

Hardware-Assisted Virtual Memory Management

Improving page replacement and migration with on-line memory access information Raphael Neider and Frank Bellosa

1. Motivation cold page D cold page D hot page C very cold area cold page B warm area hot page C cold page B very hot area warm area physically indexed, physically indexed, physically tagged physically tagged hot page A last level cache hot page A last level cache physical memory physical memory

- Operating systems with virtual memory support are common
- Page placement (and migration) policy required
- Aware of caches, NUMA, memory technologies
- Page replacement policy required
- Optimal, least frequently used (LFU), least recently used (LRU)
- Only referenced and dirty bits available
 - No access frequency or count → no LFU
 - No time of last access → no LRU
 - No type of use (read-only/-mostly vs. write-often)
 - No data on physical memory accesses
- Memory traces for off-line analysis desired
 - Only available from simulations → short time frame
- Thesis
 - More information on memory usage helps virtual memory management perform better!

2. Requirements

- Support variety of policies
 - → Record timestamps, reads, and writes
- Tracing every memory access is too costly
- → Find shortcuts
- Cache hits are irrelevant
 - → Monitor activity after caches / at memory controller
- 100 % accuracy is not required
 - → "Batch" memory access information
 - → Access records per page are (usually) sufficient
- Live feedback to OS and software is required
 - → Provide efficient interface
- Address ranges and granularities should be configurable
 - → Allow different policies per memory technology
 - → Allow fine-grained examination of cache line utilization

3. Memory Profiling Unit (MPU)

- Record timestamp of first and last access per page
- Record number of reads and writes per page
- Keep *n* such records in associative memory (e.g., 16 ways)
- Replace entries via FIFO
- Write oldest entry to log on removal
 - → Data in the log will never be too old
- Scan/consolidate/write-back log in software

4. Hardware-Assisted Candidate Selection

- Hardware remembers m (e.g., 4) best candidates
 - Candidates are the pages with
 - smallest timestamp (LRU)
 - least accesses (LFU)
 - most accesses (migration)
 - Remember largest entries on updates
 - Requires aging policy to prevent overflows
 - Search smallest entries on
 - update of largest remembered entry
 - reset of other records
- One unit per physical memory region (memory technology, NUMA node)
- One unit to record misses per "cache page color"
- → Place new data in uncontended cache areas
- Migrate heavily used pages from contended areas

"best" candidate 2nd candidate 3rd candidate 4th candidate 4th candidate "continuously" updated sorted list

5. First Results of an FPGA-Based Prototype

- "Real" hardware is inaccessible
- Implemented on the OpenProcessor platform
 - SoC on FPGA devel. board
 - RISC CPU @ 50 MHz
 - 64 MiB DDR SDRAM
- Effectiveness of MPU ways

 35
 30
 30
 25
 10
 20
 15
 0
 2 4 6 8 10 12 14

 Index of MPU ways
- > 98 % hit rate with 16 MPU ways
- Median candidate selection cost
- 2-handed clock: 13 770 μs
- Hardware LRU: 211 μs
- Up to 90 % less swap-ins

