
'

&

$

%

Analysis of the Android
Architecture

Studienarbeit
von

Stefan Brähler

an der Fakultät für Informatik

Erstgutachter: Prof. Dr. Frank Bellosa

Betreuende Mitarbeiter: Dr. Jan Stöß, Dipl.-Inform. Konrad Miller

Bearbeitungszeit: 2. Juni 2010– 6. Oktober 2010

KIT – Universität des Landes Baden-Württemberg und nationales Forschungszentrum in der Helmholtz-Gemeinschaft www.kit.edu

ii

Deutsche Zusammenfassung

Die vorliegende Studienarbeit beschäftigt sich mit dem Android Betriebsystem
für mobile Systeme. Die Arbeit stellt das System grundsätzlich vor und zeigt an
einigen Stellen Besonderheiten und spezielle Anpassungen von Android auf.

Als Betriebsystem für mobile Systeme wie Smartphones und Tablets liegen bei
Android Schwerpunkte auf Energieeffizienz und Energieverwaltung. Diese Schwer-
punkte treten an vielen Stellen in den Vordergrund bei Designentscheidungen und
prägen daher das System sehr stark.

Android basiert auf Linux und verschiedenen typischen Bibliotheken und Diens-
ten im Linux Umfeld auf, z.B. libSSL, FreeType und SQLite. Diese Infrastruktur
bildet die Basis für eine Laufzeitumgebung in der Java Programme ausgeführt
werden. Die Laufzeitumgebung Dalvik führt modifizierte Java class Dateien aus,
wobei jedes Programm in einer eigenen Dalvik Instanz in einem eigenen Prozess
läuft. Dalvik ist spezialisiert und optimiert auf die besonderen Gegebenheiten und
Limitierungen von mobilen Systemen, wie begrenzter Speicherplatz und Energie-
bedarf.

Anwendungen in Android sind aus verschiedenen Komponenten aufgebaut,
wobei die einzelnen Komponenten klar getrennte Aufgabenbereiche haben. Diese
Modularisierung erlaubt es, daß sich Anwendungen bestimmte Komponenten teilen
können und daß einzelne Komponenten im System ausgetauscht werden können.
Alle Anwendungen sind voneinander getrennt und können im Normalfall nicht auf
Daten anderer Anwendungen zugreifen.

In den Kernel sind einige Änderungen eingeflossen die den Android Ker-
nel hauptsächlich um neue Funktionen in Bereichen der Energieverwaltung und
Speicherverwaltung erweitern. Die weitreichenste Änderung betrifft die Energie-
verwaltung in Form der neu eingeführten wake locks, welche es erlauben, dem
System bestimmte Schlaf- und Ruhezustände vorzuenthalten. Weiterhin sind neue
Treiber und Anpassungen für die Android Infrastruktur in den Kernel gelangt.

Für die Anwendungsentwicklung stehen eine Vielzahl von Programmierschnitt-
stellen bereit, welche viele Java Standard Schnittstellen abdecken und teilweise
erweitern. Android bietet weitreichende Netzwerkunterstützung und ein erweiter-
bares Framework für verschiedenste Medienformate. Zur Datenspeicherung und

iii

iv DEUTSCHE ZUSAMMENFASSUNG

Datenverwaltung stehen sowohl normale Dateien als auch SQLite Datenbankdatei-
en samt Mitteln zur Sicherung von Daten und Einstellungen zur Verfügung.

Um die Entwicklungsarbeit zu erleichtern, gibt es eine Vielzahl von Werkzeu-
gen die in einem Software Development Kit (SDK) mitgeliefert werden. Zu diesen
Werkzeugen gehören u.a. ein Emulator, ein Eclipse Plugin und eine Debug Shell
samt Debug Monitor. Zum Testen und Debuggen gibt es sowohl Werkzeuge, als
auch ein Instrumentation Framework und angepasste JUnit Tests.

Hiermit erkläre ich, die vorliegende Arbeit selbstständig verfasst und keine anderen
als die angegebenen Literaturhilfsmittel verwendet zu haben.

I hereby declare that this thesis is a work of my own, and that only cited sources
have been used.

Karlsruhe, 6. Oktober 2010

Stefan Brähler

v

vi DEUTSCHE ZUSAMMENFASSUNG

Contents

Deutsche Zusammenfassung iii

1 Introduction and overview of Android 3
1.1 Structural overview . 4
1.2 Brief version history . 5

2 Application anatomy 7
2.1 Processes & threads . 7
2.2 Applications & tasks . 8
2.3 Application internals . 8

2.3.1 AndroidManifest.xml . 9
2.3.2 Activities . 9
2.3.3 Intents, Intent filters and receivers 10
2.3.4 Content provider . 10
2.3.5 Background activities . 11
2.3.6 Application lifetime & states 11

2.4 RPC . 13
2.5 Application security . 14
2.6 Native applications . 15

3 Dalvı́k VM 17
3.1 Design requirements . 17
3.2 General & file optimizations . 18

3.2.1 Byte code format . 19
3.2.2 Install time work . 20

3.3 Optimizations of memory allocation and usage 21
3.3.1 Zygote . 21
3.3.2 Garbage collection . 21

3.4 JIT . 22
3.4.1 Types of JITs & Android’s JIT 22
3.4.2 Future of Android’s JIT 23

1

2 CONTENTS

4 Power management & kernel 25
4.1 Differences to mainline . 25

4.1.1 Wake locks . 25
4.1.2 Power manager . 26
4.1.3 Memory management 27
4.1.4 Other changes . 27

4.2 Device & platform support . 28

5 Application Framework APIs 29
5.1 APIs . 29

5.1.1 User interface . 30
5.1.2 Media framework . 31
5.1.3 Network . 31
5.1.4 Storage & backup . 32
5.1.5 Other APIs . 33

6 Testing & debug 35
6.1 Tools . 35
6.2 Instrumentation & JUnit tests . 36

6.2.1 JUnit tests . 37
6.2.2 Instrumentation tests . 38
6.2.3 Assert classes . 39
6.2.4 Mock object classes . 40

7 Summary 41
7.1 Outlook . 42

Bibliography 43

Chapter 1

Introduction and overview of
Android

As smartphones and tablets become more popular, the operating systems for those
devices become more important. Android is such an operating system for low
powered devices, that run on battery and are full of hardware like Global Positioning
System (GPS) receivers, cameras, light and orientation sensors, WiFi and UMTS
(3G telephony) connectivity and a touchscreen. Like all operating systems, Android
enables applications to make use of the hardware features through abstraction and
provide a defined environment for applications.

Unlike on other mobile operating systems like Apple’s iOS, Palm’s webOS or
Symbian, Android applications are written in Java and run in virtual machines. For
this purpose Android features the Dalvik virtual machine which executes it’s own
byte code. Dalvik is a core component, as all Android user applications and the
application framework are written in Java and executed by Dalvik. Like on other
platforms, applications for Android can be obtained from a central place called
Android Market.

The platform was created by Android Inc. which was bought by Google and
released as the Android Open Source Project (AOSP) in 2007. A group of 78
different companies formed the Open Handset Alliance (OHA) that is dedicated
to develop and distribute Android. The software can be freely obtained from a
central repository [12] and modified in terms of the license which is mostly BSD
and Apache. [11, 8, 6, 7]

The development of Android takes place quickly, as a new major release
happens every few months (see section 1.2). This leads to a situation where
information about the platform becomes obsolete very quickly and sources like
books and articles can hardly keep up with the development. Sources that keep up
with the pace are foremost the extensive SDK documentation, documentation in
and the source code itself as well as blogs.

3

4 CHAPTER 1. INTRODUCTION AND OVERVIEW OF ANDROID

1.1 Structural overview
The Android software stack as shown in figure 1.1 can be subdivided into five
layers: The kernel and low level tools, native libraries, the Android Runtime, the
framework layer and on top of all the applications.

Figure 1.1: Android system architecture. Green items are written in C/C++, blue
items are written in Java and run in the Dalvik VM. Image taken from [22, What is
Android?].

The kernel in use is a Linux 2.6 series kernel, modified for special needs in
power management, memory management and the runtime environment. Right
above the kernel run some Linux typical daemons like bluez for Bluetooth support
and wpa supplicant for WiFi encryption.

As Android is supposed to run on devices with little main memory and low
powered CPUs, the libraries for CPU and GPU intensive tasks are compiled to
device optimized native code. Basic libraries like the libc or libm were developed
especially for low memory consumption and because of licensing issues on Android.
In this layer the surface manager handles screen access for the window manager
from the framework layer. Opposing to other frameworks, the media framework

1.2. BRIEF VERSION HISTORY 5

resides in this layer, as it includes audio and video codecs that have to be heavily
optimized.

The Android Runtime consists of the Dalvik virtual machine and the Java core
libraries. The Dalvik virtual machine is an interpreter for byte code that has been
transformed from Java byte code to Dalvik byte code. Dalvik itself is compiled to
native code whereas the the core libraries are written in Java, thus interpreted by
Dalvik.

Frameworks in the Application Framework layer are written in Java and pro-
vide abstractions of the underlying native libraries and Dalvik capabilities to
applications. Android applications run in their own sandboxed Dalvik VM and
can consist of multiple components: Activities, services, broadcast receivers and
content providers. Components can interact with other components of the same or
a different application via intents.

1.2 Brief version history
Android is a young platform and the development is very rapid, as new major
releases come out every few months. The following list shows the major Android
versions and bigger changes in each version. More detailed information about
the changes in each Android version can be found in [22, Android x.y Platform
Highlights].

1.1 – February 2009 – Initial release

1.5 (Cupcake) – April 2009 – User Interface (UI) updates for all core elements,
accelerometer-based application rotations, on-screen soft keyboard, video
recording & playback, Bluetooth (A2DP and AVCRP profiles), based on
kernel 2.6.27

1.6 (Donut) – September 2009 – Gesture support, support for higher screen reso-
lutions (WVGA), text-to-speech engine, Virtual Private Network & 802.1x
support, based on kernel 2.6.29

2.0 (Éclair) – October 2009 – Major UI update, Bluetooth 2.1 (new OPP and
PBAP profiles), media framework improvements, Microsoft Exchange sup-
port, based on kernel 2.6.29

2.1 (Éclair) – January 2010 – Minor update, UI tweaks, based on kernel 2.6.29

2.2 (Froyo) – May 2010 – Performance optimizations, just in time compiler, teth-
ering and WiFi hotspot capability, Adobe Flash support, enhanced Microsoft
Exchange support, OpenGL ES 2.0 support, based on kernel 2.6.32

6 CHAPTER 1. INTRODUCTION AND OVERVIEW OF ANDROID

This study thesis is based on Android version 2.2. which is the latest release as of
writing.

Chapter 2

Application anatomy

Running applications is a major goal of operating systems and Android provides
several means on different layers to compose, execute and manage applications.
For this purpose Android clearly differentiates the terms application, process, task
and thread. This chapter explains each term by itself as well as the correlation
between the terms.

2.1 Processes & threads
Five types of processes are distinguished in Android in order to control the behavior
of the system and it’s running programs. The various types have different impor-
tance levels which are strictly ordered. The resulting importance hierarchy for
process classes looks like this (descending from highest importance, from [22, Ap-
plication Fundamentals]):

Foreground A process that is running an Activity, a Service providing the Activity,
a starting or stopping Service or a currently receiving BroadcastReceiver.

Visible If a process holds a paused but still visible Activity or a Service bound to
a visible Activity and no foreground components, it is classified a visible
process.

Service A process that executes an already started Service.

Background An Activity that is no longer visible is hold by a background process.

Empty These processes contain no active application components and exists only
for caching purposes.

If the system is running low on memory, the importance of a process becomes
a crucial part in the system’s decision which process gets killed to free memory.

7

8 CHAPTER 2. APPLICATION ANATOMY

Therefore empty processes are killed most likely followed by background processes
and so on. Usually only empty and background processes are killed so the user
experience stays unaffected. The system is designed to leave everything untouched
as long as possible that is associated with a visible component like an Activity. [24]

Processes can contain multiple threads, like it is usual on Linux based systems.
Most Android applications consist of multiple threads to separate the UI from input
handling and I/O operations or long running calculations, hence the underlying
processes are multi-threaded. The threads used on application level are standard
Java threads running in the Dalvik VM.

2.2 Applications & tasks
Android applications are run by processes and their included threads. The two
terms task and application are linked together tightly, given that a task can be seen
as an application by the user. In fact tasks are a series of activities of possibly
multiple applications. Tasks basically are a logical history of user actions, e.g.
the user opens a mail application in which he opens a specific mail with a link
included which is opened in a browser. In this scenario the task would include two
applications (mail and browser) whereat there are also two Activity components of
the mail application and one from the browser included in the task. An advantage
of the task concept is the opportunity to allow the user to go back step by step like
a pop operation on a stack.

2.3 Application internals
The structure of an Android application is based on four different components,
which are: Activity, Service, BroadcastReceiver and ContentProvider. An applica-
tion does not necessarily consists of all four of these components, but to present a
graphical user interface there has to be at least an Activity.

Applications can start other applications or specific components of other appli-
cations by sending an Intent. These intents contain among other things the name of
desired executed action. The IntentManager resolves incoming intents and starts
the proper application or component. The reception of an Intent can be filtered by
an application.

Services and broadcast receivers allow applications to perform jobs in the
background and provide additional functionality to other components. Broadcast
receivers can be triggered by events and only run a short period of time whereas a
service may run a long time.

The compiled code of the application components and additional resources

2.3. APPLICATION INTERNALS 9

like libraries, images and other necessary data is packed into a single .apk file that
forms the executable Android application.

2.3.1 AndroidManifest.xml

All Android Dalvik applications need to have a XML document in the application’s
root directory called AndroidManifest.xml. This document is used by various
facilities in the system to obtain administrative and organizational information
about the application.

In the manifest file 23 predefined element types are allowed to specify among
other things the application name, the components of the application, permissions,
needed libraries and filters for intents and broadcasts. During development the
manifest file holds the control information for instrumentation support (see section
6.2).

Some of the elements in the manifest file are discussed in more detail in other
chapters, where it matches the context. Detailed information on all elements can
be found at [22, The AndroidManifest.xml File].

2.3.2 Activities

An Activity is a single screen of an application like a browser window or a settings
page. It contains the visual elements that present data (like an image) or allow user
interaction (like a button). Each application can have multiple activities whereat
the transition between the different activities is initiated via intents.

All activities are subclasses from android.app.Activity and their life cycle is
controlled by the onXYZ() methods. This concept is needed by Android’s way of
handling multitasking and helps dealing with low memory situations (see section
2.3.6 for more detailed information about the life cycle). The main functions are:

onCreate() The initial method to set up an Activity.

onDestroy() The counterpart to onCreate().

onResume() This method is called if the Activity is visible in the foreground and
ready to get and process user input.

onPause() The method has to quickly save uncommitted data and stop CPU inten-
sive work to prepare the Activity to lose the focus and going to background.

onRestart() This method has to restore a previously saved state of the Activity, as
it is called after an activity was completely stopped and is needed again.

10 CHAPTER 2. APPLICATION ANATOMY

2.3.3 Intents, Intent filters and receivers

Unlike ContentProviders, the other three component types of an application (ac-
tivities, broadcast receivers and services) are activated through intents. An Intent
is an asynchronously sent message object including the message that should be
transported.

The contained message either holds the name of the action that should be per-
formed, or the name of the action being announced. The former applies to activities
and services, the latter to broadcast receivers. The Intent class has some actions
like ACTION EDIT and ACTION VIEW or for broadcasts ACTION TIME TICK
included already. In addition to the action, the message contains an Uniform Re-
source Identifier (URI) that specifies the data used for the given action. Optionally
the Intent object can hold a category, a type, a component name, extra data and
flags. [22, Intents and Intent Filters]

Android utilizes different hooks in the application components to deliver
the intents. For an activity, it’s onNewIntent() method is called, at a service
the onBind() method is called. Broadcast actions can be announced using Con-
text.sendBroadcast() or similar methods. Android sends the Intent to the onRe-
ceive() method of all matching registered receivers.

Intents can be filtered by an application to specify which intents can be pro-
cessed by the application’s components. The list of filters is set in the application’s
manifest file, thus Android can determine the allowed intents before starting an
application.

2.3.4 Content provider

The data storage and retrieval in Android applications is done via content providers.
These providers can also be used to share data between multiple applications,
given that the involved applications own the correct permissions to access the data.
Android already has default providers for e.g. images, videos, contacts and settings
which can be found in the android.provider package.

An application queries a ContentResolver which returns the appropriate Con-
tentProvider. All providers are accessed like databases with an URI to determine
the provider, a field name and the data type of this field. Applications only access
content providers via a ContentResolver, never directly. If an application wants
to store data that does not have to be shared, it can use a local SQLiteDataBase.
Other available storage facilities are explained in section 5.1.4.

2.3. APPLICATION INTERNALS 11

2.3.5 Background activities
Applications may need to perform some supporting operations in the background
or without a graphical interface at all. Android provides the two classes Broad-
castReceiver and Service for these purposes. If only a short operation has to be
performed, the BroadcastReceiver is preferred and for long running jobs a Service
is preferred.

Both classes do not necessarily imply that the background component runs as
a thread or even in it’s own process, hence Android does not enforce this kind of
behavior. In order not to freeze a running application, the service or broadcast
receiver usually is running in it’s own thread, otherwise Android tends to kill such
an application as it seems not responsive.

The BroadcastReceiver is activated through the onReceive() method and gets
invalidated on return from this method. This makes it necessary to only use
synchronous methods in a receiver. A broadcast normally is unordered and sent
to all matching receivers at the same time, but it can be ordered too. In this case
Android sends the broadcast only to the one receiver at a time. This receiver runs
as usual and can forward a result to the next receiver or it can even abort the whole
broadcast.

A Service allows an application to perform long running tasks in background
and provide some of the application’s functionality to other applications in the
system. A service can be used in two ways, it is either started with one command
or started and controlled by an incoming connection that makes use of Remote
Procedure Calls (RPC, see section 2.4).

Both receiver and service have to be announced in the application manifest
file to allow Android to determine the service’s or receiver’s class even if the
application is not running.

2.3.6 Application lifetime & states
The state an Android application is in, is determined by the state of it’s components,
most importantly it’s activities. As the application components alter their states,
the application’s underlying process type is adjusted.

On application start the individual components get started and in case of an
activity the following hooks are called sequential: onCreate(), onStart(), onRe-
sume(). The first hook is only called once in an activities lifetime, but the other
two methods can get called more often. If an activity loses the focus, the onPause()
method is called and if the activity is no longer visible, onStop() is called. Before
deleting an activity, it’s onDestroy() method is run which ends the activity lifetime.

Each method gets called on a special event to allow the activity to preserve it’s
state or start and restart correctly. The following list describes the purpose of these

12 CHAPTER 2. APPLICATION ANATOMY

hooks and how the causing events change the application state. Figure 2.1 is the
graphical representation of this list.

onCreate() This method is called for initialization and static set up purposes. It
may get passed an older state for resuming. The next method is always
onStart().

onRestart() After an activity is stopped and about to be started again, this hook is

Figure 2.1: Life cycle graph of an Activity. The graph for a Service is similar.
From [22, Application Fundamentals].

2.4. RPC 13

called and after it onStart().

onStart() The application process type changes to visible and the activity is about
to be visible to the user, but it’s not in the foreground.

onResume() The activity has the focus and can get user input. The application
process type is set to foreground.

onPause() If the application loses the focus or the device is going to sleep, this
hook is called and the process type is set to visible. After running this hook,
the system is allowed to kill the application at any time. All CPU consuming
operations should be stopped and unsaved data should be saved. The activity
may be resumed or get stopped.

onStop() The activity is no longer visible, the process type is set to background
and the application may be killed at any time by the system to regain memory.
The activity is either going to get destroyed, or restarted.

onDestroy() The last method that is called in an activity right before the system
kills the application or the application deletes the activity. The application
process may be set to empty if the system keeps the process for caching
purposes.

For a service, the lifetime is simpler than the one of an activity, as the onRe-
sume(), onPause() and onStop() hooks do not exist. For interactive services, there
are the onBind(), onUnbind() and onRebind() hooks that are called to start, stop
and restart a service. The process type alters between foreground at creation and
deletion time and service at run time. Broadcast receivers only have the onReceive()
hook which runs at foreground process importance.

If an activity needs to save it’s state to present the user the same exact state the
activity was in when it was left, the onSaveInstanceState() method can be used for
this purpose. This hook is called before the onPause() hook is called and allows to
save the dynamic data as key-value pairs in a Bundle. The saved state object can
be passed to onCreate() and onRestoreInstanceState() to restore the state of the
activity. [24, 22, Application Fundamentals]

2.4 RPC
Android has a Common Object Request Broker Architecture (CORBA) and Com-
ponent Object Model (COM) like lightweight RPC mechanism and brings it’s
own language, AIDL (Android Interface Definition Language). AIDL uses proxy
classes to pass messages between the server and the client. The aidl tool creates

14 CHAPTER 2. APPLICATION ANATOMY

Java interfaces from the interface definition which have to be available at the client
as well as at the server.

Figure 2.2: Android RPC class diagram showing the user space design of the
mechanism. From [22, Application Fundamentals].

The created interface has an abstract inner class called Stub which has to
be extended and implemented by the client and the server like shown in figure
2.2. If the server provides a Service, it has to return an instance of the interface
implementation at it’s onBind() method. Only methods are allowed in AIDL and
all of them are synchronous. The mechanism is supported by the kernel’s binder
driver which is described in section 4.1.4.

2.5 Application security
The security model of Android heavily depends on the multi-user capabilities of
the underlying Linux. Each application runs with it’s own unique user id and in
it’s own process. All Dalvik applications run in a sandbox that by default prohibits
e.g. communication with other processes, access to others data, access to hardware
features like GPS or camera and network access.

Opposing to platforms with native binary executables, Android makes it easy
to enforce a certain application behavior, as it’s application VM Dalvik directly

2.6. NATIVE APPLICATIONS 15

controls code execution and resource access. Platforms like iOS, webOS, Symbian
or MeeGo do not have this opportunity, thus their sandboxing systems are based on
means on kernel-, filesystem- or process-level and some of these means are used
by Android too.

The basic sandbox denies all requests from an application unless the permis-
sions are explicitly granted. The permissions are set up in the application manifest
file with the <uses-permission> tag. That allows the system to ask the user or a
package manager upfront at install time for the application’s wanted permissions.
Once installed, an application can assume that all wanted permissions are granted.

During the installation process, an application is assigned with a unique and
permanent user id. This user id is used to enforce permissions on process and file
system level. An application can explicitly share files by setting the file mode to
be world readable or writeable, otherwise all files are private. If two applications
should share the same processes or use the same user id, both of the applications
have to be signed with the same certificate and ask for the same sharedUserId in
their manifest files.

The individual components of an application can also be restricted, to ensure
that only certain sources are allowed to start an activity, a service or send a broadcast
to the application’s receiver. A service can enforce fine grained permissions with
the Context.checkCallingPermission() method. Content providers can restrict
overall read and write access as well as grant permissions on an URI basis.

A more detailed analysis of the security model can be found in [28, 10] and
in [27] the opportunities of malware detection on Android are examined.

2.6 Native applications
Android applications that need more performance than the Dalvik VM can offer,
can be partitioned. One part stays in the Dalvik VM to provide the application UI
and some logic and the other part runs as native code. This way applications can
take advantage of the device capabilities, even if Android or Dalvik do not offer a
certain feature.

The native code parts of an application are shared libraries which are called
through the Java Native Interface (JNI). The shared library has to be included in
the applications .apk file and explicitly loaded. The code from the native library
is loaded into the address space of the application’s VM. This leads to a possible
security hole, as the security means described in section 2.5 do not cover native
code. [29, page 12 f.]

As of revision 4 of the Native Development Kit (NDK), the code can make use
of the ARMv5TE and ARMv7-A instructions sets. In addition the Vector Floating
Point (VFP) and Neon (Single Instruction Multiple Data instructions) extensions

16 CHAPTER 2. APPLICATION ANATOMY

can be used in ARMv7-A code.
Code used by native applications should only make use of a limited library set

that amongst others includes the libc, libm, libz and some 2D and 3D graphics
libraries (see [2]).

The performance speedup of native code over Dalvik interpreted code was
examined in [16]. The results show that there is a huge difference between native
and interpreted code, but the benchmarks were run on an early Android version
that e.g. did not offer a just in time compiler.

Chapter 3

Dalvı́k VM

Android applications and the underlying frameworks are almost entirely written
in Java. Instead of using a standard Java virtual machine, Android uses it’s own
VM. This virtual machine is not compatible to the standard Java virtual machine
Java ME as it is specialized and optimized for small systems. These small systems
usually only provide little RAM, a slow CPU and other than most PCs no swap
space to compensate the small amount of memory.

At this point Android tells itself apart from other mobile operating systems like
Symbian, Apple’s iOS or Palm’s webOS which use native compiled application
code. The main programming languages used there are C, C++ and objective C,
whereat e.g. webOS allows other mostly web based languages like JavaScript and
HTML as well.

The necessary byte code interpreter – the virtual machine – is called Dalvik.
Instead of using standard byte code, Dalvik has it’s own byte code format which is
adjusted to the needs of Android target devices. The byte code is more compact
than usual Java byte code and the generated .dex files are small.

3.1 Design requirements

As a multitasking operating system, Android allows every application to be multi-
threaded and also to be spread over multiple processes. For the sake of improved
stability and enhanced security each application is separated from other running
applications. Every application runs in a sandboxed environment in it’s own Dalvik
virtual machine instance. This requires Dalvik to be small and only add little
overhead.

Dalvik is designed to run on devices with a minimum total memory of just
64 MB of RAM. For better performance actual devices have more than 64 MB
installed. Of these 64 MB only about 40 MB remain for applications, libraries and

17

18 CHAPTER 3. DALVÍK VM

services. The used libraries are quite large and likely need 10 MB of RAM. Actual
applications only have around 20 MB left of the 64 MB of RAM. This very limited
amount of memory has to be used efficiently in order to run multiple applications
at once. [17]

There are two major areas to consider for minimizing the memory usage.
Firstly the application itself has to be as small as possible and secondly the memory
allocation of each application has to be optimized. In addition to the reduced usage
of valuable memory one gains faster application load times and less needed disk
storage.

Most importantly the power supply by battery and the used CPUs confine the
allowed and possible overhead for Dalvik. The typically used ARM CPUs only
provide fairly limited computational power and small caches.

3.2 General & file optimizations

Java applications for Dalvik get compiled like other Java programs with the same
compilers and mostly the same toolchain. Instead of compressing and packaging
the resulting class files into a .jar file, they are translated into .dex files by the dx
tool. These files include the Dalvik byte code of all Java classes of the application.
Together with other resources like images, sound files or libraries the .dex files are
packaged into .apk files.

In order to save storage space, .dex files only contain unique data. If multiple
class files share the same string, this string would only exist once in the .dex file
and the multiple occurrences are just pointers to this one string (see figure 3.1). The
same mechanism is used for method names, constants and objects which results in
smaller files with much internal “pointing”. The results of these means in terms of
file size can be seen in table 3.1.

System libraries Browser app Alarm clock app
Uncompressed 21445320 – 100% 470312 – 100% 119200 – 100%
Compressed Jar 10662048 – 50% 232065 – 49% 61658 – 52%
Dex file 10311972 – 48% 209248 – 44% 53020 – 44%

Table 3.1: Examples for file size reduction of .dex files. The file size is given in
bytes and the .dex files are not compressed. The data is taken from [17].

3.2. GENERAL & FILE OPTIMIZATIONS 19

Figure 3.1: .dex file structure. Constant pools from classes get merged into one
corresponded .dex file pool. From [17].

3.2.1 Byte code format

The Dalvik byte code is designed to reduce the number of necessary memory
reads and writes and increased code density compared to Java byte code. For this
purpose Dalvik uses it’s own instruction set with a fixed instruction length of 16
bit. Furthermore Dalvik is a register based virtual machine which among other
things reduces the needed code units and instructions. The given register width is
32 bit which allows each register to hold two instructions, 64 bit values are hold in
adjacent registers. Instructions shorter than 16 bit zero-fill the unused bits and pad
to 16 bit.

Dalvik knows 256 different op codes whereof 23 are unused in Android 2.2,
leading to an actual total op code number of 233. Optimizations of the byte code is
mostly done by the dexopt tool at installation time. [13, 15]

20 CHAPTER 3. DALVÍK VM

3.2.2 Install time work

For the start of an application, the associated .dex file has at least to be verified for
structural integrity. This verification can take some time and is needed only once,
as application files don’t change unless the application is updated or uninstalled.
Because of that, the verification process can be done either at the first startup
or during the installation or update process. In Android this verification process
is done at installation time, so that at all application startups later only e.g. a
checksum of the .dex file is needed to verify it.

Verification

The verification and optimization procedure is performed by the dexopt program.
To verify a .dex file, dexopt loads all classes of the file into a briefly initialized
VM and runs through all instructions in all methods of each class. This way
illegal instructions or instruction combinations can be found before the application
actually runs for the first time. Classes in which the verification process succeeded
get marked by a flag to avoid rechecking this class again. In order to check the .dex
files integrity, a CRC-32 checksum is stored within the file. [13]

Optimization

After the successful verification of a .dex file, it gets optimized by dexopt. The
optimizations aim at performance increase through reduced code size or reduced
code complexity. The optimization mechanisms heavily depend on the target
VM version and the host platform which makes it hard to run dexopt elsewhere
than on the host. The resulting code is unoptimized Dalvik byte code mixed with
optimized code using op codes not defined in the Dalvik byte code specification. If
necessary for the processor architecture endianness, the code is byte swapped and
aligned accordingly.

For code reduction dexopt prunes all empty methods and replaces them with a
no-operation op code. Inlining some very often called methods like String.length()
reduces the method call overhead and virtual method call indices get replaced by
vtable indices. Furthermore field indices get replaced by byte offsets and short
data types like char, byte and Boolean are merged into 32 bit form to save valuable
CPU cache space. If it is possible to pre-compute .dex file data, dexopt appends
the resulting data which reduces the CPU time needed by the executing VM later.

Both verification and optimization are limited to process only one .dex file at a
time which leads to problems at handling dependencies. If a .dex file is optimized,
it contains a list of dependencies which can be found in the bootstrap class path. In
order to guarantee consistency in case of exchanged .dex files, only dependencies

3.3. OPTIMIZATIONS OF MEMORY ALLOCATION AND USAGE 21

to .dex files in the bootstrap class path are allowed. This way the verification of
methods depending on external .dex files other than those in bootstrap will fail and
the related class will not be optimized. [13]

3.3 Optimizations of memory allocation and usage

In Dalvik there are four different kinds of memory to distinguish that can be
grouped to clean/dirty and shared/private. Typical data residing in either shared
or private clean memory are libraries and application specific files like .dex files.
Clean memory is backed up by files or other sources and can be pruned by the kernel
without data loss. The private dirty memory usually consists of the applications
heap and writeable control data structures like those needed in .dex files. These
three categories of different memory are quite common and no specialty of Dalvik.
[17]

3.3.1 Zygote

Shared dirty memory is possible through a facility of Dalvik called Zygote. It is a
process which starts at boot time and is the parent of all Dalvik VMs in the system.
The Zygote loads and initializes classes that are supposed to be used very often
by applications into it’s heap. In shared dirty memory resides e.g. the dex data
structures of libraries.

After the startup of the Zygote, it listens to commands on a socket. If a new
application starts, a command is sent to the Zygote which performs a standard
fork(). The newly forked process becomes a full Dalvik VM running the started
application. The shared dirty memory is “copy-on-write” memory to minimize the
memory consumption. [17]

3.3.2 Garbage collection

The garbage collector (GC) in Android runs in each VM separately, therefore each
VMs heap is garbage collected independently. The Zygote process and the concept
of shared dirty memory requires the GC data structures (“mark bits”) to not be
tied to the objects on the heap, but kept separate. If the mark bits would lie next
to the objects on the heap, a run of the GC would touch these bits and turn the
shared dirty memory into private dirty memory. In order to minimize the private
dirty memory the needed mark bits are allocated just before a GC run and freed
afterwards.

22 CHAPTER 3. DALVÍK VM

3.4 JIT
Dalvik was designed to be a simple interpreter without the capability to perform
Just In Time (JIT) compilations. Android 1.0 was announced explicitly without
a JIT, because it was seen as being too memory consuming and with a relatively
small performance boost. With the recent release of Android 2.2 the platform got a
JIT for ARM processors which should have a low memory footprint and provide a
notable performance boost.

Android applications often call native compiled and optimized libraries to
perform performance critical tasks which leads to only about 1

3
of all executed

code to be interpreted by the virtual machine. Therefore the achievable speedup is
limited and also depends heavily on the benchmarked application. [19]

3.4.1 Types of JITs & Android’s JIT
In the wide field of just in time compilers the method based and the trace based
JITs are especially interesting to Android. Method based JITs compile a whole
method to native code whereas trace based JITs only compile one call path. The
advantages and disadvantages of these two compiler categories are listed below:

Method based JIT

+ large optimization window

+ easy to sync JIT and interpreter at method boundaries

- waste of space and time on code that is not run often or not run at all

- high memory usage for compilation

- takes long time to benefit

Trace based JIT

+ no method boundaries for optimization

+ only “hot” code is compiled

+ at exceptions just rollback and start interpreter

- limited optimization window of trace

- much overhead if the transition between JIT and interpreter is expensive

- sharing code between CPUs or Threads is hard

3.4. JIT 23

Android’s JIT

Due to memory constrains the JIT used in Android is trace based and the trace
length is only 100 op codes short. [14] The JIT and the traditional interpreter are
tightly geared. In case of an exception in the code from the JIT, the interpreter
takes over, resets the state to the beginning of the trace and runs the code sequence
again without the JIT. This mechanism is extended to allow parallel execution of
JIT code and interpreted code to verify the JIT against the interpreter.

The Android JIT uses trace caches per process so that threads in the same
application share the trace cache. The cache size is configurable during build
time while it’s default is about 100 KB. In order to reduce overhead and increase
performance, the JIT is able to chain consecutive traces to avoid the need of
switching back to the interpreter.

The code generated by the JIT is either normal ARM code, Thumb or Thumb-2
code and in special cases the ARM VFP extensions are used for floating point
operations. The code model used by the JIT can be configured at build time and is
adjusted to the capabilities of the target device CPU. The Thumb-2EE instructions
are not used even though they are designed to accelerate code generated by JITs.
Android takes advantage of interleaving and rearranging byte code instructions to
optimize the performance which contradicts Thumb-2EE’s concept of accelerating
just single instructions. [19]

3.4.2 Future of Android’s JIT
The Android 2.2 release only offers a basic trace JIT which is bound to one
architecture and it is limited in it’s optimization options. In future versions of
Android the architecture support will be extended to e.g. x86 and the scope of
optimizations will be enlarged. The existing options will be fine tuned like e.g. the
trace length will be enlarged and whole methods might be in-lined.

Apart from platform specific enhancements the JIT itself could be supported
by persistent profiling information stored in the applications. Traces of frequently
used methods in system libraries could be stored permanently. These pieces
of code could also be generated by a method based JIT to obtain faster code.
Optimizations like this could be done in background while the device is not in use
and charging. [19]

24 CHAPTER 3. DALVÍK VM

Chapter 4

Power management & kernel

The kernel used in Android is a 2.6 series Linux kernel modified to fulfill some
special needs of the platform. The kernel is mostly extended by drivers, power
management facilities and adjustments to the limited capabilities of Android’s
target platforms. The power management capabilities are crucial on mobile devices,
thus the most important changes can be found in this area. [31]

Like the rest of Android, the kernel is freely available and the development
process is visible through the public Android source repository. [12] There are
multiple kernels available in the repository like an architecture unspecific common
kernel and an experimental kernel. Some hardware specific kernels for platforms
like MSM7xxx, Open Multimedia Application Platform (OMAP) and Tegra exist
in the repository too.

4.1 Differences to mainline
The changes to the mainline kernel can be categorized into: bug fixes, facilities to
enhance user space (lowmemorykiller, binder, ashmem, logger, etc.), new infras-
tructure (esp. wake locks) and support for new SoCs (msm7k, msm8k, etc.) and
boards/devices. [31]

The Android specific kernels and the mainline Linux kernel are supposed to
get merged in the future, but this process is slow and will take some time. [21]

4.1.1 Wake locks
Android allows user space applications and therefore applications running in the
Dalvik VM to prevent the system from entering a sleep or suspend state. This is
important because by default, Android tries to to put the system into a sleep or
better a suspend mode as soon as possible. Applications can assure e.g. that the

25

26 CHAPTER 4. POWER MANAGEMENT & KERNEL

screen stays on or the CPU stays awake to react quickly to interrupts. The means
Android provides for this task are wake locks.

Wake locks can be obtained by kernel components or by user space processes.
The user space interface to create a wake lock is the file /sys/power/wake lock
in which the name of the new wake lock is written. To release a wake lock, the
holding process writes the name in /sys/power/wake unlock. The wake lock can be
furnished with a timeout to specify the time until the wake lock will be released
automatically. All by the system currently used wake locks are listed in /proc/wake
locks.

The kernel interface for wake locks allows to specify whether the wake lock
should prevent low power states or system suspend. A wake lock is created by
wake lock init() and deleted by wake lock destroy(). The created wake lock can be
acquired with wake lock() and released with wake unlock(). Like in user space it is
possible to define a timeout for a wake lock. [23, Power Management]

The concept of wake locks is deeply integrated into Android as drivers and
many applications make heavy use of them. This is a huge stumbling block for the
Android kernel code to get merged into the Linux mainline code. [21]

4.1.2 Power manager

The PowerManager is a service class in the application framework that gives
Dalvik VM applications access to the WakeLock capabilities of the kernel power
management driver. Four different kinds of wake locks are provided by the Power-
Manager:

PARTIAL WAKE LOCK The CPU stays awake, even if the device’s power button
is pressed

SCREEN DIM WAKE LOCK The screen stays on, but is dimmed

SCREEN BRIGHT WAKE LOCK The screen stays on with normal brightness

FULL WAKE LOCK Keyboard and screen stay on with normal back light

Only the PARTIAL WAKE LOCK assures that the CPU is fully on, the other three
types allow the CPU to sleep after the device’s power button is pressed. Like kernel
space wake locks, the locks provided by the PowerManager can be combined with
a timeout. It is also possible to wake up the device when the wake lock is acquired
or turn on the screen at release. [22, PowerManager class overview]

4.1. DIFFERENCES TO MAINLINE 27

4.1.3 Memory management
The memory management related changes of the kernel aim for improved memory
usage in systems with a small amount of RAM. Both ashmem and pmem add a new
way of allocating memory to the kernel. Ashmem can be used for allocations of
shared memory and pmem allows allocations of contiguous memory.

ASHMEM The Anonymous/Android Shared Memory provides a named memory
block that can be shared across multiple processes. Other than the usual shared
memory, the anonymous shared memory can be freed by the kernel. To use ashmem,
a process opens /dev/ashmem and performs mmap() on it.

PMEM Physical Memory enables e.g. drivers and libraries to allocate named
physically contiguous memory blocks. This driver was written to compensate
hardware limitations of a specific SoC – the MSM7201A. [30]

Low memory killer The standard Linux kernel out of memory killer (oom killer)
utilizes heuristics and compute the process’ “badness” to be able to terminate the
process with the highest score in a low memory situation. This behavior can be
inconvenient to the user as the oom killer may close the user’s current application
when there are other processes in the system, that do not affect the user.

Android’s lowmemory driver starts early before a critical low memory situation
occurs and informs processes to save their state. If the low memory situation
worsens, lowmemory starts to terminate processes with low importance who’s state
was saved. The used importance levels can be found in section 2.1.

4.1.4 Other changes
In addition to the already described kernel changes, there are various other changes
that touch miscellaneous areas of the kernel. A few minor changes are described in
this section. [3]

binder Unlike in the standard Linux kernel, the IPC mechanism in Android’s
kernel is not System V compatible. The description in section 2.4 shows the
user space side of the IPC mechanism and the underlying concept. The kernel
side of the mechanism is based on OpenBinder (see [9]), thus focused on
being light weight. In order to enhance performance, the binder driver uses
shared memory to pass the messages between threads and processes. [4, 18]

logger Extended kernel logging facility with the four logging classes: main,
system, event and radio. The application framework uses the system class
for it’s log entries. [4]

28 CHAPTER 4. POWER MANAGEMENT & KERNEL

early suspend Drivers can make use of this capability to do necessary work, if a
user space program wants the system to enter or leave a suspend state. [23,
Power Management]

alarm “The alarm interface is similar to the hrtimer interface but adds support
for wake up from suspend. It also adds an elapsed realtime clock that can
be used for periodic timers that need to keep running while the system is
suspended and not be disrupted when the wall time is set.” [1]

4.2 Device & platform support
Android’s native platform is ARM, but there exist ports to other platforms like
MIPS and x86 as well. The number of ports grows as Android becomes more
and more popular. The list of supported devices grows steadily too, as there are
more and more Android powered devices on the market, especially smartphones
with ARM SoCs. Some of those device configurations can be found in the main
repository, while others are made available by manufacturers like HTC or Motorola.

Porting Android to a new architecture mostly means porting Dalvik, as the
Linux kernel is probably already running on the new platform. The core libraries
of Dalvik rely on other libraries like OpenSSL and zlib which have to be ported in
the first place. After that, the JNI Call Bridge has to be ported according to the C
calling conventions of the new architecture. The last step is porting the interpreter
which means implementing all Dalvik op codes. [23, Porting Dalvik]

Chapter 5

Application Framework APIs

The application framework of Android provides APIs in various areas like net-
working, multimedia, graphical user interface, power management and storage
access. The libraries in the framework are written in Java and run on top of the
core libraries of the Android Runtime (see figure 1.1). These core libraries utilize
and encapsulate optimized native system libraries like libc, libssl and FreeType.

The Application Framework provides managers for different purposes like
power management, resource handling, system wide notification and window
management. Applications are supposed to use the services of the managers and
not use the underlying libraries directly. This way it is possible for the managers
to enforce application permissions through the means of the sandbox permission
system (see section 2.5). The managers can ensure that an application is allowed to
e.g. initiate a phone call or send data over the network.

5.1 APIs

Given the vast number of APIs in Android, only a few parts are covered in this
section and some miscellaneous APIs are pictured briefly at the end of the section.
A comprehensive list of Android’s APIs can be found at [22, Package Index]

API levels

As the development of Android continues, new APIs are added and old APIs get
marked obsolete and are eventually erased. Each Android version has it’s own API
level and applications can define a minimum, maximum and preferred API level in
their manifest file. The API level changes between major as well as minor releases
of Android, as shown in table 5.1.

29

30 CHAPTER 5. APPLICATION FRAMEWORK APIS

Platform Version API Level
Android 2.2 8
Android 2.1 7

Android 2.0.1 6
Android 2.0 5
Android 1.6 4
Android 1.5 3
Android 1.1 2
Android 1.0 1

Table 5.1: The API levels of all Android versions. Data taken from [22, Android
API Levels].

5.1.1 User interface

The basis of a graphical user interface in Android is the View class. All visible
elements of a user interface and some invisible items are derived from this class.
Android provides standardized UI elements like buttons, text and video views or a
date picker. View items can be partitioned to a ViewGroup which allows applying
a layout to the views in the group.

In order to interact with the UI, the View class provides hook methods like
onClick(), onTouch() and onKey() which are called by the underlying framework.
UI events can also be received by listeners that provide the onXYZ() method and
are registered like e.g. the OnKeyListener.

In addition to the described UI elements, the framework provides menus and
dialogs. Menus can either be options menus that can be accessed via the menu
key, or they are context menus of a view. To inform the user or to obtain input,
an application can present a dialog. Android provides dialogs for date and time
picking, progress notification and a customizable general dialog with buttons.

For user notification exist three different mechanisms in Android. The most
intrusive one is the notification with a dialog which moves the focus to the dialog,
leaving the application in the background. The toast notification displays a text
on top of the current application that allows no interaction and disappears after a
given timeout. The status bar notification leaves the current application appearance
unaffected and puts an icon in the status bar. The toast notification as well as the
status bar notification can be utilized by background services. [22, User Interface]

5.1. APIS 31

5.1.2 Media framework
The media framework supports multiple audio, video and image data formats
and has a media player and an encoder built into Android. The number of data
formats can be extended, but as a minimum the following decodeable formats are
supported [22, Android Supported Media Formats]:

Image JPEG (encoder provided), PNG, GIF and BMP

Audio MP3, OGG Vorbis, MIDI, PCM/WAVE, AAC, AAC+ and AMR (encoder
provided)

Video H.263 (encoder provided), H.264 and MPEG-4

The MediaPlayer and MediaRecorder classes can be used to play back and
record the supported multimedia data. In addition to the player and recorder, the
android.media package includes specialized classes to play alarms and ring tones
or generate image thumbnails and set up the camera. [22, Audio and Video]

5.1.3 Network
Access to networks and especially the Internet is crucial for Android devices, as
many applications depend on network access. Most Android devices have multiple
technologies on board to gain network access. Smartphones at least have Internet
access via GPRS (2G telephony) or UMTS and usually WiFi is available too.

The ConnectivityManager allows applications to check the status of the differ-
ent access technologies and it informs applications via broadcasted intents about
connectivity changes. To make use of the network connection, Android provides a
broad range of packages and classes. [22, ConnectivityManager Class Overview]

java.net.* The standard Java network classes like sockets, simple HTTP and plain
packets

android.net.* Extended java.net capabilities

android.net.http.* SSL certificate handling

org.apache.* Specialized HTTP

android.telephony.* GSM & CDMA specific classes, send text message, signal
strength and status information

android.net.wifi WiFi configuration and status

32 CHAPTER 5. APPLICATION FRAMEWORK APIS

Bluetooth

Android’s Bluetooth APIs allows applications to search for other devices, pair
with them and exchange data. In order to use the Bluetooth capabilities, an
application needs to have the BLUETOOTH or BLUETOOTH ADMIN permission
in it’s manifest file granted. The Bluetooth API is located in the android.bluetooth
package.

The connection via a RFCOMM (RS-232 serial line via Bluetooth) compatible
BluetoothSocket is initiated by a local BluetoothAdapter and targeted to a remote
BluetoothDevice. Making the device visible for scans and pairing devices need
user interaction as the permission system asks for granting the needed permissions.
[22, 23, Bluetooth]

5.1.4 Storage & backup
Applications can store and retrieve their data in various ways [22, Data Storage]:

SharedPreferences A class that provides storage for key/value pairs of primitive
data types. The data can be shared between multiple clients in the same
process. All data can only be modified through an Editor object to ensure
consistency even if the application is terminated.

Internal/external storage If an application wants to make sure that no other
application or even the user can access saved data, it can write this data to
the internal storage. Files saved to the internal storage can be set up to allow
others to access the files. Files that are supposed to be shared and/or user
visible, can be stored to the external storage. Files in this storage area are
always publicly visible and accessible. Android allows the external storage
to be turned into an USB mass storage with full access to all files in this
storage area.

Database storage The SQLite database files behind all content providers are
available to applications as an application private database back end.

Network storage With network access available, Android applications can obtain
and store their data via sockets, HTTP connections and other means from
java.net.* and android.net.*.

Application data backup

From version 2.2 on Android provides a mechanism to backup preferences and
application data on a remote site – the cloud. Applications can request a backup
and Android automatically restores the data on an application reinstall, if the

5.1. APIS 33

application is installed on a new device or by request of the application. The
mechanism consists of three parts on the device: The backup agent, transport and
manager.

Applications can announce a backup agent in the manifest file and implement
it to provide hooks for the backup manager. If application data changes, the
application can inform the backup manager which may schedule a backup and
call the according backup agent hook. The backup mechanism does not allow
on demand read and write access to the backed up data as it’s always the backup
manager’s decision when to perform a restore or a backup.

The backup transport is responsible to transfer the data from or to the remote
site. There is no guarantee that the backup capability is available on a device as
the backup transport depends on the device manufacturer and the service provider.
Furthermore there is no security assurance for the data in the backup. [22, Data
Backup]

5.1.5 Other APIs
Supplementary to the already mentioned APIs, Android provides a wide range of
other APIs for many different areas. Some of those packages are listed below:

Location & Maps Applications can use the LocationManager and classes from
android.location to obtain the device’s location directly on demand or by a
broadcast. The external com.google.android.maps package provides mapping
facilities for applications. [25]

Search The system wide search on Android devices includes not only contacts,
web search and such, but can also be extended by applications to make
their content provider data searchable. The SearchManager provides unified
dialogs and extra functionality like voice search for all applications.

WebKit For browsing web pages, Android provides among other things a WebKit
based HTML renderer, a JavaScript engine (V8) and a cookie manager.
These facilities can be used by applications to provide browser functionality
inside the application.

Speech The android.speech package puts applications in the position to make use
of server side speech recognition services. A text-to-speech API provides
the means to turn text into audio files or play back the result directly.

C2DM Cloud to Device Messaging – An new and in Android 2.2 fairly limited
capability to send data like URLs or even intents to the device. [25]

34 CHAPTER 5. APPLICATION FRAMEWORK APIS

Chapter 6

Testing & debug

Android’s SDK provides a rich set of tools and facilities for developing and
debugging new applications. There is an Eclipse plugin that integrates some of the
supplied tools into the IDE. The Android emulator allows testing and debugging
an application without the need of an actual Android device. The Android Debug
Bridge (ADB) allows to log in to the emulator or an actual device and start a shell,
view logs or control and manipulate the connected system in various ways.

Additional to the tools there is a testing and instrumentation framework avail-
able. This framework is partly based on JUnit tests and extends them to cooperate
with the Android infrastructure. Android 2.2 allows the end user to send a crash re-
port to the developer which contains among other things a stack trace. This feature
is available through the Android Market, thus it’s only an option for applications
available at the Android Market.

6.1 Tools

The tools in the SDK include maintenance programs as well as debugging and
testing tools. Some of the tools are described in this section while others like the
dx and the zipalign tool are too specific or described elsewhere e.g. dx in the
Dalvik chapter 3.

ADB The Android Debug Bridge is an important tool which supports a variety of
commands in different categories. ADB consists of three parts, the adb server and
client on the development computer and daemon processes on the target machines
like an emulator or an Android device. The client can send commands to the server
and depending on the type, the command is passed to the daemons or is executed
locally. ADB also has the ability to handle multiple devices at the same time.

35

36 CHAPTER 6. TESTING & DEBUG

Commands are available in different categories and for multiple purposes like
data exchange, system control, maintenance or information retrieval. Some of
the available commands are: logcat (view system log), shell (open a shell
on the target device), install (install an application) and bugreport (list
information for a bug report). The Eclipse plugin makes use of ADB and integrates
some of the commands in the IDE. [22, Android Debug Bridge]

DDMS For debugging the Dalvik Debug Monitor Server (DDMS) provides a
graphical interface which combines a part of the ADB functionality with detailed
information about the currently running Dalvik applications. Furthermore DDMS
allows to change the state of the targeted system.

As DDMS sits on top of ADB, it too allows data exchange, port forwarding
and listing and filtering the system log. The main functionality of DDMS lies in
the detailed live analysis of running Dalvik VMs and the capability of mocking
system states and events like changes in radio reception, incoming phone calls or
setting a location. [22, Using the Dalvik Debug Monitor]

Running Dalvik VMs can be analyzed as of their heap, thread status, memory
allocation and garbage collection. DDMS provides detailed heap object statistics
(shown in figure 6.1) and allows exporting the data to HPROF files. Further-
more DDMS can be used to start traces and gather trace information used by the
traceview tool.

Traceview / dmtracedump The graphical tool traceview displays recorded
application traces and offers navigation through the time lines of multiple applica-
tion threads (see figure 6.2). Traces for this tool can be invoked either by DDMS
or by the application itself utilizing startMethodTracing() of the android.os.Debug
class. The command line program dmtracedump takes the same traces as
traceview and generates a call stack graph from them. [22, Traceview: A
Graphical Log Viewer]

6.2 Instrumentation & JUnit tests
Android’s capabilities for automated testing cover unit tests and instrumentation
tests. The unit tests are based on Java JUnit tests and for instrumentation exists
a framework which allows detailed tests of activities. The unit tests can test the
whole application behavior or isolate components like a ContentProvider. With
instrumentation it is possible to perform similar tests for a single Activity as for
application tests with unit testing. All these tests can be found in the android.test
package.

6.2. INSTRUMENTATION & JUNIT TESTS 37

Figure 6.1: DDMS main view showing statistics from heap garbage collection of a
running device.

Like the tested application, the test itself is an Android application. The test is
linked to the application by an <instrumentation> entry in the application manifest
file. Starting a test can be done by command line, an adb command, an Ant build
target or the Eclipse plugin. The test will start before the application starts to
allow the setup of mocked environments. The test is started and controlled by the
InstrumentationTestRunner class which starts the application and it’s related test
in the same process. This facility is used even if a test does not explicitly uses
instrumentation. [22, Testing and Instrumentation]

6.2.1 JUnit tests
The unit tests allow to change the Context of a whole application and thereby e.g.
isolate certain parts of the application for detailed testing. The test classes are
derived from the base class AndroidTestCase.

ApplicationTestCase A class to test a whole application in a definable environ-
ment. The application’s onCreate() is not called until the test application calls
createApplication(). The test cases’ tearDown() method is called automati-
cally which will call the application’s onDestroy() method. This class allows
to mock the Context of the application before calling createApplication().

38 CHAPTER 6. TESTING & DEBUG

Figure 6.2: Traceview displaying an application trace. In the upper panel the thread
activity is shown and in the lower panel the corresponding function calls and their
statistics are listed.

ProviderTestCase2 A test class to test a single ContextProvider by picking a
provider and using a mocked Context to isolate it.

ServiceTestCase A service test class similar to ApplicationTestCase which allows
mocking or modifying the Context. The application’s onCreate() is called
after invocation of the startService() or bindService() method.

6.2.2 Instrumentation tests
Tests in this category can be used to test an Activity of a given application. To
achieve this, the tests send mocked UI events and intents to the tested application
while monitoring it. The test classes are derived from ActivityTestCase which is a
child class of InstrumentationTestCase. The instrumentation framework design is
shown in figure 6.3.

SingleLaunchActivityTestCase A class that can be used if there is only one
Activity which covers all methods that should be tested, so that setUp() and

6.2. INSTRUMENTATION & JUNIT TESTS 39

Figure 6.3: Instrumentation framework structure with it’s different components on-
and off-site the device. From [22, Testing and Instrumentation].

tearDown() is only called once.

SyncBaseInstrumentation This class allows testing the synchronization of a
ContentProvider.

ActivityUnitTestCase The equivalent class to the unit test class for applications.
It can mock contexts and even an application, but no intents.

ActivityInstrumentationTestCase2 A class which allows testing of a single Ac-
tivity with mocked intents and mocked UI events, but with an otherwise
normal environment.

6.2.3 Assert classes
Android provides extended JUnit Assert classes which are more powerful than the
standard Assert class or provide special functionality.

MoreAsserts An extended standard class with improved support for regular ex-
pressions.

ViewAsserts A class specialized for UI testing with methods for alignment and
position testing.

40 CHAPTER 6. TESTING & DEBUG

6.2.4 Mock object classes
There are some classes in the testing framework which allow easy setup of mocked
contexts, resources, intents and such. These classes can be found in the android.test
and android.test.mock package.

IsolatedContext A Class for unit testing by isolating an application.

RenamingDelegatingContext A class delegating to the provided context and
redirected database and file operations to renamed counterparts.

Other mockable classes MockApplication, MockContentResolver, MockCon-
text, MockDialogInterface, MockPackageManager, MockResources.

Chapter 7

Summary

With the size and the change rate of a platform like Android, it is almost impossible
to present all aspects of such a system, hence this study thesis can only provide a
first glance at Android.

It looks like Android is just another mobile operating system, but the wide
support from large companies and especially Google have made Android one of
the important contestants in the mobile sector. The openness and extensibility
allow manufacturers to modify the system to fit their needs, both in hardware as
well as in software. This leads to a significant number of devices from various
manufacturers and each manufacturer covers a different range of customers.

The entry barrier for application developers is lower than on other platforms,
as the Java programming language, as well as the Eclipse IDE are wide spread
and often known already. The API documentation and the developer guide (both
can be found at [2, 22]) are detailed, enriched with examples and continuous
extended. Like for webOS applications there is a browser based application
development environment that helps creating applications easily and without the
need of programming skills. [5]

One controversial aspect of Android is the version fragmentation of the platform.
Device manufacturers take a while to adopt a new Android version to already
released devices or don’t provide an update at all. This leads to a situation in which
multiple Android versions become the the latest version for different devices, thus
multiple Android versions are “current” and need to be supported.

The fact that the platform development is mainly driven by Google may raise
concerns about being biased by the companies commercial interests. In extension
to the possible fragmentation, the question of the benefits and the degree of Android
being free and open is raised. [20]

41

42 CHAPTER 7. SUMMARY

7.1 Outlook
In the relatively short period of it’s existence, Android made a lot of progress in
order to adopt and adjust the feature set to those of other available platforms. The
interval between new releases is about to be enlarged and fixed to a roughly six
month release cycle and later once a year. [26]

New features like the cloud to device messaging and the backup management
are most likely to be extended and used in a wider range of applications. Other
features might increase hardware support for new device classes with larger screens
like tablets. The number of devices operating Android is most likely going to
increase notedly, as the range of devices is extended virtually on a weekly basis.

The development itself may broaden as more hardware and software companies
get involved in the project. Additionally the development may get more support by
people from outside the Android project like it would happen on a merge with the
mainline Linux kernel.

Bibliography

[1] Google Inc.: Alarm header file. http://android.
git.kernel.org/?p=kernel/common.git;a=
blob;f=include/linux/android_alarm.h;h=
f8f14e793dbf635cea8ebb8674d8f6c0d5c9d918;hb=
android-2.6.32

[2] Google Inc.: Android – An Open Handset Alliance Project. http://
developer.android.com

[3] eLinux.org - Embedded Linux Wiki: Android Kernel Features. http:
//elinux.org/Android_Kernel_Features

[4] Google Inc.: Android staging driver. http://
android.git.kernel.org/?p=kernel/common.
git;a=tree;f=drivers/staging/android;h=
2f7d01f2a4b322e941b7fedd6c9c6d13fb59fa90;hb=
android-2.6.32

[5] Google Inc.: App inventor for Android. http://appinventor.
googlelabs.com/about/

[6] Open Handset Alliance: Industry Leaders Announce Open Platform for
Mobile Devices. Press release. http://www.openhandsetalliance.
com/press_110507.html

[7] Open Handset Alliance: Open Handset Alliance Releases Android SDK.
Press release. http://www.openhandsetalliance.com/press_
111207.html

[8] Open Handset Alliance: Open Handset Alliance website. http://www.
openhandsetalliance.com

[9] PalmSource Inc.: OpenBinder. http://www.angryredplanet.com/
˜hackbod/openbinder/docs/html/index.html. Version: 2005

43

http://android.git.kernel.org/?p=kernel/common.git;a=blob;f=include/linux/android_alarm.h;h=f8f14e793dbf635cea8ebb8674d8f6c0d5c9d918;hb=android-2.6.32
http://android.git.kernel.org/?p=kernel/common.git;a=blob;f=include/linux/android_alarm.h;h=f8f14e793dbf635cea8ebb8674d8f6c0d5c9d918;hb=android-2.6.32
http://android.git.kernel.org/?p=kernel/common.git;a=blob;f=include/linux/android_alarm.h;h=f8f14e793dbf635cea8ebb8674d8f6c0d5c9d918;hb=android-2.6.32
http://android.git.kernel.org/?p=kernel/common.git;a=blob;f=include/linux/android_alarm.h;h=f8f14e793dbf635cea8ebb8674d8f6c0d5c9d918;hb=android-2.6.32
http://android.git.kernel.org/?p=kernel/common.git;a=blob;f=include/linux/android_alarm.h;h=f8f14e793dbf635cea8ebb8674d8f6c0d5c9d918;hb=android-2.6.32
http://developer.android.com
http://developer.android.com
http://elinux.org/Android_Kernel_Features
http://elinux.org/Android_Kernel_Features
http://android.git.kernel.org/?p=kernel/common.git;a=tree;f=drivers/staging/android;h=2f7d01f2a4b322e941b7fedd6c9c6d13fb59fa90;hb=android-2.6.32
http://android.git.kernel.org/?p=kernel/common.git;a=tree;f=drivers/staging/android;h=2f7d01f2a4b322e941b7fedd6c9c6d13fb59fa90;hb=android-2.6.32
http://android.git.kernel.org/?p=kernel/common.git;a=tree;f=drivers/staging/android;h=2f7d01f2a4b322e941b7fedd6c9c6d13fb59fa90;hb=android-2.6.32
http://android.git.kernel.org/?p=kernel/common.git;a=tree;f=drivers/staging/android;h=2f7d01f2a4b322e941b7fedd6c9c6d13fb59fa90;hb=android-2.6.32
http://android.git.kernel.org/?p=kernel/common.git;a=tree;f=drivers/staging/android;h=2f7d01f2a4b322e941b7fedd6c9c6d13fb59fa90;hb=android-2.6.32
http://appinventor.googlelabs.com/about/
http://appinventor.googlelabs.com/about/
http://www.openhandsetalliance.com/press_110507.html
http://www.openhandsetalliance.com/press_110507.html
http://www.openhandsetalliance.com/press_111207.html
http://www.openhandsetalliance.com/press_111207.html
http://www.openhandsetalliance.com
http://www.openhandsetalliance.com
http://www.angryredplanet.com/~hackbod/openbinder/docs/html/index.html
http://www.angryredplanet.com/~hackbod/openbinder/docs/html/index.html

44 BIBLIOGRAPHY

[10] INSTITUTE OF MANAGEMENT SCIENCES PESHAWAR – SECURITY

ENGINEERING RESEARCH GROUP: Analysis report on Android
Application Framework and existing Security Architecture. 2010. –
Forschungsbericht. – http://imsciences.edu.pk/serg/wp-
content/uploads/2010/05/Android-application-
framework-and-security-architecture.pdf

[11] Google Inc.: Android Open Source Project. http://source.android.
com. Version: 2010

[12] Google Inc.: Android Repository. http://android.git.kernel.
org. Version: 2010

[13] THE ANDROID OPEN SOURCE PROJECT (Hrsg.): Dalvik documentation in
git repository. The Android Open Source Project, http://android.git.
kernel.org/?p=platform/dalvik.git;a=tree;f=docs. –
Used version is “froyo-release”

[14] THE ANDROID OPEN SOURCE PROJECT (Hrsg.): JIT Header file. The
Android Open Source Project, http://android.git.kernel.org/
?p=platform/dalvik.git;a=blob;f=vm/interp/Jit.h;h=
9d17a52687efaab5100eae082b5a885aa0391462;hb=froyo-
release

[15] THE ANDROID OPEN SOURCE PROJECT (Hrsg.): Opcode header file. The
Android Open Source Project, http://android.git.kernel.org/
?p=platform/dalvik.git;a=blob;f=libdex/OpCode.h;h=
58d17026bb8418fbd49111cc9de99d775815369e;hb=froyo-
release

[16] BATYUK, Leonid ; SCHMIDT, Aubrey-Derrick ; SCHMIDT, Hans-Gunther
; CAMTEPE, Ahmet ; ALBAYRAK, Sahin: Developing and Benchmarking
Native Linux Applications on Android. In: MobileWireless Middleware,
Operating Systems, and Applications, 2009, 381–392

[17] BORNSTEIN, Dan: Dalvik VM Internals. Google I/O conference 2008
presentation video and slides. http://sites.google.com/site/
io/dalvik-vm-internals

[18] BRADY, Patrick: Anatomy & Physiology of an Android. Google I/O confer-
ence 2008 presentation video and slides. http://sites.google.com/
site/io/anatomy--physiology-of-an-android

http://imsciences.edu.pk/serg/wp-content/uploads/2010/05/Android-application-framework-and-security-architecture.pdf
http://imsciences.edu.pk/serg/wp-content/uploads/2010/05/Android-application-framework-and-security-architecture.pdf
http://imsciences.edu.pk/serg/wp-content/uploads/2010/05/Android-application-framework-and-security-architecture.pdf
http://source.android.com
http://source.android.com
http://android.git.kernel.org
http://android.git.kernel.org
http://android.git.kernel.org/?p=platform/dalvik.git;a=tree;f=docs
http://android.git.kernel.org/?p=platform/dalvik.git;a=tree;f=docs
http://android.git.kernel.org/?p=platform/dalvik.git;a=blob;f=vm/interp/Jit.h;h=9d17a52687efaab5100eae082b5a885aa0391462;hb=froyo-release
http://android.git.kernel.org/?p=platform/dalvik.git;a=blob;f=vm/interp/Jit.h;h=9d17a52687efaab5100eae082b5a885aa0391462;hb=froyo-release
http://android.git.kernel.org/?p=platform/dalvik.git;a=blob;f=vm/interp/Jit.h;h=9d17a52687efaab5100eae082b5a885aa0391462;hb=froyo-release
http://android.git.kernel.org/?p=platform/dalvik.git;a=blob;f=vm/interp/Jit.h;h=9d17a52687efaab5100eae082b5a885aa0391462;hb=froyo-release
http://android.git.kernel.org/?p=platform/dalvik.git;a=blob;f=libdex/OpCode.h;h=58d17026bb8418fbd49111cc9de99d775815369e;hb=froyo-release
http://android.git.kernel.org/?p=platform/dalvik.git;a=blob;f=libdex/OpCode.h;h=58d17026bb8418fbd49111cc9de99d775815369e;hb=froyo-release
http://android.git.kernel.org/?p=platform/dalvik.git;a=blob;f=libdex/OpCode.h;h=58d17026bb8418fbd49111cc9de99d775815369e;hb=froyo-release
http://android.git.kernel.org/?p=platform/dalvik.git;a=blob;f=libdex/OpCode.h;h=58d17026bb8418fbd49111cc9de99d775815369e;hb=froyo-release
http://sites.google.com/site/io/dalvik-vm-internals
http://sites.google.com/site/io/dalvik-vm-internals
http://sites.google.com/site/io/anatomy--physiology-of-an-android
http://sites.google.com/site/io/anatomy--physiology-of-an-android

BIBLIOGRAPHY 45

[19] CHENG, Ben ; BUZBEE, Bill: A JIT Compiler for An-
droid’s Dalvik VM. Google I/O conference 2010 presentation
video and slides. http://code.google.com/events/io/2010/
sessions/jit-compiler-androids-dalvik-vm.html

[20] CORBET, Jonathan: Android: the return of the Unix wars? http://lwn.
net/Articles/401527/

[21] CORBET, Jonathan: What comes after suspend blockers. http://lwn.
net/Articles/390369/

[22] GOOGLE INC. (Hrsg.): Android Software Development Kit (SDK). Google
Inc., http://developer.android.com/sdk/index.html. – An-
droid 2.2, Release 2

[23] GOOGLE INC. (Hrsg.): Android Platform Developer’s Guide. Google Inc.,
2010. http://pdk.android.com

[24] HACKBORN, Dianne: Android Developers Blog – Multitasking the Android
Way. http://android-developers.blogspot.com/2010/04/
multitasking-android-way.html

[25] INC., Google: Google Projects for Android. http://code.google.
com/android/

[26] KINCAID, Jason: TechCrunch – Android Chief Andy Rubin: Updates
Will Eventually Come Once A Year. http://techcrunch.com/
2010/06/01/android-chief-andy-rubin-updates-will-
eventually-come-once-a-year/

[27] SCHMIDT, Aubrey-Derrick ; BYE, Rainer ; SCHMIDT, Hans-Gunther ;
CLAUSEN, Jan H. ; KIRAZ, Osman ; YÜKSEL, Kamer A. ; ÇAMTEPE,
Seyit A. ; ALBAYRAK, Sahin: Static Analysis of Executables for Collabora-
tive Malware Detection on Android. In: ICC, 2009, S. 1–5

[28] SCHMIDT, Aubrey-Derrick ; SCHMIDT, Hans-Gunther ; CLAUSEN, Jan ;
YÜKSEL, Kamer A. ; KIRAZ, Osman ; CAMTEPE, Ahmet ; ALBAYRAK,
Sahin: Enhancing Security of Linux-based Android Devices. In: in Proceed-
ings of 15th International Linux Kongress, Lehmann, October 2008

[29] SHABTAI, A. ; FLEDEL, Y. ; KANONOV, U. ; ELOVICI, Y. ; DOLEV, S.:
Google Android: A State-of-the-Art Review of Security Mechanisms. In:
Arxiv preprint arXiv:0912.5101 (2009)

http://code.google.com/events/io/2010/sessions/jit-compiler-androids-dalvik-vm.html
http://code.google.com/events/io/2010/sessions/jit-compiler-androids-dalvik-vm.html
http://lwn.net/Articles/401527/
http://lwn.net/Articles/401527/
http://lwn.net/Articles/390369/
http://lwn.net/Articles/390369/
http://developer.android.com/sdk/index.html
http://pdk.android.com
http://android-developers.blogspot.com/2010/04/multitasking-android-way.html
http://android-developers.blogspot.com/2010/04/multitasking-android-way.html
http://code.google.com/android/
http://code.google.com/android/
http://techcrunch.com/2010/06/01/android-chief-andy-rubin-updates-will-eventually-come-once-a-year/
http://techcrunch.com/2010/06/01/android-chief-andy-rubin-updates-will-eventually-come-once-a-year/
http://techcrunch.com/2010/06/01/android-chief-andy-rubin-updates-will-eventually-come-once-a-year/

46 BIBLIOGRAPHY

[30] SWETLAND, Brian: Android Linux Kernel Development –
PMEM. http://groups.google.com/group/android-
kernel/msg/6b8f9866f4d23795. – Android development mailing
list

[31] SWETLAND, Brian: Some clarification on “the Android Kernel”. http:
//lwn.net/Articles/373374/

All URLs were last accessed September 2010.

http://groups.google.com/group/android-kernel/msg/6b8f9866f4d23795
http://groups.google.com/group/android-kernel/msg/6b8f9866f4d23795
http://lwn.net/Articles/373374/
http://lwn.net/Articles/373374/

	Deutsche Zusammenfassung
	Introduction and overview of Android
	Structural overview
	Brief version history

	Application anatomy
	Processes & threads
	Applications & tasks
	Application internals
	AndroidManifest.xml
	Activities
	Intents, Intent filters and receivers
	Content provider
	Background activities
	Application lifetime & states

	RPC
	Application security
	Native applications

	Dalvík VM
	Design requirements
	General & file optimizations
	Byte code format
	Install time work

	Optimizations of memory allocation and usage
	Zygote
	Garbage collection

	JIT
	Types of JITs & Android's JIT
	Future of Android's JIT

	Power management & kernel
	Differences to mainline
	Wake locks
	Power manager
	Memory management
	Other changes

	Device & platform support

	Application Framework APIs
	APIs
	User interface
	Media framework
	Network
	Storage & backup
	Other APIs

	Testing & debug
	Tools
	Instrumentation & JUnit tests
	JUnit tests
	Instrumentation tests
	Assert classes
	Mock object classes

	Summary
	Outlook

	Bibliography

