A Light-Weight Virtual Machine Monitor for Blue Gene/P

Jan Stoess®
Jonathan Appavoof!
$Karlsruhe Institute of Technology
THStreaming LLC

ABSTRACT

In this paper, we present a light-weight, micro—kernel-based
virtual machine monitor (VMM) for the Blue Gene/P Su-
percomputer. Our VMM comprises a small p-kernel with
virtualization capabilities and, atop, a user-level VMM com-
ponent that manages virtual BG/P cores, memory, and in-
terconnects; we also support running native applications
directly atop the p-kernel. Our design goal is to enable
compatibility to standard OSes such as Linux on BG/P via
virtualization, but to also keep the amount of kernel func-
tionality small enough to facilitate shortening the path to
applications and lowering OS noise.

Our prototype implementation successfully virtualizes a
BG/P version of Linux with support for Ethernet-based
communication mapped onto BG/P’s collective and torus
network devices. First experiences and experiments show
that our VMM still shows a substantial performance hit;
nevertheless, our approach poses an interesting OS alter-
native for Supercomputers, providing the convenience of a
fully-featured commodity software stack, while also promis-
ing to deliver the scalability and low latency of an HPC OS.

1. INTRODUCTION

A substantial fraction of supercomputer programmers to-
day write software using a parallel programming run-time
such as MPI on top of a customized light-weight kernel. For
Blue Gene/P (BG/P) machines in production, IBM pro-
vides such a light-weight kernel called Compute Node Ker-
nel (CNK) [9]. CNK runs tasks massively parallel, in a
single-thread-per-core fashion. Like other light-weight ker-
nels, CNK supports a subset of a standardized application
interface (POSIX), facilitating the development of dedicated
(POSIX-like) applications for a supercomputer. However,
CNK is not fully POSIX-compatible: it lacks, for instance,
comprehensive scheduling or memory management as well
as standards-compatible networking or support for standard

IThis research was mostly conducted by the authors while
at IBM Watson Research Center, Yorktown Heights, NY.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage, and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.

ROSS ’11, May 31, 2011, Tucson, AZ, USA.

Copyright 2011 ACM 978-1-4503-0761-1/11/05...$10.00.

Udo Steinberg?*!
Amos Waterland'!

'Harvard School of Engineering and Applied Sciences

Volkmar Uhlig¥!

Jens Kehne!
#Technische Universitat Dresden
"Boston University

debugging tools. CNK also supports I/O only via function-
shipping to I/O nodes.

CNK’s lightweight kernel model is a good choice for the
current set of BG/P HPC applications, providing low oper-
ating system (OS) noise and focusing on performance, scal-
ability, and extensibility. However, today’s HPC application
space is beginning to scale out towards Exascale systems of
truly global dimensions, spanning companies, institutions,
and even countries. The restricted support for standardized
application interfaces of light-weight kernels in general and
CNK in particular renders porting the sprawling diversity
of scalable applications to supercomputers more and more a
bottleneck in the development path of HPC applications.

In this paper, we explore an alternative, hybrid OS de-
sign for BG/P: a p-kernel-based virtual machine monitor
(VMM). At the lowest layer, in kernel mode, we run a pu-
kernel that provides a small set of basic OS primitives for
constructing customized HPC applications and services at
user level. We then construct a user-level VMM that fully
virtualizes the BG/P platform and allows arbitrary Blue
Gene OSes to run in virtualized compartments. In this pa-
per, we focus on the virtualization layer of our OS architec-
ture; the field of research on native application frameworks
for p-kernels has been rich [10,17], and has even been ex-
plored for HPC systems [21]

The benefits of a p-kernel-based VMM architecture are
twofold: on the one hand, it provides compatibility to BG/P
hardware, allowing programmers to ship the OS they re-
quire for their particular applications along, like a library.
For instance, our VMM successfully virtualizes a Blue Gene
version of Linux with support for Ethernet-based communi-
cation, allowing virtually any general-purpose Linux appli-
cation or service to run on BG/P. On the other hand, our
p-kernel also resembles the light-weight kernel approach in
that it reduces the amount of kernel functionality to basic
resource management and communication. Those mecha-
nisms are available to native applications running directly
on top of the u-kernel, and programmers can use them to
customize their HPC applications for better efficiency and
scalability, and to directly exploit the features of the tightly-
interconnected BG /P hardware. However, pu-kernel and VMM
architectures also imply potential penalty to efficiency, as
they increase kernel-user interaction and add another layer
of indirection to the system software stack. Nevertheless,
the need for standardized application interfaces is becoming
more prevalent, and we expect our work to be an insightful
step towards supporting such standardization on supercom-
puter platforms.

The idea of a virtualization layer for HPC systems is not
new [21], nor is the idea of using a decomposed VMM archi-
tecture to deliver predictable application performance [12].
However, to our knowledge, this is the first approach to pro-
viding a commodity system software stack and hiding the
hardware peculiarities of such a highly-customized architec-
ture, while still being able to run hand-optimized code side-
by-side. Initial results are promising: Our prototype based
on the L4 p-kernel fully virtualizes BG/P compute nodes
and their high-performance network interconnects, and suc-
cessfully runs multiple instances of a BG/P version of Linux.

The rest of the paper is structured as follows: Section 2
presents the basic architecture of our p-kernel-based virtu-
alization approach for BG/P. Section 3 presents details of
the p-kernel, followed by Section 4 presenting details about
our user-level VMM component. Finally, Section 5 presents
an initial evaluation of our prototype, followed by related
work in Section 6 and a summary in Section 7.

2. SYSTEM OVERVIEW

In this section, we present the design of our decomposed
VMM for BG/P. We start with a very brief overview of the
BG/P supercomputer: the basic building block of BG/P is
a compute node, which is composed of an embedded quad-
core PowerPC, five networks, a DDR2 controller, and either
2 or 4GB of RAM, integrated into a system-on-a-chip (Fig-
ure 1). One of the large BG/P configurations is a 256-rack
system of 2 mid-planes each, which, in turn, comprise 16
node cards with 32 nodes each, totaling over 1 million cores
and 1 Petabyte of RAM. BG/P features three key commu-
nication networks, a torus and a collective interconnect, and
an external 10GE Ethernet network on I/O nodes.

Figure 1: Blue Gene/P Compute Node Card

The basic architecture of our VMM is illustrated in Figure
2. We use an enhanced version of the L4 p-kernel as privi-
leged supercomputer kernel [24]. Our BG/P implementation
uses a recent L4 version named L4Ka::Pistachio [19]. Tra-
ditional hypervisors such as Xen [29] or VMware [2] virtu-
alization-only approaches in the sense that they provide vir-
tual hardware — virtual CPUs, memory, disks, networks, etc.
— as first class abstractions. L4 is different in that it offers
a limited set of OS abstractions to enforce safe and secure
execution: threads, address spaces and inter-process com-
munication (IPC). Those abstractions are low-level enough
for constructing an efficient virtualization layer atop, as has
been demonstrated on commodity systems [11,23].

While 1.4 provides core primitives, the actual VMM func-
tionality is implemented as a user-level application outside
of the privileged kernel. The basic mechanics of such an
L4-based VMM is as follows: L4 merely acts as a safe mes-
saging system propagating sensitive guest instructions to a

Figure 2: A u-kernel based VMM virtualizing BG /P
cores and interconnects

user-level VMM. That VMM, in turn, decodes the instruc-
tion and emulates it appropriately, and then responds with
a fault reply message that instructs L4 to update the guest
VM’s context and then to resume guest VM execution.

Our decomposed, p-kernel-based VMM architecture has
benefits that are particularly interesting on HPC systems:
Since L4 provides minimal yet sufficiently generic abstrac-
tions, it also supports native applications that can bypass
the complete virtualization stack whenever they need per-
formance. Hybrid configurations are also possible: An appli-
cation can be started within a guest VM, with access to all
legacy services of the guest kernel; for improved efficiency,
it can later choose to employ some native HPC library (e.g.
an MPI library running directly atop L4). In the follow-
ing, we will first describe how L4 facilitates running a VMM
atop; we will then describe the user-level VMM part in the
subsequent section.

3. A MICRO-KERNEL WITH
VIRTUALIZATION CAPABILITIES

In our architecture, L4 acts as the privileged part of the
VMM, responsible for partitioning processors, memory, de-
vice memory, and interrupts. Our virtualization model is
largely common to L4’s normal execution model: we use
i) L4 threads to virtualize the processor; ii) L4 memory
mapping mechanisms to provide and manage guest-physical
memory, iii) an IPC to allow emulation of sensitive instruc-
tions through the user-level VMM. However, in virtualiza-
tion mode, threads and address spaces have access to an
extended ISA and memory model (including a virtualized
TLB), and have restricted access to L4-specific features, as
we will describe in the following.

3.1 Virtual PowerPC Processor

L4 virtualizes cores by mapping each virtual CPU (vCPU)
to a dedicated thread. Threads are schedulable entities,
and vCPUS are treated equally: They are dispatched regu-
larly from a CPU-local scheduling queue, and they can be
moved and load-balanced among individual physical proces-
sors through standard L4 mechanisms.

In contrast to recent x86 and PowerPC based architec-
tures, BG/P’s cores are based on the widely used embedded
440 architecture, which has no dedicated support to facili-
tate or accelerate virtualization. However, also in contrast
to x86 architecture, PowerPC is much more virtualization-
friendly in the first place: The ISA supports trap-based vir-
tualization, and fixed instruction lengths simplify decoding
and emulating sensitive instructions. L4 employs such a
trap-and-emulate style virtualization method by compress-
ing PowerPC privilege levels. L4 itself runs in supervisor
mode, while user and guest both run in user mode (although

with different address space IDs, as described in Section
3.2). Guest application code runs undisturbed, but when-
ever the guest kernel issues a sensitive instruction, the pro-
cessor causes a trap into L4.

IPC-based Virtualization. Unlike traditional VMMs, L4
itself does not emulate all sensitive instructions itself. Unless
the instruction is related to the virtual TLB or can quickly
be handled such as the modification of guest shadow register
state, it hands off emulation to the user-level VMM compo-
nent. Moving the virtualization service out of the kernel
makes a fast guest-VMM interaction mechanism a prerequi-
site for efficient execution. We therefore rely on L4 IPCs to
implement the virtualization protocol (i.e. the guest trap —
VMM emulation — guest resume cycle). In effect, L4 handles
guest traps the same way it handles normal page faults and
exceptions, by synthesizing a fault IPC message on behalf
of the guest to a designated per-vCPU exception handler.

User

v [{ v | | [vmm |z [wm | o
| Yirtualization FauitIPC_| 1z

CPU CPUs

Figure 3: vCPU exits are propagated to the VMM
as IPC message; the user-level VMM responds by
sending back a reply IPC resuming the guest.

During a virtualization fault IPC, the trapping guest au-
tomatically blocks waiting for a reply message. To facil-
itate proper decoding and emulation of sensitive instruc-
tions, the virtualization IPC contains the vCPU’s current
execution state such as instruction and stack pointer and
general-purpose registers. The reply from the VMM may
contain updated state, which L4 then transparently installs
into the vCPU’s execution frame. To retain efficient transfer
of guest vCPU state, the kernel allows the VMM to config-
ure the particular state to be transferred independently for
each class of faults. For instance, a VMM may choose to
always transfer general-purpose registers, but to only trans-
fer TLB-related guest state on TLB-related faults. L4 also
offers, via a separate system call, to inspect and modify all
guest state asynchronously from the VMM. That way, we
keep the common virtualization fault path fast, while defer-
ring loading of additional guest state to a non-critical path.

3.2 Virtualized Memory Management

PowerPC 440 avoids die costs for the page table walker
and does not imply any page table format (or even construc-
tion). Instead, address translation is based solely on a trans-
lation look-aside buffer (TLB) managed in software [13]. On
BG/P cores, the TLB has 64 entries managed by the kernel.
Each entry maps 32-bit logical addresses to their physical
counterparts, and can cover a configurable size ranging from
1 KByte to 1 GByte. For translation, the TLB further uses
an 8-bit process identifier (PID) and an 1-bit address space
identifier (AS) that can be freely set by the kernel, effectively
implementing a tagged TLB (Figure 4).

A normal OS only needs to provide a single level of mem-
ory translation — from virtual to physical. A VMM, in con-
trast, must support two such translation levels, from guest-

virtual to guest-physical, and from guest-physical to host-
physical memory (details on virtualized translations can be
found, e.g., in [2,18]). As PowerPC 440 hardware only
supports a single translation level, the VMM must merge
the two levels when inserting translations into the hardware
TLB, effectively translating guest-virtual to host-physical
addresses. Both L4 and the user-level VMM are involved in
providing a two-level memory translation: To provide guest-
physical memory, we use L4’s existing memory management
abstractions based on external pagers [24]. We then provide
a second, in-kernel virtual TLB that caters for the addi-
tional notion of guest virtual memory. We will describe the
L4-specific extensions in the following two paragraphs.

Virtual Physical Memory. Providing guest-physical mem-
ory is largely identical to the provisioning of normal virtual
memory: L4 treats a guest VM'’s physical address space like
a regular address space and exports establishing of transla-
tions within that address-space to a user-level pager (which
is, in this case, the user-level VMM). Whenever a guest suf-
fers a TLB miss, L4’s miss handler inspects its kernel data
structures to find out whether the miss occured because of
a missing guest-physical to host-physical translation. This
is the case if the VMM has not yet mapped the physical
memory into the VM’s guest-physical address space. If so,
L4 synthesizes a page fault IPC message to the user-level
pager VMM on behalf of the faulting guest, requesting to
service the fault.

Vm HARDWARE VMM

NCRER STHE
E GV=GP] “EGV"H;P | E cpate

MSEDS | AS, | TDg] Physical Addressqg
MSR.IS 1 I
PID

Figure 4: Merging two levels of virtualized address
translation into a single-level hardware TLB.

When the VMM finds the guest-physical page fault to be
valid, it responds with a mapping message, which will cause
L4 to insert a valid mapping into the TLB and then to re-
sume guest execution. Otherwise, the VMM may terminate
the VM for an invalid access to non-existing physical mem-
ory or inject a hardware exception. To keep track of a guest’s
mappings independent of the actual state of the hardware
TLB, L4 maintains them with an in-kernel database. Should
the user-level VMM revoke a particular mapping, L4 flushes
the corresponding database and hardware TLB entries.

Virtual TLB. Emulating virtual address translations and
the TLB is extremely critical for the overall performance of
a VMM. For that reason, most virtualization-enabled hard-
ware platforms have specific support, like the recent x86 [6]
or embedded PowerPC [14] processors. On BG/P, we lack
such support and reverted to a software solution using a
table shadowing the hardware TLB, which we hence call
virtual TLB. In order to further reduce the cost of TLB up-
dates, we employ a number of heuristics and tracking meth-
ods. From a security perspective we only need to ensure that
the hardware TLB always contains a subset of the virtual
TLB.

L4 provides the notion of a virtual TLB, which the guest
has access to via normal (trapped) hardware instructions
for TLB management. While management of guest-physical
memory involves the user-level VMM, our solution for guest-
virtual memory is L4-internal: Whenever the guest kernel
accesses the virtual TLB, L4’s internal instruction emulator
stores those entries into a per-VM virtual TLB data struc-
ture. On a hardware TLB miss, 1.4’s miss handler parses
that data structure to find out whether the guest has in-
serted a valid TLB mapping into its virtual TLB for the
given fault address. If not, it injects a TLB miss fault into
the guest VM to have the miss handled by the guest kernel.
If the virtual TLB indeed contains a valid entry, L4 checks
its mapping database to find out whether the miss occured
at the second stage, from guest-physical to host-physical.
If that translation is valid as well, L4 inserts the resulting
guest-virtual to host-physical mapping into the hardware
TLB and resumes the VM; if it turns out to be missing, L4
synthesizes a page fault IPC to the VMM, as discussed in
the previous paragraph.

Virtual Address Space Protection. Finally, a VMM must
virtualize not only the translation engine of the TLB but
also its protection features. Again, the virtualization logi-
cally requires two levels, allowing the guest to use the virtual
TLB’s protection bits and identifiers in the same manner as
on native hardware, but, at the second level, also permit-
ting L4 and its user-level address spaces to shield their data
from being accessed by guest kernel and applications. The
TLB of the PowerPC 440 gives us great help. The 440 can
hold up to 256 address space mappings in the TLB, (via the
TID field, see Figure 4). The particular mapping is chosen
through a processor register. Address space translation 0 is
always accessible independently of which particular mapping
is active. The 440 additionally features a 1-bit translation
space, with the active translation space being selected via
processor register bits, one for instruction and one for data
fetches.

To facilitate trap-and-emulate virtualization, both guest
kernel and applications run in user mode. L4 puts guest ker-
nel and user into the second translation space, and keeps the
first translation space reserved for itself, the VMM, and na-
tive L4 applications. The processor automatically switches
to the first translation space when an interrupt or trap oc-
curs, directly entering .4 with trap and interrupt handlers
in place. To read guest memory when decoding sensitive
instructions, L4 temporarily switches the translation space
for data fetches, while retaining the space for instructions.
Altogether, our solution allows the guest to receive a com-
pletely empty address space, but on any exception, the pro-
cessor switches to a hypervisor-owned address space. That
way, we keep virtualization address spaces clean without the
need for ring compression as done on x86 systems lacking
hardware-virtualization [31].

Our ultimate goal is to reduce the number of TLB flushes
to enforce protection on user-to-kernel switches. We ob-
served the following usage scenario for standard OSes (e.g.,
Linux) and implemented our algorithm to mimic the be-
havior: Common OSes map application code and data as
user and kernel accessible, while kernel code and data is
only accessible in privileged mode. We strive is to make the
transition from user to kernel and back fast to achieve good
system call performance; we therefore disable the address

TD, TID, TID,

O O S

N

L oo)
vILB hwTLB

Figure 5: Virtualized TLB Protection. vITLB pro-
tection bits are mapped to TID in the hardware TLB,
with TID=0 for shared pages.

space mappings completely and flush the hardware TLB on
each guest address space switch (Figure 5). We then use
address space 0 for mappings that are accessible to guest
user and guest kernel. We use address space 1 for mappings
that are only guest-user accessible and address space 2 for
mappings that are only guest-kernel accessible. A privilege
level switch from guest-user to guest-kernel mode therefore
solely requires updating the address space identifier from 1
(user-mode mappings) to 2 (kernel-mode mappings).

Our virtual TLB effectively compresses guest user/kernel
protection bits into address space identifiers; as a result,
it requires hardware TLB entries to be flushed whenever
the guest kernel switches guest application address spaces.
Also, our scheme requires that TLB entries are flushed dur-
ing world switches between different guests. It does not
require, however, any TLB flushes during guest system calls
or other switches from guest user to kernel, or during virtu-
alization traps and resumes within the same VM. Thus, we
optimize for frequent kernel/user and kernel/ VMM switches
rather than for address space or world switches, as the for-
mer occur more frequently.

3.3 Interrupt Virtualization

BG/P provides a custom interrupt controller called Blue
Gene Interrupt Controller (BIC), which gathers and deliv-
ers device signals to the cores as interrupts or machine check
exceptions. The BIC supports a large number (several hun-
dreds) of interrupts, which are organized in groups and have
different types for prioritization and routing purposes. The
BIC supports delivering interrupts to different cores, as it
supports core-to-core interrupts.

The original 1.4 version already provides support for user-
level interrupt management, mapping interrupt messages
and acknowledgments onto IPC. L4 further permits user
software to migrate interrupts to different cores. Our user-
level VMM uses those L4 interrupt features to receive and
acknowledge interrupts for BG/P devices. To inject virtual
interrupts into the guest, the VMM modifies guest vCPU
state accordingly, either using LL4’s state modification sys-
tem call (Section 3.1), or by piggybacking the state update
onto a virtualization fault reply, in case the guest VM is
already waiting for the VMM when the interrupt occurs.

4. USER-LEVEL VMM

Our user-level VMM component runs as a native L4 pro-
gram, and provides the virtualization service based on L.4’s
core abstractions. It can be described as an interface layer
that translates virtualization API invocations (i.e. sensi-
tive instructions) into API invocations of the underlying
L4 architecture. As described, L4 facilitates virtualization
by means of virtualization fault IPC. The user-level VMM

mainly consists of a server executing an IPC loop, waiting for
any incoming IPC message from a faulting guest VM. Upon
reception, it retrieves the VM register context that L4 has
sent along, emulates the sensitive instruction accordingly,
and finally responds with a reply IPC containing updated
vCPU state such as result registers of the given sensitive
instruction and an incremented program counter. Before
resuming the VM, L4 installs the updated context trans-
parently into the VM, while the VMM waits for the next
message to arrive.

4.1 Emulating Sensitive Instructions

Our user-level VMM largely resembles typical other VMMs
such as VMware or Xen: It contains a virtual CPU object
and a map translating guest physical memory pages into
memory pages owned by the VMM. To emulate sensitive
instructions upon a virtualization fault IPC, the VMM de-
codes the instruction and its parameters based on the pro-
gram counter pointer and general-purpose register file of the
guest VM, which are stored within the IPC message that was
sent from L4 on behalf of the trapping VM. For convenience,
L4 also passes along the value of the program counter, that
is, the trapping instruction. In comparison to x86 proces-
sors, which have variable-sized instructions of lengths up
to 15 bytes, fetching and decoding sensitive instructions on
embedded PowerPC are rather trivial tasks, as instructions
have a fixed size of 32 bits on PowerPC.

4.2 Virtual Physical Memory

To the user-level VMM, paging a guest with virtualized
physical memory is similar to regular user-level paging in
L4 systems [11]: Whenever the guest suffers a physical TLB
miss, L4 sends a page fault IPC containing the faulting in-
struction and address and other (virtual) TLB state neces-
sary to service the fault. In its present implementation, the
VMM organizes guest-physical memory in linear segments.
Thus, when handling a fault, the VMM checks whether the
accessed guest-physical address is within the segment limits.
If so, it responds with a mapping IPC message that causes
L4 to insert the corresponding mapping into its database
and into the hardware TLB.

4.3 Device Virtualization

Besides virtualization of BG/P cores, the main task of the
user-level VMM is to virtualize BG/P hardware devices. L4
traps and propagates sensitive device instructions such as
moves to or from system registers (mfdcr,mtdcr), as well
as generic load/store instructions to sensitive device mem-
ory regions. It is up to the VMM to back those transactions
with appropriate device models and state machines that give
the guest the illusion of real devices, and to multiplex them
onto actual physical hardware shared among all guests. The
VMM currently provides virtual models for the BIC and for
the collective and the torus network devices. Emulation of
the BIC is a rather straightforward task: The VMM inter-
cepts all accesses to the memory-mapped BIC device and
emulates them using L.4’s mechanisms for external interrupt
handling and event injection. The following paragraphs de-
tail the emulation of the collective and torus network.

Collective Network. BG /P’s collective network is an over-
connected binary tree that spans the whole installation. The
collective is a one-to-all medium for broadcast or reduction

operations, with support for node-specific filtering and a
complex routing scheme that allows to partition the network
to increase the total bandwidth. Collective link bandwidth
is 6.8 Gbit/s; hardware latencies are below 6 us for a 72-rack
system [15]. Software transmits data over the collective net-
work via packets injected into two memory-mapped virtual
channels. Each packet consists of a header and 16 128-bit
data words. The packet header is written and read using
general-purpose register to (device-) memory instructions,
while packet data is written and read through the floating-
point unit.

Our VMM provides a fully virtualized version of BG/P’s
collective network device. The VMM leaves device mem-
ory unmapped, so that each device register access leads to a
virtualization trap. The VMM furthermore emulates device
control registers (DCRs) used to configure the collective net-
work device. The corresponding instructions (mtdcr,mfdcr)
are sensitive and directly trap to L4 and the VMM. For
emulation, the VMM provides a per-VM shadow collective
network interface model that contains virtual DCRs and,
per channel, virtual injection and reception FIFOs with a
virtual header and 16 virtual FPU words per packet. The
VMM registers itself to L4 as an interrupt handler for all
collective network device interrupts, which will cause L4 to
emit an interrupt IPC message to the VMM whenever the
physical device fires one of its hardware interrupts.

Whenever the guest causes a packet to be sent on its vir-
tual collective network interface, the VMM loads the cor-
responding virtual registers into the physical collective net-
work device. Receiving data is slightly more complex: When-
ever the VMM receives an interrupt message from L4, it
reads the packet header and data from the physical device
into a private buffer, and then delivers a virtual interrupt
to the corresponding guest VM. Subsequent VM accesses
to packet header and data are then served out of the pri-
vate buffer into the VM’s general-purpose or floating-point
registers. Since copying packets induces substantial soft-
ware overhead to the high-performance collective network
path (Section 5), we are also considering optimized virtual
packet handling by means of device pass-through and/or
para-virtualization techniques.

Torus. BG/P’s torus network is the most important data
transport network with respect to bisectional bandwidth,
latency, and software overhead [1]. Each compute node is
part of the 3D torus network spanning the whole installa-
tion. On each node, the torus device has input and output
links for each of its six neighbors, each with a bandwidth
of 3.4Gbit/s, for a total node bandwidth of 40.8 Gbit/s.
Worst-case end-to-end latency in a 64 k server system is be-
low 5 us. Nodes act as forwarding routers without software
intervention.

The torus provides two transmission interfaces, a regular
buffer-based one and one based on remote direct memory
access (rDMA). For the latter, the torus DMA engine pro-
vides an advanced put/get-based interface to read or write
segments of memory from remote nodes, based on mem-
ory descriptors inserted into its injection and reception FI-
FOs. Each memory descriptor denotes a contiguous region
in physical memory on the local node. To facilitate rDMA
transactions (e.g. a direct-put operation copying data di-
rectly to a remote node’s memory), software identifies the
corresponding remote memory segments via a selector/offset

tuple that corresponds to a descriptor in the receive FIFO on
the remote node (Figure 6). To transmit data via the torus,
software inserts one or more packets into a torus injection
FIFO, with the packet specifying the destination using its
X,Y,Z coordinates. For non-DMA transfer, the payload is
embedded in the packet; for DMA transfers (local as well
as remote), the corresponding sender and receiver memory
segment descriptors and selectors are instead appended to
the packet.

Figure 6: Virtualized Torus Interconnect. The
VMM passes through guest VM descriptors, trans-
lating addresses from guest- to host-physical.

As with the collective network, our VMM provides a vir-
tualized version of Blue Gene’s torus device, and traps and
emulates all accesses to torus device registers. Again, DCR
instructions directly trap into L4, while device memory ac-
cesses trap by means of invalid host TLB entries. Again,
the VMM registers itself for physical torus interrupts and
delivers them to the guests as needed.

However, in contrast to our virtual version of the collec-
tive network device, our virtual torus device only holds the
DMA descriptor registers, but does not copy the actual data
around during DMA send or receive operations. Instead, it
passes along guest VM memory segment descriptors from
virtual to physical FIFOs, merely validating that they ref-
erence valid guest-physical memory before translating them
into host-physical addresses. As the VMM currently uses
simple linear segmentation (see Section 4.2), that translation
is merely an offset operation and the descriptors in physical
FIFOs always reference valid guest memory.

In contrast to general-purpose virtualization environments,
which typically provide virtualized Ethernet devices includ-
ing virtual MAC addresses and a virtual switch architecture,
or supercomputer VMM presently does not cater for extra
naming or multiplexing of multiple virtual torus devices. In-
stead, it preserves the naming of the real world and maps vir-
tual torus coordinates and channel identifiers idempotently
to their physical counterparts. As a result, our VMM does
not fully emulate the torus network, but merely provides
safe and partitioned access to the physical torus network for
individual VMs. As BG/P’s torus features four indepen-
dent DMA send and receive groups, our VMM can supply
up to four VMs with a different DMA channel holding all
its descriptors, without having to multiplex descriptors from
different VMs onto a single FIFO.

At present, our VMM intercepts all accesses to the vir-
tual DMA groups and multiplexes them among the physical
ones. However, since DMA groups are located on different
physical pages and thus have different TLB entries, we plan,
for future versions, to directly map torus channels into guest
applications, effectively allowing them to bypass the guest
OS and hypervisor. While such a pass-through approach
will require a para-virtual torus driver (to translate guest-
physical to host-physical addresses), it can still be made safe
without requiring interception, as the torus DMA supports
a set of range check registers that enable containment of

valid DMA addresses into the guest’s allowed allotment of
physical memory.

S. INITIAL EVALUATION

Our approach is in an prototypical stage, and we did not
optimize any of the frequently executed trap-and-emulate
paths yet. For evaluation, we thus focused mostly on func-
tionality rather than performance. Nevertheless, we have
run some initial performance benchmarks to find out whether
our approach is generally viable and where the most impor-
tant bottlenecks and possibilities of optimization reside.

Guest OS Support. Our L4-based VMM generally sup-
ports running arbitrary guest OSes on BG/P, like CNK [9],
or ZeptoOS [5]. With respect to the the implementation
of the virtualized TLB, L4 is currently limited in that it
reserves one of the two translation spaces. We have ver-
ified our implementation with Kittyhawk Linux, a BG/P
version of the Linux Kernel [4] with support for BG/P’s
hardware devices. It also provides an overlay that maps
standard Linux Ethernet communication onto Blue Gene’s
high-speed collective and torus interconnects [3]. Our VMM
allows one or more instances of Kittyhawk Linux to run in
a VM. Kittyhawk Linux runs unmodified, that is, the same
Kittyhawk Linux binary that runs on BG/P also runs on
top of our VMM. We currently support uni-processor guests
only; however, as L4 itself supports multi-processing, indi-
vidual guest vCPUs can be scheduled on each of the four
physical cores of the Blue Gene node.

Initial Benchmark Results. For initial evaluation, we ran
two experiments. In the first experiment, we compiled a
small source-code project (about 1000 lines of code) under
virtualized Kittyhawk Linux. We then used a debug build
of L4 with an internal event tracing facility to find out fre-
quently executed VM-related code paths. In this configu-
ration, compilation took about 126s compared to 3s when
running on native Kittyhawk Linux. Table 1 lists the results.
We note that the number of IPCs — that is, the number of
VM exits that involve the user-level VMM - is relatively low,
meaning that L4 handles most guest exits internally. Also
the experiment shows a high number of TLB misses and
TLB-related instructions, indicating that virtualized mem-
ory subsystem is a bottleneck of our implementation.

Trace Point Count | Trace Point Count
SYSCALL_IPC 106 K ITLB_MISS 4756 K
EXCEPT_DECR | 66 K EMUL_RFI 5021 K
EMUL_MTMSR | 102 K DTLB_MISS 6514 K
EMUL_WRTEE | 117 K EMUL_TLBWE | 14745 K
EMUL_MFMSR | 228 K EMUL_MFSPR | 29964 K
EMUL_WRTEEI | 403 K EMUL_MTSPR | 30036 K

Table 1: Execution frequency of VMM-related L4
code paths for a compilation job in a VM.

In the second experiment, we measured Ethernet network
throughput and latency between two compute nodes. Pack-
ets are delivered to the torus interconnect, by means of
Kittyhawk Linux’ Ethernet driver module. For compari-
son, we ran the experiments for both a native and virtu-
alized Kittyhawk Linux each running on a compute node.

8000 T T T T T

700 - native -> native === A
e Ve -
6000 = 600 - nal\llv’\i : xm |
native -> native 500 -
4000 native -> VM ------ — 4
VM -> VM ------- 00 - 4

300 1
200 | 1
100 | 1

0

2000

Transaction rate (1/sec)
Throughput (MBit/sec)

0
0 200 400 600 800 1000
Packet size (byte)

(a) Latency (b) Throughput

Figure 7: Performance of Torus-Routed Virtualized
Networks.

For benchmarking we used netperf’s TCP stream test for
throughput and the TCP request/response test for latency
measurements [28]. Figure 7 shows the results. Our vir-
tualization layer poses significant overhead to the Ethernet
network performance (which is already off the actual per-
formance that the torus and collective hardware can de-
liver [3]). We are confident, however, that optimizations
such as para-virtual device support can render virtualiza-
tion substantially more efficient. A recent study reports that
VMware’s engineers faced, and eventually addressed, simi-
larly dismal performance with prototypical versions of their
VMM [2]. We conclude from the preliminary evaluation and
our own experiences, that our L4-based VMM is a promising
approach for successfully deploying, running, and using vir-
tualized OSes and applications on BG/P, warranting further
exploration and optimization.

6. RELATED WORK

There exists a plethora of VMM efforts, including Xen [29],
VMware [2], and, directly related, micro-hypervisor-based
systems [11, 12, 30]; those approaches mostly address the
embedded or server rather than HPC space. The studies
in [7,25] identified virtualization as a system-level alter-
native to address the development challenges of HPC sys-
tems. Gavrilowska et al. explored virtualized HPC for
x86/InfiniBand-based hardware [8]; P.R.O.S.E. explored a
partitioning hypervisor architecture for PowerPC and x86
based HPC systems [32]. However, both approaches focus
mostly on hypervisor infrastructure rather than on decom-
posed OS designs or on support for native applications. Fi-
nally, there exists a port of the KVM monitor to PowerPC
Book E cores [18]; although designed towards embedded sys-
tems, it shares some implementation details with our Pow-
erPC version of .4 and the VMM.

Arguably the most related effort to our approach is Pala-
cios and Kitten [21], a light-weight kernel/VMM combina-
tion striving to achieve high performance and scalability on
HPC machines. Palacios runs as a module extension within
Kitten. Like L4, Kitten also provides a native environment
that can be used to develop customizations. The most no-
table differences are: that Palacios and Kitten are being
developed for x86-based HPC systems rather than for a
highly-specialized Supercomputer platform such as BG/P;
that Palacios runs as a kernel module in Kitten’s privileged
domain, whereas our VMM runs completely decomposed
and deprivileged as user-level process; and that their ap-
proach to device virtualization introduces a scheme relying
on guest cooperation in order to achieving high-performance
virtualization of HPC network devices [20], whereas our ap-

proach currently fully intercepts guest device accesses (al-
though it could be adapted to support a similar scheme).

Examples of traditional light-weight kernel approaches for
Supercomputers are CNK [9, 27] and Sandia’s Catamount
[16]. Our approach strives to enhance such light-weight ker-
nel approaches in that it provides the ability to virtualize
guest OSes. Finally, research has explored whether a more
fully-fledged OS such as Plan9 [26] or Linux [4,5,22] may
be a more viable alternative than light-weight kernels for
Supercomputers. Our approach complements those efforts
with the alternative idea of a decomposed OS architecture
with support for virtualization.

7. CONCLUSION

In this paper, we have presented a virtualization-capable
p-kernel OS architecture for BG/P. Our architecture con-
sists of a virtualization-capable p-kernel and a user-level
VMM component running atop. The p-kernel also sup-
ports running applications natively. Our L4-based proto-
type successfully virtualizes Kittyhawk Linux with support
for virtualized collective and torus network devices. First
experiences and experiments show that our VMM still takes
a substantial performance hit. However, we believe that,
pending optimizations, our approach poses an interesting
OS alternative for Supercomputers, providing the conve-
nience of a fully-featured commodity OS software stack,
while also promising to satisfy the need for low latency and
scalability of a HPC system. This research used resources
of the Argonne Leadership Computing Facility at Argonne
National Laboratory, which is supported by the Office of
Science of the U.S. Department of Energy under contract
DE-AC02-06CH11357. The infrastructure presented herein
is part of the the projects L4Ka and Kittyhawk. Software
is open source and can be downloaded from l4ka.org and
kittyhawk.bu.edu.

8. REFERENCES

[1] N. R. Adiga, M. A. Blumrich, D. Chen, P. Coteus,
A. Gara, M. E. Giampapa, P. Heidelberger, S. Singh,
B. D. Steinmacher-Burow, T. Takken, M. Tsao, and
P. Vranas. Blue Gene/L torus interconnection
network. IBM Journal of Research and Development,
49(2/3):265-276, June 2005.

[2] O. Agesen, A. Garthwaite, J. Sheldon, and
P. Subrahmanyam. The evolution of an x86 virtual
machine monitor. ACM Operating Systems Review,
44(4):3-18, December 2010.

[3] J. Appavoo, V. Uhlig, J. Stoess, A. Waterland,

B. Rosenburg, R. Wisniewski, D. D. Silva, E. van
Hensbergen, and U. Steinberg. Providing a cloud
network infrastructure on a supercomputer. In
Proceedings of the 19th ACM International Symposium
on High Performance Distributed Computing, pages
385-394, Chicago, IL, USA, June 2010.

[4] J. Appavoo, V. Uhlig, A. Waterland, B. Rosenburg,
D. D. Silva, and J. E. Moreira. Kittyhawk: Enabling
cooperation and competition in a global, shared
computational system. IBM Journal of Research and
Development, 53(4):1-15, July 2009.

[5] P. Beckman, K. Iskra, K. Yoshii, S. Coghlan, and
A. Nataraj. Benchmarking the effects of operating

[11]

[12]

[13]
[14]

[15]

system interference on extreme-scale parallel
machines. Cluster Computing, 11(1):3-16, Jan. 2008.
R. Bhargava, B. Serebrin, F. Spadini, and S. Manne.
Accelerating two-dimensional page walks for
virtualized systems. In Proceedings of the 13th
International Conference on Architectural Support for
Programming Languages and Operating Systems, pages
48-59, Seattle, WA, USA, Mar. 2008.

C. Engelmann, S. Scott, H. Ong, G. Vallée, and

T. Naughton. Configurable virtualized system
environments for high performance computing. In 1st
Workshop on System-level Virtualization for High
Performance Computing, Lisbon, Portugal, Mar. 2007.
A. Gavrilovska, S. Kumar, H. Raj, K. Schwan,

V. Gupta, R. Nathuji, R. Niranjan, A. Ranadive, and
P. Saraiya. High-performance hypervisor architectures:
Virtualization in HPC systems. In 1st Workshop on
System-level Virtualization for High Performance
Computing, Lisbon, Portugal, Mar. 2007.

M. Giampapa, T. Gooding, T. Inglett, and R. W.
Wisniewski. Experiences with a lightweight
supercomputer kernel: Lessons learned from Blue
Gene’s CNK. In Proceedings of the 2010 International
Conference on Supercomputing, pages 1-10, New
Orleans, LA, USA, Nov. 2010.

H. Hartig, M. Hohmuth, N. Feske, C. Helmuth,

A. Lackorzynski, F. Mehnert, and M. Peter. The
Nizza secure-system architecture. In Proceedings the
1st International Conference on Collaborative
Computing: Networking, Applications and
Worksharing, San Jose, CA, USA, Dec. 2005.

H. Hartig, M. Hohmuth, J. Liedtke, and S. Schénberg.
The performance of u-kernel based systems. In
Proceedings of the 16th Symposium on Operating
System Principles, pages 66—77, Saint Malo, France,
Oct. 1997.

G. Heiser and B. Leslie. The OKL4 microvisor:
convergence point of microkernels and hypervisors. In
Proceedings of the first ACM asia-pacific workshop on
Workshop on systems, pages 19-24, Aug. 2010.

IBM. IBM Power ISA Version 2.03. IBM
Corporation, 2006.

IBM. IBM Power ISA Version 2.06. IBM
Corporation, 2009.

IBM Blue Gene team. Overview of the IBM Blue
Gene/P Project. IBM Journal of Research and
Development, 52(1/2):199-220, Jan./Mar. 2008.

S. M. Kelly and R. Brightwell. Software architecture
of the light weight kernel, Catamount. In Proceedings
of the 2005 Cray User Group Annual Technical
Conference, Albuquerque, NM, USA, May 2005.

I. Kuz, Y. Liu, I. Gorton, and G. Heiser. Camkes: A
component model for secure microkernel-based
embedded systems. Journal of Systems and Software,
80(5):687 — 699, May 2007.

KVM Team. KVM for PowerPC.
http://www.linux-kvm.org/page/PowerPC/.

L4 Development Team. L4 X.2 Reference Manual.
University of Karlsruhe, Germany, May 2009.

J. R. Lange, K. Pedretti, P. Dinda, P. G. Bridges,

C. Bae, P. Soltero, and A. Merritt. Minimal-overhead
virtualization of a large scale supercomputer. In

21]

(22]

23]

(24]

[25]

[26]

27]

28]

29]

30]

(31]

(32]

Proceedings of the 7th ACM SIGPLAN/SIGOPS
international conference on Virtual execution
environments, pages 169-180, Newport Beach,
California, USA, Mar. 2011.

J. R. Lange, K. T. Pedretti, T. Hudson, P. A. Dinda,
Z. Cui, L. Xia, P. G. Bridges, A. Gocke, S. Jaconette,
M. Levenhagen, and R. Brightwell. Palacios and
Kitten: New high performance operating systems for
scalable virtualized and native supercomputing. In
Proceedings of the 24th IIEEE International
Symposium on Parallel and Distributed Processing,
pages 1-12, Atlanta, GA, USA, Apr. 2010.

Laurence S. Kaplan. Lightweight Linux for
High-performance Computing.
LinuxWorld.com,http://www.linuxworld.com/news/
2006/120406-1lightweight-1inux.html, 2006.

J. LeVasseur, V. Uhlig, J. Stoess, and S. Gotz.
Unmodified device driver reuse and improved system
dependability via virtual machines. In Proceedings of
the 6th Symposium on Operating Systems Design and
Implementation, pages 17-30, San Fransisco, CA,
USA, Dec. 2004.

J. Liedtke. On p-Kernel construction. In Proceedings
of the 15th Symposium on Operating System
Principles, pages 237-250, Copper Mountain, CO,
USA, Dec. 1995.

M. F. Mergen, V. Uhlig, O. Krieger, and J. Xenidis.
Virtualization for high-performance computing. ACM
Operating Systems Review, 40:8—-11, April 2006.

R. Minnich and J. McKie. Experiences porting the
Plan 9 research operating system to the IBM Blue
Gene supercomputers. Computer Science - Research
and Development, 23:117-124, May 2009.

J. Moreira, M. Brutman, J. Castanos, T. Gooding,
T. Inglett, D. Lieber, P. McCarthy, M. Mundy,

J. Parker, B. Wallenfelt, M. Giampapa,

T. Engelsiepen, and R. Haskin. Designing a
highly-scalable operating system: The Blue Gene/L
story. In Proceedings of the 2006 International
Conference on Supercomputing, pages 53—-63, Tampa,
FL, USA, Nov. 2006.

Netperf Team. Netperf.
http://www.netperf.org/netperf/.

I. Pratt, K. Fraser, S. Hand, C. Limpach, A. Warfield,
D. Magenheimer, J. Nakajima, and A. Malick. Xen 3.0
and the art of virtualization. In Proceedings of the
2005 Ottawa Linuz Symposium, pages 65-78, Ottawa,
Canada, July 2005.

U. Steinberg and B. Kauer. NOVA: A
microhypervisor-based secure virtualization
architecture. In Proceedings of the 5th ACM SIGOPS
FEuroSys conference, pages 209-221, Paris, France,
Apr. 2010.

R. Uhlig, G. Neiger, D. Rodgers, A. L. Santoni,

F. C. M. Martins, A. V. Anderson, S. M. Bennett,

A. Kigi, F. H. Leung, and L. Smith. Intel
virtualization technology. IEEE Computer,
38(5):48-56, May 2005.

E. Van Hensbergen. PROSE: partitioned reliable
operating system environment. ACM Operating
Systems Review, 40(2):12-15, 2006.

