
Towards Virtual InfiniBand Clusters
with Network and Performance

Isolation

Diplomarbeit
von

cand. inform. Marius Hillenbrand
an der Fakultät für Informatik

Erstgutachter: Prof. Dr. Frank Bellosa
Betreuende Mitarbeiter: Dr.-Ing. Jan Stoess

Dipl.-Phys. Viktor Mauch

Bearbeitungszeit: 17. Dezember 2010 – 16. Juni 2011

KIT – Universität des Landes Baden-Württemberg und nationales Forschungszentrum in der Helmholtz-Gemeinschaft www.kit.edu





Abstract

Today’s high-performance computing clusters (HPC) are typically operated and used by a sin-
gle organization. Demand is fluctuating, resulting in periods of underutilization or overload. In
addition, the static OS installation on cluster nodes leaves hardly any room for customization.
The concepts of cloud computing transferred to HPC clusters — that is, an Infrastructure-as-
a-Service (IaaS) model for HPC computing — promises increased flexibility and cost savings.
Elastic virtual clusters provide precisely that capacity that suits actual demand and workload.

Elasticity and flexibility come at a price, however: Virtualization overhead, jitter, and additional
OS background activity can severely reduce parallel application performance. In addition, HPC
workloads typically require distinct cluster interconnects, such as InfiniBand, because of the
features they provide, mainly low latency. General-purpose clouds with virtualized Ethernet
fail to fulfill these requirements.

In this work, we present a novel architecture for HPC clouds. Our architecture comprises
the facets node virtualization, network virtualization, and cloud management. We raise the
question, whether a commodity hypervisor (the kernel-based virtual machine, KVM, on Linux)
can be transformed to provide virtual cluster nodes — that is, virtual machines (VMs) intended
for HPC workloads. We provide a concept for cluster network virtualization, using the example
of InfiniBand, that provides each user with the impression of using a dedicated network. A user
can apply a custom routing scheme and employ recursive isolation in his share of the network.
However, he remains constraint to his virtual cluster and cannot impair other users — we verify
this claim with experiments with an actual InfiniBand network. We discuss the new challenges
that cluster networks bring up for cloud management, and describe how we introduce network
topology to cloud management. A prototype for automatic network isolation provides a proof
of concept.

Deutsche Zusammenfassung

Computercluster für das Hochleistungsrechnen werden heute üblicherweise von einzelnen Or-
ganisationen betrieben. Die Rechenkapazität solcher Systeme ist festgelegt, weswegen schwan-
kende Arbeitslasten abwechselnd zu zeitweiliger Überlast oder zu Phasen von Leerlauf führen.
Betriebssysteme und Ablaufumgebungen sind fest auf den Knoten eines Computerclusters in-
stalliert und lassen nur wenig Spielraum für anwendungs- oder nutzerspezifische Anpassungen.
Überträgt man jedoch die Konzepte von Cloud Computing – die dynamische und automatisierte
Bereitstellung von Ressourcen sowie die Abrechnung auf Nutzungsbasis – auf Computerclus-
ter, so verspricht das eine deutlich erhöhte Flexibilität und eine Verringerung von Kosten.
Virtuelle Computercluster würden so zu jedem Zeitpunkt genau die Rechenkapazität bereit-
stellen, die benötigt wird.
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Abstract

Diese Flexibilität und Variationsmöglichkeit der Rechenkapazität (die sog. Elastizität), hat
jedoch ihren Preis: Mehraufwand, variierende Ausführungszeiten einzelner Iterationen und
mehr Hintergrundaktivität in Betriebssystem und Virtualisierungsschicht können die Leistung
paralleler Anwendungen deutlich herabsetzen. Darüber hinaus benötigen viele Anwendungen
für das Hochleistungsrechnen speziell für Computercluster entworfene Netzwerktechnologien,
weil diese sehr geringe Latenzzeiten erreichen und erweiterte Kommunikationsprimitive bieten.
Bestehende Lösungen für Cloud Computing können diese Anforderung nicht erfüllen, weil sie
nur virtualisierte Ethernet-Netzwerke anbieten.

Die vorliegende Arbeit beschreibt eine neuartige Architektur für Cloud Computing für das
Hochleistungsrechnen, bestehend aus drei Teilaspekten: Virtualisierung der Cluster-Knoten,
Virtualisierung des Cluster-Netzwerks und Management der resultierenden Cloud. Die Arbeit
untersucht, ob eine gängige Virtualisierungsschicht (KVM unter Linux) für die Bereitstellung
virtueller Knoten für Computercluster herangezogen werden kann. Weiterhin wird ein Konzept
für die Virtualisierung der Cluster-Netzwerktechnologie InfiniBand vorgestellt, das einem Be-
nutzer den Eindruck vermittelt, er hätte weitreichenden und exklusiven Zugriff auf ein physis-
ches Netzwerk. Tatsächlich nutzt er jedoch nur einen Teil des physisch vorhandenen Netzwerks
und kann andere Nutzer nicht störend beeinflussen. Die Arbeit bespricht zudem die Heraus-
forderungen, die eine automatisierte Verwaltung eines Cluster-Netzwerks mit sich bringt, und
beschreibt geeignete Erweiterungen bestehender Verwaltungssysteme für Cloud Computing.

Teil dieser Arbeit ist die Evaluation des Einflußes unterschiedlicher Konfigurations-Optionen
des Linux-Kernels auf die Hintergrundaktivität des Systems (OS noise) und die Leistung von
Anwendungen. Zudem wird an einem realen InfiniBand-Netzwerk untersucht, ob sich eine
Netzwerk-Isolation tatsächlich praktisch erzwingen lässt und inwieweit bestehende Werkzeuge
hierfür geeignet sind. Die automatisierte Verwaltung eines Cluster-Netzwerks, als integraler
Bestandteil eines Verwaltungssystems für Cloud Computing, wird an Hand eines Prototypen
demonstriert, der in einem InfiniBand-Netzwerk die Netzwerk-Isolation zwischen virtuellen
Computerclustern konfiguriert.
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1 Introduction

Today’s high-performance computing clusters (HPC) are typically operated and used by a sin-
gle organization. Demand is fluctuating, resulting in periods where physical resources are
underutilized or overloaded. In addition, the static OS installation on cluster nodes leaves little
room for customizations of the runtime environment for different jobs. The concepts of cloud
computing transferred to HPC clusters — that is, an Infrastructure-as-a-Service (IaaS) model
for HPC computing — promises increased flexibility and cost savings. It enables the progress
away from physically owned but underutilized HPC clusters designed for peak workloads to
virtualized and elastic HPC resources leased from a consolidated large HPC computing center
working near full capacity. Elastic virtual clusters provide compute capacity scaled dynami-
cally to suit actual demand and workload. At the same time, the pay-as-you-go principle of
cloud computing avoids the huge initial investments that are inevitable with physically owned
clusters, and causes costs only for actual use of computing capacity. Virtualization allows to
dynamically deploy a fully custom runtime environment for each user, customized from the OS
kernel up to libraries and tools.

In practice, however, providing cloud-based HPC raises difficult challenges. Virtualization, the
core technique of contemporary general-purpose IaaS offerings, has a high associated overhead
and, even more important, may lead to unpredictable variations in performance [63, 93]. Al-
though such overhead and jitter may be tolerable for standard workloads, running HPC tasks
used to predictable performance delivery and microsecond-latencies in a compute cloud be-
comes a non-trivial problem: it is well known that jitter and OS background activity can
severely reduce parallel application performance [27, 67, 89]. Therefore, a compute cloud for
HPC workload must strive to incur minimal OS background activity.

Furthermore, contemporary compute clouds implement network isolation and bandwidth shar-
ing with general-purpose Ethernet overlays. This approach achieves elasticity of network re-
sources for standard server workloads. Compute clusters often employ distinct cluster inter-
connect networks, however, because of their performance characteristics and advanced features
(such as remote DMA transfers), which the virtualized Ethernet of general-purpose clouds fails
to provide. So, an IaaS model for HPC faces a new challenge: it must incorporate the manage-
ment of cluster interconnects to provide the low latency and feature set that HPC users expect
and require for their applications. It must provide virtual machines (VMs) with access to cluster
interconnect adapters, which is not yet a commodity, like Ethernet virtualization. In addition,
multi-tenancy in HPC clouds requires network isolation, and network resources must be shared
in a way that fulfills the quality of service (QoS) requirements of HPC applications.

In this work, we present a novel architecture for HPC clouds that provide virtual and elastic
HPC clusters. Our architecture comprises the three facets node virtualization, network virtual-
ization, and HPC cloud management. We raise the question, whether a commodity hypervisor,
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1 Introduction

the kernel-based virtual machine (KVM) on Linux, can be transformed to support our archi-
tecture. We explore the state of the art in virtualized InfiniBand access and discuss how we
customize a Linux host OS to provide virtual cluster nodes — that is, VMs intended for HPC
workloads that altogether form a virtual compute cluster. In our evaluation, we examine the
OS noise (OS background activity) in different Linux kernel configurations and assess how OS
noise and kernel configuration affect application performance and overhead.

We provide an extensive concept for InfiniBand network virtualization that provides each user
with the impression of using a dedicated physical network with full access to all configuration
features. A user can apply a custom packet routing scheme, employ recursive isolation in his
share of the network, and assign custom node addresses. His configuration settings affect only
his share of the network, however, and cannot impair other users. We evaluate how effective
network and performance isolation can be enforced in a real InfiniBand network. For this
purpose, we examine the practically available protection features that help to restrain a user
from altering the network configuration outside his virtual cluster.

With regard to the third aspect of our architecture — that is, HPC cloud management — we dis-
cuss the additional challenges that the performance characteristics and peculiarities of cluster
networks bring up, using the example of InfiniBand. To face these challenges, we extend exist-
ing cloud management frameworks with information about the cluster network topology. We
incorporate this information into cloud management, so that we can consider network distance
(to minimize it) and the restrictions of InfiniBand QoS mechanisms (not more than 15 virtual
clusters share a network link) in VM placement. As a proof of concept, we present a prototype
that combines cloud and cluster network management and automatically configures InfiniBand
network isolation based on the grouping of VMs to virtual clusters.

Compute clusters1 clearly are the prevalent architecture in today’s HPC computing. Our focus
on distinct cluster interconnects, such as InfiniBand, meets the state of the art in building high-
end clusters. The TOP500 supercomputer list2 currently lists 414 cluster systems among the
500 most powerful supercomputer systems — that is, 83%. Gigabit Ethernet and InfiniBand
are the most commonly used network technologies for clusters. The 16 highest ranked clusters
all employ InfiniBand, as do 77% of the top 100 cluster systems.

Employing virtualization in a HPC IaaS model introduces a high level of flexibility and pro-
vides for elasticity. These achievements are paid with a reduction of performance caused by
virtualization overhead, however. Considering this trade-off, the question arises, whether one
cannot implement isolation and elasticity for a multi-tenant HPC cloud at the OS level, and
thus avoid the overhead of a distinct virtualization layer. There are several concepts that pro-
vide isolated environments in a single OS, such as OpenVZ, which is known to provide less
overhead than virtualization in some applications [17]. Our approach for InfiniBand network
virtualization is applicable at the OS level, too.

However, besides incurring overhead, virtualization provides distinct advantages for HPC,
which have been pointed out in former work already [28, 37, 59]. Virtualization allows to cus-

1Compute clusters, also called cluster computers, are distributed and networked multi-computer systems, see
(p.546) [88].

2The TOP500 supercomputer list is a half-annual ranking of supercomputers based on the high-performance lin-
pack benchmark [24, 60].
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tomize the runtime environment of each job (e.g., to run legacy HPC applications in a legacy
OS), it enables new transparent fault tolerance mechanisms, and it maintains isolation when
regular users are granted superuser privileges in a VM. We shall elaborate the advantages that
virtualization provides for HPC in greater detail in Section 2.2 on page 6. Further, compute-
intensive workloads typically show acceptable virtualization overhead, as noticed in [28] al-
ready — in the course of our evaluation, we have observed virtualization overheads of typically
less than 4 % (with a maximum of 10 % only in a single configuration), see Section 4.2.1 on
page 60.

Following this introduction, we present background information on virtualization and the HPC
application model we follow in this work, amongst others, and discuss related work on virtual
HPC clusters and advanced network virtualization concepts in Chapter 2 on page 5. In Chapter
3 on page 17, we introduce our architecture for HPC clouds and discuss our architecture’s indi-
vidual facets node virtualization (in Section 3.2 on page 20), network virtualization (in Section
3.3 on page 30), and HPC cloud management (in Section 3.4 on page 46). We complement our
approach with the discussion of our prototypic HPC cloud and the practical evaluation of some
of its building blocks for their fitness for purpose in Chapter 4 on page 53. In Chapter 5 on page
85, we shall conclude our work and give a summary of our results.
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2 Background and Related Work

In this section, we prepare and lay down some background and provide references to former
work that we build upon. In addition, we present related work and point out how our contribu-
tion differs in Section 2.7 on page 13.

Cloud computing is a trend that we want to extend to high-performance computing (HPC). Vir-
tualization is the basic building block of cloud computing. We introduce these highly related
topics in Section 2.1 on page 5. Virtualization offers some distinct advantages for HPC, despite
the performance degradation incurred by virtualization overhead. These advantages have been
well discussed in former work, which we summarize in Section 2.2 on page 6. Virtual Machines
(VMs) require virtual I/O devices, because they are typically prohibited access to physical I/O
devices. In particular, virtualization of network devices is very critical for the performance of
server workloads and has consequently encouraged much research (especially Ethernet virtu-
alization). Since we utilize virtualized access to distinct cluster networks, a related but less
thoroughly researched issue, we discuss device virtualization using the example of Ethernet
virtualization in Section 2.3 on page 8. Throughout this work, we consider HPC applications
as defined by the bulk-synchronous single-program-multiple-data application model, which we
therefore introduce in Section 2.5 on page 10. In addition, we refer to former research on the
performance characteristics of such applications. Finally, we discuss some publications that
analyze contemporary general-purpose clouds for various types of HPC workload in Section
2.6 on page 12.

In this work, we employ InfiniBand as the cluster interconnect of our HPC cloud. However,
we shall introduce the concepts, properties, and mechanisms of InfiniBand during the course of
this work — each aspect in the context where we employ it — instead of covering them isolated
in this chapter.

2.1 Cloud Computing and Virtualization

Cloud computing is a current trend in the IT industry. Users of applications and computing in-
frastructure move from owning and operating applications and hardware by themselves towards
utilizing software and computing infrastructure that is offered as a service by cloud providers
(referred to as Software-as-a-Service, SaaS, and Infrastructure-as-a-Service, IaaS). A user can
order such services dynamically on demand and only has to pay for their actual use. According
to [5] and [16], cloud computing is the vision of utility computing coming true.

One of the foundations of cloud computing is the virtualization of compute resources, storage,
and networking (compare [5, 16]). Throughout this work, we will use the term virtual machine
(VM) to refer to a virtualization of the complete instruction set architecture of the host system.
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2 Background and Related Work

An OS running inside a VM, often termed guest OS has the impression of running on a dedi-
cated computer. The software layer that implements this virtualization is called hypervisor or
virtual machine monitor. See Tanenbaum’s classic text book, Modern Operating Systems, 3rd
edition, (p. 65–69) [88] and (p. 566–587) [88], for a more in-depth introduction to VMs.

There are several approaches to system level virtualization — an overview is presented by
Smith and Nair in [83]. An early approach, called trap-and-emulate or classic virtualization,
has initially been developed for the IBM mainframe architecture (compare [88]) and has been
formally described by Popek and Goldberg in their classic paper [69]. A more recent approach
is binary translation, which has become popular in the virtualization products from VMware
[1]. It has been devised to overcome limitations of the x86 architecture that make trap-and-
emulate impossible [75].

In our work, we employ the kernel-based virtual machine (KVM) hypervisor [49]. KVM uses
hardware extensions that facilitate virtualization, which have recently been introduced to the
x86 architecture by Intel and AMD in the form of Intel VT [90] and AMD-V [2]). However,
this concept has also been used first on the IBM mainframe architecture, called interpretive
execution [35]. It provides a separate machine state for the execution of a guest system’s in-
structions. The CPU can execute some privileged instructions of the guest OS without involving
the hypervisor, while constraining their effects to the VM (i.e., its dedicated machine state).

2.2 Benefits of Virtualization for High-Performance
Computing

System level virtualization provides some distinct advantages for high-performance comput-
ing. In this section, we present three published proposals for the use of virtualization for HPC
workload [28,37,59]. All three proposals mention several advantages of virtualization for HPC,
which we summarize here.

Figueiredo, Dinda and Fortes have been first in proposing virtualized environments for HPC
workload. They suggested to deploy jobs in grid computing as VMs running inside a hyper-
visor on compute nodes [28]. Mergen and associates propose virtualization to combine legacy
OS environments and custom lightweight runtime environments for HPC workloads [59] and
thereby combine the advantages of both options. Performance benefits from custom environ-
ments, and existing legacy OSs provide a rich functionality, covering wide hardware support
and tool support for debugging. Huang and associates developed a batch job management sys-
tem that runs each HPC job in a VM that provides the required environment for the job [37].
They further proposed VMM-bypass I/O, direct I/O access of guest applications, to reduce
virtualization overhead for I/O operations.

In all three proposals [28, 37, 59], the respective authors present several advantages that virtu-
alization offers for HPC:

• Virtualization allows to use specialized environments for jobs, ranging from libraries
down to the OS kernel, both customized installations of a standard OS, such as Linux,
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2.2 Benefits of Virtualization for High-Performance Computing

and specific lightweight OSs for HPC. Several specialized runtime environments can
coexist at the same time in a physical cluster and even on the same physical host.

• VMs allow to provide and preserve binary-compatible runtime environments for legacy
applications, without putting constraints on other applications or on the use of physical
resources — in contrast to reserving some physical nodes for a legacy environment.

• Such customized runtime environments are much easier and faster to start and stop in a
VM than on a physical host, because hardware re-initialization is avoided.

In contrast to server workloads, HPC applications are typically run as batch jobs, which are tran-
sient, and thus require a certain runtime environment only temporary. The HPC applications
used in jobs are reoccurring however. For example, an oceanographer may run a simulation
software for ocean currents repeatedly, each time with different parameters and input data. So,
the required job runtime environments are reoccurring, too. Time-consuming reconfigurations
of the OS installation on a system are undesirable when they are required for individual HPC
jobs with a short- to medium-term lifespan, whereas they are quite tolerable for server work-
loads, which are expected to operate for a long duration. As an alternative, a set of VM images
can be prepared to provide each HPC application with a matching runtime environment.

Further advantages of using system level VMs (compare [28, 37, 59]) affect isolation, produc-
tivity, and fault tolerance, amongst others:

• Isolation is provided by the hypervisor, in the virtualization layer below the (guest) OS.
So, users of a VM can be granted superuser privileges inside the guest OS, if required,
without breaking isolation between separate VMs or compromising the integrity of the
host.

• VMs implicitly form a resource principal and an entity in the hypervisor’s resource man-
agement that covers all the resource utilization inside the guest, including OS activity,
which is traditionally hard to associate with processes [11] (e.g., handling received pack-
ets in the network protocol stack on behalf of a process).

• Virtualization can facilitate testing and debugging of parallel applications by providing
many virtual nodes, as required to detect scalability problems, on much fewer physical
nodes (e.g., by mapping many single-processor virtual nodes to few multi-core physical
nodes). In addition, virtualization allows to debug and monitor VMs from the outside,
thereby avoiding disturbance from integrating debugging code into the OS or application
under test.

• Virtualization adds a layer to implement fault tolerance, partially transparent to the guest
OS. A hypervisor can improve software reliability with checkpoint/restart schemes for
VMs. At the same time, it can shield VMs against (some) hardware failures and thereby
reduce the need to implement fault tolerance mechanisms inside a guest OS.

In summary, virtualization enables new features for HPC workload, such as providing regu-
lar users with superuser privileges inside a VM or transparent fault tolerance mechanisms in
the hypervisor. Virtualization increases flexibility and thereby allows to adapt existing com-
pute resources dynamically to more diverse workloads with differing required runtime environ-
ments.

7



2 Background and Related Work

2.3 Ethernet Device Virtualization

A hypervisor typically denies a guest OS direct access the I/O devices of the host for the pur-
pose of isolation. So, the hypervisor has to provide the guest OS with a virtual I/O subsystem,
or controlled access to the host’s I/O devices. An important class of virtualized devices are
Ethernet adapters that allow several VMs access to a TCP/IP network via a physical Ethernet
adapter in the host, because TCP/IP networks on Ethernet are a commodity in server computing
today. Consequently, much research has been done on Ethernet virtualization. Although our
work focuses on the related topic of virtualizing cluster networks, we introduce device virtual-
ization techniques using the example of Ethernet virtualization, because it allows us to present
the evolution of techniques from full emulation to virtualization support in devices.

When a guest OS issues instructions for I/O access, these instructions trap to the hypervisor,
because they are privileged. One approach for device virtualization emulates physical devices
in the hypervisor based on these traps (called full emulation). The emulated device has the same
software interface as an existing physical one, so regular device drivers can be used in the guest
OS. As a disadvantage, the emulation causes significant overhead (which can be mitigated to a
certain degree [87]).

Instead of emulating real hardware, a hypervisor can provide an interface specially designed
for virtual devices. This approach is called paravirtualization [12, 94] and reduces overhead,
compared to full emulation. However, it poses the disadvantage of requiring the development
of new drivers that support the new virtual device for all potential guest OSs. Xen [12] employs
a split-driver model, where a backend driver in a dedicated device driver VM has exclusive
access to physical hardware, and frontend drivers in guest OSs communicates with the backend
driver to perform I/O. Network packets are first transfered between guest OS and device driver
VM before they are sent to the network card, which causes notable overhead with high-speed
networks [18]. Several improvements have been proposed, such as avoiding copy operations
[58] or fixing performance problems in the implementation [76], amongst others.

In 2007, several publications brought forward the idea to involve physical Ethernet adapters in
the process of virtualization [54,72,79] , under different notions, such as self-virtualized devices
[72] or concurrent direct network access [79]. The device offers several virtual interfaces for
device drivers, it is aware that several OS instances access it, and it multiplexes the physical
resources between the virtual interfaces, including the sorting of received packets to different
receive queues.

The PCI Special Interest Group, the standardization organisation behind the Peripheral Com-
ponent Interconnect (PCI), has defined a generic interface for self-virtualized devices, called
Single Root I/O Virtualization (SR-IOV) [82]. A physical PCI device with enabled SR-IOV
support behaves like several logical devices, each with its own device interface. The first logi-
cal device is called physical function (PF). The PF is used to enable SR-IOV and to manage the
other logical devices, called virtual functions (VFs). Access to the PF is typically restricted to
the hypervisor or a device driver OS. A VF represents a complete software interface to a PCI
device, which can be used by a guest VM to access the device independent from other VMs or
the hypervisor.

8



2.4 Cluster Network Virtualization

A hypervisor grants a VM transparent access to a VF using a mechanism called PCI pass-
through. Basically, the hypervisor maps the memory-mapped I/O region(s) of the device into
the VM’s address space. PCI devices can act as bus masters and perform DMA transfers.
PCI DMA transfers operate on physical addresses by default, but a guest OS does not know
about physical addresses of its DMA buffers. So, with PCI passthrough alone, DMA transfers
initiated by a guest OS would not work as expected. Even worse, a malicious guest OS could
exploit a PCI device’s DMA capability to access host physical memory and thereby break the
isolation between VMs. So, additional precautions are necessary (compare [97]).

A solution is to add an address translation mechanism between PCI devices and main mem-
ory. Such an address translation between I/O devices and main memory is commonly called an
I/O memory management unit (IOMMU). It uses different address mappings, based on which
device performs a memory access. When a PCI device is assigned to a VM, the hypervisor
configures the IOMMU to apply the VM’s guest-physical to host-physical memory mapping to
each DMA transfer of the respective device. As a result, the IOMMU transparently redirects
and restricts each DMA transfer a guest OS orders to the memory assigned to the respective
VM. This procedure applies to VFs provided by SR-IOV and to physical devices that are ded-
icated to a VM. IOMMUs have been implemented by Intel, called Virtualization Technology
for Directed I/O [39], and AMD, called I/O Virtualization Technology [3].

Employing an IOMMU, PCI passthrough can be implemented in a device-independent way.
SR-IOV and IOMMU support has been added to the hypervisors Xen [23] and KVM [22, 97].
A performance evaluation of an SR-IOV capable 10 GbE device can be found in [52] and shows
increased performance compared to paravirtualization.

2.4 Cluster Network Virtualization

In the previous section, we presented the concepts employed for device virtualization using the
example of Ethernet network cards. We have shown the evolution of virtualization techniques
from full emulation to standardized virtualization support in devices with SR-IOV. In this sec-
tion, we present former work on the virtualization of cluster networks, which has received
considerably less attention than Ethernet virtualization.

Liu and associates developed and analyzed a paravirtualization approach for InfiniBand host
channel adapters (HCAs) [53], termed VMM-bypass I/O. It allows a guest process to directly
issue communication requests to an InfiniBand HCA, while isolation between VMs and pro-
cesses is maintained. Huang has extended this approach by support for live migration of VMs
that use InfiniBand in his PhD thesis [36]. This framework however spans hypervisor, guest
OS, and guest MPI libraries, which all are involved in the migration. So, live migration trans-
parent to the guest OS is not possible that way. Unfortunately, the prototypic sourcecode of this
paravirtualization approach that is publicly available, has not been maintained since 2007.

When guest processes access I/O devices without involving the hypervisor, the hypervisor can-
not directly enforce resource allocations for I/O utilization. Ranadive and associates proposed
fair resource scheduling based on asynchronous monitoring of I/O usage and VM memory
inspection to face this problem [73].
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Nanos and Koziris presented paravirtualization for Myrinet cluster networks [62]. Their ap-
proach is very similar to the InfiniBand paravirtualization by Liu and associates [53], because
they also used the Xen hypervisor and Myrinet is very similar to InfiniBand with regard to
concepts of the software interface that has to be virtualized.

2.5 Bulk-Synchronous SPMD Model and Performance
Analysis

Many applications that are typically considered as HPC workload match the bulk-synchronous
single-program multiple-data (SPMD) application model [6, 45], which is the adaptation of
the SPMD application model [20] to the bulk synchronous parallel machine model [92]. In
this model, a parallel job consists of several processes that run concurrently and execute the
same binary program. The number of processes remains static during the lifetime of a job
and each process runs on a separate processor (compare [6]). Memory is distributed, as intro-
duced by the bulk-synchronous parallel machine model, in contrast to shared-memory with the
original SPMD model [20]. Therefore processes exchange data and synchronize via message-
passing.

Many HPC applications can be seen simplified as cycling through two phases: Purely local
computation alternates with synchronization and communication between processes, see Fig-
ure 2.1 on page 11. Synchronization primitives such as the barrier (designated in the original
SPMD model [20]), are so-called collective operations that involve all processes. Every sin-
gle process has to wait until all other processes have participated in the collective operation
(compare [45]).

A popular, standardized framework for the bulk-synchronous SPMD model is the Message
Passing Interface (MPI) [30]. It supports starting and running SPMD-style parallel jobs and
defines an API for communication operations between individual processes. MPI implemen-
tations are available on a broad range of hardware platforms. One of them is Open MPI [33],
which we used in our prototypic evaluation (see Section 4.1.5 on page 58). According to [33], it
is based on the experiences gained from former implementations LAM/MPI, LA-MPI, FT-MPI
and PACX-MPI. Its design is consistently component-based and aims to achieve high perfor-
mance in distributed computing systems that are heterogeneous regarding processor architec-
ture, network technology and protocols, run-time environment, and binary formats. Details on
how Open MPI utilizes InfiniBand can be found in [81].

The performance characteristics of bulk-synchronous SPMD applications have been studied
very well since its initial publication. In the context of our work, we are mainly interested in
the performance implications that result from the interaction of such applications with an OS.

Jones and colleagues have analyzed the influence of OS background activity on collective syn-
chronization operations [45]. They try to minimize this influence by overlapping background
activity on all nodes. Thereby, the overall duration a parallel application is interrupted on any
node (potentially causing other nodes to wait) is reduced. For this purpose, they propose OS
modifications that co-schedule background activity by the OS kernel and system daemons on
all nodes of a cluster.
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Figure 2.1: Simplified view of HPC applications that follow the bulk-synchronous SPMD
model. All processes cycle through alternating computation and synchronization/-
communication phases. Adapted from [6] and [45].

Petrini, Kerbyson, and Pakin have analyzed parallel application performance on a supercom-
puter with 8192 processors [67]. They have identified and solved a performance problem and
achieved a factor of 2 speedup with modifying the actual parallel application. They observed
in detail, how OS background activity on different nodes of the supercomputer affected per-
formance. Another important observation they made, is that micro-benchmark results of ele-
mentary operations need not correlate with application performance, even when the application
makes heavy use of the respective operation. So, evaluating an HPC system for parallel appli-
cation performance cannot rely on micro-benchmarks alone.

To avoid being mislead by inappropriate benchmarks, large institutions with specific comput-
ing requirements often publish their own benchmark suites that mimic the behavior of typical
applications they are using. Examples are the NAS Parallel Benchmark of the NASA Advanced
Supercomputing (NAS) Division and the Sequoia Benchmark Codes [10] of the US Advanced
Simulation and Computing Program.

Tsafrir and associates [89] have presented a probabilistic model for the effects of OS back-
ground activity (system noise). From this model, they deduced that the scaled OS noise —
that is, the fraction of total CPU time used by OS background activity — should be in the or-
der of 10−5 to minimize the influence on application performance for clusters with thousands
of nodes. They identified timer ticks as the main cause of OS noise, as experienced from an
application, and propose to avoid unnecessary ticks.

Ferreira, Bridges, and Brightwell have analyzed the influence of different types of OS back-
ground activity on different parallel applications [27]. They create artificial background activ-
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ity, vary its characteristics in terms of frequency and duration of each activity period, and mea-
sure and compare the influence on the different applications. They observed that low-frequency
high-duration noise caused much higher performance degradations than high-frequency short-
duration noise, up to a slowdown by a factor of 20 from only 2.5% of CPU time consumed
by low-frequency background activity. As a result, they state that considering OS noise bench-
marks alone does not suffice to assess application performance — an advice that we shall follow
in our evaluation in Section 4.2.1 on page 60.

2.6 High-Performance Computing on General-Purpose
Clouds

In the previous section, we have introduced the bulk-synchronous SPMD application model
and considered performance analysis in the traditional supercomputer and cluster context, areas
intentionally designed for HPC workload. The widespread availability of commercial cloud of-
ferings, such as Amazon EC2, has led to much research on the performance of HPC workloads
on general-purpose clouds, which have been designed for server workloads. In this section,
we present several studies that focus on different types of computational scientific workloads.
We did not restrict the selection to classical HPC applications (the bulk-synchronous SPMD-
type), because evaluations with other types of workloads still provide interesting insight about
contemporary clouds.

Napper and Bientinesi [63] explicitly posed the question whether a cloud computing provider
can reach the TOP500 supercomputer list [60]. For this purpose, they evaluated the perfor-
mance of the high-performance linpack benchmark, which is used to rate supercomputer sys-
tems for the TOP500 list, on Amazon EC2. Despite acceptable virtualization overhead on a
single node, Napper and Bientinesi observed a drastic performance loss when scaling to two
nodes (even worse with more nodes). They attributed the lack of scalability to the low perfor-
mance of the network employed in the Amazon EC2 cloud.

Montero and associates have proposed to virtualize high throughput computing clusters using
cloud environments [61]. They have evaluated the influence of using virtual nodes from a
remote cloud provider (Amazon EC2) in addition to an existing cluster and observed acceptable
results. Further, they proposed a performance model for capacity planning. Their evaluation
focuses on jobs that run independent on each node without communication interdependencies.
As a results, the high communication latencies they observed (inside the cloud and between
the cloud and the existing cluster) only influence job startup time, when input data must be
transfered.

Juve and colleagues have evaluated scientific workflow applications on Amazon EC2 and com-
pared performance and costs with an HPC system [46]. Scientific workflow applications are
sets of loosely-coupled tasks that communicate via files that tasks read/write as their respective
input/output. The authors of [46] restricted their analysis to running workflows on one node.
They observed virtualization overheads of less than 10 %, yet found the main bottleneck of
current clouds in the low performance of disk I/O.
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Iosup and associates have studied a similar class of applications, which they call many-task sci-
entific workloads [41]. One of their main contributions is a detailed analysis of traces from real
clusters and compute grids, on which they base a performance analysis of existing compute
clouds. They found that the performance of actual scientific workloads is worse on existing
compute clouds than on clusters or grids by about an order of magnitude. However, compute
clouds deliver performance at much lower costs and provide an interesting alternative for tem-
porary short-term demands for compute resources. The authors also refer to [40], where they
analyzed grid workloads and found that most parallel compute jobs employ only up to 128
processors.

2.7 Related Work

In this section, we present some publications that are directly related to our work. To our
current knowledge, there is no previous work that combines cloud and cluster network man-
agement to provide virtual clusters with access to distinct cluster networks, and at the same
manages isolation in the cluster network. There has been much research on providing virtual
clusters however, and there are some known designs that advance datacenter networks by intro-
ducing traditional cluster interconnect topologies or by providing configurable virtual network
topologies with cloud-like interfaces and automatic configuration.

We also regard the palacios hypervisor as related work, a lightweight hypervisor specifically
designed for HPC, in contrast to the general-purpose combination of Linux and KVM, which
we analyze in this work.

2.7.1 Virtual Clusters

The idea to use virtual clusters for scientific compute workloads has formed in the era of grid
computing already, long before cloud computing existed as a term. Foster and colleagues ana-
lyzed grid workloads on virtual clusters in [31], a project which eventually led to the Nimbus
cloud toolkit [47, 70]. In a more recent work, Marshall, Keahey, and Freeman propose to
dynamically extend existing clusters with nodes from a compute cloud [56], depending on de-
mand, thereby making existing clusters elastic. They describe logistical problems that arise,
present a resource manager based on Nimbus for extending existing clusters with nodes from a
compute cloud, and discuss three resource allocation policies for this purpose.

Nimbus provides users with virtual clusters out of the box. It supports only TCP/IP networking
on Ethernet however, with basic network isolation, whereas we explicitly target distinct cluster
networks with automatic configuration of network isolation. Nimbus provides a network con-
nection between the nodes of a virtual cluster without further configuration options, whereas
we strive for a rich set of management features a user may apply to his share of the network.

We shall discuss the nimbus toolkit in Section 3.4.1 on page 49 as one of the existing cloud man-
agement frameworks. Our prototype is based on the OpenNebula cloud management frame-
work [65], even though the extensibility concepts of nimbus are sufficiently similar that our
approach can be transfered.
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The OpenNebula cloud management framework itself does not support virtual clusters, but con-
siders each VM a separate entity. Yet, Anedda and colleagues have developed an extension to
OpenNebula (called virtual cluster tools) that allows to trigger operations, such as deployment,
on complete virtual clusters. Their focus is however to achieve save and restore operations
(suspending execution and saving a VM’s state to a file) on all VMs that comprise a virtual
cluster at the same time [4]. That way, they avoid to disturb parallel applications running inside
the VMs.

Like the nimbus toolkit, the virtual cluster tools of Anedda and colleagues do not regard clus-
ter networks, such as InfiniBand. They consider only MapReduce parallel applications, not
classical HPC applications in the bulk-synchronous SPMD model.

Huang, Liu, and Panda developed a batch job management system that runs each HPC job in
a VM that provides the required environment for the job [37]. That way, they use an existing
(physical) cluster with virtualization. In our approach, we aim at providing a user with the view
of his own cluster that runs itself virtualized, as it is the case with the nimbus toolkit and the
virtual cluster tools for OpenNebula. That way, a user can employ a custom job management
system and different virtual clusters are intrinsically more separated than the jobs in the system
of Huang, Liu, and Panda.

2.7.2 Datacenter Network Virtualization

Greenberg and colleagues have introduced a novel architecture for data center networks, which
they call VL2 [34]. They aim for bandwidth that is independent from the location of a server
in the physical topology. They employ the Clos network topology typically used in cluster
interconnects and replace Ethernet’s spanning tree protocol with a combination of customized
switching and layer-3 routing. They introduce an IP address translation directory to separate
IP addresses used to name services from those used in routing. VL2 increases the bandwidth
available in datacenter networks and makes IP addresses independent from the routing topology,
at the price of introducing an IP address translation mechanism to the TCP/IP stacks of each
server node. VL2 clearly aims at server workloads in TCP/IP networks based on Ethernet and
therefore focuses on achieving high bandwidth, not latency, as is the case in cluster networks.
It is intrinsically dependent on TCP/IP, because layer-3 routing based on IP-addresses is an
essential building block of VL2.

Benson and associates have proposed the cloud networking system EPIC that allows users far-
reaching control over the network connectivity of their VMs in compute clouds [14]. Users
can define virtual networks and thereby configure custom isolation and connection schemes for
VMs. In addition, EPIC allows to configure transparent middleboxes, such as firewalls or intru-
sion detection systems. In contrast to traditional network infrastructure, EPIC implements the
virtual network specification submitted by a user automatically as a part of cloud management,
without the need for human interaction.

EPIC [14] virtualizes datacenter networks and offers automated configurability options that
did not exist for such networks before. It is specifically designed for such networks however,
regarding the goals the authors have set and the mechanisms they employed, and therefore
cannot be transfered to cluster networks. For example, firewall middleboxes are not practical in
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cluster networks because of the latency they add. In our work, we employ the mechanisms of
cluster networks for isolation and virtualize the existing configuration interfaces of the cluster
network. In contrast to datacenter networks, keeping native performance, especially network
latency, is the primary goal.

2.7.3 Lightweight Hypervisors

In our work, we analyze how well KVM on Linux, a hypervisor typically used for server
workloads on a commodity OS, serves as a virtualization layer for HPC workload. The palacios
hypervisor follows an alternative approach [50]. It can be embedded into the kitten lightweight
kernel, which aims at providing applications with a low-overhead environment, and provides
itself a slim virtualization layer aimed at incurring low overhead. Both palacios and kitten aim
at maximizing the resources allocated to applications by reducing background activity by the
lightweight kernel or virtualization layer. In combination, they allow to run commodity OSs,
such as Linux, in a virtualized environment, and still provide custom applications with kitten’s
low overhead environment.

Palacios is limited however to single-CPU guests. So, a multi-core host can only be utilized
with virtualization as several independent virtual single-core nodes. Palacios provides PCI-
passthrough device access for Intel Gigabit Ethernet adapters, Mellanox InfiniBand HCAs, and
SeaStar, an interconnect used by Cray. However, PCI-passthrough alone allows only one VM
to access a device. While palacios and kitten are interesting research projects, they impose
limitations for practical use with multi-core hosts and several VMs that employ high-speed
interconnects. In contrast, our approach of employing Linux and KVM, leads to a readily
usable solution.
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This chapter presents our approach towards virtual InfiniBand clusters. We begin with an in-
troduction to our overall architecture, which is divided into three areas: node virtualization,
network virtualization, and cloud management. Node and network virtualization provide the
mechanisms that cloud management eventually orchestrates to provide virtual clusters. We
reflect this relationship in the structure of this chapter: First, we present an overview of our
architecture in Section 3.1. Second, we describe how we virtualize physical compute nodes to
provide virtual nodes in Section 3.2 on page 20. Third, we discuss how we virtualize the cluster
network and a user’s view of it in Section 3.3 on page 30. Finally, we briefly describe how a
cloud management framework feasible for high-performance computing (HPC) employs node
and network virtualization to provide virtual HPC clusters in Section 3.4 on page 46.

3.1 Basic Architecture

Our goal is to transform a physical HPC cluster, a collection of compute nodes connected by
a high-performance cluster interconnect, into a cloud computing infrastructure for HPC work-
loads. To reach this goal, we employ virtualization of compute nodes and virtualization of the
cluster interconnect, in our case InfiniBand, to offer dynamically and automatically allocated
virtual clusters. In contrast to physical clusters, our virtual clusters can dynamically grow or
shrink at runtime, a property commonly called elasticity in cloud computing.

We provide each virtual cluster the impression of using the InfiniBand interconnect by itself,
albeit with reduced bandwidth. The advanced configurability options of InfiniBand (compared
to contemporary Ethernet) can be used in a virtual cluster’s view on the network, using existing
management tools, and without an adverse influence on network performance. In contrast to
physical InfiniBand hardware, our virtualized cluster interconnect offers the advantage that a
user can revert to a default setup provided by the HPC cloud, when he does not want to hand-
tune the configuration. Figure 3.1 on page 18 provides a schematic overview of the HPC cloud
architecture we target.

Compared to commercial server clouds, HPC applications make much stronger demands on
quality of service (QoS). An HPC cloud has to allocate resources in a way that one can give
guarantees for the performance of processes on individual nodes and for the QoS a virtual clus-
ter does experience when using the cluster interconnect. Despite virtualization, the performance
characteristics of the cluster interconnect, such as low-latency, low-overhead communication,
have to be maintained.

Our approach is early work in the area of incorporating cluster interconnects into cloud com-
puting for HPC applications. Previous work on virtualizing InfiniBand (or other cluster inter-
connects) centers on virtualizing the InfiniBand host channel adapter (HCA) to provide virtual
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Figure 3.1: Basic architecture of our approach. Node and network virtualization, controlled
by an appropriate cloud management framework, provide elastic virtual InfiniBand
clusters on top of a physical cluster.

machines (VMs) access to the interconnect [53], but leaves out aspects such as a VM’s view of
the network and isolation in the presence of several VMs accessing one HCA. Former studies
on the performance of HPC applications in compute clouds cover many different types of scien-
tific applications [41,46,61], but restrict themselves to existing contemporary cloud computing
infrastructures, which employ Ethernet networks and do not offer cluster interconnects.

We propose to employ Linux and the Kernel-based Virtual Machine (KVM) as well as the
existing InfiniBand driver stack in Linux as the virtualization basis for building our HPC cloud
architecture. We follow the question, whether this commodity hypervisor and the existing
InfiniBand system software can be transformed to support such an architecture. Linux and
KVM have some practical advantages over alternatives, however, HPC applications make much
stronger demands on QoS, regarding the allocation of CPU and network resources, than server
workloads.
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We are currently focusing on the InfiniBand system interconnect, but expect that our find-
ings can be transferred to other cluster interconnects or future Ethernet generations. Current
cluster interconnects already share many ideas and concepts, such as OS-bypass and transport
layer protocol offload1, and the evolution of Ethernet also does begin to incorporate these tech-
niques2.

In the course of this thesis we present an analysis and a first prototype. In each of the following
sections, which are node virtualization, network and topology virtualization, and HPC cloud
management, we begin with an analysis of existing mechanisms. Then, we discuss how we can
transfer them to a virtualization environment for HPC workload, and present the design of our
prototype.

We follow a similar structure in the remainder of this section: We state the type of HPC appli-
cations we consider in this work, discuss some practical advantages of Linux and KVM over
alternatives, and present an overview of our prototype.

We use the bulk-synchronous SPMD model to characterize the designated workload of our HPC
cloud. We have already introduced this application model and presented references to former
work on the performance characteristics of such applications in Section 2.5 on page 10.

In our work, we follow the question, whether Linux and KVM can be transformed to serve
as a virtualization layer appropriate for such applications. Linux and KVM have practical
advantages over alternatives, mainly because of their widespread use.

Existing management frameworks for cloud computing, such as OpenNebula, support KVM,
amongst other commodity hypervisors. Therefore, we can employ the existing host, hypervisor,
and VM management software stack in OpenNebula.

Considering the practical use of an HPC cloud, the reliability of the system software has a
major influence on the reliability of the provided virtual clusters. Compared to the scenario
of native HPC systems (see [78]), HPC clouds add another software layer for virtualization,
and thereby another potential source of errors. We prefer Linux and KVM over alternative vir-
tualization stacks, because they have the advantage of a large user base, which contributes to
excessive testing, eventually leading to improved reliability. In addition, commercial support
is available for Linux, so it is possible to get bugs and problems that occur in a production en-
vironment solved in a timely manner. In contrast, research OS kernels aimed at HPC workload
are primarily developed to experiment with new ideas, not for long-term, large-scale production
use.

Further, Mellanox, the manufacturer of the InfiniBand host channel adapters (HCA) we employ
in our prototype, will release drivers with SR-IOV virtualization support (see Section 3.2.1 on
page 24), for use with Linux and KVM, in a few weeks. Adapting these drivers for use with
another virtualization layer would require porting work and continuous maintenance of another
software artifact.

1As an example, see [62], which introduces Myrinet from a system architecture perspective and proposes a par-
avirtualization concept comparable to one for InfiniBand [53].

2The Internet Wide Area RDMA Protocol stack (iWARP) [74] features RDMA and the direct placement of re-
ceived data in an applications address space by iWARP-capable network interface cards.
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Our prototype comprises three areas: We virtualize each node of a physical cluster, we virtual-
ize the cluster interconnect, and we orchestrate node and network virtualization with an HPC
cloud management.

On each physical node, we employ the KVM hypervisor on Linux, a combination which has
so far been used primarily to virtualize server and commercial workloads. We customize the
kernel configuration of the host OS and disable unnecessary features — for example, support
for swapping, which is not needed and undesired for HPC applications (we shall evaluate the
influence of different kernel configurations on OS noise and application performance in Section
4.2.1 on page 60). We shall name a VM intended for HPC workload a virtual node — many
virtual nodes form a virtual cluster.

We employ the mechanisms InfiniBand provides for network isolation (partitions) and to guar-
antee QoS (virtual lanes), and extend them to implement isolation and QoS effectively in a
virtualized environment. In addition, we provide a virtual cluster with the impression of its
own InfiniBand network, which allows a user to configure his own partitions and QoS policies
within his share of the network.

We extend the cloud management framework OpenNebula to automatically configure and de-
ploy virtual clusters and their network partitions.

3.2 Node Virtualization

In this section, we turn the physical nodes of a cluster into virtualized environments that provide
several virtual cluster nodes capable of running parallel HPC applications. For this purpose,
we employ an existing hypervisor for commercial and server workloads, KVM on Linux, and
configure it according to our primary focal points — that is, we aim for low virtualization
overhead, and even more important, minimal background activity in the hypervisor and in the
host OS.

All virtual nodes and the host require using the cluster interconnect. The virtual nodes utilize it
for synchronization and communication, and the host OS employs the interconnect for manage-
ment traffic, in place of a separate, additional network infrastructure. However, we expect that a
physical node will only have one cluster interconnect HCA (or potentially two for redundancy),
but hosts more virtual nodes. In summary, we have to provide shared access to the HCA for
several OS instances, running in VMs and on the host system.

Our virtual HPC environment has to maintain the performance characteristics of the cluster
interconnect, especially low latency, because they are key to parallel application performance.
Server workloads typically process several requests at a time. During blocking times of one task
(e.g., while it is waiting for a database query to complete), there are other tasks ready to run. In
contrast, HPC applications typically work on only one computational problem. When the tasks
comprising the parallel application reach a point in execution where they need to exchange
data or synchronize with each other, there is no other work that can be done while waiting
for communication. As a result, increasing communication latency by virtualization may be
acceptable for server workloads, because it does not harm overall throughput. However, for
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HPC workloads, increased latency directly results in longer waiting times and often, depending
on the actual application, reduced application performance.

This section comprises two parts: First, we examine existing components, the KVM hypervisor
and InfiniBand HCAs, that we use in our approach to provide virtual compute nodes on a
physical host, and present some aspects of contemporary HPC cluster nodes that we consider
in virtualizing them. Second, we describe how we employ and configure these components
to fulfill our goals. Thereby we transform a Linux/KVM virtualization environment targeting
server workload, such that it is capable of hosting virtual nodes of an HPC cluster.

3.2.1 Analysis

Server Virtualization with Linux/KVM

Research in virtualization has led to the construction of a variety of hypervisors, ranging from
prototypes to commercial products and employing virtualization techniques such as binary
translation or special CPU execution modes. One such hypervisor is the Kernel Based Virtual
Machine (KVM, [49]), which adds support for the current x86 virtualization extensions Intel
VT [90] and AMD-V [2] to the Linux kernel. KVM exports these mechanisms via the Unix
file abstraction, so one can implement a hypervisor based on KVM completely in user-space.
The QEMU emulator [13, 71], originally a full system emulator based on binary translation,
has been modified to complete KVM to a full type-2 hypervisor. All interaction between KVM
and QEMU, such as the setup of virtual CPUs or the configuration of which instructions shall
cause a VM exit (a trap from the guest back to the hypervisor), uses ioctl and read/write system
calls.

CPU Virtualization VMs based on KVM are scheduled like other regular Linux processes.
Guest code is executed in the QEMU process when it enters guest mode, introduced with KVM
in addition to user and kernel mode. Besides the default scheduling policy, the completely
fair scheduler (CFS), which employs dynamic priorities and was designed with interactive pro-
cesses in mind, Linux supports real-time policies with static priorities and an idle priority class
that is scheduled only when the CPU would otherwise be left idle [57].

QEMU supports multiprocessor guests using POSIX threads. Each logical CPU is implemented
by a separate thread, so SMP guests can run parallelized on SMP hosts. Linux scheduling
supports CPU affinity in a configurable way. Concretely, each thread has a CPU affinity mask,
a bitmap that defines on which CPUs a process can be dispatched. By default, a thread can be
scheduled on all CPUs, with the affinity mask set to all ones.

Memory Virtualization Guest physical memory is built from parts of QEMU’s virtual ad-
dress space, called memory slots. QEMU3 uses an ioctl system call to create memory slots and

3We describe the mechanisms provided by KVM using the example of QEMU. Of course, they work the same
way with every other hypervisor that employs KVM.
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specifies for each slot its size, its designated address in guest physical memory, and the region
in QEMU’s virtual address space to be mapped to the guest.

Contemporary Cloud Computing and virtualization setups employ various techniques to over-
commit memory — that is, to assign more memory to guests (as guest physical memory) than
there is physically present in the host system (see the Related Work Section in [32] for a re-
cent overview). Memory overcommitment allows to host more VMs per physical host than
if physical memory was just partitioned, and helps to increase the utilization of physical re-
sources [5].

Device Virtualization QEMU provides a full set of virtual devices, such as virtual disks
based on disk image files or physical storage devices, and virtual Ethernet NICs, which can be
connected to the Linux network stack. QEMU emulates basic mechanisms such as I/O memory
and I/O ports, and peripheral buses like PCI and USB for guests.

KVM and QEMU support PCI passthrough, also referred to as PCI direct device assignment
[97], to give a guest OS access to a physical PCI device. To maintain isolation, the hypervisor
must confine DMA operations of the passed-through device to the memory of the guest, requir-
ing an IOMMU. See Section 2.3 on page 8 for more details on PCI passthrough with IOMMUs.
Depending on the policy used for the memory mapping in the IOMMU, the virtual machine’s
memory must be pinned to the host physical memory [95, 97]. I/O Memory regions of the PCI
device are memory-mapped to the guest4. Interrupts are delivered to the host and forwarded
to the guest by KVM. When an interrupt occurs while a guest is running, execution always
returns to the hypervisor (called a VM exit), even when the interrupt is designated for the guest
currently running. If a processor could deliver certain interrupts directly to a running guest,
the overhead and latency imposed by the return to the hypervisor (called a VM exit) would be
avoided. However, current versions of Intel VT and AMD-V only allow the indirect delivery
path. Access to the PCI configuration space is emulated by QEMU. With devices supporting
Single Root I/O-Virtualization (SR-IOV) — that is, the device itself implements virtualization
and offers several virtual interfaces (see Section 2.3 on page 8) — PCI passthrough is used to
give a guest access to one of the virtual functions of the device.

Access to Cluster Interconnects

In contrast to conventional network technologies, cluster interconnects like InfiniBand or Myri-
net rely on protocol offload and OS-bypass (user applications can directly access the HCA) to
achieve high bandwidth and low latency5. Usually, these HCAs implement a complete, self-
sustained network protocol stack up to transport layer of the ISO/OSI model.

We use ConnectX-2 InfiniBand HCAs from Mellanox in our prototype cluster. Virtualizing
these devices requires us to consider their specifics. We briefly describe the interface these

4The Linux kernel exports PCI resources via the sysfs virtual filesystem. Thus, QEMU can mmap device memory
and hand the mapping on to the guest. See Documentation/filesystems/sysfs-pci.txt in the Linux kernel sources
for details.

5This work is focused on InfiniBand. For an introduction to Myrinet from the perspective of system software
see [62] about Myrinet virtualization.
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Figure 3.2: The ConnectX-2 software interface with OS-bypass.

adapters provide to system and application software6 and which options exist to access such
HCAs in a virtualized environment.

Mellanox ConnectX-2 HCA The ConnectX-2 HCAs connect to the PCI Express bus and
export two I/O memory regions, the device control section (DCS) and the user accessible region
(UAR)7. The DCS contains a register-based command interface that the device driver uses to
manage and configure the various abstractions and mechanisms of the InfiniBand architecture,
like queue pairs, event queues, memory registrations, etc. The UAR is split into several regions
each 4 KB in size, matching the smallest page size of most architectures with PCI express
buses. Each application using InfiniBand gets one page of the UAR mapped into its virtual
address space.

OS-Bypass Concept Once a transport layer connection has been established, using the
conventional way of posting requests to the device driver via system calls, direct access from
user-space (OS-bypass), works as follows: A user application can command send and receive
operations by adding a work queue entry to the matching send or receive queue, a memory
buffer shared with the InfiniBand HCA. In the send case, the actual operation is triggered by

6The description of the software interface is derived from the Linux device driver (drivers/infiniband/hw/mlx4/ and
drivers/net/mlx4 in the kernel source tree) and the device-specific part of the user level verbs library libmlx4.

7We deduced the long form of DCS from its function because it is not mentioned in publicly available documents.
The long form of UAR occurs in various publications, however.
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writing to a doorbell register in the UAR page. In the receive case, the application can poll
the completion queue associated with the receive queue, while interrupts are disabled for this
completion queue. See Figure 3.2 on page 23 for an illustration of the interface of the HCA and
the OS-bypass mechanism.

HCA Virtualization Our focus on low latency rules out the conventional network virtual-
ization approaches that are employed with Ethernet, where all network traffic flows through
the protocol stack of the guest OS and, additionally, through that of the host OS or a device
driver guest like in Xen [12] (see Section 2.3 on page 8). They aim for high throughput where
an additional delay of single packets does not matter much (see for example [18, 58, 76] that
all focus on throughput measurements). Liu and associates have proposed VMM-bypass I/O
in [53], an extension to OS-bypass that allows an application to circumvent all layers of system
software, OS and hypervisor, when accessing the HCA. They have shown that an application
using VMM-bypass from within a VM suffers only a small overhead compared to an applica-
tion on the host OS using OS-bypass. We follow the VMM-bypass approach for virtualizing
cluster nodes.

In the following, we list the three virtualization concepts appropriate for InfiniBand HCAs that
we are aware of (we shall choose one of them in Section 3.2.2 on page 29):

PCI passthrough to dedicate the device to one VM. This concept is usable with KVM on
Linux, but allows only one HPC VM per HCA and requires an IOMMU, see Section
3.2.1 on page 22. In addition, the host OS requires a separate network connection — for
example, an additional InfiniBand HCA or a complete Ethernet infrastructure. The guest
OS employs the regular InfiniBand driver stack. Dedicated HCAs are more expensive
and less flexible than shared HCAs. The number of HPC VMs per host is restricted to
the number of InfiniBand adapters built into this node.

Paravirtualization as shown for a former hardware generation in [53] and [36]. The ap-
proach can be transferred to current hardware. It does not need an IOMMU. However, it
requires a modified device driver in the host as well as in the guest. These paravirtualized
drivers require maintenance and have to be adapted when OS, hypervisor, or hardware
change. As an example, the available source code of the prototype presented in [53]
targets only outdated versions of Xen and Linux, and supports only one guest.

SR-IOV for virtualization by the device itself (see Section 2.3 on page 8). The device of-
fers several virtual interfaces that behave like self-contained PCI devices, called virtual
functions. Several guests can each get access to one virtual function on its own via PCI
passthrough. Device drivers and firmware patches for SR-IOV are developed and pro-
vided by Mellanox, the manufacturer of the HCAs. We expect a high quality of the
drivers because of the manufacturer’s commercial interests.

These concepts are all known to work with Mellanox ConnectX-2 HCAs. Mellanox will release
drivers with SR-IOV virtualization support, for use with Linux and KVM, in a few weeks.
PCI passthrough and SR-IOV can be applied to other types of InfiniBand HCAs as well: PCI
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passthrough works, unless the HCA does not conform to PCI standards (compare [96]); SR-
IOV depends on a manufacturer to add appropriate functionality to the HCAs and provide
specifications and/or drivers for SR-IOV access.

Paravirtualization of an InfiniBand HCA with VMM-bypass, however, is specific to the soft-
ware interface of an actual HCA. Buffers and request queues as shared memory between HCA
and application are inherent to the InfiniBand architecture, but actual HCAs differ in how an
application triggers the HCA to process new queue entries. This mechanism is the main chal-
lenge for the paravirtualization of other HCAs. In the case of ConnectX-2 HCAs, a hypervisor
must provide guest applications direct access to an UAR page to enable VMM-bypass access
(see [53]). For this purpose, it maps these I/O memory pages to the VM’s guest physical mem-
ory. The necessary basic OS abstraction and mechanism, virtual address spaces and memory
mapping, are already in place, because a hypervisor already utilizes them to implement guest
physical and guest physical memory, and an OS running natively employs them to implement
OS-bypass.

HCA Resource Sharing HPC applications access high-performance interconnects like In-
finiBand directly, using operating system and, in virtualized environments, one of the aforemen-
tioned approaches to HCA virtualization. Neither the guest OS nor the hypervisor can directly
supervise how applications use the interconnect or determine whether its bandwidth is shared
fairly between all applications (compare the discussion of an indirect approach in [73]).

We assume that the resources of the InfiniBand HCA itself do not pose a bottleneck when
using the full bandwidth of its ports. Otherwise, fair allocation of interconnect resources would
demand a fine-grained control of how many queue pairs, memory registrations, or buffer queue
entries, amongst other things, a VM is permitted to use.

An application can request a HCA to generate interrupts on events like the reception of data.
With improper interrupt routing, it may thereby cause overhead for other VMs. The situation
can be improved when the HCA triggers separate interrupts, depending on which guest is to
be notified. That way, the individual interrupts can be routed to the CPUs where the respective
VM is running, and other guests remain undisturbed.

Contemporary HPC Cluster Nodes

Previous studying how operating systems affect HPC performance and scalability suggests that
OS background system activity on the individual compute nodes must be kept minimal (see
Section 2.5 on page 10). Preferably, it occurs simultaneously on all nodes to avoid chains
of process interruptions, which can dramatically reduce application performance because they
potentially block all nodes from making progress.

In Cloud Computing for commercial and server workload, many VMs are multiplexed to a
single physical CPU using timesharing, without considering the applications running inside a
VM. HPC Clusters usually employ job schedulers however, also called Job Management Sys-
tems [25], which aim to maximize processor utilization without harming the performance of
individual parallel applications. These schedulers incorporate sophisticated algorithms, based
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on rich practical experience [26]. In contrast to Cloud Computing, cluster job schedulers often
dedicate CPUs to a single process or use coordinated timesharing algorithms like gang schedul-
ing [26, 66].

In the remainder of this section, we shall utilize the existing virtualization techniques dis-
cussed above and configure them appropriately to provide a virtualized environment feasible
for HPC.

3.2.2 Transformation for HPC Clouds

We have reviewed the Linux/KVM virtualization environment and its configuration options
(e.g., Linux scheduling policies), and InfiniBand HCAs and the possibilities to virtualize them
in the previous section. Here, we shall employ and combine the KVM hypervisor with Infini-
Band HCA virtualization to reach our goals for node virtualization — that is, to turn a phys-
ical cluster node into a virtualized environment that provides virtual cluster nodes with low-
overhead access to the InfiniBand interconnect and minimizes perturbation from background
activity.

CPU Allocation

Policy We dedicate a physical CPU core to each logical CPU of a virtual cluster node. We
expect that users of virtual clusters will run job schedulers that aim to maximize utilization
of (in this case virtual) processors, so we do not duplicate this attempt at the level of VMs
and explicitly exclude timesharing between several VMs with HPC workload on one physical
CPU.

We decided to dedicate cores based on three reasons: First, job schedulers for parallel appli-
cations do exist, ready to be used. They have more a-priori knowledge about a job than the
underlying virtualization layer, because they can rely on the process abstraction in the guest
OS, in contrast to the virtualization layer. Second, timesharing between VMs makes execution
time, as experienced by the guest OS, nonlinear and nondeterministic. As a result, jitter is in-
duced onto the execution speed of the individual processes that form a parallel HPC application.
Numerous surveys show that the performance of parallel HPC applications can suffer badly
when execution time of iterations differs between nodes, because a few late processes block all
others in global synchronization operations (see Section 2.5 on page 10). Third, present and
future many-core architectures provide enough CPU cores. These architectures shift the focus
from sharing limited compute resources between several tasks towards utilizing many cores in
complex memory hierarchies and communication structures in an efficient way [7, 8].

Cluster job schedulers offer existing and readily usable expertise in parallel job scheduling.
Applying timesharing to VMs, without further knowledge on the jobs they are running, can
have an adverse effect on the performance of the individual applications. The hypervisor does
not know whether the HPC application inside a VM is making actual progress or it is polling for
synchronization messages from other nodes. In both cases, it fully utilizes the allocated CPU
time. Clearly, a VM that is scheduled for polling can prevent other VMs from making progress,
so neither the scheduled VM nor other VMs make use of the CPU time. The other way round,
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even when the hypervisor would discern between VMs in polling wait and VMs ready to make
progress, polling for communication events means that these events are configured not to trigger
interrupts. As a result, after receiving a message, a VM and the hypervisor will only learn about
the transition from polling wait to ready to make progress, when the VM is scheduled again. In
the meantime, a whole timeslice can be wasted polling in another VM. Such local delays in one
node will increase the time the other nodes have to wait (also polling), and increase the time
wasted in polling wait, there. Instead of improving utilization, time sharing would even reduce
overall efficiency because more CPU time is spent polling. As a consequence, we dedicate each
logical CPU core of a HPC VM a physical CPU core and delegate responsibility to utilize the
CPU core for HPC workload to the scheduler running inside the virtual cluster.

As a downside of node dedication, a physical CPU core stays idle, when the associated virtual
CPU is idle, reducing overall system utilization. It happens in the time interval between one
job finishing and the next being started by the cluster scheduler and when a cluster scheduler
also dedicates a (virtual) core to a single application and this application waits (blocking) for
communication or synchronization operations8. We propose to utilize these cycles for non-
time-critical, non-HPC jobs, scheduled independently from the HPC VMs with strictly lower
priority. This idea is derived from [86], where Stiehr and Chamberlain proposed to introduce a
low-priority band below the regular dynamic priorities in the Linux kernel to increase the uti-
lization of cluster nodes by running background jobs, which do not influence the progress of the
primary workload9. Blocking communication operations generate interrupts upon completion
anyway and thus allow a seamless continuation of an HPC job at the point it becomes ready
again.

When a HPC application polls for the reception of synchronization messages, it can donate the
waiting time by changing the polling to a blocking wait after some threshold time. It requires
that the time of waiting can be expected to be long enough to justify the context switch and
the overhead of interrupt handling and switching back to the HPC application. See [15] for a
discussion of optimal threshold times.

Mapping to Linux Scheduling We have discussed our policy of allocating physical CPU
resources to virtual CPUs in the section above. We dedicate a physical CPU core to each virtual
CPU for HPC workload and add low-priority non-HPC background jobs to increase utilization
when HPC workload leaves virtual CPUs idle. In the KVM hypervisor we employ on a Linux
host OS, a guest is executed as part of its hypervisor process (compare Section 3.2.1 on page
21), so VMs are scheduled like regular processes. Therefore, we implement our CPU allocation
policy by mapping it to the Linux scheduling policy and assigning appropriate priorities to the
hypervisor processes.

We employ CPU affinity masks to implement core dedication (running each logical CPU of a
HPC VM on a separate physical core). They allow to confine each HPC hypervisor process, to

8Early experiments with the High Performance Linpack benchmark have shown this behavior. In one run, progress
was blocked due to communication for 2 seconds out of 120.

9In the mean time, the SCHED_IDLE scheduling class has be added to the Linux kernel and provides a way to
give processes the lowest possible priority, strictly below all other processes.
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a separate physical core, and thereby eliminate competition for CPU resources between HPC
VMs, because the guest software stack runs inside the hypervisor process.

We run low-priority background VMs in addition to the HPC VMs to consume the CPU time
left idle by the HPC workload and thereby increase utilization. We cannot use the static Linux
soft-real-time priorities for this purpose, because InfiniBand device drivers did not work prop-
erly in VMs with real-time priorities in our tests (see our evaluation in Section 4.2.3 on page
73). Instead, we employ the Linux-specific SCHED_IDLE scheduling policy. Processes as-
signed this scheduling policy are dispatched only when there is no other process ready (except
from other processes with the SCHED_IDLE policy). We evaluate this approach in Section
4.2.3 on page 73.

Memory Allocation

Paging operations resulting from memory overcommitment would induce jitter to the execution
time of HPC processes in the order of several milliseconds. As stated before, such jitter can
reduce parallel application performance. In addition, it would leave processor cycles unusable
for HPC tasks, because we do not use time-sharing for HPC workload. Thus, we avoid memory
overcommitment and limit the memory we assign to virtual machines in total to less than the
physical memory of the host. Thereby we eliminate paging as a source of unpredictability.

The design decision against memory overcommitment stems from our intent to minimize back-
ground activity in the host OS (as we use the type-2 hypervisor QEMU on Linux/KVM). To-
gether with careful configuration of system tasks, we effectively eliminate the necessity for
paging support in the host.

The Linux kernel can be configured at compile-time to omit this mechanism by disabling the
option called “Support for paging of anonymous memory (swap)”10. See Section 4.2.1 on
page 60 for an evaluation of the influence of different compile-time options on OS background
activity.

It is appropriate, however, to use virtual memory and memory overcommitment for the non-
HPC workloads that exploit the blocking times of the HPC jobs. We expect virtual memory
implemented inside the non-HPC guest OSs to be sufficient for this purpose.

Many host-based memory overcommitment strategies target the scenario of many VMs per
host of cloud computing for server workloads and aim to reduce the redundancy between the
memory contents of different VMs (see [32]). When several VMs run the very same software
stack from a Linux kernel, over libraries, possibly up to a web server, then the memory of
each VM contains a copy of the read-only code sections of this software. Clearly, several
VMs can share such pages with read-only code sections and thereby much physical memory
can be saved. However, in our approach, we expect much smaller numbers of VMs, because
we donate physical resources primarily to a few HPC VMs and only a small number of fill-in
non-HPC VMs. Most of the memory will be used as data for specific HPC applications that
differ between VMs. So, the number of VMs that can potentially share memory, as well as the

10The option can be found in the General options section of make menuconfig. In the textual configuration in
.config it is called CONFIG_SWAP.
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fraction of the memory in each VM that could be redundant with other VMs is lower in our
approach than in cloud computing for server workloads. Therefore, we do not expect much
potential benefit from such schemes.

Access to Cluster Interconnects

We have discussed how we assign basic resources, CPU time and memory, to a VM for HPC
applications. In this section, we assign a VM access to the cluster interconnect, to complete its
transformation to the virtual node of an HPC cluster.

We employ InfiniBand HCA virtualization based on SR-IOV, because we require interconnect
access by several VMs and the host, which rules out to dedicate the HCA to one VM. SR-
IOV, a standardized interface for virtualization, is supported by the manufacturer of the HCA’s,
compared to the unmaintained research prototype for paravirtualization.

To enforce a bandwidth sharing scheme (e.g., fair sharing or preference of a virtual cluster), we
employ the virtual lane (VL) mechanism, which is intrinsic to InfiniBand, on the link between
HCA and the switch it connects to. We use this mechanism in the complete InfiniBand network
and discuss it in detail in Section 3.3 on page 30 about cluster network virtualization.

Host OS Customization

In the previous sections, we provided CPU resources, memory, and access to the cluster in-
terconnect to a VM. We configured different Linux scheduling classes and employed device
virtualization with SR-IOV, focused on the hypervisor process and the VM guest. In this sec-
tion, we pay attention to the Linux host OS itself and tailor it to the sole purpose of hosting
VMs for HPC applications.

We employ a custom-compiled host OS kernel with a custom set of compiled-in features, to
reduce OS background activity. Many features are unnecessary for HPC workloads, such as
swapping (compare Section 3.2.2 on page 28), and can be omitted from the kernel. In Section
4.2.1 on page 60 we evaluate the influence of different kernel configurations on OS noise and
application performance.

Most Linux distributions target the application as a server or workstation OS and contain much
functionality that we do not need. As a first step we disable all background system tasks and
host OS mechanisms that are not absolutely necessary for managing the VMs running on the
host. By default, many Linux distributions enable unnecessary daemons such as a mail server,
which we do not need at all on compute nodes, and crond and atd for regular maintenance
tasks.

The daemons atd and crond serve to automatically start jobs once at a time in the future (atd),
or on a regular basis (crond). We do not need atd in the host OS of a node at all and disable
it. crond wakes up every minute and searches a list of activities for those that need to be run at
that time. The only job started by crond in our host OS configuration is a cleanup of system log
files once a day. Clearly, most of the activity of the cron daemon (1439 out of 1440 wake-ups
per day) is unnecessary, but it still consumes CPU time on every single node. We replace crond
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with a central, cluster-wide job scheduler and thereby avoid the unnecessary activity of this
daemon every minute on every single node (compare [45]).

3.3 Network and Topology Virtualization

We provide each virtual cluster access to the InfiniBand interconnect, isolate virtual clusters
from each other, and suggest a user of a virtual cluster that his cluster was using the interconnect
alone. To reach that goal, we implement isolation between network traffic of different virtual
clusters (employing InfiniBand partitions). It prohibits communication beyond the borders of
a virtual cluster, and prevents eavesdropping by users in foreign virtual clusters. We allocate
bandwidth shares where several virtual clusters share a physical link, and establish bounds on
the packet delay experienced in the presence of contention (using InfiniBand quality of service
mechanisms). We employ the same mechanisms to utilize a share of the network’s resources
for cloud management and non-HPC traffic.

We set ourselves the target to provide each virtual cluster with a virtual view of its share of
the InfiniBand network that appears like a dedicated physical network. We allow a virtual
cluster to use the configurability options of InfiniBand, like in a physical network, and at the
same time constrain it to a share of the network, regarding bandwidth usage and the effect of
configuration. It permits a virtual cluster to use its own addressing scheme, independent from
the node addresses used in the physical network or in other virtual clusters, and to customize
the routing of the virtual cluster’s traffic through the physical network topology to tune the
routing scheme to an HPC application’s communication pattern. Further, our approach allows
to employ isolation inside a virtual cluster, by adding a level of recursion and splitting the
virtual cluster’s partition into several sub-partitions. Similar to recursive partitions, network
virtualization allows to configure a QoS policy inside a virtual cluster’s bandwidth share.

One of our primary goals is to maintain the performance characteristics of the interconnect,
especially low latency communication (compare Section 3.1 on page 17). Therefore, virtualiz-
ing a virtual cluster’s view on the interconnect may not compromise the performance of actual
communication operations. We restrict the overhead of network virtualization to connection es-
tablishment and configuration operations (which operate on the virtual network view and have
to be transferred to the physical network). Actual communication, such as send/receive and
RDMA operations, remains unaffected for the commonly used InfiniBand transport protocols,
especially that employed by MPI implementations (the exception are unreliable datagrams,
which are rarely used by user applications).

After having introduced our goals above, we will present the virtual view of the interconnect
that we provide to virtual clusters in greater detail in the subsequent Section 3.3.1 on page
31. We shall analyze the mechanisms InfiniBand provides for traffic isolation and to distribute
network bandwidth between different network flows in Section 3.3.2 on page 33. Then, we
discuss how they can be applied with virtualized access to InfiniBand HCAs and how we must
extend them to ensure isolation between VMs on the same host in Section 3.3.3 on page 37.
Finally, we describe how we implement virtual cluster’s virtual view of the network and how we
map the configuration and customization applied by a virtual cluster to the physical network,
in Section 3.3.4 on page 44.
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3.3.1 Virtual Network View

We provide a virtual cluster with a virtualized InfiniBand topology, so that it gets the impres-
sion of a physical network it uses exclusively. This virtual InfiniBand network supports all
configuration options of InfiniBand, such as partitions for isolation, which an appropriate In-
finiBand management tool (a subnet manager) started by the user can freely utilize. However,
we also allow users that do not want to hand-tune the network, to rely on a reasonable default
configuration. For this purpose, we differentiate two modes: A virtual cluster starts in managed
mode, where a default configuration based on the physical network is active and visible, and
switches to full virtualization mode, as soon as a the user starts an InfiniBand management tool
(subnet manager) in the virtual cluster.

In both modes, access to the InfiniBand management interfaces by a virtual node is redirected
to a state machine that simulates the virtual topology seen by the virtual cluster11. For this
purpose, we intercept management packets in the host OS and disconnect a virtual cluster from
the management interface of the physical InfiniBand network, as described in Section 3.3.3 on
page 38.

InfiniBand allows to discover the topology of a network using a special type of packets. When
a user runs a tool for this purpose (e.g., the command ibnetdiscover from the Open Fabrics
Enterprise Distribution), the result will be the simulated topology which occurs to the user
as the physical network. Similar, when a user starts an InfiniBand network management tool
(subnet manager) in the virtual cluster, this tool’s configuration requests will only affect the
virtual topology and neither affect other virtual clusters nor (directly) the physical network.
The network virtualization layer observes the customization done by each virtual cluster and
incorporates these settings into the configuration of the physical network. We consider the
following settings for incorporation into the physical configuration:

• Packet routing in switches: Management tools running in a virtual cluster can fine-tune
the routing scheme to the communication pattern of an HPC application.

• Isolation: A virtual cluster can further divide its network partition and restrict possible
communication relations between its nodes.

• QoS: A virtual cluster can further divide its bandwidth share for communication tasks
with different priority.

The customization of the physical network for each virtual cluster is restricted to the share of
network resources assigned to the respective virtual cluster. We shall describe how we map the
virtual configuration to the physical subnet in Section 3.3.4 on page 44.

The simulated topology visible to a user is derived from a subset of the physical topology. It
includes the hosts that run virtual nodes of the virtual cluster and all switches that can be used
for reasonable routing schemes between these hosts. InfiniBand switches allow to customize
packet routing and thereby choosing the routing scheme out of the options possible with the
(physical) topology that best fits an application’s communication pattern. By including more
than only an essential selection of switches into a virtual cluster’s (virtual) topology, we offer

11There is an InfiniBand fabric simulator called ibsim. It can receive management packets from several clients and
generate reply packets like a real InfiniBand network would.
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Figure 3.3: The virtual topology presented to a virtual cluster is a subset of the physical topol-
ogy. A minimum spanning tree does not leave any freedom for a custom routing
scheme.

a virtual cluster more degrees of freedom in setting up its routing. See Figure 3.3 on page 32
for an example. There, switches A, D, E, and F would suffice to connect the virtual cluster’s
nodes 1 to 4. However, adding switches B and C to the virtual topology offers the virtual cluster
more paths (between nodes 1 and 3, and between nodes 1 and 4) and greater flexibility — for
example, to adapt routing to the communication pattern of the currently running application.

The two modes of operation of the network virtualization layer for each virtual cluster, managed
mode and full virtualization mode, differ as follows:

• A virtual cluster starts in managed mode. The virtual network view reflects the con-
figuration of the physical network. In contrast to a physical InfiniBand network, where
a management tool is required for a basic setup (i.e., to assign node addresses and to
configure packet forwarding in switches), a virtual cluster can employ the interconnect
immediately.

• The switch to full virtualization mode occurs, when a user operates an InfiniBand network
management tool against the virtual topology. Changes to the network configuration in
the virtual topology are reflected to the physical network. Customized node addresses in
the virtual cluster interconnect are transparently mapped to physical node addresses in
the HCA virtualization stack, so application software and InfiniBand drivers in the guest
OS can use the same node addresses as assigned by the network management tool inside
the virtual cluster.
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Figure 3.4: Exemplary InfiniBand network. It comprises switches, host channel adapters
(HCA) that connect hosts to the network, and routers.

3.3.2 Analysis of Existing InfiniBand Mechanisms

To reach our goal of a virtual (view of an) InfiniBand network for every cluster, as described
above, we employ existing mechanisms for isolation and QoS in native networks, which are
defined by the InfiniBand architecture. After a brief introduction to the structure and the com-
ponents of an InfiniBand network in this section, we discuss the addressing scheme of Infini-
Band and its interaction with virtualization in Section 3.3.2 on page 34. Then, we describe the
InfiniBand isolation mechanism (partitions) in Section 3.3.2 on page 35, and the InfiniBand
QoS mechanism (virtual lanes) in Section 3.3.2 on page 35.

Our discussion is based on the structure and the components of an InfiniBand network, see Fig-
ure 3.4 on page 33 for an example. An InfiniBand network may be constructed from switches,
host channel adapters (HCA) in computer systems, and routers, connected by point-to-point
links, respectively. InfiniBand defines a second type of channel adapters that connect I/O de-
vices to the network, however, we do not mention them in the subsequent discussion, because
they can be considered as a special type of cluster node, if needed.

Networks (or fragments thereof) that only consist of switches and channel adapters are called
subnets in the InfiniBand architecture. This definition is relevant, because subnets form an ad-
ministrative domain for network management. Several subnets may be connected by routers to
form larger networks. In the following discussion, we assume an InfiniBand network compris-
ing several switches in a non-trivial topology, which potentially results in non-uniform packet
delays between different hosts (e.g., between hosts connected to the same switch, compared to
hosts connected to different switches). We exclude the minimal case of two HCAs connected
directly without a switch.

We based the InfiniBand-specific parts of our analysis on the InfiniBand Architecture Specifica-
tion, Volume 1, Release 1.2.1, see [38]. We refer the reader to that document for more in-depth
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details. However, the book [80] serves better as an introductory reading, even though it is not
based on the recent revision of the InfiniBand Architecture Specification.

InfiniBand Addressing

InfiniBand access in a virtualized environment poses a set of new challenges compared to LAN
technologies such as Ethernet. One of them is the InfiniBand architecture’s addressing scheme,
which is strictly associated with the physical topology.

InfiniBand differentiates between two types of node addresses: within a subnet (i.e., not passing
routers), switches forward packets based on local ids (LID), which are unique only within a
subnet, whereas routers exchange traffic between subnets via unique global ids (GID). Each
port of a HCA or router is assigned both a local and a global id. Routers translate GIDs to the
LID of either the next router, or the destination host, before handing a packet over to a switch
for transport in or through a subnet.

Within a node, traffic is assigned to a distinct communication endpoint, a queue pair, using
a numeric identifier (a queue pair number, QPN). Running several VMs on one node adds
another level of packet routing: Packets that reach an InfiniBand HCA in a certain host have to
be delivered to their destination OS instance (one of the guests or the host).

InfiniBand allows to assign several LIDs to one port of a HCA, originally intended for multi-
pathing (defining different paths between two hosts through the network topology and allowing
software to select which one to use). This feature, called LID Mask Control (LMC), is enabled
by setting a parameter with the same name in HCAs. It specifies, how many of the low order
bits of the destination LID of received packets are to be ignored (masked), and causes a HCA
to accept packets addressed to LIDs in the interval [base LID, base LID+2LMC] (the LMC least
significant bits of the base LID have to be zero).

InfiniBand Addressing in Virtualized Environments

Without virtualization, a HCA is used by exactly one OS and therefore LIDs discern between
OS instances. When a HCA is used in a virtualized environment, the virtualization concept
determines, at which addressing level you can tell different VMs apart. We have found two
alternatives in existing virtualization approaches:

• Dedication of an InfiniBand HCA to a single VM with PCI passthrough: The assigned
LID is only used by this single VM, thus there is a clear correlation between LIDs and
VMs. Every mechanism that serves to isolate non-virtualized nodes (based on differenti-
ating HCAs and LIDs) will work in this setup, too.

• Sharing a HCA using paravirtualization or SR-IOV: The LID assigned to the HCA is
shared between all VMs and the host OS. Queue pair numbers are allocated by the host
OS. Other nodes cannot easily determine to which OS a communication endpoint, a
queue pair addressed by a (LID,QPN)-pair, belongs. Two such pairs with the same LID
can address the same or different virtual machines, which can further belong to the same
or different virtual clusters. Clearly, isolation requires great care with this option, because
isolation schemes that differentiate traffic only based on the destination/origin LID fail
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to distinguish individual VMs. Further, isolation schemes that work at the granularity of
HCAs fail, too, because they cannot differentiate and isolate between the VMs running
on one host, and thereby using the same HCA.

InfiniBand Isolation Mechanisms

The InfiniBand transport layer protocol provides a partitioning scheme to form groups of nodes
and isolate them from each other. Management tools (a subnet manager) configure each node
to be a member of one or several partitions. Each packet carries an identifier of the partition
it belongs to (a partition key, P_Key), which has a length of 16 bits. Each node contains a
table with the identifiers of partitions it is a member of. When a node is member of several
partitions, an application can decide which partition to use for a connection or datagram by
specifying an index into this table. The most significant bit of a partition identifier (the 16-bit
P_Key) indicates the type of membership12 in a partition, so 32768 different partitions can be
used.

An InfiniBand HCA must check for each received packet that it belongs to a partition the HCA
is a member of (the packet’s P_Key is listed in the HCA’s membership table), and otherwise
drop the packet. Switches optionally support a mechanism called partition enforcement, which
allows to filter packets based on partitions in the switch. It is configured separately per port
using a table of partition identifiers as in HCAs. Using this feature, we do not have to rely on
the partition filter (and its integrity) in a HCA alone.

In a nutshell, InfiniBand allows to form groups of nodes (up to 32768 groups with an unre-
stricted number of members), whose members can only communicate within each group. Net-
work traffic and nodes are assigned to a group (partition) using identifiers in each packet and in
a membership table in each HCA. Although HCAs have to drop packets from foreign groups,
switches provide an additional filter mechanism. We shall employ this isolation mechanism to
restrict virtual nodes of a virtual cluster to communication only within the virtual cluster, by
assigning all virtual nodes of a virtual cluster to the same isolation group (partition).

InfiniBand Quality of Service Mechanisms

The InfiniBand architecture defines a flexible QoS mechanism, which allows to separate net-
work flows and to schedule network bandwidth in a very flexible and configurable way. We
shall employ this mechanism to allocate shares of network bandwidth to virtual clusters. In
this section, we present and introduction to the QoS mechanism, its nomenclature, and a brief
description of its mode of operation.

InfiniBand allows to differentiate network flows into 16 service levels (SL) and offers up to
16 send queues per port, called virtual lanes (VL), to arbitrate physical link bandwidth in a
flexible way. The InfiniBand architecture does not specify QoS policies for user data by itself,

12InfiniBand Partitioning differentiates between full members and limited members of partitions. Two limited
members of a partition cannot communicate with each other, but all other combinations can. This differentiation
allows to further refine the allowed communication relationships than partitions alone.
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Figure 3.5: The InfiniBand QoS mechanism: several packet send queues (virtual lanes), service
levels for traffic differentiation, and the mechanisms SL to VL mapping and VL
arbitration. The examples shows four different SLs, which are mapped to three
VLs. VL arbitration prefers VLs 0 and 1, with a higher weight for VL 1. Packets
from VL 2 are only sent, when there are no packets waiting for VL 0 or VL 1.

but defines two flexible mechanisms: each packet traverses the service level to virtual lane
mapping, and the virtual lane arbitration, before it is sent on a physical link. Each packet is
handled according to the SL field it carries in its header13, see Figure 3.5 on page 36.

The first step is the SL to VL mapping: Each packet is sorted into a VL based on its SL header
field and a SL to VL mapping table. HCAs and routers contain one table for each port. Switches
select a mapping table based on the inbound and outbound ports of a packet and therefore
contain one such table for each possible combination of inbound and outbound ports. Packets
can be filtered: Virtual lane 15 is reserved for management packets14 and specifying VL 15 in
the mapping table causes packets of the respective SL to be dropped. Compare Section 7.6.6,
p. 190 of [38] for a description of this filter method and references to more details.

The second step is VL arbitration: Packets are chosen from VLs and sent onto the attached
physical link based on two arbitration tables, a low-priority and a high-priority table. Each table
entry designates a VL and a transfer credit (in multiples of 64 bytes). VL arbitration iterates
over the table entries, sends packets from the VL indicated by an entry until the accumulated

13The SL is contained in the Local Routing Header, which is present in all InfiniBand packets.
14The one QoS policy that the InfiniBand architecture does define, is that management packets are sent before all

other packets. They are sorted into VL 15, which cannot be used by user packets.
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lengths of sent packets exceed the entry’s transfer credit, then continues to the next entry. The
high-priority table is walked as long as there are more packets waiting in the VLs it refers.
Otherwise, VL arbitration iterates over the low-priority table. See [38] for further details.

In summary, we can employ the InfiniBand QoS mechanisms (service levels, virtual lanes, SL
to VL mapping, and VL arbitration) to implement bandwidth shares. Traffic is associated with
bandwidth shares using the service level identifier in every packet. In our case, each virtual
cluster is assigned a distinct service level and thereby a share of network resources. Each
service level is mapped 1:1 to a virtual lane, so virtual lane arbitration effectively schedules
network bandwidth to traffic of virtual clusters.

InfiniBand Management Interfaces

The InfiniBand architecture defines management interfaces and protocols that are used to con-
figure an InfiniBand network (a subnet) and to setup, for example, isolation and a QoS scheme,
using the mechanisms described above (partitions and virtual lanes). These protocols utilize a
special type of network packet, called management datagrams (MAD).

There are two classes of implementations for each protocol: managers, and management agents.
One or more managers employ the management protocol to query information about nodes or to
query or modify configuration settings of switches and HCAs. For this purpose, they exchange
MADs with the management agents in nodes, which act upon the manager’s requests.

All InfiniBand devices (e.g., HCAs, switches, and routers) have to support a basic set of man-
agement protocols and therefore implement a management agent for these protocols. The most
important one is the subnet management protocol, which a subnet manager uses to assign ad-
dresses (LIDs and GIDs), to fill a HCAs partition membership tables, and to configure the QoS
mechanism in every port (virtual lanes), amongst others.

As a consequence, we can employ all the advanced features of InfiniBand using a standardized
interface, independent from the hardware actually used. In contrast, advanced mechanisms of
Ethernet, such as VLAN, have to be configured with vendor-specific protocols.

3.3.3 Transformation to Virtualized Environments

The InfiniBand mechanisms for isolation and QoS, as they are designed, work at the granularity
of ports (e.g., of a HCA, or a switch). These mechanisms, especially partitions for isolation, can
be applied in straight-forward manner when a port is used by only one OS instance. However,
in a virtualized environment several OS instances share a port: All the VMs running on a host
access the InfiniBand interconnect via the port of the HCA built into the host. In this setting,
the granularity of ports is clearly not sufficient to separate individual OS instances. We have to
reconsider how we can implement and enforce partitioning and QoS policies in the presence of
virtualization.

After discussing where the existing mechanisms fail, we propose extensions that allow to use
isolation and enforce a QoS scheme in virtualized environments. Subsequently, we show that
we can use a similar approach to virtualize node addresses, which we employ to provide a
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virtual cluster with the view of a virtual InfiniBand network (compare Section 3.3.1 on page
31).

We differentiate two cases:

1. A host runs only VMs belonging to the same virtual cluster. From the perspective of
isolation and QoS, the HCA (and its port) are dedicated to one entity, the virtual cluster.
The mechanisms work as in the non-virtualized case.

2. A host runs VMs belonging to several different virtual clusters. Isolation and filtering
in the network has to be loosened up. A switch must pass packets of several partitions
to/from a host, but cannot discern legitimate from illegitimate use of partitions by VMs
on a host. Therefore, host OS and HCA have participate in enforcing network isolation.

We will focus on the second case in the following discussion. Contrary to Section 3.3.2 on
page 33, where we introduced the InfiniBand mechanisms for isolation and QoS, we discuss
the virtualization of the InfiniBand management interface first (in Section 3.3.3 on page 38),
because it forms the foundation for enforcing isolation and QoS in virtualized environments.
We shall discuss these issues subsequently in Sections 3.3.3 on page 40 and Section 3.3.3 on
page 41. Then, we describe how we virtualize node addresses in Section 3.3.3 on page 42,
which forms the second foundation for providing virtual clusters with a virtual network view,
besides virtualizing and restricting access to the InfiniBand management interfaces.

The network virtualization we describe for VMs can be realized as well in an OS to provide
separate virtual network views and network isolation on the level of processes. However, we
employ virtualization to provide complete VMs as virtual cluster nodes and therefore provide
InfiniBand network isolation in the SR-IOV driver backend in the host OS, completely trans-
parent to the guest OS.

All the extensions we propose require changes only to the drivers running in the host OS. As
a result, we do not rely on the integrity of drivers running in the guest, and, more importantly,
a user can simply use existing drivers installed per default and does not need to modify his OS
environment, libraries, or his own code base.

Intercepting Access to Management Interfaces

The InfiniBand isolation and QoS mechanisms are all configured via the InfiniBand subnet
management interface — that is, via sending appropriate packets (MADs) to switches and
HCAs. Access to this interface would allow to override network isolation and to modify band-
width shares. Clearly, we must prohibit users to apply such modifications to the physical net-
work, and therefore restrict their access to the management interfaces of the physical network.
On the other hand, we want to enable a user to configure his share of the network, in a controlled
way (i.e., without a breach of isolation), via the standard InfiniBand management interfaces, so
that he can use regular tools for this purpose. In this section, we show that management inter-
faces have to be put under control of the host OS anyway, and thus we can intercept a VM’s
management packets and redirect them to a topology simulator that implements a virtual view
of the InfiniBand network for management tools. Further, we introduce a second mechanism,
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provided by the InfiniBand architecture, that protects the configuration of the physical network
in case a user breaks out of a VM and gains full control of a HCA.

The network packets employed in the InfiniBand management interfaces (MADs) must be sent
from and addressed to special communication endpoints (queue pairs) in a HCA, namely the
queue pairs numbered 0 (subnet management protocol), and 1 (all other management protocols,
they allow the OS to mark further queue pairs as privileged); compare Section 3.9 in [38].
The InfiniBand architecture demands, that access to these special communication endpoints
is restricted to privileged users (e.g., an OS kernel), compare Section 10.2.4.5 in [38], which
clearly must be fulfilled in a virtualized environment, too.

In the InfiniBand stack of a Linux running natively, a driver in the kernel has direct access to
the special queue pairs, and user level management tools must pass MADs to the kernel. The
approach taken in the SR-IOV implementation on Mellanox ConnectX-2 HCAs keeps access
to the special queue pairs restricted to the host OS kernel, see Figure 3.6 on page 40. From
the perspective of management applications, nothing has changed: They continue to use their
OS’s MAD interface to send or receive management datagrams, whether they run on the host
or guest OS. The behavior of the guest OS InfiniBand driver differs: Instead of passing them
to the special queue pairs directly, the guest OS hands over these requests to the host OS via
proxy queue pairs that tunnel management datagrams from guest to host. Eventually, the host
OS employs its access to the special queue pairs to send the management datagrams on behalf
of the guest management tool.

We expect other future virtualization implementations for InfiniBand to follow a similar ap-
proach and also restrict access to the special queue pairs to the host OS. The paravirtualization
approach in [53] leaves out the InfiniBand management interface, so the guest OS has no access
at all. To our knowledge, there are currently no other SR-IOV implementations for InfiniBand
HCAs besides that on ConnectX-2 HCAs by Mellanox, which we employ in this work.

Neither guest user-level applications, nor the guest OS kernel can send management datagrams
to the network completely on their own. They have to pass such datagrams to the host OS
(indirectly via the HCA), which sends them on the behalf of the guest. Here, we place our
interception mechanism. We modify the part of the host OS driver that processes MAD send
requests by guests and replace the forwarding to the HCA with a redirection to a user-level tool
running in the host OS.

As a result, we deny VMs access to the management interface of the physical network, and at
the same time enable a flexible virtualization scheme of the InfiniBand management interfaces.
From the perspective of the guest, there is no difference between a physical network and a
management protocol simulator attached to the MAD redirection.

One might argue that this protection measure does not help against a user that breaks out of
his VM and reaches control of a HCA via the host OS. Further, it does not protect subnet
configuration against subjects with legitimate full access to a HCA in the subnet. For this
purpose, every subnet management agent (the part of a node reacting to subnet configuration
requests) can be configured to accept management requests only from specific managers. Each
node has a 64 bit long protection key (M_key) and two protection enable flags. This protection
scheme, when enabled, causes an agent to ignore any subnet management requests that do not
contain the correct protection key (as a field in the MAD).
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Figure 3.6: InfiniBand management interfaces and isolation mechanism with virtualization.
SR-IOV restricts access to the host OS and provides a separate partition member-
ship table for each VM.

If a subnet manager employs different random values as protection keys in all subnet manage-
ment agents15, a malicious user cannot overcome this protection mechanism by brute force. A
malicious user cannot brute-force a protection key (M_key) offline, but has to send MADs to
a subnet management agent. Therefore, the potential for parallelization of the attack is limited
by the bandwidth of physical links. We estimate such an attack to take more than 3000 years,
assuming a 4xQDR link at 40 Gbit/s, and therefore consider it infeasible.

Enforcement of Isolation

The InfiniBand architecture defines a partitioning mechanism, which allows to form groups
of nodes, and restrict them to communication within their group. We have introduced this
mechanism and mentioned that we employ it to isolate network traffic between virtual clusters
in Section 3.3.2 on page 35. However, InfiniBand partitions were designed with the granularity

15The open subnet manager opensm, a widely used open-source implementation, in current versions only supports
one value for all M_keys in the subnet and does not enable the protection flags. We have to extend opensm to
achieve effective protection.
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of (physical) network ports in mind, and virtualization and several VMs that use the same HCA
and thereby network port, challenge its effectiveness.

When VMs of different virtual clusters run on a host, the switch port that the host is attached to
has to permit packets from/to several partitions. So, the host OS and the HCA are responsible to
constrain each VM to use only the partition it belongs to, because the switch cannot determine
from which VM a packet was sent.

At the InfiniBand software interface, one cannot specify which partition identifier (the P_key) to
use, but an index into the partition membership table of the HCA. So, the host OS has to ensure
two properties: A user in a VM may not be able to modify the partition membership table, and a
user can only refer to table entries of partitions that belong to his virtual cluster. We can achieve
both with SR-IOV drivers for Mellanox ConnectX-2 HCAs. First, modifying the partition
membership table is a privileged command, which only the driver in the host OS can issue. Such
modifications are usually triggered by a subnet manager via the subnet management protocol.
As discussed above, we can lock a VM out of the management interfaces of the physical subnet,
to ensure it cannot send such requests. Second, the SR-IOV implementation virtualizes the
partition membership tables. Each virtual function (the virtual PCI device interface which a
VM uses) is assigned a separate table, see Figure 3.6 on page 40. So, we can clearly separate
the partitions different VMs can use.

Enforcement of Bandwidth Shares

We have introduced the InfiniBand QoS mechanisms above in Section 3.3.2 on page 35. An
identifier in every packet (service level) allows to sort packets into different send queues at
each network port and a transmit scheduler (virtual lane arbitration) then arbitrates the physical
link’s bandwidth between the send queues according to a flexible configuration scheme.

Key to assigning bandwidth shares to virtual clusters is, that each virtual cluster only uses
the service level(s) assigned to it. The service levels designate, which bandwidth share each
network packet accounts to. So, if a malicious user can employ the service level identifier of
another virtual cluster in his own network traffic, he can illegitimately use the other virtual
cluster’s bandwidth. As a result, we have to enforce that network traffic originating from each
virtual cluster (i.e., from each of it’s virtual nodes) only uses the service level assigned to this
virtual cluster.

In the introduction of service levels (SL) in Section 3.3.2 on page 35, we mentioned that packets
can be filtered in switches based on SLs. This filter can be configured at the granularity of ports
only, and therefore virtualization poses the same challenge for SL filtering as for partitioning.
A switch has to admit packets with the SLs from all VMs running on a host, so the host has to
constrain a VM to the SLs it is allowed to use.

The way a SL is specified differs between InfiniBand transport types:

• For reliable connected, unreliable connected, and reliable datagram type queue pairs,
the desired SL is a parameter to the commands issued to setup the queue pair. These
commands are issued by the host OS on behalf of the client, so we can add a wrapper
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for this command that either denies requests for SLs a VM may not use, or transparently
changes the SL parameter.

• With unreliable datagram queue pairs, the SL to use in a datagram is specified in the send
request of the datagram itself. Normally, a user application can post such send requests
directly to the HCA via the OS-bypass mechanism. To constrain SLs, we can disable
OS-bypass for unreliable datagram queue pairs16, thereby forcing an application to send
such datagrams via syscalls to the OS driver interface. These will eventually result in
requests to the host OS driver to issue the send command, where we can filter requests
based on SLs. Regular use of the unreliable datagram transport will suffer from increased
latency, but the workload we focus does not use it: Parallel applications based on MPI
commonly utilize the reliable connected transport type (see [81]).
If the demand occurs, a SL filter in the HCA without adverse influence on performance
would require an extension to the HCA hardware. We propose a bitmap for each unreli-
able datagram queue pair that is configured by the host OS and restricts which SLs send
requests posted to this queue pair may specify.

Node Address Virtualization

So far, we have discussed how we restrict a guest from modifying the configuration of the
physical network by redirecting management packets from the guest to a network virtualization
layer (see Section 3.3.3 on page 38. At the same time, we made possible to provide a user the
impression of a dedicated InfiniBand network that he can configure with regular management
tools, like a physical network, by appropriate design of the network virtualization layer. Then,
we described how we can employ the InfiniBand mechanisms for isolation and QoS safely in a
virtualized environment. Finally, in this section, we complete the building blocks for the virtual
network view we provide to a virtual cluster, see Section 3.3.1 on page 31, by introducing the
virtualization and translation of node addresses.

Actual network traffic and packet forwarding in switches uses the LIDs that are assigned to
HCA ports by a subnet manager. Therefore, communication or configuration requests to the
physical network infrastructure have to use such physical LIDs (e.g., for requesting a HCA
to open a connection to a remote node). We can, however, enable VMs and the applications
therein to use other node addresses, which do not have to correlate with those physically used,
thereby providing each virtual cluster its own node address space.

Virtualizing node addresses is one key requirement for the virtual view of the cluster intercon-
nect that we want to provide for virtual clusters, as introduced in Section 3.3.1 on page 31. A
user can employ existing InfiniBand management tools to configure his share of the network
just like a physical InfiniBand network, including the assignment of LIDs to nodes (this assign-
ment is commonly the second step in setting up an InfiniBand network, after discovering its
topology).

16With the ConnectX-2 HCA, OS-bypass application has to be enabled, if desired, when a queue pair is created, a
privileged command issued by the host OS.
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We cannot use these user-assigned LIDs on the physical network, because LIDs must be unique
in a subnet and the assignments of different virtual clusters would typically collide (it is com-
mon to assign consecutive LIDs, starting with 1). If we considered the user-assigned LIDs only
in the virtualization of the InfiniBand management interface, and employed the physical LIDs
in the interfaces for actual use of the interconnect, the user would perceive an inconsistence:
a user’s applications would use one address, and his management tools would use a different
one, for the same virtual node.

We solve this problem by virtualizing LIDs also in the InfiniBand communication interface and
thereby provide a consistent, virtual node address space to a virtual cluster, for applications as
well as for management tools.

So far, we discussed how we constrain VMs that use an HCA virtualized with SR-IOV by
adding checks and wrappers to the host OS driver, so that we guarantee isolation and legitimate
use of bandwidth shares in a virtualization environment. We employ the same approach to vir-
tualize node addresses (LIDs) and thereby implement virtual node address spaces for VMs.

The applications and drivers inside VMs exchange LIDs with the virtualized interface of the
HCA at four occasions:

1. Establishing communication associations for the reliable connected, unreliable connect-
ed, and reliable datagram transport types.

2. Issuing send requests to the unreliable datagram transport protocol.

3. Parsing completed receive requests (i.e., filled receive buffers) from the unreliable data-
gram transport protocol.

4. Querying the node address of to the HCA they use (required as addressing information
to establish connections with peers).

For the reliable connected, unreliable connected, and reliable datagram transport types, the
host OS can step in while a communication association is initiated (this is a command the host
OS issues to the HCA), without further influence on the performance of actual communication
operations (OS-bypass as usual) and translate the destination node address. The same applies
to the case of intercepting connection setup requests to prohibit illegitimate use of bandwidth
shares, discussed in Section 3.3.3 on page 41. After a connection to a remote node has been
setup using the reliable connected, unreliable connected, or reliable datagram transport type,
node addresses are not used at the software interface any more, but only by the involved HCAs
internally and on network.

For the unreliable datagram transport, we have to completely virtualize queue pairs to effec-
tively alter LIDs, or add a mechanism to the hardware. With unreliable datagrams, the destina-
tion of each datagram is specified in the send request of that datagram and the origin of received
datagrams is stored in the receive completion queue entry (an entry in the receive queue, whose
buffer has been filled with received data) by the HCA. The queues containing these requests
are shared between an application and the HCA, and therefore have to contain physical LIDs,
which the guest application does not know. With virtualized queue pairs, the host OS inter-
cepts each sent and received unreliable datagram and can translate the destination and origin
LIDs from the virtual cluster’s virtual node address space to the node addresses used on the
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physical network. Virtualizing queue pairs causes overhead significant overhead compared to
OS-bypass, but we expect that hardly any applications use unreliable datagrams17.

In setting up connections or sending datagrams via the unreliable datagram transport, a user
application specifies an LID for the HCA to use. In contrast, an application may query a HCA
for the assigned LID. This address is needed to exchange InfiniBand connection information
with a peer prior to establishing an InfiniBand connection (as done by OpenMPI). For the
purpose of node virtualization, we have to intercept this kind of requests, too, and return the
LID assigned to the node in the virtual cluster’s view of the network. Querying the HCA for the
assigned address is a privileged operation that has to be issued by the host OS. A driver running
in a VM has to ask the host OS for this information, so we modify the host OS driver to reply
to such requests with a virtual LID.

We propose to use a direct mapping table, indexed by virtual destination LID, to map from a
virtual cluster’s virtual LID space to the physical LID space. Inversely, we store the LID to be
reported to the VM as assigned to the HCA port as a field in the VM’s metadata. The memory
overhead of the translation table is 128 KB per VM (216 possible LIDs, each mapping to a 16 bit
LID) and the compute overhead of the LID translation is negligible, compared to the complexity
of the overall action: leaving guest mode, several I/O operations to post the command to the
HCA, returning to guest mode, only to name a few operations. In addition, for the common
transport modes, LID translation only happens when establishing a communication relation,
not during actual communication operations.

3.3.4 Mapping Virtual Network Views to the Physical Network

So far, we have introduced the virtual network view we want to present to each virtual cluster
and the mechanisms InfiniBand provides for isolation and QoS. In addition, we discussed how
we adapt these mechanisms to virtualized environments. In this section, we combine the pro-
vided InfiniBand mechanisms and further virtualization mechanisms, to implement the virtual
network view for virtual clusters. We present the basic configuration of the physical InfiniBand
network first. Then, we discuss how we merge and map the network configurations of all virtual
clusters to the configuration of the physical network and which basic policy we follow in the
process.

The physical InfiniBand network is controlled via the InfiniBand management interface by a
subnet manager of the cloud provider. No one else can access the management interfaces of the
physical network. See Section 3.3.3 on page 38 for a discussion on how we achieve this, and
Section 4.3.1 on page 76 for an evaluation of the key-based protection mechanism on actual
hardware.

The cloud provider’s subnet manager assigns node addresses in the physical network (LIDs) —
these node addresses are used by packet forwarding. Every node is assigned several consecutive
node addresses using the LMC mechanism. Traffic of cloud management always uses the
first out of the range of assigned addresses (the base LID). We use the additional addresses to

17A main application for the unreliable datagram transport types are management datagrams. However, they have
to be sent from QP0 or QP1, and use of these queue pairs is restricted the host OS, anyway.
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configure custom routing for virtual clusters (in fact, a type of the multipathing that the LMC
mechanism is designed for).

We map node addresses, custom routing, custom isolation setup, and custom QoS configuration
from each virtual cluster’s virtual network view to the physical network. The mapping process
differs, depending on whether a virtual cluster is in basic or full network virtualization mode
(compare the introduction of the virtual network view in Section 3.3.1 on page 31). Our goal
of providing network and performance isolation has precedence over mapping all details of a
virtual cluster’s configuration to the physical network. When configuration resources of the
physical InfiniBand network (e.g., partitions or virtual lanes) become scarce, they are utilized
first for network and performance isolation between virtual clusters and only second for fine-
grained configuration within a virtual cluster.

Node Addresses

A virtual cluster in basic mode (i.e., without a subnet manager started by the user) uses the
first of the physical node addresses, as assigned by the cloud provider’s subnet manager. The
physical node addresses are directly visible within the virtual cluster and there is no translation
of node addresses. When a virtual cluster is switched to full virtualization mode, node address
translation is switched on for each VM of the virtual cluster and each VM is dedicated one of
the additional node addresses. That way, management and user applications in a virtual cluster
both consistently use their own node address assignment.

Custom Routing

Virtual clusters in basic mode use the routing configured by the cloud provider. Virtual clusters
in full virtualization mode can use a custom routing scheme, because each virtual node of the
cluster is assigned a dedicated physical node address (out of the range of addresses assigned to
its host) and packet forwarding in switches is based on node addresses. For each virtual cluster,
the mapping process extracts the routing tables of each switch from the topology state machine
that handles the virtual cluster’s management packets and therefore reflects the configuration
intended by the user of the virtual cluster. The routing tables are translated from referring to
custom node addresses to using the node addresses used in the physical network, before they
are incorporated into the routing tables of the physical network. That way, a user can configure
a custom routing scheme inside his virtual cluster, which is actually used for the user’s traffic
in the physical network.

Recursive Network Isolation

The physical subnet manager always configures a basic network isolation scheme that asso-
ciates each virtual cluster a separate partition. In addition, traffic for cloud management and
non-HPC traffic each are assigned a separate partition, too. Although virtual clusters in basic
mode use the same node address as the host, they are still isolated from other virtual clusters
and from cloud management traffic, because InfiniBand network isolation is based on parti-
tion identifiers in each packet, not on node addresses, and the tables containing the partition
identifiers of a (virtual) node are separate per VM.
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A user of a virtual cluster can configure isolation by himself to further partition his virtual clus-
ter. We map such recursive partitions to the flat space of physical partitions. For this purpose,
we extract partition membership tables from a virtual cluster’s virtual topology, translate the
partition identifiers if required to avoid duplicate uses in the physical network, and store them
into the partition membership tables of the respective VM. The available partition identifiers
will only become scarce in very large physical clusters with very fine-grained isolation (there
are 32768 identifiers). The translation of partition identifiers is inherently transparent, because
the InfiniBand software interface uses indexes to the partition membership table instead of ac-
tual identifiers.

Recursive QoS Policies

In contrast to partitions, the resources to implement QoS policies with InfiniBand (service levels
and virtual lanes) are much more restricted in InfiniBand. On each port, traffic can be separated
in up to 15 traffic classes (based on the service level identifier in each packet) and scheduled
separately for transmission to the physical link. These 15 traffic classes must suffice to separate
traffic of virtual clusters and to implement the QoS policies defined in a virtual clusters — each
user could himself try to use up to 15 traffic classes in his configuration.

In merging and mapping the virtual clusters’ QoS configuration to the physical network, we
first determine which virtual clusters use each link (derived from the routing configuration).
We then assign a service level to each virtual cluster, so that all virtual clusters contending for
a link use a different service level (virtual clusters that do not share a link can be assigned the
same service level). We then apply the network priorities of the virtual clusters (e.g., all have
equal bandwidth shares, or one cluster is prioritized) and generate virtual lane configurations
for each link. That way, network performance isolation is achieved first.

If there are some service levels out of the 15 still available, we can assign additional service
levels to a virtual cluster. The service levels used in the configuration inside a virtual cluster
then get compressed to the service levels available for the virtual cluster. The traffic scheduling
policy configured by a user is applied to divide the bandwidth share assigned to the virtual
cluster. Clearly, it makes no sense to assign additional service levels to a virtual cluster without
a custom QoS setup (such as virtual clusters that do not run their own InfiniBand management
tools).

3.4 HPC Cloud Management

In the previous sections of our approach, we have discussed how we turn physical hosts into
virtualized environments for virtual HPC nodes and how we virtualize the physical cluster
network. All the mechanisms we introduced and the policies we discussed have to be config-
ured and controlled to automatically provision elastic virtual clusters and assign them a share
of the physical cluster network. These are the tasks of HPC cloud management. There are
cloud management frameworks that provide users with elastic virtual clusters. Our contribu-
tion is to extend these frameworks with the automatic management of cluster networks, such
as InfiniBand. We aim for an automatic setup of network isolation and bandwidth shares for
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virtual clusters. We add the cluster network’s topology as a new abstraction to cloud manage-
ment, which is incorporated in VM placement policies. In addition, we extend the interaction
between the cluster job scheduler inside a virtual cluster and HPC cloud management to in-
corporate topology information. See Section 4.1.4 on page 56 and Section 4.4.1 on page 78
for a description and an evaluation of our prototype that automatically configures InfiniBand
partitions for network isolation between virtual clusters.

In this section, we first provide an analysis of the restrictions that the use of a cluster network
poses on cloud management, and what functionality existing cloud management frameworks
already provide towards managing an HPC cloud with a distinct cluster network (Section 3.4.1
on page 47). Then, we briefly discuss the required extensions that enable a cloud framework to
manage a cluster network and how we employ a tight cooperation between cluster job sched-
ulers and cloud management to overcome the restrictions (Section 3.4.2 on page 49).

3.4.1 Analysis

In this section, we present the constraints and restrictions the use of a distinct cluster inter-
connect, such as InfiniBand, poses on cloud management: Connection state in HCAs currently
makes transparent live migration impossible and the influence of the physical network topol-
ogy on performance and restrictions for QoS configuration pose constraints on the placement
of VMs in the physical cluster. In addition, we discuss the features existing cloud management
frameworks provide for HPC cloud management.

Virtual Machine Live Migration and InfiniBand

Live migration of VMs [19] enables the transfer of VMs between hosts at runtime, with only
minimal downtime. In the ideal case, the migration is transparent to the migrated VM as well
as to all peers that communicate with the migrated VM. Live migration of VMs is typically
used for load balancing and to move VMs away before a host is shutdown for maintenance or
because of errors (e.g., when a failure of the cooling system is detected).

There is currently no known way to migrate VMs with access to InfiniBand in a way transparent
to user-level applications that maintain active connections over InfiniBand, because the state of
open connections and the mode address of a VM can not be migrated with the VM. We shall
discuss the reasons, why migration with InfiniBand is hard, compare the situation to Ethernet,
and present a solution for migration that involves user-level applications.

With current InfiniBand HCAs, the protocol state of open connections is part of the internal
state of an HCA. Thus, it cannot simply be transferred with a VM’s memory image during
migration. In addition, when several VMs share an InfiniBand adapter and thus a node address,
this address cannot be migrated away with one VM, because of the other VMs still using it
(see Section 3.3.2 on page 34). Consequently, the connection peers of a VM being migrated
would have to be notified of the address change, and consequently modify their connection
state. Because node addresses are also used at the user-space interface of InfiniBand, user-level
software has to be modified to handle migrations that change a VM’s node address.
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In contrast, transparent live migration works with TCP/IP over Ethernet, because connection
state is kept in the guest OS’s protocol stack and thereby is migrated with the memory image
of the VM, and addressing with IP on Ethernet is much more flexible. Usually, each VM
has a distinct MAC address, which can be migrated with the VM, whereupon packet routing
automatically adapts to the new location in the network topology. Even when a VM must use
a different MAC address after migration, the indirection of using IP addresses in applications
and MAC addresses in the link layer allows to hide this change from user-space.

Live migration of VMs with InfiniBand connections is possible, when the migration process
involves user-level applications. Huang has proposed the nomad framework in his PhD the-
sis [36], an extension to the InfiniBand paravirtualization approach in [53] to accomplish live
migration of VMs. The nomad framework is based on the fact that most HPC applications do
not use InfiniBand directly, but employ a communication library such as MPI. By modifying
the MPI implementation, the approach conceals migration from HPC applications, although the
MPI library they use is involved in migration. Open InfiniBand connections are closed before,
and re-established after migration with cooperation by connection peers, which are notified be-
fore and after the migration, and cease communication with the migrated VM in the meantime.
As a result, connection state does not have to be transferred, and node addresses can be changed
freely in the course of migration.

We aim at transparent operation without the need to change user software inside virtual cluster
nodes, so we cannot use the Nomad approach. As a consequence, we currently cannot use live
migration for VMs with InfiniBand access. Once started, a VM is bound to the host it runs on.
Live migration in InfiniBand, potentially made possible by appropriate extensions to InfiniBand
hardware, is a worthwhile topic for future work.

Constraints on VM Placement

In contrast to general-purpose clouds, our architecture for a cloud environment for HPC work-
loads provides performance guarantees for the cluster network, because HPC applications re-
quire bound latencies. Since cluster network performance, as experienced by a virtual cluster,
depends on the placement of nodes in the physical topology, performance guarantees clearly
pose constraints on the placement of VMs in an HPC cloud. In this section, we discuss some
of these constraints.

General-purpose clouds typically employ Ethernet networks and share these networks in a best
effort manner. Each individual network link is shared by an undetermined number of users.
As a result, general-purpose cloud providers cannot and do not give performance guarantees
for network performance, see [93] for a study on the network performance in Amazon EC2, a
commercial general-purpose compute cloud. For HPC applications however, low latencies are
essential for performance. Latency is increased by each hop packets have to traverse to reach
other cluster nodes and by contention from other virtual clusters using the same link. So, HPC
cloud management must strive (1) to place the virtual nodes of a virtual cluster as close to each
other in the network topology as possible, and (2) to arrange virtual clusters in the physical
cluster as separate as possible, so that network links are shared between as few virtual clusters
as possible.
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Since we aim for performance isolation between virtual clusters, the InfiniBand QoS mech-
anisms pose a limit on the number of virtual clusters that may share a link: the InfiniBand
architecture defines a maximum of 15 service levels and virtual lanes, so we can separate a
maximum of 15 different network flows on each link, and therefore achieve performance iso-
lation only between a maximum of 15 virtual clusters on each link. Implementations are free
to support less than 15 virtual lanes, reducing this number even more (the hardware in our
prototypic setup supports 8 virtual lanes only).

Network traffic in a virtual cluster will typically flow over just a subset of the links and switches
of the physical network. This subset is defined by the hosts that run the cluster’s virtual nodes,
the physical topology of the network, and the routing algorithm used. Consequently, this subset
will differ between virtual clusters and the virtual clusters that compete for network bandwidth
can be different per physical link and switch.

There is currently no way to live migrate VMs with InfiniBand transparently, as we discussed in
Section 3.4.1 on page 47. So, the placement of a VM with InfiniBand access must be considered
final. Cloud Management cannot reorder VMs to place the nodes of a virtual cluster closer to
each other, or to reduce the number of virtual clusters that share a link.

Cloud Management Frameworks

There are several cloud management frameworks that have their origin in the research com-
munity. In this section, we briefly present two of them, OpenNebula [65, 84] and the nimbus
toolkit [47, 70]. We ran our early experiments with OpenNebula, because of existing experi-
ence. Our prototype targets OpenNebula, too. Nimbus is outstanding however, because of its
built-in support for virtual clusters.

Both OpenNebula and nimbus manage VMs, hosts, and disk images as abstractions, amongst
others. They have a management core that delegates the actual handling of these entities to other
utilities or a set of scripts. Both frameworks employ the libvirt toolkit [51] to start, stop, and
supervise VMs, and thereby support both the KVM [49] and the Xen [12] hypervisors (because
the libvirt toolkit supports them). Also, both frameworks support basic network isolation, which
is restricted to Ethernet networks, however.

In contrast to OpenNebula, the nimbus toolkit has built-in support for virtual clusters [47]. It
uses a flexible scheme for contextualization of VMs — that is, providing VMs with individual
parameters and context information (such as DNS servers or cluster head nodes), to start VMs
with different roles in a cluster (such as head node or compute node) from a single disk image
file.

There is an extension that adds support for virtual clusters to OpenNebula [4]. OpenNebula
also supports contextualization, although in a less flexible way than nimbus.

3.4.2 Transformation for Cluster Networks

In the previous sections, we have discussed the constraints that the use of a distinct cluster
interconnect, such as InfiniBand, incurs on VM placement. Transparent live migration is not
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possible when VMs use InfiniBand, and performance isolation cannot be guaranteed when more
than 15 virtual clusters share a physical link. We further introduced two cloud management
frameworks we employ to delegate basic cloud management. The nimbus toolkit even provides
built-in support for virtual clusters [47]. We extend the functionality of existing frameworks
with the automatic management of cluster networks to setup network isolation and bandwidth
shares for virtual clusters.

We add the network topology of cluster interconnects as a new abstraction to cloud manage-
ment. Cloud management maintains an abstract representation of the physical network’s topol-
ogy, consisting of switches, hosts, ports, and links. This representation is combined from topol-
ogy discovery on the one hand (in contrast to Ethernet, InfiniBand supports this operation), and
querying each host for its network ports on the other hand. Thus, the topology representation
contains information about the physical hosts (the classic cloud management data) together
with the network topology they are connected to (the new information we add). That way, we
connect the domains of cloud management with cluster network management and enable to
refer between the two domains.

The topology representation provides information about the distance of physical hosts in the
cluster network to extended VM placement policies and tracks, which virtual clusters share
each network link. It serves as the basic data structure for network management in the cloud
management framework.

Further, we extend the interaction between HPC cloud management and cluster job schedulers
running in virtual clusters to incorporate topology information. Thereby, we improve cluster
resize decisions and provide a way to overcome the restriction, that VMs with InfiniBand access
cannot be migrated transparently.

Elastic virtual clusters are resized dynamically by an appropriate cluster job scheduler based
on demand and job load (introduced by the Elastic Site approach [56]). Information about
the cluster topology can improve resizing decisions: When a cluster job scheduler decides to
remove idle nodes from a virtual cluster, cloud management can suggest the nodes most distant
in the topology from other node of the virtual cluster.

The other way round, a cluster job scheduler can inform cloud management about idle nodes
that currently do not use InfiniBand. Such nodes can be migrated by temporarily disabling
their InfiniBand access during migration, because they have no open InfiniBand network con-
nections. So, idle VMs can be repositioned to move the nodes of a virtual cluster closer to
each other in the network topology and thereby to reduce the network contention caused by the
virtual clusters that use the same network link. The passed-through PCI device that provided
the VM with InfiniBand access on the origin host is withdrawn before migration. After mi-
gration, the VM is assigned the device that provides InfiniBand connection on the destination
host, again via PCI passthrough. The guest OS must support PCI hot plugging (Linux does)
and begins to use the new PCI device with the regular initialization procedure. No connections
are lost, because only idle nodes are selected for such an interruptive migration.

In this section on HPC cloud management, we have introduced the functionality we add to ex-
isting cloud management frameworks. We have analyzed the constraints a cluster interconnect
incurs on VM placement and live migration and presented the abstractions and mechanisms
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existing cloud management frameworks provide to manage virtual clusters. Finally, we dis-
cussed our basic approach for combining cloud and cluster network management, a topology
representation that combines information about hosts and the network topology, and the intense
cooperation between cloud management and cluster job schedulers that allows to overcome the
restrictions on VM live migration and thereby alleviate the VM placement constraints. To prove
our concept as feasible, we have constructed an early prototype that adds topology information
to OpenNebula and derives the configuration for InfiniBand network isolation from both tradi-
tional cloud management data and the new topology information. See Section 4.1.4 on page
56 for an introduction to the prototype and Section 4.4.1 on page 78 for an evaluation of its
practical function.
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So far, we have introduced our architecture for high-performance computing (HPC) clouds and
discussed how we employ node virtualization, InfiniBand network virtualization, and an HPC
cloud management framework to construct this architecture. In this chapter, we complement
our approach with the presentation of our prototypic HPC cloud and the practical evaluation
of some of the building blocks of our architecture. We show these components’s fitness for
use towards our goal, to provide virtual InfiniBand clusters for HPC workloads. Our prototype
is a first step towards a complete implementation of our architecture and serves as a basis
for evaluation. We use it to gain practical experience with the components that we build our
architecture from.

At first, we introduce our prototype and our experimental setup on a 4-node cluster with Infini-
Band in Section 4.1 on page 53. Then, we present the specific experiments we have conducted
in detail. We follow the structure of our approach (Chapter 3 on page 17) and arrange the de-
scriptions of experiments based on whether they evaluate a facet of node virtualization (Section
4.2 on page 60), network virtualization (Section 4.3 on page 75), or HPC cloud management
(Section 4.4 on page 78).

We examine the influence of various Linux kernel configurations on OS noise and application
performance to determine, whether we can gain significant improvements this way, or whether
we have to avoid certain settings. Regarding our policy of dedicating physical cores to logical
CPUs of HPC VMs, we test its antithesis on the one hand, by assessing the influence of time-
sharing on HPC applications, and check on the other hand, whether we can add low-priority
non-HPC VMs without disturbing HPC application performance. We analyze the practical fea-
sibility of protecting an InfiniBand network’s configuration against unauthorized modifications,
which forms an essential foundation for network isolation, and provide an appropriate correc-
tion to the opensm subnet manager. Finally, we verify the automatic configuration of network
partitions by our prototype and examine potential, but avoidable bottlenecks in OpenNebula’s
scalability.

4.1 Prototype

We have constructed a prototypic setup of an HPC cloud on a physical cluster consisting of
four nodes, which are connected by an InfiniBand interconnect. It spans the aspects node
virtualization, network virtualization, and HPC cloud management, and additionally the actual
cluster operation from the perspective of a user. This prototype served as the basis for our
experiments.

In contrast to an actual HPC cloud for production use, we want to run benchmarks natively in
our prototype, in addition to running them inside a virtualized environment. That way, we can
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determine baseline performance in the native case and assess virtualization overhead. For this
purpose, we provide an HPC cluster environment inside a virtual cluster and on the host OS.

The remainder of this section is structured as follows: First, we introduce the hardware configu-
ration of the physical cluster that forms the basis of our prototypic HPC cloud (Section 4.1.1 on
page 54). Second, we present the software stack for virtualization on each node, and describe
how we grant virtual machines (VMs) access to InfiniBand host channel adapters (HCAs) (Sec-
tion 4.1.2 on page 54). Third, we discuss the steps towards InfiniBand network virtualization
employed in our prototype (Section 4.1.3 on page 55). Fourth, we present how we employ
OpenNebula to manage our HPC cloud (Section 4.1.4 on page 56). Fifth, we complete our
prototype with an actual HPC cluster environment inside a virtual cluster, so that we can assess
performance from a user’s perspective by running HPC benchmarks in a virtual cluster. We
introduce the HPC environment we have setup inside a virtual cluster in Section 4.1.5 on page
58.

4.1.1 Test Cluster Hardware

The foundation of our prototypic HPC cloud is a 4-node cluster with an InfiniBand interconnect.
In this section, we describe the hardware configuration of the nodes and the interconnect.

We have run all our experiments on a cluster consisting of 4 HP ProLiant BL-460c G6 blade
servers in an HP c-class blade system. The servers are equipped with Intel Xeon E5520 quad-
core CPUs with hyper-threading, clocked at 2.26 GHz, 6 GB of DDR2 DRAM main memory,
and direct-attached harddisk storage with a capacity of 150 GB. The servers contain two Gigabit
Ethernet adapters, which are connected to two 10 Gbit Ethernet switches integrated with the
blade system. We use the Ethernet connection for remote access via SSH and for the traffic of
the cloud management system.

Our InfiniBand cluster interconnect comprises Mellanox ConnectX-2 InfiniBand HCAs built
into each server, and an InfiniBand switch integrated with the blade system. The switch pro-
vides up to 16 ports with a bandwidth of 20 Gbit/s (4x DDR). It is based on an InfiniScale-IV
switch chipset from Mellanox. The HCAs support a bandwidth of 40 Gbit/s (4x QDR), how-
ever, the bandwidth used on the physical links is constrained to 20 Gbit/s by the switch.

4.1.2 Node Virtualization

In this section, we introduce the software stack for node virtualization that we employ on each
node of our test cluster we described in the previous section. In addition, we describe the tools
we utilize to influence the scheduling parameters of VMs for experiments with Linux realtime
priorities, the idle scheduling policy, and CPU affinity.

On all four blade servers comprising our test cluster, we installed the Cent OS 5.6 GNU/Linux
distribution to the respective local harddisk. We used this Linux installation as the host OS for
our prototypic HPC cloud, and as the environment for running benchmarks natively, to measure
baseline performance and to assess virtualization overhead.
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We upgraded the Linux kernel provided by CentOS 5.6 (a derivative of version 2.6.18) to a
more recent version, because the contained kernel-based virtual machine (KVM) did not work
together with current versions of QEMU. We chose version 2.6.35, because it is the most recent
kernel supported by the OpenFabrics Enterprise Distribution (OFED) version 1.5.3.11, a bundle
of InfiniBand drivers, libraries and tools released by the OpenFabrics Alliance [64]. As a
result, we were able to use the same kernel version and the same InfiniBand drivers in the host
OS and in VMs, to warrant comparability between results from benchmarks run natively and
virtualized.

On top of the host Linux, we employ QEMU version 0.14.0, in the version adapted to KVM
[49], to provide VMs as virtual cluster nodes. We grant the VMs access to an InfiniBand HCA
using PCI passthrough, because BIOS compatibility issues kept us from using SR-IOV. PCI
passthrough poses the disadvantage that only a single VM can access the HCA at any time, and
the host OS has to give up control of the HCA, too (compare Section 3.2.1 on page 24).

Mellanox provided us with a beta version of SR-IOV drivers for the ConnectX-2 HCAs in our
test cluster, in advance of the public release of these drivers. We would have preferred to test
these drivers, because they allow to grant InfiniBand access to several VMs per host, as well
as to the host OS, at the same time. However, the BIOS of the servers we employ does not
configure the SR-IOV capability of the HCAs. The memory-mapped I/O regions of the HCA
that eventually form the virtual device interfaces accessed by VMs first have to be configured
and allocated as an I/O memory region of the physical PCI device, similar to the I/O memory
regions used by the host OS. The BIOS is indeed responsible for this initial configuration, but
fails to do so. We tried several workarounds, yet without success. So, we reverted to PCI
passthrough, which we already had proved working in an early stage of our work.

For some of our experiments, we have to modify the scheduling parameters of VMs. Since
VMs provided by KVM and QEMU run as regular Linux processes, we can employ tools that
influence scheduling parameters of processes for this purpose. For starting VMs, we used
the OpenNebula cloud management framework (see Section 4.1.4 on page 56), which in turn
employs libvirt [51], a toolkit for controlling Linux virtualization mechanisms, such as KVM.
The toolkit libvirt supports CPU affinity, so we can control CPU affinity via the VM definitions
of OpenNebula. In contrast, libvirt currently2 does not support to modify the Linux scheduling
parameters for VMs based on KVM and QEMU. Therefore, we used the chrt utility to manually
set priority classes and realtime priorities for VMs after they had been started by OpenNebula
and libvirt.

4.1.3 Network Virtualization

So far, we have introduced the layers that form the foundation of our HPC cloud, which are node
and network hardware and node virtualization. In this section, we describe the next building
block of our prototype — that is, network virtualization.

Our HPC cloud architecture aims to provide a user with a virtual view of his share of the
InfiniBand network, see Section 3.3.1 on page 31. An implementation of this virtualization

1OFED version 1.5.3.1 has been the current release at the time of our evaluation.
2At the time of this work, libvirt version 0.9.1 has been the most recent release.
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Figure 4.1: Extensions to OpenNebula that combine cluster network management and cloud
management to automatically generate isolation configuration for virtual clusters.

layer is highly interdependent with an InfiniBand virtualization approach that positions the host
OS between guest and InfiniBand hardware, in our case based on SR-IOV. As mentioned before,
InfiniBand virtualization with SR-IOV is currently not possible in our test cluster, because of
BIOS compatibility problems. Thus, we postpone a complete virtual network view to future
work and focus on the elementary issues of cluster network management for HPC clouds, which
are isolation (and protection thereof) and quality of service (QoS) mechanisms.

Our prototype employs the opensm subnet manager to configure and manage the physical In-
finiBand network. It serves to implement isolation by setting up InfiniBand partitions, and QoS
policies by configuring the virtual lane mechanism. Current versions of the opensm subnet man-
ager do not implement the InfiniBand protection mechanism for configuration data correctly.
Thus, we applied a modification to the provided opensm source code to correct this failure. See
the evaluation in Section 4.3.1 on page 76 for a discussion of the (im)proper function of the
protection mechanism and our modification.

4.1.4 HPC Cloud Management

We employ, adapt, and extend the OpenNebula cloud management framework [65, 84] for the
purpose of managing node and network virtualization in our HPC cloud (see Section 3.4 on
page 46). We chose OpenNebula instead of the nimbus toolkit because of existing experience.
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Our extensions can be transfered to nimbus easily however, because both frameworks have a
similar architecture and both employ the libvirt toolkit for actual host and VM management. In
this section, we introduce our extensions that automatically setup InfiniBand network isolation
for virtual clusters. Further, we describe how we configure PCI passthrough and CPU affinity
for VMs controlled by OpenNebula, and how we employ the VM disk image management and
VM contextualization mechanisms of OpenNebula.

As a proof of concept for the combination of cloud with cluster network management, we ex-
tended OpenNebula with new abstractions and mechanisms that allow to group VMs into virtual
clusters and automatically derive a configuration for network isolation from the defined virtual
clusters (a configuration file for the opensm subnet manager). See Figure 4.1 on page 56 for an
overview of the new abstractions and the process that generates the isolation configuration.

The most user-visible extensions are two new abstractions and an interface to control one of
them: virtual clusters are groups of VMs that form an organizational unit for allocating network
resources, and an abstract topology represents the physical network, using a set of classes that
represent elements of a network topology, such as switches, hosts, ports, and links. We extended
OpenNebula’s XML-RPC interface with operations to create and delete virtual clusters and to
associate VMs to them. In addition, we developed a command line tool as an administrative
frontend to these operations.

The two new mechanisms operate on the abstract topology and eventually generate a partition
configuration, completely automatically without requiring any user interaction. At startup, the
OpenNebula core queries all hosts for information about their InfiniBand HCAs. For each
HCA, we store the HCA’s globally unique identifier (GUID) in the abstract topology inside
OpenNebula (in fact, we consider each port of a HCA on its own).

At runtime, our extension periodically generates a configuration file for network isolation. For
this purpose, it merges the association of VMs to virtual clusters, the information about which
host runs which VM, and the information about the HCAs in each host. The process is simpli-
fied because we currently dedicate InfiniBand HCAs to single VMs (because of the restrictions
we have described in Section 4.1.2 on page 54). For each virtual cluster, our extension defines
an InfiniBand partition that comprises the HCAs of all hosts that run a VM of this virtual clus-
ter. The opensm subnet manager is periodically triggered to re-read its configuration file, so
that it applies the automatically generated configuration and thereby implements network iso-
lation between the defined virtual clusters. In Section 4.4.1 on page 78, we verify the complete
workflow from defining virtual clusters to the automatic generation of partition configuration
and check that the actual isolation settings conform with the defined virtual clusters.

In our current prototypic setup, we grant VMs access to an InfiniBand HCA via PCI pass-
through. Although OpenNebula does not manage or support device assignment by PCI pass-
through by itself, the libvirt [51] toolkit, which OpenNebula uses for starting and controlling
VMs based on KVM and qemu, does. We can include configuration statements for libvirt in
the definition of a VM in OpenNebula. Such statements are not interpreted by OpenNebula, but
just passed on to libvirt unmodified. So, we add libvirt commands that assign the InfiniBand
HCA in a host via PCI passthrough to the configuration that defines a VM in OpenNebula, and
thereby achieve PCI passthrough access to InfiniBand for automatically deployed VMs. The
same way, we instruct libvirt to set CPU affinity for VMs. The configuration allows to set
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# VM d e f i n i t i o n f o r c l u s t e r head node
NAME = headnode
# r e s o u r c e s
CPU = 8
VCPU = 8
MEMORY = 2048
DISK = [ image = " CentOS_5 . 6 " , d r i v e r = " qcow2 " ]

# p as se d on t o l i b v i r t :
RAW = [ TYPE = "kvm" , DATA = "

< d e v i c e s >
< h o s t d e v mode= ’ subsys tem ’ t y p e = ’ pc i ’ managed = ’ yes ’ >

< sou rce >
< a d d r e s s bus = ’0 x06 ’ s l o t = ’0 x00 ’ f u n c t i o n = ’0 x0 ’ / >

</ sou rce >
</ hos tdev >

</ d e v i c e s >
< cputune >

< vcpup in vcpu = ’0 ’ c p u s e t = ’0 ’ / >
< vcpup in vcpu = ’1 ’ c p u s e t = ’1 ’ / >

[ . . . ]
</ cpu tune >

" ]

Listing 4.1: Exemplary VM definition file for OpenNebula (incomplete).

CPU affinity for each logical CPU of a VM individually, so we can map each logical core to a
separate physical core to implement our policy of core dedication. See Listing 4.1 on page 58
for an example VM definition that defines PCI passthrough and CPU affinity.

We prepared a single VM disk image that we use for all virtual cluster nodes. We configured
the VM hosts to share OpenNebula’s disk image repository via NFS. OpenNebula assigns each
VM a fresh copy of the disk image at startup and deletes this copy after the VM has shut
down. A VM is instructed via contextualization — that is, the individual parameterization
of a VM although it boots from a common disk image — to take the role of a cluster head
node, or to become a compute node and thus associate with a given cluster head node (see [47]
and Section 3.4.1 on page 49). The VM image contains an init script that concludes the boot
process by reading the contextualization parameters, and starting the appropriate services. We
shall discuss the contextualization mechanism of our prototypic virtual clusters in detail below
in Section 4.1.5 on page 58.

4.1.5 Virtual Cluster Environment

In the first three sections on our prototype, we discussed the perspective of the cloud provider,
who implements node virtualization, cluster network virtualization, and HPC cloud manage-
ment to provide users with virtual clusters. In this section, we introduce the environment run-
ning inside the virtual cluster, which constitutes the system directly visible to the user. We
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Figure 4.2: Software stack of our prototype HPC cloud, from the host OS up to an HPC appli-
cation running in a virtual cluster node.

discuss the InfiniBand drivers, libraries, and utilities we employ, the cluster scheduler we used,
and how we integrated contextualization to automatically configure a virtual cluster. See Figure
4.2 on page 59 for an overview of the complete software stack on each node.

We installed the OpenFabrics Enterprise Distribution (OFED) version 1.5.3.1 (a bundle of In-
finiBand drivers, libraries and tools released by the OpenFabrics Alliance [64]) in the host OSs
as well as in the VMs. The OFED bundles more recent driver versions than the vanilla Linux
kernel. It further provides all required libraries for InfiniBand access and the MPI implementa-
tion OpenMPI, amongst others.

We employed the Simple Linux Utility for Resource Management (SLURM) [98] for cluster
batch scheduling. SLURM allocates resources to jobs and manages job queues. It allocates
resources in a configurable granularity, reaching from complete nodes (the default) to individual
CPU cores or parts of main memory.

OpenNebula supports contextualization to provide VMs with an individual set of parameters,
independent from the disk image the VM boots from. For this purpose, it creates an ISO
9660 filesystem image that contains a file with the respective parameters for each VM. We
use a single disk image for the virtual cluster’s head node and compute nodes and employ the
contextualization mechanism to parameterize each node with its role (head or compute node).

The cluster head node mounts an additional persistent data disk image and exports the contained
filesystem via NFS (SLURM and MPI jobs require a filesystem that is accessible from all
nodes). Further, it starts a DNS server to resolve host names in the virtual cluster. Compute
nodes are provided the IP address of the head node as a contextualization parameter. They
configure the head node as DNS their server and call a node registration script on the head
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node via SSH, providing their host name and IP address as parameters. The node registration
script adds the compute node to the head node’s configuration — when all compute nodes have
booted, the head node has a configuration for SLURM and DNS that comprises all nodes of the
virtual cluster, and the virtual cluster is ready.

In our prototype, we installed a similar setup on the host OS of each node, yet with a static
configuration in place of contextualization. we use this cluster environment on the hosts to run
benchmarks natively and thereby assess baseline performance.

4.2 Node Virtualization

Our prototype comprises components responsible for virtualizing individual cluster nodes, for
controlling InfiniBand network access, network isolation and bandwidth usage, for managing
the HPC cloud, and for providing an HPC cluster environment ready to submit jobs. So far, we
have introduced the components of our prototype. In this section, we evaluate the following
issues concerning node virtualization: First, we evaluate how OS background activity (OS
noise) is influenced by the features compiled into the Linux kernel and how the different levels
of OS noise influence application performance in Section 4.2.1 on page 60. We are especially
interested in the configurations that omit features we do not need for HPC workload. Second,
we evaluate how time-sharing influences the performance of HPC applications in Section 4.2.2
on page 69. We have examined applications running in VMs and natively on the host OS
and observed disproportionate performance degradations from time-sharing, which justify our
policy of dedicating physical cores to HPC VMs. Third, we test, whether we can employ Linux
scheduling policies to strictly prioritize HPC VMs over VMs with background workload in
Section 4.2.3 on page 73. This concept allows background VMs to consume the CPU time
left idle by HPC VMs, without disrupting the performance of the HPC applications. That way,
we can loosen the strict core dedication policy again, and increase utilization (introducing low-
priority background workload instead of consolidating HPC applications).

4.2.1 Minimizing OS Background Activity

Our primary focus in setting up node virtualization is to reduce OS background activity as far
as possible, compare Section 3.2.2 on page 26. OS background activity, also referred to as
OS noise, influences the performance of HPC applications twofold. First, it reduces the CPU
time usable by the application and causes additional cache and TLB pollution. Second, it adds
variability to the time an iteration of the application takes on each node, thereby increasing the
overall time nodes have to wait for each other (compare Section 2.5 on page 10). To minimize
this effect, we disable unnecessary functionality in the host OS by disabling background tasks
and by reducing the options compiled into the Linux kernel (or loaded as modules at runtime).
In this section, we examine the influence of different compile-time configuration settings of
the Linux kernel to determine whether we can achieve a notable reduction of OS noise by
employing a custom-configured kernel in the host OS.
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We have conducted two series of experiments. First, we used a micro-benchmark for OS noise
to examine the influence of individual configuration options, such as disabling swapping sup-
port, varying the tick frequency between 100 and 1000 Hz, or enabling dynamic timer ticks.
We measured noise in the host OS and determined the best configuration with regard to low OS
noise. Second, we ran HPC application macro-benchmarks to assess the influence on actual
application performance in a virtualized environment. Based on the results from the first series
of experiments, we chose the most promising kernel configurations (there was no single best
configuration that generated the least noise in all benchmark runs). We measured application
performance with all combinations of these kernel configurations in the host and guest OS.

The remainder of this section is structured as follows: At first, we introduce the benchmarks
used. Second, we discuss the results of the synthetic OS noise benchmarks and present the ker-
nel configurations we employed for the subsequent application benchmarks. Third, we present
the results of the application benchmarks. Finally, we give a conclusion of our findings.

Benchmarks

We evaluate different kernel configurations in two ways: first, we estimate OS noise, second, we
assess the influence on application performance. For this purpose, we employ the Fixed Time
Quantum / Fixed Work Quantum (FTQ/FWQ) noise benchmark, and the high-performance
linpack (HPL) and the parallel ocean program (POP) macro-benchmarks. We briefly introduce
these benchmarks in this section.

We use the Fixed Time Quantum / Fixed Work Quantum (FTQ/FWQ) benchmark from the
Advanced Simulation and Computing (ASC) Program’s3 Sequoia Benchmark Codes [10] to
analyze OS noise, together with the supplied evaluation script based on the numerical analysis
tool GNU Octave. The FWQ benchmark repeatedly measures the execution time of a fixed
amount of computation. By comparing all measurements with the minimum measured execu-
tion time, one can quantify the system background activity. The minimum execution time is
reached, when one iteration runs without interruption by the OS. Other iterations take more
time, because they have been disturbed by OS activity. On the contrary, each iteration in the
FTQ benchmark runs for a fixed amount of time (the fixed time quantum) and measures how
much work can be done in each interval (proposed by Sottile and Minnich in [85]). The FTQ
benchmark thereby allows to determine the periodicity of background activities, whereas the
FWQ benchmark only permits an overall estimation. Both the FWQ and the FTQ benchmark
can run multi-threaded, with each thread pinned to a separate core, to capture the overall be-
havior of the system.

To assess application performance, we employ two HPC macro-benchmarks, the high-perfor-
mance linpack benchmark (HPL) [24] and the parallel ocean program (POP) [68]. Both bench-
marks use MPI [30] for message-based communication and synchronization between processes.
The HPL benchmark solves a system of linear equations using Gaussian elimination. It is used

3The Advanced Simulation and Computing (ASC) Program of the United States’ National Nuclear Security Ad-
ministration utilizes supercomputers for numeric simulations. In the course of the recent acquirement of the
supercomputer ASC Sequoia, the ASC has established comprehensive performance criteria and published a set
of benchmarks to assess these criteria, the so-called ASC Sequoia Benchmark Codes [9, 10].
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to rank supercomputers for the TOP500 supercomputer list [60]. The POP is a fluid-dynamics
simulation of ocean currents, which is used for actual research on ocean modeling, not just as
a benchmark. The performance characteristics of POP are well studied (see [21, 48]) and POP
is often used as an HPC benchmark. Ferreira and associates have found the performance of
POP to be very sensitive to OS noise [27], which indeed makes POP a good choice to compare
configurations with respect to OS noise.

The HPL benchmark is parameterized by the problem size (the dimension of the randomly gen-
erated matrix that defines the set of linear equations to solve) and by the number of processes
to employ, amongst others. We fix the problem size to 8000 and vary the number of processes.
This setting leads to reasonable execution times with all different numbers of processes we em-
ploy. The POP is very flexible and highly configurable, since it is intended for actual scientific
simulations. However, there are a few prepared input data sets, which ease the use of POP as a
benchmark. We revert to the X1 benchmark case, which partitions the earth’s surface into a grid
with a resolution of 1x1 degree, and demands between forty seconds and twenty-four minutes
for one run, depending on the number of processes (and CPU cores) POP is distributed to.

Results on OS Noise

In our first series of benchmarks, we have run the FWQ and FTQ noise benchmarks under var-
ious kernel configurations in the host OS. We introduce the configurations we tested and the
benchmark parameters we employed. We present our measurements, and discuss the configu-
rations we selected for the subsequent application benchmarks.

We used the Linux kernel version 2.6.35 in all our tests. To define the kernel configurations
under test, we started with the default configuration provided with the Linux kernel and con-
tinuously disabled features. We reduced the timer tick frequency from the default value of
1000 Hz to 100 Hz, switched from continuous timer ticks to dynamic ticks, and disabled swap-
ping. Finally, we disabled all features and drivers we did not directly require. See Table 4.1 on
page 62 for an overview of the configurations we tested. This table also introduces the short
labels we use to denominate the configurations in the diagrams showing our results.

Label Description
100 dyn, no swap defaults, 100 Hz dynamic ticks, swapping support disabled
100 dyn defaults, 100 Hz, dynamic ticks
100 dyn, min minimal config, 100 Hz, dynamic ticks
100 static ticks defaults, 100 Hz ticks
1000 static ticks defaults, 1000 Hz ticks

Table 4.1: Kernel configurations under test and short labels used in diagrams

We used the FWQ and the FTQ benchmark with two parameter sets that covered a short (about
1 µs) and a long (about 1 ms) interval. For the FWQ benchmark, we specified appropriate
values for the number of iterations in each measured work period. For the FTQ benchmark, we
specified the desired measurement interval directly. In addition, we varied the number of active
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CPUs: In the first run, all 8 CPUs (4 cores with hyper-threading) were active, in the second run,
we set all but one CPU offline (via the kernel’s sysfs interface in /sys/devices/system/cpu/ ), so
that all OS background activity is concentrated on this single CPU.

We have observed results that differ extremely between the various benchmark runs. There
is no single kernel configuration that generates the least OS noise. The variations are clearly
visible in Figure 4.3 on page 64, which presents the measured OS noise with short measurement
intervals or short work amounts (1 µs), and Figure 4.4 on page 64, which presents the results
measured with long intervals and work amounts (1 ms). Tables 4.2 and 4.3 on pages 63 and
63 show the results of the measurements with all 8 active CPUs and with only 1 active CPU
in detail. We see that a timer frequency of 1000 Hz causes more OS noise in nearly all of the
benchmark scenarios and that a minimal kernel configuration does not result in a minimum of
OS background activity, as one might expect.

We created a ranking of configurations to determine the configuration that generates the least
OS noise. We derived a relative rating by setting each result in relation to the best achieved
result (the least OS noise) in the same benchmark configuration — smaller relative ratings indi-
cate better results. Then, we averaged these relative noise ratings for each kernel configuration
to derive a ranking based on OS noise (in addition to an overall ranking, we considered several
subsets of the benchmark configurations).

Considering the case of only one active CPU, the minimal kernel configuration creates the
least noise in all benchmark configurations. With all eight active CPUs, however, the default
configuration without swapping support (100 Hz, dynamic ticks, no swap) generates the least
noise over all benchmark runs. Considering the benchmark runs with eight CPUs and a long
sample interval alone, the default kernel configuration with 100 Hz tick frequency is slightly
better.

configuration FWQ short FWQ long FTQ 1µs FTQ 1ms
1000 Hz, static ticks 28.9% 18.08% 12.6% 3.36%
100 Hz, static ticks 12.0% 3.39% 11.6% 0.77%
100 Hz, dynamic ticks 11.9% 0.70% 10.3% 0.17%
100 Hz dynamic ticks, no swap 14.2% 0.22% 12.5% 0.18%
100 Hz dynamic ticks, minimal 13.1% 0.43% 14.2% 0.32%

Table 4.2: Detailed Results of OS noise measurements with all 8 CPUs active.

configuration FWQ short FWQ long FTQ 1µs FTQ 1ms
1000 Hz, static ticks 10.5% 0.20% 11.4% 0.18%
100 Hz, static ticks 11.8% 0.11% 11.1% 0.09%
100 Hz, dynamic ticks 12.2% 0.11% 10.8% 0.09%
100 Hz dynamic ticks, no swap 10.2% 0.11% 9.3% 0.10%
100 Hz dynamic ticks, minimal 7.2% 0.10% 10.8% 0.09%

Table 4.3: Detailed Results of OS noise measurements with only 1 CPU active.
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Figure 4.3: Measured OS noise with short work amounts and sample intervals (about 1 µs).
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Figure 4.4: Measured OS noise with long work amounts and sample intervals (about 1 ms).
The result of FWQ in the configuration with 1000 Hz timer frequency (28.9%) is
clipped.
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Since the measurements with the synthetic noise benchmarks FWQ and FTQ did not indicate a
single best configuration with regard to OS noise, we chose the three kernel configurations that
each generated the least OS noise in a subset of the benchmark settings. We shall continue the
evaluation with application benchmarks using (1) the default configuration with a 100 Hz timer
frequency and dynamic ticks, (2) the same configuration without support for swapping, and (3)
the minimal configuration with 100 Hz timer frequency and dynamic ticks.

Results on Application Performance

In our first series of experiments, we have run a synthetic OS noise benchmark on the host OS
and varied the configuration of the Linux kernel. There is no single configuration that generated
the least OS noise in all benchmark runs, but we identified three candidate configurations.
In this section, we continue the evaluation of OS noise with application benchmarks we run
natively and in VMs with all combinations of the candidate kernel configurations in the guest
and host OS. First, we discuss the scalability of the benchmark applications on our test cluster
hardware (see Section 4.2.1 on page 61 for an introduction to the benchmarks) and derive corner
stone benchmark configurations (the number of processes and their distribution to nodes) for
use in the subsequent evaluation. Second, we present the results of the actual benchmark runs.
Throughout these experiments, we disabled the Intel Turbo Boost feature, which dynamically
scales up the CPU frequency depending on the load of individual cores. That way, we avoid
a negative influence on scalability caused by the reduction of the CPU frequency as we utilize
more cores.

We intended to run each benchmark ten times using each possible benchmark configuration,
under each combination of host and guest OS kernel. However, a single iteration through all
benchmark configurations, from one process on a single node up to 32 processes distributed
over four nodes, took an impractical amount of time. So, we decided to focus on a few bench-
mark configurations we selected by considering the scalability of the benchmark applications
— it does not make sense to benchmark inefficient configurations without practical relevance.
In Figure 4.5 on page 66 we depict the scalability of the high-performance linpack (HPL)
benchmark and the parallel ocean program (POP). We present the speedup from employing
more processes per node (up to one process per hardware thread) and from employing more
nodes, relative to the case of a single process on a single node.

We clearly see that hyper-threading — that is, running more than four processes on each node
— only benefits performance when we employ it uniformly on all cores by running eight pro-
cesses per node. Otherwise, with five to seven processes per node, performance decreases.

With up to four processes per node, each added process opens up the compute resources of a
new physical core. With five to seven processes per node, some of the processes contend for the
execution units of a physical CPU core, because they run on hardware threads of the same core.
Therefore, the processes run at different speed and some have to wait in each iteration. With
eight processes per node, however, each available hardware thread is utilized and the processes
run at nearly uniform speed. This effect is much more pronounced with the POP benchmark.

We can also deduce from Figure 4.5 on page 66 that HPL is memory-bound on our test cluster,
because the performance gain levels out beyond three processes per node — all four cores
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Figure 4.5: Scalability of the HPL and POP benchmarks on our test cluster. Hyper-threading is
effective with five to eight processes per node.

are in a single chip and share L3 cache and memory controller. POP however scales well
with additional cores per node — on a single node, we observed almost linear speedup with
four cores (3.9). POP is constrained by its problem decomposition however, which causes
unexpected results when the number of processes is not a power of two. For example, three
processes on a single node achieve no more performance than two processes , whereas the step
from two to three processes per node causes a performance gain when three or four nodes are
involved.

Based on these observations, we chose a subset of all possible benchmark configurations for the
comparison of the candidate kernel configurations. We run the benchmarks with one and with
four nodes to capture the minimum and the maximum virtual cluster configuration possible in
our test environment. We varied the number of processes per node between one, two, four, and
eight, to capture the observed performance corner stones (one, four, and eight processes) and
additional information about scalability (two processes). We eliminated five to seven processes,
because they pose a performance loss compared to using four processes.

We aggregated the individual results to determine, which combination of host/guest OS ker-
nels provides the best application performance. We determined the best result in each bench-
mark combination, achieved in any combination of host/guest OS kernels (including the native
benchmark runs in the host OS). Then, we calculated the relative performance penalty of each
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host/guest OS kernel combination (caused by virtualization overhead and different kernel con-
figurations), separate for each benchmark configuration and averaged over all of them.

We present the relative performance penalty, averaged over all benchmarks configurations in
Table 4.4 on page 67 for the HPL benchmark, and in Table 4.5 on page 67 for the POP bench-
mark. We show a performance penalty for each of the kernel configurations, because we chose
the minimum over all configurations as the reference performance level and none of the kernel
configurations accounted for all best results.

Guest
Host Native 100 Hz, dynamic

ticks
100 Hz, dynamic
ticks, no swap

100 Hz, dynamic
ticks, minimal

100 Hz, dynamic
ticks

1.5% 4.3% 3.9% 3.7%

100 Hz, dynamic
ticks, no swap

0.1% 3.9% 4.1% 3.8%

100 Hz, dynamic
ticks, minimal

0.2% 9.3% 9.4% 9.5%

Table 4.4: Relative performance penalty of different configurations of host and guest OS kernel
for the HPL benchmark. Reference performance values are the best observed results
in each benchmark configuration.

Guest
Host Native 100 Hz, dynamic

ticks
100 Hz, dynamic
ticks, no swap

100 Hz, dynamic
ticks, minimal

100 Hz, dynamic
ticks

0.1% 2.0% 2.0% 1.8%

100 Hz, dynamic
ticks, no swap

0.04% 1.9% 1.8% 2.3%

100 Hz, dynamic
ticks, minimal

0.2% 20.2% 21.3% 21.1%

Table 4.5: Relative performance penalty of different configurations of host and guest OS kernel
for the POP benchmark. Reference performance values are the best observed results
in each benchmark configuration.

Obviously, the minimal kernel configuration is a bad choice for the host OS kernel (we have
cross-checked that we did not disable any features required for virtualization by accident).
Although both POP and HPL perform well running natively in a minimal kernel, this kernel
causes significant overhead with virtualization (from more than a factor of two for the HPL
benchmark to an order of magnitude for POP).

Considering the native case alone, the configuration with disabled swapping support (defaults
with 100 Hz timer frequency, dynamic ticks, and disabled swapping support) performs best.
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With virtualization on top however, the results between the configurations with and without
swapping support (otherwise the same) do not show differences to a statistically significant
degree. Surprisingly, the configuration of the guest OS kernel seems to be irrelevant (again, no
statistically significant differences).

processess per node
nodes 1 2 4 8

1 1.2% 1.4% 1.7% 1.3%
4 0.8% 2.0% 2.2% 3.4%

Table 4.6: Virtualization overhead of POP with the kernel configuration without swapping.

processess per node
nodes 1 2 4 8

1 2.9% 3.5% 1.3% 1.5%
4 4.01% 4.9% 3.9% 10.2%

Table 4.7: Virtualization overhead of HPL with the kernel configuration without swapping.

Independent from the kernel configurations (leaving out the minimal configuration), we have
observed acceptable virtualization overheads. As an example, we show the virtualization over-
head of the configuration with disabled swapping support for POP in Table 4.6 on page 68,
and for the HPL benchmark in Table 4.7 on page 68 — the results for the other combinations,
besides those with a minimally configured host OS kernel, are in the same range. We observed
surprisingly low overheads for the POP: Virtualization overhead for the POP is below 2 % in
most cases, and below 3.5 % in the most distributed configuration. The HPL benchmark suffers
much greater overhead from virtualization: We observed a virtualization overhead for the HPL
benchmark of up to 3.5 % on a single node, up to 5 % with one to four processes each on four
nodes, and 10 % in the most distributed case of four nodes with eight processes each.

We attribute the difference in virtualization overhead between POP and HPL benchmark to
their different characteristics, which we discussed in this Section. One explanation is that
the POP is very CPU-intensive and performs only few memory access operations (in relation
to HPL), whereas the HPL benchmark is very memory-intensive (we have observed that two
processes nearly saturate the memory bus in our test hardware). Executing instructions on
the CPU in user level, without memory accesses, has no virtualization overhead. In contrast,
address translation suffers the overhead of nested paging with hardware virtualization (as used
by KVM), compare [1]. Being much more memory-intensive, HPL causes much more TLB
misses with virtualization overhead.

We cannot yet assess the influence of InfiniBand virtualization overhead on the two bench-
mark applications. Performance studies that attest POP a fine-grained communication pat-
tern [21, 48], and our own observations of very infrequent communication in the HPL bench-
mark (derived with an MPI profiling tool) suggest, however, that POP is much more prone to
virtualization overhead on communication operations.
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Summary

We have measured OS noise in various kernel configurations and assessed the influence on ap-
plication performance in different combinations of host and guest OS kernels. We employed the
synthetic OS noise benchmarks FWQ and FTQ from the ASC Program’s Sequoia Benchmark
Codes [10] and the macro-benchmarks HPL and POP.

The FWQ and FTQ benchmarks indicated the default kernel configuration with 100 Hz timer
frequency and dynamic ticks, the same configuration with disabled swapping support, and a
minimal kernel configuration as candidates for low OS noise — no single configuration pro-
vided the lowest noise levels in all benchmark configurations. They do all miss the specifica-
tions of the ASC Program and the request put up in [89], however. The ASC Sequoia Request
for Proposals defines a diminutive noise environment based on the results of the Fixed Work
Quantum benchmark: a runtime environment is called a diminutive noise environment, if the
OS noise measured by the FWQ benchmark has a scaled mean of < 10−6, amongst further
constraints on the statistics of the noise (compare section 3.2.4 in Attachment 2, Draft State-
ment of Work, in [9]). Tsafrir and associates deduced in [89], that OS noise should be in the
order of 10−5 for clusters with thousands of nodes. Yet, our results show scaled noise means in
the range of 10−4 to 10−2.

We tested the candidate kernel configurations as host and guest OS kernel in all combinations.
We can clearly eliminate the minimal configuration as a feasible host OS kernel, because it has
significantly greater overhead than the alternatives. The other two configurations (default, 100
Hz timer frequency, dynamic ticks, with/without swapping support) did not show a statistically
significant difference when used as host OS. The configuration without swapping support is
slightly advantageous in the native case, however. Surprisingly, we did not observe significant
performance differences when varying the guest OS kernel — the host OS kernel proved to
be the more relevant influence. Virtualization overhead, as observed in our experiments, is
acceptable for both benchmark applications.

Combining the results of both series of experiments, we conclude that there are significant
influences on application performance besides OS noise alone. A completely minimalistic
kernel configuration is not a good choice for the host OS and provides significantly worse
performance than the other tested configurations, although it generated low OS noise levels, too.
The default kernel configuration provides better performance with virtualization, and disabling
swapping support potentially brings a slight advantage.

4.2.2 Influence of Time-Sharing

Our approach sets two basic CPU allocation policies: we dedicate physical cores to logical
cores for HPC VMs, instead of time-sharing physical CPU cores between logical cores for
HPC workload, and we employ non-HPC VMs to absorb CPU time left idle by HPC jobs and
prioritize them strictly lower than HPC VMs. We shall evaluate Linux scheduling policies for
prioritizing VMs in the following Section 4.2.3 on page 73. In this section, we will justify
the policy of dedicating cores, by showing that the performance of HPC applications suffers
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disproportionately from timesharing, especially when fine-grained communication and syn-
chronization between several processes is involved. We introduce the experimental setup and
the benchmark applications we use, describe the communication scenarios we compare, and
present the results of our measurements. Finally, we contrast lost performance with resources
saved by timesharing (CPU cores). As introduced in the previous section, we disabled the Intel
Turbo Boost feature of the CPUs to avoid the negative influence on scalability caused by the
reduced CPU frequency when more cores are utilized.

We run the experiments on timesharing on our HPC cloud prototype, which we introduced
above in Section 4.1 on page 53. We disable the Hyper-Threading4 feature of the CPUs —
that is, symmetric multi-threading — to avoid the influence of resource contention between
hardware threads. We start two VMs per host, each with 4 logical CPU cores, and configure
CPU affinity, such that each logical core of a VM shares a physical core with a logical core of
another VM. We use four VMs for measurements (one per host), and the other four VMs to
generate background workload that shares the CPU.

We employ the HPC macro-benchmarks high-performance linpack (HPL) and parallel ocean
program (POP), which we have introduced already in Section 4.2.1 on page 61. Both bench-
mark programs resemble the bulk-synchronous single-program multiple-data (SPMD) applica-
tion model, which we have introduced in Section 3.1 on page 17. Figure 2.1 on page 11 depicts
the two phases a bulk-synchronous SPMD application cycles through: local computation alter-
nates with synchronization and communication between all nodes.

We compare four scenarios that differ in the number of processes and their distribution to
nodes, and, consequently, in the type of communication involved. We run each benchmark as
(1) a single process (no communication at all), (2) four processes on the same node (node-local
communication), (3) four processes distributed to four nodes (remote communication), and
(4) sixteen processes equally distributed over four nodes (local and remote communication).
In each scenario, we compare performance between idle and fully loaded background VMs,
resembling dedicated cores and timesharing. To generate the background load, we repeatedly
run the HPL benchmark in each background VM (automated by a shell script, with node-local
communication only), which completely utilizes the logical cores.

scenario slowdown by factor
HPL POP

(1) 1 process on 1 node 3.0 2.2
(2) 4 processes on 1 node 2.0 2.9
(3) 4 processes on 4 nodes 3.3 2.7
(4) 16 processes on 4 nodes 2.9 11.5

Table 4.8: Slowdown of HPL and POP benchmarks in a virtual cluster caused by timesharing
the CPU with a fully loaded VM.

4Hyper-Threading is the denomination of the symmetric multi-threading (SMT) capability of Intel CPUs, which
allows two threads of execution, each with a complete register set on its own, to share the functional units of a
CPU core [55].
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Figure 4.6: Remaining performance of the HPL and POP benchmarks with timesharing in var-
ious process distribution and communication scenarios.

Clearly, one expects a reduction of performance when the VM running an HPC benchmark
receives only half the CPU time. In addition to assigning less CPU time, timesharing causes
more context switches and thus cache misses, which all add overhead and further reduce perfor-
mance. We present our results in Table 4.8 on page 70, which lists the factors of slowdown by
timesharing, and Figure 4.6 on page 71, which indicates the remaining performance with time-
sharing relative to the case without timesharing, as an alternative display. In most instances, we
have observed a much larger slowdown than only by a factor of two (by cutting assigned CPU
time in half), especially when remote communication between nodes is involved.

As the HPL and POP benchmarks behave differently, with HPL being more memory-mound
than POP, and POP employing more fine-grained communication than HPL (as we already
observed in Section 4.2.1 on page 65), they are consequently affected differently by timeshar-
ing. So, we discuss our observations for each benchmark separately, at first. Then, we draw a
conclusion over both cases.

The HPL benchmark suffers a slowdown of around a factor of three in most scenarios. This
slowdown appears already with only one process and one CPU core involved, as in scenario
(1), and does not increase significantly with the introduction of remote communication, as in
scenarios (3) and (4). We deduce, that the influence of timesharing on the HPL benchmark is
mainly caused by local contention for memory bandwidth, whereas the course-grained com-
munication pattern does not suffer much from jitter introduced by timesharing. The slowdown
with four processes on a local node, see scenario (2), agrees with this observation. Performance
with four processes per node is already limited by memory bandwidth without timesharing, not
by execution speed. So, reducing CPU time to one half does not introduce additional adverse
cache effects and just cuts performance to one half.
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In contrast, performance of the POP benchmark scales with the number of cores, but is heavily
influenced by its fine-grained communication. As a result, the slowdown of a single process
caused by timesharing, scenario (1), is not much greater than the reciprocal of the reduction
of CPU time. However, when the POP benchmark is distributed over several processes that
communicate and synchronize with each other, timesharing increases jitter on the execution
time of each process and thereby increases the overall time processes have to wait for each
other. See Section 3.2.2 on page 26 for a description of this effect. As a result, performance is
reduced by more than a factor of ten in the most distributed case we tested — that is, scenario
(4) with sixteen processes that communicate locally and remotely.

For the purpose of cross-checking our results from the virtualized environment, we repeated
our measurements with the benchmarks running natively as processes on the host OS (reduced
to the extreme cases scenario (1) and (4) in the POP benchmark). We employed CPU affinity
(supported by OpenMPI) to cause each CPU core to be shared between two benchmark pro-
cesses (one of them as background workload), as with VMs before. In this setting, we observed
slowdowns very similar to the virtualized case, see Table 4.9 on page 72. Thus, we can exclude
that the observed behavior is caused by virtualization only.

scenario slowdown by factor
HPL POP

(1) 1 process on 1 node 3.9 2.2
(2) 4 processes on 1 node 2.0 -
(3) 4 processes on 4 nodes 4.2 -
(4) 16 processes on 4 nodes 2.9 10.1

Table 4.9: Slowdown of HPL and POP benchmarks in the native case, caused by timesharing
the CPU with another benchmark process on a physical node.

In summary, timesharing reduces the performance of the HPC benchmark applications we ex-
amined disproportionately. We added a second HPC workload that shared CPU time in a 1:1
relation, but in most cases observed a reduction of performance to about 30% (remarkably be-
low 50%). Timesharing is intended to better utilize compute resources by putting otherwise
unavoidable idle time to use, but with HPC applications as we experienced, it does not pay
off: We employ half the compute resources per application (50% CPU time) but achieve only
one third of the performance. To process a given amount of work, we effectively require more
compute resources with timesharing, because we achieve less work per CPU time.

This result supports our decision to dedicate physical cores to VMs for HPC workload, because
the alternative, timesharing a physical CPU between several VMs, reduces performance in
a disproportionate way. In the following section, we examine a scenario that looks similar
to timesharing as analyzed in this section, but replaces the symmetric setting of timesharing
between several equal HPC VMs with an asymmetric relation of a prioritized HPC VM and a
subordinate background VM that may only consume CPU time explicitly left idle.
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4.2.3 Linux Realtime and Idle Scheduling Policies

In the previous Section 4.2.2 on page 69, we have examined the influence of timesharing on
equally prioritized parallel applications. We have seen that sharing a physical core between
parallel applications reduces performance considerably more than expected. Thus, we avoid
timesharing, but try to increase utilization by running a low-priority background VM on each
physical core, in addition to a high-priority VM for HPC workload, see Section 3.2.2 on page
26. For this purpose, we have to take care that a non-HPC VM only receives CPU time left
idle by HPC VMs. As introduced in the previous section, we disabled the Intel Turbo Boost
feature of the CPUs to avoid the negative influence on scalability caused by the reduced CPU
frequency when more cores are utilized.

On each node of the physical cluster that forms our HPC cloud, we employ Linux and KVM
for virtualization. With this virtualization stack, a VM is scheduled like a regular process in
the host Linux (see Section 3.2.1 on page 21). Regular dynamic priorities with nice levels do
not suffice, because they cannot strictly prioritize one process above another (compare [86]).
Instead, we intended to employ static (soft) realtime priorities5 and assign HPC VMs a higher
priority than non-HPC VMs (with cloud management tasks prioritized even above). However,
we have found this approach to be infeasible with PCI passthrough access to the InfiniBand
HCA, because the drivers in the VM experienced timeouts when accessing the HCA, causing
HPC applications to fail during initial connection setup. In addition, measurements of OS noise
(as we use also in Section 4.2.1 on page 60) have shown increased OS background activity when
the VM or the noise benchmark process in the host OS was assigned a static realtime priority.

In place of static realtime priorities, we revert to assigning a non-HPC VM the SCHED_IDLE
scheduling policy, causing it to be scheduled only when no other tasks are ready and, thereby,
being prioritized below the HPC VMs. In the remainder of this section, we examine whether we
can practically assign a VM the idle scheduling policy and whether assigning this policy really
prevents non-HPC VMs from disturbing HPC VMs. For this purpose, we repeated a subset
of the measurements from the previous Section 4.2.2 on page 69, this time however with the
SCHED_IDLE policy assigned to the background VM. Again, we generate the background load
by repeatedly running the HPL benchmark in each background VM and disable hyper-threading
to avoid resource contention inside a physical CPU core. HPL is very memory-intensive and
thereby constitutes a very resource demanding background workload.

We present the results of our measurements in Table 4.10 on page 74, which show the factors
of slowdown by a running background VM, and Figure 4.7 on page 74, which indicates the
relative remaining performance.

The POP is influenced only minimally in all scenarios. The loss of performance is less than
1.5% in the most distributed case we tested (16 processes on 4 nodes), and significantly less
than 1% in all other cases. This overhead is acceptable and scheduling of HPC and background
VMs works as expected.

5The system call sched_setscheduler defines the scheduling policy used for a process. SCHED_FIFO and
SCHED_RR (round-robin) are the two supported (soft) realtime policies. See also [57] and the manual page
of the sched_setscheduler system call.
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Figure 4.7: Performance loss of the HPL and POP benchmarks caused by low-priority back-
ground VMs with a memory-intensive workload.

scenario slowdown by factor
HPL POP

(1) 1 process on 1 node 1.004 1.004
(2) 4 processes on 1 node 1.001 1.003
(3) 4 processes on 4 nodes 1.371 1.006
(4) 16 processes on 4 nodes 1.199 1.012

Table 4.10: Slowdown of HPL and POP benchmarks in a virtual cluster caused by a low-priority
background VM.

The HPL benchmark however, suffers from contention for memory in scenario (3). There, the
high-priority VM leaves three logical cores idle, so the background VM occupies the respective
physical cores. As a result, all four cores run instances of the HPL benchmark and contend for
the memory bus.

The performance loss of the HPL benchmark in scenario (4) has a slightly different reason.
In this scenario, the HPL benchmark uses all four logical cores of the benchmark VM and
therefore blocks out the background VM most of the time. So, one might expect no perfor-
mance loss at all. There are short periods however, during which the HPL benchmark leaves
the CPU idle: Earlier profiling runs have shown that the communication pattern of the HPL
benchmark causes OpenMPI to use blocking send and receive operations. In these periods, the
background VM and thus the background HPL benchmark inside is allowed to run, and con-
sequently trashes the cache. When the observed high-priority HPL benchmark resumes, this
effect causes compulsory cache misses that do not occur with the HPL benchmark using the
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Figure 4.8: Performance loss of the HPL benchmark caused by low-priority background VMs
with a CPU-intensive workload.

We have cross-checked the behavior of the HPL benchmark with a CPU-intensive background
workload that performs hardly any memory accesses (the FWQ OS noise benchmark). See
Figure 4.8 on page 75 for the results. Running the benchmark on a single node, we could not
measure a difference in performance. Running the benchmark distributed over four nodes, thus
with communication and the aforementioned short interruption periods involved, we observe
a reduction in performance of up to 4.5%. These results are remarkably different from the
measurements with a memory-intensive background workload and confirm our observations
regarding contention for memory bandwidth and cache effects due to short interruptions.

In conclusion, we achieve strict prioritizing of HPC VMs over background VMs regarding CPU
time by assigning background VMs the SCHED_IDLE policy. CPU-bound workloads, such as
the POP benchmark, experience only small reductions of performance when the background
workload is active. Contention for other resources than CPU time, which are beyond control of
host OS scheduling, can reduce performance for memory-bound workloads however.

4.3 Network Virtualization

In this section, we evaluate a basic building block of our HPC cloud architecture. To guarantee
network isolation, the HPC cloud provider must keep the configuration of the physical network
under exclusive control. For this purpose, the InfiniBand management interfaces must be pro-
tected against unauthorized modifications. We evaluate the practical feasibility of a key-based
protection scheme in Section 4.3.1 on page 76.
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4.3.1 Protection of Management Interfaces and Isolation

One of our primary design goals for network virtualization is to provide a user with a virtual
view of his share of the InfiniBand network, which he may configure just like a physical net-
work, as we described in Section 3.3.1 on page 31. At the same time, we have to prevent a
user from tampering with the configuration of the actual physical InfiniBand network of the
HPC cloud, so that he cannot compromise isolation or modify bandwidth allocations (compare
Section 3.3.3 on page 38). So, on the one hand, we have to lock out a user from access to the
management interface of the physical network. Yet on the other hand, we virtualize the In-
finiBand management interface and thereby allow a user to configure his share of the network
using this interface.

In this section, we briefly recapitulate the two mechanisms we employ to protect the manage-
ment interface of the physical InfiniBand network and thereby isolation, and evaluate the prac-
tical applicability of one of them. We show that the tool we employ for the setup of InfiniBand
network isolation and QoS, the opensm subnet manager, fails to implement protection. We
describe the necessary corrections we applied to make protection work correctly. Finally, we
discuss the protection level that our modifications accomplish and describe one further required
improvement. In addition to conceptual consideration, we based this evaluation on experiments
with actual hardware.

InfiniBand network isolation is configured by partitioning the network into groups of hosts (par-
titions) and by restricting nodes to communicate only within these groups, see Section 3.3.2 on
page 35. The assignment of nodes to partitions as well as the partition enforcement mechanism,
which filters packets while they pass a switch, are both configured using the InfiniBand sub-
net management protocol. Thus, protecting isolation against illegitimate modifications means
protecting the configuration of the physical InfiniBand network against modification. For this
purpose, we employ two mechanisms: We intercept management datagrams sent by a VM, and
we enable the management protection mechanism defined by InfiniBand. In this section, we
verify by experimentation that the InfiniBand management interfaces, and thus isolation, can
be effectively protected against modifications using protection keys.

As we introduced in Section 3.3.3 on page 38, the protection key mechanism, once enabled,
causes a node (actually, the subnet management agent of the node) to accept only those man-
agement and configuration requests that state the correct key. Thus, only the subnet managers
that know this key (primarily the one that assigned it) can alter the network configuration af-
ter protection has been enabled. The SR-IOV compatibility issues on our test hardware kept
us from experiments with the exchange of management datagrams between host and VM (and
thus, possibly, interception), employing SR-IOV. Since we cannot alternatively publish a code
review prior to the official release of the SR-IOV drivers, we have to leave this topic to future
work and focus on protection keys here.

In our architecture of an HPC cloud, the cloud provider employs a subnet manager to configure
isolation and bandwidth shares. To prevent users that accidentally (or forcefully) gained com-
plete access to a HCA, and thus can send management packets into the physical network, from
modifying this configuration (e.g., to violate isolation), the cloud provider enables the protec-
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tion key mechanism to lock out any other subnet manager besides his own (compare Section
3.3.3 on page 37 and Section 3.3.4 on page 44).

We run two subnet managers on different nodes at the same time and observe, which of them
successfully influences the subnet configuration. One resembles the cloud provider who tries
to protect the configuration, the other one depicts a malicious user that tries to circumvent
isolation. In addition, we employed

• the ibstat utility, to determine node addresses and the currently registered subnet manager
on every node;

• the ibnetdiscover utility to query the network topology, a read-only access to the Infini-
Band management interface;

• and the smpquery utility to retrieve all settings related to subnet management from a
node.

All these utilities are contained in the package infiniband-diags of the OpenFabrics Enterprise
Distribution (OFED).

Without subnet management protection, we can start two subnet managers in succession and
cause the second one to simply overwrite the settings of the first (calling opensm -d 0 -r).
The second subnet manager assigns fresh node addresses (LIDs), registers itself as the current
subnet manager with every node (verified with the ibstat utility) and can freely reconfigure
isolation (including to disable it completely). Further, we can employ the ibnetdiscover utility
to determine the topology of the complete physical subnet and use the smpquery utility to query
all settings.

When we try to enable protection with a regular opensm subnet manager, by configuring it
to use use a protection key, the actual level of protection does not change. Another subnet
manager can still change settings freely, we can query or modify isolation settings, and we can
even readout the ineffective protection key or the isolation settings (partition keys) from any
node using the smpquery utility. This lack of protection is a result of the failure of current
versions6 of opensm to actually enable the protection mechanism in a node (by setting the
protection flags after storing the protection key). In addition, opensm currently supports only
one protection key for all nodes in the network, which compromises the complete network,
when the protection key has been revealed on a single node7.

We modified opensm to set the protection flags in each node: We changed the data structure
used to construct management datagrams, so that it includes the subnet management protection
flags; and we extended the initial configuration of each node (assigning an address, registering
the subnet manager, etc.) to also enable the protection flags in this step. As a result, we achieve

6We based our experiments on opensm version 3.3.9 as included in the OFED version 1.5.3.1. However, a cross-
check with the current development tree (as of 27 May 2011, retrieved from git://git.openfabrics.
org/~alexnetes/opensm.git) showed the same problem with regard to protection.

7Using the same protection key on all nodes in the network enables the following attack: If a malicious user gains
complete access to an InfiniBand HCA by breaking out of his VM, he may be able to extract the protection
key from this HCA (it is possible with ConnectX-2 HCAs). The single extracted protection key would then
allow to modify the configuration of all other nodes. To circumvent this attack, we assign each node a different
protection key.
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the protection of the management interface of the physical InfiniBand network as intended. As
long as the protection key is kept secret and no one guesses it or tries all possible keys (with a
small possibility of success because of 64 bits key length, compare Section 3.3.3 on page 38),
we can be sure that

• no other subnet manager, besides the one employed by the cloud provider, can modify
the configuration of the physical network, including the configured network isolation;

• the topology of the (whole) physical network cannot be determined (e.g., using the utility
ibnetdiscover), because nodes do not answer unauthorized discovery requests;

• protection keys and isolation settings (partition keys) cannot be readout, because the get
requests will be discarded without the correct key.

We verified these three claims by experimentation in our test cluster with VMs that have com-
plete access to the InfiniBand HCA via PCI passthrough (our prototype setup, see Section 4.1.2
on page 54). In summary, a user that breaks out off his VM and gains complete control over
the InfiniBand HCA cannot use this gain to tamper with the physical InfiniBand network. Of
course, these restrictions do not apply to a user who legitimately utilizes the virtualized man-
agement interface to configure his share of the network, as we describe in Section 3.3.1 on page
31.

One limitation of opensm still remains: It can currently assign only one protection key to all
nodes in the network. In a second modification attempt, we changed the assignment of protec-
tion keys to generate a unique key for each node. However, this attempt is still early work and
currently inoperative because some data structures are used inconsistently in opensm and we
thus cannot retrieve the assigned protection key for future accesses to a node. Nonetheless, we
achieved that protection keys are employed effectively at all.

4.4 HPC Cloud Management

So far, we have evaluated policies we have chosen and mechanisms we employ in the areas of
node and network virtualization. At last, we examine HPC cloud management in this section.
First, we verify the automatic generation of an InfiniBand network isolation configuration for
virtual clusters by following the complete workflow from defining virtual clusters to checking
that isolation has been established as desired. Second, we examine the scalability of OpenNeb-
ula and discuss two potential bottlenecks.

4.4.1 Automatic Configuration of Network Isolation

In our HPC cloud architecture, cloud management is in charge of combining and orchestrating
node and network virtualization. In the previous sections of our evaluation, we have examined
VMs with access to InfiniBand HCAs on the one hand, and isolation in an InfiniBand network
on the other hand — however, each aspect separately. In this section, we examine how they
work together under the control of HPC cloud management: We follow the workflow of our
prototypic extension to OpenNebula that automatically configures network isolation for virtual
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# d e f i n e a v i r t u a l c l u s t e r w i t h 2 nodes
$ o n e v c l u s t e r c r e a t e vc1
$ o n e v c l u s t e r addheadnode vc1 255
$ o n e v c l u s t e r addcomputenode vc1 256

# d e f i n e a second v i r t u a l c l u s t e r w i t h 1 node
$ o n e v c l u s t e r c r e a t e vc2
$ o n e v c l u s t e r addheadnode vc2 257

# query v i r t u a l c l u s t e r s (NODEC = node c o u n t )
$ o n e v c l u s t e r l i s t

ID NAME STAT NODEC HEADN
1 vc1 1 2 255
2 vc2 1 1 257

# query r u n n i n g VMs
$ onevm l i s t

ID USER NAME VCLUSTER STAT CPU MEM [ . . . ]
255 admin headnode vc1 runn 0 0K
256 admin compnde1 vc1 runn 0 0K
257 admin headnde2 vc2 runn 0 0K

Listing 4.2: Configuring virtual clusters in OpenNebula.

clusters, as we introduced in Section 4.1.4 on page 56. First, we describe the experimental
setup of this test and the involved real and virtual nodes and their roles. Second, we present
how we actually tested the automatically configured isolation by checking isolation between
two virtual clusters.

As stated before, SR-IOV is currently not working in our prototype and we have to dedicate
complete InfiniBand HCAs to VMs. We thereby loose InfiniBand access in the respective host
OS. Since we need InfiniBand access in the host OS running the OpenNebula core to configure
network isolation, we could not use this host for VMs in this test. As a result, we used a virtual
cluster consisting of two nodes, and another virtual cluster consisting of only one node.

We associated VMs to virtual clusters using our newly developed command line tool, which
utilizes the new methods for virtual cluster management in OpenNebula’s XML-RPC interface,
as we introduced in Section 4.1.4 on page 56. In Listing 4.2 on page 79 we present the issued
commands and the resulting virtual cluster configuration in detail.

Our OpenNebula extension had queried all HCAs in the hosts for their unique ids while the
hosts still had access to the InfiniBand HCAs before VMs had been started. At runtime, it
periodically generated a partition configuration from the queried unique ids and from the virtual
clusters defined by us. We added a reference to the generated partition configuration to the main
configuration file of the opensm subnet manager, to make opensm incorporate the partitions into
the generation of the physical InfiniBand network. See Listing 4.3 on page 80 for an example
of a generated partition configuration,

We checked the successful setup of isolation with a modified version of an InfiniBand per-
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# A u t o m a t i c a l l y g e n e r a t e d i s o l a t i o n c o n f i g f o r opensm .
# V i r t u a l c l u s t e r s i n OpenNebula are merged w i t h t o p o l o g y
# i n f o r m a t i o n t o form I n f i n i B a n d t o p o l o g i e s .
#
# p a r t i t i o n f o r v i r t u a l c l u s t e r vc1
# c o m p r i s i n g VMs and h o s t s
# [vm−i d ] vm name : [ hos t−i d ] h o s t name
# [256] compnde1 : [ 2 ] hpb lade01
# [255] headnode : [ 3 ] hpb lade02
p a r t 1 b =0 xdced , i p o i b , defmember= f u l l : 0 x2c9030007efba , [ . . . ] ;
#
# p a r t i t i o n f o r v i r t u a l c l u s t e r vc2
# c o m p r i s i n g VMs and h o s t s
# [vm−i d ] vm name : [ hos t−i d ] h o s t name
# [257] headnde2 : [ 1 ] hpb lade03
p a r t 1 c =0xb0c3 , i p o i b , defmember= f u l l : 0 x2c903000f3756 , [ . . . ] ;
# end

Listing 4.3: Automatically generated partition configuration.

formance benchmark bundled with the OpenFabrics Enterprise Distribution and a small MPI
job: Communication via InfiniBand has only been possible between virtual nodes in the same
virtual cluster, as we configured in OpenNebula. Thus, we have successfully combined cloud
management and InfiniBand network management to automatically configure network isolation
for virtual clusters.

4.4.2 Scalability of OpenNebula

Up to now, we have tacitly assumed that OpenNebula can handle several thousand hosts.
Clearly, operation of a productive HPC cloud requires to manage entities such as hosts and
VMs in that order of magnitude. In this section, we show that OpenNebula can indeed handle
these amounts.

We test how the OpenNebula management core behaves with large numbers of managed entities
(hosts and VMs). We do not require a test cluster of the actual size, because we put an emulation
layer below OpenNebula that only mimics physical hosts (of a configurable amount). With this
setup, we discuss two potential bottlenecks, the database backend that stores information about
managed entities and the command line frontends provided with OpenNebula. In both areas,
we show that a straight-forward prototypic setup has serious performance problems, which,
however, can be mitigated by reverting to better alternatives.

We have run all experiments mentioned in this section on our OpenNebula development system,
not on the test cluster. The difference in CPU speed8 is no obstacle for comparison, because
the observed bottlenecks are much more pronounced.

8Our development system is equipped with a dual-core Intel Core 2 Duo T7500 CPU, clocked at 2.2 GHz, and
3 GB of RAM. In contrast, the nodes of the test cluster contain Intel Xeon E5520 quad-core CPUs, clocked at
2.26 GHz, and 6 GB of main memory.
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The structure of this section reflects this introduction: First, we present the physical infrastruc-
ture emulator we have developed. Second and third, we discuss the potential bottlenecks in the
form of the DB backend and the CLI tools provided with OpenNebula.

Physical Infrastructure Emulation

We employed a cluster of four nodes for our evaluation. This comparably small number of
nodes does not allow to assess how OpenNebula behaves with several hundreds or several
thousands of hosts. Further, the physical cluster has not always been available for tests and
debugging during development. Thus, we required a way to observe OpenNebula as it inter-
acts with a much greater number of hosts than four, and to run, test, and debug OpenNebula
without using physical hosts at all. For this purpose, we developed an infrastructure emulator
that only mimics physical hosts and their resources towards OpenNebula and thereby provides
(emulated) clusters of almost arbitrary size. Instead of actually running VMs, our emulator
only tracks their static resource allocation.

The architecture of OpenNebula uses a layer of plug-ins for operations such as querying infor-
mation about a host or deploying a VM on a host. With this approach, the same management
core logic can control different hypervisors (e.g., KVM, Xen, and VMware) and leave the han-
dling of their peculiarities to plug-ins. These plug-ins are called management drivers and they
are typically implemented in the Ruby scripting language [29].

To implement our emulation of physical infrastructure, we attached a new set of management
drivers to this plug-in interface. Our scripts track information about the emulated hosts in a
set of files and, in contrast to the existing plug-ins, do not forward the requests of the Open-
Nebula core to a virtualization layer. Deploying a VM on a host, and thereby allocating CPU
and memory, is reflected in a modification of the file representing the respective host. Moni-
toring a host results in reading this file, and replying an excerpt of its contents to OpenNebula.
The infrastructure emulation comprises the InfiniBand topology management that we added
to OpenNebula, as introduced in Section 3.4 on page 46 and Section 4.1.4 on page 56. Each
emulated host may (virtually) contain one or more HCAs.

We complement the emulated infrastructure management drivers with a script to automatically
generate emulated hosts. It assigns unique host names (numbered consecutively) and Infini-
Band unique ids (GUIDs), creates the files representing the emulated hosts, and announces the
emulated hosts to OpenNebula.

Potential Bottleneck: Database Backend

OpenNebula stores information about all managed entities (e.g., hosts, VMs, and disk images)
in a relational database. Many administrative operations issued to OpenNebula are basically
simple operations in this database — for example, creating a VM (as a managed entity, not
deployed on a host) or adding a host to the set of managed physical hosts. Thus, throughput
and latency of database operations form the basis of the performance of OpenNebula’s man-
agement operations, especially in the context of virtual clusters: When many VMs are created
and modified collectively, the respective database operations occur in bursts.
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OpenNebula can employ two database management systems: MySQL and SQLite. Example
configurations employ a SQLite backend. It is embedded in OpenNebula as a library and has
the advantage of being very easy to setup. As an alternative, MySQL runs as a separate database
server and promises increased performance at the expense of more configuration work (mainly
setup and maintenance of the database server). We compared the two alternatives with regard
to the resulting performance of elementary management operations in OpenNebula and found
MySQL to be clearly the preferable database backend for productive installations (where the
slightly higher configuration work is easily amortized).

We identified an explicit performance problem in the SQLite database backend, as it is currently
used in OpenNebula. SQLite by default creates and deletes a journal file in the progress of each
single database transaction. With the filesystems used in our development system and in the
test cluster nodes (ext3 and reiserfs), this file creation and deletion causes several disk I/O
operations. In OpenNebula, a database transaction, and thus disk I/O, occurs for every single
operation on every managed entity. As a result, creating many VMs, to instantiate a virtual
cluster, would take an unacceptable long amount of time just to create database entries for each
VM. Performance can be improved by changing the behavior of SQLite to keep the journal file
between transactions9. We have modified OpenNebula to issue an appropriate command after
opening the SQLite database. Of course, using the MySQL database management system is
another alternative.

We measured the performance of an elementary management operation in OpenNebula that
results from the three options SQLite, SQLite with changed journal handling, and MySQL. For
this purpose, we chose the creation of a host as a managed entity in OpenNebula, because it
does in fact only create an entry in the database. See Table 4.11 for the results. Performance
with SQLite is almost an order of magnitude worse than with MySQL (especially with the
expensive journal file operations). Hence, we clearly prefer the MySQL database backend for
productive use and recommend to use SQLite only in small test installations.

SQLite SQLite (keep journal file) MySQL
time for adding a host as managed entity 65 ms 14 ms < 2 ms

Table 4.11: Time required for an elementary management operation in OpenNebula with vary-
ing DB backends.

Potential Bottleneck: Provided CLI Tools

OpenNebula exports all of its abstractions and operations via a web service interface (using the
XML-RPC protocol). It provides a basic set of command line tools, written in the Ruby script-
ing language, that employ this interface to trigger operations such as creating a VM. Although
these tools serve quite well to manually control OpenNebula in a small test environment, they
are not suitable for integration into an automation framework, because they incur too much
overhead on every single operation. A much better alternative for calling OpenNebula opera-
tions from other tools (e.g., a separate frontend that provides a virtual cluster interface) is to

9We change the behavior of SQLite with the SQLite-specific SQL statement PRAGMA journal_mode=PERSIST;
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directly employ the web service interface. In this section, we point out the basic problem of
the command line tools and compare them to the direct use of the OpenNebula web service
interface with some measurements.

Each single OpenNebula operation, called via the command line tools, triggers a start of the
Ruby interpreter as a new process. This Ruby interpreter initializes itself, loads the XML-RPC
client libraries and the frontend library that maps the OpenNebula abstractions to web service
calls, and finally executes the actual script that comprises the command line tool. Consequently,
more time is spent on initialization than on actual interaction with OpenNebula.

We compare the command line tools with calling the OpenNebula web service interfaces di-
rectly for two operations: we create hosts and VMs as managed entities in OpenNebula. For
this purpose, we employ the provided Java classes that map abstractions, such as VMs, to Open-
Nebula’s web service interface in a custom test application. See Table 4.12 for the time demand
per operation we have observed.

These measurements clearly indicate that using the command line tools is very inefficient and
their use should consequently be restricted to manual administration tasks. In contrast, we have
successfully created a thousand VMs in one short burst using our test program and OpenNeb-
ula’s XML-RPC interface.

Table 4.12: Time demand of OpenNebula operations when called via provided CLI tools or
directly via web service interface.

operation time
CLI tools XML-RPC directly

create a VM 160 ms 5.5 ms
add a host 100 ms 2.6 ms

Summary

We have examined elementary operations of OpenNebula. These operations are purely admin-
istrative and do not modify the actual virtual environment (such as starting VMs), so they should
take minimal time to avoid unnecessary overhead on actual VM management operations. For
the purpose of evaluating the core of OpenNebula itself, not an actual virtual environment, we
have developed an infrastructure emulation that mimics physical hosts. Using this emulation,
we were able to observe OpenNebula with a number of managed hosts and VMs far beyond the
capacity of our physical test cluster. We have identified two potential bottlenecks: Employing
the SQLite database, as in many example configurations, leads to disappointing performance,
and the command line tools provided with OpenNebula are not feasible for automated use, be-
cause they suffer too much overhead from invoking a ruby interpreter. Both bottlenecks can be
avoided however: OpenNebula can use the MySQL database that provides latencies of a few
milliseconds, and the operations of OpenNebula can be triggered by other applications with
low overhead via an XML-RPC interface.
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An Infrastructure-as-a-Service (IaaS) model for HPC computing — that is, the concepts of
cloud computing transferred to HPC clusters — promises cost savings and increased flexibility.
It enables the progress away from physically owned HPC clusters to virtualized and elastic
HPC resources leased from a consolidated large HPC computing center. Elastic virtual clusters
provide compute capacity scaled dynamically to suit actual demand and workload. At the same
time, the pay-as-you-go principle of cloud computing avoids the huge initial investments that
are inevitable with physically owned clusters. It causes costs only for actual use of computing
capacity. Virtualization allows to dynamically customize the complete runtime environment,
from the OS kernel up to libraries and tools.

At the same time, however, virtualization raises difficult challenges. It incurs overhead and,
even more important, may lead to unpredictable variations in performance [63, 93], which can
severely reduce the performance of parallel applications [27, 67, 89]. Therefore, we have fol-
lowed the goal to incur minimal OS background activity.

In addition, compute clusters often employ distinct cluster interconnect networks because of
their performance characteristics and advanced features, which the virtualized Ethernet of
general-purpose clouds fails to provide. So, we have faced the challenge to incorporate the
management of cluster interconnects in cloud management. Further, multi-tenancy in HPC
clouds requires network isolation, and network resources must be shared in a way that fulfills
the quality of service (QoS) requirements of HPC applications.

In this work, we have presented a novel architecture for HPC clouds that provide virtual and
elastic HPC clusters. Our architecture comprises the three facets node virtualization, network
virtualization, and HPC cloud management. In this section, we summarize the main features of
our approach and conclude the results of our evaluation.

We addressed the issue of whether a commodity hypervisor, the kernel-based virtual machine
(KVM) on Linux, can be transformed to provide virtual nodes, virtual machines (VMs) in-
tended for HPC workloads, that are appropriate for our architecture (in Section 3.2 on page 20).
We explored the state of the art in virtualized InfiniBand access and found vendor-supported
SR-IOV drivers the best choice (these drivers will be released a few weeks after the finish of
this work).

We have examined the influence of various Linux kernel configurations on OS noise and ap-
plication performance in virtual environments. We found that the default configuration, with
a reduced timer tick frequency of 100 Hz results in an acceptable virtualization overhead of
typically less than 4 % (with a maximum of 10 % only in a single benchmark configuration).
Disabling swapping support can provide a slight advantage. A strict reduction of the features
compiled into the Linux kernel to a minimum has shown adverse effects on performance, how-
ever. Using such a kernel as the host OS has led to significantly higher virtualization overheads
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than with the other examined configurations (in some configurations by almost an order of
magnitude).

Regarding OS noise, the examined configurations miss the requirements commonly posed by
literature or stated in an exemplary request for proposals (RFP) for a supercomputer. Tsafrir
and associates state that OS noise should not exceed the order of 10−5 to avoid application
performance degradations in clusters with thousands of nodes [89]. The ASC Sequoia RFP [9]
demands for a scaled OS noise of < 10−6. Yet, our results indicate scaled noise means in the
range of 10−4 to 10−2. These results show, that Linux is no preferable choice for large clusters
with thousands of nodes. Based on our measurements of virtualization overhead, however,
we can nevertheless conclude that KVM and Linux present an appropriate virtualization layer
with support for InfiniBand virtualization for small- to medium-sized HPC workloads (most
real-world parallel compute jobs employ only up to 128 processes [40], anyway).

We suggest to dedicate physical CPU cores to logical CPU cores for HPC workload. We have
shown by experimentation that the alternative policy, timesharing, can cause disproportionately
severe reductions of the performance of HPC applications. Therefore, omitting consolidation
of several logical CPUs, but dedicating physical CPU cores is a reasonable choice. As an alter-
native, we propose to run low-priority VMs with non-HPC background workloads to increase
CPU utilization. We found that existing Linux scheduling policies can be employed for this
purpose: In our experiments, fully loaded background VMs caused only minimal performance
degradations for CPU-intensive HPC applications. Memory-intensive workloads, however, can
be impaired by low-priority background VMs running on different CPU cores. This effect
demonstrates that OS scheduling policies have no influence on the arbitration of hardware re-
sources, such as shared memory buses.

Concerning the second aspect of our architecture, we provided an extensive concept for Infini-
Band network virtualization that provides each user with the impression of exclusive access to
a dedicated physical network. A user can apply a custom routing scheme, employ recursive
isolation in his share of the network, and assign custom node addresses (compare Section 3.3.1
on page 31). However, his configuration settings affect only his share of the network and can-
not impair other users. We have presented an in-depth approach on how we provide this virtual
network view to VMs using SR-IOV backend drivers.

We have run experiments on the enforcement of network isolation on actual InfiniBand network
hardware. We checked the practical availability of the feature that protects the configuration
of an InfiniBand network against illegitimate modifications (using protection keys for autho-
rization). We found that current versions of the opensm subnet manager, a commonly used
InfiniBand network management tool, fails to configure the protection mechanism correctly.
After identifying and fixing this problem, we verified the proper function of the protection
mechanism with several InfiniBand diagnostics tools that try to both modify or just query sev-
eral configuration settings. With our correction in place, the configuration of an InfiniBand
network, thus network and performance isolation, cannot be altered or even retrieved by users
of the HPC cloud, even if they has complete access to an InfiniBand host channel adapter (vir-
tualization adds an additional protection layer).

We have discussed the additional challenges that cluster networks bring up for the third facet
of our architecture — HPC cloud management. The peculiarities of cluster networks, such
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as the QoS mechanisms of InfiniBand, and performance requirements place constraints on the
distribution of virtual clusters in the physical network. To face these challenges, we introduced
extensions to existing cloud management frameworks: We incorporated network topology in-
formation into cloud management, so that network distance and the restrictions incurred by the
InfiniBand QoS mechanisms can be considered in VM placement.

As a proof of concept of our approach, we have developed a prototype that combines cloud and
cluster network management. Our prototype queries identifiers of the InfiniBand host channel
adapters of physical hosts on the one hand, and allows to group VMs into virtual clusters on
the other hand. Then, it combines both aspects and automatically generates a configuration of
InfiniBand network isolation between the defined virtual clusters. Despite the limitations of our
test cluster (no SR-IOV support), we have run a scenario with two distinct virtual clusters and
verified successfully that the automatically configured network isolation matches the defined
virtual clusters.

5.1 Future work

In this work, we have presented a novel architecture for HPC clouds and discussed its three
facets node virtualization, network virtualization, and HPC cloud management. We have evalu-
ated building blocks of this architecture and developed a prototype for automatic configuration
of network isolation. In this section, we conclude this work by pointing out some directly
related topics of future work.

Our observation of increased virtualization overhead with a minimal Linux kernel configuration
contradicts our intuitive guess that this kernel should provide the best performance. In further
studies, we will analyze the influence of different kernel configurations in greater detail to
determine the cause of the additional overhead.

We are currently trying to get SR-IOV support working in our test cluster (first tests failed
because of the BIOS compatibility issues we discussed). With this virtualization technique
running, we will extend our current prototype to include transparent network virtualization for
VMs, based on SR-IOV, as introduced in Section 3.3.1 on page 31. It will allow us to proof
our claim, that we can achieve such virtualization without overhead on network bandwidth or
latency.

This work leaves open the question, which QoS levels an HPC cloud can guarantee to a vir-
tual cluster. Early experiments indicate that latency, as experienced by a virtual cluster, can be
bound even on completely utilized network links. However, these experiments are not yet fin-
ished and therefore have not been included in this work. In addition, complex network topolo-
gies raise the question how to derive performance guarantees for large, real-life networks from
measurements in small test networks (comprising a single switch) — literature already provides
performance models for InfiniBand networks, and we expect that they can be employed for this
purpose.

Our current prototype is based on the OpenNebula cloud management framework [65, 84].
However, we will evaluate the nimbus toolkit [47, 70] as a potential alternative. Both frame-
works have a similar architecture that is designed with extensibility in mind. However, the
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nimbus toolkit has built-in support for virtual clusters and provides a more flexible contextual-
ization mechanism.
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