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Abstract

Device drivers constitute a significant portion of an operating system’s source code.

The effort to develop a new driver set is a sobering hurdle to the pursuit of novel

operating system ventures. A practical solution is to reuse drivers, but this can

contradict design goals in a new operating system. We offer a new approach to

device-driver reuse, with a focus on promoting novel operating-system construc-

tion, which insulates the new operating system from the invariants of the reused

drivers, while also addressing development effort. Our solution runs the drivers

along with their original operating systems inside virtual machines, with some mi-

nor reuse infrastructure added to the driver’s operating system to interface with

the rest of the system. This approach turns the drivers into de-privileged applica-

tions of the new operating system, which separates their architectures and reduces

cross-influences, and improves system dependability.

Virtual machines help reuse drivers, but they also penalize performance. The

known solution for improving virtual machine performance, para-virtualization,

modifies the operating system to run on a hypervisor, which has an enormous cost:

substantial development effort, and abandonment of many of virtualization’s bene-

fits such as modularity. These costs contradict our goals for driver reuse: to reduce

development effort, and to easily reuse from a variety of operating systems. Thus

we introduce a new approach to constructing virtual machines: pre-virtualization.

Our solution combines the performance of para-virtualization with the modularity

of traditional virtual machines. We still modify the operating system, but accord-

ing to a set of principles called soft layering that preserves modularity, and via

automation which reduces implementation costs. With pre-virtualization we can

easily reuse device drivers.

We describe our driver-reuse approach applied to a real system: we run vir-

tual machines on the L4Ka::Pistachio microkernel, with reused Linux drivers. We

include an evaluation and demonstrate that we achieve throughput comparable to
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the native Linux drivers, but with moderately higher CPU and memory utiliza-

tion. Additionally, we describe how to apply pre-virtualization to multiple hyper-

visor environments. We include an evaluation of pre-virtualization, and demon-

strate that it achieves comparable performance to para-virtualization for both the

L4Ka::Pistachio and Xen hypervisors, with modularity.

iv



Originality statement

‘I hereby declare that this submission is my own work and to the best of my knowl-

edge it contains no materials previously published or written by another person,

or substantial proportions of material which have been accepted for the award of

any other degree or diploma at UNSW or any other educational institution, except

where due acknowledgement is made in the thesis. Any contribution made to the

research by others, with whom I have worked at UNSW or elsewhere, is explic-

itly acknowledged in the thesis. I also declare that the intellectual content of this

thesis is the product of my own work, except to the extent that assistance from

others in the project’s design and conception or in style, presentation and linguistic

expression is acknowledged.’

Joshua LeVasseur

v



vi



Acknowledgments

My experience working on this project was rewarding and enriching, and a turn-

ing point in my life, as all periods of self growth must be. I thank Prof. Gernot

Heiser, my supervisor, for relentlessly supporting me throughout the project, and

for believing in my ability to succeed. He worked with me on the research and

helped guide me through paper writing, and spent considerable time reviewing my

thesis and providing feedback. He worked to bring me from the American edu-

cational system into the German, which have different requirements for entering a

PhD program. He also continued to supervise me from remote, after he transferred

to UNSW, while I remained in Germany.

I thank Prof. Gerhard Goos, of the University of Karlsruhe, for his wonderful

advice, guidance, and challenges. He graciously accepted me as a student after

Prof. Heiser moved to UNSW. His demanding requests guided me into the person

I wanted to become. I enjoyed participating in his PhD seminars, which were

important training for paper writing, public speaking, and finally the thesis writing.

I thank Prof. Frank Bellosa for accepting me after he become the head of the

System Architecture Group in Karlsruhe. He wholeheartedly supported me and

went out of his way to ensure that I would complete the thesis, even if this meant

ultimately earning the degree via UNSW under Gernot Heiser. He provided me

with a position in the group, with many opportunities for guiding Master’s students,

for lecturing, and continuing my research. This environment contributed to my self

growth, and ultimately the completion of the thesis.

I have many thanks for Dr. Volkmar Uhlig, who was also working on his thesis

at the time. Through our daily interaction he became the greatest influence on my

mental processes, particularly regarding operating systems. He taught and men-

tored me on operating systems, sharing a lot of the knowledge gained through his

interactions with the L4 community. He provided guidance on the PhD process,

and we discussed the advice and challenges given to us by our advisers. He also

vii



provided an atmosphere in the group of constant challenge and growth in research,

along with critical and creative thinking, where you willingly share ideas to make

room for more. He became my friend, and helped me to enjoy life in Karlsruhe, to

learn a new culture and to see that additional dimensions to life exist.

I am thankful for the people in the Systems Architecture Group in Karlsruhe.

Uwe Dannowski, Espen Skoglund, and Jan Stoess helped build L4 and support it.

Gerd Liefländer gave wonderful advice for public speaking and writing, James Mc-

Culler provided excellent technical support. Andreas Haeberlen demonstrated to

me the results of stepping away from the computer to achieve better thinking. And

the students gave me opportunities to advise on thesis writing, and they supported

the research.

I thank my wife Susanne and my daughter Sophie for supporting me and help-

ing me to achieve my goal. They also inspired many life transformations outside

the PhD.

I also thank Rich Uhlig and Sebastian Schönberg’s group at Intel, for providing

funding for our L4 research projects.

I thank Netronome Systems for employing me while I finished the thesis, and

for sponsoring a conference trip.

I thank the anonymous reviewers of this thesis for their insightful and sincere

feedback.

I appreciate the interaction with the L4 community that I had over the years,

particularly with the other students at Dresden and UNSW. I am excited to see the

L4 ideas move out into the world, as they accompany us to new challenges.

viii



Contents

Abstract iii

Originality statement v

Acknowledgments vii

List of figures xiii

List of tables xvii

1 Introduction 1
1.1 Device driver reuse . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.2 Pre-virtualization . . . . . . . . . . . . . . . . . . . . . . . . . . 3

2 Background and related work 5
2.1 Driver reuse . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2.1.1 Driver transplantation . . . . . . . . . . . . . . . . . . . 6

2.1.2 OS cohosting . . . . . . . . . . . . . . . . . . . . . . . . 9

2.2 Dependability . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.2.1 Nooks . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.2.2 User-level device drivers . . . . . . . . . . . . . . . . . . 11

2.2.3 Faulty hardware . . . . . . . . . . . . . . . . . . . . . . 12

2.3 Virtual machine models . . . . . . . . . . . . . . . . . . . . . . . 12

2.3.1 Virtual machine layering . . . . . . . . . . . . . . . . . . 13

2.3.2 Virtual machines as applications . . . . . . . . . . . . . . 17

2.3.3 Component frameworks . . . . . . . . . . . . . . . . . . 20

2.4 Virtual machine construction . . . . . . . . . . . . . . . . . . . . 23

2.4.1 Traditional virtualization . . . . . . . . . . . . . . . . . . 23

2.4.2 Para-virtualization . . . . . . . . . . . . . . . . . . . . . 24

ix



2.4.3 Modular para-virtualization . . . . . . . . . . . . . . . . 29

2.4.4 Device virtualization . . . . . . . . . . . . . . . . . . . . 30

2.4.5 Resource virtualization . . . . . . . . . . . . . . . . . . . 31

2.4.6 Address spaces and privileges . . . . . . . . . . . . . . . 32

2.4.7 Sensitive memory objects . . . . . . . . . . . . . . . . . 35

3 Device driver reuse 39
3.1 Principles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

3.2 Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

3.2.1 Virtual machine environment . . . . . . . . . . . . . . . . 43

3.2.2 Client requests . . . . . . . . . . . . . . . . . . . . . . . 45

3.3 Enhancing dependability . . . . . . . . . . . . . . . . . . . . . . 45

3.4 Problems due to virtualization . . . . . . . . . . . . . . . . . . . 47

3.4.1 DMA address translation . . . . . . . . . . . . . . . . . . 47

3.4.2 DMA and trust . . . . . . . . . . . . . . . . . . . . . . . 50

3.4.3 Resource consumption . . . . . . . . . . . . . . . . . . . 51

3.4.4 Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

3.4.5 Shared hardware and recursion . . . . . . . . . . . . . . . 53

3.4.6 Sequencing . . . . . . . . . . . . . . . . . . . . . . . . . 54

3.5 Translation modules . . . . . . . . . . . . . . . . . . . . . . . . . 55

3.5.1 Direct DMA . . . . . . . . . . . . . . . . . . . . . . . . 55

3.5.2 Correlation . . . . . . . . . . . . . . . . . . . . . . . . . 56

3.5.3 Flow control . . . . . . . . . . . . . . . . . . . . . . . . 57

3.5.4 Upcalls . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

3.5.5 Low-level primitives . . . . . . . . . . . . . . . . . . . . 58

3.5.6 Resource constraint . . . . . . . . . . . . . . . . . . . . . 59

3.5.7 Device management . . . . . . . . . . . . . . . . . . . . 59

3.6 Linux driver reuse . . . . . . . . . . . . . . . . . . . . . . . . . . 59

3.6.1 DMA for client memory . . . . . . . . . . . . . . . . . . 60

3.6.2 Network . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

3.6.3 Block . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

3.7 L4 Microkernel . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

3.7.1 Client commands . . . . . . . . . . . . . . . . . . . . . . 67

3.7.2 Shared state . . . . . . . . . . . . . . . . . . . . . . . . . 68

3.7.3 Network receive . . . . . . . . . . . . . . . . . . . . . . 68

3.8 Related work . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

x



3.9 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

4 Pre-virtualization 71
4.1 Soft layering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

4.2 Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

4.2.1 Instruction level . . . . . . . . . . . . . . . . . . . . . . . 75

4.2.2 Structural . . . . . . . . . . . . . . . . . . . . . . . . . . 79

4.2.3 The virtualization-assist module . . . . . . . . . . . . . . 80

4.2.4 Device emulation . . . . . . . . . . . . . . . . . . . . . . 81

4.2.5 Device pass through . . . . . . . . . . . . . . . . . . . . 83

4.3 Guest preparation . . . . . . . . . . . . . . . . . . . . . . . . . . 83

4.3.1 Sensitive instructions . . . . . . . . . . . . . . . . . . . . 84

4.3.2 Sensitive memory instructions . . . . . . . . . . . . . . . 84

4.3.3 Structural . . . . . . . . . . . . . . . . . . . . . . . . . . 86

4.4 Runtime environment . . . . . . . . . . . . . . . . . . . . . . . . 86

4.4.1 Indivisible instructions . . . . . . . . . . . . . . . . . . . 87

4.4.2 Instruction rewriting . . . . . . . . . . . . . . . . . . . . 89

4.4.3 Xen/x86 hypervisor back-end . . . . . . . . . . . . . . . 90

4.4.4 L4 microkernel back-end . . . . . . . . . . . . . . . . . . 91

4.4.5 Network device emulation . . . . . . . . . . . . . . . . . 93

4.5 Hypervisor-neutral binary . . . . . . . . . . . . . . . . . . . . . . 94

4.6 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

4.7 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

5 Evaluation 101
5.1 Device driver reuse . . . . . . . . . . . . . . . . . . . . . . . . . 101

5.1.1 Components . . . . . . . . . . . . . . . . . . . . . . . . 103

5.1.2 User-level device drivers . . . . . . . . . . . . . . . . . . 103

5.1.3 Isolated versus composite . . . . . . . . . . . . . . . . . 116

5.1.4 Other overheads . . . . . . . . . . . . . . . . . . . . . . 123

5.1.5 Engineering effort . . . . . . . . . . . . . . . . . . . . . 130

5.2 Pre-virtualization . . . . . . . . . . . . . . . . . . . . . . . . . . 132

5.2.1 Modularity . . . . . . . . . . . . . . . . . . . . . . . . . 132

5.2.2 Code expansion . . . . . . . . . . . . . . . . . . . . . . . 133

5.2.3 Device Emulation . . . . . . . . . . . . . . . . . . . . . . 135

5.2.4 Performance . . . . . . . . . . . . . . . . . . . . . . . . 136

5.2.5 Engineering effort . . . . . . . . . . . . . . . . . . . . . 143

xi



5.3 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 144

6 Conclusion 147
6.1 Contributions of this work . . . . . . . . . . . . . . . . . . . . . 148

6.2 Future work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 150

Bibliography 153

xii



List of figures

2.1 Example of layered system construction. . . . . . . . . . . . . . . 13

2.2 Downcalls, downmaps, and upmaps. . . . . . . . . . . . . . . . . 15

2.3 Virtual machine layering. . . . . . . . . . . . . . . . . . . . . . . 16

2.4 Hypercalls. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

2.5 Classic VM model: server consolidation. . . . . . . . . . . . . . . 21

2.6 Federated VM model: tiered Internet server. . . . . . . . . . . . . 21

2.7 Recursive isolation. . . . . . . . . . . . . . . . . . . . . . . . . . 22

2.8 Domain VM model: database appliance. . . . . . . . . . . . . . . 23

2.9 Savings via emulation in the VM protection domain. . . . . . . . 25

2.10 Address spaces and privileges. . . . . . . . . . . . . . . . . . . . 32

2.11 Small address spaces. . . . . . . . . . . . . . . . . . . . . . . . . 35

3.1 Driver resource-provisioning interfaces. . . . . . . . . . . . . . . 41

3.2 Device driver reuse in a VM. . . . . . . . . . . . . . . . . . . . . 43

3.3 Device driver reuse and isolation architecture. . . . . . . . . . . . 44

3.4 Shared producer-consumer ring. . . . . . . . . . . . . . . . . . . 46

3.5 DMA address translation with an IO-MMU. . . . . . . . . . . . . 49

3.6 DMA memory allocation for two VMs. . . . . . . . . . . . . . . 50

3.7 Using the Linux page map for indirection. . . . . . . . . . . . . . 62

3.8 Linux sk buff references to client data. . . . . . . . . . . . . . 63

4.1 Pre-virtualization combines features of pure and para-virtualization. 72

4.2 Hypervisor neutrality. . . . . . . . . . . . . . . . . . . . . . . . . 73

4.3 Padded sensitive instruction. . . . . . . . . . . . . . . . . . . . . 76

4.4 Different approaches to virtualization. . . . . . . . . . . . . . . . 78

4.5 Linking the virtualization-assist module to the guest OS. . . . . . 79

4.6 Pre-virtualization for virtualized devices. . . . . . . . . . . . . . . 82

xiii



4.7 PCI device forwarding. . . . . . . . . . . . . . . . . . . . . . . . 83

4.8 Automated assembler rewriting via the Afterburner. . . . . . . . . 84

4.9 Virtualization-assist Module frontend and backend. . . . . . . . . 87

4.10 Indivisible instruction emulation. . . . . . . . . . . . . . . . . . . 89

4.11 Logical versus hardware address spaces. . . . . . . . . . . . . . . 92

4.12 L4 backend, VM thread. . . . . . . . . . . . . . . . . . . . . . . 93

4.13 L4 IPC for protection domain virtualization. . . . . . . . . . . . . 94

4.14 Virtualization-Assist Module thread request handlers. . . . . . . . 95

4.15 DP83820 device rings support high-speed virtualization. . . . . . 98

4.16 Pre-virtualization for the DP83820 network driver. . . . . . . . . 99

5.1 Benchmark configurations for user-level comparisons. . . . . . . . 102

5.2 Netperf send — user-level drivers (2.6.8.1). . . . . . . . . . . . . 106

5.3 Netperf send — user-level drivers (2.6.9). . . . . . . . . . . . . . 106

5.4 Netperf receive — user-level drivers (2.6.8.1). . . . . . . . . . . . 107

5.5 Netperf receive — user-level drivers (2.6.9). . . . . . . . . . . . . 107

5.6 Client VM networking. . . . . . . . . . . . . . . . . . . . . . . . 108

5.7 TCP channel utilization. . . . . . . . . . . . . . . . . . . . . . . 110

5.8 Latency for ack packets. . . . . . . . . . . . . . . . . . . . . . . 110

5.9 UDP send blast — user-level drivers (2.6.8.1). . . . . . . . . . . . 111

5.10 UDP send blast — user-level drivers (2.6.9). . . . . . . . . . . . . 111

5.11 Time plot of working set footprint for Netperf send. . . . . . . . . 114

5.12 Time plot of working set footprint for Netperf receive. . . . . . . 114

5.13 Time plot of CPU utilization for Netperf send. . . . . . . . . . . . 115

5.14 Time plot of CPU utilization for Netperf receive. . . . . . . . . . 115

5.15 TTCP send (1500-byte MTU). . . . . . . . . . . . . . . . . . . . 118

5.16 TTCP send (500-byte MTU). . . . . . . . . . . . . . . . . . . . . 118

5.17 TTCP receive (1500-byte mtu). . . . . . . . . . . . . . . . . . . . 119

5.18 TTCP receive (500-byte mtu). . . . . . . . . . . . . . . . . . . . 119

5.19 Disk read CPU utilization. . . . . . . . . . . . . . . . . . . . . . 121

5.20 Disk write CPU utilization. . . . . . . . . . . . . . . . . . . . . . 121

5.21 PostMark CPU utilization versus time. . . . . . . . . . . . . . . . 123

5.22 Benchmark working set versus time. . . . . . . . . . . . . . . . . 125

5.23 Memory reclamation. . . . . . . . . . . . . . . . . . . . . . . . . 125

5.24 Incremental CPU utilization at idle. . . . . . . . . . . . . . . . . 127

5.25 PostMark DTLB miss rate . . . . . . . . . . . . . . . . . . . . . 129

xiv



5.26 PostMark ITLB miss rate . . . . . . . . . . . . . . . . . . . . . . 129

5.27 PostMark L2-cache miss rate . . . . . . . . . . . . . . . . . . . . 131

5.28 Kernel-build benchmark for pre-virtualization (Linux 2.4.28). . . . 137

5.29 Kernel-build benchmark for pre-virtualization (Linux 2.6.8.1). . . 139

5.30 Kernel-build benchmark for pre-virtualization (Linux 2.6.9). . . . 139

5.31 Netperf-send benchmark for pre-virtualization (Linux 2.4.28). . . 140

5.32 Netperf-receive benchmark for pre-virtualization (Linux 2.4.28). . 140

5.33 Netperf-send benchmark for pre-virtualization (Linux 2.6.8.1). . . 141

5.34 Netperf-receive benchmark for pre-virtualization (Linux 2.6.8.1). . 141

5.35 Netperf-send benchmark for pre-virtualization (Linux 2.6.9). . . . 142

5.36 Netperf-receive benchmark for pre-virtualization (Linux 2.6.9). . . 142

xv



xvi



List of tables

2.1 L4Linux evolution. . . . . . . . . . . . . . . . . . . . . . . . . . 28

2.2 Xen evolution. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

5.1 PostMark throughput. . . . . . . . . . . . . . . . . . . . . . . . . 123

5.2 Netperf send cache footprint. . . . . . . . . . . . . . . . . . . . . 130

5.3 Netperf receive cache footprint. . . . . . . . . . . . . . . . . . . . 130

5.4 Source lines of code, proxy modules. . . . . . . . . . . . . . . . . 131

5.5 Pre-virtualization annotation categories. . . . . . . . . . . . . . . 133

5.6 Profile of popular sensitive instructions for Netperf. . . . . . . . . 134

5.7 Profile of DP83820 device registers. . . . . . . . . . . . . . . . . 136

5.8 LMbench2 results for Xen. . . . . . . . . . . . . . . . . . . . . . 143

5.9 Source code line count. . . . . . . . . . . . . . . . . . . . . . . . 144

5.10 Manual modifications. . . . . . . . . . . . . . . . . . . . . . . . 144

xvii



xviii



Chapter 1

Introduction

This thesis presents a method of reusing device drivers in new operating system

designs. In support of this goal, it also introduces new techniques for creating

virtual machines.

The field of operating system design is rich with interesting methodologies and

algorithms, but which often remain obscure due to the daunting task of turning

them into complete systems. In particular, a complete system requires device sup-

port, and device drivers can contribute substantially to the implementation burden

— for example, in the general-purpose Linux operating system, version 2.4.1, 70%

of the code implements device drivers [CYC+01]. Even in research systems that

require only a small set of device drivers, their implementation weight is substan-

tial: the L4Ka::Pistachio microkernel is roughly 13k lines of code, while its driver

for the Intel 82540 network controller has 4.5k lines of code (compared to 8.8k

lines of code for a production driver in Linux 2.6.9). Besides the implementation

burden, other hurdles thwart development of a new driver base, including unavail-

able devices (particularly for discontinued or updated devices), unprocurable ref-

erence source code for the drivers, incomplete or inaccurate documentation for the

devices, and test and verification under all operating conditions. Thus we have a

variety of incentives to reuse existing drivers, which permits immediate access to a

wealth of devices, leverages driver maturity, reduces the implementation burden of

the novel operating system, and permits developers to focus on the novel aspects

of the system.

The reasons for driver reuse are compelling, but many obstacles exist. A funda-

mental obstruction is that drivers have invariants, and these invariants may conflict

with the architecture of the novel operating system, and thus conflict with the pri-
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mary reason for driver reuse. Thus driver reuse must isolate the new operating

system from conflicts with the invariants. Another obstacle with driver reuse is

that drivers require resource provisioning from their operating system, and thus

the new operating system needs to provide equivalent resources, which can be a

substantial implementation burden.

Several past projects have accomplished driver reuse, but with only partial suc-

cess. They have usually required access to the source code, required the new oper-

ating system to conform to the invariants of the drivers (in some cases overlooking

invariants, resulting in malfunction), and implemented substantial compatibility

layers for driver resource provisioning.

This thesis shows how to reuse legacy drivers within new operating systems

while solving the primary obstacles, thus protecting the novel design of the OS

from the drivers’ invariants, and reducing implementation burdens. Performance

is also a goal, but of lower priority. The basis of the reuse approach is to run

the device drivers in virtual machines along with their original operating systems,

which supports reuse of binary drivers, offers isolation, and reuses the drivers’

operating systems for resource provisioning to the drivers.

Virtual machines are known to have runtime performance costs, and imple-

mentation burden. A popular technique for improving virtualization performance

is para-virtualization, but it contradicts our goal of rapid development and deploy-

ment. We thus introduce a new technique for creating virtual machines — pre-

virtualization — which combines many of the best features of traditional virtual-

ization and para-virtualization, to give good performance and rapid deployment.

1.1 Device driver reuse

In this thesis we present the design of a pragmatic driver-reuse system that runs

the drivers inside virtual machines, along with their original operating systems.

The virtual machines help us solve several problems: they protect the invariants of

the novel operating system from the invariants of the reused drivers, they permit

easy resource provisioning for the reused drivers (by running the drivers in their

original operating systems), they permit substantial code reuse, and they enhance

dependability.

Device-driver based operating systems apply software layering to reduce the

complexity of supporting many devices. The drivers implement all of the device-

specific logic, and present the capabilities of the device through an abstracted in-
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terface to the rest of the operating system. The operating system can treat devices

interchangeably by substituting different drivers. This layering makes drivers good

candidates for software reuse through several methods, all of which have had lim-

ited success. We instead treat the driver and its original operating system as the unit

of reuse, but since the operating system is not designed for this purpose, we intro-

duce interfacing logic into the original operating system. This interfacing logic

permits our reuse environment to take advantage of the drivers’ abstracted inter-

faces, and to thus submit device requests and to handle completed operations.

In this thesis, we discuss the requirements imposed on one’s new operating sys-

tem to support this style of driver reuse. We discuss side effects (such as excessive

resource consumption) and how to overcome them. We discuss how to construct

adapters that connect one’s new operating system to the reused driver infrastruc-

ture. Besides the general design strategies, we present a reference implementation,

where we reuse device drivers from Linux 2.4 and 2.6 on an L4 microkernel sys-

tem. We evaluate the performance of the reference implementation, and study some

of its behavior, such as resource consumption, and compare this behavior to native

device drivers. We also compare and contrast to prior work.

1.2 Pre-virtualization

Although we reduce engineering burden for driver reuse by running the drivers

within virtual machines, we add engineering burden for constructing virtual ma-

chines. Virtual machines have an engineering effort versus performance trade off:

the better their performance, the higher their implementation burden tends to be-

come (to work around the traditional method of trapping on privileged instructions,

which on the popular x86 architecture is very expensive).

The existing virtual-machine construction techniques contradict our theme to

make driver reuse easy to achieve. We thus propose a new approach to construct-

ing virtual machines. Our new approach is based on a concept of soft layering,

where we dynamically adapt a layered software interface to overcome bottlenecks

of the software layering. We call our application of soft layering to virtualization

pre-virtualization. It retains the modularity of traditional virtualization by con-

forming to the platform interface, but enables many of the performance benefits

of para-virtualization such as running emulation logic within the operating system

itself. As part of the effort to reduce engineering burden, it uses automated tools

to process the operating system’s source code in preparation for soft layering. The
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implementation burden then simplifies to a per-hypervisor run-time support mod-

ule, which binds to the operating system at runtime.

Our approach to constructing virtual machines presented in this thesis advances

the state of the art. We describe the concepts behind its design. We discuss the

problems of other approaches, and describe how pre-virtualization solves those

problems. We describe how to reduce implementation burden via automation. We

present a reference implementation that supports several hypervisors: multiple ver-

sions of L4, and multiple versions of Xen; and which supports several versions

of Linux 2.6 and Linux 2.4. We analyze its performance, and compare to para-

virtualization.
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Chapter 2

Background and related work

Since this thesis describes a method to reuse device drivers by running the device

drivers in virtual machines, it discusses both the issues of driver reuse and the issues

of virtual machine construction. In support of both topics, this chapter provides

background material, describes prior work, and identifies shortcomings in the prior

work that this thesis addresses.

2.1 Driver reuse

Our fundamental goal is to promote the construction of novel operating systems by

reducing implementation burden. Device drivers tend to contribute substantially to

the implementation burden of the OS kernel. Thus we seek to reuse device drivers

within new OS ventures to increase the chance of success, or at least to provide

enough framework to evaluate the novel aspects of the system.

In support of our theme, a driver reuse system should provide the following

capabilities:

Isolation: The isolation property is to protect the new operating system from the

reused drivers. The drivers already conform to an architecture, with invari-

ants that could possibly contradict the design goals of the novel OS. Our

primary goal is to support novel system construction, and so the driver-reuse

framework must protect the novel system from the invariants of the reused

drivers.

Dependable reuse: We will use the drivers in a manner that exceeds their design

specifications, particularly in that we introduce new infrastructure for inter-

acting with the drivers. The new infrastructure could adversely interact with
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the drivers, and thus careful construction techniques are paramount, as is

careful understanding of the interfaces used by the drivers. Thus we want

to design for error, and so reduce the consequences of error that could arise

from misusing the drivers and their interfaces.

Unmodified driver source code: For scalable engineering effort, the driver code

should be reusable unmodified, or with modifications applied by automated

tools.

Binary driver reuse: Many drivers are available in binary form only, and thus

the reuse approach must be capable of reusing binary drivers. In some OS

ecosystems, independent hardware vendors provide proprietary drivers with-

out source code.

We now justify these criteria via an analysis of prior approaches to driver reuse.

2.1.1 Driver transplantation

The most common approach for driver reuse is to transplant the drivers from a

donor OS to the new OS, supported by a compatibility layer. The compatibility

layer provides a life support to the drivers (such as data structures, work scheduling,

synchronization primitives, etc.), and provides a driver operational interface that

permits the new OS to access the devices. A disadvantage to transplantation is

that the compatibility layer must conform precisely to a variety of interfaces and

invariants defined by the donor OS. Other disadvantages are that one must write a

compatibility layer for each donor OS, and upgrade it to track versions of the donor

OS (which is particularly relevant for Linux, because it offers no formal interface

for its drivers, and thus a compatibility layer may have severe differences between

versions).

The transplantation approach supports both binary reuse and source code reuse.

Binary reuse depends upon availability of loadable kernel modules in both the

donor and new OS, while source code reuse permits linking the drivers directly

to the new OS. An example of binary driver transplantation is the NdisWrap-

per project1, which reuses Microsoft Windows networking drivers within Linux.

Many projects have transplanted drivers in their source code form [FGB91, GD96,

BDR97, Mar99, AAD+02, VMw03].
1http://ndiswrapper.sourceforge.net/
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A transplantation merges two independently developed code bases, glued to-

gether with the compatibility layer. Ideally the two subsystems enjoy indepen-

dence, such that the design of one does not interfere with the design of the other.

Past work demonstrates that, despite great effort, conflicts are unavoidable and

lead to compromises in the structure of the new OS. Transplantation has several

categories of reuse issues, which we further describe.

Semantic resource conflicts

The transplanted drivers obtain resources (memory, locks, CPU, etc.) from their

new OS, accompanied by new invariants that may differ from the invariants of the

donor OS, thus creating a new and risky relationship between the two components.

In the reused driver’s raw state, its manner of resource use could violate the new in-

variants. The misuse can cause accidental denial of service (e.g., the reused driver’s

nonpreemptible interrupt handler consumes enough CPU to reduce the response

latency for other subsystems), can cause corruption of a manager’s state machine

(e.g., invoking a non-reentrant memory allocator at interrupt time [GD96]), or can

dead-lock in a multiprocessor system.

These semantic conflicts are due to the nature of OS design. A traditional OS

divides bulk platform resources such as memory, processor time, and interrupts be-

tween an assortment of subsystems. The OS refines the bulk resources into linked

lists, timers, hash tables, top-halves and bottom-halves, and other units acceptable

for sharing between the subsystems. The resource refinements impose rules on the

use of the resources, and depend on cooperation in maintaining the integrity of the

state machines. Modules of independent origin rely on the compatibility layer for

approximating this cooperation — for example, when a Linux driver waits for I/O,

it removes the current Linux thread from the run queue; to permit reused Linux

drivers to dequeue Linux threads, the compatibility layer will allocate a Linux

thread control block when entering a reused Linux component [Mar99,AAD+02];

in systems that use asynchronous I/O, the glue layer will instead convert the thread

operations into I/O continuation objects [GD96].

Sharing conflicts

A transplanted driver typically shares the address space with the new OS kernel.

Additionally, the reused drivers typically run in privileged mode with the new OS

kernel. The drivers can claim regions of the address space that conflict with the
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new OS kernel, and they can make unsupported use of the privileged instructions.

A solution for sharing the address space may be unachievable, due to device

driver invariants and non-modular code. For example, the older Linux device

drivers, dedicated to the x86 platform, assumed virtual memory was idempotently

mapped to physical memory. Reuse of these drivers requires modifications to the

drivers or loss in flexibility of the address space layout: the authors in ref. [Mar99]

decided not to support such device drivers, because the costs conflicted with their

goals; the authors of ref. [GD96] opted to support the drivers by remapping their

new OS.

Privileged operations generally have global side effects. When a device driver

executes a privileged operation for the purposes of its local module, it likely affects

the entire system. A device driver that disables processor interrupts disables them

for all devices. Cooperatively designed components plan for the problem; driver

reuse spoils cooperative design.

The global nature of privileged operations also permits the consequences of

faults to exceed the boundaries of the device driver module. Even when the sub-

systems are mutually designed to share resources, faults can negate the careful

construction, exposing the other system components to a larger fault potential. Via

privileged domain and address space sharing, the device driver’s faults can easily

access the internals of other modules and subvert their state machines.

Engineering effort

Device driver reuse reduces engineering effort in OS construction by avoiding

reimplementation of the device drivers. Preserving confidence in the correctness

of the original drivers is also important. When given device drivers that are al-

ready considered to be reliable and correct (error counts tend to reduce over time

[CYC+01]), it is hoped that their reuse will carry along the same properties. Confi-

dence in the new system follows from thorough knowledge of the principles behind

the system’s construction, accompanied by testing.

Reusing device drivers through traditional transplantation reduces the overall

engineering effort for constructing a new OS, but it still involves substantial work.

Ford et al. report 12% of the OS-Kit code as glue code [FBB+97]. Engineering

effort is necessary to extract the reused device drivers from their source operating

systems, and to compile and link with the new operating system. The transplant

requires glue layers to handle semantic differences and interface translation.

For implementation of a glue layer that gives us confidence in its reliability,
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intimate knowledge is required about the functionality, interfaces, and semantics of

the reused device drivers. The authors in [GD96,Mar99,AAD+02] all demonstrate

intimate knowledge of their source operating systems.

The problems of semantic and resource conflicts multiply as device drivers

from several source operating systems are transplanted into the new OS. Intimate

knowledge of the internals of each source operating system is indispensable. Driver

update tracking can necessitate adaptation effort as well.

2.1.2 OS cohosting

VMware has demonstrated an alternative approach for reusing binary drivers in

their VMWare Workstation product [SVL01] — a cohosting approach. They run

the drivers within their entire original OS, and share the machine with the new OS

(in this case, VMware’s hypervisor), which is similar to the approach of this thesis.

Their approach uses the original OS to provide the life support for the drivers,

thus avoiding the need for a large compatibility layer. The driver OS shares the

machine with the new OS via time-division multiplexing. The multiplexing uses

world switching — the driver OS runs fully privileged when it owns the CPU, but

then completely relinquishes the CPU when it switches to the new OS, switching

everything including interrupt handlers, page tables, exception handlers, etc. When

VMware’s hypervisor detects device activity, it switches back to the driver OS

(which restores the interrupt handlers of the driver OS, etc.).

This cohosting method offers no trust guarantees: both operating systems run

fully privileged in supervisor mode and can interfere with each other, particularly

if the driver OS malfunctions.

2.2 Dependability

Reusing drivers introduces a risky relationship between the new OS and the reused

drivers, and our approach focuses on reducing this risk compared to other designs,

i.e., we attempt to increase the dependability of reused drivers.

Tanenbaum and van Steen specify at least four attributes for describing a de-

pendable system: availability, reliability, safety, and maintainability [TvS02]. Per-

fectly dependable systems are elusive, but we can discuss how to improve system

dependability along the available dimensions; we focus on the availability and re-

liability aspects of dependability.

Our architecture increases dependability for several reasons:
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• We avoid the error-prone project of writing a compatibility layer that must

mimic the original driver OS, and instead use the driver OS for providing the

compatibility layer.

• We focus on implementing a virtual machine rather than a software com-

patibility layer. A virtual machine conforms to a well-defined interface that

rarely changes.

• Via the virtual machine, we isolate the driver OS from the remainder of the

system (to the extent permitted by hardware).

• We run the virtual machine at user level, and thus with controlled privileges

(to the extent supported by the hardware).

• We can restart many drivers by restarting their VMs.

These approaches have precedence: VMware’s cohosting approach [SVL01] has

shown how to eliminate the compatibility layer (although replacing it with the co-

hosting infrastructure); using virtual machines to enhance reliability is an old tech-

nique, with the improvements often attributed to smaller and simpler privileged-

mode kernels, and isolation of subsystems within VMs [BCG73, Gol74, MD74,

KZB+91]; Nooks [SBL03, SABL04] has shown how to isolate drivers from the

remainder of the OS (discussed in the next section) and how to restart the drivers;

and many projects have moved their drivers to user-level (discussed in the next

sections).

2.2.1 Nooks

The recent Nooks project [SBL03,SABL04] shares our goal of retrofitting depend-

ability enhancements in commodity systems. Nooks attempts to prevent the vast

majority of driver-caused system failures in commodity systems, via practical fault

isolation with driver restart. Their solution isolates drivers within protection do-

mains, yet still executes them within the kernel with complete privileges. Without

privilege isolation, complete fault isolation is not achieved.

Nooks collocates with the target kernel, adding 22,000 lines of code to the

Linux kernel’s large footprint, all privileged. The Nooks approach is similar to

second generation microkernels (such as L4, EROS, or K42) in providing address

space services and synchronous communication across protection domains, but it
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doesn’t take the next step to deprivilege the isolation domains (and thus exit to user-

level, which is a small overhead compared to the cost of address space switching

on x86).

To compensate for Linux’s intricate subsystem interactions, Nooks includes

interposition services to maintain the integrity of invariants and resources shared

between drivers. In our approach, we connect drivers at a high abstraction level—

the request—and thus avoid the possibility of corrupting one driver’s life support by

the actions of another driver. Yet Nook’s interposition services permit sophisticated

fault detection and driver restart.

The more recent SafeDrive project [ZCA+06] offers similar features to Nooks,

but with less overhead, due to using compiler-inserted checks based on code an-

notations added by developers, as opposed to Nook’s separate memory spaces.

Like Nooks, it is unable to handle malicious drivers. A contemporary project

of SafeDrive, the XFI project [EAV+06], also uses software-based protection of

drivers, although with compiler-assisted protection and automated checking, thus

handling malicious attacks.

2.2.2 User-level device drivers

Our device-driver reuse approach executes the drivers at user-level, and thus de-

privileged. User-level device driver frameworks are a known construction tech-

nique [LBB+91,FGB91,RN93,GSRI93,KM02,Les02,HLM+03,EG04,HBG+06]

for enhancing dependability. They are typically deployed in a microkernel environ-

ment, although a recent project has proposed user-level drivers to complement the

monolithic Linux kernel [LCFD+05].

Many of the user-level driver projects suggest that they increase system de-

pendability by: isolating drivers, deprivileging drivers, offering a means to catch

driver faults so that drivers can be restarted/recovered, and offering programmers

a development environment that resembles typical application development and is

thus simpler than in-kernel development. These characteristics protect indepen-

dent subsystems, i.e., so that a driver is unable to interfere with a subsystem that

makes no use of the driver. Our approach inherits this principle of independence.

We would like to suggest that our approach also offers the fault detection and re-

covery advantages of user-level drivers, but it is beyond the scope of this thesis to

prove these properties. Since we reuse drivers, the advantage of the application

development model is inapplicable.

The Mungi user-level drivers [LFDH04] can be written in Python, an inter-
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preted language, which can reduce the number of bugs due to its pithiness and

automatic garbage collection. While developing the Mungi drivers, I/O-level page

protections helped detect errant DMA accesses [LH03]. It is also possible to detect

errant DMA accesses with filtering [HHF+05].

So far we are only aware of the Nooks [SBL03,SABL04] and SafeDrive [ZCA+06]

projects delivering on the fault detection and recovery promises: they provide ex-

tensive fault detection (which relies on code that inspects the kernel’s internal state

machines and thus surpasses the capabilities of user-level drivers that can only de-

tect a subset of errant memory accesses), and they have demonstrated recoverable

drivers with minimal disruption to the clients of the restarted drivers. User-level

drivers are capable of fault recovery [HBG+07], but fault detection is difficult

and unproven, and thus a corrupt driver may distribute corrupt data throughout

the system long before the corruption manifests as a detectable errant memory ac-

cess. An alternative approach to fault detection is to construct the system with

the assumption that the drivers are faulty, and to protect data integrity via encryp-

tion [SRC84, HLM+03, HPHS04]. Since the integrity approach assumes that the

drivers and hardware are faulty, it is compatible with driver reuse.

Like us, the contemporary project Xen [FHN+04a, FHN+04b] creates user-

level device drivers via VMs. Their approach is very similar to ours, and will be

discussed in Chapter 3.

2.2.3 Faulty hardware

Our approach to enhancing dependability does not address faulty hardware. Worse,

working around faulty hardware can undermine approaches to improving driver de-

pendability. For example, the CMD640 PCI/IDE bridge can corrupt data written to

disk if an interrupt arrives during data transfer — this requires the driver to disable

global interrupts [Sha01], which is an unsatisfactory requirement, particularly for

deprivileged drivers.

Yet other solutions can be combined with our driver reuse infrastructure for

addressing hardware faults, such as using encryption to detect and tolerate corrup-

tion [SRC84, HLM+03, HPHS04].

2.3 Virtual machine models

This thesis makes use of three categories of features of virtual machines. We intro-

duce each category with a model to relate the VM to pre-existing concepts, while
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Figure 2.1: Example of layered system construction.

also describing the features required by our generalized driver reuse solution. The

three models: (1) from the perspective of building a virtual machine, we use a hi-

erarchical software layering model; (2) VMs use services of their hypervisors, and

from this perspective, we model the VM as an application; and (3) guest OSes can

collaborate together, and from this perspective, we model the VM as a participant

in a component framework.

2.3.1 Virtual machine layering

Virtual machines increase the extent of software layering in a system by replacing

the hardware with a software module that conforms to the hardware’s interface.

From the general principles of layering theory we contribute a new approach to

constructing VMs, and thus first describe layering.

Layering

Hierarchical software layering is a partial ordering between software modules, with

the relationship that the higher layer depends on the lower layer [Par72]. The

layering promotes module simplification, as Djikstra explained in his description

of THE [Dij68], because layering reduces the expression of a module’s algorithms

to its essential elements, supported by the vocabularies of the lower layers (e.g., a

lower layer provides a threading environment for the algorithms of a higher-layer

file system). See Figure 2.1 for an example system.

A layer interface makes a statement about the implementation of the layer,

forcing some implementation details, while hiding the remaining from the layers

above. Thus one can substitute alternative implementations for the layers based
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on criteria orthogonal to the interface. This thesis heavily relies on the ability to

substitute layers in system construction.

Design by layering involves choosing appropriate abstractions and cut points

for the layer interfaces. Although layering’s abstractions provide benefits, the ab-

stractions easily introduce inefficiencies due to the lack of transparency into the

lower layers’ implementation details [PS75]; e.g., the abstractions may prevent the

upper layer from using mechanisms that the implementation has, but which are

hidden behind the abstractions; or the abstractions may present the idea of infinite

resources to the upper layer, when the opposite is the case.

When layers interact with each other, they transform abstractions and trans-

fer control flow. We use the following terms to describe the transformations and

control-flow changes:

downmap: A higher layer maps its internal abstractions to the abstractions of the

lower layers, e.g., the file system converts a file read into an asynchronous

disk block read from the disk driver layer, and a thread sleep from the thread-

ing layer while waiting for delivery of the disk block.

downcall: A control-flow transfer from the higher-level to the lower-level, poten-

tially with message delivery (e.g., the results of the downmap).

upcall: Sometimes a lower layer transfers control flow to a higher layer [Cla85]

(e.g., for network processing, upwards transfer is the natural direction for

packet reception).

Since a lower layer lacks knowledge of upper layers’ abstractions, the upcall has

no accompanying upmap.

Virtual machines reposition software to layers of the hierarchy unanticipated by

the original software design. The relocation of modules relative to other modules

may invert the ordering of abstractions, so that a lower-level layer runs at higher

layers than intended (although, the downward partial ordering is maintained). For

example, a virtual machine runs an operating system as an application of another

operating system, and thus issuing system calls rather than direct accesses to the

hardware. When the relocated layer makes a downcall, it attempts to use the wrong

abstractions. We introduce an upmap operation to accompany the downcall, to

handle the inversion of abstractions: it maps the lower-level abstractions to higher-

level abstractions. See Figure 2.2.
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Figure 2.2: The guest operating system communicates with the virtual machine
using the hardware abstractions and hardware downcalls. The virtual machine then
applies an upmap to transform these low-level abstractions to the higher-level ab-
stractions expected by the hypervisor. The virtual machine executes system calls
with the higher-level abstractions as downcalls.

Virtual machines

The virtual machine environment substitutes software implementations for the ma-

chine hardware. The hardware defines the interface between itself and the OS; this

interface is well defined, and fairly immutable over time. The software implemen-

tation is called the virtual machine monitor (VMM). In this thesis, in contrast to

some of the literature, the VMM has no direct access to the privileged hardware;

the hypervisor has the direct access to the privileged hardware, and the VMM exe-

cutes as a subsystem of the hypervisor (although potentially within the hypervisor

itself). The hypervisor and its applications can be called the host OS, and the op-

erating system that runs within the VM the guest OS. The hypervisor, like many

OS kernels, publishes an abstract interface to multiplex the system resources (e.g.,

to run multiple VMs), and may even run native applications that use these abstrac-
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high-level hypervisor interface.

tions. Thus the VMM and guest OS operate upon the hypervisor’s higher-level

abstractions, and the VMM maps the guest OS’s activity to these higher-level ab-

stractions (see Figures 2.2 and 2.3). The system is recursive: the VMM publishes

the machine interface to the guest OS, and the hypervisor uses the machine inter-

face to control the real hardware, and thus it is possible to also insert a VMM below

the hypervisor. Some of the literature use VMM and hypervisor interchangeably,

while we distinguish between the two since their differences are relevant to this

thesis.

Traditional virtualization strictly conforms to the hardware interface, to enable

typical operating systems to execute within the virtual machine. For security and

resource control, the VMM prevents the guest OS from directly accessing the priv-

ileged hardware, and instead maps the guest’s system instructions to the interface

of the hypervisor. This translation uses an upmap operation, since the hypervisor

provides more abstract interfaces suitable for multiplexing resources. Traditional

virtualization encounters layering’s worst-case transparency [PS75] problems: the

OS uses the mechanisms of the privileged hardware, but as a guest in a VM it

must use software abstractions (which are implemented in the hypervisor using

the very instructions forbidden to the guest OS). The lack of transparency causes

performance problems.

Besides performance problems, VM layering disrupts accurate timing [Mac79,
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WSG02, BDF+03], entropy generation (for security-related algorithms), and pre-

vents the driver-reuse techniques of this thesis. Timing and driver-reuse with direct

hardware access fall outside the scope of virtualization [PG73], and their solutions

require increased transparency to the lower layers to either obtain visibility into

the resource multiplexing (timing), or to bypass the resource multiplexing (direct

hardware access). Entropy helps an OS generate statistically random numbers; a

VMM may increase determinism and thus lower the quality of the guest’s entropy

pools.

A solution for the performance and correctness issues of VMs is to increase

the layer transparency between the guest OS and the VM, to give the guest OS

knowledge of implementation details in the lower layer beyond the details encoded

in the original hardware interface. Many projects have taken this approach: they

have modified the OS for more efficient execution within the VM, and have added

knowledge to the OS of the abstracted time (see Figure 2.3). IBM called this ap-

proach handshaking [Mac79], and used it for their early mainframes. Goldberg

called it impure virtualization [Gol74]. Today this co-design approach is termed

para-virtualization [WSG02]. These modifications introduce new dependencies

between the guest OS and its lower layer, often ruining the modularity of virtual-

ization: the guest OS may no longer execute on raw hardware, within other virtual

machine environments, or permit nested VMs.

The solution in this thesis also increases the transparency between layers, but

in a manner that preserves the modularity of the original layer interface.

2.3.2 Virtual machines as applications

In this thesis, we run a VM with its guest OS and applications in place of a tra-

ditional application. We thus first demonstrate that this replacement is in many

aspects an equivalent substitution.

An OS kernel and its applications together form a collaborative group of in-

teracting components. This group may communicate over a network with other

groups on distant machines; from the perspective across the network, the group is

an opaque and single entity, and its implementation as a group is often irrelevant.

In a VM, the guest kernel and its applications are also hidden behind an opaque

module boundary, represented to the other system components as a single entity,

with its internal implementations irrelevant in many contexts. Thus the hypervisor

hides the nature of the VM from the other system components, making it diffi-

cult to distinguish the side effects of the guest OS from those of any other native
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application.

The VM has the properties of a typical application: resource virtualization and

delegation to the kernel (e.g., the hypervisor may transparently swap a page to disk

that is outside the VM’s working set), independence guarantees (application A can

give guarantees of its internal correctness independent of application B) [Lie95b],

and integrity guarantees (application A can communicate with C without interfer-

ence from B) [Lie95b].

The term virtual machine may seem to arrogate the concept of virtualized re-

sources and cast VMs as something different from a typical application, when in

fact, the virtual term applies to the interface used to represent the virtualized re-

sources. Virtualized resources are common to most operating systems, since the

traditional use of an operating system is to multiplex and abstract the hardware

resources [Dij68]. Thus the resource management of a hypervisor for its VMs

is conceptually similar to the resource management provided by a traditional OS

for its applications. An OS’s applications consume resources via the kernel’s high-

level abstractions designed to hide the resource multiplexing inside the kernel, thus

synthesizing a virtualized environment: each application has the impression that it

owns the machine, with continuous access to the CPU, contiguous access to all

of memory, contiguous access to the disk, and streamed access to the network.

A virtual machine, as an application of the hypervisor, has a similarly virtualized

resource environment, but using different abstractions: the primitives of the hard-

ware.

Despite the similarities between how a hypervisor and a traditional kernel pro-

vide virtualized resources to their abstractions, not all kernels can function as hy-

pervisors. Since the VM uses the primitives of the hardware, it may use resources

in a manner where no upmap to the high-level abstractions of a traditional OS

exists—for example, a VM must create multiple address spaces that it populates

with pages from its own supply of pages, but this same action is difficult to achieve

under the abstracted POSIX API since it deviates from fork() and exec() se-

mantics. Although we argue that a VM is a substitute for a normal application,

achieving this substitution requires sufficient interface support from the kernel.

Applications have system calls to obtain services from their kernels. VMs have

a parallel, called hypercalls, which provide a control-flow transfer (and message

transfer) to the hypervisor (see Figure 2.4). Whether the VM uses traditional vir-

tualization or para-virtualization, the hypercalls are available to guest code that is

aware of the VM environment. The hypercalls are conduits that puncture the VM
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Figure 2.4: The hypervisor accepts hypercalls from applications and kernel mod-
ules that are aware of the VM environment.

isolation. Examples of VM-aware services: the user interface tools and file-sharing

tools installed by most commercial VM environments, and memory ballooning (a

technique to achieve cooperative memory management between the guest kernel

and the hypervisor) [Wal02].

Many OSes isolate their applications to provide independence and integrity

guarantees. A VM has similar isolation, but spread across several hardware address

spaces. The VM’s isolation from other VMs is vulnerable to the imperfections that

accompany normal application isolation, despite the folklore that VMs have secu-

rity analogous to physical machine isolation in a concrete room. The VM’s secure

containment relies on correct implementation of the hypervisor, and correct imple-

mentation and access control for all communication that crosses the VM boundary

(especially hypercalls and hardware emulation, since a guest OS could use them

as attack vectors for unauthorized privilege escalation), and thus security is no au-

tomatic feature of the system (see Saltzer’s discussion Weaknesses of the Multics

Protection Mechanisms [Sal74]). A VM system has the advantage that it can run

a small trusted computing base [Gol74, MD74], with lower complexity, and thus

with few bugs (when bugs are estimated in proportion to code size). Formal verifi-

cation for hypervisors is a step towards trusted, secure isolation of VMs [TKH05],

and due to the complexity of formal verification, relies upon a small source-code

base.

The hypervisor provides services to the VM just as a kernel provides ser-

vices to its applications, and irrespective of either’s internals. A VM enhances

a legacy operating system with features unanticipated by the original architects,

building a new system from the old. It is large-scale legacy reuse, and capa-
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ble of satisfying one of computing science’s dilemmas: a VM promotes inno-

vation while maintaining compatibility with prior systems, interfaces, and pro-

tocols. Example services: pausing a VM by removing the VM from the run

queue; roll back of the VM state to discard erroneous or experimental changes;

checkpoint and migration across the network [CN01, SCP+02]; intrusion detec-

tion [JKDC05]; debugging [KDC05]; co-existence of realtime and non-realtime

applications [MHSH01]; and secure computing platforms with strictly controlled

information flow [MS00, CN01, GPC+03, SVJ+05].

This thesis treats device drivers as applications, even though the drivers run

within virtual machines. The hypervisor thus has leeway to manage and control

the resource consumption of the device drivers.

2.3.3 Component frameworks

The hypervisor provides the VM the option to cooperate with other applications

on the machine, in a network of interacting components [BFHW75, Mac79], e.g.,

interaction as simple as sharing the same graphical interface, or as complicated as

file sharing via page sharing. The collaborating components may be applications

native to the hypervisor, or other VMs, and all may be unaware of the internal

implementations of the others. This creates component frameworks from virtual

machines.

Typically a kernel provides inter-process communication (IPC) mechanisms

for component systems, which its applications intimately integrate into their algo-

rithms. A hypervisor also provides IPC, but designed independently of the guest

kernel, and thus requires translation into the mechanisms of the guest kernel. The

translation may take place externally to the guest OS, such as by mapping the

IPC to the legacy network protocols that the guest understands and receives via its

virtual network adapter (e.g., file sharing via a network protocol such as NFS or

CIFS). Alternatively, the translation may take place within the guest OS, via instal-

lable kernel modules or applications that are aware of the hypervisor’s IPC, and

which map the hypervisor IPC to the guest OS’s internal interfaces.

We present three possible component frameworks, which vary on the extent of

interaction, and whether they focus on enhancing legacy systems, or building new

systems.

In the classic virtual machine model, the legacy OS is the principal, and sub-

stantially flavors the system. The VM’s enhancements to the legacy OS play a mi-

nor role, and the legacy OS operates unaware of the enhancements. For example,
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Figure 2.6: Federated model example: tiered Internet server. Multiple legacy OS
instances collaborate to form a federated system, inherently tied to the features of
the VM environment.

in server consolidation, the VM introduces confinement [BCG73] and performance

isolation to fairly share hardware between unrelated servers, to promote extended

use of the legacy OS (see Figure 2.5).

In the federated system model, the legacy OS serves as a building block for the

construction of a system from several legacy OS instances [BFHW75]. Each build-

ing block OS benefits from the enhancements of the VM environment, such as sub-

system reboots to independently recover from failure, and confinement to prevent

the propagation of security breaches. For example, a tiered Internet server divided

across multiple virtual machines impedes security compromise from the front-end

to the sensitive data in the back-end (see Figure 2.6). The federated system inte-

grates the features of the VM environment into its architecture, and is nearly unable

to execute without the VM environment; the alternatives are multiple physical ma-

chines, or the merger of all servers onto the same physical machine within a single
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processes are visible in the left-most VMM).

legacy OS. Several federated systems can coexist on the same machine, and in this

sense, the properties associated with virtual machines are recursive: just as the VM

provides an isolation, confinement, and resource domain for the processes within

the legacy OS, the hypervisor provides a dedicated isolation, confinement, and re-

source domain to each federated system, to share amongst the building-block OSs

(see Figure 2.7). This recursion may demand recursive VMs as well, to accommo-

date the preferred hypervisors of each federated system, along with the preferred

hypervisor installed by the system administrator on the machine. Contemporary

virtual machine technologies do not optimize for recursive VMs.

The domain model focuses on the specialties of the hypervisor and its methods

of system construction. This model develops system algorithms optimized for the

domain, in contrast to the general algorithms of commodity systems. The legacy

OS assumes a supporting role and provides reused code, such as device drivers or

legacy network protocols. For example, to build an efficient database, uncontested

by an OS for the control of memory paging, but supported by reused device drivers,

the domain model executes the database as a native hypervisor application using

legacy device drivers running in virtual machines (see Figure 2.8).

This thesis relies on component construction with virtual machines: the driver

VMs collaborate with and support other system components.
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Figure 2.8: Domain model example: database appliance. The database directly ac-
cesses the hypervisor’s interface, and avoids the inefficiencies typically associated
with commodity OS interfaces. Multiple legacy OS instances provide device driver
reuse.

2.4 Virtual machine construction

The performance and ease of implementation of our driver reuse solution is inti-

mately tied to the virtual machine environment. We describe VM implementation

artifacts that impact performance and developer productivity.

The performance of virtual machines relies on bare-metal execution for most

guest OS instructions. The virtual machine emulates only those instructions that

would interfere with the hypervisor, or would leak hypervisor state where the guest

OS expects its own state. We call these instructions the virtualization-sensitive

instructions [PG73]. The remaining instructions are innocuous, and execute on the

raw hardware.

A downcall of typical software layering follows function calling conventions: a

linked call and return with parameters passed in the register file or stack. The down-

call of a virtual machine is more complicated, since the guest OS uses virtualization-

sensitive instructions, as opposed to function or system calls. The approaches to

virtualization are thus characterized by how they locate and transform the virtualization-

sensitive instructions into downcalls.

2.4.1 Traditional virtualization

When the virtualization-sensitive instructions are a subset of the privileged in-

structions, they cause hardware traps when executed by an unprivileged virtual

machine. This permits a VMM to locate the sensitive instructions with runtime

trapping, to emulate the instructions at the occurrence of the runtime trap, and to
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then return control to the guest OS at the instruction following the emulated in-

struction [PG73].

Not all architectures provide the set of virtualization-sensitive instructions as

a subset of the privileged instructions, in particular, the popular x86 architec-

ture [RI00]. This requires more complicated algorithms to locate the sensitive

instructions, such as runtime binary scanning. VMware successfully deploys vir-

tual machines on x86 by using algorithms to decode and scan the guest OS for

sensitive instructions, to replace them with downcalls [AA06].

Trapping on privileged instructions is an expensive technique on today’s super-

pipelined processors (e.g., in the Pentium line, a trap ranges from 100 to 1000 times

more costly than a common integer instruction). Likewise, more efficient down-

calls to the VMM that use special instructions to cross the protection domain of

the guest OS (hypercalls) are often expensive. To avoid these overheads, VMware

also rewrites some of the performance-critical parts of the binary to perform em-

ulation within the protection domain of the guest OS, thus reducing the frequency

of transitions to the VMM [AA06].

Hardware acceleration is a known technique to reduce the runtime costs. Most

major server processor vendors announced virtualization extensions to their pro-

cessor lines: Intel’s Virtualization Technology (VT) for x86 and Itanium [Int05b,

Int05a], AMD’s Secure Virtual Machine (SVM) [AMD05], IBM’s LPAR for Pow-

erPC [IBM05], and Sun’s Hypervisor API specification [Sun06]. These exten-

sions help accelerate the performance of virtual machines. For example, Linux

toggles interrupts frequently, with the potential for frequent emulation traps; the

new x86 virtualization mode implements interrupt virtualization in hardware, with

the option to suppress traps until an interrupt is actually pending for delivery to

the guest kernel. The hardware extensions are not comprehensive and typically ig-

nore memory-mapped device virtualization, despite their high virtualization over-

head. IBM added a VM assist mode to the System/370 decades ago, which au-

tomated shadow page table management, provided a virtual timer, and avoided

expensive VM exits by emulating instructions via the CPU rather than the hyper-

visor [Mac79].

2.4.2 Para-virtualization

Para-virtualization is characterized by source code modifications to the guest OS,

to convert the sensitive instructions into normal downcalls. It can provide high per-

formance [Mac79,HHL+97,WSG02,BDF+03], and it easily handles x86 and other
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Figure 2.9: The graph studies the CPU overhead due to entering and exiting a VM
under a heavy network workload. The VM uses Intel’s VT, runs Linux 2.6 as a
guest, emulates an interrupt controller, and emulates a gigabit network interface.
The overhead represents only the cost of entering and exiting the VM (the trap
cost), and excludes emulation costs. The data was collected from a trace of a
running VM, with heavy network throughput, and thus frequent interrupts. Each
data point shows the aggregate overhead to that point in time from the start of
the trace. Line a is for traditional, trap-based virtualization. Line b estimates the
reduced overhead one can achieve by emulating the interrupt controller within the
VM’s protection domain; it subtracts the overhead due to the exits for the interrupt
controller.

architectures that have non-privileged sensitive instructions. Developers manually

convert the OS’s sensitive instructions into emulation logic, thus supporting em-

ulation within the protection domain of the guest kernel (many projects typically

relocate traditional VMM functionality into the guest kernel). The result is that

para-virtualization transforms the guest kernel into a first-class application of the

hypervisor. This approach deviates from virtualization, since the OS directly uses

the abstractions of the hypervisor, rather than using a machine interface that is vir-

tualized to use the abstractions of the hypervisor. See Figure 2.9 for an example

of the performance savings that para-virtualization can achieve compared to tradi-

tional virtualization.

Para-virtualization involves a fair amount of manual effort to modify the guest

kernel code, often by people outside the kernel community, i.e., usually performed

by the hypervisor developers themselves. Reducing the manual labor is a goal
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of optimized para-virtualization [MC04]; it uses manual modifications to satisfy

performance demands, and trap-and-emulate otherwise. An alternative approach

automates many of the changes via static rewriting of the assembler [ES03] —

at compile time, a translator converts the virtualization-sensitive instructions into

downcalls. This approach is incomplete, for it ignores memory instructions (such

as page table updates and device register updates).

To obtain performance, para-virtualization compromises developer productiv-

ity: it increases effort and offers less value. The following metrics illustrate this:

VMM modularity: Para-virtualization integrates the VMM’s emulation code into

the guest kernel, reducing the ability to share the VMM logic between differ-

ent OSes (and OS versions). The pursuit of performance often leads to inti-

mate changes spread across the guest kernel, rather than contained in a mod-

ule. In contrast, the VMM of traditional virtualization is (binary) reusable

across different OSes and OS versions.

Trustworthiness: Para-virtualization introduces modifications to the guest kernel,

often applied by the hypervisor developers rather than by the original kernel

developers, potentially introducing new bugs [CYC+01]. Each version of a

guest OS requires testing and verification, and inspection of kernel source

code to see whether the kernel developers changed structural features since

the last version. In traditional virtualization, the VMM implementation is

mostly independent of the guest kernel’s internals; since it is reusable, reli-

ability testing (and feedback) from a particular guest OS benefits all other

guest OSes (but this is no substitute for comprehensive testing).

Hypervisor neutrality: The modifications tie the guest kernel to a particular hy-

pervisor. To upgrade the hypervisor either requires backwards binary com-

patibility in the hypervisor, or updates to the guest OS’s source code to suit

the latest hypervisor API (and then recompilation).

OS neutrality: The manual modifications of para-virtualization pose a high bar-

rier to entry for unsupported OSes. This hampers participation for less pop-

ular operating systems within the hypervisor ecosystem, and for novel oper-

ating systems.

Longevity: VMs offer a means to check-point and restore, whether immediately

(such as for runtime migration across the network), or over a long time in-

terval (such as after several intervening iterations of product releases for the
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guest OSes and hypervisors). Traditional virtualization supports reactivation

of the guest OS on a new edition of the hypervisor; this can provide unin-

terrupted service across hypervisor upgrades when combined with network

migration, can permit retroactive application of bug fixes in the hypervisor

to older VMs, and can support the use scenario where the user duplicates a

generic VM image for specialization [PGR06]. For para-virtualization, up-

grades to hypervisor interfaces interfere with longevity.

Many projects have used the para-virtualization approach, with modifications

ranging from minor to major reorganization of the guest kernel. IBM enhanced

OS/VS1 and DOS/VS to detect when running within a VM, for better perfor-

mance [Mac79]. Mach ran Unix as a user-level server [GDFR90] (although the

Unix server little resembled its original form) and the Linux kernel as an applica-

tion [dPSR96]. Härtig, et al., were the first to demonstrate para-virtualization at

high performance on a microkernel, running Linux on L4 [HHL+97]; they heav-

ily modified the Linux source in the x86-architectural area to use L4 abstractions.

Denali introduced the term para-virtualization [WSG02]. XenoLinux uses para-

virtualization, and published benchmarks results suggesting that para-virtualization

outperforms traditional virtualization [BDF+03], although in the comparison Xeno-

Linux used memory partitioning rather than virtualization. Linux can run a modi-

fied Linux as a guest OS [Dik00, HBS02]. For Disco, the authors modified Irix to

overcome the virtualization limitations of their CPU [BDR97].

L4Linux

L4Linux exemplifies the modularity problems of para-virtualization: three univer-

sities offer competing (and incompatible) L4-derived microkernels, with more un-

der construction; and the universities have modified four generations of the Linux

kernel to run on the microkernels (see Table 2.1). The first L4Linux [HHL+97]

used Jochen Liedtke’s x86 L4 microkernel [Lie93, Lie95b] (written in assembler).

Hazelnut and Pistachio are the L4 microkernels from Universität Karlsruhe, writ-

ten in C++ yet rivaling Liedtke’s performance (Pistachio is the latest, and used in

the evaluation of this thesis). The University of New South Wales (UNSW) ported

Pistachio to several processor architectures, including embedded systems; and they

ported Linux to run at the high-level L4 API (project name is Wombat), permitting

it to run on a variety of CPU families. Fiasco is the L4 microkernel from TU

Dresden, also written in C++, and supports realtime.
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Liedtke’s
L4Linux x86 kernel Fiasco Hazelnut Pistachio
2.0 X X
2.2 X X
2.4 X X X
2.6 (Dresden) X
2.6 (Karlsruhe) X
2.6 (UNSW) X

Table 2.1: L4Linux demonstrated that high performance para-virtualization is pos-
sible on a microkernel, but it involved many man-hours of effort for four genera-
tions of Linux and several microkernels. A Xshows compatibility between a ver-
sion of L4Linux and a particular microkernel (16 May 2006). Para-virtualization
requires proactive effort to enable compatibility between a microkernel and a guest
OS, and the data show that for several of the combinations this effort exceeded the
perceived usefulness.

L4Linux lacks VMM modularity: porting effort was repeated for each gener-

ation of Linux, due to changes in Linux internals, which required L4 developers

to understand the Linux kernel internals. Also each group independently dupli-

cated the porting work of the other groups. We have often experienced a lack of

trustworthiness with L4Linux. And L4Linux is missing: hypervisor neutrality at

the binary and source interfaces, OS neutrality, and longevity. Although L4Linux

usually supports research contexts where hypervisor neutrality and longevity are

superfluous, it strains developer productivity (which also makes it a good project

to train students).

Xen

Xen [BDF+03] also exemplifies the modularity problems of para-virtualization.

See Table 2.2 for version compatibilities of the Xen hypervisor, Linux, and other

OSes. Notice that Xen v3, at its release, supported only a single guest kernel, while

the prior version of Xen supported at least six guest kernels.

Xen lacks VMM modularity: porting effort was repeated for each guest kernel,

with little code sharing. The ported guest kernels lack hypervisor neutrality: they

can only execute on a particular version of the Xen hypervisor, and no alternative

hypervisors (such as L4). OS neutrality is missing, as can be seen in Table 2.2 for

the upgrade from Xen v2 to Xen v3. Xen is also missing longevity: A XenoLinux

2.6.9 binary is only able to run on the Xen v2 series; the same binary will not

execute on Xen v3.
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Xen v1 Xen v2 Xen v3
XenoLinux 2.4 X X
XenoLinux 2.6 X X
NetBSD 2.0 X X
NetBSD 3.0 X
Plan 9 X
FreeBSD 5 X

Table 2.2: Xen has evolved through three hypervisor generations, and several op-
erating system generations. A Xshows compatibility between a guest OS and a
version of the Xen hypervisor (16 May 2006). This data was collected shortly after
the release of Xen v3, and shows that most of the para-virtualization effort for Xen
v2 was lost, due to changes between Xen’s v2 and v3 interfaces; several of those
guest OSes now support Xen v3, after manual porting effort.

2.4.3 Modular para-virtualization

Several para-virtualization projects have attempted to partially preserve the modu-

larity of traditional virtualization.

Young described para-virtualization [You73] as behavioral changes of the guest

OS, enabled at runtime upon detection of running within a VM.

Eiraku and Shinjo [ES03] add trap-and-emulate capability to x86, by using

an assembler parser to automatically prefix every sensitive x86 instruction with a

trapping instruction. This provides some modularity, including VMM modularity,

hypervisor neutrality (except for raw hardware, unless they were to rewrite the trap-

ping instructions with no-op instructions at load time), and longevity. Additionally,

since they automate the changes to the guest OS, they have trustworthiness and OS

neutrality. The approach sacrifices performance.

vBlades [MC04] and Denali [WSG02] substitute alternative, trappable instruc-

tions for the sensitive instructions.

PowerPC Linux uses a function vector that abstracts the machine interface.

This indirection supports running the same kernel binary on bare hardware and on

IBM’s commercial hypervisor. While working on this thesis, we have found that

function calls add noticeable runtime overhead for frequently executed instructions

on x86.

User-Mode Linux (UMLinux) uses para-virtualization, but packages the virtu-

alization code into a ROM, and modifies the Linux kernel to invoke entry points

within the ROM in place of the sensitive instructions [HBS02]. Thus UMLinux

can substitute different ROM implementations for the same Linux binary. Addi-
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tionally, UMLinux changes several of Linux’s device drivers to invoke ROM entry

points, rather than to write to device registers; thus each device register access has

the cost of a function call, rather than the cost of a virtualization trap.

VMware’s recent proposal [VMI06, AAH+06] for a virtual machine interface

(VMI) has evolved to include several of the techniques proposed in this thesis. In

VMI version 1, VMware modified the Linux kernel to invoke ROM entry points

(as in UMLinux [HBS02]), where the ROM is installed at load time and contains

emulation code specific to the hypervisor (or even code that permits direct execu-

tion on hardware). After the first VMI version became public, our research group

started contributing to its design, and VMware has evolved it into an implementa-

tion more in line with this thesis. VMI deviates from the base instruction set more

than our approach. It provides additional semantic information with some of the

instructions. It lacks a device solution. VMI is aimed at manual application to the

kernel source code.

Today, the Linux community has finally reacted to the modularity problems

of para-virtualization in the face of competing hypervisors, particularly VMware’s

and Xen’s. The Linux community (which can include anyone on the Internet),

the Xen team, and VMware are collaborating to add a modular para-virtualization

interface to the Linux kernel. The interface is highly derivative of VMI version 2

(and thus this thesis), but forfeits binary modularity for sustaining the community’s

open source goals — one must thus compile the kernel with foreknowledge of all

possible hypervisors that the kernel may execute upon, which is a severe deficiency.

This Linux solution offers function overload points, and some instruction rewriting

for performance. The Linux community expects hypervisor teams to add the source

code of their mapping logic into the Linux source tree. If VMI mapping logic is

added, then binary runtime modularity will be achieved.

2.4.4 Device virtualization

Guest OSes access information outside the VM via device interfaces, such as disk

and network. To convert device interaction into downcalls, traditional VMMs de-

tect and emulate device register accesses via trapping. Device drivers are noto-

rious for having to configure many device registers for a single device transac-

tion [SVL01], thus using trapping for downcalls is intolerably slow. Most VM

environments will thus introduce specialized device drivers into the guest kernel,

where the drivers are aware of the hypervisor and its downcall mechanisms, and

thus avoid trapping. As in para-virtualization, these specialized drivers abandon
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modularity: they are specific to both the hypervisor and the guest kernel. They thus

require engineering investment for designing and building loadable kernel modules

for all the possible guest OSes and hypervisors.

Virtualized devices suffer from another source of performance degradation.

Typical high speed devices achieve their performance by operating concurrently

to the OS — they use a coprocessor that performs logic in parallel to, and collab-

oratively with, the host processor. The expectation of this concurrency pervades

the structuring of typical OSes. In contrast, virtual devices of the VM environment

share the host processor with the OS, and thus have different sequencing charac-

teristics, which guest OS structuring may not efficiently support. The prime focus

of high speed device virtualization is achieving optimal sequencing that matches

the assumptions of the guest OS.

2.4.5 Resource virtualization

The layering of virtual machine construction has a weakness: the layers perform

redundant and uncoordinated resource management. Coordinated resource man-

agement is preferable, but difficult to achieve without sharing high-level informa-

tion between the guest kernel and the hypervisor — thus para-virtualization has an

advantage in that it opens the possibility for collaborative resource management

between the hypervisor and guest kernel.

For example, both the hypervisor and guest kernel may perform working set

analysis to find pages suitable for swapping to disk. The costs for duplicate analy-

sis can be high, since working set analysis can raise many cache and TLB misses

while scanning the page tables, and since the guest kernel’s inspection of page ta-

bles requires costly synchronization between the virtual page tables and the access

bits of the hardware page tables. Additionally, the hypervisor and guest kernel

may form opposite conclusions about a page, leading to redundant disk swapping.

Several solutions have been used. The VAX VMM team avoided double paging

by requiring the working set to be always resident [KZB+91] (i.e., no resource

management at the hypervisor level). IBM, via handshaking (para-virtualization),

permitted a guest OS to use the hypervisor’s paging mechanisms, and to thus avoid

double paging [Mac79]. VMware introduces a driver into the guest kernel that

transfers ownership of pages between the hypervisor and the guest kernel on de-

mand [Wal02].

A second example: multiprocessor systems are vulnerable to uncoordinated

resource management for CPU scheduling: the hypervisor may preempt a virtual
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Figure 2.10: In (a), the OS partitions an address space into two privileges: a priv-
ileged kernel and an unprivileged application. In (b), the guest kernel uses an
intermediate privilege level provided by the x86 hardware through a combination
of segmentation and paging (termed rings). Finally, if only two privilege levels are
available, then the guest kernel runs in a separate address space (c) from the guest
application (d), since the hypervisor requires the most privileged level.

CPU that holds a lock, while another virtual CPU spins on that lock, amplifying the

typical lock waiting time from microseconds to milliseconds. A possible solution

is to modify the guest kernel to inform the hypervisor about lock acquisitions, so

that the hypervisor delays preemption [ULSD04].

Since the solutions benefit from collaboration between the hypervisor and guest

kernel, their implementations tend to be specific to a hypervisor and guest kernel

pair, and thus lack modularity.

2.4.6 Address spaces and privileges

The VMM has the important task to efficiently create a three-privileged system,

to execute (1) a guest application and (2) a guest kernel on (3) a hypervisor. The

construction technique depends on the hardware and hypervisor capabilities, with

efficient solutions sometimes demanding para-virtualization.

Kernels and applications run within separate privilege domains to protect the

kernel’s integrity from the applications. They each have separate logical address

spaces. Transitions between applications and the kernel involve hardware privilege

changes, typically within the same hardware address space to make the privilege-

change hardware efficient (see Figure 2.10 (a)).
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A VM environment requires a third privilege domain for the hypervisor. The

hypervisor must control the most privileged hardware, and thus executes at the

most privileged level, consuming one of the hardware privilege levels. The guest

kernel still requires protection from the guest applications, and thus we must use

a technique to share the remaining privilege(s) between the guest kernel and its

applications. We describe four approaches.

Hardware protection: If hardware provides secondary protection independent

of the paging, then it is possible to partition the hardware address space into multi-

ple logical spaces — for example, IA64 provides protection keys, and x86 provides

segmentation. This approach works only if the hypervisor can use the additional

hardware without interfering with the guest’s use. The protection keys of IA64

can be virtualized in case of conflict, while the segmentation of x86 will cause

problems, especially for recursive VM construction based on segmentation.

The x86 hardware provides four privilege levels, which it calls rings, imple-

mented via segmentation and paging, and the hardware can automatically transition

between the rings without hypervisor intervention. The paging prohibits user-level

from accessing the memory of any higher privilege, and the segmentation prevents

intermediate privileges from accessing higher privileges. Reverse access is per-

mitted, so that each privilege level can access the lower-privileged memory. We

can install the guest kernel at an intermediate privilege [KDC03] (see Figure 2.10

(b)). The rings are in limited supply and may collide with recursive VMs and guest

kernels that use segmentation. Additionally, the CPU optimizes for the dual priv-

ilege modes of paging (e.g., the fast sysenter and sysexit instructions for

system calls), whereas the intermediate privileges must use the slower legacy int

system call instruction. Alternatively, the hypervisor can ignore the intermediate

privilege levels, and execute both the guest kernel and application at user-level,

with the guest kernel protected from its applications via a segment limit [KDC03].

This approach requires an indirection via the hypervisor to reconfigure the limit

when transitioning between guest user and kernel, although when combined with

sysenter and sysexit, this approach should have performance comparable to

the hardware transitions of intermediate privileges.

Dedicated VM hardware: Processors with hardware support for hypervisors [Int05b,

Int05a, AMD05, IBM05] provide more generalized solutions to the privilege prob-

lem (thus potentially supporting recursive VMs), and with performance accelera-
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tion. Intel’s VT [Int05b], for example, creates three privilege domains via two ad-

dress spaces: one address space for the hypervisor, and another address space for

the guest kernel and guest application to partition using the standard x86 hardware

features. The result enables high performance interaction between the guest kernel

and guest application, but slower transitions with the hypervisor due to complete

address space switches. Although VT mitigates the number of switches to the hy-

pervisor for processor emulation, it lacks a solution to mitigate switches caused by

device emulation (high-speed device drivers access memory-mapped device regis-

ters; when using VT these raise page faults that the VMM must intercept, and then

decode to determine how the faulting instruction is accessing the device register).

Privilege emulation: Not all hardware provides additional hardware protection

mechanisms (e.g., AMD64 provides segment offsets without segment limits, which

prevents its use for creating logical spaces). Additionally, not all hypervisors per-

mit access to the additional hardware (e.g., when using traditional Linux as a hy-

pervisor). We can instead dedicate an address space to each guest privilege level

(see Figure 2.10 (c) and (d)). With hypervisor support, it is possible to accom-

plish this by changing only the page directory entries that implement the guest

kernel space (Xen on AMD64 takes this approach). Otherwise, we map each guest

privilege domain to a dedicated host address space and perform an address space

switch when transitioning between guest kernel and guest application. This is our

approach when using the L4Ka::Pistachio microkernel, Windows XP, and Linux as

hypervisors. The use of separate address spaces requires us to emulate all mem-

ory accesses that cross privileges, i.e., when the guest kernel accesses memory in

the guest application. Para-virtualization has been our traditional approach to han-

dle cross-privileged memory accesses when running Linux on the L4Ka::Pistachio

microkernel.

Small address spaces: The x86 segmentation enables an alternative privilege

partitioning approach, called small address spaces [Lie95a, UDS+02], which were

originally designed to emulate tagged TLBs on the x86. Rather than partition an

address space into multiple privileges, small spaces partitions the user level into

multiple logical address spaces each starting at address 0. This permits multiple

guest OSes to coexist in the TLB (see Figure 2.11), and thus improves the perfor-

mance of component systems built from VMs on x86, and are good candidates for

running user-level device drivers. Small spaces have a restrictive limitation: each
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Figure 2.11: (a), (b), and (c) are three separate hardware address spaces, each
with several logical address spaces, including three small spaces hosting guest ker-
nels. Sharing multiple logical spaces in a single hardware space lowers TLB costs
for component interaction with the guest kernels (e.g., device driver reuse); also
scheduling a VM in a small address space is very fast compared to a full hardware
space switch.

logical space must start at 0, and must fit within its small limit. In ref. [UDS+02],

the authors run Linux applications in a large logical space, and the Linux kernel in

a small logical space, which required relocating the Linux kernel to a low address.

Linux expects to run at a high address (one of its assumptions is that page faults

at low addresses belong to applications and not the kernel), and thus this approach

requires adjusting the guest kernel source code.

2.4.7 Sensitive memory objects

In some architectures, particularly x86, the OS kernel controls parts of the hard-

ware via memory objects. The memory objects occupy physical memory, in some

cases at byte-aligned locations, and provide a place for the CPU to store bulk state

off chip. A similar concept is memory-mapped I/O, but which has a subtle dif-

ference from memory objects: memory-mapped devices associate page-aligned

virtual addresses with device registers, while sensitive memory objects associate

device behavior with regions of physical memory (which may require no virtual

memory addresses and no page alignment). The memory objects are an extension

to the CPU’s interface, and conceptually, the guest kernel issues downcalls to this
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aspect of the CPU interface just as with other aspects. On x86, memory objects

include the page tables, the task-state segment (TSS), the interrupt descriptor table

(IDT), segment descriptor tables, and I/O permission bitmaps.

In a VM the memory objects become an interface to the VMM as opposed to

the true hardware, and thus the VM must redirect the guest kernel’s downcalls to

the VMM. Converting the original downcalls into VMM downcalls is difficult. A

constraint is that, just as when running on raw hardware, the guest kernel allocates

the memory for these objects from its physical memory pool, which leaves the VM

the responsibility of detecting accesses to the memory objects. The VM is unable

to permit passthrough access to the hardware for handling these objects, since the

objects are virtualization sensitive.

The downcalls may be expected to cause immediate side effects. For page ta-

bles, modifications will change mappings. For the IDT, changes will install new

interrupt handlers. For the segment descriptors, changes will install new segments,

and thus changes to the logical address space. The guest kernel may malfunction

without the immediate side effects. A possible algorithm to fulfill the immedi-

ate side effects is to fabricate downcalls by detecting changes on the objects via

write-protection, which would force page faults every time the guest tries to make

changes, at which point the VM could re-enable write permissions, perform a sin-

gle step (via the debug hardware), and then synchronize the changes with the hard-

ware. This is a potential disaster for performance, because if the objects are byte

aligned, then they may share page frames with other kernel data, particularly fre-

quently written kernel data, causing false page faults. Para-virtualization can eas-

ily solve this problem by modifying the guest kernel to perform high-performance

downcalls, such as function calls or hypercalls, or even by allocating dedicated

pages to the objects to avoid the false sharing.

The approach to converting the guest’s page table accesses into VMM down-

calls is performance critical for many workloads (e.g., compiling the Linux kernel

itself creates several new processes for each of the hundreds of kernel source files).

Some of the approaches for generating the downcalls are:

Brute force virtualization: Use conventional page-based protection to protect page

tables, forcing traps when the guest accesses them. This involves large over-

head just for tracking the page tables, because the hardware may use physi-

cal addresses to identify them, while the guest accesses them via an arbitrary

number of virtual mappings. Thus the VMM must detect and track the vir-

tual mappings created by the guest for the page tables.
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Emulation logic that executes within the guest’s address space needs virtual

addresses for updating the guest’s page tables, otherwise it has to temporarily

unprotect the guest’s mappings so that the guest’s virtual addresses may be

used.

Virtual TLB: The VMM can treat the host page tables as a virtual TLB for the

guest’s page tables. This scheme fills the virtual TLB (host page tables)

in response to guest page faults, and flushes the virtual TLB in response

to guest TLB invalidations. Flush emulation is particularly costly for x86,

which lacks an instruction to flush large regions of the virtual address space

from the TLB and so instead falls back to flushing the entire address space.

Additionally, x86 flushes the TLB upon every address space change, which

forces the virtual TLB to be flushed as well. Thus every new activation of an

address space involves a series of page faults to build mappings for the work-

ing set. The virtual TLB also has to emulate referenced and dirty bits for the

page tables on x86 — it must expose these access bits in the guest’s page

table entries. The access bits represent reads and writes on virtual memory,

and thus the VMM can use page protection via the host page tables to raise

page faults on the guest’s first access to data pages for synchronous updates

of the access bits, at which point the VMM promotes the host page table

entries to permit continuation of the guest accesses. Thus access-bit main-

tenance can cause more page faults than would be encountered on native

hardware.

Para-virtualization: Via para-virtualization we can modify the guest kernel to is-

sue efficient downcalls to the VMM. Yet downcalls still have overhead. Thus

para-virtualization also has the capacity to alter the guest kernel’s core algo-

rithms to reduce the rate of downcalls. In para-virtualization one probably

will treat the host page tables as a virtual TLB, but with the possibility to

modify the guest kernel to add a tagged virtual TLB for architectures that

lack tagging already, since using a tag reduces the rate of TLB invalidations.

For example, since Linux already supports tagged TLBs on several RISC

architectures, we can easily add hooks to its x86 port that tell the hypervisor

to selectively flush addresses from inactive guest address spaces, rather than

invalidating each outbound address space.

Xen passthrough: The Xen hypervisor uses a unique approach to managing the

page tables, which exposes the host page tables to the guest kernel [BDF+03].
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Since the host page tables contain virtualization sensitive state, Xen requires

modifications to the guest kernel for explicitly translating host state to guest

state when the guest kernel reads the page tables. An advantage for Xen’s ap-

proach is that the guest kernel has efficient access to the hardware-maintained

referenced and dirty bits. Another advantage is that it makes use of the

guest’s memory for backing the page tables, rather than hypervisor memory,

which reduces the burden on the hypervisor’s internal memory management.

A disadvantage is the effort of modifying Linux to perform the host-to-guest

state translation, since the guest kernel may read from the page tables with-

out using an easily indirected abstraction.

Automation with profile feedback: An approach that we have proposed in past

work is to automatically transform the guest’s page table accesses into ef-

ficient downcalls. We proposed to locate the downcalls by profiling the

guest under several workloads, and then to feed back the results to a sec-

ond compilation stage. Yet since the profiling may not uncover all potential

downcall sites, the VMM runtime must supplement it with more expensive

approaches.

Heuristics Where the guest kernel follows known patterns for manipulating the

page tables the VMM can prepopulate the host page tables with translations,

thus reducing page faults and downcalls. Known behavior includes Unix’s

fork() and exec().

Dedicated VM hardware Processors with hardware support for hypervisors can

help virtualize sensitive memory objects, particularly for x86 [Int05b,Int05a,

AMD05]. They can simplify the virtualization burden, and also improve per-

formance.
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Chapter 3

Device driver reuse

We reuse drivers by executing them within their original operating system inside of

a virtual machine, and by submitting operational requests via proxies that we add

to the driver’s operating system. The approach offers substantial developer pro-

ductivity (compared to implementing new drivers, and compared to transplanting

old drivers) while satisfying the demands of a reuse environment: it insulates the

recipient OS from the donor OS by restricting fault propagation, and by controlling

resource scheduling; and it separates the architectures of the recipient and donor

OS, promoting the prime reason for driver reuse — to write a structurally novel

OS.

Drivers interact with their kernels via two interfaces: a resource-provisioning

interface that provides building blocks for the drivers (e.g., linked lists, hash tables,

interrupt handlers, locks, etc.); and a device-control interface that abstracts a class

of devices behind a common interface. Our approach uses the driver’s original OS

to handle the resource-provisioning interface, thus permitting the driver to exist in

its native environment. For the remaining interface — device control — we must

implement translation infrastructure to mate the drivers with the recipient OS.

This chapter explains the system architecture for running drivers inside VMs,

the problems introduced by the VM environment, and solutions. It then presents a

reference implementation for reusing Linux device drivers in an environment based

on the L4 microkernel.
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3.1 Principles

Traditional device driver construction favors intimate relationships between the

drivers and their kernel environments, which interferes with easy reuse of drivers,

because it demands an engineering investment to emulate these intimate relation-

ships. To achieve easy reuse of device drivers from a wide selection of operating

systems, we propose the following architectural principles:

Resource delegation: The recipient OS provides only bulk resources to the driver,

such as memory at page granularity, thus delegating to the driver the respon-

sibility to further refine the bulk resources. The device driver converts its

memory into linked lists and hash tables, it manages its stack layout to sup-

port reentrant interrupts, and divides its CPU time between its threads. In

many cases the recipient OS may preempt the resources, particularly those

outside the driver’s working set.

Separation of address spaces: The device driver executes within its own address

space. This requirement avoids naming conflicts between driver instances,

and helps contain memory faults.

Separation of privilege: Like applications, the device driver executes in unprivi-

leged mode. It is unable to interfere with other OS components via privileged

instructions.

Secure isolation: The device driver lacks access to the memory of non-trusting

components. Likewise, the device driver is unable to affect the flow of ex-

ecution in non-trusting components. These same properties also protect the

device driver from the other system components. When non-trusting compo-

nents share memory with the drivers, they are expected to protect their inter-

nal integrity; sensitive information is not stored on shared pages, or when it

is, shadow copies are maintained in protected areas of the clients [GJP+00].

Common API: The driver allocates resources and controls its devices with an API

common to all device drivers. The API is well documented, well understood,

powerfully expressive, and relatively static.

Most legacy device drivers in their native state violate these proposed design

principles. The legacy drivers use internal interfaces of their native operating sys-

tems, expect refined resources, execute privileged instructions, and share a global
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Figure 3.1: In a we see an isolated driver, with its large and amorphous resource-
provisioning interfaces that a driver-reuse environment needs to supply. In b we
have wrapped the driver with its original OS, thus reducing the burden on the hy-
pervisor to only provide an interface for the well-defined bulk resources of the
platform.

address space. On the other hand, their native operating systems partially satisfy

our requirements: operating systems provide resource delegation and refinement,

and use a common API–the system’s instruction set and platform architecture. We

can satisfy the principles by running the driver with its native OS inside a virtual

machine. See Figure 3.1 for a comparison of lone-driver reuse versus driver reuse

within a virtual machine.

3.2 Architecture

To reuse and isolate a device driver, we execute it and its native OS within a virtual

machine. The VM virtualizes much of the machine, but not the devices controlled

by the reused drivers: the VM selectively disables virtualization to permit the de-

vice driver OS (DD/OS) to directly access the devices that it controls, thus permit-

ting the DD/OS to access the devices’ registers, and to receive hardware interrupts.

The VM and hypervisor, however, inhibit the DD/OS from seeing and accessing

devices which belong to, or are shared by, other VMs.

The driver is reused in a component framework by clients, which are any pro-

cesses in the system external to the VM, at a privileged or user level. The VM helps

convert the DD/OS into a component for participation in a component framework,

as described in Section 2.3.3. To connect the reused drivers to the component
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framework, we install translation modules into the DD/OS that proxy between the

clients and the DD/OS. The proxy modules serve the client requests, mapping them

into sequences of DD/OS primitives for accessing the device; they also convert

completed requests into responses to the clients, and propagate asynchronous data

events to the clients. See Figure 3.2 for a diagram of the architecture.

The proxy modules execute within the DD/OS, and thus must be written as na-

tive components of the DD/OS. We write the proxy modules — they are a primary

source of engineering effort in our reuse approach. If we choose the appropriate ab-

straction level in the DD/OS for writing the proxy modules, we can achieve a high

ratio of driver reuse for the lines of code written for the proxy, hopefully without

serious performance penalties. For example, a proxy module that interfaces with

disk-devices should be able to reuse IDE disks, SCSI disks, floppy disks, optical

media, etc., as opposed to reusing a particular device driver. The DD/OS could

provide several viable environments for proxy modules with different levels of ab-

straction, such as running within the kernel and using the primitives of the drivers

(e.g., directly sending network packets when the device is ready), or running within

the kernel with abstracted interfaces (e.g., queuing network packets for when the

device is ready), running at user-level (e.g., using a network socket), or running at

user-level with raw device access (e.g., a network raw socket). The interfaces have

trade-offs for the amount of code to implement the proxy module, the performance

of the proxy module, and the maintenance effort to adapt the proxy modules to

upgrades in the DD/OS.

To isolate device drivers from each other, we execute the drivers in separate

and co-existing virtual machines. This also enables simultaneous reuse of drivers

from incompatible operating systems. When an isolated driver relies on another

(e.g., a device needs bus services), then the two DD/OSes are assembled into a

client-server relationship. See Figure 3.3 for a diagram of the architecture.

We can build our VMs with full virtualization or para-virtualization, yet the

result should be the same: no modifications required for the reused drivers. A

driver is the module that controls a specific device (e.g., the Intel Pro/1000 network

driver), which excludes all of the common services provided by its OS, such as IRQ

management (the Pro/1000 driver uses kernel abstractions for handling interrupts,

rather than driving the platform’s interrupt controller directly). Although para-

virtualization modifies the DD/OS to run as an application of the hypervisor, the

modifications tend to focus on basic platform interfaces that the DD/OS abstracts

for its device drivers, and so the drivers usually just need recompilation to operate
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Figure 3.2: Device driver reuse by running the drivers, with their original OS, in-
side a VM. Native hypervisor applications, the clients, use the network and disk
drivers. The proxy modules connect the reused drivers to the hypervisor applica-
tions.

in the para-virtualized environment.

3.2.1 Virtual machine environment

The virtualization architecture has five entities:

• The hypervisor is the privileged kernel, which securely multiplexes the pro-

cessor between the virtual machines. It runs in privileged mode and enforces

protection for memory and IO ports.

• The virtual machine monitor (VMM) allocates and manages resources and

implements the virtualization layer, such as translating access faults into de-

vice emulations. The VMM can be either collocated with the hypervisor in

privileged mode or unprivileged and interacting with the hypervisor through

a specialized interface.

• Device driver OSes host unmodified legacy device drivers and have pass-

through access to the devices. They control the devices via port IO or mem-

ory mapped IO and can initiate DMA. However, the VMM restricts access

to only those devices that are managed by each particular DD/OS. The hy-

pervisor treats the driver OSes as applications, as described in Section 2.3.2.

• Clients use device services exported by the DD/OSes, in a traditional client-

server scenario. Recursive use of driver OSes is possible; i.e. a client can
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Figure 3.3: Device driver reuse and isolation, by running each driver in a separate
VM. The block and network DD/OSes recursively use the bus DD/OS, to share
the PCI bus. Native hypervisor applications, the clients, use the network and disk
drivers.

act as a DD/OS server for another client. The client could be the hypervisor

itself.

• Translation modules are added to DD/OSes to provide device services to the

clients. They provide the interface for the client-to-DD/OS communication,

and map client requests into DD/OS primitives. We will focus on translation

modules that we can load into the DD/OS kernel, in the manner of a loadable

driver or module.

The hypervisor must feature a low-overhead communication mechanism for

inter-virtual-machine communication. For message notification, each VM can raise

a communication interrupt in another VM and thereby signal a pending request.

Similarly, on request completion the DD/OS can raise a completion interrupt in the

client OS.

The hypervisor also is expected to provide a mechanism to share memory be-

tween multiple virtual machines. The hypervisor and VMM can register memory

areas of one VM in another VM’s physical memory space, similarly to memory-

mapped device drivers.
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3.2.2 Client requests

The proxy modules publish device control interfaces for use by the clients. The

interface for client-to-DD/OS device communication is not defined by the hyper-

visor nor the VMM but rather left to the specific proxy module implementation.

This allows for device-appropriate optimizations such as virtual interrupt coalesc-

ing, scatter-gather copying, shared buffers, and producer-consumer rings (see Fig-

ure 3.4).

The translation module makes one or more memory pages accessible to the

clients and uses interrupts for signaling in a manner suitable for its interface and

request requirements. This is very similar to interaction with real hardware devices.

When the client signals the DD/OS, the VMM injects a virtual interrupt to cause

invocation of the translation module. When the translation module signals the

client in response, it invokes a downcall of the VMM.

Each hypervisor environment has unique inter-process communication (IPC)

mechanisms, and the translation modules have unique interfaces exposed to the

clients. These mechanisms and interfaces inherently relate to sharing data across

the VM’s protection domain, and thus are completely outside the perception of the

DD/OS. To avoid polluting the DD/OS with knowledge of IPC, we implement the

IPC logic within the hypervisor-specific translation modules.

3.3 Enhancing dependability

Commodity operating systems continue to employ system construction techniques

that favor performance over dependability [PBB+02]. If their authors intend to im-

prove system dependability, they face the challenge of enhancing the large existing

device driver base, potentially without source code access to all drivers.

Our architecture improves system availability and reliability, while avoiding

modifications to the device drivers, via driver isolation within virtual machines.

The VM provides a hardware protection domain, deprivileges the driver, and in-

hibits its access to the remainder of the system (while also protecting the driver

from the rest of the system). The use of the virtual machine supports today’s sys-

tems and is practical in that it avoids a large engineering effort.

The device driver isolation helps to improve reliability by preventing fault

propagation between independent components. It improves driver availability by

supporting fine-grained driver restart (virtual machine reboot). Improved driver
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Figure 3.4: The DD/OS and client share memory that contains a producer-
consumer ring for batching device requests. The ring permits concurrent collab-
oration without explicit synchronization. This thesis’s reference implementation
takes this approach.

availability leads to increased system reliability when clients of the drivers pro-

mote fault containment. Proactive restart of drivers, to reset latent errors or to

upgrade drivers, reduces dependence on recursive fault containment, thus helping

to improve overall system reliability [CF01].

The DD/OS solution supports a continuum of isolation scenarios, from indi-

vidual driver isolation within dedicated VMs to grouping of all drivers within a

single VM. Grouping drivers within the same DD/OS reduces the availability of

the DD/OS to that of the least stable driver (if not further). Even with driver group-

ing, the entire system enjoys the benefits of fault isolation and driver restart.

Driver restart is a response to one of two event types: asynchronous (e.g., in

response to fault detection [SBL03], or in response to a malicious driver), or syn-

chronous (e.g., live upgrades [HAW+01] or proactive restart [CF01, CKF+04]).

The reboot response to driver failure returns the driver to a known good state: its

initial state. The synchronous variant has the advantage of being able to quiesce

the DD/OS prior to rebooting, and to negotiate with clients to complete sensitive

tasks. Our solution permits restart of any driver via a VM reboot. However, drivers

that rely on a hardware reset to reinitialize their devices may not be able to recover

their devices.
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The interface between the DD/OS and its clients provides a natural layer of

indirection to handle the discontinuity in service due to restarts. The indirection

captures accesses to a restarting driver. The access is either delayed until the con-

nection is transparently restarted [HAW+01] (requiring the DD/OS or the VMM

to preserve canonical cached client state across the restart [SABL04]), or reflected

back to the client as a fault.

3.4 Problems due to virtualization

Driver reuse via virtual machines introduces several issues: the DD/OS consumes

resources beyond the needs of a bare device driver, the driver’s DMA operations

require address translation, the VM may not meet the timing needs of physical

hardware, legacy operating systems are not designed to collaborate with other op-

erating systems to control the devices within the system, and the architecture intro-

duces user-level drivers that can interfere with high-speed device sequencing. This

section presents solutions to these issues.

3.4.1 DMA address translation

DMA uses bus addresses, i.e., the addresses that the devices put onto the bus for

routing to the memory banks. On a traditional x86 platform, the processor and

devices use identical bus addresses, which are thus the physical addresses stored in

the page tables. We call these addresses the machine or bus addresses, as opposed

to the common term physical, since virtual machines change the meaning of physi-

cal addresses. A VM adds another layer of translation between the guest’s physical

addresses and the machine addresses. This layer of translation provides the illusion

of a virtual machine with contiguous memory. In the normal case of virtualization

(with no device pass through), the VMM maps the guest’s physical addresses to

machine address by intercepting all uses of physical addresses. The VMM has two

cases. For the first, virtually paged memory, the VMM intercepts physical memory

access by installing override page tables (or TLB entries) into the hardware instead

of the guest’s page tables (or TLB entries). For the second, virtual device accesses,

the VMM carries out the translation upon device access (the VMM virtualizes a

small set of real devices, making this a tractable approach). Since all physical ac-

cesses, including DMA requests, are intercepted, the VMM confines the guest to

its compartment.
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The DD/OS introduces a different scenario: the drivers have direct device ac-

cess, thus bypassing the VMM and its interception of all uses of guest-physical

addresses, which inadvertently exposes incorrect addresses to the devices’ DMA

engines, causing havoc. We need to either introduce the VMM’s address intercep-

tion and translation, or render it unnecessary. The particular approach depends on

available hardware features and the virtualization method (full virtualization vs.

para-virtualization).

In a para-virtual environment the DD/OS can incorporate the VMM’s address

translation into its building blocks for device drivers — for example, Linux of-

fers to drivers several functions to convert physical addresses to bus addresses

(which are normally idempotent translations on the x86 platform, but other plat-

forms require the translation functions); these functions could be modified to apply

the VMM’s translation. Additionally, if a device translates a range of physical

addresses, then the DMA operation expects the addresses to map to contiguous

machine memory; the newer Linux kernels (such as 2.6.16) use large contigu-

ous regions of memory in device operations. In a para-virtual environment, the

DD/OS could be modified to consult the VMM when creating contiguous regions

of memory for DMA — in Linux this is difficult, since Linux often assumes that

the kernel’s memory is already contiguous; we solve this by providing a single

block of contiguous memory to the entire Linux VM that hosts the DD/OS; the

alternative is to use memory trampolines of contiguous memory, to where the data

for the DMA operations are temporarily copied (this is the solution used by Xen,

since Xen changes the mappings between guest-physical and machine addresses

on client device operations, precluding the sustainment of a contiguous VM). The

hypervisor also has to support an interface for querying and pinning the VM’s

memory translations for the duration of the DMA operation (pinning is necessary

since the hypervisor could transparently preempt pages from the VM).

Several hardware platforms permit bus address interception and translation for

DMA operations via an IO-MMU, while also enforcing access permissions. The

IO-MMU permits the VMM and hypervisor to control the translation from the

DD/OS’s physical addresses to the machine addresses (see Figure 3.5). Thus they

enable complete hardware-isolation of the DD/OS, removing device drivers from

the trusted computing base [LH03], and provide an alternative to the para-virtual

approach. If we want to isolate device drivers from each other, each driver needs

its own set of address translations. IO-MMUs tend to lack support for multiple

address contexts per device, although the recent Directed I/O from Intel supports a
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Figure 3.5: The DD/OS communicates directly with the device, and provides it
physical addresses that reflect the locations of the data within the client address
spaces. The hypervisor configures the IO-MMU to translate the physical addresses
into true machine addresses.

per-device context [Int07]. With support for multiple contexts, the hypervisor can

permit simultaneous DMA operations from different devices; without support for

multiple contexts, the hypervisor must context-switch the IO-MMU between each

device driver VM, thus serializing the device access. We have demonstrated this

context switching in prior work [LUSG04].

For full virtualization where we must use the guest’s built-in DMA address

preparation, without an IO-MMU to intercept DMA accesses, we must eliminate

the need for interception so that the proper addresses reach the devices. In this

case, we provide identity mappings to machine memory for the DD/OS’s physical

memory. This need not restrict the system to a single DD/OS instance, since the

idempotent mappings are strictly needed only for memory that might be exposed

to DMA, which excludes quite a bit of a kernel’s memory. In many cases device

drivers only issue DMA operations on dynamically allocated memory, such as the

heap or page pool. Hence, only those pages require the idempotent mapping re-

striction. Thus when running multiple DD/OS instances, we need a scheme to

setup identity mappings as we boot the DD/OS instances one after the other. We

can achieve this by using a memory balloon driver [Wal02], which can reclaim

pages from one DD/OS for use in other DD/OSes, effectively distributing DMA-
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VMA physical memory

VMB physical memory

Figure 3.6: DMA memory allocation for two VMs in full virtualization, where
guest physical memory must map idempotently to machine memory. The read-only
sections of both VMA and VMB share the same machine pages. The writable areas
of the two VMs use non-overlapping machine memory, protected via collaborative
balloon drivers.

capable pages between all DD/OSes (see Figure 3.6). Note that once the memory

balloon driver has claimed ownership of a page in a DD/OS, that DD/OS will never

attempt to use that page. DMA from static data pages, such as microcode for SCSI

controllers, further requires idempotent mapping of data pages. However, dynamic

driver instantiation usually places drivers into memory allocated from the page

pool anyway. Alternatively, one DD/OS can run completely unrelocated; multiple

instances of the same OS can potentially share the read-only parts.

It is important to note that, in the absence of an IO/MMU, all solutions assume

well-behaving DD/OSes. Without special hardware support, DD/OSes can still

bypass memory protection by performing DMA to physical memory outside their

compartments.

3.4.2 DMA and trust

Code with unrestricted access to DMA-capable hardware devices can circumvent

standard memory protection mechanisms. A malicious driver can potentially ele-

vate its privileges by using DMA to replace hypervisor code or data. In any system

without explicit hardware support to restrict DMA accesses, we have to consider

DMA-capable device drivers as part of the trusted computing base.

Isolating device drivers in separate virtual machines can still be beneficial.

Nooks [SBL03] isolates drivers in separate address spaces, despite being suscep-

tible to DMA attacks, but still reports a successful recovery rate of 99% for syn-

thetically injected driver bugs — the fundamental assumption is that device drivers

have a variety of fault sources.

We differentiate between three trust scenarios. In the first scenario only the
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client of the DD/OS is untrusted. In the second case both the client as well as the

DD/OS are untrusted by the hypervisor. In the third scenario the client and DD/OS

also distrust each other. Note that the latter two cases can only be enforced with

DMA restrictions as described in the next section.

During a DMA operation, page translations targeted by DMA have to stay

constant. If the DD/OS’s memory is not statically allocated it has to explicitly

pin the memory (in regards to the hypervisor). When the DD/OS initiates DMA

in or out of the client’s memory to eliminate copying overhead, it must pin that

memory as well. In the case that the DD/OS is untrusted, the hypervisor has to

enable DMA permissions to the memory and to ensure that the DD/OS cannot run

denial-of-service attacks by pinning excessive amounts of physical memory.

When the DD/OS and client distrust each other, further provisions are re-

quired. If the DD/OS gets charged for pinning memory, a malicious client could

run a denial-of-service attack against the driver. A similar attack by the DD/OS

against the client is possible when the DD/OS performs the pinning on behalf of

the client. The solution is a cooperative approach with both untrusted parties in-

volved. The client performs the pin operation on its own memory, which eliminates

a potential denial-of-service attack by the DD/OS. Then, the DD/OS validates with

the hypervisor that the pages are sufficiently pinned. By using time-bound pin-

ning [LUE+99] guaranteed by the hypervisor, the DD/OS can safely perform the

DMA operation.

Page translations also have to stay pinned during a VM restart, since a faulting

DD/OS may leave a device actively using DMA. All potentially targeted memory

thus cannot be reclaimed until the VMM is sure that outstanding DMA operations

have either completed or aborted. Likewise, client OSes must not use memory

handed out to the faulted DD/OS until its restart has completed.

3.4.3 Resource consumption

Each DD/OS consumes resources that extend beyond the inherent needs of the

driver itself. The DD/OS needs memory for code and data of the entire OS. Further-

more, each DD/OS has a certain dynamic processing overhead for periodic timers

and housekeeping, such as page aging and cleaning. Periodic tasks in DD/OSes

lead to cache and TLB footprints, imposing overhead on the clients even when not

using any device drivers.

Page sharing, as described in ref. [Wal02], significantly reduces the memory

and cache footprint induced by individual DD/OSes. The sharing level can be very
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high when the same DD/OS kernel image is used multiple times and customized

with loadable device drivers. In particular, the steady-state cache footprint of con-

current DD/OSes is reduced since the same housekeeping code is executed. It is

important to note that memory sharing not only reduces overall memory consump-

tion but also the cache footprint for physically tagged caches.

The VMM can further reduce the memory consumption of a VM by swapping

unused pages to disk. However, this approach is infeasible for the DD/OS running

the swap device itself (and its dependency chain). Hence, standard page swapping

is permitted to all but the swap DD/OS. When treating the DD/OS as a black box,

we cannot swap unused parts of the swap DD/OS via working set analysis. All

parts of the OS must always be in main memory to guarantee full functionality

even for rare corner cases.

Besides memory sharing and swapping, we can use three methods to further

reduce the memory footprint. Firstly, memory ballooning actively allocates mem-

ory in the DD/OS, leading to self-paging [Wal02, Han99]. The freed memory is

handed back to the VMM. Secondly, we treat zero pages specially since they can

be trivially restored. Finally, we compress [AL91, CCB99] the remaining pages

that do not belong to the active working set and that are not safe to swap, and

uncompress them on access.

Page swapping and compression are limited to machines with DMA hardware

that can fault on accesses to unmapped pages and then restart the DMA operation.

Otherwise, a DMA operation could access invalid data (it must be assumed that all

pages of a DD/OS are pinned and available for DMA when treating the DD/OS as

a black box).

Periodic tasks like timers can create a non-negligible steady-state runtime over-

head. In some cases the requirements on the runtime environment for a DD/OS

whose sole purpose is to encapsulate a device driver can be weakened in favor of

less resource consumption. For example, a certain clock drift is acceptable for an

idle VM as long as it does not lead to malfunction of the driver itself, allowing us

to schedule OSes less frequently or to simply drop their timer ticks.

3.4.4 Timing

Time multiplexing of multiple VMs can violate timing assumptions made in the

operating system code. OSes assume linear time and non-interrupted execution.

Introducing a virtual time base and slowing down the VM only works if there

is no dependence on real time. Hardware devices, however, are not subject to
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this virtual time base. Violating the timing assumptions of device drivers, such as

short delays using busy waiting or bounded response times, can potentially lead to

malfunctioning of the device.1

We use a scheduling heuristic to avoid preemption within time critical sec-

tions, very similar to our approach to lock-holder preemption avoidance described

in [ULSD04]. When consecutive operations are time-bound, operating systems

usually disable preemption—for example, by disabling hardware interrupts. When

the VMM scheduler would preempt a virtual processor but interrupts are disabled,

we postpone the preemption until interrupts are re-enabled, thereby preserving the

timing assumptions of the OS. This requires the VMM to trap the re-enable oper-

ation. Hard preemption after a maximum period avoids potential denial-of-service

attacks by malicious VMs.

3.4.5 Shared hardware and recursion

Device drivers assume exclusive access to the hardware device. In many cases

exclusiveness can be guaranteed by partitioning the system and only giving device

access to a single DD/OS. Inherently shared resources, such as the PCI bus and

PCI configuration space, are incompatible with partitioning and require shared and

synchronized access for multiple DD/OSes. Following our reuse approach, we give

one DD/OS full access to the shared device; all other DD/OSes use driver stubs to

access the shared device. The server part in the controlling DD/OS can then apply

a fine-grained partitioning policy. For example, our PCI DD/OS partitions devices

based on a configuration file, but makes PCI bridges read-only accessible to all

client DD/OSes. To simplify VM device discovery, additional virtual devices can

be registered.

In a fully virtualized environment, some device drivers cannot be replaced dy-

namically with our driver stubs for accessing shared devices. Linux 2.4, for exam-

ple, does not allow substituting the PCI bus driver. In those cases, the clients rely

on full hardware emulation for the shared device (just as in a normal VM), rather

than driver stubs. For example, a DD/OS that drives a network card needs PCI bus

services, and when it tries to access the PCI bus, will be virtualized by the VMM

which forwards the operations to the PCI-bus DD/OS. The number of such devices

is quite limited. In the case of Linux 2.4 the limitations include PCI, the interrupt
1Busy waiting, which relies on correct calibration at boot time, is particularly problematic when

the calibration period exceeds a VM scheduling time slice and thus reports a slower processor. A
device driver using busy waiting will then undershoot a device’s minimal timing requirements.
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controller, keyboard, mouse, and real-time clock.

3.4.6 Sequencing

Achieving full utilization of high-speed devices introduces real-time constraints on

the system, particularly for the ever more important network interfaces. A typical

device has finite bandwidth, allocated across discrete device requests. The sys-

tem must submit the requests in a timely fashion to prevent the device from going

idle — an idle device is a lost resource, or worse, a claim on the device’s future

resources if requests are pending but delayed elsewhere in the system.

The device demands more than real-time scheduling of discrete device re-

quests: it also requires that the CPU generate the data that accompany the device

requests. Since we reuse our drivers in VMs, we add the costs of crossing and

scheduling the DD/OS’ protection domains to overhead (which on x86 involves

many TLB flushes at great expense), which subtracts from time that could be used

for feeding the device. Monolithic systems have the advantage of low-latency de-

vice accesses, and thus can offer more time for generating the data, and can use

synchronous techniques for submitting device operations since they have low la-

tency (only function-call overhead). Using synchronous techniques with driver

reuse could add too much overhead (protection-domain crossing overhead), violat-

ing the real time constraints.

To illustrate, we consider using a network card at full line rate for transmitting a

stream of packets. It transmits Ethernet packets at 1500 bytes each. For sustaining

a given bandwidth W (bytes per second), we must submit packets at frequency

F = W/1500 bytes. The period is T = 1/F . For a CPU with speedH (Hertz), the

period in cycles per packet is C = HT . Given C, we can estimate the number of

context switches per second we can sustain at full device utilization. For example,

we choose a gigabit Ethernet card that sustains a bandwidth of W = 112 MB/s,

with a CPU that runs at H = 2.8 GHz. Then F = 74667 packets per second, or

one packet every 13.4 µs. This is a packet every 37500 cycles. Assuming a cost of

700 cycles for the address space switch, and then a subsequent TLB refill cost of 15

entries for 3000 cycles, we can tolerate ten address space switches between packet

submissions, with no time remaining for system calls and packet processing. These

numbers are highly sensitive to packet size and TLB working set size.

The real-time constraints impose a limit on the number of possible address

space switches between the DD/OS and the remainder of the system. The solu-

tion is to avoid synchronizing between the DD/OS and its clients for every packet.
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Instead, they should use well known concurrency techniques such as producer-

consumer rings in shared memory [UK98], so that multiple packets arrive with each

address space switch. We still need to schedule the DD/OS to eventually transfer

the packets from the producer-consumer ring to the device. Thus the DD/OS’s

minimum scheduling rate is determined by: the bandwidth of the device, the size

of the producer-consumer ring between the DD/OS and client, and the size of the

producer-consumer ring between the DD/OS and the network device. For exam-

ple, in one of the later experiments of this thesis, we use 512 descriptor entries in

the device’s producer-consumer ring for packet transmit. This requires a minimum

scheduling period for the DD/OS of 19.2 million cycles (6.86 ms). But for scatter-

gather transmissions, with three descriptors per packet, it reduces to a minimum

period of 6.4 million cycles (2.28 ms). A convenient approach to ensuring that the

device achieves its scheduling period is to rely on the device’s interrupt delivery,

but mitigated to the appropriate scheduling period, and using an event that signi-

fies that the producer-consumer ring is almost empty, as opposed to empty — if

the device ring goes empty, then the device becomes underutilized. Since network-

ing is also often sensitive to the latency of acknowledgment packets, this minimum

scheduling period may introduce intolerable latency, in which case a more balanced

scheduling rate must be found.

3.5 Translation modules

Most of the effort behind driver reuse is for the design and construction of effi-

cient proxy modules, particularly when the clients attempt to use the devices in a

manner unanticipated by the DD/OS, which requires effort devising heuristics and

algorithms that map the intentions of the clients to the capabilities of the DD/OS.

Here we discuss some of the general features that a DD/OS can provide to facilitate

construction of the proxy modules. We focus on high performance, and so discuss

the interfaces internal to the DD/OS’s kernel, rather than the DD/OS’s user-level

services.

3.5.1 Direct DMA

For good performance we want to initiate DMA operations directly on the memory

of the driver clients. The alternatives, which we prefer to avoid, are to copy data

between the driver clients and the DD/OS, and to remap data between the driver

clients’ and the DD/OS’ address spaces. Data copying not only wastes time, but
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also pollutes the cache. The remapping approach introduces costs for hypercalls

to create the mappings (since the hypervisor must validate the new mappings),

and multiprocessor costs for TLB coherency; additionally, it expects page-granular

data objects, which requires modifications to the DD/OS for devices that asyn-

chronously generate data (e.g., inbound network packets).

DMA operations on client memory require: (1) infrastructure within the DD/OS

to indirectly name the client’s memory without allocating virtual addresses for the

client’s memory; (2) the ability to prevent the DD/OS from accidentally accessing

the client’s memory (unless the DD/OS first creates a temporary virtual mapping);

and (3) the ability to express non-contiguous regions of memory. Many kernels al-

ready indirectly address physical memory without using virtual mappings, to han-

dle insufficient virtual address space for direct mappings, although their interfaces

may be insufficient — for example, network packets often require virtual mappings

since the kernel itself generates the packet headers. A fallback for situations unable

to use indirect access is to map the client’s data into the physical or virtual address

space of the DD/OS, which makes the data addressable (and potentially introducing

problems where the guest expects contiguous physical pages for DMA, but where

the hypervisor has mapped the physical pages to arbitrary machine pages); or to

copy the data (which is our preferred approach for distributing inbound network

packets).

3.5.2 Correlation

The proxy module correlates client requests with DD/OS requests, so that upon the

completion of an operation, the proxy module can release its associated resources

and notify the client. Several factors complicate the correlation:

• We want the proxy module to submit multiple device requests, of the same

device class, in parallel. This batching amortizes the costs of address space

switching between the clients and the DD/OS.

• Some of the devices complete their requests out of order, particularly if the

DD/OS reorders the requests behind the driver control interface.

• Some devices support scatter-gather requests (thus containing subrequests),

with DMA to multiple non-contiguous regions of memory.

• The proxy may introduce request fragmentation if the DD/OS and client use

different request units, and thus the proxy associates n client operands with
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m DD/OS operations.

For the correlation we prefer a simple lookup operation that maps the com-

pleted DD/OS device request back to the client’s original request, while supporting

several outstanding requests due to batching. A possible implementation is to store

the correlation within the DD/OS request, if the request has an unused field member

for such purposes, for this avoids additional data structure management. Alterna-

tively, we would have to maintain and operate upon a dedicated correlation data

structure within the proxy module (which would minimally introduce insertion,

lookup, and deletion costs).

3.5.3 Flow control

The architecture has three independently schedulable entities that produce and con-

sume data at potentially different rates. The client produces data that the DD/OS

consumes, and the DD/OS produces data that the device consumes. Some devices

have a reverse flow too, where the device produces data that the DD/OS consumes,

and the DD/OS produces data that the client consumes. We need a flow control

system to equalize the data production and consumption rates. The flow control

consists of two parts: shared buffers that permit minor deviations in data rates, and

signaling that permits major deviation in data rates. The signaling is an explicit

feedback mechanism which permits one entity to ask another to stop the data flow,

and to then later restart data flow.

High performance devices will already include flow-control systems. The hy-

pervisor must provide the flow control mechanism between the DD/OS and the

clients. The DD/OS is responsible for exposing flow-control interfaces to the proxy

modules, to relay the devices’ flow-control feedback to the proxy modules. This is

a typical feature of kernels, as they specialize in I/O sequencing.

3.5.4 Upcalls

Both the client and DD/OS invoke the proxy to initiate and complete device opera-

tions; from the perspective of the DD/OS, the invocations to the colocated proxies

are upcalls [Cla85]. Upcalls pose a problem of environment: they may execute

in an interrupt handler context, the current kernel context (which might be the

kernel stack of the active guest application), or a dedicated kernel thread. The en-

vironments restrict the actions of the proxy logic, particularly in regards to DD/OS

reentrance, i.e., the set of function calls the proxy logic is permitted to execute
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within its current context; also the amount of time that the proxy logic is permitted

to consume; and the resources that the proxy logic can consume and release (i.e.,

to avoid deadlock). These are all issues that typical developers must address when

writing device drivers.

For the proxy to execute code on behalf of its clients, it needs upcalls triggered

by the clients. This is a form of IPC across the VM boundary, which the hyper-

visor can implement as OS bypass: the hypervisor can activate the address space

of the DD/OS, and then spawn a thread of execution specific to the proxy module

(in which case the proxy module must prearrange stack space for this thread of

execution). The proxy can hide its OS bypass from the DD/OS as long as it exe-

cutes only proxy logic, and accesses only proxy data (without raising page faults).

The hypervisor can perform OS bypass to applications of the DD/OS as well, sub-

ject to avoiding page faults (since a page fault from an unscheduled application

will confuse the DD/OS). When the proxy requires activity from the DD/OS, the

proxy must preserve DD/OS integrity, and thus activate a valid DD/OS context.

The DD/OS already provides a means to activate a valid context on demand, via

interrupt delivery, and thus we synthesize a virtual device interrupt; it permits inter-

ruption of the current kernel activity to register a pending event, so that the kernel

can schedule an event handler to execute at a convenient time, and in an appropriate

context.

The proxy invokes hypercall services during the upcalls. It should use only

hypercall services that respect the current execution context of the DD/OS (e.g.,

quick operations if executed in an interrupt context).

3.5.5 Low-level primitives

We favor very low-level device control interfaces to maximize exposure to the fea-

tures of the devices (i.e., high transparency as argued by Parnas [PS75]), such as

checksum calculation on network cards. The abstractions of a DD/OS can interfere

with access to the raw features of a device — for example, the DD/OS could hide

random-access block devices behind contiguous files, or hide packetized network

interfaces behind packet streams.

The device control interfaces should be executable by arbitrary kernel subsys-

tems, and not just system calls from applications.

The various hypervisor environments will require some configuration flexibil-

ity within the DD/OS — for example, some hypervisors may transfer network

packets between components by remapping pages, in which case each packet re-
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quires a dedicated page; or the hypervisor may copy or transfer in place via DMA,

in which case packets can share page frames.

3.5.6 Resource constraint

When the DD/OS solely provides device services, without any other general pur-

pose computing services, then it is very helpful to reduce the DD/OS’s resource

consumption to the minimum required for device services. For example, the OS

should be able to disable periodic house keeping tasks, to reduce memory con-

sumption, and to exclude superfluous subsystems.

Additionally, it is helpful for the DD/OS to provide resource configurability.

For example, the DD/OS could support different link addresses, so that running it

within an x86 small address space is feasible [UDS+02].

3.5.7 Device management

The proxy should be able to describe the devices and their features to the clients, to

pass device events to the clients, and to permit the clients to configure the devices.

Some of the operations:

1. The proxy must be able to discover available devices to offer to the clients.

It must be able to report the device capabilities to the clients (e.g., checksum

computation offload, jumbo packets, and DVD burning).

2. The client can choose one of several devices to use. The proxy must be able

to register with the DD/OS as a consumer of the device, potentially claiming

exclusive access.

3. The proxy must be informed of changes in device state, such as network link

status, hot plug device events, and device sleep requests.

4. The proxy needs methods for querying the device statistics, such as network

error counts.

3.6 Linux driver reuse

Linux has been our DD/OS, because it is freely available with source code, it has

substantial device support, and it has an active community maintaining and adding

device drivers. Linux would be a likely candidate to serve as the DD/OS for other
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projects too (Xen has chosen Linux). Linux also fulfills many of our guidelines for

easy proxy module construction. We describe here how we implemented the Linux

proxy modules for network and disk-like device access, using in-kernel interfaces.

Although Linux helps with building proxy modules, it has deficiencies, particu-

larly for performance, and so some of our solutions take advantage of very detailed

knowledge of Linux internals to circumvent the deficiencies (despite criticizing

prior driver-reuse approaches for requiring intimate knowledge). Our approach can

succeed without this detailed knowledge, and we started without it for our initial

implementation, but in the pursuit of performance refined our solution.

3.6.1 DMA for client memory

The client sends device requests to the Linux kernel to perform operations on client

memory. We generate internal Linux device requests, using Linux’s internal mem-

ory addressing, which is designed to operate on Linux’s memory, as opposed to

the memory of the clients. We thus must express the client memory in the terms of

Linux’s internal addressing.

To generate a DMA address for a data object, Linux first generates a physi-

cal address for that object (i.e., the address used within the paging infrastructure),

and then converts it to a DMA address (i.e., the bus address). Linux has two ap-

proaches for generating physical addresses: (1) convert kernel virtual addresses

into physical addresses, which permits the direct conversion of a kernel data object

into a physical address; and (2) name the memory via an indirection data structure,

which permits a data object to exist without a virtual address. The algorithm for

converting virtual to physical is a simple equation, v = p + C, where v is the

virtual address, p is the physical address, and C is the start of the kernel’s virtual

address space. The indirection data structure uses an array, where the index of

the array represents the physical page. It is thus trivial to convert from a virtual

address to an indirection address; the reverse is trivially possible for a subset of

physical pages; the remaining indirection address space requires temporary virtual

mappings created on the fly.

Linux has insufficient virtual address space (because it shares the virtual ad-

dress space with its application), and insufficient indirect address space (because

the indirect space covers the amount of physical memory in the machine), to name

all potential client memory. We have three possible solutions to provide Linux

with the ability to name client memory: (1) give the Linux kernel a full-sized vir-

tual address space; (2) remap the kernel’s physical address space, dynamically, to
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handle all active device operations; or (3) give the Linux kernel a full-sized indirect

naming space.

Full-sized kernel space: If we give the Linux kernel a full-sized address space,

then it can create virtual addresses for all machine memory (unless the machine

can address more physical memory than virtual memory), which enables Linux to

create valid DMA addresses. We would permanently map all client memory into

the DD/OS, and then transform client requests into the internal virtual addresses of

the DD/OS. This solution requires the DD/OS to manage its virtual address space

in a manner that permits mapping all machine (or only client) memory, rather than

to allocate its virtual address space for other uses. Linux can be stretched to a full

address space by relinking it to a low address, and by changing some of its as-

sumptions about its memory layout (e.g., Linux currently treats page faults on low

addresses as user page faults, but in a full-size address space, they could also be

kernel page faults). The authors in ref. [UDS+02] successfully relinked Linux to

run at low addresses, but for small spaces (not for a large space). The hypervisor

can interfere with the creation of a large space, because the hypervisor itself con-

sumes virtual address space. This approach requires para-virtualization. Linux has

also offered experimental support for a full kernel address space [Mol03].

Dynamic remapping: Since the VMM introduces a layer of translation between

Linux’s physical addresses and the true machine addresses, the hypervisor can

change the mapping of physical to machine on demand; this permits the proxy to

choose a fixed set of virtual and physical addresses for rotating among the clients’

machine pages; thus Linux can use its limited set of virtual addresses to temporarily

generate physical addresses for all of machine memory. Dynamic page remapping

has several problems: (1) a performance cost for hypercalls, since the hypervisor

must confirm the legitimacy of the mapping; (2) a performance cost for TLB inval-

idations, which is especially high on multiprocessor machines; (3) the kernel may

not have enough virtual address space for all in-flight device operations; and (4)

the solution requires infrastructure to allocate and free the dynamic virtual mem-

ory ranges, which also requires tracking the free entries. Without the support of an

IO/MMU, this approach also requires para-virtualization. The Xen project uses the

remapping approach.
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Figure 3.7: Linux represents all of machine memory with the page map data struc-
ture. If Linux were to allocate a page map with only enough entries for the memory
allocated to its VM, it would be unable to reference client memory; we thus cause
Linux to allocate a page map with sufficient entries for client memory too.

Indirect addressing: Indirect memory addressing more closely suits the goal of

driver reuse, and is the solution that we implement. High-speed devices perform

DMA, and thus already use indirect addressing (as opposed to virtual addresses);

additionally if they use bus address translation (e.g., an IO/MMU), they can use

a different mapping space than the kernel’s virtual address space. Furthermore,

driver reuse asks the DD/OS to perform device operations, not data inspection

or transformation, and thus the DD/OS has no reason to map the client data into

its kernel address space. In cases where the drivers must inspect or transform the

client data for shared peripheral buses, either the clients can provide the bus-related

information separately, or the DD/OS can revert to remapping. Some devices lack

DMA engines, and instead require their driver to manually copy data into device

registers; for these cases we can also fall back to the dynamic remapping approach,

or alternatively copy the data into the DD/OS.

Linux already provides a data structure for memory indirection, the page map.

To be useful in a DD/OS, this page map must be allocated to match the size of

all of machine memory (or all of the client memory areas), rather than the memory

allocated to the DD/OS’s virtual machine (see Figure 3.7). We currently inform the

DD/OS VM of all machine memory, and reserve the client memory in the VM’s

BIOS, so that Linux detects that the client memory is unusable; if Linux attempts

to access the client memory, it will raise a VM fault.
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Figure 3.8: sk buffA references the entire packet in the client’s memory space
using a DD/OS (invalid) virtual address. This is a brittle use of the sk buff,
and thus has limitations. If the limitations must be violated, then we can use the
alternative configuration in sk buffB , which uses a valid DD/OS virtual address
for the packet headers, and page map indirection for the remainder of the packet.

3.6.2 Network

Our proxy module uses two different internal Linux interfaces for network transmit

and receive. We install our proxy as a Linux kernel module, and it uses the internal

interfaces of the Linux kernel as close to the device as possible, but still taking

advantage of Linux’s network packet queuing and flow control.

Transmit

Packet transmission requires the DD/OS to send the client’s raw packets, which

already include packet headers. The DD/OS should avoid inspecting the packets,

and must avoid modifying the packets. Linux abstracts packets as an sk buff.

The sk buff is a data structure that describes the packet, points at the packet

headers, and points at the packet data (even if the data is fragmented across mem-

ory). Linux expects to have virtual addresses for the packet’s headers, but it can

address the data payload indirectly and thus without virtual addresses. As the pack-

ets traverse through the Linux network stack, networking subsystems may inspect

and duplicate the packets, depending on bridging, routing, and filtering options, in

which case Linux may temporarily map the packets.
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Our solution uses indirect memory addressing, even where Linux expects a

valid virtual address for the beginning of the packet headers. This requires us to

fake an indirect address within the virtual address space; we know how Linux con-

verts a virtual address to a DMA address, and we use the inverse operation to fabri-

cate an invalid virtual address, used by the sk buff to point at the primary packet

payload. This requires us to ensure that Linux never dereferences our fake virtual

address — we configure Linux to transmit outbound packets without inspection.

In some reuse scenarios, such as using the DD/OS also as a general purpose OS,

the user may configure Linux in a way that requires valid virtual addresses in the

sk buff, in which case we can copy some packet headers from the client packet

into the sk buff, and use indirect addressing for the remainder of the packet. See

Figure 3.8 for a diagram of different sk buff scenarios.

The packet transmission requires the packet to remain pinned in memory for

DMA, and thus needs a cleanup phase. Thus we want to inform the proxy module

and the client when the packet has been successfully transmitted (or if transmission

has been aborted), to start the cleanup phase. The notification should happen in a

timely manner, to avoid network protocol timeouts from firing in the client. Thus

we require an upcall from the DD/OS kernel to the proxy module, with information

about the packets that have completed. Currently we use an sk buff destructor

hook in Linux; and we store state in the sk buff payload area to help correlate

the sk buff and its fragments with the packet fragments transmitted by the client.

Since the client can send packets faster than the device can transmit them, we

need a feedback loop to pause packet transmission (and thus pause the client),

and to restart transmission after the device has made forward progress. Linux has

an internal flow-control mechanism, behind its dev queue xmit() function,

which enqueues a single sk buff for transmission. Once Linux has control of the

packet, it collaborates with the network device to transmit the packet at line speed

(or to abort the packet). Furthermore, we use a producer-consumer ring shared

between the proxy and each client, which queues packets to transmit. When the

queue fills, the client pauses. When the proxy relieves pressure from a paused

producer-consumer ring, it awakens the client, to continue with further transmis-

sions.

After the client adds packets to the producer-consumer ring, it asks the hypervi-

sor to signal and schedule the proxy module to transmit the packets. This involves

a hypercall and other overhead. We avoid the hypercall if we know that the proxy

will soon awaken, either because its device has pending activity that will raise fu-

64



ture device interrupts, or because other clients have already arranged to awaken the

proxy. This permits us to combine all the activity into a single proxy session, rather

than to have consecutive proxy sessions separated by expensive context changes to

other VMs and activities. We thus share a page between the proxy and the clients,

where the proxy can provide information about upcoming events.

Receive

Inbound packets may be destined for the DD/OS itself, its device clients, or some

combination depending on broadcast and multicast properties.

The proxy must inspect every inbound packet for potential delivery to a client;

this requires an upcall from the DD/OS to the proxy. The upcall must be able to

execute in any context that supports packet processing (e.g., interrupt context). The

upcall must pass pointers to the inbound packets, so that the proxy can inspect the

packets. If the proxy determines that a packet is for a client, then the proxy can take

responsibility of the packet (and thus its cleanup), and remove it from the normal

packet handling chain of the DD/OS. The latency between packet reception and

hand-off to the proxy should be minimized. Currently we capture the Linux bridg-

ing hook, where normally its bridging layer would connect, and thus we prevent

the DD/OS from simultaneously serving as a normal network bridge; we capture

the bridging hook because it provides a low-latency upcall to the proxy module.

Alternatively, we could coexist with and use Linux’s bridging logic, but this would

increase latency, require us to implement a virtual network interface for the bridge,

and involve user-level applications to configure the bridge.

Inbound packet processing is often ignited by a device interrupt after several

packets have accumulated on the NIC. Thus the kernel can process these several

packets together, and if they are transferred to the same client, they can be trans-

ferred together. Batching packets together is important for amortizing hypercall

overhead. The proxy needs to know when to send a batch of packets to the clients,

and thus must learn from the DD/OS when all pending inbound packets have been

processed. We use a second upcall from the DD/OS here: we currently sched-

ule a Linux tasklet via tasklet hi schedule(), which Linux happens to run

immediately after packet processing completes, thus achieving our desired queue-

to-deliver latency.

Since inbound packets have unpredictable destinations (or multiple destina-

tions for broadcast and multicast), we must inspect the packets within the DD/OS

for their routing destinations, and thus must configure the networking hardware to
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deliver all packets into the memory of the DD/OS. This complicates zero-copy net-

work receive. To achieve zero-copy we must remap the pages from the DD/OS to

the clients (the solution chosen by Xen), but this requires a dedicated page for each

packet buffer, and thus modification to Linux to arrange for dedicated pages. Alter-

natively, copying the packets from the DD/OS to the clients may achieve nearly the

same performance as remapping, while out-performing remapping for small pack-

ets. We use data copying to the client’s address space, carried out by the hypervi-

sor with a CPU-local temporary mapping, so that only a single copy is performed

across the VM boundary (no intermediate buffering within the hypervisor) and

without requiring the DD/OS to have virtual addresses for all target client memory.

On x86, the copy activates the processor’s cache-line transfer optimization, which

disables memory bus and cache operations made redundant by the copy. Future

commodity network hardware may automatically route packets to different receive

queues [CIM97], based on LAN addresses, giving us zero-copy.

Once the proxy finishes transferring the packets to the clients, it must free the

packets via a downcall to the DD/OS. The downcall should be safe to execute in any

context. We use dev kfree skb any(), which is safe to call from all contexts.

Device management

Linux currently satisfies most of these features — for example, it has a notify sub-

system to dispatch events throughout the kernel for users of resources to discover

changes within the resources.

3.6.3 Block

Linux has an in-kernel block interface for handling disks and similar devices. Our

proxy module is a loadable Linux kernel module that interfaces with the block

subsystem, and enables access to a large number of devices. We support only

synchronous operations initiated by the client; there is no asynchronous data flow

initiated by the DD/OS as networking offers.

Linux will reorder batched block requests, and thus later requests may finish

before earlier requests; the reordered requests interfere with a producer-consumer

ring, since a single pending request can impede finalization of the reordered oper-

ations that are later in the ring.

The Linux block interface has few assumptions about its consumers — for

example, it doesn’t expect the requests to originate via the write() system call.
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The interface is flexible and supports many of the requirements of a proxy module.

3.7 L4 Microkernel

We use the L4Ka::Pistachio microkernel as the hypervisor, and as the environ-

ment for building new operating systems that reuse the Linux device drivers. The

L4Ka::Pistachio microkernel is a derivative of Jochen Liedtke’s L4 microkernel

family [Lie93, Lie95b]. Liedtke’s traditional L4 microkernels were written in as-

sembler; Pistachio is mostly C++, yet it provides comparable performance. It of-

fers few abstractions and mechanisms, with fewer than 13,000 lines of code that

run privileged. We use its threading, address space management, and IPC to con-

struct the DD/OS’s virtual machine, and to provide communication between the

translation modules and their clients.

In Chapter 4 we discuss how to build virtual machines with the L4 mechanisms;

here we describe how the translation modules use the L4 mechanisms for driver

reuse.

3.7.1 Client commands

The proxy listens for commands from the device clients, for controlling device ses-

sions, such as opening, closing, and configuring; and for requests to process fresh

operations queued in the producer-consumer rings. L4 supports only synchronous

IPC [Lie95b,Lie96]; this requires that the proxy module execute helper L4 threads

to wait for incoming IPC requests from the clients. The IPC messages arrive via

OS bypass: the L4 microkernel directly activates an L4 thread within the proxy

module, inside the address space of the Linux kernel, without regard to the cur-

rent Linux kernel context. The client delivers the command as an L4 IPC, with a

message in the register file. In OS bypass, Linux kernel state may be inconsistent,

and thus the L4 thread must first activate a valid Linux context if it will interact

with Linux; the valid Linux context is built by asking the VMM to deliver a virtual

interrupt to Linux. The virtual interrupt delivery causes the Linux kernel to execute

an interrupt handler, which then delivers an upcall to the proxy in interrupt context;

the proxy then has the ability to execute commands in interrupt context, and if it

needs a more capable kernel context, then it can queue a Linux work task.

For high-speed signaling, the device client can directly raise virtual interrupts

within the DD/OS via the DD/OS’s VMM. This skips the IPC normally used to

contact the proxy’s L4 thread.
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3.7.2 Shared state

The proxy modules share memory with their device clients, including producer-

consumer rings, and organizational information about the proxy (such as its L4

thread IDs). To establish this shared memory, the proxy module transfers page

rights to the client via L4’s memory sharing. L4 introduced the concept of recursive

address space construction, managed at user-level [Lie95b, Lie96]. It permits two

processes to coordinate page sharing, via an IPC rendezvous, with the page’s owner

giving access rights to the page’s client. The page’s owner can also rescind access

rights, leading to page faults when the client next accesses the page. Our device

clients send an IPC to the proxy to open a device session, and the IPC reply contains

the shared memory rights.

3.7.3 Network receive

Inbound packets received from the network arrive in the DD/OS, and we copy

them to the device client from the proxy, via L4 IPC. All other device activity (e.g.,

outbound network packets, and disk accesses) take place via DMA operations on

client memory, and thus bypass the L4 microkernel.

L4 can transfer up to 16 strings of data in a single IPC; thus we queue incoming

packets to each client, and copy them to the client in a batch either after all packets

have arrived, or when we have accumulated 16 packets. We use a one-way IPC,

which causes L4 to copy the packets to the client, and to immediately return to

the proxy module; thus the proxy module distributes packets to all clients before

activating any single client to start processing their packets.

The L4 microkernel handles the string copy via a rendezvous between two L4

threads; thus the client must have a waiting L4 thread, with sufficient buffers to

receive the packets. Since the string copy is synchronous, the L4 microkernel pro-

vides a fast string copy without buffering the data within the L4 microkernel. It

instead creates a temporary mapping within the L4 microkernel’s address space

to perform a direct copy. It creates the mapping by copying the two 4MB page-

directory entries in the target’s address space that swaddle the target string buffer

into the page directory of the DD/OS’s VM. The page directory is processor lo-

cal, and thus the temporary-copy mapping is processor local; two processors can

perform string-IPC copy in parallel to different targets; and expensive TLB shoot-

downs are unnecessary.

If the packet arrival rate causes the proxy to exceed 16 packets per IPC, then the
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packets would have to wait in the proxy until the client would have been scheduled,

processed its previously received packets, and then put its L4 thread into an IPC

wait for the next batch of packets. Instead, the client can execute multiple L4

threads to receive packets, with the proxy sending batches of 16 packets to each

thread. The number of threads to choose depends on packet arrival rate, amount

of processor time available to the client for processing its packets, and latency for

scheduling the client. If latency is high, then the proxy might have to queue many

packets, and in worst case, drop packets.

3.8 Related work

The Xen project reuses drivers in a manner very similar to our solution, and was

developed in parallel. Xen reuses Linux drivers by running them as a part of a para-

virtualized Linux (XenoLinux), within VMs on the Xen hypervisor [FHN+04b,

FHN+04a]. Interestingly, since their small hypervisor lacks a native OS envi-

ronment, their user-level drivers require the complete support infrastructure of an

OS. We view virtual machines as a means for driver reuse, not as a construction

principle for user-level drivers — for example, if using a microkernel, then use

its application-like development environment for native construction of user-level

drivers.

Xen’s architecture is similar to ours: it loads proxy modules into the DD/OS

to translate between client requests and Linux’s internal device operations. Xen’s

typical performance mode uses memory partitioning rather than shadow page ta-

bles. We have assumed shadow page tables in our design, to reclaim unused pages

from the DD/OS.

We have partially published the results of this thesis in ref. [LUSG04], in par-

ticular, our techniques for handling inbound network packets, and direct DMA for

packet transmit. Later, another team saw that Xen’s data remapping causes unnec-

essary overhead, and applied techniques similar to ours for reducing the overhead:

they copy network packets on the receive path, and use direct DMA on client mem-

ory for packet transmit [MCZ06].

Another L4 project briefly studied reusing Linux drivers [HLM+03], by run-

ning the reused Linux drivers in a para-virtualized L4Linux. The drivers connected

with the remaining system via translation logic running as a Linux application.

Their results showed much higher overhead than our own results.

Microsoft Research also studied running drivers within virtual machines, in
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the VEXE’DD project [ERW05]. They prototyped using the Virtual PC product,

and attempted to isolate drivers in Windows VMs. Their primary concern was to

safely support legacy extensions where ad hoc use of undocumented interfaces was

rampant. For added protection in running unreliable extensions, they used a safe

mediator to monitor the communication between the reused driver and its clients

(similarly to Nooks [SBL03], and Härtig et al. [HLM+03]), while we do not view

this as intrinsic to driver reuse, but rather an orthogonal and expensive feature.

3.9 Summary

We reuse device drivers by executing them with their original operating systems in

virtual machines. We call the device driver operating system the device-driver OS

(DD/OS). To connect the drivers to the surrounding system, we install translation

modules into the DD/OS that communicate across the VM boundary with clients

of the devices, and which convert client requests into internal DD/OS operations.

This approach provides scalable engineering effort, because the implementation of

a single translation module enables reuse of a variety of device drivers; it improves

system dependability by driver fault isolation; and it permits driver reuse within

new operating systems that are fundamentally incompatible with the DD/OS ar-

chitecture. As a demonstration of the technique, we described implementation

strategies for reusing Linux device drivers on the L4 microkernel.
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Chapter 4

Pre-virtualization

Our technique to build virtual machines, called pre-virtualization, attempts to com-

bine the performance of para-virtualization with the modularity of traditional vir-

tualization, while making virtualization easier for developers to implement. See

Figure 4.1.

The popular alternative to traditional virtualization (particularly on x86) is

para-virtualization, for it can improve performance, and it converts the style of

engineering work from VMM construction to co-design of the guest kernel and

hypervisor. The co-design costs modularity: it ties a guest operating system and a

hypervisor together, which restricts the system architecture — for example, Linux

adapted to the Xen API is unable to run on alternative hypervisors such as VMware,

Linux itself, or a security kernel such as EROS. Furthermore, the lock-in obstructs

evolution of its own para-virtualization interface — virtual machines provide the

vital ability to run obsoleted operating systems alongside new operating systems,

but para-virtualization often lacks this feature, requiring all concurrent instances

to be the hypervisor’s supported version. Even general purpose operating systems

have weaker restrictions for their applications. This lock-in forfeits the modular-

ity of virtualization. Modularity is an intrinsic feature of traditional virtualization,

helping to add layered enhancements to operating systems, especially when en-

hanced by people outside the operating system’s development community (e.g.,

Linux server consolidation provided by VMware).

Virtualization and its modularity solve many systems problems, and when it is

combined with the performance of para-virtualization, it becomes even more com-

pelling. We show how to achieve both together. We still modify the guest operating

system, but according to a set of design principles that avoids lock-in, which we
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Figure 4.1: Pre-virtualization combines many of the best features of pure virtual-
ization with para-virtualization, while adding automation.

call soft layering. Additionally, our approach is highly automated and thus reduces

the implementation and maintenance burden of para-virtualization, which supports

this thesis’s goal of rapid development of a driver reuse environment.

This chapter describes the principles of soft layering, and how we apply them to

virtual machines, which we call pre-virtualization. We present implementations for

two families of x86 hypervisors that have very different APIs, the L4 microkernel

and the Xen hypervisor, to demonstrate the versatility of pre-virtualization. For the

guest kernel, we used several versions of Linux 2.6 and 2.4, also to demonstrate

the versatility of pre-virtualization.

4.1 Soft layering

Our goal is a technique to virtualize operating systems for high performance ex-

ecution on arbitrary hypervisors, while preserving performance when booted on

bare hardware (see Figure 4.2). Thus we must focus on backwards compatibil-

ity with the native hardware interface, the interface to which the guest operating

systems have already been written. The principle of soft layering [Coo83] was de-

veloped for such a scenario (originally in network protocol layering). Soft layering

requires a strong layer interface, but allows it to be softened in a non-exclusionary

manner at runtime. The runtime softening is supported by infrastructure added to

the guest kernel source code, but the softening is optional, and variable (partial or
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Figure 4.2: Our approach automatically transforms the OS source code to produce
a binary that supports soft layering. The binary can boot on a variety of hypervi-
sors, or on bare hardware.

full optimizations are possible, with specialized extensions too).

The criteria of soft layering when applied to virtualization are:

1. it must be possible to degrade to a neutral interface, by ig-

noring the co-design enhancements (thus permitting execu-

tion on native hardware and hypervisors that lack support

for the soft layering);

2. the interface must flexibly adapt at runtime to the algorithms

that competitors may provide (thus supporting arbitrary hy-

pervisor interfaces without pre-arrangement).

The soft describes the scope and type of modifications that we apply to the

source code of the guest OS: the modifications remain close to the original struc-

ture of the guest OS, and it uses the neutral platform interface as the default in-

terface (i.e., the OS will execute directly on raw hardware, and the enhancements

require activation in a VM). Soft layering forbids changes to the guest OS that

would interfere with correct execution on the neutral platform interface, it discour-
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ages changes that substantially favor one hypervisor over others, and it discourages

changes that penalize the performance of the neutral platform interface.

The decision to activate a soft layer happens at runtime when the hypervisor

and guest kernel are joined together. The hypervisor inspects the descriptor of

the soft layer that accompanies the guest OS, and determines their compatibility.

If incompatible, the hypervisor can abort loading, or activate a subset of the soft

layer (to ignore extensions unequally implemented, or rendered unnecessary when

using VM hardware acceleration).

To achieve our performance goals we must increase transparency to the hy-

pervisor’s internal abstractions (review Section 2.3.1), but without violating the

second criterion of soft layering – that the interface must flexibly adapt to the algo-

rithms provided by competitors. Via the virtualization logic that we inject into the

guest kernel’s protection domain, we map the operating system’s use of the plat-

form interface to the hypervisor’s efficient primitives. This achieves the same effect

as para-virtualization — the guest kernel operates with increased transparency —

but the approach to increasing transparency differs. Some of para-virtualization’s

structural changes fall outside the scope of the platform interface, thus requiring

the soft layer to extend beyond the platform interface too. Yet some of co-design’s

traditional structural changes, such as high-performance network and disk drivers,

are unnecessary in our approach, since they can be handled by mapping the device

register accesses of standard device drivers to efficient hypervisor abstractions.

4.2 Architecture

Para-virtualization has three categories of interfaces between the hypervisor and

guest OS that we’ve identified, and we offer soft-layer alternatives for each:

Instruction-level modifications apply at the interface between the virtual ma-

chine and the guest kernel, without extending their reach too far into the guest

kernel’s code. They can extend the underlying architecture (e.g., Denali [WSG02]

introduced an idle with timeout instruction), or replace virtualization-sensitive in-

structions with optimized downcalls.

Structural modifications add efficient mappings from the guest kernel’s high-

level abstractions to the hypervisor’s interfaces, thus bypassing the guest kernel’s

original code that interfaces with the platform. This is particularly useful for pro-

viding high-performance devices, and most virtualization projects offer these map-

pings for network and disk. These modifications are very intrusive to the guest
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kernel, and require specific knowledge of the guest kernel’s internal abstractions.

The structural modifications make certain relationships explicit, and thus simplify

the virtualization — for example, many projects adjust the virtual address space

of the guest kernel to permit coexistence of a hypervisor, guest kernel, and guest

application within a single address space.

Behavioral modifications change the algorithms of the guest OS, or introduce

parameters to the algorithms, which improve performance when running in the vir-

tualization environment. These modifications focus on the guest kernel, and do

not rely on specialized interfaces in the hypervisor, and thus work on raw hard-

ware too. Examples are: avoiding an address space switch when entering the

idle loop [SVL01], reducing the timer frequency (and thus the frequency of house

keeping work), and isolating virtualization-sensitive memory objects (e.g., x86’s

descriptor table) on dedicated pages that the hypervisor can write-protect without

the performance penalty of false sharing.

Our soft layering approach addresses para-virtualization’s instruction-level and

structural enhancements with different solutions. Para-virtualization’s behavioral

modifications are a natural form of soft layering: they avoid interference with OS

and hypervisor neutrality, and may achieve self activation — for example, the ker-

nel can detect that certain operations require far more cycles to execute, and thus it

changes behavior to match the more expensive operations [ZBG+05]. Behavioral

modifications may benefit from visible interfaces to the guest kernel, which we

classify as structural enhancements.

4.2.1 Instruction level

The performance of virtual machines relies on using bare-metal execution for the

frequently executed innocuous instructions, while introducing expensive emulation

only for the infrequently executed virtualization-sensitive instructions [PG73]. The

emulation traditionally is activated upon traps on the virtualization-sensitive in-

structions, which is an expensive approach on today’s super-pipelined processors.

Para-virtualization boosts performance by eliminating the traps (and potentially

only for the most frequently executed privileged instructions [MC04]). Yet if the

modifications are restricted to hypercall substitution for each instruction, the sav-

ings may be small, since hypercalls can have noticeable costs. Thus several para-

virtualization projects reduce the number of hypercalls by mapping the low-level

instruction sequences into higher-level abstractions via source code modifications.

For our approach to have performance comparable to para-virtualization, we must
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.L_sensitive_6:
        movl %eax, %cr3
        nop ; nop ; nop
        nop ; nop ; nop
.L_sensitive_7:
        .pushsection .afterburn
        .long   .L_sensitive_6
        .long   .L_sensitive_7
        .popsection

movl  %eax, %cr3

Automation

Figure 4.3: Example of assembler preparation for a sensitive x86 instruction — it
adds scratch space via nop instructions, and adds assembler directives to record
the location of the instruction.

also map low-level instructions into higher-level abstractions, but while obeying

the criteria of soft layering.

To satisfy the criterion of soft layering that the guest OS should execute di-

rectly on raw hardware, we leave the virtualization-sensitive instructions in their

original locations. Instead, we enable a hypervisor to quickly locate and rewrite

the virtualization-sensitive instructions at runtime. The hypervisor is thus able to

replace each individual instruction with optimized emulation logic.

To provide the hypervisor with scratch space for writing the optimized emula-

tion logic, we pad each virtualization-sensitive instruction with a sequence of no-op

instructions1. The scratch space becomes a permanent addition to the binary, and

is even executed when the binary runs on native hardware, which is why we fill the

scratch space with no-op instructions. We allocate enough scratch space to mini-

mally hold an instruction for calling out to more complicated emulation logic. See

Figure 4.3.

To help the hypervisor quickly locate the sensitive instructions at runtime, we

annotate their locations. The runtime instruction rewriter decodes the original in-

structions to determine intent and the locations of parameters, and writes higher-

performance alternatives over the scratch space provided by the no-op padding.

Complex emulation

In several cases the size of the emulation logic exceeds the size of the scratch

space, particularly if the logic for mapping low-level instructions to the higher-level

abstractions of the hypervisor is complicated. For these cases, we inject a mapping
1Instructions with an architecturally defined relationship to their succeeding instruction must be

preceded by their no-op padding, e.g., x86’s sti instruction.
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module into the address space of the guest kernel, in a region reserved from the

guest kernel. The code rewriter emits instructions that call this extended mapping

module. Thus the extended logic is quickly activated (since it avoids a protection

domain crossing), but it is also vulnerable to misbehavior of the guest kernel, and

so the emulation logic must execute at the same privilege level as the guest kernel.

We term the mapping module the virtualization-assist module (VAM).

The virtualization-assist module provides a virtual CPU and device models.

The rewritten instructions directly access the virtualization-assist module via func-

tion calls or memory references. The virtualization-assist module defers interac-

tion with the hypervisor by batching state changes, thus imitating the behavior of

para-virtualization. Since the virtualization-assist module runs at the guest kernel’s

privilege level, it must execute hypercalls for emulation logic that otherwise could

subvert hypervisor security. The hypercall permits the hypervisor to authorize such

side effects (for example, memory mappings).

The mapping module is specific to the hypervisor, but neutral to the guest OS

since its exported interface is that of the raw hardware platform. Thus a hyper-

visor need implement only a single mapping module for use by any conformant

guest kernel. Additionally, since the binding to the mapping module takes place

at runtime, the guest kernel can execute on a variety of incompatible hypervisors,

and a running guest kernel can migrate between incompatible hypervisors (which

is especially useful across hypervisor upgrades). See Figure 4.4 for a comparison

of soft-layering to pure virtualization and para-virtualization. See Figure 4.5 for an

illustrated timeline of the guest OS startup.

Automation

For the easy use of soft layering, we apply the instruction-level changes automat-

ically at the assembler stage [ES03]. Thus we avoid many manual changes to the

guest OS’s source code, which reduces the man-power cost of para-virtualization’s

high performance. This automatic step permits us to package most of the soft layer

as a conceptual module independent of the guest kernel — they are combined at

compile time (see Figure 4.2). This source code modularity is particularly useful

for the fast-paced development of open source kernels, where developers edit the

latest edition of a kernel, and the users (via the distributions) grab any edition for

production use. By automating, one can re-apply the latest version of the soft layer

interface (e.g., to an obsoleted source base).

77



Hypervisor

Hardware

Guest OS
(pre-virtualization)

Virtualization logic

Hypervisor

Hardware

Virtualization logic

Guest OS
Guest OS
(para-virtualization)

Hypervisor

Hardware

(a) (b) (c)

Figure 4.4: A comparison of different virtualization approaches, and their layered
interfaces. Traditional emulation is used in a. Para-virtualization is used in b. And
soft layering is demonstrated in c.

Memory instructions

A variety of memory objects are also virtualization-sensitive, such as memory-

mapped device registers and x86’s page tables. When instructions access these

objects, we reclassify them from innocuous to virtualization-sensitive instructions.

We apply the soft-layering technique to these instructions, but only in contexts

where they access these memory objects — innocuous uses of the instructions re-

main untouched. We try to automatically classify memory instructions as innocu-

ous or virtualization sensitive at the compiler stage, by parsing the guest kernel’s

C code. To distinguish between memory types, our automated tool uses data-type

analysis, and overloads only those memory-access instructions for sensitive data

types. In some cases the guest code may abstract a particular memory access with

an access function, and we can use our parser to redefine the memory-access in-

structions of such functions. A developer must identify the data types and access

functions of senstive memory, and report them to the automated tool; thus we have

only partial automation. If the guest kernel makes insufficient use of data types and

access functions, and thus we are unable to automatically disambiguate the innocu-

ous from the virtualization-sensitive with high accuracy, then we manually apply

the instruction no-op padding and annotations via C language macros or compiler

hints [BS04]. It would be possible to disambiguate at run time (as does traditional

virtualization), but that adds too much overhead.
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Figure 4.5: (1) The virtualization-assist module starts with a virgin VM, (2) un-
packs the guest kernel into the VM, (3) rewrites the sensitive instructions to invoke
the virtualization-assist module, and then boots the guest OS.

4.2.2 Structural

While the instruction-level interface conforms to a standard that the processor man-

ufacturer defines, the structural changes of para-virtualization are open-ended and

have no standard. This lack of restraint is one of para-virtualization’s attractions,

for it enables custom solutions that reflect the expertise of the developers for their

problem domains.

Structural changes can comply with the criteria of soft layering — soft lay-

ering only demands that the structural changes obey an interface convention for

identifying and enabling the changes. When the structural changes conform to soft

layering, they can support particular hypervisors or guest kernels while all others

can ignore the structural changes (or incrementally add support). A possible inter-

face scheme is to use function-call overloads, each identified by a universal unique

identifier [RPC97].

Some structural changes permanently alter the design of the kernel, such as

changes in the guest kernel’s address space layout, which operate even when ex-

ecuting on raw hardware. Other changes replace subsystems of the guest kernel,

and are suitable for function-call overloading in the soft layer (i.e., rewriting the

guest kernel to invoke an optimized function within the mapping module). Another

class of changes adds functionality to the guest kernel where it did not exist before,

as runtime installable kernel modules, such as memory ballooning [Wal02] (which
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enables cooperative resource multiplexing with the hypervisor).

The structural modifications require conventions and standards for the impor-

tant overload points, and documentation of the side effects, to provide a commons

that independent hypervisor and kernel developers may use. The danger is di-

vergence since there is no well-defined interface for guidance, in contrast to the

instruction-level soft layering.

Multiple approaches to function-call overloading are possible, such as rewrit-

ing all invocation points (e.g., dynamic linking [DD67]), using an indirection table

(e.g., COM [Bro95, Rog97]), or installing kernel-specific loadable modules. We

currently use a combination of an indirection table and loadable modules, where

the loadable modules have the ability to access code and data in the virtualization-

assist module.

4.2.3 The virtualization-assist module

The virtualization-assist module includes comprehensive virtualization code for

mapping the activity of the guest kernel into the high-level abstractions of the

hypervisor. This is especially useful for repurposing general-purpose kernels as

hypervisors (such as Linux on Linux, or Linux on the L4 microkernel). The

virtualization-assist module not only performs the downcalls to the hypervisor, it

also intercepts upcalls to the guest kernel from the hypervisor (e.g., for fault and

interrupt emulation). Since these operations are part of the platform interface, they

are agnostic to the guest kernel.

Some of the downcalls have no direct mappings to the hypervisor’s interface,

e.g., updates to the x86 TSS or PCI BAR configurations. Once the VAM intercepts

these downcalls, it uses traditional virtualization techniques to map the operations

to the interfaces of the hypervisor. The goal is to let the OS use the raw hardware

interface (just as in full virtualization).

Indivisible instructions

The virtualization-assist module installs itself into the guest OS at load time by

rewriting the guest’s virtualization-sensitive instructions and by hooking its func-

tion overloads (see Figure 4.5). Where we replace the original, indivisible instruc-

tions of the guest kernel with emulation sequences of many instructions, we must

respect the indivisibility of the original instructions in regards to faults and in-

terrupts. The guest kernel could malfunction if exposed to virtualization-assist
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module state in an interrupt frame, and so we also treat function overloads as in-

divisible operations. In either case the emulation could be long running, or with

unpredictable latency, which is the nature of virtualization.2 To avoid reentrance,

we structure the virtualization-assist module as an event processor: the guest kernel

requests a service, and the virtualization-assist module returns to the guest kernel

only after completing the service, or it may roll back to handle a mid-flight inter-

ruption. The guest kernel is unaware of the emulation code’s activity, just as in

normal thread switching a thread is unaware of its preemption. If the guest ker-

nel has dependencies on real time, then we assume that the kernel authors already

over provisioned to handle the nondeterminism of real hardware and application

workloads.

Code expansion

The guest kernel may execute several of the virtualization-sensitive instructions

frequently, e.g., Linux often toggles interrupt delivery. The performance of the

virtualization-assist module for emulating these frequently-executed instructions

depends on its algorithms and how it chooses between instruction expansion and

hypercalls; for the frequent instructions we want to avoid both. For example, using

a hypercall to toggle interrupt delivery (so that the hypervisor avoids delivering

virtual interrupts) would add too much overhead. Instead we rely on a general

algorithm: we use a virtual CPU within the virtualization-assist module that models

the interrupt status, and we replace the interrupt toggling instructions with one or

two memory instructions that update the virtual CPU’s status flags; the emulation

overhead is thus eliminated. The hypervisor will deliver virtual interrupts despite

the status of the virtual CPU’s interrupt status flag, but since the virtualization-

assist module intercepts the hypervisor’s upcalls, it enforces the virtual interrupt

status flag, and can queue the pending interrupt for later delivery when the guest

kernel reactivates its interrupts via the virtual CPU.

4.2.4 Device emulation

Soft layering helps virtualize standard devices with high performance; all other

virtualization approaches depend on special device drivers for performance, which
2The guest kernel is a sequential process concerned about forward progress but not the rate of

forward progress [Dij68].
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Figure 4.6: High-performance device access via pre-virtualization: the
virtualization-assist module upmaps the low-level device-register accesses of the
guest OS to the device interfaces of the hypervisor.

inherently tie the guest OS to a particular hypervisor. We follow the neutral plat-

form API to provide the modularity of strict layering.

Device drivers issue frequent device register accesses, notorious for perfor-

mance bottlenecks when emulated via traps [SVL01]. We convert these device

register accesses into efficient downcalls — we use instruction-level soft layering

to rewrite the code to invoke the virtualization-assist module. The virtualization-

assist module models the device, and batches state changes to minimize interaction

with the hypervisor. See Figure 4.6 for a diagram.

Networking throughput is particularly sensitive to batching: if the batching

adds too much latency to transmitted packets, then throughput deteriorates; if the

virtualization-assist module transmits the packets prematurely, then throughput de-

teriorates due to hypercall overhead. The batching problem plagues the special-

ized device drivers of other approaches too, since many kernels hide the high-level

batching information from their device drivers. The speeds of gigabit networking

require more comprehensive batching than for 100Mbit networking [SVL01]. In

past work with Linux, we used a callback executed immediately after the network-

ing subsystem, which provided good performance [LUSG04]; for driver emulation

we infer this information from the low-level activity of the guest kernel, and initiate

packet transmission when the guest kernel returns from interrupt, or returns to user,

which are both points in time when the kernel is switching between subsystems and

has thus completed packet processing.
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Figure 4.7: When configured for selective device pass through, the virtualization-
assist module presents a virtual PCI bus to the guest OS, which forwards PCI con-
figuration requests to the actual device.

4.2.5 Device pass through

To support device driver reuse, the virtualization-assist module permits the guest

kernel’s device drivers to register for real device-interrupt notifications, to create

memory mappings for device registers, and to access the I/O port space. Yet it

never grants to the guest kernel full control of the platform, to prevent interference

between the hypervisor and DD/OS, and thus must virtualize some aspects of the

platform. In some cases, these platform devices will be fully virtualized, and in

others, the devices will have partial pass through.

When several DD/OSes work together to control the devices, they will often

have to share a bus. In this case, the virtualization-assist module will also partially

virtualize the bus. Figure 4.7 shows an example of how a DD/OS controls a device

connected to a virtualized PCI bus — the DD/OS permits the driver to access and

configure the PCI control registers of the device, but the virtualization-assist mod-

ule hides the true bus topology by presenting a virtual bus topology, and thus the

DD/OS is unable to see other devices.

4.3 Guest preparation

Soft layering involves modifications to the guest kernel, although we apply most in

an automated manner at the compilation stage. The modifications fall under three

categories: sensitive instructions, sensitive memory instructions, and structural.
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.L_sensitive_6:
        movl %eax, %cr3
        nop
        nop
        nop
        nop
        nop
        nop
.L_sensitive_7:
        .pushsection .afterburn
        .long   .L_sensitive_6
        .long   .L_sensitive_7
        .popsection

movl  %eax, %cr3 Afterburner

Figure 4.8: The Afterburner automatically transforms sensitive assembler instruc-
tions, inserts no-op padding, and records the location of the instruction (in the
.afterburn ELF section in this example).

4.3.1 Sensitive instructions

To add soft layering for virtualization-sensitive instructions to a kernel, we parse

and transform the assembler code (whether compiler generated or hand written).

We wrote an assembler parser and transformer using ANTLR [PQ95]; it builds an

abstract syntax tree (AST) from the assembler, walks and transforms the tree, and

then emits new assembler code.

The most basic transformation adds no-op padding around the virtualization-

sensitive instructions, while recording within an executable section the start and

end addresses of the instruction and its no-op window (see Figure 4.8). The no-op

instructions stretch basic blocks, but since at this stage basic block boundaries are

symbolic, the stretching is transparent. x86 has a special case where the kernel

sometimes restarts an in-kernel system call by decrementing the return address by

two bytes; this can be handled by careful emulation in the VAM.

More sophisticated annotations are possible, such as recording register data

flow based on the basic block information integrated into the AST.

4.3.2 Sensitive memory instructions

An automated solution for pre-virtualizing the memory instructions must disam-

biguate the sensitive from the innocuous. We implemented a data-type analysis en-

gine that processes the guest kernel’s high-level source to determine the sensitive

memory operations based on data type. For example, Linux accesses a page table
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entry (PTE) via a pte t * data type. Our implementation uses a gcc-compatible

C parser written in ANTLR, and redefines the assignment operator based on data

type (similar to C++ operator overloading). Our modifications (1) force the opera-

tion to use an easily decodable memory instruction, and (2) add the no-op padding

around the instruction. The automated parsing tool involves three phases:

• The developer identifies the sensitive memory types, such as those repre-

senting page-table entries, in the kernel code. The developer also identifies

access functions for sensitive memory types that should be overloaded. The

developer provides this information to the tool. This requires the developer

to competently read the code and to identify the sensitive memory opera-

tions.

• The developer configures the kernel’s build infrastructure to invoke the tool

on each source file after running the C preprocessor, but before compiling

the code. The tool processes each source file, and identifies where the code

accesses sensitive memory. It distinguishes between function local data (e.g.,

items in the register file or the stack), and system memory. The tool assumes

that sensitive memory only occupies the system memory.

• The tool transforms the C code. If overloading a memory-access instruction,

then it adds no-op padding and annotations, and forces use of an easily de-

codable memory instruction. If overloading a function, then it converts the

function call into a indirect function call that the virtualization-assist module

can overload, and adds annotations. The tool emits the transformed code to

the compiler, which outputs assembler, which we send as input to the pre-

virtualization assembler stage.

Refer to ref. [Yan07] for more details regarding the C transformation tool.

We integrate Linux page table and page directory accesses into the soft layer.

Although manually hooking page table writes in Linux is fairly simple due to

Linux’s abstractions, page-table reads are far more difficult to do by hand, but

are easily handled by the automated C parser which detects the page-table reads

via data-type analysis.

To virtualize device drivers that access memory-mapped device registers, we

apply instruction-level soft layering to their access instructions. Each driver re-

quires a different set of annotations to permit the virtualization-assist module to

distinguish one driver from another at runtime. Since Linux already abstracts ac-

cesses to device registers with read and write functions, we can easily redefine
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them, either using the automated C parser, or by manually adding a prolog to each

driver that overloads the read and write functions via the C preprocessor.

4.3.3 Structural

Our primary structural modification allocates a hole within the virtual address

space of Linux for the virtualization-assist module and hypervisor. The hole’s

size is currently a compile-time constant of the Linux kernel. If the hole is very

large, e.g., for running Linux on Linux, then we relink the Linux kernel to a lower

address to provide sufficient room for the hole.

To support pass-through device access, for the driver reuse of this thesis, we

added a function overload to perform DMA address translation. We did not pursue

automatic application of these overloads, and instead manually added them to the

source code, because Linux lacks consistent and comprehensive abstractions that

both handle forward and reverse translation, and which enforce invariants regarding

contiguous regions of memory that DMA operations may expect. Note that normal

virtualization has no need for DMA overloading — driver reuse requires the DMA

overloading.

To support the L4 microkernel with decent performance, we added other function-

call overloads. In the normal case these overloads use the default Linux imple-

mentation; when running on the L4 microkernel, we overload the function calls

to invoke replacement functions within the virtualization-assist module. These

overloads permit us to control how Linux accesses user memory from the ker-

nel’s address space, and permit us to efficiently map Linux threads to L4 threads.

The overloads implement techniques described in prior work for running Linux on

L4 [HHL+97].

4.4 Runtime environment

We divide the virtualization-assist module into two parts: a front-end that emulates

the platform interface, and a back-end that interfaces with the hypervisor. The

rewritten sensitive instructions of the guest kernel interact with the front-end, and

their side effects propagate to the back-end, and eventually to the hypervisor. Up-

calls from the hypervisor (e.g., interrupt notifications) interact with the back-end,

and propagate to the front-end. See Figure 4.9 for a diagram.

Although we try to match the performance of para-virtualization, the virtualization-

assist module is more restricted by the constraints of soft layering. Thus the
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Figure 4.9: The virtualization-assist module frontend interfaces with the guest ker-
nel, and the backend interfaces with the hypervisor.

virtualization-assist module implements heuristics to attempt to match the perfor-

mance of traditional para-virtualization modifications. This may not always be

possible, but so far we have been successful.

4.4.1 Indivisible instructions

We must be careful to avoid corrupting or confusing the guest kernel, since we

execute a substantial portion of the emulation logic within the address space of

the guest kernel, and thus open the opportunity for careless emulation. The guest

kernel is unaware of our emulation logic, and is expecting the rewritten instructions

to follow the semantics of the original instructions. This includes side effects to the

register file.

Immediately before entering the emulation logic, the register file contains guest

kernel state. We call this the boundary state. After entering the emulation logic,

the virtualization-assist module becomes owner of the register file, and installs its

own state. The virtualization-assist module must thus preserve the boundary state,

so that it can restore the state when exiting the emulation logic.

The virtualization-assist module may exit the emulation logic via two paths:

1. The normal case is a return to the instruction following the currently em-

ulated instruction. The return is similar to a function call return, although

more conservative. Normal functions automatically preserve and restore part
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of the register file, and since we use the compiler to generate much of the

emulation logic, we rely on the compiler to preserve and restore part of the

register file. For the remaining registers, we manually preserve and restore

them at the virtualization-assist module boundary.

2. An interrupt arrives, which requires the virtualization-assist module to branch

to an interrupt handler. Eventually, the guest kernel’s interrupt handler will

return to the interrupted code. In many cases the guest kernel ignores the

identity of the interrupted code, and will reactivate it without question. Yet a

variety of kernel algorithms require the guest kernel to inspect and identify

the interrupted code (such as for instruction sampling, or exception han-

dling), in which case, if the interrupt frame points at emulation logic, the

guest kernel could malfunction or become confused. Thus it is important

that the register file and interrupt frame contain the proper boundary state

upon entering the interrupt handler. This requires that we carefully handle

asynchronous events that arrive during execution of emulation logic.

The virtualization-assist module handles three interrupt conditions that require

attention to the boundary CPU state: (1) when the guest kernel executes an instruc-

tion that enables interrupts, and interrupts are already pending; (2) interrupts arrive

during instruction emulation; and (3) interrupts arrive during un-interruptible hy-

percalls and must be detected after hypercall completion.

For case 1, before entering the front-end we allocate a redirection frame on the

stack in preparation for jumping to an interrupt handler when exiting the virtualization-

assist module. If no interrupt is pending (the common case), the virtualization-

assist module discards the redirect frame, and then returns to the guest kernel with

full boundary state restored. If an interrupt was pending, then the redirect frame

causes control transfer to the interrupt handler, leaves behind a proper interrupt

frame, and preserves the boundary CPU state. This is particularly useful for x86’s

iret instruction (return from interrupt), because it cleanly emulates the hardware

behavior when transitioning from kernel to user: interrupts are delivered as if they

interrupted the user context, not the kernel context.

Case 2 is important for iret and idle emulation, since these both involve race

conditions in checking for already pending interrupts. For interrupt arrival during

iret, we roll-back and restart the front-end, so that it follows the route for case 1.

For interrupt arrival during idle, we roll forward to abort the idle hypercall, and

then deliver the interrupt using the redirection frame.
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Figure 4.10: When virtualized, an emulation sequence replaces a single instruc-
tion. To respect the semantics of interrupt delivery on the original hardware,
we avoid delivering interrupts in the midst of an emulation sequence. Here, the
virtualization-assist module reschedules itself to execute interrupt emulation af-
ter the wrmsr sequence, thus entering the guest’s vector handler with the proper
boundary CPU state.

Case 3 requires manual inspection of pending interrupts, since the hypervisor

avoids delivering an upcall. If an interrupt is pending, we alter the virtualization-

assist module’s boundary return address to enter an interrupt dispatcher, then un-

wind the function call stack to restore the guest kernel’s boundary state, and then

enter the interrupt dispatch emulation. See Figure 4.10.

4.4.2 Instruction rewriting

When loading the guest kernel, the virtualization-assist module locates the soft-

layer annotations within the guest kernel’s executable. Via the annotations, the

virtualization-assist module locates the sensitive instructions, decodes the instruc-

tions to determine their intentions and register use, and then generates optimized

replacement code. The replacement code either invokes the virtualization-assist

module via a function call, or updates the virtual CPU via a memory operation.
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Minimizing the instruction expansion is crucial for the frequently executed in-

structions. For x86, the critical instructions are those that manipulate segment

registers and toggle interrupt delivery. The segment register operations are simple

to inline within the guest kernel’s instruction stream, by emitting code that directly

accesses the virtual CPU of the virtualization-assist module3for flat segments). For

toggling interrupts, we use the same strategy, which causes us to deviate from the

hardware interrupt delivery behavior; the hardware automatically delivers pending

interrupts, but its emulation would cause unjustifiable code expansion (we have

found that the common case has no pending interrupts because the guest executes

these instructions at a higher rate than the interrupt arrival rate). Instead we use

a heuristic to deliver pending interrupts at a later time:4 when the kernel enters

the idle loop, transitions to user mode, returns from interrupt, or completes a long-

running hypercall. Our heuristic may increase interrupt latency, but running within

a VM environment already increases the latency due to arbitrary preemption of the

VM.

4.4.3 Xen/x86 hypervisor back-end

The x86 Xen API resembles the hardware API, even using the hardware iret in-

struction to transition from guest kernel to guest user without indirecting through

the hypervisor. Still, the virtualization-assist module intercepts all privileged in-

structions and upcalls to enforce the integrity of the virtualization. We configure

Xen to deliver interrupts, events, and x86 traps to the virtualization-assist module,

which updates the virtual CPU state machine and then transitions to the guest ker-

nel’s handlers. The virtualization-assist module intercepts transitions to user-mode

(the iret instruction), updates the virtual CPU, and then completes the transi-

tion. We optimistically assume a system call for each kernel entry, and thus avoid

virtualization overhead on the system call path, permitting direct activation of the

guest kernel’s system call handler — on iret, we preconfigure the vCPU state

for a system call, and permit Xen’s system-call upcall to bypass the virtualization-

assist module; all other upcalls activate the virtualization-assist module, which can-

cels the system-call setup, and reconfigures the vCPU for the actual upcall (note

that the configuration is minor, but by permitting bypass of the virtualization-

assist module for system calls, we avoid TLB, cache, and branch misses in the
3(
4We detect special cases, such as sti;nop;cli (which enables interrupts for a single cycle),

and rewrite them for synchronous delivery.
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virtualization-assist module, which are noticeable savings under in benchmarks —

our pre-virtualized system calls are faster than Xen’s para-virtualized system-call

handling in microbenchmarks).

Xen’s API for constructing page mappings uses the guest OS’s page tables as

the actual x86 hardware page tables. The virtualization-assist module virtualizes

these hardware page tables for the guest OS, and thus intercepts accesses to the

page tables. This is the most complicated aspect of the API, because Xen prohibits

writable mappings to the page tables; the virtualization-assist module tracks the

guest’s page usage, and transparently write-protects mappings to page tables. Xen

3 changed this part of the API from Xen 2, yet our virtualization-assist module

permits our Linux binaries to execute on both Xen 2 and Xen 3.

The virtualization-assist module handles Xen’s OS bootstrap (what Xen calls

start of day), registering its own handlers where a para-virtualized OS would nor-

mally register handlers, and configuring the virtual memory system to resemble the

environment expected by an OS on raw hardware (although bypassing x86’s 16-bit

mode and starting directly in 32-bit mode). When the guest OS starts initializing

its virtual devices, the virtualization-assist module updates the original start-of-day

parameters to match the guest OS’s configuration (e.g., the timer frequency).

4.4.4 L4 microkernel back-end

The L4 API is a set of portable microkernel abstractions, and is thus high-level.

The API is very different from Xen’s x86-specific API, yet soft layering supports

both by mapping the neutral platform API to the hypervisor API, and we use the

same x86 front-end for both.

For performance reasons, we associate one L4 address space with each guest

address space, providing shadow page tables [PPTH72] (which cache the guest’s

mappings within the L4 kernel with TLB semantics). Thus L4 provides its own

page tables for the hardware page tables, and the virtualization-assist module syn-

chronizes the translations of the guest’s page tables with those of the L4 page

tables. The virtualization-assist module can update the shadow page tables opti-

mistically or lazily.

We virtualize privileges by mapping each privilege to a separate L4 address

space. Thus although a single guest page table describes both the Linux kernel and

application address spaces, we treat them as two separate logical spaces, and map

them to different L4 address spaces. This could put a noticeable load on system

resources by adding two sets of shadow page tables for each guest application, but
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Figure 4.11: Linux creates several logical address spaces (the applications 1, 2,
3, and the kernel), implemented by hardware address spaces a, b, and c (using the
page tables). To sustain a logical kernel space that spans multiple hardware spaces,
Linux must maintain and synchronize consistent mappings across the hardware
spaces. This also provides Linux an opportunity to lock these translations in the
TLB, which is a critical x86 performance optimization to reduce TLB misses.

we can make an optimization: Linux maintains a fairly consistent logical address

space for the kernel across all guest page tables, and thus we can represent the ker-

nel space with a single shadow page table (Härtig et al. described this technique in

ref. [HHL+97]; they also described problems with alternative approaches in their

section The Dual-Space Mistake). Occasionally Linux defines translations for a

particular application within the kernel space, and we flush these from the ker-

nel’s shadow page table when changing page tables. Thus we can avoid switching

shadow page tables when Linux changes the current page table since when Linux

changes it, it is at privileged level, and the logical space is the same before and

after the switch (see Figure 4.11); we only need to change the shadow page table

upon privilege changes (such as at iret, see Figure 4.12).

We map many of the x86 architectural events to L4 IPC: transitions from kernel

to user, system calls executed by user, exceptions executed by user, and virtual

interrupts. See Figure 4.13.

L4 lacks asynchronous event delivery — it requires a rendezvous of two threads

via IPC. Since we map hardware interrupts and timer events onto IPC, we instan-

tiate an additional L4 thread within the virtualization-assist module that receives

asynchronous event notifications and either directly manipulates the state of the
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Figure 4.12: The x86 iret instruction can be used to transfer from kernel to an
application. Its emulation performs an L4 address space change, via L4 IPC. If
the L4 process does not yet exist, the emulation allocates and initializes a new L4
process, to map to the guest application. The L4 processes store no guest state,
which makes the L4 processes easily reassignable (in case we migrate over the
network to another machine, or if we hit a resource limit and are unable to allocate
a new L4 process but must reuse an old).

L4 VM thread or updates the virtual CPU model (e.g., register a pending interrupt

when interrupts are disabled). See Figure 4.14 for a relationship of events to the

L4 threads within the virtualization-assist module.

As described in Section 4.3.3, we added several structural hooks to the guest

OS, to accommodate virtualization inefficiencies in the L4 API. One hook is a con-

sequence of separating guest kernel and applications into separate shadow spaces:

the guest kernel needs to access the user data using kernel addresses [HHL+97,

Mol03].

The virtualization-assist module bootstraps the guest OS. It prepares the L4

application environment to suit virtualization of a guest OS (primarily setting up

the virtual memory). The virtualization-assist module starts executing the guest at

its 32-bit entry point, thus skipping 16-bit boot logic.

4.4.5 Network device emulation

Supporting our goal for high-speed device virtualization that conforms to soft-

layering principles, we implemented a device model for the DP83820 gigabit net-

work card. The guest need only provide a DP83820 network device driver, and via
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Figure 4.13: L4 IPC abstracts x86 architectural events, particularly when they
cross the protection boundary between the guest’s applications and kernel. The
virtualization-assist module orchestrates the IPC.

its virtualization, is able to use any physical device supported by the hypervisor.

The DP83820 device interface supports packet batching in producer-consumer

rings, and packets are guaranteed to be pinned in memory for the DMA operation,

supporting zero-copy sending in a VM environment (see Figure 4.15). It addi-

tionally permits hardware acceleration with scatter-gather packet assembly, and

checksum offload (if the hypervisor’s interface supports these operations, which

our driver-reuse environment does support). A drawback of this device is lack of

support in older operating systems such as Linux 2.2.

We split the DP83820 model into a front-end and a back-end. The front-end

models the device registers, applies heuristics to determine when to transmit pack-

ets, and manages the DP83820 producer-consumer rings. The back-end sends and

receives packets via the networking API of the hypervisor.

We have only implemented a back-end for the L4 environment, which is the

driver reuse network translation module of this thesis (Section 3.6.2). See Fig-

ure 4.16 for a diagram of the DP83820 model, rewritten at runtime to use the driver

reuse framework.

4.5 Hypervisor-neutral binary

We generate a guest-kernel binary that can execute on different hypervisors, as

well as on raw hardware. We designed the solution to avoid creating dependencies

on known hypervisors at compile and link time. Instead it is runtime adaptable

to different hypervisors, especially future versions of existing hypervisors. The
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mov eax, cr3

sti cli popf
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Figure 4.14: The L4 virtualization-assist module has two threads for handling re-
quests, corresponding to synchronous and asynchronous requests.

exception is if the target hypervisor deviates so far from the platform interface that

it requires structural changes in the guest kernel.

The major difference between our binaries and the original binaries, in terms of

code generated by the compiler, is that ours contain padding around virtualization-

sensitive instructions. The padding provides space for the virtualization-assist

module to rewrite with optimized code. To quickly find these instructions at run-

time, we also attach an annotation table to the binary. In the case of Linux, the

table is an additional section in its ELF binary. Each row in the table contains the

start and stop address of a virtualization-sensitive instruction and its surrounding

padding. The annotations contain no more information, since the virtualization-

assist module decodes the instructions at runtime to identify them.

Additionally, the binary contains a table to identify the function overloads.

Each row in the table contains a globally unique identifier to identify the type of

overload, and the address of the function pointer to overload.

L4 requires some structural changes to the guest kernel. L4 requires the guest

OS to run in a compressed, 3 GB virtual address space, and so we relocate the link

address from the typical 3 GB virtual address to 2 GB. We use a static link address

(as opposed to a variable and runtime configurable address, which is possible).

Thus when using the same guest binary for Xen, L4, and raw hardware, it runs on

all at the 2 GB link address.

The guest kernel binary has no other support for the pre-virtualization environ-
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ment. It carries none of the emulation code installed by the virtualization-assist

module. The virtualization-assist module supplies the necessary replacement emu-

lation code. The virtualization-assist module and guest kernel are separate binaries;

they can be distributed independently of each other.

4.6 Discussion

General-purpose OSes have a history of providing standardized and abstracted in-

terfaces to their applications. Para-virtualization attempts the same — but this

approach is deficient principally because abstractions lock-in architectural deci-

sions [PS75, EK95], while in contrast, the neutral platform interface is expressive

and powerful, permitting a variety of hypervisor architectures. Soft layering pro-

vides the architectural freedom we desire for hypervisor construction. Soft layer-

ing also supports special hypervisor interfaces via two mechanisms: (1) function

call overloading, and (2) passing high-level semantic information to the platform

instructions (in otherwise unused registers) for use by the virtualization-assist mod-

ule (e.g., a PTE’s virtual address), and ignored by the hardware; both would require

standardization, but satisfy the soft-layer criterion that the hypervisor can ignore

the extra information.

The soft layer follows the neutral platform interface to maximize the chances

that independent parties can successfully use the soft layer. Yet the soft layer still

requires agreement on an interface: how to locate and identify the instruction-level

changes, the size of the no-op windows that pad virtualization-sensitive instruc-

tions, the format of the annotations, and the semantics of the function overloading

for structural changes. A soft layer forces the standard to focus more on infor-

mation, and less on system architecture, thus facilitating standardization since it

is unnecessary to favor one hypervisor of another. Additionally, the soft layer

can degrade in case of interface mismatch; in worst case, a hypervisor can rely

on privileged-instruction trapping to locate the sensitive instructions, and to then

rewrite the instructions using the integrated no-op padding, while ignoring other

elements of the soft layer.

4.7 Summary

We presented the soft-layering approach to virtualization, which provides the mod-

ularity of traditional virtualization, while supporting many of the advantages of
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para-virtualization. Soft layering offers a set of design principles to guide the mod-

ifications to an OS, with a goal to support efficient execution on a variety of hyper-

visors. The principles: (1) permit fallback to the neutral platform interface, and (2)

adapt at runtime to the interfaces that competitors may provide. Our application of

soft layering, called pre-virtualization, also reduces the effort of para-virtualization

by introducing automation. We demonstrated the feasibility of pre-virtualization by

designing solutions for several dissimilar hypervisors with the same approach and

infrastructure.

We believe that pre-virtualization enables other exciting approaches we would

like to explore in the future. This includes migration of live guests between in-

compatible hypervisors, after serializing the CPU and device state in a canonical

format; the target hypervisor would rewrite the annotated instructions, and then

restore the CPU and device state, using its own virtualization-assist module. Also

soft layering can optimize recursive VM design, by bypassing redundant resource

management in the stack of VMs, e.g., avoiding redundant working-set analysis.
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Figure 4.15: The guest’s DP83820 driver interacts solely with the VAM’s
DP83820 device model, using producer-consumer rings that batch packet transfer,
and with function calls into the VAM (we rewrite the device-register access in-
structions to invoke the VAM). The DP83820 has explicit ownership of the packet
buffers in the receive and transmit rings, and thus the VAM can safely transfer
packets with DMA, avoiding copying. Additionally, the DP83820 rings support
scatter-gather packet assembly, and checksum offload, permitting hardware accel-
eration for packet transfer.
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Figure 4.16: To achieve high speed networking, without investing in custom drivers
for the VM environment, each guest OS uses its standard DP83820 driver, but
pre-virtualized. At runtime the guest’s driver is rewritten so that the instruc-
tions that normally access the device registers instead invoke methods within the
virtualization-assist module’s DP83820 device model. The virtualization-assist
module upmaps the DP83820 networking operations to the higher-level operations
of the driver reuse framework.
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Chapter 5

Evaluation

We performed comparative performance analyses to study both driver reuse and

pre-virtualization. We looked at performance, overheads, and the additional sources

of resource consumption introduced by our approaches.

Most performance numbers are reported with an approximate 95% confidence

interval, calculated using Student’s t distribution with 4 degrees of freedom (i.e., 5

independent benchmark runs), and sometimes 9 degrees of freedom.

5.1 Device driver reuse

We implemented a driver reuse system following the architecture described in

Chapter 3. We evaluated two approaches to virtualizing the DD/OS: the pre-

virtualization technique described in Chapter 4, and para-virtualization; we did

not evaluate full virtualization.

Our operating environment is based on the L4Ka::Pistachio microkernel,1 which

offers only a handful of rudimentary native drivers. It is one of the projects de-

scribed in this thesis’s introduction that tries to introduce novel OS mechanisms,

but lacks drivers to build a full-fledged OS, and so needs a driver-reuse environ-

ment.

We contrast the performance of our reused drivers to two other environments:

the original drivers as they exist in their donor system, and native L4 drivers (which

run at user-level).
1The L4Ka::Pistachio microkernel is available as source code from the System Architecture

Group’s web site at the University of Karlsruhe (TH), as well as from http://l4ka.org/
projects/pistachio.
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Figure 5.1: In studying the overheads of user-level drivers we used a networking
benchmark. The device was an Intel 82540 gigabit card. In (a) we have the baseline
configuration, with a Linux driver running in kernel mode. In (b) we have a native
L4 user-level driver controlling the network card. In (c) we have a driver reuse
environment, where the driver also runs at user level, but within a VM and with its
entire Linux kernel.

Our reused drivers originated from Linux, a monolithic kernel that normally

runs its drivers in privileged mode. To determine the costs of driver reuse compared

to their original environment, we compared our driver-reuse performance to native

Linux performance. Since our driver reuse approach runs the drivers at user-level,

which can be a more costly approach for driver construction (e.g., on x86, user-

level drivers add the cost of flushing the TLB when switching to and from the

driver), we further refined the cost burden of driver reuse by comparing to a native

L4 user-level driver, to distinguish between the overheads of our approach and the

overheads due to user-level drivers.

We configured a normal Linux system as the baseline, a device driver reuse sys-

tem to closely resemble the baseline, and a user-level driver system that resembled

the driver reuse system. See Figure 5.1 for a diagram comparing the architectures

of the three systems. The baseline Linux and the driver-reuse system used iden-

tical device driver code. They ran the same benchmarks, utilizing the same pro-

tocol stacks and the same OS infrastructure. They differed in their architectures:

the baseline used its native privileged-mode device driver environment, while our
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driver reuse system used one or several DD/OS VMs with the proxy modules, and

a benchmark VM as the driver client that ran the benchmark code. The user-level

driver environment ran the same benchmarks running within a benchmark VM, but

connected to native L4 user-level drivers.

5.1.1 Components

The driver-reuse system used the L4Ka::Pistachio microkernel as the hypervisor.

The DD/OS and the client OS used Linux 2.6.8.1 and Linux 2.6.9. The VMM was

a native L4 application called the Resource Monitor; it coordinates resources such

as memory, device mappings, and I/O port mappings for the DD/OS instances and

the client OS.

To minimize resource consumption in the DD/OS, we configured the Linux

kernel, via its build configuration, to include only the device drivers and func-

tionality essential to handle the devices intended to be used in the benchmarks.

The runtime environment of each DD/OS is a ROM image that initializes into a

single-user mode with almost no application presence, and thus low burden on the

DD/OS’s house keeping chores.

All components communicate via L4 mechanisms. These mechanisms include

the ability to establish shared pages, perform high-speed synchronous IPC, and to

efficiently copy memory between address spaces. The mechanisms are coordinated

by object interfaces defined in a high-level IDL, which are converted to optimized

assembler inlined in the C code with the IDL4 compiler [HLP+00].

The machine used a Pentium 4 processor at 2.8 GHz with a 1MB L2 cache. It

ran Debian 3.1 from the local SATA disk. The network card was an Intel gigabit

card based on the 82540 chip. For networking tests, we used a remote client,

which had a 1.4 GHz Pentium 4 processor, 256MB of memory, a 64MB Debian

RAM disk, an Intel 82540 gigabit Ethernet PCI card, and executed a native Linux

2.6.8.1 kernel. They were connected via a gigabit switch.

5.1.2 User-level device drivers

Our first benchmark series studies performance of network benchmarks for native

Linux, driver reuse, and our L4 native network driver. We used network bench-

marks because they heavily exercise the device driver: networking benchmarks are

often I/O bound, and they use small units of data transfer causing frequent driver

interactions. Thus they highlight the overheads of driver reuse. Networking is also
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an important feature in a world that highly values the Internet.

Our network device is an Intel 82540 gigabit network card [Int06] (also known

as the e1000, and the Pro/1000). We used Linux’s native e1000 driver for the

baseline and for driver reuse. For our L4 native user-level driver, we constructed

a driver for the Intel 82540 based on Intel’s portable e1000 driver code (which

is the same code used by Linux). This L4 driver also served as the basis of our

benchmarks in ref. [ULSD04].

TCP/IP networking

We ran the Netperf benchmark on native Linux for the baseline, as it is one of

the common networking benchmarks in the literature. The goal is to compare

throughput and CPU utilization of the different driver environments. We predicted

that user-level drivers add a large source of of additional CPU utilization, with

driver-reuse adding even more. Additionally, we predicted that as long as we are

I/O bound, all driver environments would achieve similar throughputs.

Netperf transferred 1 GB of data, using the following Netperf command line:

-l -1073741824 -- -m 32768 -M 32768 -s 262144 -S 262144. In our

L4 environments, Netperf ran in a benchmark VM running Linux with network ser-

vices provided by L4.

Figure 5.2 and Figure 5.3 present the results of the Netperf send benchmark.

Figure 5.4 and Figure 5.5 present the results of the Netperf receive benchmark. The

x-axis is the total benchmark runtime, which represents throughput (shorter bars

are better). Additionally, each bar is divided into active CPU time and idle CPU

time, with active time shown as a percentage of the total run time. In each case, the

throughput is nearly equal, since the benchmark is I/O bound.

We show both versions of Linux because 2.6.9 introduced a substantial perfor-

mance improvement between the two versions by rearchitecting some of the net-

working paths. We started with 2.6.8.1, the results of which we reported in prior

publications [LU04, LUSG04]. We then later upgraded to 2.6.9. As the graphs

show, our driver reuse did not benefit from 2.6.9’s performance improvements —

it only accentuates the additional costs of user-level drivers. As expected, the user-

level drivers consumed more active CPU time than the native kernel-level Linux

drivers. The user-level drivers introduce address space switching, which is fairly

expensive on x86 due to TLB and instruction trace cache flushes, as well as the

time required to execute the address space change instruction. Additionally, the

system structuring introduces overhead due to more components, since it runs on
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L4Ka::Pistachio in addition to Linux. We also believe that we have throughput loss

due to our batching interfering with the reliability and congestion control of TCP,

which becomes more evident with 2.6.9 — we explore this more in the following

benchmark.

In comparing the native L4 driver to driver reuse, which are both user-level

drivers, we see that the driver reuse environment consumed more CPU time. Since

both drivers are based on the same portable Intel e1000 driver code, we rule out

a less efficient driver. We assume that the additional overhead comes from the

DD/OS and its side effects. We explore some of the DD/OS’s overhead in the

following sections.

The driver-reuse results include two bars, labeled Driver reuse, custom client

and Driver reuse, DP83820 client, which compared two approaches for provid-

ing networking services to the client Linux. The custom client is a Linux device

driver written specifically for the L4 environment. The DP83820 client is a pre-

virtualized network adapter that reuses Linux’s integrated DP83820 device driver.

See Figure 5.6 for a comparison of the two approaches to providing networking

services to the client Linux. Our pre-virtualized network adapter outperformed the

custom client in the send case.
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0 2 4 6 8 10 12

Netperf send, user−level drivers (2.6.8.1)

time (s)

Linux native 778 Mbps32.9%

L4 driver, DP83820 client 800 Mbps36.9%

Driver reuse, DP83820 client 777 Mbps42.4%

Driver reuse, custom client 775 Mbps49.5%

active idle

Figure 5.2: The performance of the Netperf send benchmark with Linux 2.6.8.1.
The 95% confidence interval is at worst ± 0.1%
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Netperf send, user−level drivers (2.6.9)

time (s)

Linux native 868 Mbps27.1%

L4 driver, DP83820 client 801 Mbps37.5%

Driver reuse, DP83820 client 775 Mbps52.1%

Driver reuse, custom client 775 Mbps49.7%

active idle

Figure 5.3: The performance of the Netperf send benchmark with Linux 2.6.9. The
95% confidence interval is at worst ± 0.1%
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0 2 4 6 8 10 12

Netperf receive, user−level drivers (2.6.8.1)

time (s)

Linux native 779 Mbps33.1%

L4 driver, DP83820 client 809 Mbps45.8%

Driver reuse, DP83820 client 800 Mbps60.4%

Driver reuse, custom client 801 Mbps61.2%

active idle

Figure 5.4: The performance of the Netperf receive benchmark with Linux 2.6.8.1.
The 95% confidence interval is at worst ± 0.3%

0 2 4 6 8 10 12

Netperf receive, user−level drivers (2.6.9)

time (s)

Linux native 780 Mbps33.7%

L4 driver, DP83820 client 806 Mbps46%

Driver reuse, DP83820 client 801 Mbps64.3%

Driver reuse, custom client 801 Mbps61.7%

active idle

Figure 5.5: The performance of the Netperf receive benchmark with Linux 2.6.9.
The 95% confidence interval is at worst ± 0.5%
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Figure 5.6: Since the benchmark client itself is a VM, we need to virtualize its
networking interface to attach it to our driver environment. We developed two
approaches. In (a) we use pre-virtualization to prepare Linux’s DP83820 device
driver for use as an interface, and then emulate the DP83820 with our VM runtime.
In (b) we use a para-virtual custom network driver that we wrote for Linux.

UDP networking

We believe that the TCP/IP benchmark results reveal two types of overheads: over-

head due to additional CPU utilization, and throughput degradation due to addi-

tional queuing time. The TCP/IP protocol [TCP81] requires a balance between la-

tency and throughput, which becomes harder to achieve in user-level driver frame-

works where one batches packets to reduce the rate of address-space transitions.

See Figure 5.7 for a diagram that shows how TCP/IP control packets influence

its channel utilization. Figure 5.8 shows how the additional software layers in a

driver-reuse environment further influence TCP/IP’s network channel utilization.

We have three goals for the following benchmark: (1) to show that TCP/IP relia-

bility and congestion control might interact adversely with our setups (although we

don’t measure the extent and scope of phenomena related to this issue, as that is a

matter of balance between tuning for a variety of benchmarks, and is thus beyond

the scope of this thesis); (2) to show overheads of our driver-reuse environment at

full channel utilization of the gigabit link; and (3) to determine whether we achieve

the same throughput as the native driver.

The benchmark uses the UDP protocol, which lacks the reliability and conges-

tion control of TCP/IP. This also makes it harder to benchmark, because reliable

conclusion of the benchmark now requires a network link that reliably transmits all
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packets. A UDP benchmark is fairly easy to run, and not finding one that suited our

goals, we wrote our own microbenchmark called UDP Send Blast. It sends data as

fast as possible to a recipient, using UDP as the transport. The parameters: it sent

1GB of data at full MTU, with 256kB in-kernel socket buffers, using send() on

user-level buffers of 32,768-bytes of data. Since it uses no reliability and conges-

tion control, it can lose packets due to channel congestion and corruption, but we

integrated a mechanism to count received packets. Also, due to the lack of reliabil-

ity, we do not know when the recipient has finished receiving the last of the data;

thus we time only the throughput of the sender’s NIC for transmitting the data.

We predicted that the benchmark would achieve full throughput in each driver

environment, but at higher CPU utilization for user-level drivers, and even more

CPU utilization for driver reuse.

Figure 5.9 provides Linux 2.6.8.1 performance, and Figure 5.10 provides Linux

2.6.9 performance. In contrast to the Netperf benchmark, both versions of native

Linux achieved the same throughput and similar CPU utilization (thus Linux 2.6.9

has no performance advantage to 2.6.8.1). Additionally, the driver-reuse environ-

ment achieved the same throughput as native Linux, as did the L4 native driver

except for when using Linux 2.6.8.1 — we assume that it is a tuning issue that

could be corrected with further work. The L4 user-level drivers had lower CPU

utilization compared to native Linux. The driver-reuse had quite a bit more CPU

utilization compared to the other two systems. Thus driver reuse adds additional

overhead.

This benchmark was setup to achieve full channel utilization, which it seems

to accomplish since driver reuse provided the same throughput as native Linux.

Since driver reuse can achieve full channel utilization, but does not in the Netperf

TCP/IP benchmark, we believe that TCP/IP and user-level drivers interact in a way

that impedes full channel utilization — this could be an interesting topic for the

virtualization community to research in the future.
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Figure 5.7: TCP’s reliability, flow-control, and congestion-control algorithms re-
duce its network channel utilization. The utilization is the time using the physical
network medium divided by the total time used by the network protocol. In (a), the
sender puts a subset of the pending data packets onto the medium, but then waits
for the ack packet (in (b)) before proceeding with further data packets.
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Figure 5.8: Driver reuse increases the latency of the round trip of network packets
through the TCP stack. This additional latency decreases network channel utiliza-
tion. The ack packet also defies the packet batching optimization of normal data
packets. TCP’s windowing can also defy batching, for it may become unsynchro-
nized with the batching, so that the window releases one packet while waiting for
its ack packet, but our batching algorithm delays the delivery of that packet to the
device, thus delaying forward progress of the TCP window.
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0 2 4 6 8 10 12

UDP Send Blast (2.6.8.1)

time (s)

native 804 Mbps36.3%

L4 driver, DP83820 client 717 Mbps29.3%

Driver reuse, DP83820 client 799 Mbps46.7%

active idle

Figure 5.9: The performance of the UDP send blast benchmark with Linux 2.6.8.1.
The 95% confidence interval is at worst ± 0.5%
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UDP Send Blast (2.6.9)

time (s)

native 804 Mbps36.1%

L4 driver, DP83820 client 808 Mbps33.3%

Driver reuse, DP83820 client 803 Mbps47.7%

active idle

Figure 5.10: The performance of the UDP send blast benchmark with Linux 2.6.9.
The 95% confidence interval for the L4 driver is ± 15%, while the others are at
worst ± 0.5%.
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Working sets versus time

Driver reuse adds overheads, due to internal behavior of the DD/OS, and activ-

ity performed in the proxy modules. We can observe that behavior indirectly by

monitoring how the DD/OS interacts with the system’s bulk resources over time,

including its active memory footprint (its working set). This benchmark observes

the working set of a DD/OS during a Netperf benchmark. Our goal is to account

for potential sources of overheads. We predicted that the DD/OS would have a

larger working set, because it likely has more background activity; this activity,

along with its corresponding TLB miss rate, would contribute to the higher CPU

utilization observed in the networking benchmarks.

We compared the working sets of the Netperf benchmarks for driver reuse and

the L4 native driver. See Figure 5.11 and Figure 5.12 for the Netperf working set

activity versus time. The working set activity was determined by monitoring the

page utilization of the DD/OS and the L4 driver, with page reads and writes accu-

mulated over 90 ms intervals, from the Linux 2.6.8.1 setup. The results show that

driver reuse via VMs can consume far more resources than a custom-built driver.

In both cases the working set sizes are bounded due to reuse of packet buffers, a

finite number of pages that can be accessed within 90 ms, and due to the direct

DMA transfer of outbound packets. The working sets drop significantly after the

benchmark ends and the drivers go idle (idle working sets are addressed in 5.1.4).

The DD/OS working sets have periodic spikes (roughly a 2-second period), even

after the benchmark terminates, which suggest housekeeping activity within the

DD/OS.

A user-level L4 application measured the working sets, which used costly sys-

tem calls for scanning the entire driver memory space (the system call can query

the page status of only 16 pages per invocation), and thus had noticeable overhead;

the overhead severely disturbed the DD/OS during the Netperf receive benchmark,

but not the L4 native driver, because the DD/OS has a larger memory space to scan

(the L4 native driver consumes very little memory). Given the inaccuracy of the

sampling, we use these results as a rough guide, with the conclusion that we have

larger working set footprints for the DD/OS, and thus more activity per packet.

Processor utilization versus time

We also measured CPU utilization of the Netperf benchmarks over time, sampling

CPU utilization every 90 ms (by sampling the CPU’s performance counters). The
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benchmark results from Netperf, etc., have so far only revealed the mean CPU

utilization for the benchmark, which is a number that hides many details of system

behavior. In contrast, these time plots show whether CPU utilization is consistent

across the benchmark. We predicted that CPU utilization is consistently higher

across the benchmark, due to the additional code paths executed per packet. See

Figure 5.13 and Figure 5.14 for the plots (for Linux 2.6.8.1). At our 90 ms sampling

resolution with the x86 performance counters, the CPU utilization is consistently

more costly for driver reuse in VMs than for a native user-level driver.
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Figure 5.11: The working set footprint of Netperf send, versus time, sampled at
90 ms intervals. For driver reuse, the working set has DD/OS contributions only.
For the L4 driver, the working set concerns the driver only.
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Figure 5.12: The CPU working set footprint of Netperf send, versus time, sampled
at 90 ms intervals. The overhead of sampling severely interferes with the bench-
mark in driver reuse. For driver reuse, the working set has DD/OS contributions
only. For the L4 driver, the working set concerns the driver only.
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Figure 5.13: The CPU utilization of Netperf-send versus time, sampled at 90 ms
intervals.
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Figure 5.14: The CPU utilization of Netperf-receive versus time, sampled at 90 ms
intervals.
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5.1.3 Isolated versus composite

Our driver-reuse technique can provide the isolation properties of typical user-level

drivers. This involves running each driver in a dedicated VM, with the driver’s

entire DD/OS. Thus each isolated driver adds the overheads of the DD/OS to the

system. We built a driver-reuse system with this isolated driver approach, and

evaluated it.

The system isolated the network, disk, and bus drivers. Each driver ran in a

dedicated VM, with the network and disk VMs reusing the PCI services of the PCI

VM. In all other aspects, it shares the setups of prior benchmarks, except where

stated.

To observe the overheads of isolated drivers we run a benchmark that exercises

both network and disk simultaneously, thus potentially exciting complicated dy-

namic behavior. Since such a benchmark combines many variables related to our

system, we build towards it, by first studying network dynamics, then disk dynam-

ics, and then the combination of the two.

Network

The first benchmark focused on networking, using the TTCP benchmark (another

common benchmark in the literature), with the goal to uncover performance deltas

between running drivers in isolated VMs versus running all drivers within a single

VM. We predicted that we would see minor additional overheads for the isolated

driver case, since the networking benchmark exercises a single driver.

The disk VM had no load during the benchmark. We compared performance

to native Linux, and to a driver-reuse system that ran all drivers in a single, com-

posite VM. We ran the benchmark with para-virtualization and pre-virtualization,

using Linux 2.4 and Linux 2.6.8.1. All produced similar results, and we present

the data from the para-virtualized Linux 2.6.8.1. See Figure 5.15 for the TTCP

send benchmark, with Ethernet’s standard 1500-byte MTU. See Figure 5.16 for

the TTCP send benchmark, with a 500-byte MTU (causing the kernel to fragment

the data into smaller packets). See Figure 5.17 for the TTCP receive benchmark,

with 1500-byte MTU. And see Figure 5.18 for the TTCP receive benchmark, with

500-byte MTU. The disk and PCI VMs had no active contributions to the bench-

marks, and only performed house-keeping tasks during the benchmarks, which

contributed very little noticeable overhead to the benchmarks. Thus when an iso-

lated system uses a single driver, the other (idle) drivers contribute little noticeable
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overheads.
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0 2 4 6 8 10

TTCP send (1500 mtu)

time (s)

native 782 Mbps32.4%

composite 760 Mbps55.6%

isolated 759 Mbps54.9%

active idle

Figure 5.15: The performance of the TTCP-send benchmark with 1500-byte mtu,
for native Linux, all reused drivers in a composite VM, and reused drivers in iso-
lated VMs. The 95% confidence interval is at worst ± 0.2%
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TTCP send (500 mtu)

time (s)

native 542 Mbps41.7%

composite 502 Mbps65%

isolated 502 Mbps64.5%

active idle

Figure 5.16: The performance of the TTCP-send benchmark with 500-byte MTU,
for native Linux, all reused drivers in a composite VM, and reused drivers in iso-
lated VMs. The 95% confidence interval is at worst ± 0.4%
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TTCP receive (1500 mtu)

time (s)

native 707 Mbps30.0%

composite 707 Mbps61.7%

isolated 703 Mbps61.8%

active idle

Figure 5.17: The performance of the TTCP-receive benchmark with 1500-byte
MTU, for native Linux, all reused drivers in a composite VM, and reused drivers
in isolated VMs. The 95% confidence interval is at worst ± 0.3%

0 5 10 15

TTCP receive (500 mtu)

time (s)

native 490 Mbps36.3%

composite 479 Mbps80.6%

isolated 477 Mbps80.6%

active idle

Figure 5.18: The performance of the TTCP-receive benchmark with 500-byte
MTU, for native Linux, all reused drivers in a composite VM, and reused drivers
in isolated VMs. The 95% confidence interval is at worst ± 0.3%
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Disk

The second benchmark studied disk performance and overheads. Disks have low

performance, and thus we predicted that driver reuse would add little noticeable

performance overhead, and so we ran the following experiments to confirm. The

network driver had no load. The benchmark ran within the client VM, and reused

the disk driver of the DD/OS. We wrote a streaming disk benchmark to highlight

the costs of driver reuse:

• It streams data to/from consecutive disk blocks, to avoid hiding driver over-

heads behind random-access disk latency.

• It bypasses the client’s buffer cache (using a Linux raw device), and thus we

ensure that every disk I/O interacts with the driver and the hardware.

• It bypasses the client’s file system (by directly accessing the disk partition),

thus excluding file system behavior from the results.

We varied block size from 512 bytes to 64 kilobytes while transferring 2GB

of data. We compared native Linux to a composite driver reuse system; and to

a driver reuse system that isolated the disk, network, and PCI drivers in separate

VMs. In all cases, the read bandwidth averaged 51 MB/s, and the write bandwidth

averaged 50 MB/s. The primary difference was the amount of CPU utilization:

native Linux had less CPU utilization, particularly for the block sizes smaller than

the page size, which had more driver interaction per byte. See Figure 5.19 for the

read CPU utilization, and Figure 5.20 for the write CPU utilization.

For large block sizes, we have confirmed our expectation that driver reuse

would have slight overheads for the disk; for smaller block sizes, the overheads

become more noticeable.
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Figure 5.19: The CPU utilization of the streaming disk read microbenchmark, for:
native Linux; a composite DD/OS that ran all drivers; and a DD/OS system with
isolated drivers for network, disk, and PCI. Bandwidth averaged 51 MB/s.
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Figure 5.20: The CPU utilization of the streaming disk write microbenchmark, for:
native Linux; a composite DD/OS that ran all drivers; and a DD/OS system with
isolated drivers for network, disk, and PCI. Bandwidth average 50 MB/s.
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Network and disk

So far the benchmarks for studying isolated versus composite performance have

considered either network or disk activity, but not both simultaneously. This third

benchmark combines them, so that both drivers contribute actively to the bench-

mark.

The benchmark ran an NFS server on the test system, with load provided by a

remote client running the PostMark benchmark. The PostMark benchmark emu-

lates the file transaction behavior of an Internet e-mail server. The NFS server used

our driver reuse framework, and was configured as in the TTCP benchmark.

We expected the PostMark benchmark, running against an NFS server, to gen-

erate less I/O load than the prior network and disk micro benchmarks. Thus we

did not expect the network and disk drivers to interfere with each other by disturb-

ing sequencing. This led us to predict that the following benchmark would have

identical performance whether running on native Linux, running all reused drivers

in a single DD/OS, or when running isolated DD/OS VMs; but with higher CPU

utilization for reused drivers.

The results confirmed our prediction. The performance of the NFS server was

nearly identical for all driver scenarios — for native Linux, for isolated reused

drivers, and for reused drivers running in a composite VM — with a mean runtime

of 345 seconds. We computed an approximate 95% confidence interval, calcu-

lated with Student’s t distribution with 4 degrees of freedom (i.e., 5 independent

benchmark runs). Table 5.1 lists the results. The time duration of the driver reuse

scenarios was slightly longer than for native Linux, but less than the confidence

interval for native Linux. Both the isolated and consolidated-driver reuse config-

urations had higher CPU utilization than native Linux. See Figure 5.21 for CPU

utilization traces of the NFS server machine during the benchmark. The bench-

mark starts with a large CPU utilization spike due to file creation. We configured

PostMark for files sizes ranging from 500-bytes to 1MB, a working set of 1000

files, and 10000 file transactions.

The results suggest that reusing multiple drivers at the same time is feasible,

whether the drivers are isolated in separate VMs, or running within a single VM.
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duration (s) overhead 95% confidence interval
native Linux 343 ±3%
isolated drivers 344 0.23% ±1%
composite drivers 349 1.6% ±3%

Table 5.1: PostMark throughput for different driver scenarios; compares native
Linux, to running all drivers (PCI, disk, and network) in isolated VMs, to running
all drivers in a single VM (composite). The overhead column compares the driver-
reuse scenarios to native Linux.
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Figure 5.21: The CPU utilization for an NFS server serving a remote PostMark
benchmark. Compares native Linux, to running all drivers in a single VM (com-
posite), and to running all drivers (PCI, disk, and network) in isolated VMs.

5.1.4 Other overheads

This section considers other overheads of driver reuse, including active and steady-

state page working set sizes (and the possibility of page reclamation), steady-state

CPU utilization, TLB utilization, and cache utilization. See the preceding sections

for throughput and active CPU utilization.

Working set

Figures 5.11, 5.12, and 5.22 present the working sets versus time of network and

disk activity. Each working set contains the read and written pages of the DD/OS

handling the driver, aggregated over a 90 ms sampling period. They exclude the

working sets of the benchmark VMs. The working sets are an additional cost
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of driver reuse that native Linux lacks; they consume memory that could have

been used elsewhere, and worsen the TLB and cache miss rates of driver-reuse (as

demonstrated in the following sections).

Figures 5.11 and 5.12 compare between driver-reuse and an L4 user-level driver

for the Netperf benchmark. The working set for the driver-reuse scenario is over

double that of the L4 user-level driver. The L4 driver is small and architected to

perform solely driver activity, while the DD/OS executes house-keeping code, as

well as many other code paths (such as quality of service, network filtering, etc.).

The network activity in Figure 5.22 was generated by the TTCP benchmark

running in the client VM. In all of the networking scenarios, the send and receive

working sets of the DD/OS are bounded. They are bounded by the number of

packets that the DD/OS and networking hardware can process in a finite amount of

time. They are further bounded by Linux algorithms, which reuse packet buffers

from a pool of packet buffers.

The disk activity was generated by unarchiving the source code of the Linux

kernel within the client VM. This benchmark read the archive from disk, and wrote

the files back to disk, but many of the operations probably interacted solely with

the client VM’s buffer cache, and thus did not lead to interaction with the DD/OS

while we monitored its working set size.

The steady-state working set reflects the DD/OS’s working set with no active

loading in the client VM. It thus reflects the read and written pages of an idle VM

that pursued nothing more than house-keeping activities.

Memory reclamation

The DD/OS has a larger memory footprint than a simple driver, and it may not be

possible to always swap the unused pages of the DD/OS to disk since the DD/OS

may drive the swap device. Yet the DD/OS does not use all of its allocated memory

for active workloads. Thus it might be possible to reclaim some of the DD/OS’s

memory. We evaluated this proposition with a model, from which we generated

estimates of potential memory reclamation. We did not implement dynamic mem-

ory sharing, particularly due to lack of hardware support, and so provide estimates

instead.

We created our estimates offline, using a snapshot of an active driver-reuse

system with isolated drivers. The tested configuration included three DD/OS in-

stances, one each for PCI, IDE, and network. The PCI VM was configured with

12MB of memory, and the others with 20MB memory each. We ran the PostMark
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Figure 5.22: The working sets of several disk and network benchmarks, and of an
idle system, versus time. Each sample is a 90ms aggregate of the read and written
pages of the DD/OS.
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Figure 5.23: The potential for reclaiming memory from DD/OS VMs. The active
working set is a. In (1) is the combined memory consumption of disk, network,
and PCI DD/OS instances. The disk and network VMs each had a 20MB memory
allocation, and the PCI VM had a 12MB allocation. Their memory consumption is
categorized. In (2) we have the memory consumption after using memory balloon-
ing to reclaim memory from the VMs. This is the most practical approach. In (3)
we further attempt to reduce the memory consumption by compressing pages (in
conjunction with an IO-MMU for page protection). The data compresses substan-
tially, and is c. This includes duplicate pages and zero pages.
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benchmark on a remote machine, accessing an NFS file server on the driver-reuse

system. The NFS file server served files from a local IDE disk, over the network

to the remote system running PostMark. The active memory working set for all

DD/OS instances of the NFS server was 2.5MB.

All systems can reduce memory consumption through cooperative memory

sharing, e.g., memory ballooning [Wal02]. With a balloon driver in each DD/OS

to cooperatively ask the DD/OS to release unused memory, we predict that we can

reclaim 33% of the memory. For systems without an IO-MMU for DMA quaran-

tining, memory ballooning is the only option. Even in systems with an IO-MMU

that supports recoverable DMA translation faults, the devices and the applications

using the devices may not be able to recover from DMA faults, and thus will also

be limited to memory ballooning.

For systems with an IO-MMU that inhibits DMA accesses to inaccessible

pages, and with devices that can recover from the ensuing DMA translation faults,

we can potentially recover more unused memory, uncooperatively. We can make

unused pages inaccessible and then compress them [CCB99] (and restore the pages

if a DD/OS or devices attempt to access the pages). When the IO-MMU has read-

only page access rights, we can also share identical pages between the active and

idle working sets via copy-on-write. Our proposed algorithm for using the IO-

MMU’s capabilities to reclaim unused pages:

1. Determine the active working sets.

2. Search for duplicate pages among the three DD/OS instances, whether the

pages are in an active working set or not. Waldspurger described an efficient

algorithm for detecting pages duplicated between VMs [Wal02].

3. If a duplicated page is in an active working set, then we consider all other

duplicates as active too, and retain them as an active, shared page. All-zero

pages are a special case, and we map them to a global zero-page (rather than

search for duplicates).

4. For the pages outside the active working sets, compress them and store the

compressed copies in memory, thus freeing their original pages. For inactive

duplicate pages, store a single compressed version.

For our test case, up to 89% of the allocated memory could be reclaimed with this

algorithm, reducing the overall memory footprint of the three DD/OS instances to

6MB. See Figure 5.23 for an analysis of the example session.
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Figure 5.24: The incremental CPU utilization of idle VMs.

Without an IO-MMU, gray-box knowledge also enables DD/OS paging. For

example, the memory of Linux’s page map is never used for a DMA operation,

and is thus reclaimable. Furthermore, the network and block DD/OS each had a

contiguous 6.9 MB identical region in their page maps, suitable for sharing. The

proxy modules could easily expose this information to the hypervisor’s memory

management logic.

Idle processor consumption

When isolating device drivers in separate VMs, each VM will add slight over-

head while running their idle loops, thus reducing the available CPU for the active

work load. This is a concern for building systems from many DD/OS instances.

Figure 5.24 shows the incremental CPU utilization of adding unused VMs to the

system. They are all running their idle loops (which periodically wake to run house

keeping tasks), but not performing useful work. For a handful of isolated drivers,

the idle CPU overhead is affordable. The idle VMs were small, ran from RAM

disks, had no devices, and had no memory reclamation.
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TLB and cache consumption

We can detect DD/OS activity indirectly by monitoring platform resource utiliza-

tion. We observed TLB miss rates and L2-cache miss rates, using the CPU’s per-

formance monitors. We predicted that driver reuse would have higher miss rates

than native Linux, thus representing more activity per driver operation, as well as

more CPU utilization servicing the misses. We also predicted that driver reuse

would have higher rates compared to user-level drivers.

We collected TLB miss rates for data and instructions (DTLB and ITLB), and

L2-cache miss rates, for most of the benchmarks. The miss rates are for the entire

system.

Table 5.2 and Table 5.3 list the cache miss rates for the Netperf send and receive

benchmarks, respectively. The tables contain data for Linux 2.6.8.1 and Linux

2.6.9, and compare native Linux to the L4 user-level driver to the driver-reuse

system. The miss rates are per millisecond.

We also plotted cache miss rates versus time for the PostMark benchmark. See

Figure 5.25 for the DTLB misses, Figure 5.26 for the ITLB misses, and Figure 5.27

for the L2 misses.

The driver reuse system has significantly higher TLB miss rates than native

Linux. It also exceeds the miss rates for the L4 user-level driver, but not signifi-

cantly. Many of the TLB misses are due to the additional address-space switches

inherent with user-level drivers, and which on x86 flush the TLB. Thus every time

a driver client requires services from a user-level driver, the x86 system flushes

the TLB twice (when scheduling the driver, and then when returning to the driver

client); in contrast native Linux can lock the drivers’ TLB entries thus avoiding

TLB misses since the drivers live in a global kernel logical space. The driver-

reuse system has a larger working-set footprint than the L4 driver (as described in

Section 5.1.4), and thus more TLB misses than the L4 driver.

An operating system competes with its applications for space in the TLB and

cache, despite that an OS exists to run applications. Thus a system based on driver

reuse (or user-level drivers) will experience higher pressure on the limited TLB and

cache, potentially reducing overall performance.
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Figure 5.25: DTLB misses per millisecond, for the duration of the PostMark
benchmark.
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Figure 5.26: ITLB misses per millisecond, for the duration of the PostMark bench-
mark.
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Linux 2.6.8.1 DTLB misses/ms ITLB misses/ms L2 misses/ms
native 89.6 1.3 338
L4 driver 2190 455 266
Driver reuse 2450 551 312
Linux 2.6.9
native 78.6 1.3 175
L4 driver 2270 477 270
Driver reuse 4300 1320 356

Table 5.2: Cache misses for Netperf send. The 95% confidence interval is at worst
± 2%

Linux 2.6.8.1 DTLB misses/ms ITLB misses/ms L2 misses/ms
native 168 1.63 469
L4 driver 3190 569 1190
Driver reuse 5280 1490 682
Linux 2.6.9
native 144 1.47 535
L4 driver 3180 599 1190
Driver reuse 5840 1600 822

Table 5.3: Cache misses for Netperf receive. For native Linux, the 95% confidence
interval is ± 7.5%, while the others are at worst ± 2%.

5.1.5 Engineering effort

We have a single data point for analyzing productivity: the implementation of this

thesis, which consisted of both engineering and exploration. We estimate the engi-

neering effort in man hours and in lines of code.

The proxy modules and custom client device drivers for the block and network,

along with the user-level VMM, involved two man months of effort, originally for

Linux 2.4. The PCI support involved another week of effort.

We easily upgraded the 2.4 network proxy module for use in Linux 2.6, with

minor changes. However the 2.4 block proxy module was incompatible with 2.6’s

internal API (Linux 2.6 introduced a new block subsystem). We thus wrote new

block proxy and client device drivers for 2.6. This involved approximately another

half man month of effort.

See Table 5.4 for an itemization of the lines of code. The table distinguishes

between lines specific to the proxy modules added to the server, lines specific to

the custom device drivers added to the client, and additional lines that are common

(and are counted once).
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Figure 5.27: L2-cache misses per millisecond, for the duration of the PostMark
benchmark.

server client common total
network 1152 770 244 2166

block 2.4 805 659 108 1572
block 2.6 751 546 0 1297

PCI 596 209 52 857
common 0 0 620 620

total 3304 2184 1024

Table 5.4: Itemization of source lines of code used to implement our evaluation
environment. Common lines are counted once.

The engineering effort enabled us to successfully reuse Linux device drivers

with all of our lab hardware. The following drivers were tested: Intel gigabit, Intel

100 Mbit, Tulip (with a variety of Tulip compatible hardware), Broadcom gigabit,

pcnet32, ATA and SATA IDE, and a variety of uniprocessor and SMP chipsets for

Intel Pentium 3/4 and AMD Opteron processors.
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5.2 Pre-virtualization

In analyzing pre-virtualization, we show whether it satisfies the goals presented in

earlier chapters. Some of the goals to demonstrate: that it has runtime modularity,

that it compares to para-virtualization for performance, that it offers a good solution

for device emulation, and that it has low developer overhead.

The benchmark setups used identical configurations as much as possible, to

ensure that any performance differences were the result of the techniques of virtu-

alization. We compiled Linux with minimal feature sets, and configured it to use

a 100Hz timer, and the XT-PIC interrupt controller (our APIC emulation is incom-

plete). Additionally, we used the slow legacy x86 int system call, as required by

some virtualization environments.

The test machine was a 2.8GHz Pentium 4, constrained to 256MB of RAM,

and ran Debian 3.1 from the local SATA disk. Our implementation is available

from http://l4ka.org/projects/virtualization/afterburn.

5.2.1 Modularity

Modularity has two aspects: whether we easily support different hypervisors with

runtime adaptation; and whether we can easily apply pre-virtualization to different

guest operating systems.

To demonstrate runtime hypervisor modularity, we generated a Linux kernel

binary that conforms to soft-layering principles. The binary is annotated, to help

locate all of the soft-layering additions. And the binary has integrated scratch

space, to provide rewrite space. As described in Section 4.3, the soft-layering in-

cludes instruction-level, behavioral, and structural elements. We then chose two

hypervisor families, and wrote runtime infrastructure to support the pre-virtualized

Linux binaries on both families. The hypervisors include Xen versions 2 and 3, and

two versions of the L4Ka::Pistachio microkernel: the traditional API, and an API

enhanced for virtualization. This runtime infrastructure is independent to the Linux

binary — we combined them at boot time. We then ran the same pre-virtualized

Linux kernel binary on all hypervisors, and on raw hardware. We present the cor-

responding benchmark data in the following sections.

To demonstrate guest OS modularity, we applied pre-virtualization to several

versions of Linux: Linux 2.4.28, Linux 2.6.8.1, Linux 2.6.9, and Linux 2.6.16. We

present some of the corresponding benchmark data in the following sections.
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Annotation type Linux 2.6.9 Linux 2.4.28
instructions 5181 3035
PDE writes 17 20
PDE reads 36 26
PTE writes 33 30
PTE reads 20 18
PTE bit ops 5 3
DP83820 103 111

Table 5.5: The categories of annotations in our pre-virtualization implementation,
and the number of annotations (including automatic and manual), for x86. PDE
refers to page directory entries, and PTE refers to page table entries.

5.2.2 Code expansion

Pre-virtualization potentially introduces code expansion everywhere it emulates

a sensitive instruction, which can degrade performance. We informally evaluate

this cost for the Netperf receive benchmark. Although the Linux kernel has many

sensitive instructions that we emulate (see Table 5.5), the Netperf benchmark exe-

cutes only several of them frequently, as listed in Table 5.6 (the virtualization-assist

module collected these statistics with its emulation code, using a special call to

synchronize with the start and stop of the benchmark). We describe these critical

instructions.

The pushf and popf instructions read and write the x86 flags register. Their

primary use in the OS is to toggle interrupt delivery, and rarely to manipulate the

other flag bits; OS code compiled with gcc invokes these instructions via inlined

assembler, which discards the application flag bits, and thus we ignore these bits. It

is sufficient to replace these instructions with a single push or pop instruction that

directly accesses the virtual CPU, and to rely on heuristics for delivering pending

interrupts.

The cli and sti instructions disable and enable interrupts. We replace them

with a single bit clear or set instruction each, relying on heuristics to deliver pend-

ing interrupts.

The instructions for reading and writing segment registers translate into one or

two instructions for manipulating the virtual CPU (when running in a flat segment

mode).

The remaining instructions, iret, hlt, and out, expand significantly, but are

also the least frequently executed.

The iret instruction returns from interrupt. Its emulation code checks for
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Count per
Instruction Count interrupt

cli 6772992 73.9
pushf 6715828 73.3
popf 5290060 57.7
sti 1572769 17.2

write segment 739040 8.0
read segment 735252 8.0

port out 278737 3.0
iret 184760 2.0
hlt 91528 1.0

write ds 369520 4.0
write es 369520 4.0
read ds 184760 2.0
read es 184760 2.0
read fs 182866 2.0
read gs 182866 2.0

Table 5.6: Execution profile of the most popular sensitive instructions during the
Netperf receive benchmark for Linux 2.6.9. Each column lists the number of invo-
cations, where the count column is for the entire benchmark.

pending interrupts, updates virtual CPU state, updates the iret stack frame, and

checks for pending device activity. If it must deliver a pending interrupt or handle

device activity, then it potentially branches to considerable emulation code. In the

common case, its expansion factor is fairly small, as seen in the LMbench2 results

for the null call (see Section 5.2.4).

The idle loop uses hlt to transfer the processor into a low power state. While

this operation is not performance-critical outside a VM environment, it can pe-

nalize a VM system via wasted cycles which ought to be used to run other VMs.

Its emulation code checks for pending interrupts, and puts the VM to sleep via a

hypercall if necessary.

The out instruction writes to device ports, and thus has code expansion for the

device emulation. If the port number is an immediate value, as for the XT-PIC, then

the rewritten code directly calls the target device model. Otherwise the emulation

code executes a table lookup on the port number. The out instruction costs over

1k cycles on a Pentium 4, masking the performance costs of the emulation code in

many cases.

Our optimizations minimize code expansion for the critical instructions. In

several cases, we substitute faster instructions for the privileged instructions (e.g.,

replacing sti and cli with bit-set and bit-clear instructions).
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5.2.3 Device Emulation

We implemented a device emulation model for the network according to the de-

scriptions in the prior sections. It provides to the guest OS high-performance vir-

tualized access to the network, via a standard device driver—the DP83820.

We compared our performance against a custom device driver that runs in the

client Linux VM, as described in the driver-reuse sections of this thesis. The bench-

mark reused the Linux e1000 network driver to control the actual device, running

in a DD/OS. The proxy module running within the DD/OS emulated the DP83820

device model, and translated its device operations into the internal API of the Linux

DD/OS.

Performance

We ran the Netperf benchmark to compare the performance of the custom client

driver to the DP83820 pre-virtualized device emulation. Refer to Figure 5.2 and

Figure 5.3 for Netperf-send performance. Refer to Figure 5.4 and Figure 5.5 for

Netperf-receive performance. The pre-virtualized DP83820 driver had similar per-

formance to the custom client driver.

Analysis

The DP83820 Linux device driver accesses the device registers from 114 different

instruction locations (we determined the coverage by manually annotating Linux).

The device has 64 memory-mapped registers, several of which are reserved or un-

used by Linux. During the Netperf benchmarks, only 8 of the 114 instruction

locations were executed, and these eight locations accessed five device registers

(for handling interrupts, adding transmit descriptors, and for reigniting receive and

transmit engines). See Table 5.7 for invocation counts of the five device registers.

The invocation counts are high, and easily show the benefit of pre-virtualization,

which uses relatively cheap function calls to the virtualization-assist module to

update device state, rather than the traps that accompany pure virtualization; and

then it batches multiple packets when finally executing an expensive hypercall to

process packets.
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receive packets send packets
register count per count per

CR 91845 7.8 741560 0.97
ISR 91804 7.8 81049 8.8
IMR 184091 3.9 243120 2.9
IHR 91804 7.8 81049 8.8

TXDP 91798 7.8 81039 8.8

Table 5.7: Execution profile of the active DP83820 device registers during the Net-
perf receive and send benchmarks, with total number of accesses for each register,
plus the average number of data packets per register access. The benchmark sent a
gigabyte of data on a gigabit link.

5.2.4 Performance

For our performance analysis, we demonstrate that pre-virtualization performs sim-

ilarly to its alternatives. Thus we compare pre-virtualization to para-virtualization

on several hypervisor environments. Additionally, we demonstrate that a pre-

virtualized binary offers no overhead for running on raw hardware, and thus com-

pare a pre-virtualized binary running on raw hardware (no hypervisor) to native

Linux.

We study only the costs of pre-virtualization, independent of driver reuse. Thus

the benchmarks all had direct access to the devices — there was no device-driver

reuse with multiple collaborating virtual machines and proxy modules.

We compared two hypervisors (Xen version 2 and L4Ka::Pistachio) and several

versions of Linux (2.4.28, 2.6.8.1, and 2.6.9). We lacked consistent support for

a particular version of para-virtualized Linux on each hypervisor, and so do not

compare between hypervisors, but only between pre-virtualization versus no pre-

virtualization. We used Linux 2.4.28 and Linux 2.6.9 for Xen. We used Linux

2.6.8.1 for L4Ka::Linux.

We ran several benchmarks: a Linux kernel build (a macro benchmark), Net-

perf (a microbenchmark for networking), and LMbench2 (a microbenchmark for

operating system metrics).

Linux kernel build

The kernel-build benchmark unarchived the Linux kernel source archive, and built

a particular configuration. It heavily used the disk and CPU. It executed many

processes, exercising fork(), exec(), the normal page fault handling code,

and thus stressing the memory subsystem; and accessed many files and used pipes,
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0 50 100 150 200 250

Kernel build (2.4.28)

time (s)

native 206 s99%

native afterburnt 207 s98.8%

XenoLinux 216 s98.6%

Xen afterburnt 220 s99%

active idle

Figure 5.28: Results from the kernel-build benchmark, running on variations of
Linux 2.4.28, with direct access to the devices. It compares the performance of
para-virtualization (XenoLinux) to pre-virtualization (Xen afterburnt) on the Xen
hypervisor. It also compares a native Linux (native) to that of a pre-virtualized
binary running on raw hardware (native afterburnt). The 95% confidence interval
is at worst ± 0.2%

thus stressing the system-call interface. When running on Linux 2.6.9 on x86,

the benchmark created around 4050 new processes, generated around 24k address-

space switches (of which 19.4k were process switches), 4.56M system calls, 3.3M

page faults, and between 3.6k and 5.2k device interrupts.

We measured and compared benchmark duration and CPU utilization. For

Linux 2.4.28, see Figure 5.28. For Linux 2.6.8.1, see Figure 5.29. For Linux

2.6.9, see Figure 5.30. In all cases, pre-virtualization had similar performance to

para-virtualization. For 2.4.28, pre-virtualization had 1.8% throughput degrada-

tion. For 2.6.8.1, pre-virtualization had a 1% throughput degradation. For 2.6.9,

pre-virtualization had a 0.8% throughput degradation. And when running on raw

hardware, the pre-virtualized binary demonstrated similar performance to native

Linux.

The performance degradation for the pre-virtualized binary on Xen is due to

more page-table hypercalls. The performance degradation of the pre-virtualized

binary on L4 is due to fewer structural modifications compared to L4Ka::Linux.

137



Netperf

The Netperf benchmark transferred a gigabyte of information via TCP/IP, at stan-

dard Ethernet packet size, with 256kB socket buffers. These are I/O-intensive

benchmarks, producing around 82k device interrupts while sending, and 93k de-

vice interrupts while receiving (in total) — an order of magnitude more device

interrupts than during the Linux kernel build. There were two orders of magni-

tude fewer system calls than for the kernel build: around 33k for send, and 92k for

receive.

We measured throughput (expressed as a duration), and CPU utilization. For

Linux 2.4.28, see Figures 5.31 and 5.32. For Linux 2.6.8.1, see Figures 5.33 and

5.34. For Linux 2.6.9, see Figures 5.35 and 5.36. In all cases, throughput was

nearly identical, with some differences in CPU utilization. Our L4 system pro-

vides event counters which allow us to monitor kernel events such as interrupts,

protection domain crossings, and traps caused by guest OSes. We found that the

event-counter signature of the para-virtualized Linux on L4 nearly matched the

signature of pre-virtualized Linux on L4.

LMbench2

Table 5.8 summarizes the results from several of the LMbench2 micro benchmarks

(updated from the original lmbench [MS96]).

As in the kernel-build benchmark, the higher overheads compared to para-

virtualized Xen for fork(), exec(), and for starting /bin/sh on x86 seem

to be due to an excessive number of hypercalls for page table maintenance.

Of interest is that pre-virtualized Xen has lower overhead for null system calls

than para-virtualized Xen. This is due our architectural decision to handle interrupt-

delivery race conditions off the fast path, within the interrupt handler, by rolling

forward or backwards critical sections.

Several of the Xen metrics outperform native Linux. The results reported by

Barham et al. [BDF+03] confirm this for para-virtualization. Potentially this is due

to virtualization of expensive hardware instructions, where the virtualization sub-

stitutes lower-cost software emulation, such as interrupt masking and unmasking

on the system-call path (see Section 5.2.2).
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0 50 100 150 200 250

Kernel build (2.6.8.1)

time (s)

native 208 s96.9%

L4Ka::Linux 236 s97.9%

L4Ka afterburnt 238 s97%

active idle

Figure 5.29: The kernel-build benchmark with variations of Linux 2.6.8.1
and direct device access. Compares the performance of para-virtualization
(L4Ka::Linux) to pre-virtualization (L4Ka afterburnt) for the L4 microkernel, and
includes the performance of native Linux (native). The 95% confidence interval is
at worst ± 1%

0 50 100 150 200 250

Kernel build (2.6.9)

time (s)

native 209 s98.4%

native afterburnt 209 s98.4%

XenoLinux 219 s97.8%

Xen afterburnt 221 s98.8%

L4Ka afterburnt 240 s98.7%

active idle

Figure 5.30: The kernel-build benchmark with variations of Linux 2.6.9 and direct
device access. Compares the performance of para-virtualization (XenoLinux) to
pre-virtualization (Xen afterburnt) for the Xen hypervisor, and the performance of
a native Linux (native) to a pre-virtualized binary running on raw hardware (native
afterburnt). Also includes the performance of running pre-virtualized Linux on L4
(L4Ka afterburnt). The 95% confidence interval is at worst ± 0.5%
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0 2 4 6 8 10 12

Netperf send (2.4.28)

time (s)

native 779 Mbps39.3%

native afterburnt 779 Mbps39.4%

XenoLinux 779 Mbps44.1%

Xen afterburnt 779 Mbps44.4%

active idle

Figure 5.31: The Netperf-send benchmark running variations of Linux 2.4.28 with
direct device access. It compares the performance of para-virtualization (Xeno-
Linux) to pre-virtualization (Xen afterburnt), and the performance of native Linux
(native) to a pre-virtualized binary running on raw hardware (native afterburnt).
The 95% confidence interval is at worst ± 0.3%

0 2 4 6 8 10 12

Netperf receive (2.4.28)

time (s)

native 772 Mbps33.5%

native afterburnt 772 Mbps33.7%

XenoLinux 772 Mbps41.8%

Xen afterburnt 771 Mbps41.2%

active idle

Figure 5.32: Results from the Netperf-receive benchmark running variations of
Linux 2.4.28 with direct device access. It compares the performance of para-
virtualization (XenoLinux) to pre-virtualization (Xen afterburnt), and the perfor-
mance of native Linux (native) to a pre-virtualized binary running on raw hardware
(native afterburnt). The 95% confidence interval is at worst ± 0.2%
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0 2 4 6 8 10 12

Netperf send (2.6.8.1)

time (s)

native 778 Mbps32.9%

L4Ka::Linux 776 Mbps34.5%

L4Ka afterburnt 775 Mbps35.2%

active idle

Figure 5.33: The Netperf-send benchmark running variations of Linux 2.6.8.1
with direct device access. It compares para-virtualization (L4Ka::Linux) to pre-
virtualization (L4Ka afterburnt), and to native Linux. The 95% confidence interval
is at worst ± 0.3%

0 2 4 6 8 10 12

Netperf receive (2.6.8.1)

time (s)

native 780 Mbps33.2%

L4Ka::Linux 780 Mbps35.7%

L4Ka afterburnt 780 Mbps36.8%

active idle

Figure 5.34: The Netperf-receive benchmark running variations of Linux 2.6.8.1
with direct device access. It compares para-virtualization (L4Ka::Linux) to pre-
virtualization (L4Ka afterburnt), and to native Linux. The 95% confidence interval
is at worst ± 0.2%
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0 2 4 6 8 10 12

Netperf send (2.6.9)

time (s)

native 867 Mbps27.1%

native afterburnt 868 Mbps27.3%

XenoLinux 868 Mbps33.8%

Xen afterburnt 867 Mbps34%

L4Ka afterburnt 867 Mbps30.2%

active idle

Figure 5.35: Netperf-send benchmark, Linux 2.6.9, with direct device access.
Compares para-virtualization (XenoLinux) to pre-virtualization (Xen afterburnt
and L4Ka afterburnt), and native Linux (native) to a pre-virtualized binary on raw
hardware (native afterburnt). The 95% confidence interval is at worst ± 0.2%

0 2 4 6 8 10 12

Netperf receive (2.6.9)

time (s)

native 780 Mbps33.8%

native afterburnt 780 Mbps33.5%

XenoLinux 781 Mbps41.3%

Xen afterburnt 780 Mbps42.5%

L4Ka afterburnt 780 Mbps37.3%

active idle

Figure 5.36: Netperf-receive benchmark, Linux 2.6.9, with direct device ac-
cess. Compares para-virtualization (XenoLinux) to pre-virtualization (Xen after-
burnt and L4Ka afterburnt), and native Linux (native) to a pre-virtualized binary
on raw hardware (native afterburnt). 95% confidence interval is at worst ± 1.0%.
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null null open sig sig
type call I/O stat close inst hndl fork exec sh
raw 0.46 0.53 1.34 2.03 0.89 2.93 77 310 5910
NOP 0.46 0.52 1.40 2.03 0.91 3.19 83 324 5938
Xeno 0.45 0.52 1.29 1.83 0.89 0.97 182 545 6711
pre 0.44 0.50 1.37 1.82 0.89 1.70 243 700 7235

Table 5.8: Partial LMbench2 results for Linux 2.6.9 (of benchmarks exposing
virtualization overheads) in microseconds, smaller is better. Raw is native Linux on
raw hardware, NOP is pre-virtualized Linux on raw hardware, Xeno is XenoLinux,
and pre is pre-virtualized Linux on Xen. The 95% confidence interval is at worst
± 2%

5.2.5 Engineering effort

The first virtualization-assist module supported x86 and the L4 microkernel, and

provided some basic device models (e.g., the XT-PIC). The x86 front-end, L4 back-

end, device models, and initial assembler parser were developed over three person

months. The Xen virtualization-assist module became functional with a further

one-half person month of effort. Optimizations and heuristics involved further

effort.

Table 5.9 shows the source code distribution for the individual x86 virtualization-

assist modules and shared code for each platform. The DP83820 network device

model is 1055 source lines of code, compared to 958 SLOC for the custom vir-

tual network driver. They are very similar in structure since the DP83820 uses

producer-consumer rings; they primarily differ in their interfaces to the guest OS.

In comparison to our past experience applying para-virtualization to Linux 2.2,

2.4, and 2.6 for the L4 microkernel, we observe that the effort of pre-virtualization

is far less, and more rewarding. The Linux code was often obfuscated (e.g., be-

hind untyped macros) and undocumented, in contrast to the well-defined and well-

documented x86 architecture against which we wrote the virtualization-assist mod-

ule. The pre-virtualization approach has the disadvantage that it must emulate the

platform devices; occasionally they are complicated state machines.

After completion of the initial infrastructure, developed while using Linux

2.6.9, we pre-virtualized Linux 2.4 in a few hours, so that a single binary could

boot on both the x86 Xen and L4 virtualization-assist modules.

In both Linux 2.6 and 2.4 we applied manual annotations (we had not yet

written the C source code transformation tool), relinked the kernel, added DMA

translation support for direct device access, and added L4 performance hooks, as
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Type Headers Source
Common 686 746
Device 745 1621
x86 front-end 840 4464
L4 back-end 640 3730
Xen back-end 679 2753

Table 5.9: The distribution of code for the x86 virtualization-assist modules, ex-
pressed as source lines of code, counted by SLOCcount.

Type Linux 2.6.9 Linux 2.4.28
Device and page table 52 60
Kernel relink 18 21
Build system 21 16
DMA translation hooks 53 26
L4 performance hooks 103 19
Loadable kernel module 10 n/a
Total 257 142

Table 5.10: The number of lines of manual annotations, functional modifications,
and performance hooks added to the Linux kernels.

described in Table 5.10, totaling 257 lines for Linux 2.6.9 and 142 lines for Linux

2.4.28. The required lines of modifications without support for pass-through de-

vices and L4-specific optimizations are 91 and 97 respectively.

In contrast, in Xen [BDF+03], the authors report that they modified and added

1441 sources lines to Linux and 4620 source lines to Windows XP. In L4Linux [HHL+97],

the authors report that they modified and added 6500 source lines to Linux 2.0. Our

para-virtualized Linux 2.6 port to L4, with a focus on small changes, still required

about 3000 modified lines of code [LUSG04].

5.3 Summary

We studied the behavior and performance of driver reuse in several scenarios. We

reused Linux drivers, and compared their performance and overheads to native

Linux drivers. Since we run the drivers in VMs at user level, we also compared

the performance of network driver reuse to a user-level driver, to clarify sources of

overheads. The results show that driver reuse achieves comparable performance to

native drivers, as long as the workloads are I/O bound, as driver reuse consumes

more CPU, memory, cache, and TLB.

We also studied the performance of pre-virtualization, by comparing to the
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highest performing approach for VM construction, para-virtualization, for two dif-

ferent environments: L4 and Xen. We implemented pre-virtualization for both, and

achieved the modularity of traditional virtualization, by enabling a single Linux ex-

ecutable to run on raw hardware, Xen, and L4. We found that the performance of

pre-virtualization is comparable to para-virtualization, while reducing engineering

effort.
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Chapter 6

Conclusion

Device drivers account for a majority of today’s operating system kernel code (in

Linux 2.4 on x86, 70% of 1.6 million lines of kernel code implement device sup-

port [CYC+01]). A new operating system endeavor that aims for even a reasonable

breadth of device support faces a major development and testing effort, or must

support and integrate device drivers from a driver-rich OS (e.g., Linux or Win-

dows). The availability of many drivers solely in binary format prevents known

approaches based on source-code reuse. We have proposed a pragmatic approach

for full reuse and strong isolation of legacy device drivers.

Our solution runs the reused device drivers with their original operating sys-

tems in virtual machines, along with minor infrastructure for interfacing with the

rest of the system. By supporting the drivers with their original systems, we avoid

implementing high-level replacement code, and instead supply low-level virtual-

ization code for managing bulk resources — this reduces development effort, and

allows us to focus on the highly-documented platform interface, thus supporting

drivers from multiple operating systems with a single solution. Our solution insu-

lates the drivers in a virtual machine, which can increase system dependability, and

permits contradictory architectures for the new operating system and the driver’s

operating system. The merits of the system also limit its applicability:

• the virtual machines, and the drivers’ operating systems running within them,

can consume more CPU and memory resources compared to alternative driver

approaches — this may make the solution undesirable for low-resource sys-

tems;

• running multiple operating systems adds additional management, monitor-

ing, debugging, testing, and logging complexity — some operating systems
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will provide less hassle than others for reusing their drivers;

• the reused drivers need to offer all of the functionality desired by the new

system;

• and the CPU must be able to run a virtual machine.

Virtual machines have a performance overhead, which many have addressed

via para-virtualization. But para-virtualization adds developer burden (which we

are trying to reduce) and forfeits modularity (which we desire for running differ-

ent types of operating systems for driver reuse). We have thus proposed the pre-

virtualization technique for building virtual machines, which combines the perfor-

mance of para-virtualization with the modularity of traditional virtualization. We

still apply the performance enhancements of para-virtualization, but guided by a set

of principles that preserves modularity, and with automation. Our solution partic-

ularly helps the x86 architecture, which poses problems to efficient virtualization.

Yet we have limitations for our approach:

• we assume that we can automate the replacement of virtualization-sensitive

instructions — it is possible to write source code that interferes with the au-

tomation (e.g., no abstractions to identify sensitive-memory operations), but

we expect that most operating systems are well structured and thus suitable

for our automation;

• we assume that we can find heuristics that match the performance of tradi-

tional para-virtualization modifications — this may not always be the case,

but so far we have been successful;

• and we require access to the source code of the OS.

Additionally, many processors now include hardware-virtualization acceleration

that may reduce the benefit of our approach — we did not evaluate these hard-

ware extensions and thus have not demonstrated that our approach is universally

beneficial, but Adams and Agesen [AA06] demonstrated that executing virtualiza-

tion logic within a guest OS improves the performance of hardware virtualization,

which could be easily implemented via pre-virtualization.

6.1 Contributions of this work

This dissertation proposes solutions for reusing device drivers in a manner to pro-

mote novel operating system construction. We focus on insulating the novel oper-
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ating system from the invariants and faults of the reused device drivers. Primary

and supporting contributions of this dissertation:

• We propose a set of principles for facilitating driver reuse (Section 3.1).

• We run the reused drivers, along with their reuse infrastructure, in virtual

machines with the drivers’ original operating systems. We describe solutions

for full virtualization and para-virtualization.

• We can support binary-only drivers via full virtualization or pre-virtualization

(for pre-virtualization, the driver binaries must be pre-virtualized by their

vendors).

• We present an architecture for isolating each driver in a dedicated VM, yet

with the ability to support each other (e.g., one driver uses a bus driver), even

if from different operating systems.

• We show how to integrate and interface the reused drivers with the client

operating system.

• We describe resource management techniques.

• We present a reference implementation for reusing Linux device drivers, on

the L4Ka::Pistachio microkernel.

To improve the quality of our driver-reuse solution, we also propose the tech-

nique of pre-virtualization for constructing virtual machines, as an alternative to

traditional virtualization and para-virtualization. Contributions of this dissertation:

• We show how to achieve the modularity of traditional virtualization with

performance approaching that of para-virtualization.

• Our solution is based on para-virtualization, but we propose a set of princi-

ples called soft layering for guiding the application of para-virtualization to

an operating system. These principles are:

1. it must be possible to degrade to the platform interface, by ignoring the

para-virtualization enhancements (thus permitting execution on native

hardware and hypervisors that lack support for soft layering);

2. the interface must flexibly adapt at runtime to the algorithms that com-

petitors may provide (thus supporting arbitrary hypervisor interfaces

without pre-arrangement).
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• We describe how to include the major features of para-virtualization: instr-

uction-level modifications, structural modifications, and behavioral modifi-

cations.

• Para-virtualization has a substantial development cost, and we show how to

automate most modifications to significantly reduce the development burden.

• We present a solution for modular, high-speed device virtualization, based on

our soft layering principles. This solves one of the banes of virtualization:

having to ship hypervisor-specific drivers to the guest operating system for

performance.

• We show how to design the modular runtime support of our approach, par-

ticularly with a focus on reliability and performance.

• We provide reference implementations for running Linux on the Xen hyper-

visor and the L4Ka::Pistachio microkernel. These are available for download

at http://l4ka.org/projects/virtualization/afterburn.

We demonstrated driver reuse and pre-virtualization by running Linux drivers

in virtual machines constructed from pre-virtualization, on a research operating

system based on the L4Ka::Pistachio microkernel.

6.2 Future work

We see several areas for future work:

We would like to see future virtualization hardware that enables virtualiza-

tion logic to execute within the virtual machine, particularly to virtualize memory-

mapped devices. Finding the best techniques requires some exploration.

The applicability of our approach to general legacy reuse needs more explo-

ration.

Although we proposed solutions for using traditional virtualization, we did not

validate them. Nor did we test and benchmark the latest hardware that supports

virtualization acceleration, particularly for DMA redirection.

We also did not investigate alternative approaches for building the proxy mod-

ules that reuse device drivers, particularly for implementing them as more portable

user-level code of the guest operating system.
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We used only Linux as a guest OS, and did not explore alternative kernels.

Future work should attempt mixing different kernels, and explore the consequences

of reusing drivers from different donor systems.
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