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Abstract
Memory scanning deduplication techniques, as implemented in
Linux’ Kernel Samepage Merging (KSM), work very well for dedu-
plicating fairly static, anonymous pages with equal content across
different virtual machines. However, scanners need very aggressive
scan rates when it comes to identifying sharing opportunities with a
short life span of up to about 5 min. Otherwise, the scan process is
not fast enough to catch those short-lived pages.

Our approach generates I/O-based hints in the host to make the
memory scanning process more efficient, thus enabling it to find and
exploit short-lived sharing opportunities without raising the scan
rate. Experiences with similar techniques for paravirtualized guests
have shown that pages in a guest’s unified buffer cache are good
sharing candidates. We already identify such pages in the host when
carrying out I/O-operations on behalf of the guest. The target/source
pages in the guest can safely be assumed to be part of the guest’s
unified buffer cache. That way, we can determine good sharing hints
for the memory scanner. A modification of the guest is not required.

We have implemented our approach in Linux. By modifying the
KSM scanning mechanism to process these hints preferentially, we
move the associated sharing opportunities earlier into the merging
stage. Thereby, we deduplicate more pages than the baseline system.
In our evaluation, we identify sharing opportunities faster and with
less overhead than the traditional linear scanning policy. KSM needs
to follow about seven times as many pages as we do, to find a sharing
opportunity.
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1. Introduction
Memory size has become a scarce resource in many computing
scenarios, foremost in cloud computing. In this scenario, virtual
machines (VMs) make flexible allocation, reallocation and consoli-
dation of multiple operating systems onto fewer physical machines
possible, while maintaining strong service isolation.

The number of VMs that can be consolidated is highly dependent
on the amount of available memory. However, in such environments,
there is plenty of redundant data. Pages with equal content can be
merged to a single page and shared in a copy-on-write fashion.
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However, the information loss that occurs in the interplay be-
tween I/O-devices, host physical-, guest physical-, and guest virtual
memory leads to the so-called semantic gap [7]. The lack of seman-
tic information that the host1 has about guest activities is actually
one of the key features of virtualization: The host does not know or
need to know what OS, file system, etc. are used inside the VM. This
way, however, there is not enough semantic information to share
duplicate pages through traditional sharing mechanisms.

Prior work has made deduplication of redundant pages possible
and thereby increased the available main memory, either by closing
the semantic gap with paravirtualization [5, 20], or by mitigating the
semantic gap through scanning for duplicate contents in anonymous
pages [1, 25]. Both techniques have drawbacks: Paravirtualization
implies modifying both the host and guest. To apply these modifica-
tions to all guests is at least a great burden: In some cases it cannot
be achieved as easily as loading a kernel module, which is a common
way to implement paravirtualization for device drivers. It might not
even be possible at all to modify commercial or legacy guests due to
license restrictions or the lack of source code. Memory scanning, in
turn, has its downside when it comes to efficiency and effectiveness.
Especially the merge latency – the time between establishing certain
content in a page and merging it with a duplicate – is higher in
systems based on content scanning. Although the scan rate (pages
per time interval) is often variable and may be fine tuned [9, 23], it
is generally set to scan very slowly. Memory scanners directly trade
computational overhead and memory bandwidth with deduplication
success.

The main contribution of this paper is the combination of hints,
based on read and write operations in the virtual file system of
the host, with memory-scanning–based deduplication systems: We
propose to use those I/O-based hints to make the memory scanning
process more efficient and in consequence enable it to find and
exploit short-lived sharing opportunities without raising the scan
rate.

Figure 1 gives an overview over the longevity of sharing op-
portunities. Pure brute-force scanning for duplicate pages in main
memory either requires too many resources to justify the benefit, or
is too slow to identify the majority of the plenty short-lived sharing
opportunities in time.

The source of identical pages in different VMs’ memory is most
commonly their virtual disk image (VDI). Between 63.77% and
94% of shareable pages are part of the page cache [15], a property
which is exploited in approaches that employ sharing-aware (virtual)
block devices to find duplicates in main memory [5, 16, 20]. These
approaches, however, cannot find duplicate pages in anonymous
memory.

1 We use the term host interchangeably with virtual machine monitor (VMM),
hypervisor, or host OS to describe the system layer underneath the guest OS.
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Figure 1. The longevity of sharing opportunities between two VMs
that are compiling Linux v3.0. Notice the logarithmic scale. Sharing
opportunities that last between 30 sec and 5 min are by far the most
common.

Our approach is also based on this property, that most shareable
pages stem from the VDI. We show that extending main memory
scanning with out-of-order hints can improve the deduplication
effectiveness significantly. Hints are issued for all main memory
pages that are the target of disk-read or source of disk-write
operations (VFS-read, VFS-write, or mmap flush) in the host. When
the guest issues a read request from the VDI, the virtual DMA
controller in the host handles the request and performs a read request
on the physical disk on behalf of the guest. The assumption is that
the target of that DMA transaction is a page in the guest’s buffer
cache and thus a good sharing candidate. The same is true in the
opposite direction – when a buffer cache page is flushed to disk, we
record this as a write to the VDI in the host. In both cases the host
generates a hint to the memory scanner for the involved memory
page to check the page for being a duplicate the next time it runs.
Note that we only modify the host in our approach – we do not rely
on paravirtualization techniques.

We have implemented our approach in Linux. By modifying the
KSM scanning mechanism to process these hints preferentially, we
move the associated sharing opportunities earlier into the merging
stage and can thereby deduplicate more pages than the baseline
system. In our evaluation, we show that we can identify sharing
opportunities faster and with less overhead than traditional linear
scanning policies.

The remainder of this paper is structured as follows: We review
Kernel Samepage Merging (KSM) – the basis for our implementa-
tion – in Section 2 before we describe our approach and the imple-
mentation of our prototype thoroughly in Section 3. In Section 4, we
present the results of our evaluation. We give an overview of related
work on memory deduplication in Section 5. Finally, we conclude
and depict future research directions in Section 6.

2. Memory Scanning with KSM
Our implementation is based on Kernel Samepage Merging (KSM),
also known as Kernel Shared Memory. KSM is a popular memory-
deduplication approach built into the Linux mainline kernel. It can be
used to scan for and merge equal, anonymous main memory pages.
Note that KSM is not bound to VMs – it works on anonymous
memory regions of any process. However, KSM only regards
specifically advised pages as mergeable. As all virtual memory
that stems from VMs is regarded as anonymous memory by the
host due to the semantic gap, QEMU [3] invokes the appropriate
madvise call on all virtual memory areas of all VMs.

KSM uses two red-black-trees as its main data structures. The
stable tree stores guest pages that have already been merged, while
the unstable tree records pages that do not change frequently, and
are thus suitable sharing candidates, without protecting those pages
from being written to.

Figure 2 depicts the KSM scan process. KSM incrementally
searches for pages that do not change frequently by calculating a
hash value (jhash2) for every scanned page. If the calculated hash
value differs from the one recorded in the previous scan round, the
hash value record is updated and the scan continues with the next
page. Otherwise the associated page is inserted into the unstable tree.
The entire page’s content is used as an index for insertion or lookup,
not the hash value. In the average case the insertion or lookup code
only needs to memcmp a small portion of the page to infer if it needs
to go left or right on every one of the O(log n) levels in the tree.
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Figure 2. KSM’s high-level workflow. KSM allocates a structure
containing information such as a checksum and sequence number
for every page. Get next page refers to getting the next such structure
from a circular list that contains an entry for every advised page in
the system. Only pages whose checksum has not changed since the
last visit are inserted into the unstable tree. For a merge, one of the
involved pages must already be in either the stable or the unstable
tree. KSM drops the unstable tree and starts over after it has visited
all advised pages.

Pages are not mapped read-only on insertion into the unstable
tree but remain writable for the VM; the location in the tree is
thus purely based on the value the page had at the time of its
insertion. The tree may break if pages in the unstable tree are written.
The described heuristic keeps the memory scanner from inserting
frequently written pages into the unstable tree, however it does not
guarantee that the pages will not be modified after being inserted. In
our benchmarks with an unmodified Linux v3.0 KSM, up to almost
70% of the nodes cannot be reached in the unstable tree after a
full scan, due to page modifications after insertion. A very radical
approach is chosen to clean up broken branches of the unstable tree:



When a full scan has been performed, the entire unstable tree is
dropped and a new one is built from scratch.

Up to this point the algorithm has not merged pages yet. Before
calculating the hash value of a page as described above, KSM first
checks if the page’s content is already in the stable tree – the data
structure that contains all merged pages. If that is the case, the pages
are merged. If the page is not in the stable tree, and the page also
has not changed recently according to its hash value, the page is
searched in the unstable tree. If a page with the same content can
be found in the unstable tree, the page is copied, remapped read-
only, and inserted into the stable tree. Then, the matched page is
purged from the unstable tree and the two source pages are freed.
If no match was found, the page is only inserted into the unstable
tree. This may also happen when there actually is a page with the
same content in the unstable tree, which is not reachable, however,
because the page itself or a page in the search path has changed
since its insertion.

The scanning process is repeated until all advised pages are
scanned. Then, the unstable tree is dropped and the process starts
from the beginning. Only the hash values and the stable tree remain.

3. Approach and Implementation
To show the effectiveness and efficiency of our approach, we have
extended KSM in Linux 3.0. We have chosen KSM because Linux
with QEMU is a popular host and KSM already implements many
of the mechanisms we need.

In the following paragraphs we will explain our approach in
detail and highlight some key issues that we encountered and how we
solved them. We discuss how we generate (§ 3.1), store (§ 3.2), and
process (§ 3.3) deduplication hints interleaved to KSM’s periodic
memory scan. We need to add hinted pages to KSM’s unstable tree
immediately, and bypass KSM’s heuristic to filter out frequently
changing pages, to be effective. To keep the unstable tree from
degenerating due to modified pages, we map hinted pages read-only
to detect such changes (§ 3.4).

3.1 Generating Deduplication Hints
We have extended madvise so we can call it from inside the kernel
and added a new advise-class for our hinting mechanism. We have
then added code to the VFS read functions (read, readv) to advise
the read target pages, and the VFS write functions (write, writev)
to advise the write source pages with our new flag and thereby
generate a deduplication hint. The code only generates a hint when
the target/source is a page that is already advised as mergeable to
KSM (e.g., it is part of a VM guest’s memory). In this case, madvise
inserts the hinted memory area into our storage structure to record
this area to be processed by the page scanner.

We do not need to modify the guest in any way; the mechanism
even works for regular, non-VM processes if the associated page is
mergeable by KSM.

3.2 Storing Hints and Coping with Bursts
I/O is generally bursty; as a result, I/O-based hints are also issued
in bursts. When obeying to the KSM scan rate (generally set to
very low settings), we cannot always keep up with the amount of
incoming hints 2.

Storing our hints in an unbounded queue does not work well in
this scenario, as we need to actively deploy aging and pruning
mechanisms. Otherwise, the queue will keep growing and the
processed hints will get older over time. Eventually, we will fall
behind to a state in which we do not find any sharing candidates

2 Even with aggressive settings we would not be able to cope with the hint
flood of some bursts. In workloads with very high I/O-throughput some
million hints can be generated in a matter of seconds.

through the hinting mechanism at all, as the hinted pages have
already changed their content until we process them.

We have chosen another option to store our hints with low
overhead and no required maintenance work: we implemented a
bounded circular stack (Figure 3).
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Figure 3. Storage of hints in the bounded circular stack.

Due to the nature of a bounded circular stack, we will always
process the newest hints first while old hints are automatically
overwritten when the stack is full – an automatic pruning and aging
mechanism which proved to be fast and robust.

3.3 Processing Deduplication Hints
We have extended the KSM workflow to incorporate our hinting
mechanism. As depicted in Figure 4, we have built an operating
cycle for processing our hints similar to that of KSM. Our hinting
mechanism runs interleaved with the full system scan-spurts (wake-
ups) that KSM already implements for anonymous, advised pages.
We obey the rate limits set for KSM and produce roughly the
same load as KSM with the same settings. The interleaving ratio is
configurable – hint runs hint-processing-spurts interleaved with
scan runs scan-spurts. Using this policy, we can guarantee that
the linear scan, which can also catch non-I/O sharing opportunities,
does not starve due to a flood of hints.

When we are in a scan-spurt, we run the traditional linear
scanning policy only. In a hint-processing-spurt however, we process
hints as long as there are hints left and we have not exceeded the
scan rate. The remaining slots that we can process until exceeding
the scan rate are used for the linear scan.

Our mechanism first checks whether the hinted page’s content is
in the stable tree already. If this is the case, we remap the page to
the one in the stable tree and free the hinted page. If the hinted page
is not in the stable tree, we calculate the checksum of the page and
check the unstable tree. If a sharing partner is found, we merge the
pages and add the resulting page into the stable tree. If we cannot
find a sharing candidate we add the page to the unstable tree.

3.4 Degeneration of the Unstable Tree
The original KSM implementation has a heuristic that keeps pages
that are written frequently from being inserted into the unstable
tree. Only pages that keep the same hash value over two scanning
rounds are inserted (see Section 2). We want to merge hinted pages
as quickly as possible, without waiting for an entire scan cycle to
finish. Therefore, we add pages to the unstable tree immediately
when processing a hint.

The pages that are associated with virtual DMA read and write
requests can generally be assumed to be part of the unified buffer
cache in the guest. The unstable tree degenerates predictably when
applications running inside the guest fill the page-cache from the
inside of the VM. In this situation, the guest replaces buffer cache
entries that stem from the VDI without the host noticing. Thus,
hinted pages in the unstable tree become modified and thereby
unreachable in the tree. Furthermore, when pages in inner tree-nodes
change, their siblings and therefore entire sub-trees may also become
unreachable. The host can only pick up on such modifications



KSM 

periodic scan

Hints left?

Get next hint

Search in

stable tree

Page found?

Merge page

No

Search in

unstable tree

Page found?

Merge pages and

move to stable tree

Insert page into 

unstable tree

Standard KSM pathStandard KSM path

Yes

Yes

Map page read-only

Yes

No

No

Calculate page hash

Figure 4. The high-level workflow of our hinting mechanism. For
every hint we process, we first check if a merge partner can be found
in either the stable or in the unstable tree. If we find a match, we
merge the pages in the same way KSM does. Otherwise, we remap
the page read-only (if it is not already), calculate its hash-value and
insert it into the unstable tree. When all hints have been processed
before the scan rate is exceeded, we continue with the regular KSM
scan path.

once the guest flushes the written page to the virtual disk. KSM’s
natural repair mechanism (i.e., dropping the unstable tree after each
complete scanning round) is slowed down by our modifications as
the number of full memory scan cycles per time decreases: The scan
rate stays constant, but multiple hints can and will be issued on the
same pages during a scan cycle.

One way to counter the more likely degeneration of the unstable
tree is to map hinted pages that are inserted into the unstable tree
as read-only. This way we can use write faults on hinted pages as
a signal to remove these pages from the unstable tree and thereby
prevent the tree from becoming unstable when hinted pages are
written. This is not the same mechanism as breaking COW pages,
which happens when writing to a page in the stable tree. The page
does not need to be copied but only remapped read-write and
removed from the tree. A flush operation from the buffer cache
to the (virtual) disk has a much higher latency than a page fault
does. We can therefore map hinted pages read-only with justifiable
overhead.

4. Evaluation
We have conducted several benchmarks to show the effectiveness
and efficiency of our approach. We were particularly interested in
seeing whether our system can merge more pages with an overhead
that is comparable to KSM, our baseline system. To get results that

can be related to prior work, we have chosen one of the benchmarks
that were used to evaluate Satori [20]: Compiling the Linux kernel
with 512 MB of RAM available in the VM. Our benchmarks have
been conducted on a PC with an Intel i7-2600K processor, 24 GB
of Kingston DDR3 RAM in total, and an Intel X25-E SSD. Ubuntu
Linux 11.04 64-bit served as the host and also as the guest.

To be able to measure sharing opportunities and exploited shar-
ing accurately, we have written a kernel module comparable to
Exmap [4] that dumps page table information and page content di-
gests [11]. Furthermore, we output internal information and statistics
from KSM and our hinting mechanism through the sysfs interface.

We divided our evaluation into the following three parts. First,
we compare the impact that different configuration parameter values
have on the deduplication performance and use these results to
determine good default settings for the following experiments in
§ 4.1. We also address the stability of the unstable tree and the
impact of our approach to mitigate the degeneration of the tree in
this paragraph. We demonstrate that our revised algorithm is much
more effective than the baseline system through merging short-lived
pages in § 4.2. Finally, we show that the efficiency of our approach
is superior to KSM in § 4.3 – we need to visit about a seventh of the
pages and thus need less CPU cycles and memory bandwidth to find
a sharing candidate.

Unless specifically stated otherwise, we use the parameters that
can be found in Table 1 for our benchmarks.

Parameter Value Description

scan run 1 Interleave each scan-spurt. . .
hint runs 1 . . . with one hint-spurt

pages to scan 100 # of pages to scan on wake-up
sleep time 100 Sleep-time between spurts [ms]

map hints ro 1 Hinted pages are mapped read-only
stack size 1024 Size of the hints buffer

Table 1. Default settings in our various benchmarks.

4.1 Configuration Parameters
We have introduced several new configuration parameters and have
conducted experiments to determine good default values for the
subsequent benchmarks in this section.

Stack Size We use a bounded circular stack to store our hints. The
size can be configured through the procfs interface. We have run a
kernel build with different sizes of that hint buffer to find a good
configuration. The results are depicted in Figure 5. We have chosen
a stack size of 1024 entries as the default.
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Figure 5. Deduplication effectiveness with varying stack sizes.



Interleaving Ratios Another parameter that we have introduced
is the ratio between hint-spurts (hint runs) and scan-spurts
(scan runs). The deduplication performance with different config-
urations is depicted in Figure 6.
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Figure 6. Deduplication performance with different hint-spurt vs.
scan-spurt ratios. The 0:1 configuration corresponds to KSM.

The 0:1 benchmark corresponds to the original KSM imple-
mentation, as no hint-spurt is interleaved with one scan-spurt. We
have chosen the 1:1 configuration as the default for all subsequent
experiments.

The Unstable Tree’s Stability Our hinting mechanism inserts
pages into the unstable tree without obeying to KSM’s heuristic:
KSM only inserts pages into the unstable tree if their hash value has
not changed since the last pass, while we insert hinted pages imme-
diately. We have examined how much this affects the stability of the
unstable tree and the overall memory-deduplication performance.

A good metric for the stability of the tree is the ratio between
the number of nodes in the tree and the number of nodes that can be
found when searching for them in the tree. If a page cannot be found
in the tree, it cannot be merged. Instead, it is inserted again – this
time in another place. Table 2 shows the percentage of reachable
pages in the unstable tree in different configurations in the kernel
build benchmark after a full scan cycle.

Vanilla KSM Hints (all rw) Hints (hints ro)
33.6% - 53.0% 10.0% 98.9%

Table 2. Percentage of the unstable tree that is reachable at the
end of a scan cycle. Adding hints without KSM’s hash value
heuristic degenerates the tree. Mapping the hinted pages read-only
but leaving the scanned pages read-write improves the tree’s stability
significantly. The I/O-pages are responsible for degenerating the
tree.

We have found that pages which are part of the buffer cache
are the ones that are most likely to change among all pages in the
unstable tree. This happens when buffer cache pages are written
back, evicted, and replaced by another file’s pages in the guest.
Buffer cache pages have the characteristic that they do not change
frequently, which is why they make it into the unstable tree in the
first place, but definitely change at the time they are replaced.

Using I/O-based hints, pages from the buffer cache are inserted
into the unstable tree earlier than other pages. This gives them more
time to degenerate the unstable tree – an unwelcome side effect.
To mitigate this effect, we map all pages that are inserted into the
unstable tree through hints to be read-only, as described in § 3.4.

Note, that we map only a fraction of the unstable tree nodes to
be read-only in our approach. To show that we are mapping the

“right” pages read-only and leave the ones that do not degenerate the
unstable tree read-write, we have run a benchmark where our hinting
mechanism is active and all pages are unconditionally mapped read-
only when they are inserted into the unstable tree. Furthermore,
we have added a modified KSM version without hinting, that also
maps all pages that are inserted into the unstable tree read-only. This
effectively keeps the tree from degenerating altogether – all nodes
are always reachable.

The resulting merge-performances are depicted in Figure 7.
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Figure 7. Merge performances depend heavily on the stability of
the unstable tree and the temporal locality of unstable tree accesses.

In the long run, deduplication ratios depend on the quality
of the unstable tree. If it degenerates, the effectiveness of KSM
drops drastically. KSM’s hash heuristic is performing poorly in our
benchmark. We get much higher deduplication ratios when we map
all items in the unstable tree read-only. In the hinting mechanism
we always map hinted entries that are inserted into the unstable
tree read-only. There is not much benefit in also trapping updates
of pages that were added to the unstable tree by scanning. Not
mapping pages read-only at all does damage the tree. However,
as the accesses are close together in this benchmark, it does not
hurt the performance as much as we would have anticipated after
having seen Table 2. In a less fortunate access order, hinting without
mapping unstable tree pages read-only would find much less sharing
opportunities, most likely even less than the default KSM process.
If we map the hinted pages read-only we keep an almost perfectly
intact unstable tree and thereby avoid this negative effect.

Concluding Remarks Concerning the Unstable Tree We map
hinted pages read-only solely to work around KSM’s design de-
cisions yet stay comparable to the original KSM performance. The
bottom line is that red-black trees are a poor choice even when
adding the checksum heuristic; the unstable tree degrades even with-
out our extensions. We just happen to catch the pages that degrade
with the highest probability to break the tree. Hash tables, as used in
ESX [25], are a suitable choice to deal with unstable pages without
the need for mapping pages read-only or pruning degenerated data.
When using a hash table to store deduplication candidates, there is
also no need to flush the contents after a scan-round.

One could argue that, compared to the tree-approach, there is a
performance drawback in using a hash value of the entire page as
the index. Note that we do not need to freshly calculate the index
hash value but re-use the checksum calculated in the previous stage
of the scanning algorithm.

4.2 Deduplication Effectiveness
The key point of this work is to enable memory scanning deduplica-
tion systems such as KSM to find short-lived sharing opportunities



quickly enough to exploit them and thereby further increase the
memory density of virtualized environments. We have run our I/O-
hinting extended mechanism, the original KSM mechanism, and
KSM with a read-only unstable tree in different scan rate settings in
the kernel-build benchmark. The results can be seen in Figure 8.
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Figure 8. Kernel build merge performance at 100 pages per wake-
up with varying wake-up times. Top to bottom: 20 ms, 100 ms,
200 ms. The first graph also shows the theoretical maximum of
sharing opportunities that could be exploited.

Our extension always performs better than the original KSM
and even compared to KSM with an unstable tree that is fully
mapped read-only. As expected, the improvement is at its peak
when given long time intervals between wake-ups. This is the time
when efficiency is most important and this efficiency directly affects
the deduplication effectiveness.

The merge-latencies are reduced significantly. We start merging
pages from the start. Although we let KSM run for two scan cycles
to warm up before we start the workload and measurements, KSM

needs a long time before it starts deduplicating pages at all. It first
needs to calculate the hash-values for the new pages in the workload
and does not start deduplicating those pages until the next round.

4.3 Deduplication Efficiency
We have already demonstrated how effective the hinting mechanism
is. What remains to be done is an evaluation of the efficiency. Our
work would be of no use if we traded memory bandwidth and CPU
cycles for the gained effectiveness; KSM can already do this within
limits – just set it to scan very aggressively.

The runtime variation between our approach and the default
KSM was below 1% in our experiments. We do not raise the
effectiveness by doing more work, but by making smarter choices
when and where to invest our duty cycles. This can be clearly seen
when we compare the number of pages that we need to check until
we find a sharing candidate. Figure 9 depicts the number of pages
that the scanner needs to visit before it finds a sharing opportunity
over the time it takes for the kernel to build. How many pages need
to be visited to find a merge candidate depends highly on the state of
the unstable tree. In the case of KSM without hinting, it also depends
on where in the scan process KSM is. The further it is in the scan
cycle the less pages it needs to visit until it finds a sharing partner
for a page it has already indexed. Keep in mind that KSM drops
its unstable tree after a full scan. This does not set the efficiency
back all the way as all merged pages remain stored in the stable
tree across scan cycles. When using our hints extension, the scan
efficiency is not only much higher but also much less varying.
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Figure 9. The number of pages that the different approaches need
to visit before they find and merge a sharing opportunity.

When it comes to memory overhead, the only additional memory
space we need is used by the hinting queue (configurable, a good
choice is 1024 slots containing an 8-byte pointer each) and some
locks to serialize access to this shared data structure. Most of our
work is amortized by the fact that we do it in the place of an equally
costly operation that would have happened in the regular scanning
process. Also, we do not change the scan rate. A lookup in the stable
or unstable tree costs the same whether it was triggered by a hint or
by a periodic scan.

Additional CPU cycles are needed by our hinting mechanism
for storing and retrieving hints, for mapping hinted pages read-only,
and for mapping hinted pages read-write on a write fault. Storing
and retrieving hints is very cheap (O(1)), yet these operations can
currently not be parallelized, as they need locking at the stack’s head
index and length variable. Although remapping pages read-only and
read-write is considered costly, our benchmarks ran roughly equally
long.

The rate in which we map pages read-only due to insertion into
the unstable tree and the rate in which we map pages read-write due



to a write operation on a hinted page that resides in the unstable
tree correlate directly. After having inserted all pages that make up
the guests buffer cache into the unstable tree, every future buffer
cache replacement operation on a page is preceded by remapping
that page read-write and succeeded by mapping that page read-only
again. Note that we will always generate a hint for a page in the
buffer cache – either from a read from the VDI into the buffer cache
or from the flush operation which writes the buffer cache back to
the VDI after a write operation in the guest.

The number of pages that we need to map read-write and read-
only in a time-interval depends on the scan rate and the hint-rate
– the amount of I/O-operations that are performed on the VDI. In
our basic experiment (Table 1) the remap-rate is at roughly 260
pages per second. To put this number in perspective: Linux switches
processes between 100 and 1000 times per second. Also keep in
mind that we are almost exclusively mapping pages read-only that
stem from the buffer cache.

5. Related Work
In this section, we give an overview of related work in the field of
memory-deduplication and comment on how the related approaches
differentiate from ours.

5.1 Traditional Page-Sharing Approaches
In non-virtualized systems, memory is shared between processes
on two occasions: first, when the user explicitly requests shared
memory through system calls and second, implicitly through copy-
on-write (COW) semantics, when using system calls such as mmap,
or fork. Mmap shares the memory content of files with the same
inode. When a file is copied, a new inode is created which points to
a copy of the same content. Because of the different inode, mmaping
this copy will lead to duplicate content in main memory even if the
duplicated blocks are later merged via block-layer deduplication.
Thus, using mmap to share files among different VMs is not possible,
as VMs do generally not share the same file system, but run from
separate virtual disk images (VDI), which are large files with their
own file system inside.

When a process is duplicated via the fork system call in today’s
OSes, the processes’ entire address space is shared using COW.
Android’s Cygote uses this property to share the Dalvik VM and the
core libraries among all processes [21]. This “trick” has also been
used to share whole guest operating systems [17, 24]. Virtualized
environments that use COW semantics only share pages that already
existed before the process or VM was forked. Our approach in
contrast aims also to deduplicate those equal pages that are created
at run time, after forking the VM.

5.2 Memory Scanning
The technique of periodically scanning main memory pages for
equal content and then transparently merging those pages to share
them in a COW manner was first introduced in VMware’s ESX
Server [25]. Linux also uses this technique under the name Kernel
Samepage Merging (KSM) to increase the memory density of
VMs [1]. Both implementations can only merge anonymous pages.
Guests manage their (virtual) block layer themselves and the host
does not know the semantics of the guest’s main memory content.
ESX is dedicated to running VMs and thus may use memory
scanning on all processes’ anonymous memory while KSM only
scans pages that have been advised to be good sharing candidates
and mergeable at all (e.g., not file backed but anonymous) through
the madvise system call. Only being able to operate on anonymous
pages is not a limiting factor for VMs, as the host regards the guests
memory as anonymous memory due to the semantic gap.

The KSM and ESX content-based page sharing approaches differ
mainly in the way they catalog scanned pages: ESX calculates a

hash value for every page when scanning and stores these values
in a hint table. When a match is found in the hint table, ESX first
re-calculates the hash value of the previously inserted page to check
whether the content has changed since the last calculation. If not,
the pages are compared bit-by-bit to rule out a hash-collision. Then,
equal pages are merged, and their hash value is inserted into another
table, the shared table.

KSM also calculates hash values, but only to check whether a
page has changed between scan-rounds. It does not use those hash
values to infer equality between pages. All pages that have not
changed between rounds are inserted into a tree (the full page, not
the hash value); duplicates are found on insertion. More details on
how KSM works can be found in Section 2.

The general trade-off that is involved when using memory
scanners is CPU utilization and memory bandwidth versus the speed
in which deduplication targets are identified. KSM and ESX both
have a variable scan rate which is configured through setting sleep
times and a number of pages that is scanned on every wake-up. Both
KSM and ESX suggest scan rates that are fast enough to merge long-
lived sharing opportunities with little overhead. However, the current
implementations are not well suited to find short-lived sharing
opportunities [6].

ESX scans pages in random order, while KSM scans linearly in
rounds. Although the original ESX paper [25] states that it could be
beneficial to define a heuristic for the scan order, neither KSM nor
ESX propose a well suited policy to find sharing candidates more
quickly.

Although prior work has been published on sharing similar
pages [12] through storing compressed patches which are applied
on access page faults, we focus on pages with equal content in
this paper. However, I/O-based hints could as well provide good
candidates for sub-page sharing.

Geiger [13] traces page faults, page table updates, copy-, and
disk operations to infer information about page liveliness (allocation,
eviction), swapping, page replacement, and the use of the unified
buffer caches in the guest. The main focus of Geiger lies in making
good resource decisions for single VMs, such as the estimation of
the working set size for each VM or secondary caching. However,
Geiger does not try to find sharing opportunities between VMs.
Geiger is based on previous work on buffer cache placement [8, 27]
that uses similar techniques.

5.3 Paravirtualization
An approach to find duplicate main memory pages that stem
from background storage more quickly than linear scanning, is
to explicitly track changes. (Cellular) Disco’s transparent page
sharing uses a deduplicating COW-disk to identify file-blocks that
can be mapped to the same page in main memory due to equal
content. It also hooks calls such as bcopy to keep track of shared
content [5, 10].

The Xen [2] based Satori [20] seizes this suggestion and uses
paravirtualized smart virtual disks to infer the sharing opportunities
that stem from background storage.

Collaborative memory management (CMM) [22] uses paravirtu-
alized Linux guests to share usage semantics of the guest’s virtual
memory system with the hypervisor. Its focus lies in determining the
working set size of the guests, especially by telling the hypervisor
which pages are unused in the guest and can thus be dropped. CMM
was implemented only for the IBM system Z architecture.

XenFS [26] is a prototype for a file system that is shared between
VMs and makes it possible to share caches and COW named
page mappings across VMs. Two different approaches to shared
page caches are Trancendent Memory [18, 19] and XHive [14].
Trancendent Memory provides a key-value store that can be used by
guest VMs to cache I/O requests in the hypervisor. XHive practically



implements swapping to the hypervisor (i.e., move pages from the
guest to the host). It gives pages which are used by multiple VMs a
better chance to reside in memory, but outside of the VM’s quota.

All techniques in this paragraph use paravirtualization techniques.
They need to modify the guest to work. Our approach in turn works
without such modifications and even works with non-VM processes.

6. Conclusion
When it comes to consolidating many virtual machines (VMs) on a
single physical machine, the primary bottleneck is the main memory
capacity. Previous work has shown that the memory footprint of
VMs can be reduced significantly through merging equal pages.
Identifying those pages can be achieved through scanning for equal
contents and with the help of the guest. We have demonstrated that
a very simple heuristic to identify good sharing candidates – as
I/O target pages are good sharing candidates – can be implemented
without the need of paravirtualization techniques yet deliver superior
performance compared to linear scanning. We discuss various
implementation challenges, such as the unsuitable, degenerating
data structures in the KSM implementation, and describe how we
resolve them in the implementation of our approach.

Extending KSM with I/O-hints increases both the effectiveness
and the efficiency of memory scanning. KSM now only needs to
visit about one seventh of the pages it needed to visit originally
to find a sharing candidate. Many sharing opportunities that were
not detected previously can now be exploited without introducing
measurable overhead.

In the future, we will conduct a larger variety of benchmarks to
research the performance characteristics of our approach in different
scenarios. Also, we plan to extend Linux’ virtual memory system
to enable Linux to merge file-backed (named) pages with other file-
backed or anonymous pages. This will make it possible to share the
host’s buffer cache with the guest’s buffer caches.
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