPLEMENTATION

e Without information about the pointer’s target but with knowledge of the exact
delta of a pointer, we are able to exclude every offset whose dedicated pointer is
not valid. (This does only work if we know this pointer must be valid at any point
in time.)

4.3.4. Resolving Virtual Addresses

We can translate virtual to physical kernel addresses by adding the offset PAGE _OFFSET.
To resolve addresses of a userland process we walk its page-table, whose position is held
by the entry pgd inside the mm_struct assigned to the process’ task_struct.

If an architecture is hardware-walked like i.e. ARM, the structure of page tables is stable.
We used an ARM manual [8] for implementing our table walking code.

We can traverse all pages of a process by translating every virtual address which is inside
the region of an assigned vm_area_struct. For more details refer to [17].

4.3.5. Detection Error Avoidance

To prevent erroneous measurement results, caused by detection errors, we implement
the following mechanisms:

Error Avoidance During Detection

We lower the risk of miss detecting deltas and offsets by following these rules while
implementing our detection algorithms:

1. If we detect multiple candidates and we cannot validate that exactly one of them
is valid, we print an error and interrupt the program.

This implies we do not directly accept a delta when detected as valid by our
algorithms, but instead we have to ensure that there is no other valid delta in the
range, we are investigating.

2. Static deltas must be validated, if possible, as they base on assumptions and we
cannot guarantee that these assumptions are valid on every kernel.

3. Detection algorithms, requiring multiple entities of a structure, have to ensure that
the amount of available structures is sufficient for a correct detection; if require-
ments are not met they must raise an error.

4. The algorithms should issue a warning and exit the program on unusual values.
An example for such a value would be that the size of the page structure is not a
multiple of the size of an Integer.

In practice it is not possible to abide by these rules at all times.

J. Julino 14/ 30

CHAPTER 4. IMPLEMENTATION 4.4. OUTPUT STAGE

An example:

Multiple instances of the same structure, whose exact size we do not know, reside next to
each other in memory. While trying to detect a delta of this structure using instance Iy
we also search inside the memory region of I;’s neighbor Is. This may result in detecting
two deltas pointing to completely valid entries, one in the memory of I; and one in the
memory of Is.

If we cannot distinguish which entry belongs to which instance of the structure, we
cannot follow rule one, but instead we must accept one of both deltas (e.g., the smallest
positive one).

Manual Error Avoidance

We can output the detected values to allow users to manually validate them using the
kernel configuration and sources if available.

Error Avoidance Using a Configuration File

Our tools can generate a configuration file which contains all detected deltas and some
offsets based on multiple memory dumps of the same target. This generation reduces the
probability of a detection error by ensuring all detected values are equal on all memory
dumps or it signals an error.

This allows us, besides speeding up our tools (as the configuration file substitutes the
detection), to use one manually validated configuration for all memory dumps of this
target.

4.4. Output Stage

The output stage consists of one or multiple exchangeable output modules. In this theses
we focus on the module for page duplication detection.

4.4.1. Details on Pages / What We Can Measure

We can acquire the following information for every userland page, for free and kernel
pages the entities marked with an asterisk cannot be acquired because of their peculiar-
ities?:

origin We assign every physical page to exactly one of the following classes:

userland Every page mapped into any address space not associated to kernel.

free pages Every page whose reference counter (_count) is zero. (This includes
all pages in the free lists maintained by the kernel.)
Warning: Not all currently unused pages are detected as free as not every
unused page is instantly returned to the kernel and marked as free.

2As the pages belonging to the kernel and the pages which are free do mnot generally have a
vm_area_struct, we cannot extract information from this structure.

15/ 30 J. Julino

4.4. OUTPUT STAGE CHAPTER 4. IMPLEMENTATION

kernel Rest of the pages.
hash The hash of the page content.
content The content of the page.
access-bits* The access-bits of the memory regions the page belongs to.

memory mapped 1/0 state* Whether the page is part of a memory mapped 1/0 region.
This information bases on the VM_I0 bit in the member vm_flags of the dedicated
vm_area_struct structure. [16]

content source* Anonymous vs. named pages: We consider a page to be named if
vm_file in its vm_area_region is not null.

attached file* The filename of a file attached to a named page.
offset inside attached file* The offset inside this file.

process ids Ids of all user processes which own a mapping for a physical page.

4.4.2. Detecting Duplicates

We use hashes of the physical pages as keys in a hash-map (§ 3.2), this results in the
structure shown in Figure 4.1

hashi —» physical page 1 —» proc a: virtual page i

- proc b: virtual page ii

L » proc c: virtual page iii

L————————» physical page 2 —» proc d: virtual page iv

hash2 —» physical page 3 —» proc a: virtual page ii

physical page 4 —» proc b: virtual page iii

Figure 4.1.: Structure We Use for Duplicate Detection

Every hash pointing to more than one physical page is affected by page duplication; the
origin of this pages can be traced because the physical pages point to address spaces
they are mapped in.

J. Julino 16/ 30

CHAPTER 4. IMPLEMENTATION 4.4. OUTPUT STAGE

Physical pages which are assigned to multiple virtual pages can occur because of page
deduplication (e.g., copy-on-write or shared memory).

Active Check for Hash Collisions

Our tools can guarantee the absence of hash collisions inside a dump by comparing
the content of all physical pages attached to the same hash (Figure 4.1). We do not
automatically apply this check to all hashes, but one can manually initiate it.

We automatically execute this check for every hash, affected by page duplication, the
user requests details on, as the local effect of a collision can be huge. (There might be
no duplication for this hash at all.)

4.4.3. Limitations

We currently assume a single page size. If there is a superpage in the systems we currently
handle it like multiple normal pages.

If we find a duplicate which is part of a superpage, it would be necessary to split the
superpage up into normal pages to be able to deduplicate the page. This should normally
not be done as this would lead to a lot of disadvantages (e.g., more entries in the TLB).

17/ 30 J. Julino

CHAPTER 5. EVALUATION

5. Evaluation

We ignore all pages filled with zeros in our measurements, as these pages might be free or
unused but intentionally not reassigned to the kernel’s free pool (e.g., to avoid overhead
of releasing and reclaiming). Merging these pages would contradict this concept.

As merging unused pages does not provide additional storage we also ignore them in our
evaluation (unless stated otherwise).

Our tools are able to detect userland pages which are used for memory mapped 1/0
(§ 4.4.1). Merging these pages is problematic and we therefore exclude these pages, too.

In our diagrams error bars do not represent the standard deviation but instead indicate
the minimum and maximum values measured. All measurements are repeated five times
and the average values are plotted.

Refer to Table 5.1 for a list of abbreviations used in our diagrams:

ppages | physical pages: Physical pages which are present in the system/group.!
vpages | virtual pages: Virtual pages which are present in the system/group.!

physical duplicates: Duplicated Pages; i.e, all pages in this set could be freed

d . . i
PEUPS | ithout loosing the page content.""
virtual duplicates: Virtual pages which can be removed so that every previ-
vdups ously mapped physical page is still mapped to by exactly one virtual page.

Ignoring intentionally shared pages, we can use this as a rough estimation
of already applied deduplication.!

! As mentioned before, we exclude multiple pages (e.g., pages filled with zeros). These pages are not
_ regarded in any measured value (including this one).
" Refer to § 2.1 for a more detailed definition of duplicated pages.

Table 5.1.: Abbreviations in Diagrams

Our measurements are run on an emulated Android device using the emulator from the
Android spk[4]. Table 5.2 describes the properties of the test system:

Attribute ‘ Value
Android Version | 2.3.1
CPU ARM926EJ-S rev 5 (v5l)
RAM size 256 MB

Table 5.2.: Properties of Our Virtual Android Test Devices

J. Julino 18/ 30

CHAPTER 5. EVALUATION 5.1. TOTAL SHARING OPPORTUNITIES

We refer to the following scenarios in our measurements:

fresh We directly dump the memory after the 0s is started; we do not manually execute
any programs.

in use Like idle, but we start the programs named in Table 5.3 one after another with
a delay of 10 seconds before dumping the memory.

Program ‘ Version

AndFTP 2.9.8
AndSMB 1.8
AndExplorer | 2.2
AdobeReader | 10.1.1
ConnectBot git-master-2011-12-19 18-30-54
K-9 4.001-release
Native Browser | 2.3.1

Table 5.3.: Programs Started in Scenario In Use

5.1. Total Sharing Opportunities
Figure 5.1 depicts the overall sharing opportunities. In the fresh scenario approx. 7.8%

of the non zeroed and non free physical pages are duplicates, in the in use scenario
approx. 9.5%. Userland 1/0 pages are also excluded.

45000

ppages .
40000 + pdups = |

35000
30000

25000

#pages

20000

15000 -

10000 -

5000

0

% %
G\S‘,j (/\S‘

Figure 5.1.: Overview Scenarios, free pages excluded

19/ 30 J. Julino

5.2. CLASSIFICATION OF SHARING OPPORT... CHAPTER 5. EVALUATION

The resulting saving opportunity is 10.6 MB in idle and 16.2 MB in n use.
As the in use scenario is the more common scenario we focus on this one.

5.2. Classification of Sharing Opportunities

We divide the system into the groups listed in Table 5.4, to isolate the sources for page
duplication.

Inside these groups pages are only considered as duplicates if there is a page with equal
content within the same group. The distribution of duplicates among the named groups
can be found in Figure 5.2.

Group ‘ Description
All All pages (excluding zeroed pages)
Kernel Pages containing Kernel’s code and data.!

Pages assigned to a program whose parent is Zygote and the pages from
Zygote itself
Remainder | Pages not included in Kernel, Dalvik VM or Free

Free Pages which are marked as free.!

Dalvik vMm

! Refer to § 4.4.1 for a more detailed definition.

Table 5.4.: Description of Groups for Classification

120000
vpages I
vdups

100000 ppages I -
pdups
80000 .
(%]
()
® 60000 .
o
$#
40000 .
20000 .
0 -
7/
S

Figure 5.2.: Duplicates and Pages Per Group

As stated in Table 5.5 (containing details on Figure 5.2), this grouping results in only

J. Julino 20/ 30

CHAPTER 5. EVALUATION 5.2. CLASSIFICATION OF SHARING OPPORT...

ignoring a very small number of duplicated pages; we can therefore look at each group
independently.

Description Value

Physical duplicates in All 4250
Sum of all physical duplicates in the remaining groups'| 4187.6

! Our measurement shows that no physical page affected by duplication is
mapped into multiple of our groups, therefore it cannot happen that we
count pages affected by duplication multiple times. As a result it is valid
to add up the physical duplicates.

Table 5.5.: Comparison of Detected Duplicates With And Without Grouping in Fig-
ure 5.2

The amount of duplicates in groups Kernel and Remainder is small. We examine these
groups in § 5.2.1 and § 5.2.2.

Most duplicates arise from the Dalvik vM group which we cover in § 5.2.3.

In Figure 5.2 we also plot the amount of virtual pages and virtual duplicates as these
values hint the amount of already prevented duplicates. The figure states that the RAM
consumption is more than halved by the already applied page deduplication techniques.

This is only a rough estimation as some of the virtual duplicates refer to shared memory
and it is questionable whether this memory should be considered as already deduplicated
memory or as memory which must be deduplicated by design.

5.2.1. Group: Remainder

The remainder group demands only a small amount of RAM (here: 1552.4 pages) as
most processes are lightweight or do not even have an userland address space at all (e.g.,
swapper or kthread).

The small memory footprint of the single tasks result in a very small amount of shareable
pages (here: 95.6). Most of the duplicates are named pages and often originate from
libraries like 1ibc.so.

For a list of processes in this group refer to Figure 5.3.

21/ 30 J. Julino

5.2. CLASSIFICATION OF SHARING OPPORT... CHAPTER 5. EVALUATION

swapper kseriod rpciod/0 installd
init kmmcd ueventd keystore
kthreadd pdflush mmcqd qemud
ksoftirqd/0 pdflush servicemanager sh
events/0 kswapdO vold adbd
khelper aio/0 netd sh
suspend mtdblockd debuggerd

kblockd/0 kstriped rild

cqueue hid_compat mediaserver

Figure 5.3.: Processes Inside the Remainder Group

5.2.2. Group: Kernel

The group Kernel covers 13390.2 physical pages of which 441.2 ones are duplicates.

As the kernel does not own the data structures describing the address space of a process,
we cannot use most capabilities of our tools to gain information! on the sources of
duplication.

Only one hash of the about 60 hashes representing the page content involved in the
kernel’s duplicates does occur in another group than Kernel. This hash represents pages
with all bits set to 1. These pages are likely to be unsuitable for deduplication, see next
subsection (§ 5.2.3) for details.

5.2.3. Group: Dalvik vm

With 3591.8 duplicates of 29415.6 physical pages the Dalvik vM group is the most
important source of page duplication on our android device.

An important detail of the detected duplicates is that a single page content (a page
with all bits set to 1) is the source for about 397 duplicates on average (max. 484). A
lot of this pages are part of a gralloc-buffer|3] which contains memory for drawing
accelerated graphics.

It is at least questionable if these pages can be and should be deduplicated.

Details on Duplicates

We partitioned the physical duplicates into anonymous/named pages and write al-
lowed /not allowed, the results are shown in Table 5.6.

Please mind the peculiarity of Android concerning anonymous shared memory (see § 2.4.1
for details).

'E.g., assigned filename, access rights, involved processes, ...

J. Julino 22/ 30

CHAPTER 5. EVALUATION 5.3. CONCLUSION

write forbidden ~ 0.6%
write allowed ~ 52.1%
write forbidden ~ 0.4%
write allowed — ~ 46.9%

anonymous pages: ~ 52.7%

named pages: ~ 47.3%

Table 5.6.: Details on Physical Duplicates in Dalvik vM

About 53% of the duplicates are anonymous and are therefore theoretically mergeable
by kKSM. As almost all duplicated pages are write-able we cannot make any statement on
the chance that these pages stay unmodified for a reasonable amount of time (important
for KSM to be work with an acceptable overhead).

The named duplicates are heavily affected by the peculiarity of Android concerning
anonymous shared memory using ashmem (see § 2.4.1 for details); our further measure-
ments show that about 95% of Dalvik vM’s named pages affected by duplication are
attached to a file starting with dev/ashmem.

As KSM currently cannot handle named pages, Dalvik vM must be modified to merge this
duplicates. Whether it is possible to replace ashmem with a more KSM friendly approach
is a target for further research.

5.3. Conclusion

The only group whose duplicates have a significant impact on the memory footprint is
Dalvik vMm.

There are two approaches for deduplication which might reduce the page duplication,
but both need additional research to be done:

Modification of Dalvik vM To be able to name the reasons for duplication in Dalvik
VM we need more information on the source of the duplicated pages inside the vM;
to achieve this we could develop a module for our tools which reveals the internals
of the Dalvik vMs running inside the target.

Usage of Ksm We miss information on how often the duplicated pages change to known
if running KSM is reasonable.

As mentioned in § 4.4.3 our tools assume a single page size and handle superpages like
multiple standard-sized pages; merging duplicates located on superpages would possibly
imply to split the superpage into normal pages — we consider this to be unwanted.

We modified our tools to name address spaces using superpages (referred to as Section-
s/Supersections on ARM), to estimate the effect on our measurements. As the kernel’s
address space was the only one containing superpages, the main source of page duplica-
tion (Dalvik vM) is not affected.

23/ 30 J. Julino

CHAPTER 6. CONCLUSION

6. Conclusion

Mobile devices are mostly not equipped with huge amounts of RAM. One reason for this
is the negative impact on the power consumption and the size of the device.

On Android devices as many applications as possible should fit into RAM, to allow
fast application switching. Our evaluation on duplicated pages proved that there still
exist memory saving potential, even though Androids 0s already uses multiple passive
deduplication techniques.

Our measurement yields that 9.5% of all non-free pages are duplicates in a common
usage scenario. (Zeroed pages and userland pages, which are used for memory mapped
1/0, are not included in the measurement.)

We found Dalvik vM to be the main source of duplication. Most duplicates originating
from Dalvik VM are anonymous pages or anonymous memory represented as named
pages in the kernel because of the ashmem (§ 5.2.3).

There are two approaches for deduplication which can be taken into account:

The first one is to modify Dalvik vM to further reduce the amount of duplicates. As
Dalvik vM already uses multiple approaches to prevent the arising duplicates this is
likely to be difficult.

The second one is a KSM like approach. Running KSM on a mobile device is critical
and it would be absolutely necessary to reduce the computation time of KSM to a min-
imum — running KSM only on application switch and programmatically classifying the
main sources of duplication and hinting only this pages to KSM might help reaching a
low CPU usage.

Whether it is possible to merge the duplicated pages with a reasonable overhead (im-
plementation time, CPU-time, battery runtime) is a target for further research.

The measurement tools we developed for this theses are able to perform an offline analysis
of a memory dump from an ARM based Android device. Supporting other Linux based
systems on other architectures requires only minor changes to the code.!

Our tools allow access to basic information on the address space layout, page properties
and statistics on duplicates. In particulars we are able to exclude pages which are marked
as free inside the kernel.

We currently assume a single page size in our implementation. Although it has no
huge impact on our measurements (§ 5.3), this is a drawback. To remedy this the tools
must be modified to record the pages’ origin (normal page or superpage) and use this
information in the statistics.

'This systems must still meet the requirements concerning the memory layout we name in § 4.2.

J. Julino 24/ 30

APPENDIX A. APPENDIX

A. Appendix

25/ 30 J. Julino

ouruf °f

0¢ /9

ta%EE,/”””/””’
mm

active_mm
parent

real _parent

~ VIn_mm

vm_start
vm_end
vim_next
vm_flags
vm_file

f_dentry\

IA/

d_name\

I/

name

node_zones|| ——
node_mem_map
kswapd

free_pages
__per_cpu

free_area| |

per_cpu_pages

free_list]]
nr_free

count
batch
1ists[h

Not all members of the structures are named

It/

flags
_count
1lru

Figure A.1.: Kernel Structures Used In Our Tools (Based on Information from [2, 22, 23, 10])

XIANHddV 'V XIANHddV

Glossary

B. Glossary

COW copy-on-write. 3

KSM Kernel Shared Memory also known as Kernel Same Page Merging (see § 2.3). 3,
23, 24

MD5 Message-Digest Algorithm 5. 8
OS operating system. 1-4, 7, 19, 24

PFN A Physical Frame Number (PFN) is used to identify a physical page/frame. In this
document we assume that the frame referred to by the PFN 0 covers addresses 0
to (page size —1). 7, 8

RAM random access memory. 1, 4, 6-8, 18, 21, 24
UMA uniform memory access. 11

VM virtual machine. 4, 23

Dalvik vM Dalvik Virtual Machine. iv, v, 4, 20-24

delta In this document: Distance from the start of a structure to an entry inside this
structure. 2, 3, 10-15

offset In this document: Address in the target system. Refers to physical addresses,
unless stated otherwise. (We introduce this term to avoid confusion with addresses
on host system). 2, 10-15

27/ 30 J. Julino

Bibliography

Bibliography

[1] Android Developers: Security and permissions, . URL http://developer.
android.com/guide/topics/security/security.html. last access: 11. March
2012.

[2] Android Kernel Headers, . URL https://android.googlesource. com/platform/
external/kernel-headers. git commit 4879d6a8. .. from 7. December 2010.

[3] Android Libhardware, . URL https://android.googlesource.com/platform/
hardware/libhardware. git commit f1d76bb7... from 28. November 2011.

[4] Android SDK Version r16, . URL http://developer.android.com/sdk/index.
html. last access: 25. January 2012.

[5] David Anderson. White Paper: Red Hat Crash Utility, . URL http://people.
redhat.com/anderson/crash_whitepaper/. last access: 24. January 2012.

[6] David Anderson. Red Hat Crash Utility: Sourcecode 6.0.2, . URL http://people.
redhat.com/anderson/. last access: 22. December 2011.

[7] Andrea Arcangeli, Izik Eidus, and Chris Wright. Increasing memory density by us-
ing KSM. URL http://www.kernel.org/doc/ols/2009/01s2009-pages-19-28.
pdf. last access: 12. January 2012.

[8] ARM1176JZ-S Technical Reference Manual. ARM Limited, 2009. Revision: rOp7.

[9] Dan Bornstein. Google I/O: Dalvik-VM-Internals, 2008. URL http://sites.
google.com/site/io/dalvik-vm-internals. last access: 12. January 2012.

[10] D.P. Bovet and M. Cesati. Understanding the Linux Kernel. O’Reilly Series.
O’Reilly, 3rd edition, 2006. ISBN 9780596005658.

[11] Stefan Brahler. Analysis of the Android Architecture, October 6 2010. URL http:
//os.ibds.kit.edu/.

[12] Edouard Bugnion, Scott Devine, Kinshuk Govil, and Mendel Rosenblum. Disco:
running commodity operating systems on scalable multiprocessors. ACM Trans.
Comput. Syst., 15(4):412-447, November 1997. ISSN 0734-2071. doi: 10.1145/
265924.265930. URL http://doi.acm.org/10.1145/265924.265930.

[13] Aaron Carroll and Gernot Heiser. An analysis of power consumption in a smart-
phone. In Proceedings of 2010 USENIX Annual Technical Conference, USENIX,

J. Julino 28/ 30

http://developer.android.com/guide/topics/security/security.html
http://developer.android.com/guide/topics/security/security.html
https://android.googlesource.com/platform/external/kernel-headers
https://android.googlesource.com/platform/external/kernel-headers
https://android.googlesource.com/platform/hardware/libhardware
https://android.googlesource.com/platform/hardware/libhardware
http://developer.android.com/sdk/index.html
http://developer.android.com/sdk/index.html
http://people.redhat.com/anderson/crash_whitepaper/
http://people.redhat.com/anderson/crash_whitepaper/
http://people.redhat.com/anderson/
http://people.redhat.com/anderson/
http://www.kernel.org/doc/ols/2009/ols2009-pages-19-28.pdf
http://www.kernel.org/doc/ols/2009/ols2009-pages-19-28.pdf
http://sites.google.com/site/io/dalvik-vm-internals
http://sites.google.com/site/io/dalvik-vm-internals
http://os.ibds.kit.edu/
http://os.ibds.kit.edu/
http://doi.acm.org/10.1145/265924.265930

Bibliography

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

23]

[24]

pages 271-284. USENIX Association, 2010. ISBN 978-931971-75-1. URL http:
//static.usenix.org/events/atc10/tech/.

Andrew Case, Lodovico Marziale, and Golden G. Richard III. Dynamic recreation
of kernel data structures for live forensics. Digital Investigation, 7, Supplement(0):
32-40, 2010. ISSN 1742-2876. URL http://www.sciencedirect.com/science/
article/pii/S1742287610000320. last access: 18. March 2012.

Ben Cheng and Bill Buzbee. Google 1/O: A JIT compiler for Android’s
Dalvik VM, 2010. URL http://www.google.com/events/io/2010/sessions/
jit-compiler-androids-dalvik-vm.html. last access: 12. January 2012.

Jonathan Corbet, Alessandro Rubini, and Greg Kroah-Hartman. Linux Device
Drivers, 3rd Edition. O’Reilly Media, 2005. ISBN 978-0-596-00590-0.

Emilien Girault. Volatilitux sourcecode 1.0. URL http://code.google.com/p/
volatilitux/. last access: 15. January 2012.

Mel Gorman. Understanding the Linuz Virtual Memory Manager. Prentice Hall,
2004. ISBN 0-13-145348-3.

Thorsten Groninger. Analyzing Shared Memory Opportunities in Different Work-
loads, November 21 2011. URL http://os.ibds.kit.edu/.

J. Alex Halderman, Seth D. Schoen, Nadia Heninger, William Clarkson, William
Paul, Joseph A. Calandrino, Ariel J. Feldman, Jacob Appelbaum, and Edward W.
Felten. Lest we remember: cold-boot attacks on encryption keys. URL http://

usenix.org/event/sec08/tech/full_papers/halderman/halderman.pdf. last
access: 22. March 2012.

Heise Zeitschriften Verlag GmbH & Co. KG. VMware virtualisiert
Android-Smartphones. URL http://www.heise.de/mobil/meldung/
VMware-virtualisiert-Android-Smartphones-1191196.html. last access:

11. March 2012.

Wolfgang Mauerer. Linux Kernelarchitektur : Konzepte, Strukturen und Algorith-
men von Kernel 2.6. Hanser, Miinchen, 2004. ISBN 3-446-22566-8.

Wolfgang Mauerer. Professional Linux Kernel Architecture. Wrox Programmer to
Programmer. Wiley, Indianapolis, Ind., 2008. ISBN 978-0-470-34343-2.

Grzegorz Milos, Derek G. Murray, Steven Hand, and Michael A. Fetterman. Satori:
Enlightened page sharing. In Proceedings of 2009 USENIX Annual Technical Con-
ference, USENIX, pages 1-14. USENIX Association, 2009. ISBN 978-1-931971-68-3.
URL http://static.usenix.org/event/usenix09/tech/.

29/ 30 J. Julino

http://static.usenix.org/events/atc10/tech/
http://static.usenix.org/events/atc10/tech/
http://www.sciencedirect.com/science/article/pii/S1742287610000320
http://www.sciencedirect.com/science/article/pii/S1742287610000320
http://www.google.com/events/io/2010/sessions/jit-compiler-androids-dalvik-vm.html
http://www.google.com/events/io/2010/sessions/jit-compiler-androids-dalvik-vm.html
http://code.google.com/p/volatilitux/
http://code.google.com/p/volatilitux/
http://os.ibds.kit.edu/
http://usenix.org/event/sec08/tech/full_papers/halderman/halderman.pdf
http://usenix.org/event/sec08/tech/full_papers/halderman/halderman.pdf
http://www.heise.de/mobil/meldung/VMware-virtualisiert-Android-Smartphones-1191196.html
http://www.heise.de/mobil/meldung/VMware-virtualisiert-Android-Smartphones-1191196.html
http://static.usenix.org/event/usenix09/tech/

Bibliography

[25] Kazuhiro Suzuki, Dongvu Tonien, Kaoru Kurosawa, and Koji Toyota. Birthday
Paradox for Multi-collisions. In Min Rhee and Byoungcheon Lee, editors, Infor-
mation Security and Cryptology — ICISC 2006, volume 4296 of Lecture Notes in
Computer Science, pages 29—40. Springer Berlin / Heidelberg, 2006. ISBN 978-3-
540-49112-5.

[26] Carl A. Waldspurger. Memory resource management in VMware ESX server.
SIGOPS Oper. Syst. Rev., 36(SI):181-194, December 2002. ISSN 0163-5980. doi:
10.1145,/844128.844146. URL http://doi.acm.org/10.1145/844128.844146.

[27] Xiaoyun Wang and Hongbo Yu. How to Break MD5 and Other Hash Functions. In
Ronald Cramer, editor, Advances in Cryptology — EUROCRYPT 2005, volume 3494

of Lecture Notes in Computer Science, pages 19-35. Springer Berlin / Heidelberg,
2005. ISBN 978-3-540-25910-7.

J. Julino 30/ 30

http://doi.acm.org/10.1145/844128.844146

	1 Introduction
	2 Background
	2.1 Terms
	2.2 Existing Tools
	2.3 Page Deduplication
	2.4 Android

	3 Design
	3.1 Choosing a Measurement Approach
	3.2 Page Content Representation
	3.3 Hash Collision Consequences

	4 Implementation
	4.1 Target
	4.2 Assumptions/Constants
	4.3 Preparation Stage
	4.4 Output Stage

	5 Evaluation
	5.1 Total Sharing Opportunities
	5.2 Classification of Sharing Opportunities
	5.3 Conclusion

	6 Conclusion
	A Appendix
	B Glossary

