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Deutsche Zusammenfassung

Um die Integrität sowie Stabilität in einem Computersystem zu gewähr-
leisten, bedienen sich moderne Betriebsysteme wie Windows oder Linux
hardwaregestützter Privilegebenen, die es ermöglichen, integrale System-
und Hardwarekomponenten vor unkontrolliertem Zugriff durch Anwendun-
gen zu schützen. Zum Ausführen privilegierter Operationen (wie das Er-
stellen einer Datei) ist die Anwendung dabei auf definierte Systemdienste
angewiesen, die über eine zentrale Betriebsystemschnittstelle zur Verfü-
gung gestellt werden. Obwohl es gelungen ist die Effizienz diese Schnitt-
stelle mit der Einführung eigens konzipierter Prozessorinstruktionen deut-
lich zu verbessern, sind die Kosten für das Aufrufen von Systemdiensten
auch heute noch beträchtlich. Dies betrifft insbesondere systemnahe An-
wendungen, die auf rege Interaktion mit dem Betriebsystem angewiesen
sind. Die vorliegende Studienarbeit beschäftigt sich deshalb mit Verfahren
zur Verringerung dieser Kosten und stellt in diesem Zuge einen neuen Me-
chanismus vor, der gezielt auf Anwendung mit hoher interner Parallelität
(wie z.B. Server Anwendungen) ausgerichtet ist: Cluster Calls.

Ein bekanntes Verfahren zur Reduktion des anfragerelativen Overheads
ist das sog. System Call Batching, bei dem mehrere Systemanfragen ge-
sammelt und in einem einzigen Aufruf gemeinsam an das Betriebsystem
abgegeben werden. Dieses Verfahren bleibt jedoch nicht ohne Nachteile
für die Anwendung. So summiert sich beispielsweise die Ausführungszeit
der Systemdienste und kann zu unerwünschten Latenzen führen. Dieser
und weitere Umstände machen bisherige Implementierungen insbesonde-
re für Server Anwendungen wenig attraktiv.

Cluster Calls integrieren eine fortgeschrittene Form des System Call Bat-
chings und kombinieren diese mit einem hybriden Threadmodell, um den
Nachteilen des reinen Batchings entgegenzuwirken. Dabei fügt sich das
Threadmodell leicht in häufig genutzte Server Architekturen und ermög-
licht dadurch ein effizientes Sammeln von Systemaufrufen. Die wichtigste
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vi DEUTSCHE ZUSAMMENFASSUNG

Verbesserung liegt jedoch in der parallelen und asynchronen Ausführung
der Systemaufrufe durch Betriebsystemthreads, die der Anwendung ein
gleichzeitiges Voranschreiten erlauben. Das Verfahren setzt dabei auf eine
frühe Integration in die Zielanwendung und bietet vielfältige Möglichkeiten
zur anwendungsspezifischen Konfiguration. Es erweitert in diesem Zuge
die Möglichkeiten der Systemschnittestelle und ermöglicht so beispiels-
weise die Spezialisierung von einzelnen Prozessorkernen auf definierte
Systemdienste sowie die Priorisierung bei der Systemdienstausführung.
Zur bidirektionalen Kommunikation zwischen Betriebsystem und Anwen-
dung werden geteilte Speicherbereiche benutzt.

Eine Evaluation des Verfahrens hat gezeigt, dass Cluster Calls bis zu 58%
des anfragerelativen Overheads für Systemdienste einsparen können. Um
darüberhinaus die Anwendbarkeit von Cluster Calls in realitätsnahen An-
wendungen zu bewerten, wurde im Rahmen dieser Arbeit das Verfahren in
einen Web Server integriert und mit konventionellen Server Architekturen
verglichen. Dabei hat sich gezeigt, dass Cluster Calls ein konkurrenzfähi-
ges Threadmodell darstellen und eine gute Alternative zu Modellen basie-
rend auf synchroner I/O bieten. In Tests konnte das Model einen vergleich-
baren Throughput erreichen und zeigte gute Charateristiken bzgl. Latenz
und CPU Nutzung. Durch den Einsatz von Cluster calls konnten bei der
Verarbeitung von Webanfragen über 99% der Systemaufrufe vermieden
werden. Es wurden jedoch auch einige Schwächen in der aktuellen Imple-
mentierung aufgedeckt, die ebenso in dieser Arbeit diskutiert werden.
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Chapter 1

Introduction

In this work a new approach to the traditional system call interface is
presented that aims at reducing the per-system call overhead caused by
transitions from user-mode to kernel-mode in modern operating systems.
The proposed solution presents an advanced form of system call aggrega-
tion and combines this mechanism with a hybrid thread model to improve
batching efficiency. The design is specifically targeted at applications with
a high natural degree of internal parallelism such as server applications.

1.1 Problem Definition

Although the overhead for system calls was dramatically reduced with the
introduction of the fast system call mechanism in modern processors, the
remaining overhead is still considerably high. From an application’s per-
spective every CPU cycle spend on the system call interface is wasted
and cannot be used for application specific tasks. Especially software that
heavily interacts with the underlying operating system (e.g. I/O intensive
applications) suffers from system call overhead.

System call batching is an effective way to reduce this overhead and has
been used in several variants in the past. Nevertheless, plain system call
batching has some disadvantages like an increased total completion time
that make this technique less attractive for server type applications. Fur-
thermore, most implementations are not available for the Microsoft Win-
dows NT series of operating systems which dominate today’s desktop mar-
ket and hold a considerable share in service-oriented server installations.
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2 CHAPTER 1. INTRODUCTION

1.2 Objectives

The main objective of this work is to reduce the per-system call overhead
by decreasing the number of kernel boundary crossings through an ad-
vanced form of system call aggregation. The goal is to address the dis-
advantages of current implementations and offer a solution that is cus-
tomizable, flexible, easy to use and that maintains full compatibility with
the existing system call interface. Furthermore, the work aims at providing
an implementation for Microsoft Windows that in principle allows to use the
mechanism in real world applications.

1.3 Methodology

To show that the proposed solution can enhance the performance of the
system call interface several benchmarks are conducted. The evaluation
examines the overhead of the new approach and compares it to that of the
existing interface. Because the proposed solution offers greater flexibility
than the traditional system call interface, the performance characteristics
of different configuration scenarios are also tested and compared.

In addition, the work examines the applicability of the new design through
the evaluation of an examplary real world server application that integrates
the new approach. The benchmarks provide a detailed performance com-
parison with alternative conventional server architectures.

1.4 Contribution

The contribution of this work is an analysis of the performance of the Win-
dows system call interface and the introduction of a new thread model
for server type applications that can offer new extensive possiblities for
customization and application-centric optimization. While enhancing the
per-system call overhead of the traditional system call interface, the new
approach also increases the flexibility of one of the most integral interfaces
of modern operating systems that has not undergone any fundamental
changes in the recent past. The new approach also for the first time allows
to decouple the invocation and the execution of general system calls under
the Windows operating system.
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1.5 Thesis Outline

In chapter 2 the work provides background information about related tech-
nologies including threading models and Windows specific concepts and
terms. In particular, it describes the current design of the system call in-
terface in modern operating systems. Chapter 3 takes a look at the perfor-
mance of the traditional system call interface and discusses the optimiza-
tion potential for different types of applications. The proposed solution of
this work is then presented in chapter 4, followed by a description of an
implementation for the Windows Research Kernel in chapter 5. The next
chapter 6 deals with a detailed evaluation of the mechanism and its imple-
mentation. The thesis concludes with chapter 7, where the most important
points are summarized. This chapter also gives an overview of possible
future work related to the proposed solution.
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Chapter 2

Background

This chapter first provides background information about the design of the
system call interface in modern operating systems. Afterwards, an intro-
duction to common threading models is given. The chapter ends with an
explaination of several concepts and terms specific to Microsoft Windows.

2.1 Traditional System Call Interface

In most modern operating systems (e.g. Microsoft Windows and Linux)
hardware supported privilege levels are used to establish a security bound-
ary between applications and integral parts of the underlying operating
system. According to this principle, applications run on a restricted level
called user-mode while the operating system’s kernel and its device drivers
operate with full privileges in kernel-mode. If an application wants to per-
form a privileged operation (e.g. create a file), it has to request the ser-
vice from the operating system. The means to do this are offered by the
operating system in the form of system calls which the application can in-
voke. A system call performs a controlled transition from user-mode to
kernel-mode, executes the corresponding system level code and returns
to user-mode to deliver the system service’s result. The application can
then continue its execution.

Since privilege levels are enforced by the hardware, hardware specific in-
structions must be used to accomplish the mode transition. Prior to the
Pentium II processor the most common method on the Intel x86 architec-
ture was to use a specific software interrupt to cause the CPU to execute
a generic system service handler in kernel-mode. Under the Windows NT
series of operating systems entry 0x2E (in hexadecimal notation) in the
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6 CHAPTER 2. BACKGROUND

interrupt vector table is used for that purpose.

Windows also assigns each system call a unique number which it internally
maps to the according system service function. An application’s thread
can now execute a system service by storing the number of the system
service in question as well as a pointer to the arguments in predefined
CPU registers and invoke the mentioned software interrupt (using the int

0x2E instruction). The CPU then performs a number of privilege checks,
saves part of the execution context on the thread’s stack and eventually
executes the system service handler. Under Windows this is the kernel’s
system service dispatcher function (KiSystemService). The function’s main
purpose is to translate the system call number (which it received via the
CPU registers) into a function address by using a special mapping table,
copy any arguments from the thread’s user-mode stack to its kernel-mode
stack and finally call the system service function.

When the function returns, the system service dispatcher stores the result
in a predefined CPU register and initiates a transition from kernel-mode
back to user-mode. The transition itself is performed by a special return
instruction (iret) that switches the privilege level and restores the execu-
tion state, which was previously saved by the software interrupt instruction
[28, 3, 7].

A disadvantage of this mechanism is the overhead that is introduced due
to the use of software interrupts. For that reason, in the Pentium II proces-
sors Intel introduced a fast call mechanism for system procedures which
comprises two new instructions: sysenter and sysexit. AMD indepen-
dently developed a similar mechanism, which in essence does the same
thing. The corresponding instructions introduced by AMD are syscall and
sysret [1]. For simplicity reasons, this work focuses on the Intel platform.

While a software interrupt is a very generic method to do system calls, the
fast system call mechanism is specifically designed to implement system
calls and reduce their overhead. The decrease in overhead is achieved
by forcing the processor into predefined privilege levels which reduces the
number of privilege checks ordinarily required to perform a far call to an-
other privilege level. Furthermore, the target context state is predefined
in model specific registers (MSRs) and general-purpose registers which
eliminates all memory accesses except when fetching the target code (the
system service handler). The basic design of system call numbers and a
generic system service dispatcher function needs no modification in order
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to use fast system calls.

Windows XP was the first version of Windows to use the new instructions.
Compared to Windows 2000, which uses the interrupt based system call
interface, system calls in Windows XP are 266% faster [4, 8].

Although the overhead for system calls was dramatically reduced with the
introduction of the fast system call mechanism, the remaining overhead is
still very high (see chapter 3.1). In the past, several attempts have been
made to further decrease the per-system call cost.

2.1.1 Multi-Calls

Multi-Calls aim at reducing the per-system call overhead with the help of
system call batching. The batching itself is done by an algorithm which the
authors call system call clustering. The algorithm is a profile-directed ap-
proach to optimize an application’s system call behavior. It uses execution
profiles to identify groups of related system calls that can be batched into
a single system call. Furthermore, correctness preserving compiler trans-
formations such as code motion, function inlining and loop unrolling are
performed to optimize the number and size of system call batches. This
way, the amount of kernel boundary crossings is reduced which in turn
reduces the per-system call overhead. The execution of the batched sys-
tem calls is done with the help of a new system call—the multi-call—which
implements the combined functionality. On invocation a multi-call serially
executes all system calls of a given batch and returns their results. Exper-
imental evaluation showed for the mpeg-play video software decoder an
average 25% improvement in frame rate, 20% reduction in execution time,
and 15% reduction in the number of cpu cycles [27].

2.1.2 Graphics Device Interface (GDI)

The graphics device interface (GDI) in Windows also uses batching to re-
duce the number of kernel boundary crossings. With the introduction of
Windows NT 4.0 major parts of the Windows subsystem (including the
graphics and windowing subsystems) moved into a kernel mode driver
(win32k.sys). One of the reasons that lead to this drastic design decision
were performance considerations. Both the graphics and windowing sub-
systems have a very high rate of interaction with hardware through video
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drivers as well as mouse and keyboard drivers.

One the other hand, (graphical) Windows applications heavily use the
graphics and windowing subsystem to present their user interface. In the
new design this increases the overall system call rate. Although Windows
already batched GDI calls prior to Windows NT 4.0, from a system call
overhead perspective, batching in the new design plays an even more im-
portant role. In that sense, graphics calls made by Win32 applications are
not immediately executed by the graphics subsystem and drawn on the
output device but are postponed until a GDI batching queue is filled [15].

2.1.3 Singularity

Singularity is a microkernel based experimental operating system by Mi-
crosoft Research. Most of the conventional operating systems (e.g. Win-
dows, Linux, MacOS) are based on architectures and development tools of
the late 1960’s and early 1970’s. Singularity started as a research project
in 2003 with a focus on re-examining the design decisions and shortcom-
ings of existing systems and software stacks.

One key architectural feature that was developed in this course are soft-
ware isolated processes (SIPs). SIPs are much like contemporary pro-
cesses in today’s operating systems, except that they use the type and
memory safety of modern programming languages (i.e. C# and others) to
achieve process isolation. For that reason, Singularity does not depend
on many of the hardware based protection features that are in use by cur-
rent operating systems. This includes the boundary between user-mode
and kernel-mode. Consequently, the overhead for system calls is greatly
reduced as mode transitions are completely avoided [10].

2.2 Thread Models

The simplest implementation of a threading model is known as kernel-level
threading. In this model a 1:1 mapping between one user-level thread and
one kernel-level thread is used. The only scheduling entity is offered by
the operating systems kernel and it is the kernel’s scheduler that is solely
responsible for all scheduling decisions.
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User-level threading (N:1) extends this idea with scheduling entities that
are completely managed and scheduled by user-mode code. Typically, the
operating system has no knowledge of these types of threads. An advan-
tage of user-level threads is that managing and dispatching them does not
involve the kernel and thereby avoids costly kernel boundary crossings.
Furthermore, they allow the application to implement a custom schedul-
ing algorithm which is optimized for the application’s needs. On the other
hand, user-level threads execute in the context of a kernel-level thread
and therefore mostly suffer from poor system integration. Blocking system
calls for example block the hosting kernel-level thread and do not allow to
switch to another user-level thread instead. This can lead to unnecessary
idle periods. In addition, multiple kernel-level threads are needed to exploit
the parallelism of SMP machines.

Hybrid thread models (N:M) try to combine the efficiency of user-level
threads with the functionality of kernel-level threads. In a hybrid model N
user-level threads are mapped to M kernel-level threads. In practice, this
offers a higher degree of flexibility. Blocking system calls for example do
not necessarily imply a blocking of ready user-level threads. On the other
hand, hybrid models often suffer from high complexity. Furthermore, the
user-level scheduler and the kernel-level scheduler need be compatible to
allow the necessary cooperation.

2.2.1 Scheduler Activations

With scheduler activations the operating system kernel provides each user-
level threading system with its own virtual multiprocessor and uses upcalls
to the user-level scheduler to coordinate scheduling decisions. Scheduler
activations are very similar to traditional threads. They provide the con-
text in which user-level threads can run. However, the kernel manages
these threads in terms of processors and knows about the hosted user-
level thread [2].

2.2.2 First-Class User-Level Threads

First-class user-level threads are an implementation of a hybrid-thread
model that uses shared data structures between user-mode schedulers
and the kernel to enable the necessary cooperation. Furthermore, virtual
processors and software interrupts are employed by the kernel to inform
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user-mode schedulers about important events such as a blocking system
call or an elapsed time slice in preemptive user-level threading [14].

2.2.3 User-Mode Scheduling (UMS)

User-mode scheduling (UMS) is a thread model present in the 64 bit ver-
sions of Windows 7. It aims at combining the flexibility and the perfor-
mance benefits of user-level threading with the functionality of kernel-level
threading but without introducing the full complexity of hybrid threading.
Windows natively uses a 1:1 mapping between user-level threads and
kernel-level threads. UMS maintains this model but allows a user-mode
scheduler to do cooperative user-level thread switching without the ker-
nel. The kernel-level thread switch is delayed until the user-level thread
does a system call. Since every user-level thread has a corresponding
kernel-level thread (because of the 1:1 mapping), the kernel can identify
the respective kernel-level thread and do a switch. From a system’s per-
spective, this restores the standard thread model used in previous versions
of Windows. If the thread blocks in the course of the system call, the kernel
notifies the user-level scheduler and therefore allows it to execute another
(user-level) thread [24].

2.2.4 Exception-Less System Calls

Exception-less system calls use a similar mechnism as proposed in this
work. They use a hybrid thread model in conjunction with system call
batching to reduce kernel boundary crossings. In contrast to this work
exception-less system calls are targeted at the Linux operating system
and use a POSIX-complaint replacement for the standard threading library
to transparently change the way an application requests system services
[31].

2.3 Windows Concepts and Terms

The mechanisms proposed in this work have been implemented on the
Microsoft Windows operating system. Some of the concepts and terms
specific to this platform are briefly described in the following sections. Later
chapters will then refer to these concepts. To not go beyond the scope,
only those parts of the underlying technologies are introduced that are of
interest in the context of the work at hand. The reader can refer to the
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corresponding references to get more information, especially on APIs and
their usage. It should be noted, that most of the information presented in
the next sections is taken from [29], [28] and [11]. Further references are
included where appropriate.

2.3.1 Basic Architecture

All versions of Windows that are most commonly used today (XP/2003,
Vista, 7) [30] are based on the system architecture which was introduced
by Microsoft with Windows NT 3.1 in 1993. One of the original design goals
of the Windows NT series of operating systems was to achieve compatibil-
ity across different versions of Windows and interoperability with other sys-
tems, such as UNIX, OS/2 and NetWare. The solution to this requirement
was the introduction of the Windows Native API and so called environment
subsystems which lie on top it. Figure 2.1 illustrates this layered design.

As within every modern operating system, the kernel and device drivers
build the foundation upon which applications can run. Since the NT kernel
is based on a hybrid design, most of these components reside in kernel
mode to reduce performance overhead for message passing. The Micro-
kernel (Ke) component is responsible for thread and interrupt dispatching,
synchronization as well as trap and exception handling. The Executive
(Ex) extends this functionality and comprises facilities for process and vir-
tual memory management, I/O, security and many more.

The Native API sits on top of the kernel and is implemented in the NT Layer
DLL (ntdll.dll). This dynamic link library (DLL) is mapped into every pro-
cess’s address space at runtime and functions as the interface between
applications in user-mode and system services in kernel-mode. Most of
the functions exported by ntdll.dll directly map to corresponding system
services and call these via a traditional system call interface (chapter 2.1).
However, in 32 bit versions of Windows the kernel dynamically chooses a
system call trampoline at startup to accommodate for older hardware that
relies on the interrupt (int 0x2E) based mechanism.

The environment subsystems build the last layer between the applications
and the operating system. A subsystem consists of a subsystem process
which is responsible for the subsystem’s initialization and the management
of its resources and one or more DLLs that form the environment spe-
cific API. The subsystem components then use the Native API and/or API
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Figure 2.1: Windows NT Architecture

sets of other subsystems to implement their own functionality. As of today,
Microsoft only supports the Windows subsystem and a POSIX complaint
subsystem called Interix which is officially distributed under the name Sub-
system for UNIX-based Applications (SUA) [32, 33].

Finally, every application that runs on Windows defines the subsystem
(and thereby the corresponding API) against it was linked with the help of
a special field in the Portable Executable (PE) header of the application’s
executable. Because the Native API is (although possible) not intended to
be used by application developers, most of its functionality is not publicly
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documented by Microsoft. Instead developers have to target one of the
available subsystems and program against their APIs. In most cases this
is the Windows subsystem and the corresponding Win32 API.

A typical system service request (e.g. to create a file on disk) will there-
fore start in the application with a call to the subsystem’s API (CreateFile),
travel through the Native API (NtCreateFile) and ultimately reach the cor-
responding system service handler in the kernel.

2.3.2 Windows Objects

One key concept of Windows is the use of objects to uniformly represent
system resources. The kernel component that is responsible for the man-
agement of these objects is the Object Manager (Ob) which is part of the
kernel’s Executive.

Like in object-oriented programming, each object is an instance of a stat-
ically defined object type. This type defines attributes that are common
to all objects of the same type. Examples are optional event handlers
(open, close, delete, parse...), security mappings, quota charges, memory
allocation constraints and a custom object body. At system startup kernel
components register their object types with the Object Manager which from
then on allows to instanciate them. Windows 7 implements a total of 42 ob-
ject types. Commonly used objects include Process, Thread and File ob-
jects, synchronization objects like Event, Mutant (Mutex) and Semaphore
as well as Section objects for shared memory and memory mapped files
[23]. Since the NT kernel follows a hybrid design, some of the object types
are based on simpler objects which the Microkernel implements. A thread
object for example wraps the Microkernel’s thread structure (the thread
control block (TCB)) and extends it with further attributes (e.g a unique
thread id).

Object instances are allocated in kernel memory pools and cannot be di-
rectly modified by user mode code. Instead applications reference objects
with the help of handles and use a defined set of kernel services to do the
work. The Object Manager then uses a process local handle table (there is
also a system handle table for drivers) to translate the handles into mem-
ory pointers [18].

A process can get a handle to an object by creating a new object, inherit-
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ing a handle from the parent process, duplicating a handle or by opening
an object of a different process. The latter however is only possible with
named objects. A process can choose to name an object during its cre-
ation and thereby allow other processes to identify it. Named objects are
accessible through the system global Object Manager Namespace which
is similar to a hierarchical file system with a root, directories, symbolic links
and objects as files. In Windows Vista and later, applications are also able
to create private object namespaces [20, 21].

To limit object access and the operations that can be performed with a
corresponding handle, the Object Manager uses the Executive’s Security
Reference Monitor (SRM) to enforce a combination of token-based discre-
tionary access control (DAC) and mandatory access control (MAC). Both
are based on access control lists (ACLs) with a mixture of generic and ob-
ject type specific access rights [22, 16].

If a process no longer needs access to an object, it simply closes the cor-
responding handle. Because the Object Manager maintains a reference
count for each object, it automatically releases any resources bound to it
as soon as the last reference is closed.

Another important property of most Windows objects is the fact that they
are waitable. If the object body contains a dispatcher header, a thread can
do a blocking wait on the object (provided it has the access rights to do
so). Each waitable object in turn can be in two distinct states: signaled or
not signaled. If an object is in the not signaled state and a thread attempts
to wait on it, the dispatcher blocks the thread until the object becomes
signaled and the wait can be satisfied. Although the basic mechanism of
the signal state is equal for all object types, the meaning of it differs. A
mutant object for example works as a simple mutex by setting the signaled
state to not signaled, when a thread acquires the mutant and setting it to
signaled, when the thread releases the mutant. Other threads which try to
acquire the object during that time will automatically block until the mutant
is released. Another example are process and thread objects that get sig-
naled on termination and thereby allow a thread to wait for the termination
of processes and threads. The current implementation allows a thread to
wait on up to 64 objects at the same time. In addition, when a thread waits
on multiple objects it can choose, if its wait should be satisfied as soon as
any of the objects get signaled or if all objects need to be signaled [25].
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2.3.3 I/O Completion Ports

The last section of this work dealt with the concept of Windows objects and
mentioned a couple of object types. An I/O completion port (IOCP) is an-
other object and the preferred way of receiving results from asynchronous
I/O in Windows-based server type applications [19].

To do asynchronous I/O under Windows, a thread has to pass a special
flag to the corresponding API when it creates or opens a file. The resulting
file handle is then enabled for asynchronous I/O or overlapped I/O as it is
called in Windows. To issue an overlapped operation on the correspond-
ing file handle, a thread can use the standard I/O operations, but must
accompany the call with an overlapped context. The context identifies the
operation and enables a thread to request its status.

There are also multiple ways to receive an I/O completion notification. One
way is to do a wait on the according file handle whose file object is signaled
on I/O completion or to create an event object and pass it along with the
overlapped context. When the I/O operation finishes, the kernel signals
the event. Another way of receiving I/O completion notifications is called
Alertable I/O which makes use of asynchronous procedure calls (APC)
and thereby allows a thread to execute callback functions on I/O comple-
tion. A problem of all these notification mechanisms is that they are not
suitable for high levels of concurrent I/O seen for example in server ap-
plications. The overhead of creating an event object (even if they can be
reused for subsequent operations) or queueing an APC for every I/O op-
eration is very high. I/O completion ports aid in reducing this overhead.

In essence, an I/O completion port is similar to a multi producer, multi con-
sumer, unbounded blocking queue for I/O completions. The concept is to
have threads issuing asynchronous I/O operations and then waiting on the
port object to receive I/O completion notifications. Every thread that waits
on a port object is—from an operating systems standpoint—expected to
be solely in the loop of producing work (indirectly via asynchronous I/O)
and consuming work (I/O completions). In that sense, producers and con-
sumers are reflected by the same threads.

After a thread received a completion (along with the corresponding over-
lapped context), it can use the overlapped structure to identify the context
under which the I/O operation was issued (e.g. a HTTP GET request in a
web server) and make appropriate progress. This may include issuing fur-
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ther I/O which will eventually lead to new completion notifications. In order
to receive notifications, an application must associate any (overlapped) file
handle for whose I/O operations it wants to receive notifications with the
I/O completion port.

Typically, multiple worker threads (forming a thread pool) wait on the same
port object. This allows one thread to issue an operation and another
thread to process the completion. This way, if a thread which originally
started an I/O operation is (due to other notifications) busy at the time the
completion is queued, another thread can react to this event. This effec-
tively decoupls the work from the individual threads and distributs it over
the thread pool and thereby potentially over multiple CPUs as necessary.

As already mentioned, the concept expects a worker thread to only pro-
duce and consume work in the context of a single port object. For that
reason, Windows internally attaches the thread to the port object, which
allows the kernel to throttle the number of concurrently running threads on
the same port. In practice, the default maximum concurrency is set to the
number of CPUs in the system to avoid CPU overloading and to maximize
throughput. If a thread which is attached to a port does a blocking system
call, another thread waiting on the same port is readied. Although, this can
lead to temporary oversubscription when the wait of the blocked thread is
satisfied, the concept is self regulatory. This is because, the thread will
block on the port as soon as it tries to receive new work and the number
of concurrently running threads exceeds the defined port limit.

2.3.4 Fibers

A fiber is a very lightweight and purely user-level managed unit of execu-
tion [17]. Microsoft added fibers to the operating system to make it easier
to port existing UNIX applications to Windows, which often use threading
libraries to schedule their own threads.

A fiber shares the address space with others fibers and threads in the
same process. Like a thread, each fiber has its own stack which allows
it to execute code. Since fibers are neither managed nor scheduled by
the Windows kernel, all related data structures reside in user mode and
are managed by the application with the help of the Win32 API. This way
context switching between fibers is especially fast, because the overhead
of kernel entrance and exit is avoided. Per-fiber data structures (about
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200 bytes) comprise the execution context (various CPU registers, includ-
ing stack pointer and instruction pointer), the top and bottom memory ad-
dresses of the fiber’s stack, the head of a structured exception-handling
chain and a user-defined start routine and context. By default, fibers do
not preserve the state of the floating point unit (FPU) and therefore do not
allow the use of floating point arithmetic. If an application needs floating
point support, it must specify a corresponding flag on fiber creation.

A fiber always runs in the context of the Windows thread, which sched-
uled it. A thread can execute multiple fibers, but only one fiber at a time.
Therefore, if an application wants to run several fibers at the same time
(e.g. to exploit the parallelism of SMP machines), it must create multiple
Windows threads to execute them. The Win32 API does not include any
form of fiber scheduler. Instead, fibers use co-operative multitasking and
manually yield to other fibers. For that reason, Windows does not offer any
fiber-aware synchronization mechanisms.

From an operating systems standpoint, a fiber always assumes the iden-
tity of the thread that scheduled it. In practice, this can lead to several
problems. Blocking system calls always block the executing thread and
do not allow to switch to another fiber instead. If a fiber exits, the whole
thread and all of its fibers exit. Problems can also arise, if thread-owned
kernel objects (like mutants) are used. Furthermore, fibers do not possess
a private thread environment block (TEB). Since the Win32 subsystem
extensively uses the TEB to store thread specific state information, appli-
cations must be particularly carefull when using fibers in conjunction with
the Win32 API. The last error number and the thread local storage (TLS)
are two examples of such thread specific data structures which are stored
in the TEB [9].

Because of the mentioned difficulties which are related to fibers, Microsoft
recommands against their usage. Instead, in Windows 7 Microsoft intro-
duced user-mode scheduling (UMS) as an alternative (see chapter 2.2.3
for more details) [24].
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Chapter 3

Analysis

In the following chapter the costs of the traditional system call interface are
evaluated and the optimization potential for different types of applications
is discussed. Subsequently, system call batching is presented as one way
to achieve better performance by reducing per-system call overhead. In
that course, several advantages and disadvantages of this technique are
illustrated.

3.1 System Call Cost

Although the cost of system calls was greatly reduced with the introduction
of the fast system call mechanism, a system call is still noticeably slower
than a normal procedure call. Two small experiments were made to verify
this statement.

The first experiment measured the number of CPU cycles needed to do a
system call on a fully patched 32 bit Windows Server 2003 Enterprise Edi-
tion (Service Pack 2) running the Windows Research Kernel (Build 3800).
The operating system was running on an Intel Core i7 920. For more in-
formation about the testing platform see section 6.2. The benchmark uses
the rdtsc (Read Time Stamp Counter) instruction to retrieve timing infor-
mation [5]. This instruction returns the value of a 64 bit hardware cycle
counter that is incremented with each clock tick. Before each read the
benchmark also executes the cpuid instruction to flush the CPU’s intruc-
tion pipeline and thereby guarantee that all prior instructions have finished.

To get a better overview of the costs, the benchmark measures the CPU
cycles needed to enter kernel-mode on the one hand and the number
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of cycles needed to switch back to user-mode on the other hand. In this
course a new system call (NtReadTimeStampCounter) was implemented. The
system call reads the time stamp counter and returns the low 32 bit of
the result with the help of the system call’s return/status value. The built-
in mechansim via NtQueryPerformanceCounter was not used in the experi-
ment, because the function is internally more complex (and therefore un-
precise in this test) to compensate for changing CPU cores and frequen-
cies between measurements. Instead the benchmark uses the thread’s
affinity mask and BIOS settings to guarantee the same contraints. Fur-
thermore, the benchmark executes with realtime priority (31) to minimize
the risk of preemption. The benchmark itself works by reading the time
stamp counter in user-mode immediately before and after the invocation
of NtReadTimeStampCounter (as well as within the system call as mentioned)
to compute the cycle counts in question via subtraction.

The second experiment measured the number of CPU cycles needed to
do a regular procedure call and a respective return with the help of the
commonly used call/ret instruction pair. The methodology is the same
as in the first experiment, except that a normal procedure in user-mode
was used instead of a system call.

The benchmark results are presented in table 3.1. The results of both
experiments were stabilized by taking the average out of 1000 runs. Fur-
thermore, the incurring measurement overhead (98 cycles) due to extra
instructions (e.g. cpuid) was subtracted.

Entry Exit Total
System Call 152 140 292
Procedure Call 2 3 5

Table 3.1: CPU cycles needed for system- and procedure calls. Procedure
calls are about 58x faster than system calls.

The benchmarks revealed that on the test system a normal procedure call
is about 58x faster than a system call. Although, the system call entry is
slightly slower than the exit, both operations are costly (especially when
compared to their procedure call counterparts).

Besides the direct cost of system calls, a significant indirect cost from the
application’s perspective is caused by the pollution of processor structures
during the execution of the system service itself. These structures include



3.2. SYSTEM CALL BATCHING 21

various data and instruction caches, translation look-aside buffers, branch
prediction tables and others. The user-mode instructions per cycle (IPC)
for Xalan (a benchmark from the SPEC CPU 2006 benchmark suite that
is known to invoke few system calls) for example degrades by up to 65%
when executing a pwrite (a Linux system call) every 1.000 to 2.000 in-
structions. Although the experiment was conducted under Linux, similar
results can be expected for Windows, because of the hardware-centric na-
ture of the experiment and the architectural similarities between the two
platforms[31].

The frequency in which system calls are executed by an application deter-
mines its responsivness to optimizations of the system call interface. An
interactive application like a simple text editing software (e.g. Microsoft
Notepad) will from an end-user experience standpoint most probably not
show any noticable performance improvements, because its system call
frequency is low. Most activity in these applications is triggered by the
direct interaction of the user and is therefore limited in its frequency. An
application that heavily interacts with the system and not with the user
has a better chance to show performance improvements, since the sys-
tem call frequency is naturally higher. System monitoring software (e.g.
a virus scanner), backup solutions and even simple programs like the file
copy tool copy and its derivatives (xcopy, robocopy) are examples for such
applications. A second group of applications that has a high chance of
showing performance improvements due to optimizations of the system
call interface are server applications (e.g. web servers). These types of
applicaitons invoke I/O system calls at a high frequency to gather data
from disk on the one hand (e.g. a web site and related content) and to
send the data over a network to the client on the other hand. For each of
these I/O operations a system call is needed. Even the very basic eval-
uation web server which was developed in the course of this work (see
section 5.5 for more details) does at minimum 7 system calls to serve a
single request. Production web servers like Apache however can sustain
more than 20.000 parallel connections [13]. This indicates that there is a
potential for performance improvements.

3.2 System Call Batching

System call batching is one way to reduce the per-system call cost by
batching multiple system calls and executing them together. This has two
positive effects. One the one hand, the number of kernel boundary cross-
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ings is reduced and on the other hand the increased locality (due to longer
execution times in user-mode and kernel-mode respectively) potentially in-
creases cache and TLB hit rates.

However, simple system call batching alone and especially the batched
execution have some disadvantages, too:

1. In order to do system call batching in the first place, an application
must be specifically designed with this mechanism in mind. This
in turn increases the application’s development complexity. Another
possibility to perform batching is to use compiler techniques to op-
timize the binary code for system call batching like it is done with
system call clustering in conjunction with multi-calls 2.1.1. This takes
aways the burden from the application developer but is however most
likely suboptimal compared to a specifically designed application.

2. System calls in the same batch need to be independent. They either
have to be completely unrelated to each other or the output of each
connected system call does not need any further processing through
the application before it can be passed as input for subsequent sys-
tem calls.

3. System calls are executed serially. Therefore, the completion times
for all system calls add up. This can be a problem with batching
mechanisms that are intransparent to the application like it is the
case with multi-calls. The batch for example may already include
several system calls that will cause long blocking periods (e.g due to
synchronous I/O). When the application then does a system call that
is under normal conditions expected to return quickly (e.g. NtClose to
close an object handle), the batching might cause bad performance
or even break functionality (timeouts in communications).

4. The latency between the system call invocation and the correspond-
ing result delivery increases. This is another consequence of the
serial execution. As it is the case with the total system call comple-
tion time, this can be especially problematic with intransparent batch-
ing mechanisms. The NtQueryPerformanceCounter system call which
reads the current value of the high performance counter is an exam-
ple. A greatly delayed execution is most probably not favourable in
that case. Another example is the request processing in server type
applications (e.g. a file server). If two requests from which one can
be served by the file system cache (request A) and the other one
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can not (request B) reach the server at the same time and the sys-
tem calls to read the respective file data are batched together and
eventually executed serially, the reply to request A is delayed by the
I/O time for request B.

The presented disadvantages are a direct result of the serial aggregation
in sequential code or they emerge from the serial execution of the system
calls in the kernel. To address these problems, the way system calls are
aggregated as well as the way they are executed need to be changed. An
alternative to the serial aggregation in sequential code is to batch only
those system calls that are invoked by different threads. This has the
advantage of a naturally given independence of system calls due to the
parallel nature of threads. Unfortunately, this approach does not solve the
other problems such as the serial execution in the kernel.

3.3 Summary

In this chapter the cost of system calls in terms of CPU cycles for kernel
entry and exit were presented and compared to regular procedure calls.
The experiments showed that even with the fast system call mechanism
the per-system call costs are still 58 times higher than for a normal proce-
dure call. In addition, significant indirect costs in terms of processor data
structure pollution exist. While system call batching is a viable solution to
reduce these costs, the serial aggregation and execution of system calls
in existing solutions have disadvantages such as increased latency and
completion time.
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Chapter 4

Design

This chapter deals with the introduction of a new approach to the tradi-
tional system call interface. In the first section several design goals are
discussed that derive from the analysis of the current system call inter-
face. Afterwards, a new mechanism is presented that satisfies these de-
sign goals through a combination of system call aggregation and the use
of a hybrid thread model.

4.1 Design goals

The last chapter showed that the traditional system call interface still suf-
fers from high overhead. However, reducing the direct costs is very difficult,
because the interface code itself is in most cases already highly optimized.
The Windows system call dispatcher for example is even written in assem-
bler to reduce the overhead at the instruction level. In addition, this code is
specifically optimized for each target platform and makes use of respective
hardware features (e.g. greater register set available in x64 systems com-
pared to x86 systems). It is unlikely, that such code offers further potential
for noticeable overhead reduction and performance improvements. The
incurring costs are design inherent and the system call interface needs
fundamental changes. Drastic modifications to the operating system de-
sign and its major interfaces like they are done in Singularity (see section
2.1.3) are not an option for conventional general purpose operating sys-
tems. They introduce a great risk of breaking compatibility which is a high
price for improved performance. Windows still has to run a broad set of
legacy applications and is therefore highly dependent on long term com-
patibility. Furthermore, due to the proprietary characteristics of the oper-
ating system and its ecosystem, applications on Windows are commonly
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distributed in binary form. This further increases the importance of com-
patibility as changes to an application or even its recompilation can often
only be done by the manufacturer itself (with the use of human and/or fi-
nancial resources). A new approach to the system call interface should
therefore maintain full compatibility with the existing design.

A reduction of the direct system call interface overhead (e.g. through code
optimization) is as explained not particularly promising. System call batch-
ing (see section 3.2) or system call aggregation as it is refered to from this
point on, however can be a feasable approach to reduce the per-system
call overhead by collecting system calls and executing them together. Fur-
thermore, the improved locality it offers has the potential to decrease pro-
cessor structure pollution. Since system call aggregation is compatible to
the existing system call interface design, it can also satisfy the compatibil-
ity design goal. The second design goal is therefore to use system call
aggregation to reduce per-system call overhead.

In section 3.2 the disadvantages of the batching mechanism were men-
tioned. A new approach should address these issues. This work holds the
thesis, that the size of system call batches can be optimized by an appli-
cation design, that has system call aggregation in mind. A new approach
should therefore naturally fit in the application at development time but
do not (greatly) increase development complexity.

The batch size also heavily depends on the number of independent sys-
tem calls (as explained) that can be collected. A new approach should
therefore instrument the application design to maximize the number of in-
dependent system calls.

A major drawback that was mentioned in section 3.2 is the serial execution
of batched system calls. This can lead to unwanted latency and increased
completion time. A solution to this problems would be an asynchronous
and parallel execution of system calls (also but not limited to within the
same batch).

Finally, a new approach should take advantage of the fact, that it is inte-
grated at development time and allow an application developer in some de-
gree to customize and/or tune the mechanism to the application’s needs.

To sum up, a new approach should satisfy the following criteria:
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• Maintain full compatibility with the existing system call interface

• Use system call aggregation to reduce per-system call overhead

• Integrate at development time

• Do not (greatly) increase development complexity

• Maximize the number of independent system calls

• Allow parallel and asynchronous execution of system calls

• Allow application specific customizations

4.2 Cluster Calls

Cluster calls are a new approach to the traditional system call interface that
meets the design goals presented in the last section. The mechanism is
specifically targeted at server applications that internally use synchronous
I/O and therefore must create hundreds of threads to achieve parallelism.
Cluster calls exploit this parallelism. Furthermore, the high system call
frequency of these types of applications make them ideal candidates for
optimization.

Server applications that use kernel-level threading and synchronous I/O
typically need a dedicated thread for every parallel request. To avoid mas-
sive context switching or even thread trashing (where the CPU spends
more time switching thousands of threads than actually doing work) these
types of servers often create a thread pool with a limited number of threads
and use them to process requests. If all threads in the pool are busy, in-
coming requests are then stored in a queue for later processing. The fun-
damental concept behind cluster calls is to transition from this kernel-level
threading scheme to a hybrid thread model. Instead of using threads to
actually process requests, the hybrid thread model instruments fibers (see
section 2.3.4) to do the work. The kernel-level threads then only function
as an execution context for the fibers. From this point on, these threads
are referred to as cluster call clients.

This approach is accompanied by a greatly decreased number of threads.
Since the parallelism is achieved through fibers, there is typically no need
to create more cluster call clients than there are CPU cores in the hosting
machine. As explained later, it is a viable option to use even less cluster
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call clients. On the other side, the hybrid thread model allows to increase
the number of requests that are concurrently processed (not in terms of
real parallelism, but in terms of requests, that are not waiting in a queue
for later processing), because of the lightweight nature of fibers. An appli-
cation can therefore create more fibers than threads (although this is not a
problem with 64 bit address spaces). Every cluster call client has its own
independent set of fibers and a user-mode scheduler for dispatching.

The integration of the hybrid thread model and is accompanying technolo-
gies is done at development time. This besides others allows the appli-
cation developer to adapt the mechansim to the application’s needs. For
example, the user-mode scheduler can be replaced by a custom facility
that takes special request characteristics into account. There are various
more possibilities for customization which will be mentioned in the course
of this section. This satisfies two of the design goals mentioned in the last
section (development time and customizations).

The second key concept of cluster calls is to use system call aggrega-
tion to reduce per-system call overhead and maintain full compatibility
with the traditional system call interface. This satisfies two more of the
design goals (system call aggregation and full compatibility ). In contrast
to multi-calls, cluster calls limit the system call aggregation to a defined
set of threads, the cluster call clients. Every other thread in the same ap-
plication does not take part in the aggregation process. This enables the
application developer to use system call aggregation in a more transparent
as well as focused way and helps avoiding unwanted side effects of this
technique (see section 3.2) in critical code paths (e.g. performance mon-
itoring code). The aggregation of system calls is done within the fibers of
a cluster call client. When a fiber makes a system call, the hosting clus-
ter call client does not immediately execute it but instead stores it (system
call number and corresponding arguments) in a special buffer and yields
to another ready fiber. If no ready fiber within the same cluster call client
exists, the client delivers the whole set of aggregated system calls to the
kernel for execution. The process of doing so is called a cluster call and
uses a new system call (NtClusterCall) (similar to multi-calls). The system
calls, which take part in the aggregation are chosen at development time.
This way, performance critical system calls like NtQueryPerformanceCounter

for example can be excluded, allowing a more granular adjustment to the
application.

Since the fibers represent the server’s worker threads in the original de-
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sign, the cluster call mechanism can exploit their independency to maxi-
mize the number of independent system calls. This satisfies another de-
sign goal (independent system calls).

A major difference to simple system call aggregation is the way, system
calls are executed in the kernel. Multi-calls for example execute the sys-
tem calls synchronously and serially which can lead to the mentioned dis-
advantages of increased total completion time and latency. Cluster calls
instead use dedicated threads to process the system calls. These threads
are kernel-mode only threads (or system threads as they are called in Win-
dows) and run within the same address space as the cluster call clients.
From this point on, these threads are referred to as cluster call workers or
simply workers. By using dedicated workers, asynchronous and parallel
execution of system calls becomes possible and effectively decouples the
invocation of a system call and its execution. This also satisfies the corre-
sponding design goal.

At first sight, using dedicated threads for system call execution might seem
costly, but in fact system threads under Windows are cheap. They neither
possess a TEB or a user-mode stack (which is 1 MB by default) nor does
the Client Server Runtime Subsystem (CRSS) of the Windows subsystem
allocate per-thread information (which it does for normal Windows appli-
cation threads). Instead, system threads only have (besides various small
management structures) a kernel-mode stack that occupies by default 16
KB (12 KB + 4 KB guard page) of pageable system virtual address space.
Furthermore, if a system thread is blocked for a couple of seconds, the
kernel stack’s memory pages get swapped out (not directly to disk) by the
memory manager.

The cluster call mechanism groups multiple workers together into a single
(cluster call) worker pool. This allows to control the workers as a whole. If
no system calls need to be processed, all workers in the pool are blocked.
When a cluster call client then makes a cluster call, the workers wake up
and execute the given system calls. However, the number of concurrently
running workers is limited by the worker pool’s concurrency similar in the
way I/O completion ports limit the number of running threads. When a
worker has finished processing a system call, it stores the result in a per-
client shared memory region (called communication buffer ) that is acces-
sible by the client from user-mode. This allows the user-mode scheduler
to ready and eventually execute fibers whose system calls have finished.
The design and implementation of the communication buffer is explained
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in detail in section 5.3.2.

The client’s behaviour after the delivery of the system calls depends on the
worker pool’s wait policy. The policy determines if the client immediately
returns to user-mode or if it waits in kernel-mode until a set of conditions
specified by the wait policy are met (e.g. at least one system call must be
finished). More details on the wait policy can be found in section 5.3.3.
When the conditions specified by the wait policy are satisfied, the cluster
call client returns to user-mode, checks the communication buffer for re-
sults and executes one of the ready fibers. If there are still outstanding
system calls, the workers simultaneously continue to process them and to
report the result to the client.

The concept of cluster calls is summarized in Figure 4.1. The lights show
the current state of each scheduling entity: red means blocked, yellow
means ready, green means running and grey means waiting for work. The
number beneath each fiber’s light indicates the times a fiber has been
scheduled.

Step 1 illustrates a possible basic layout. In user-mode one cluster call
client exists that hosts four fibers while executing one of them. The other
fibers are ready and the client’s communication buffer is empty. The worker-
pool resides in kernel-mode and comprises five workers, that are waiting
for system calls.

Step 2 depicts what happens if the executing fiber invokes a system call.
The user-mode scheduler interrupts the system call and blocks the run-
ning fiber. The call is then stored in the client’s communication buffer and
ultimately one of the ready fibers is scheduled.

In the next step the last ready fiber tries to make a system call. This
leads as previously to its blocking and the storing of the system call in the
communication buffer. But in contrast to step 2, the user-mode scheduler
cannot schedule another fiber as there are no ready fibers left. Instead it
makes a cluster call to deliver the aggregated system calls to the worker
pool. The wait policy of the worker pool ensures that the client waits in
kernel-mode until at least one system call has finished.

Since the concurrency level of the worker pool is set to 1, only a single
worker wakes up and starts executing the system calls. When the worker
finishes a system call, it stores the result in the communication buffer of



4.2. CLUSTER CALLS 31

User 
mode

Kernel 
mode

      Thread

Fi
b

er

Fi
b

er

Fi
b

er

Fi
b

er
Buffer

Cluster Call ClientCluster Call Client

Worker PoolWorker Pool

W
o

rk
er

W
o

rk
er

W
o

rk
er

W
o

rk
er

W
o

rk
er

      Thread

Fi
b

er

Fi
b

er

Fi
b

er

Fi
b

er

syscall

Buffer

Cluster Call ClientCluster Call Client

      Thread

Fi
b

er

Fi
b

er

Fi
b

er

Fi
b

er syscall
syscall
syscall
syscall

Buffer

Cluster Call ClientCluster Call Client

1)1) 2)2) 3)3)

Worker PoolWorker Pool
W

o
rk

er

W
o

rk
er

W
o

rk
er

W
o

rk
er

W
o

rk
er

Worker PoolWorker Pool

W
o

rk
er

W
o

rk
er

W
o

rk
er

W
o

rk
er

W
o

rk
er

User 
mode

Kernel 
mode

      Thread

Fi
b

er

Fi
b

er

Fi
b

er

Fi
b

er

syscall
syscall

Buffer

Cluster Call ClientCluster Call Client

Worker PoolWorker Pool

W
o

rk
er

W
o

rk
er

W
o

rk
er

W
o

rk
er

W
o

rk
er

      Thread

Fi
b

er

Fi
b

er

Fi
b

er

Fi
b

er

syscall
syscall

Buffer

Cluster Call ClientCluster Call Client

      Thread
Fi

b
er

Fi
b

er

Fi
b

er

Fi
b

er syscall
syscall
syscall
syscall

Buffer

Cluster Call ClientCluster Call Client

4)4) 5)5) 6)6)

Worker PoolWorker Pool

W
o

rk
er

W
o

rk
er

W
o

rk
er

W
o

rk
er

W
o

rk
er

Worker PoolWorker Pool

W
o

rk
er

W
o

rk
er

W
o

rk
er

W
o

rk
er

W
o

rk
er

I/O

2 1 1 1

1 0 0 0 1 1 0 0

2 1 1 1

1 1 1 1

2 2 2 1

Figure 4.1: System calls made by fibers are aggregated in user-mode and
passed to the kernel using a cluster call. Kernel-mode work-
ers asynchronously process the calls and return the results to
user-mode. The number of active workers is limited by the
pool’s concurrency. Blocking of workers is detected.

the client, that submitted the call. If there are more system calls pending,
the worker continues with the execution of the next call.

Step 4 illustrates the situation, after two system calls have been finished.
Since the client’s wait is satisfied as soon as the first result appears, the
client has already returned to user-mode and executes one of the ready
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fibers. While the fiber corresponding to the second finished system call
is also ready, the last two fibers are blocked. Their system calls are still
pending. This property of the cluster call mechanism clearly seperates it
from a pure user-level threading model, were such simultanious execution
of (blocking) system calls in kernel-mode and fibers in user-mode is not
possible.

Step 5 illustrates the concurrency limiting mechanism. Because the sys-
tem call of the third fiber is a synchronous I/O operation, the worker blocks
during the execution. This reduces the number of active workers in the
pool to 0. This allows another worker to wake up and process the system
call of the fourth fiber.

When the first worker wakes up (i.e. I/O finished), it will block as soon
as it tries to get new work. This is because the pool’s concurrency limit
would otherwise be permanently exceeded. The last step illustrates this
behaviour. It also shows that the client can make further cluster calls (e.g.
because there are no ready fibers left), while the workers are still process-
ing the system call from previous cluster calls.

The scenario depicted in figure 4.1 is very simple and only exemplary. In
practice, more complex designs are possible that even offer further pos-
sibilities especially on multi-core machines. Besides the concurrency limit
already mentioned, a worker pool has a cpu affinity and a priority assigned
to it. Furthermore, apart from having multiple cluster call clients, it is also
possible to create multiple worker pools. For each system call in a clus-
ter call the client can then specify the target worker pool. This enables
several interesting scenarios. An application can for example specialize
one or more CPU cores for system call execution. It is even possible to
specialize CPU cores for specific system calls (e.g. I/O related). Another
possibility is the prioritization of specific system calls by directing them to
a worker pool with an according priority setting. In addition, each worker
pool’s level of parallelism can be controlled by limiting the available CPU
cores with the affinity mask and/or setting the worker pool’s concurrency
accordingly.

The presented options allow developers a high degree of customization.
On the other hand, the new approach should not noticebly increase the
development complexity, which is the last open design goal. To achieve
this goal cluster calls are targeted to applications that can naturally make
use of the presented hybrid model. This is for example the case for thread
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pool based server applications. In these types of applications only moder-
ate modifications are necessary to make use of cluster calls. Furthermore,
most of the mechanism’s complexity is not exposed to the developer but
contained in a loadable DLL and the approriate kernel interface. The main
task for the developer is therefore to first choose a layout (i.e. the number
of cluster call clients, worker pools and workers) and then make appro-
priate settings (i.e. affinities, concurrencies, priorities etc.). However, all
settings have default values that are sufficient for a basic configuration.
The priority settings for example can be left untouched, if the application
has no need for system call prioritization and the default affinities need no
modification, if core specialization is not used.

4.3 Summary

In this chapter several design goals were defined and a new approach to
the traditional system call interface named cluster calls was presented that
satisfies these goals. The chapter explained how cluster calls combine a
fiber-based hybrid thread model with system call aggregation to reduce
the per-system call overhead and simultaniously improve simple system
call batching through asynchronous and parallel execution of system calls.
Furthermore, emerging possibilities in application design like core special-
ization and system call prioritization were mentioned which the traditional
system call interface cannot offer.
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Chapter 5

Implementation

In the following chapter an implementation of the cluster call mechanism
introduced in 4.2 is presented. The cluster call mechanism was imple-
mented into Microsoft Windows Server 2003 Enterprise Edition (Service
Pack 2) using the Windows Research Kernel (Build 3800). This kernel
is a slightly revised version of the standard NT kernel (Build 3790) deliv-
ered with all versions of Windows Server 2003 and the 64 bit versions of
Windows XP. Differences between the kernels mainly focus on cleanup
and removal of server support code, such as architectural code related to
the Itanium (IA64) platform [26]. Because some parts of the mechanism’s
implementation rely on architecture specific assembler code, only a 32 bit
version of the cluster call mechanism was implemented. Nevertheless, the
concept is not confined to 32 bit and only minor modifications are needed
to port the code to 64 bit. All architecture independent software elements
developed for this work are written in C (no C++ involved). Some compo-
nents however use Microsoft specific language extensions such as name-
less unions and structs. The implemented user-mode support libraries are
programmed for the Windows subsystem and the corresponding Win32
API. In fact, the concept of fibers used in this work is special to this sub-
system.

The chapter begins with an overview of the different components involved
and a coarse describtion of the basic control flow. Afterwards, the mod-
ifications to the NT kernel and the necessary components in user-mode
are presented in detail. The chapter ends by giving a brief overview of the
implementation of the evaluation web server, which was developed in the
course of this work to give an example of how cluster calls can be used in
practice.

35
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5.1 Overview

The implementation is illustrated in figure 5.1. The upper half of the schematic
shows the user-mode components and the lower half the kernel-mode
components (major components are marked in bold). Most of the imple-
mented elements reside in kernel-mode. These comprise components for
resource and layout management (cluster call group), client management
(kernel-mode part of cluster call clients), system call execution (worker
pools and integrated logics) as well as a component for bidirectional com-
munication between user-mode and kernel-mode (communication buffer ).
In user-mode most components are encapsulated in the user-mode part of
the cluster call clients. The most important elements are the fiber sched-
uler and the corresponding thread which hosts and executes the fibers.
The scheduler includes the logics for fiber scheduling and dispatching.
These make up the user-mode threading part of the hybrid thread model.
The scheduler also implements the system call aggregation mechanism.
Another user-mode component is the Nt Cluster API, which is the cluster
calls counterpart to the Windows Native API. It exposes the cluster call
specific kernel extensions to user-mode applications. Each of these com-
ponents is described in detail in the upcoming sections.

5.2 Control Flow

In the following, an overview of the cluster call mechanism from the imple-
mentation’s control flow standpoint is described. The basic flow in a cluster
call enabled application is depicted in figure 5.1. It is coarsely seperated
into three different types:

1. Orange: Application specifc control flow (including not aggregated
system calls) as well as flow dedicated to fiber scheduling and sys-
tem call aggregation. The execution of this type is mainly situated in
user-mode.

2. Blue: The cluster call itself (i.e. the delivery of batched system calls
to the kernel).

3. Green: Control flow dedicated to the execution of system calls and
result delivery. This type of control flow never leaves kernel-mode.

In the top left corner of the schematic several fibers and their hosting
thread are shown. Since the fibers are user-mode scheduling entities,
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Figure 5.1: Cluster Call Implementation Overview
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only one fiber per thread can run at the same time. The fibers execute
application specific code and thereby interact with the Win32 API (orange
control flow). As described in chapter 2.3.1, the subsystem layer sits on
top of the Native API and uses it to make system calls. Since the cluster
call mechanism allows to selectively aggregate system calls, only those
specified by the application are redirected. All other calls directly reach
the kernel’s executive services as it is the case for unmodified applications.
Redirected calls in turn are processed by the system call aggregation logic
(SCAL) which stores the system call (or system service request) in the
communication buffer for later access through kernel-mode components.
A cluster call client can however only save requests for itself. Because
system call execution is delayed, the fiber which originally invoked the call
can no longer continue its execution. Instead, the aggregation logic leads
the scheduler to yield execution to another ready fiber. In that course, it
also updates the ready map (a list of ready fibers) by reading system call
completion information from the communication buffer. If the ready map
is empty and the scheduler cannot further dispatch fibers, the aggregation
logic makes a cluster call and transitions to kernel-mode.

The cluster call (blue control flow) informs the kernel about the new re-
quests and prepares their execution. The first step involves the creation of
work items from the requests stored in the client’s communication buffer.
Each work item is statically allocated from a pool in the client’s kernel-
mode data structures. It enables a worker pool to identify the system call
and the requesting client. It also indicates where to store the system call
result (see 5.3.3). Each system call is bound (through application settings)
to a specified destination worker pool. The next step in a cluster call is
therefore to enqueue the work items for each pool to the corrensponding
work queues. Afterwards, the concurrency logic of each pool is signaled.
This ulimately leads to the processing of the work items through the kernel-
mode worker threads. The cluster call client in turn, waits on its work item
completion event (WIC Event) object before it returns to user-mode.

Signaling the concurrency logic of a worker pool starts the execution of
the aggregated system calls (green control flow). In this process, the con-
currency logic limits the number of concurrently running worker threads
to avoid CPU overloading and to adhere to the pool’s concurrency setting
(see 5.3.3). After a worker executed a system call, it writes the result to
the client’s communication buffer. Furthermore, it invokes the wait logic
(see 5.3.3) to check if the client’s wait can be satisfied. In that case, the
client’s wic event is signaled. Finally, the worker calls into the concurrency
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logic which potentially blocks its execution. Otherwise, it tries to dequeue
the next work item.

When its wic event is signaled, a cluster call client wakes up and immedi-
ately returns to user-mode. The aggregation logic then updates the ready
map by reading system call results from the communication buffer. It then
invokes the scheduler which in turn continues the execution of a previously
blocked fiber.

5.3 NT Kernel Extensions

The following sections give a more detailed insight into the cluster call
kernel-mode components. These include the cluster call group object, the
kernel-mode part of the cluster call client, the communication buffer and
the worker pools. All explanations focus on important data structures and
their behaviour. Low-level implementation details are omitted. Instead,
the reader is encouraged to take a look at the source code to get more
information. The last section covers new system calls related to cluster
calls and gives a short description for each of them.

5.3.1 Cluster Call Group Object

The cluster call group is a new object type registered with the Object Man-
ager at boot time. Every application that wants to make use of cluster
calls must at least create one cluster call group object. It then represents
the central connection between multiple cluster call clients and worker
pools and is used to manage necessary system resources. An applica-
tion can create a cluster call group by calling one of the new system calls
(NtCreateClusterCallGroup). The system call invokes the Object Manager
to instantiate a new cluster call group object. After successfull initialization
the object is inserted into the process’s handle table and the handle is re-
turned to the caller. This allows the application to reference the object in
other system calls.

NtCreateClusterCallGroup also expects information about the number and
configuration of worker pools. These pools (eight at maximum) including
the worker threads are created in the course of the object initialization. In-
ternally, the group object and the worker threads (which are also objects,
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see 2.3.2) mutually reference each other to ensure proper object lifetimes.

Exposing the cluster call mechanism to applications with the help of a new
object type has several advantages:

• Consistency with the Windows object model (fits into the uniform way
of resource access and management)

• System-controlled resource access, management and accounting
through the Object Manager

• Secure sharing and controlling of state information across process
boundaries (a cluster call group object is nameable and securable).

5.3.2 Cluster Call Clients

If a thread wants to make cluster calls and thereby enqueue work to a
cluster call group’s worker pools, it must be attached to the group object. A
thread can establish this connection by calling NtAttachToClusterCallGroup

(one of the new system calls) and passing a handle to the group object. At-
taching to the cluster call group increases its reference count and leads to
the allocation of the kernel-mode cluster call client data structures includ-
ing the client’s private communication buffer. This transforms a thread into
a cluster call client. A thread can attach to a single cluster call group only
and the current implementation does not allow it to detach (only on thread
termination). Furthermore, a thread can only attach to a group, which is
owned by the same process as the thread. This is because the group’s
worker threads execute in the address space of the process which created
them and therefore cannot access system call arguments for threads that
are running in a different address space. The current implementation limits
the number of clients that share the same group to eight.

Communication Buffer

The communication buffer is the primary communication channel between
the fiber scheduler in user-mode and the worker pools in kernel-mode. The
buffer is mapped into the virtual address space of the client’s process and
a second time into the system virtual address space. This twofold map-
ping scheme is necessary to ensure that a malicious client cannot crash
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the system by unmapping the buffer or changing page protections (user-
mode code can modify user-mode mappings but not system mappings).
The buffer comprises three different data structures: the system call array,
per-pool request stacks and a single reply queue.

The system call array is used to store the requests (system call number
and argument pointer) and the replies (system call result). The current
implementation allows a maximum of 1024 pending system calls (which
also limits the number of fibers per client). Each entry in the element is
8 Bytes long (request and reply use the same memory location). The
request stacks and the reply queue only reference entries in the system
call array. Both data structures are each 1024 elements wide to potentially
hold a reference to every system call. When the aggregation logic stores
a system call, it takes the entry from the system call array with the same
index as the fiber’s id and updates it appropriately. Afterwards, it pushes
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a reference to this entry onto the request stack, which corresponds to the
destination worker pool of the system call. A worker thread in turn writes
the result into the same entry in the system call array and adds a reference
to it in the reply queue. This way the aggregation logic can determine if
new system calls have finished by simply checking the reply queue.

5.3.3 Kernel Worker Pools

A worker pool encapsulates all mechanisms that are necessary for the
delayed execution of system calls. The main components comprise the
worker threads, a work queue and the concurrency and wait logics.

System Call Execution

To execute a system call, a worker thread performs the following tasks:

• Dequeue a work item from the work queue

• Read the associated entry in the corresponding client’s system call
array

• Capture and validate the system call number and the argument pointer

• Fake the worker’s previous mode to user-mode (see [28] for more
information regarding a thread’s previous mode)

• Copy the system call arguments onto the worker’s stack

• Call the appropriate executive service (by looking up the function
pointer in the service descriptor table)

• Store the result in the client’s communication buffer

Work Queue

A pool’s work queue stores new work (system calls) to be processed by
the workers and is populated through cluster calls. The queue is optimized
for performance to reduce overhead introduced by the cluster call mecha-
nism. The queue is essentially a statically allocated bounded array. In the
current implementation the queue has 8192 elements so it can face the
maximum possible load (at most 8 clients with 1024 system calls each).
Adding work to the queue is synchronized by a queue specific lock that
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must be exclusively acquired by the client prior to adding work items. De-
queuing work on the other side is more performance critical, because the
number of threads (i.e. workers) potentially accessing the queue at the
same time is higher. Furthermore, while adding work items can be done
as a batched operation (i.e. acquire lock once and add any number of work
items), dequeuing work items in batches makes no sense. This is because
the complex execution behaviour of the workers (determined by unknown
system call behaviour and the concurrency model) makes it difficult to pre-
dict the optimal batch size. Consequently, the queue is optimized for fast
and lock-free (single work item) dequeuing by using an atomic compare-
and-exchange operation. Each element in the work queue is a pointer to
one of the work items in the work item pool of the client that enqueued the
item. The work item itself is a 4 Byte value, which references an item in
the system call array of the client’s communication buffer.

Concurrency Logic

The concurrency logic is responsible for regulating the number of con-
currently running worker threads within a single pool. The logic is imple-
mented as a new synchronization object in the Microkernel: the concur-
rency barrier. Before a worker tries to dequeue work from the pool’s work
queue, it has to cross the concurrency barrier. If the limit for currently run-
ning worker threads is exceeded or if the pool’s work queue is empty, the
worker cannot cross the barrier and is blocked. If new work is available
and the concurrency limit allows further workers to execute or if a running
worker is blocked (e.g. through executing a blocking system call), one of
the workers waiting on the barrier is woken up.

Internally, the concurrency barrier uses a data layout that is compatible
with the kernel queue object which is the basis for the I/O completion port
object. This allows the barrier to reuse most of the concurrency limiting
functionality already built into the kernel. In contrast to the kernel queue,
the barrier object does not store elements. It therefore cannot decide, if the
pool’s work queue is empty or not. Instead, it combines the concurrency
limiting functionality with that of an event object which can be set and reset.
This way, a cluster call signals the concurrency barrier that new work is
available and the worker that is the first to run out of work, resets the barrier
(which blocks all workers regardless of the number of running threads).
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Wait Logic

Based on the worker pool’s wait mode, the wait logic determines when
the wic event of the cluster call client is signaled. Up to this point, the
client waits in kernel-mode (directly after enqueuing the work items of the
cluster call). Since a client can enqueue work to multiple worker pools
(each with its own wait mode), the pool that is first to signal the wic event
satisfies the client’s wait. If all worker pools that process work of the client
have a wait mode of NoWait, the client returns to user-mode immediately
after delivering the system calls to the kernel. The logic implements four
possible wait modes:

• NoWait : Do not wait

• WaitAny : Wait until at least one system call has finished

• WaitSome: Wait until at least a specified number of system calls
has finished or a given timeout has expired. The timeout calculation
however is based on the moment the first system call finishes (and
not from the moment, the client starts to wait).

• WaitAll : Wait until all system calls have finished

5.3.4 Kernel Interface Extensions

System Call Name Description
NtCreateClusterCallGroup Creates a new cluster call group and

returns a handle to it.
NtOpenClusterCallGroup Allows (another process) to retrieve a

handle to a named group object
NtQueryInformationClusterCallGroup Returns various information about a

group.
NtSetInformationClusterCallGroup Changes the configuration of a group

(currently only a stub).
NtAttachToClusterCallGroup Attaches a thread to a group.
NtWaitForSystemCallCompletion Blocks a client until its wic event is sig-

naled.
NtClusterCall Performs a cluster call.

Table 5.1: New cluster call related system calls
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Table 5.1 gives an overview of all new cluster call related system calls.
All of this system calls can be accessed by user-mode code through the
NT Cluster API implemented in ntclusterapi.dll. The library is therefore
similar in its function to ntdll.dll. To make the actual system call, the
library also uses the system call trampoline.

5.4 User-Mode Library

The user mode library (clusterapi.dll) implements all user-mode compo-
nents of the cluster call mechanism. This includes the fiber scheduler with
its scheduling and system call aggregation logics as well as fiber-aware
synchronization mechanisms (e.g. a fiber-aware critical section). An ap-
plication can make us of cluster calls by linking to this library. This enables
the application to create cluster call groups and allows an application’s
thread to enter fiber mode. In this process, a thread-private fiber sched-
uler is created and the thread is attached to a specified cluster call group.
Afterwards, an initial fiber is created and its execution starts in a specified
fiber main routine (similar to a thread main routine).

5.4.1 System Call Redirection

System call redirection is done using a modified version of EasyHook [6].
EasyHook allows to redirect a function to a user-specified one by replacing
the function’s head with a unconditional jump to the new function. The clus-
ter call mechanism uses this feature to redirect chosen system calls in the
Native API to a routine in the system call aggregation logic. The current im-
plementation does not allow the application to specify which system calls
are redirected, but instead uses a hard-coded set. Future versions, could
expose an approriate interface that could even allow to redirect whole sets
of system calls (e.g. I/O related) to ease application development. The
modifications applied to the library primarily focus on optimizations (pos-
sible due to project constraints) and a partial rewrite to make the library
fiber-aware.

5.4.2 Scheduling Logic

The scheduling logic in the fiber scheduler uses a round robin scheme to
make reasonable fair scheduling decisions. In order to achieve that, the
scheduler remembers the id of the last dispatched fiber and runs the next
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ready fiber with a higher id. The search for this fiber is done with the help
of the ready map which is implemented as a bitmap/bit array. This allows
to use hardware accelerated bit scanning. On the other side, this makes
the fiber scheduler a O(n) scheduler. The current implementation does
not allow to replace the scheduler. An improved version of the cluster
API could enable the application to replace the scheduler to adapt the
scheduling to the application’s needs.

5.5 Evaluation Web Server (net)

In the course of this work, a small web server was developed that makes
it easy to directly compare the cluster call mechanism with other server
thread models. The web server implements a total of four different models.
Each of these receive incoming requests through an I/O completion port
that is used in conjunction with an asynchronous socket accept (AcceptEx).
The server installs a dedicated thread that is responsible to monitor the
number of pending accept operations and to issue further ones as neces-
sary. The models implemented are:

1. Dedicated thread per request : In this model, a thread waiting on the
I/O completion port creates a dedicated worker thread for every in-
coming HTTP request. The worker then uses synchronous I/O (I/O
port not involved) to process the request and terminates after send-
ing a reply.

2. Thread pool : This model employs a static pool of multiple persistent
worker threads. It is described at the beginning of section 4.2. Each
worker processes a single request at a time. After completion, it
does not terminate, but instead waits for the next request. Again,
synchronous I/O is used.

3. I/O completion port : The third model makes use of asynchronous I/O
and uses the I/O completion port to do all network and disk related
I/O. As described in section 2.3.3, this model uses a thread pool, too.
According to Microsoft, this is the preferred method for Windows-
based server applications, as it offers the best scalability (see [12]).

4. Cluster calls: The last model uses the cluster call mechanism (with
synchronous I/O) as presented in this work.
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To allow a performance comparison of the models most of their code is
shared. This includes the whole network and HTTP related components.
Furthermore, model specifc code is designed to be as common as possible
(especially between the synchronous I/O models).

5.6 Summary

In this chapter the most important implementation details were presented.
The chapter started with an implementation-centric overview of how the
cluster call mechanim works and continued by describing internals of the
kernel-mode and user-mode components involved. The chapter ended
with a brief introduction to the small web server used in the evaluation.
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Chapter 6

Evaluation

This chapter evaluates the cluster call mechanism presented in the work at
hand. It examines how the proposed solution compares to the traditional
system call interface and how cluster calls perform in real world applica-
tions.

In particular, the evaluation will show that:

• In conjunction with a sufficiently high system call aggregation rate,
cluster calls are capable of reducing the per-system call overhead.

• Cluster calls offer a viable thread model for server applications based
on synchronous I/O.

The chapter begins with an introduction to the methodology and a descrip-
tion of the evaluation platform. Afterwards, the results are presented for
each of the benchmarks conducted. The chapter ends with a discussion
of the results.

6.1 Methodology

To evaluate the performance of cluster calls two sets of benchmarks were
conducted. The first set examines the per-system call overhead of cluster
calls and compares it to that of the traditional system call interface. More
specifically, the benchmark measures the time needed for the process-
ing of one or more invocations of a special no-operation system call and
thereby allows to make conclusions about the computation overhead that
is induced by the respective solution. The results are further differentiated
through the use of varying worker pool configurations. These futher allow

49
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to measure the costs for remote-core system call execution. The bench-
mark does not address potential benefits from reduced cache-pollution
through increased temporal locality of user-mode and kernel-mode code
and data. This is because of the no-operation system call’s small cache
footprint.

The second set of benchmarks uses the web server (net) presented in sec-
tion 5.5 as an examplary real world application to evaluate how the cluster
call mechanism compares to some conventional server thread architec-
tures. The benchmark uses the ApacheBench HTTP client to generate
traffic in the form of HTTP requests that are processed by the server appli-
cation. The evaluation focuses on the achievable throughput, total request
time and cpu usage of the different server models. In addition, it examines
how many system calls can be saved through the cluster call’s system call
aggregation.

6.2 Evaluation Platform

The following system was used for the evaluation:

Component Model/Specification
CPU Intel Core i7 920

Cores 4
Frequency 2.67 Ghz
Private L1 i-cache 32 KB, 3 cycles latency
Private L1 d-cache 32 KB, 4 cycles latency
Private L2 cache 256 KB, 11 cycles latency
Shared L3 cache 8 MB, 35-40 cycles latency

Memory 6 GB (DDR3-1066) (only 3 GB accessable)
Operating System Windows Server 2003 Enterprise Edition

Kernel Windows Research Kernel (Build 3800)
Architecture 32 Bit (x86)
Service Pack 2 (fully patched)

Table 6.1: Evaluation Platform

To simplify the evaluation, the hyper-threading feature of the CPU was dis-
abled so that only physical CPU cores were used by the operating system.
Furthermore, the CPU clock speed was fixed to avoid measurement errors
due to changing core frequencies.
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6.3 Benchmarks

The following sections briefly describe how the benchmarks were con-
ducted and finally present results for each of the respective benchmarks.
The first section describes the methodology and results for the overhead
benchmark and the second section compares the performance of cluster
calls in the evaluation web server with conventional thread models.

6.3.1 Overhead

The overhead benchmark measures the time needed to process one or
more system calls with the traditional system call interface and the cluster
call mechanism respectively. As previously (section 3.1), the benchmark
uses the rdtsc (Read Time Stamp Counter) instruction to retrieve timing
information. In addition, a special no-operation system call (NtNoOperation)
was implemented that only returns a constant status value (indicating suc-
cess). Since the system call itself translates to only two machine instruc-
tions (a mov and a ret), its cost is negligible. For that reason, the bench-
mark can be considered to only measure the overhead for the invocation
of a system call. To reduce the risk of preemption the measuring thread
and all workers of the cluster call mechanism run with highest priority. Fur-
thermore, the measuring thread is always bound to the first CPU core.

To examine the traditional system call interface the benchmark executes
the no-operation system call a specified number of times and measures
the time needed through a pair of rdtsc instructions which embrace the
execution code. Afterwards, the total (overhead) time is divided by the
number of executed system calls to calculate the per-system call over-
head (as execution time).

The cluster call mechanism is basically evaluated in the same way, except
that a cluster call is used to execute the system calls. For that purpose,
the benchmark creates a cluster call group and attaches the thread that
is used to measure the execution time as a cluster call client. However,
the benchmark does not use the user-mode support library to conduct the
tests (which would include the fiber scheduler), but directly interacts with
the Native Cluster API. This allows to measure the overhead of the kernel-
mode components only. Prior to the cluster call, the thread populates the
request stacks with an appropriate number of no-operation system calls.
Afterwards, the per-system call overhead is determined like it is for the tra-
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ditional system call interface (measure total execution time for the cluster
call and divide it by the number of batched system calls). Although, the
benchmark uses varying worker pool configurations to examine the clus-
ter call performance in different scenarios (e.g. remote-core execution), all
configurations use a wait mode of WaitAll. This is necessary to ensure that
the client (which measures the time) waits in the kernel until all batched
system calls have finished.

The first scenario in the benchmark examines the per-system call over-
head for increasing amounts of system calls under the constraint that sys-
tem call invocation and execution is bound to the same (single) CPU core.
This is always the case for the traditional system call interface since it does
not support a decoupled execution. For the cluster call mechanism, this
scenario is configured by creating a worker pool that is bound to the same
core as the client (core 1). Since the no-operation system call used in the
benchmark is non-blocking, the worker pool contains only a single worker
that serially processes the system call batch. Figure 6.1 depicts this sce-
nario:
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Figure 6.1: The traditional interface has an overhead of 105ns. For small
batch sizes cluster calls are almost 10x slower. After 17 aggre-
gated calls, cluster calls become more efficient than the tradi-
tional interface and finally reach up to 58% overhead reduction.
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The x-axis shows the number of executed system calls and the y-axis
shows the per-system call overhead in nanoseconds of execution time.
The total overhead for the traditional system call interface grows linearly
with the number of system calls. Consequently, the per-system call over-
head stays practically constant at about 105ns. In contrast, the overhead
for the cluster call mechanism changes with the amount of aggregated
system calls. If only a few system calls are batched, the overhead is no-
ticebly higher (almost 10x for a batch size of 1) but decreases rapidly with
increased batch sizes. If 17 system calls are aggregated, the overhead
is the same for both solutions. After this point, the overhead decreases
down to approximately 50ns for 140 calls and finally reaches 44ns for the
maximum of 1024 aggregated calls. The benchmark shows that compared
to the traditional interface, cluster calls can reduce the overhead by up to
58%.
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Figure 6.2: Remote-core execution is more expensive and particularly
benefits from large batch sizes. Serial remote-core execution
can reach up to 49% reduction. Parallel execution achieves
only an average of 16% for a maximum batch size.

Cluster calls allow more complex scenarios that include remote-core exe-
cution of system calls. These scenarios show different characteristics in
overhead reduction. The benchmark implements a test for mixed system
call execution between the client’s core and a single different (remote) core
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(scenario two) as well as tests for the execution on up to three different
cores (scenario three - five). All scenarios are realised through a change
in the worker pool’s configuration (number of workers, concurrency and
affinity). Creating two worker threads with a concurrency of two and set-
ting the affinity of the worker pool to the cores two and three, reflects for
example the fourth scenario. Figure 6.2 illustrates the corresponding mea-
surements. For better comparability, the overhead measurements of the
traditional system call interface and those of the single core scenario are
also included.

The overhead for small batch sizes is much higher if a system call is exe-
cuted on a different core. For a single different core the overhead is more
than 13x higher than for the first scenario. For three different cores the cost
is still 10x higher (for a better overview, these high marks are not shown
in the figure). The number of system calls that need to be aggregated to
benefit from cluster calls also increases. Execution on a single different
core needs a batch size of at least 120 to be as efficient as the traditional
interface. What is most noticeable is that for scenarios that include parallel
execution (two, four and five) the overall progress in overhead reduction
is far more unpredictable and convoluted than in the first or second sce-
nario. Nevertheless, for parallel execution cluster calls still reach an aver-
age overhead reduction of 16% with an average execution time of 88ns. In
contrast, serial execution on a remote core comes (for large batch sizes,
i.e. greater 600) close to the reduction achieved with the execution on the
same core (42% - 49% overhead reduction).

Table 6.2 summarizes the most important results. The last column indi-
cates the average reduction that could be achieved in the given scenario.
However, this value does not include results where no overhead reduction
was observed.

Scenario Overhead
(1 call)

BEP*
(calls)

Overhead
(1024 calls)

Average
reduction

S
er

ia
l Traditional 105ns - 105ns -

Same core 997ns 17 44ns (58%) 55%
Different core 13710ns 120 54ns (49%) 35%

P
ar

al
le

l Same and different core 11864ns 40 87ns (17%) 25%
Two different cores 10914ns 240 93ns (11%) 10%
Three different cores 10643ns 320 84ns (20%) 14%

Table 6.2: Performance Overview (* Break-even point)
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6.3.2 Server Benchmark

The server benchmark examines how cluster calls perform in a real world
application and how they compare to conventional server thread architec-
tures. As already described in section 5.5, the evaluation web server used
for the benchmark implements four distinct thread models: The dedicated
thread (1) model, which creates a dedicated thread for every request, the
thread pool (2) model that uses persistent threads in a fixed thread pool,
the I/O completion (3) model, which is architectured around an I/O com-
pletion port and the cluster call (4) model, which implements the cluster
call mechanism presented in this work. Except for the third model, which
employs asynchronous disk and network I/O, all models use synchronous
operations for request processing.

Two characteristics measured by the benchmark are the achievable through-
put (HTTP requests per second) and the average total request time (la-
tency + processing time) of each model at a given number of parallel re-
quests. The ApacheBench (2.3) tool is used to obtain these values. For
that purpose, the tool generates traffic on the server by sending an ap-
propriate number of concurrent HTTP GET requests. The requested page
is purely static and has a size of 4.729 bytes. The tool does not request
any elements (such as images) embedded in the page. To reduce inter-
ferences with the server application, ApacheBench is executed on a dedi-
cated core (core 4). The server is bound to the three remaining cores.

The configuration of the thread models is summarized in table 6.3. Except
for the cluster call model, all models use the full set of available cores (1,2
and 3) for its threads. Consequently, the concurrency of the I/O completion
port which is used to receive requests is set to 3 in these models. The
number of threads used has been determined experimentally to offer a
good average performance.

Model # Threads /
Clients # Fibers Affinity

(Cores)
Receive port
concurrency

Dedicated thread 1 per req. - 1,2,3 3
Thread pool 200 - 1,2,3 3
I/O completion 20 - 1,2,3 3
Cluster call 1 1024 1 1

Table 6.3: General Model Configuration
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The cluster call model creates a single cluster call client which hosts a pool
of 1024 fibers. The client is bound to core 1. The two remaining cores (2
and 3) each run a worker pool dedicated to a specific set of system calls.
Table 6.4 gives an overview of the pool’s configuration.

Pool # Worker Affinity
(Cores) Concurrency Wait mode

1 10 2 1 WaitSome
2 40 3 1 WaitSome

Table 6.4: Worker Pool Configuration

The first worker pool is used to receive new requests from the I/O port
by exclusively processing NtRemoveIoCompletion system calls. Since the
pool’s affinity restricts its workers to a single core, the concurrency of
the receive port as well as the pool’s concurrency are set to 1. The
second worker pool runs on core 3 and processes the following system
calls: NtCreateFile (creates or opens a file on disk), NtReadFile (reads
data from a file), NtDeviceIoControlFile (in this context used for network
related operations like receiving or sending data) and NtClose (closes han-
dles). These are the only system calls directly used by the fibers. All other
system calls are not redirected or aggregated by the cluster call client. The
affinity for all components is chosen to minimize the interference between
the workers and to increase the parallelism between the workers and the
client.

The web server uses two pools because NtRemoveIoCompletion blocks the
calling worker until a new request is received (which may never happen).
In a single pool layout all workers could therefore block for an indefinite
amount of time whichs leads to the starvation of other pending calls (like
a file read). Consequently, the HTTP request whose processing originally
caused such a call would timeout. The web server avoids this situation by
seperating NtRemoveIoCompletion calls from other aggregated system calls.
Another solution is to use as many workers as there are fibers (i.e. pend-
ing system calls). But this in turn is accompanied by a higher resource
footprint.

The wait mode of both worker pools is set to WaitSome (see section 5.3.3).
Because the system call limit and the timeout setting belonging to this wait
mode greatly determines the behaviour of the web server, two examplary
configurations are benchmarked: The ’normal’ setting uses a system call
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limit of 1000 and a timeout of 14ms, whereas the ’small’ setting uses a limit
of 400 system calls and a timeout of 4ms. These settings define how long
the cluster call client waits in the kernel after delivering aggregated system
calls.

The first test conducted examined the throughtput of each model for a
given number of parallel requests. The results are illustrated in figure 6.3.
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Figure 6.3: Cluster calls perform similar to other synchronous I/O mod-
els, but highly depend on proper wait mode configuration. The
asynchronous model outperforms all other models.

Although the thread pool model offers slightly better throughput (up to 5%)
if only a few requests are served concurrently, the asynchronous model
offers the highest throughput in the overall picture. On average it reaches
about 6% more throughtput for every reading than the best of the other
models. The dedicated thread model shows the worst performance of the
conventional thread models for a low request concurrency (about 28% less
throughput than the thread pool model) but catches up with the thread pool
model for higher values of concurrency.

The overall trend for the conventional thread models is very similar. The
throughtput increases up to a request concurrency of 400, reaching 11350
for the I/O completion model and 9970 for the thread pool model, and then
slowly declines down to 9372 and 8335 requests per second respectively
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at 2000 concurrent requests. While the dedicated thread pool model has
a peak-throughput (at 400) that is about 450 requests per second higher
than that of the thread pool model, it serves about 1000 requests less at a
concurrency of 2000.

As the benchmark shows cluster calls perform similar to conventional syn-
chronous I/O models, although they employ much less kernel-managed
threads. The most noticeable difference however is the dramatically re-
duced throughput for small concurrency values. This reduction is a direct
effect of the wait mode configuration. If not enough requests arrive at the
server, the wait mode’s timeout determines how long the client waits in the
kernel (for finishing NtRemoveIoCompletion system calls, i.e. new requests).
This of course, has a tremendous impact on the number of requests that
can be served within a defined period of time. In the worst case, every
single system call made by a fiber needs to timeout before request pro-
cessing in user-mode can continue. On the other hand, as soon as the
system call limit defined in the wait mode can be satisfied through a suffi-
cient high load on the server, cluster calls can compete with conventional
synchronous models. Consequently, the normal cluster call model needs
a higher server load (>1000 parallel requests) than the small cluster call
model (>400) to catch up. But then the peak-throughput for the small clus-
ter call model for example is practically the same as for the dedicated
thread model (10475) and thereby outperforms the thread pool model in
this regard. An important observation is that the normal cluster call model
outperforms the small cluster call model by an average of about 200 re-
quests per second for concurrency values higher than its wait mode limit.

The total processing times and latencies for each model are summarized
in table 6.5. The total processing time is not necessarly the time that
is needed by the server to build the reply, but only measures the time
between the client’s connection and the receiving of the last reply byte.
Therefore, the total processing time also includes the latency.

While the asynchronous model offers the best overall characteristics, the
dedicated thread model performs best in the group of conventional syn-
chronous models when looking at the latency. The total processing time
however, is very similar to that of the thread pool model. The thread pool
model generally suffers from a high latency that mostly determines its pro-
cessing time. The cluster call models again show worse characteristics for
concurrency values below the limit configured in their wait mode. Apart
from that, each configuration performs in its optimal range (small: 400 -
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Request concurrency
Model 1 400 800 1200 1600 2000
Dedicated thread 0 38/22 79/49 125/66 177/100 239/148
Thread pool 0 40/29 79/69 125/113 182/170 225/215
I/O completion 0 35/18 75/38 113/58 165/89 212/104
Cluster call 98/31 99/33 101/38 126/93 175/131 225/165
Cluster call (small) 98/31 38/22 80/57 127/93 180/122 232/150

Table 6.5: Total processing time/latency (ms): Processing time similar for
all models. Cluster calls suffer from wait mode configuration at
the beginning. Latency is best in asynchronous model. Cluster
calls generally offer better latency than the thread pool model.

1000 / normal: 1000 - 2000) similar or even better than the conventional
synchronous models. Typically, the latency lies between the dedicated
thread model and the thread pool model, while the processing time tends
to the better one. The higher throughput (and lower processing times) of
the normal cluster call model for high concurrency values compared to the
small configuration however come at the expense of a slightly higher la-
tency.

Thread Pool Cluster Call
I/O

Completion
Cluster Call

(small)
Dedicated

Thread

User (ms) 1.524 1.438 1.602 2.110 4.992

Kernel (ms) 2.844 3.773 3.899 5.656 15.156
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Figure 6.4: CPU time (ms): The dedicated thread model consumes dra-
matically more CPU time than the other models. Cluster calls
however are competitive.

The benchmark also examined the CPU time needed for each model to
process 200000 requests at a concurrency of 2000. The CPU usage is an
important factor in regard to scalability. The results are illustrated in figure
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6.4. The measurements show that the dedicated thread model needs no-
ticeable more CPU time to achieve its throughput and latency compared
to the other models. This is caused by the overhead of continuous thread
creation and termination. This clearly limits the scalability of this model.
In addition, the high number of needed threads is also a limiting factor,
considering the amount of process and system resources consumed. In
fact, the dedicated thread model cannot sustain higher concurrencies than
measured by this benchmark because of the address space used by the
thread stacks (default stack size in 32 bit address space).

Cluster calls show similar CPU usage than the other more efficient thread
models. The test however underlines the previous measurements in that
the small configuration performs worse for high concurrency values. This
is a direct result of the smaller batch sizes, which lead to less per-system
call overhead reduction.

A last aspect examined by the benchmark is the amount of system calls
that can be saved through the use of cluster calls. To process 200000
requests the fibers make a total of 1401025 system calls (about 7 calls
per request). In its optimal range (400 - 1000) the small configuration can
reduce this number to an average of only 3572 real system calls. This
results in an cluster call length of 391 aggregated system calls, which
approximately corresponds to the wait mode setting (400). The normal
configuration on the other hand can even further reduce the amount of
real system calls to an average of about 1589 in its optimal range (1000 -
2000), which leads to a batch size of 883 aggregated system calls. This
number is slightly smaller than the wait mode setting (1000) and is caused
by the timeout of 14ms. Nevertheless, the higher system call limit allows
to benefit from fluctuations in the system call processing speed. To sum
up, both configuration allow to save more than 99% of kernel boundary
crossings (normal: 99,89%; small: 99,75%).

6.4 Discussion

The overhead benchmarks show that after the high initial overhead, clus-
ter calls are able to reduce the per-system call overhead by up to 58%.
However, the worker pool configuration plays an important role and highly
determines the efficiency. The measurements reveal that the current im-
plementation performs poorly if parallel execution of system calls is done
through the use of multiple CPU cores. Although cluster calls are still able
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to reduce the per-system call overhead, the average reduction for these
scenarios is noticeably worse. This leads to the conclusion that the cur-
rent implementation shares too many data structures between CPUs and
that even the lock-free atomic operations used to manipulate those data
structures are too costly in this context (every system call needs up to
three atomic operations, depending on the worker pool configuration and
batch size). The fluctuations in the measurements for the parallel scenar-
ios are most probably also caused by this intertwined nature of operation.
This can become a problem in regard to scalability to future many-core
architectures, where it is feasible to spread a worker pool over potentially
hundreds of CPU cores.

The overhead benchmark also shows that ff the asynchronous execution
of system calls is needed and the expected batch size is high, it is a good
idea to shift the system call processing to a dedicated core. This con-
figuration performs good in regard to the overall overhead reduction and
enables the concurrent execution of user-mode code through one or more
cluster call clients.

The server benchmarks reveal that cluster calls are a competitive thread
model for server type applications that use synchronous I/O. They offer
similar throughput like the dedicated thread model or the thread pool model
and generally tend to the better one for different request concurrencies.
The latency in addition lies between the one offered by the conventional
synchronous models. Cluster calls also show good scalability in terms
of CPU usage and consume less resources (especially threads) than its
synchronous competitors. The evalutation however also shows that the
performance is highly dependend on a proper worker pool configuration.
This is especially the case for the wait mode settings. Depending on the
requirements of the server application wrong settings can lead to perfor-
mance problems if the request concurrency falls below the specified limit.
In the current implementation cluster calls therefore need careful planning
and work best if the server load is constant and predictable.

6.5 Summary

In this chapter the performance of cluster calls was examined. The chapter
started with a brief outline of the evaluation platform and then presented re-
sults of the overhead and server benchmarks. The examinations revealed
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that cluster calls can reduce the per-system call overhead by up to 58%
and save over 99% of kernel boundary crossing in a server application. In
addition, the evaluation showed that the hybrid thread model can compete
with conventional synchronous thread models in terms of throughput, la-
tency and CPU usage. Nevertheless, more work is needed to optimize the
current implementation in regard to multi-core performance. The strong
dependency on proper configuration for good performance can also lead
to problems in real world scenarios.



Chapter 7

Conclusion

The main objective of this work was to reduce the per-system call over-
head of the traditional system call interface through the use of system call
aggregation. For that purpose, a new mechanism named cluster calls was
presented. Cluster calls take the advantages of system call batching and
exploit the parallelism of server applications by leveraging a hybrid thread
model to overcome the disadvantages (like serial execution) of previous
solutions. Cluster calls also expose various new features for application
optimization like core specialization and system call prioritization.

Although the current implementation needs further improvement, the eval-
uation showed that the main objective could be achieved. Cluster calls are
capable of reducing the per-system call overhead by up to 58%. Further-
more, the combination of system call aggregation and hybrid thread model
can avoid over 99% of all kernel boundary crossings in a typical real world
server application. This allows cluster calls to compete with conventional
server thread architectures based on synchronous I/O in terms of through-
put, latency and CPU usage.

7.1 Future Work

Future systems tend to have far more cores than computers available to-
day (e.g. than the evaluation platform). Windows Server 2008 R2 already
scales up to 256 cores and it can be expected that this number will rise
in the future. A software’s scalability to many-core architectures therefore
plays an increasing role especially in the area of server applications. The
evaluation however showed that the current implementation of cluster calls
needs improvement in this regard.

63
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Another interesting area for future work lies in the enhancement of the wait
logic. The current implementation relies to much on proper configuration
and thereby limits the use of cluster calls in practice. A possible solution
might be to dynamically adapt the wait mode settings to the current server
load by measuring the rate of system call completions. Future research is
needed to evaluate such mechanisms.

Cluster calls expose user-level threading to Windows applications and
thereby allow developers in principle to customize the threading mecha-
nisms to fit the application. Unfortunately, the current version of the cluster
call user-mode library does not offer a possiblity to for example replace the
integrated round robin scheduler. This functionality could be integrated into
a future version of the library. Furthermore, an interface for the configura-
tion of the system call redirection logic is needed.

Another improvement of the user-mode library would be to replace fibers
as scheduling entities with more advanced user-level threads (see section
2.3.4) and to expose a more complete user-mode threading package that
includes further functionality (e.g. more synchronization mechanisms).
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