
System Architecture Group
Department of Informatics

http://os.ibds.kit.edu/

Hardware-Assisted Virtual Memory Management
Improving page replacement and migration with on-line memory access information

Raphael Neider and Frank Bellosa

KIT – University of the State of Baden-Wuerttemberg and
National Laboratory of the Helmholtz Association www.kit.edu

1. Motivation

very hot area

very cold area

warm area

warm area

hot page A

cold page B

hot page C

cold page D cold page D

hot page C

cold page B

hot page A

physically indexed,
physically tagged
last level cache

physical memory physical memory

physically indexed,
physically tagged
last level cache

Operating systems with virtual memory support are common

Page placement (and migration) policy required

Aware of caches, NUMA, memory technologies

Page replacement policy required

Optimal, least frequently used (LFU), least recently used (LRU)

Only referenced and dirty bits available

No access frequency or count Ü no LFU
No time of last access Ü no LRU
No type of use (read-only/-mostly vs. write-often)
No data on physical memory accesses

Memory traces for off-line analysis desired

Only available from simulations Ü short time frame

Thesis

More information on memory usage helps virtual memory management
perform better!

2. Requirements

Support variety of policies
Ü Record timestamps, reads, and writes

Tracing every memory access is too costly
Ü Find shortcuts

Cache hits are irrelevant
Ü Monitor activity after caches / at memory controller

100 % accuracy is not required
Ü “Batch” memory access information
Ü Access records per page are (usually) sufficient

Live feedback to OS and software is required
Ü Provide efficient interface

Address ranges and granularities should be configurable
Ü Allow different policies per memory technology
Ü Allow fine-grained examination of cache line utilization

3. Memory Profiling Unit (MPU)

first access last access number of reads number of writesvirtual address=

first access last access number of reads number of writesvirtual address=

first access last access number of reads number of writesvirtual address=

first access last access number of reads number of writesvirtual address=

bus address current time current time 1 or 0 0 or 1

mask&

append to in-memory log
or

update array of records per monitored region

shift register, shift on address miss updated on address hit
updated on address hit on read
updated on address hit on write

accessible at runtime
updated on first access

Record timestamp of first and last access per page

Record number of reads and writes per page

Keep n such records in associative memory (e.g., 16 ways)

Replace entries via FIFO

Write oldest entry to log on removal
Ü Data in the log will never be too old

Scan/consolidate/write-back log in software

4. Hardware-Assisted Candidate Selection

Hardware remembers m (e.g., 4) best candidates

Candidates are the pages with
smallest timestamp (LRU)
least accesses (LFU)
most accesses (migration)

Remember largest entries on updates
Requires aging policy to prevent overflows

Search smallest entries on
update of largest remembered entry
reset of other records

One unit per physical memory region
(memory technology, NUMA node)

One unit to record misses per “cache page color”

Ü Place new data in uncontended cache areas
Ü Migrate heavily used pages from contended areas

array of raw
timestamps or

access counters
per physical

page

"best" candidate

4th candidate

2nd candidate

3rd candidate

"continuously" updated
sorted list

5. First Results of an FPGA-Based Prototype

“Real” hardware is inaccessible

Implemented on the
OPENPROCESSOR platform

SoC on FPGA devel. board
RISC CPU @ 50 MHz
64 MiB DDR SDRAM 0

 5

 10

 15

 20

 25

 30

 35

 0 2 4 6 8 10 12 14

H
it

ra
te

 [%
 o

f a
ll

ac
ce

ss
es

]

Index of MPU way

Effectiveness of MPU ways

typeset (init)
typeset (small)
typeset (large)

qsort (small)
patricia (small)

> 98 % hit rate with 16 MPU ways

Median candidate selection cost

2-handed clock: 13 770 µs

Hardware LRU: 211 µs

Up to 90 % less swap-ins
 0

 10
 20
 30
 40
 50
 60
 70
 80
 90

 100

6 MiB 8 MiBN
um

be
r

of
 s

w
ap

-in
s

us
in

g
LR

U
[%

 o
f 2

-h
an

de
d

cl
oc

k]

Total memory available to the benchmark

Performance of LRU relative to 2-handed clock

bzip
patricia
typeset

