
'

&

$

%

Towards Power-Aware
Memory for Virtual Machines

Diplomarbeit
von

Max Laier

an der Fakultät für Informatik

Erstgutachter: Prof. Dr. Frank Bellosa
Zweigutachter: Prof. Dr. Hartmut Prautzsch
Betreuender Mitarbeiter: Dipl.–Inform. Jan Stöß

Bearbeitungszeit: 1. Mai 2009– 30. November 2009

KIT – Universität des Landes Baden-Württemberg und nationales Forschungszentrum in der Helmholtz-Gemeinschaft www.kit.edu





Hiermit erkläre ich, die vorliegende Arbeit selbstständig verfaßt und keine anderen als die angegebe-

nen Literaturhilfsmittel verwendet zu haben.

I hereby declare that this thesis is a work of my own, and that only cited sources have been used.

Karlsruhe, den 30. November 2009

Max Laier





Abstract

The current trend towards hardware consolidation, using full machine virtualization

techniques, demands more and more powerful host systems with huge amounts of main

memory. To operate such systems economically, power management for the memory

system is becoming an important issue. Previous work has only investigated power

management for traditional operating systems.

This thesis, for the first time, analyzes the specific challenges and opportunities

of the virtualization environment to provide memory power management. We adapt

previously described techniques for memory power management in traditional oper-

ating systems to the hypervisor in a virtualization environment. In addition, we de-

scribe a number of additional techniques—specific to our environment—that help to

save additional energy. We show that a set of relatively minor changes to the memory

management can easily halve the static energy consumption in the memory system.

Our work is based on pure virtualization with no changes to the guest operating

systems. Thus, a hardware consolidation setup can collect the benefit of our memory

power management for legacy guest systems. For our evaluation, we use the latest,

hardware-assisted, virtualization techniques, which provide almost raw hardware per-

formance, and demonstrate that our changes do not impact on the performance of the

virtualization.

v



vi ABSTRACT



Acknowledgments

I would like to thank the System Architecture Group at the University of Karlsruhe for

making this thesis possible. In particular, I thank Prof. Dr. Frank Bellosa and Jan Stöß.

I am also thankful to James McCuller for his help on the hardware setup. In addition,

I am thankful to the support technicians at MSI who provided us with a number of

custom BIOS builds in order to try to switch off the memory interleaving—eventhough

these efforts never paid off.

I thank my family for the moral support, especially during the last few weeks, and

my brother—Moritz—and my uncle—Michael—for their review of this thesis.

vii



viii ACKNOWLEDGMENTS



Contents

Abstract v

Acknowledgments vii

1 Introduction 3

2 Background and Related Work 5

2.1 Full Machine Emulation and Virtualization Basics . . . . . . . . . . . 5

2.1.1 Virtual Main Memory . . . . . . . . . . . . . . . . . . . . . 6

2.2 Power-Management for the Memory Subsystem . . . . . . . . . . . . 11

2.3 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

3 Design 15

3.1 Basic Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

3.2 Reducing Energy for a Single VM . . . . . . . . . . . . . . . . . . . 17

3.2.1 Allocation Policy . . . . . . . . . . . . . . . . . . . . . . . . 17

3.2.2 Different Types of Memory . . . . . . . . . . . . . . . . . . 18

3.3 Improvements for a Single VM . . . . . . . . . . . . . . . . . . . . . 20

3.3.1 Working Set Detection . . . . . . . . . . . . . . . . . . . . . 20

3.3.2 Page Migration . . . . . . . . . . . . . . . . . . . . . . . . . 22

3.4 Reducing Energy for All VMs . . . . . . . . . . . . . . . . . . . . . 25

3.4.1 Inter-VM Migration . . . . . . . . . . . . . . . . . . . . . . 26

3.4.2 Sequential First Touch with Reservation . . . . . . . . . . . . 26

3.4.3 Idle VMs . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

3.4.4 Shared Pages . . . . . . . . . . . . . . . . . . . . . . . . . . 28

3.5 Additional Considerations . . . . . . . . . . . . . . . . . . . . . . . 29

3.5.1 Using Paravirtualization Techniques . . . . . . . . . . . . . . 29

3.5.2 Multi-Processor Hardware and NUMA . . . . . . . . . . . . 30

3.6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

4 Implementation 31

4.1 Environment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

4.1.1 Starting a VM . . . . . . . . . . . . . . . . . . . . . . . . . . 31

4.2 Prerequisites . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

4.2.1 Leveraging the Linux NUMA Framework . . . . . . . . . . . 33

4.3 Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

4.3.1 Sequential-First-Touch Allocation Policy . . . . . . . . . . . 34

4.3.2 Working Set Detection . . . . . . . . . . . . . . . . . . . . . 35

4.3.3 Migration . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

1



2 CONTENTS

5 Evaluation 39

5.1 Hardware Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

5.2 Trace Driven Analysis . . . . . . . . . . . . . . . . . . . . . . . . . 40

5.2.1 Trace Implementation . . . . . . . . . . . . . . . . . . . . . 40

5.2.2 Trace Events . . . . . . . . . . . . . . . . . . . . . . . . . . 40

5.2.3 Energy Model . . . . . . . . . . . . . . . . . . . . . . . . . . 42

5.3 Benchmarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

5.3.1 Workloads . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

5.3.2 Guest Operating Systems . . . . . . . . . . . . . . . . . . . . 43

5.4 Performance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

5.5 Power Savings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

5.5.1 SPEC CPU2006 . . . . . . . . . . . . . . . . . . . . . . . . 45

5.5.2 NetBSD Source Compilation . . . . . . . . . . . . . . . . . . 47

5.5.3 Workloads with Multiple Guests . . . . . . . . . . . . . . . . 50

6 Conclusion 53

Bibliography 55



Chapter 1

Introduction

In recent years there has been an increasing trend towards virtualization. Virtualiza-

tion provides an easy way to fully use more powerful hardware. It allows the operator

to run several tasks, previously running on many small machines, on a single, more

powerful machine. All major chip manufacturer provide specially equipped processors

to support virtualization. As more and more virtual systems can be run on a single

hardware system, these systems must be equipped with more and more main memory.

Previous work has found that the main memory can easily account for up to 70% of

the total energy consumption of the system. In this situation, power-management is

becoming increasingly important. Power-management does not only reduce the en-

ergy bill for running the hardware itself, but—by decreasing the heat dissipation of the

components—it also reduces the required cooling and increases lifetime and reliability.

This thesis will investigate memory power-management with the specific chal-

lenges of virtualization. To our knowledge, no previous work exists that is concerned

with power-management of the memory system in the context of virtualization. Pre-

vious work does exists that proposes memory power-management for traditional op-

erating systems. In this thesis we adapt the findings therein to our environment of a

hypervisor running several virtual machines. The goal is to save energy in the memory

system. This thesis focuses on the static energy consumption. The static energy is that

required to keep the memory modules operational—in contrast to the dynamic energy

that is required to read from and write to the modules. The static energy can be reduced

by switching memory devices into a lower power state while they are not used by the

currently running virtual machine. We will outline a number of changes to the memory

allocation system that allow us to maximize the number of unused devices for every

virtual machine. While our system is similar to previous work that suggests the same

changes on a per-process level, the specific challenges of our environment require ad-

ditional techniques to find good allocation strategies. In particular, we find that there

are different types of memory that are used by a virtual machine and propose different

strategies to allocate each type of memory. In addition, virtual machines are gener-

ally long-lived processes with a comparably large, mostly static memory footprint. We

propose additional techniques to handle this type of behavior.

As with previous work in this area, we were unable to obtain hardware with work-

ing memory power-management capabilities. While the basic functionality is there,

details in the implementation of the memory system prevent its use. Specifically, the

use of memory interleaving prevents the use of memory power management. To eval-

uate the possible energy savings, we were restricted to trace driven analysis. This only

3



4 CHAPTER 1. INTRODUCTION

provides a lower-bound for the energy savings that can be obtained with real hardware.

This thesis is organized as follows. In the next chapter we will provide background

on virtualization technology with a special focus on memory management. We then

review previous work in the area of memory power-management that serves as the basis

for our work. In Chapter 3 we describe our memory management system by expanding

on solutions previously described and adapting them to our specific environment. We

also explore new challenges and opportunities for energy savings and provide solutions

for them. At the end of Chapter 3 we also give an outlook to future work based on our

design. We then describe our prototypical implementation of parts of the proposed

system on top of an existing hypervisor. In Chapter 4 we describe the required changes

in detail and solve problems that arise from the environment. Using such a modified

hypervisor, we then evaluate our changes in terms of performance and energy savings.

In Chapter 6, we conclude with a summary of our system and qualification of the

outcome of our experimentation.



Chapter 2

Background and Related Work

In this chapter we provide background on virtualization to help to understand the en-

vironment of this work, we also discuss the basics of memory hardware, and review

previous work in the area.

In Section 2.1 we provide a short overview of complete machine virtualization and

the basic techniques with an emphasis on the memory management process in the fol-

lowing sections. We focus on hardware assisted memory translation as this is the basis

for our experimentation. This relatively new technology provides great performance

improvements and makes virtualization performance almost en-par with real hardware.

We also define some terms that are used throughout the remainder of this document.

We summarize the basics of memory hardware and power management for the

memory subsystem in Section 2.2.

Finally, in Section 2.3, we then review related work in the field of power manage-

ment of the memory subsystem. The review introduces a number of basic mechanisms

and policies that are later referenced and improved upon in Chapter 3 as we describe

our design.

2.1 Full Machine Emulation and Virtualization Basics

This thesis is concerned with full machine virtualization. A Host System provides one

or more Guest Systems with the illusion that they are running on dedicated hardware.

A guest system consists of a virtual processor, virtual main memory and a collection of

virtual devices. The host system is a specialized software component that runs on the

real hardware. This software is either an Emulator or a Virtual Machine Hypervisor.

While an emulator—as the name suggests—emulates every single machine instruction,

a hypervisor tries to run as much of the guest’s code on the real hardware. The proces-

sor intercepts certain instructions and the hypervisor then emulates these instructions

in order to provide the virtualization. In either case, memory that is provided to the

guest needs to be virtualized.

The task of providing virtual main memory is similar to providing virtual memory

in any multi-user operating system. Instead of a virtual address space for every pro-

cess, there is a virtual main memory for every guest. As the memory system is the

focus of this work, we will describe this in more detail in the following sections. To

virtualize the processor the hypervisor uses the same mechanism as is used for a task

switch in a traditional operating system: The active guest’s processor state is saved, the

5



6 CHAPTER 2. BACKGROUND AND RELATED WORK

next guest’s processor state is restored, and the new guest continues. The hypervisor

intercepts and emulates all instructions that are used to program the device hardware,

thus virtualizing the other devices that are required for full machine virtualization.

2.1.1 Virtual Main Memory

Virtual main memory is a special address space. The guest sees its virtual main mem-

ory as if it was real hardware memory. The guest can address the virtual main memory

using a linear address. The hypervisor is responsible to provide the guest with this

memory and must setup a translation that maps any valid guest address to real mem-

ory on the host. In this section we explain how this translation works and how the

hypervisor creates the mapping.

Figure 2.1: Different Address Spaces in Use With Full Machine Virtualization

Figure 2.1 shows the different address spaces that are used in our scenario. At the

lowest level we have the host’s hardware. A number of memory devices provide a linear

physical address space that is addressed using the physical host frame number (hFN).

The hypervisor provides virtual address spaces to its processes where they can manage

their memory. This virtualization is provided by the host page tables that translate

a host virtual address (hVA) to a host physical address (hPA)—similar to traditional

operating systems. To provide the virtual main memory, the hypervisor uses a special

kind of page table that translate a guest physical address (gPA)—inside the virtual main

memory—to a host physical address (hPA). Inside a virtualization domain, the guest

sees the virtual main memory as real hardware. The guest operating system may also

use page tables to provide virtual address spaces. The guest page tables inside the

virtualization translate a guest virtual address (gVA) to a guest physical address (gPA).

Virtualization page tables are currently available as a processor feature from both

Intel and AMD in their latest processors [1, 16]. The feature is called “Enhanced Page

Tables” or “Nested Page Tables”, respectively. The basic mode of operation is equiv-

alent in both implementations, but there are some differences. In the remainder of

this document we will call this feature Virtualization Page Table (VPT) to refer to the

general concept.



2.1. FULL MACHINE EMULATION AND VIRTUALIZATION BASICS 7

Where a VPT feature is not available, the hypervisor can use a concept known as

Shadow Page Tables. The hypervisor constructs a specialized virtual address space in

the host that is used while the guest is running. This address space translates directly

from a guest virtual address to a host physical address. Keeping the shadow page tables

synchronized with the guest is an expensive operation. As a result, memory throughput

is increased up to 20-fold by using virtualization page tables for certain scenarios. Our

design is based on VPTs, but could be made to work with shadow page tables as well.

Classic Host Page Table Lookup

In order to explain how the virtualization page tables work, we first take a look at

normal page tables. Figure 2.2 illustrates the translation process. We assume here—

and throughout the rest of this section— x86 64 hardware with 48 bit virtual address

space. The objective is to translate from a 48 bit virtual host address to a host physical

address. The input for this translation is the hVA in combination with the processor’s

cr3 register that selects a page table hierarchy. First, the translation hardware locates

the physical page that holds the root node for the active page table (PML4). The cr3

register contains the hPA of that page. Once the hardware has located the root page

directory it takes bit 47 through 39 to get a 9 bit index into the directory. Nine index

bits mean there are 29 = 512 entries in the first level, each holding one 64 bit entry. The

index selects one of these entries that then holds the hPA for the second page directory

level (PDP). The next 9 bit in the hVA (38 - 30) are used by the translation as an index

into the page directory page, again resulting in a 64 bit entry that holds the hPA for the

next level (PD). The same process continues, this time using bits 29 through 21 and

resulting in the final mapping level, the page table. The index, obtained from bit 20 to

12, points to the final page table entry (PTE). The PTE again is a 64 bit value that holds

the hPA for the final data page. The remaining 12 bit of the virtual address is a byte

granularity index into the data page—addressing the 4,096 bytes in a page. The result

of the translation is the hPA extracted from the PTE plus the offset.

Figure 2.2: Page Table Processing Host AS

Every page directory and page table entry (P*E1) contains, apart from the hPA for

the next level, some spare bits that are used to store access rights and a reference bit.

At any of the intermediate levels there can also be a non-present mapping—a special

value of the 64 bit entry. Such a mapping, as well as insufficient access rights, cause a

1We refer to the entries in the page table hierarchy—PML4E, PDPE, PDE and PTE—as P*E when the

mapping level is not of interest.



8 CHAPTER 2. BACKGROUND AND RELATED WORK

page fault that the hypervisor must react to. We outline the process to resolve a page

fault for virtualization page tables in a separate section below.

The hardware sets the referenced bit in the P*E that it encounters during the lookup.

The referenced bit can be used to obtain information on which pages have been refer-

enced recently. Traditional operating systems use this bit to implement Least-Recently

Used (LRU) page reclaim. Our design also has to determine which pages have been

referenced and will make use of the referenced bit (in the virtualization page tables) to

do so.

Virtualization Page Table Lookup

In this section we compare the translation process for basic page tables described above

to the virtualization page table processing depicted in Figure 2.3. The upper half is the

guest page table that works exactly as in the host. All addresses in this structure are

guest physical addresses (gPA), however. Thus, in order to find the underlying host

physical address (hPA), an additional level of translation is required. This additional

translation process is provided by the virtualization page table shown in the lower part

of the figure. The figure makes clear why AMD calls their VPTs “nested page tables”

[1]. For every translation step in the guest, there is a nested lookup in the VPT to find

the underlying host page.

Figure 2.3: Virtualization Page Table Processing

The objective of the lookup procedure as a whole is to translate the guest virtual

address—given as input at the top—to a host physical address so that the processor can

fetch the data.

The translation process works similar to that of the traditional page table lookup

above. The processor starts with the guest’s gCR3 register that selects the active virtual

address space inside the guest. It contains the gPA for the root node (gPML4). To



2.1. FULL MACHINE EMULATION AND VIRTUALIZATION BASICS 9

continue the lookup, the processor needs to locate the physical host page that contains

the data for this portion of the virtual main memory.

To find the host page that holds the gPML4, the processor now does the first nested

lookup using the VPT. The lookup in the VPT itself also works exactly like the lookup

in a normal page table. The input for the lookup is the gPA from the top and the

contents of the vCR3 register. The vCR3 has the same function as the normal cr3

register, but—instead of selecting a virtual address space—it selects the virtual main

memory for the active guest. The processor walks the VPT to locate the vPTE that

corresponds to the gPA given as input to the process. This vPTE contains the hPA of

the page that contains the gPA in the input. With this information, the processor can

continue the lookup in the guest page table.

As before, the processor takes a part of the gVA as an index into the current page

directory or page table to arrive at a gP*E. This entry again contains a gPA and another

nested lookup is required to continue with the translation.

The process continues in a similar fashion: The gPML4E is translated to the hPA of

the gPDP using a nested lookup, the gPDPE to gPD, the gPDE to gPT, and finally the

gPTE to the hPA of the host page that holds the actual data for the gVA. At this point

the lookup is complete and the processor only has to add the 12 offset bits from the

gVA in the input to the hPA from that last nested lookup to arrive at the final location.

Again, at any point of either page table, there can be a non-present mapping or a

mapping with insufficient access rights. If such a mapping is encountered in the upper

half of the lookup—the guest page table—the processor issues an exception in the guest

operating system, which is responsible for setting up and maintaining this page table.

Missing mappings in the VPT, on the other hand, cause an exception in the hypervisor,

which is responsible for the VPT setup and maintenance. The process that is used by

the hypervisor to resolve a non-present page fault in the VPT is described in the next

section.

Performing the nested lookup is an expensive operation. For every step the proces-

sor has to read five memory locations: vPML4E, vPDPE, vPDE, vPTE and the gP*E.

Thus, the implementations make use of a Virtualization Translation Lookaside Buffer

(vTLB). The vTLB stores intermediate translations from gPA to hPA. Instead of doing

the costly VPT walk, the processor checks the TLB for a cached translation and uses

it instead. In addition, there is the normal TLB that caches complete (g)VA to hPA

translations that are used for virtualization and traditional lookups alike.

We assume it is because of this heavy use of buffering, that Intel’s enhanced page

tables do not have a referenced bit as normal page tables do. In order to maintain a

referenced bit on the vP*Es, the implementation has to update the entries in memory

whenever the corresponding vTLB entry is evicted from the buffer. This can be ex-

pensive. Unfortunately, this shortcoming in the design of EPTs makes it more difficult

to figure out which vP*Es have been recently used. We provide a workaround for this

problem in our software implementation, but a hardware solution would be beneficial

not only for our work. The AMD implementation does provide a working referenced

bit.

Constructing Virtual Page Tables and Virtual Main Memory Management

For our work, the most interesting part of the memory management is how the hypervi-

sor creates the mappings for the virtual main memory. In this sections we describe how

this is done. Figure 2.4 gives an overview of the process. The upper half shows the the

translation from a guest virtual address space to the host main memory, which we just



10 CHAPTER 2. BACKGROUND AND RELATED WORK

discussed in detail. The lower part shows how the hypervisor creates a mapping. This

process in used by the hypervisor whenever the hardware encounters a non-present

mapping in the VPT.

Figure 2.4: Address Translation and Virtualization Page Table Construction

In order to manage a guest’s virtual main memory, the hypervisor creates a virtual

host Address Space (AS)—called “Emulator AS” in the figure. This is a traditional

virtual address space managed using a host page table. In this address space the hyper-

visor has a mapping for the guest’s virtual main memory. The figure shows how the

virtual main memory is embedded in the emulator AS. With this setup, the hypervisor

can easily calculate the hVA inside the emulator AS that corresponds to any valid gPA.

The figure shows the virtual main memory as mapped contiguously inside the address

space. In order to transform a gPA to a hVA the hypervisor only needs to add the map-

ping offset. In praxis, the mapping is a bit more complex than this as the virtual main

memory can be split up into chunks for better management, but the principle remains

the same.

To construct an entry in the VPT, the hypervisor needs the hPA—not a hVA inside

the emulator AS—that corresponds to the gPA. In order to find this information, the

hypervisor consults the host page table that is used to manage the emulator AS. The

hypervisor walks this mapping structure in software in the same way the hardware

would (see above for details), using the hVA obtained before as the input for the lookup.

The result of the walk is a PTE at the last level of the emulator AS page table or the

information that this portion of the AS has not been mapped yet, as the walk encounters

a non-present mapping.

In case the walk encounters a “non-present” mapping, the hypervisor first has to

allocate memory to back this mapping and modify the emulator AS page table accord-

ingly. This is the crucial point in the process for our work. When the hypervisor does

this allocation it decides the physical location for a section of the virtual main memory.

We describe a policy to guide this process as the core of our work.

Once the allocation succeeded or if the mapping was already valid, the hypervisor



2.2. POWER-MANAGEMENT FOR THE MEMORY SUBSYSTEM 11

knows the hPA that corresponds to the gPA. The hPA is either the location of the new

allocation or the hypervisor can extract this information from the PTE that resulted of

the lookup. At this point the hypervisor can enter the found mapping between gPA and

hPA into the virtualization page table.

Entering a mapping into a page table hierarchy works similar to a lookup. The gPA,

for which the mapping should be constructed, is used as input. The tables are walked in

software. If a non-present mapping is encountered at any vP*E on the way, the process

has to allocate a new page to serve as page directory2 or page table in that spot. With

the newly allocated page the lookup process can fix the non-present vP*E to point to

the new page directory or table and continue. The result of the lookup is the vPTE that

maps the gPA. The hypervisor modifies the vPTE to point to the hPA that it has found

above and the mapping is established.

This whole process is expensive. In order to construct a mapping for a single page

in the virtual main memory the hypervisor has to walk two page table hierarchies in

software—resulting in eight memory accesses. In addition, constructing the new map-

ping in the VPT can require a number of allocations and memory writes. This effort

is set off by the fact that any future access by the guest to that part of the virtual main

memory is completely handled in hardware with no intervention by the hypervisor.

2.2 Power-Management for the Memory Subsystem

In this section we provide an overview of the memory system and the technology used,

in order to explain how we can save energy in the memory subsystem. As we men-

tioned above, the main memory of a computer is provided by a number of memory

devices. The dominant technology for Random-Access Memory (RAM) today is usu-

ally a form of Double Data Rate Synchronous DRAM (DDR-SDRAM). This technology

allows the memory controller to put a memory device—as a whole—into a lower power

mode while no data from the module is required. In this regard, DDR-SDRAM is dif-

ferent from the Rambus DRAM (RDRAM) technology. RDRAM allows for a more fine-

grained power-management that enables the controller to select a different power state

for smaller parts of a memory device. The majority of previous work [8,12] in software

driven memory power-management was conducted using the RDRAM technology for

evaluation. We show during our design and evaluation that, while smaller management

units can help to provide better results, our target can already benefit from the more

coarse-grained management present in DDR-SDRAM. This is a significant finding, as

the RDRAM technology has since been discontinued [10].

Size tRFC IDD2N IDD2P0 IDD3N IDD3P IDD4R/W IDD5B IDD6

(MB) (ns) (mA)

512 X a 220 44 240 180 <940 840 40

1024 110 440 88 480 360 <1520 1680 80

2048 160 990 200 1035 810 <2205 2385 180

a The specification does not provide a value for tRFC for 512MB modules, but we assume that it will be

somewhere between 60 and 100 ns based on the values for bigger modules.

Table 2.1: DRAM Specifications

During our evaluation (see Chapter 5) we use DDR3-SDRAM. The memory con-

2We use “page directory” as a synonym for any page that is not the final “page table”



12 CHAPTER 2. BACKGROUND AND RELATED WORK

Figure 2.5: DRAM Power States

troller can put a DDR3-SDRAM device into a number of different states. A sim-

plified state machine can be found in Figure 2.5. Each state has a different power-

consumption, referenced by symbolic names in the figure. Table 2.1 provides the actual

values for these symbols based on the specifications [19] of the memory modules used

during the evaluation. In addition, it takes a certain amount of time to change the state

of a memory device. Significant times are shown in the figure next to the state transi-

tion. Dotted lines denote automatic state transitions after a timeout or completion of a

task. While putting a device into a low-power mode (Self Refresh, Precharge/Active

Power Down) is almost instantaneous, returning the device into active mode does take

some time as certain components of the memory device are resynchronized with the

memory bus clock.

DynamicRAM stores the information by charging a capacitor. In order to retain

the information, this charge has to be refreshed on a regular basis. This is the purpose

of the Refreshing state on the right hand side of the figure. The memory controller is

responsible to enter this state regularly. This is also true while the device is in either

Active or Precharge Power Down mode. While these modes can be used for saving

energy and provide a relative short resynchronization time, the Self Refresh mode is

the most interesting in terms of saving energy. While a device is in self refresh, it is

the responsibility of the device to take care of refreshing the capacitors. Using a slow

and steady refresh mechanism, self refresh is much more effective than the bulk refresh

that is done during a normal refresh issued by the memory controller. Our work focuses

on the Self Refresh mode for energy reduction. We show in Chapter 3 that the delay

that is introduced when the device exits self refresh can be hidden in other processing

overhead and thus does not impact on performance in a negative way.

2.3 Related Work

The basic idea for our thesis is to change the policy for memory allocations in a way

that allows to save energy in the memory system. In 2000, Lebeck et al [12] first

introduce Power Aware Page Allocations. Their work is the basis for most of the work

done in the context of memory power management, since. The main contribution is the

idea to allocate memory from as few memory devices as possible, in order to allow the

hardware to power down the unused devices. The allocation policy used is Sequential



2.3. RELATED WORK 13

First Touch. The concept behind this policy is to fill a single device before moving to

the next. The concept of power aware page allocations is further refined by a number

of papers [8, 13, 18].

A 2003 paper by Huang et al [8] takes the basic concept presented in [12] and adds

two new concepts: Sequential first touch on a per-process basis and the use of Migra-

tion to optimize the initial memory placement. In the Lebeck paper [12], sequential

first touch is used on a global scale. All memory allocations done by the operating

system are satisfied from the first node until this node runs out of memory and sub-

sequent allocations are then placed on the second node, and so forth. In contrast, the

per-process policy considers individual processes in an operating system. The alloca-

tion policy assigns an active node set to each process and uses sequential first touch

to minimize this set for every process. Now the hardware can switch off all nodes

that are not part of the active node set of the currently running process. In addition,

memory used by a process outside of the active node set—due to, for example, shared

libraries—is migrated to nodes inside the active node set.

In 2007, Lee and others [13] point out a major shortcoming in the approach of the

Huang paper [8] in that it does not consider the kernel memory and—in particular—the

buffer cache used by processes. This oversight results in unnecessary memory device

wake-ups, energy waste and performance degradation. The solution is to allocate this

memory in a similar fashion. The operating system has the knowledge which process

is responsible for a buffer cache allocation and can use the active node set of this

process to pick a node. While these findings are not directly applicable to our work,

we consider different kinds of memory used by a guest in our design. We also discuss

the implications of guest access to secondary storage, which is a similar problem as the

buffer cache. Due to the different environment for our work, we recommend to allocate

buffer memory from a central system node instead.

In the same category are findings by Pandey et al [18] that are concerned with Direct

Memory Access (DMA)—done by device hardware—the interactions with the memory

subsystem, and their impact on power management. In a virtualized environment there

are three different types of DMA. As a traditional operating system, the hypervisor

contains device drivers that can issue DMA operations in order to send/receive data

to/from a hardware device. In addition, the guest operating system can use virtual

device DMA to request data from the hypervisor. The result of virtual DMA operations

is a memory copy between host and guest. Alternatively, the host can use page sharing.

Finally, when the hypervisor grants a guest exclusive access to a device, the guest

can issue real DMA operations to that device [27]. These operations are translated

by a specialized Memory Management Unit called IOMMU in order to maintain the

virtualization. Our design does not directly consider device access, but we give some

guidance for future work in Chapter 3.

In addition to the refinements of the original power aware page allocation, several

improvements to the memory hardware were suggested [3, 5, 9] to help with imple-

menting and fully realizing the potential of power aware allocation techniques. As

with other targets for power management (cf. disk power management [21]), using

heuristics in the hardware for the basis of the power-management decisions provides

only sub-optimal results. The hardware has less information than the operating system

to base its decision on. The memory controller is mostly unaware of the concept of a

process as the principle of memory accesses, and the scheduling decisions performed

by the operating system. In addition, the hardware can only react to the placement of

memory allocations that is specified by the operating system. To overcome this prob-

lem co-operative techniques—where the OS is able to provide hints to the hardware—



14 CHAPTER 2. BACKGROUND AND RELATED WORK

have been analyzed [3, 9]. The work shows that significant improvements are possible

with specialized hardware. The interface to such hardware—as designed in the cited

articles—is based on the basic principle of the previously discussed work, which con-

centrates on the software alone. As our design is also based on these same principles, it

will be possible to use our work in conjunction with the specialized hardware, as well.

In contrast to the work discussed so far, our design does not only consider the mem-

ory allocated to a process/guest, but also the Working Set of a guest. This is necessary

as a single guest allocates a large amount of memory of which only a part is used dur-

ing normal operation. There are a number of mechanisms to obtain information about

the working set of a process/guest or the operating system as a whole. Delaluz et al [4]

use working set detection in the operating system for memory power management. To

detect the working set, they use repeated page faults and the page table reference bits.

Our design uses page faults in the VPT in a similar fashion. But in order to avoid the

performance penalty from repeated page faults, we uses an idea presented in an article

from 2004 by Zhou et al [28]. The objective of their work is to track the page miss

ratio curve, which is not directly applicable to our work. Their approach, however,

reflects in our design of the working set detection in that we balance between working

set overestimation and cost of the analysis.

To our knowledge, there is no previous work that investigates memory power man-

agement for virtual machines. In this thesis we take the findings presented in previous

work [8,12,13,18]—discussed above—and adapt them to virtual machine hypervisors

for the first time.



Chapter 3

Design

In this chapter we describe our design for a power-aware memory management system

for virtual machines. We take techniques from the reviewed articles in the previous

chapter, which are mostly based on processes in traditional operating systems, and

adapt these techniques to our environment. We identify a number of differences be-

tween traditional processes and virtual machines: Virtual machines have a large mem-

ory footprint that is known upon startup, where traditional processes have varying foot-

prints that are unknown on startup and can change dramatically during the runtime of

a process. Compared to traditional processes, virtual machines are consistently long-

lived. Our design also considers changes in memory technology since previous work

has been conducted.

3.1 Basic Architecture

The system consists of a host system, made up of a processor, a set of devices and

memory. On the host system we have one or more virtual guest systems that also

have their own virtual processor, devices and main memory. The host processor is

multiplexed in time. Each VM receives a share of the host processor time to run its

calculations. The devices are either also multiplexed in time (e.g. a network card) or

they are multiplexed in space (e.g. hard disks). In addition a single host device can be

given to a guest exclusively (e.g. an USB port and connected printer, or a serial line).

The focus of our work is the main memory. Multiplexing this resource in time is

disadvantageous as it would mean that we have to save and restore the virtual main

memory contents of each individual guest when switching between them. The logical

consequence is to multiplex the main memory in space.

The architecture and multiplexing techniques are illustrated in Figure 3.1. As de-

scribed in Chapter 2, we work in an environment where the host’s memory is comprised

of a set of memory nodes. Each node holds a certain range of the host’s main memory

and each node can be switched to an individual power mode. If we—as hinted at in

the figure—assign a separate memory node to each guest VM, we can switch off the

other nodes while this guest is running and—as a result—save energy. In Figure 3.1,

we could switch off the red and yellow memory nodes while the blue VM is running

and vice versa.

The goal for our changes to the memory management is to reduce the static energy

dissipation in the memory system. Our design considers a system that can run only one

15



16 CHAPTER 3. DESIGN

Figure 3.1: System overview showing a host and three guest VMs with associated

processors, devices and memory

process or—as in our case—one virtual machine at a time. In such a system reducing

the static energy dissipation is achieved by reducing the number of memory nodes

that are in use by each virtual machine. As a result, the scheduler can put all unused

memory nodes into a lower power mode when switching between VMs and thus save

energy.

In this chapter, we introduce and describe two basic techniques that help to ensure

that a minimal number of memory nodes are used by each VM.

First we describe a static allocation policy that decides from which memory node

a memory request on behalf of a certain VM should be satisfied. The allocation policy

is based on recommendations from the referenced articles in Section 2.3. We adapt the

Sequential First Touch Policy and—in Section 3.4.2 below—introduce a variant with

reservations that is specific to our environment.

In addition to the initial static allocation policy, our system gathers dynamic infor-

mation about a VM’s access patterns. We introduce and describe techniques to obtain

this information based on the virtualization page table used to map the virtual main

memory of a guest. Based on the access patterns we determine the working set of a

guest in Section 3.3.1. In Section 3.3.2 we describe a policy that improves the initial

placement of a VM’s virtual main memory using the information about the working set.

Based on this policy our design migrates pages between nodes in order to co-locate the

pages in the working set on fewer memory nodes.

In Section 3.4, we expand the focus of our design and identify additional oppor-

tunities to save energy by considering all active guests and interactions between them.

We show that the scheduling sequence of individual VMs can impact the energy con-

sumption and outline strategies to optimize the scheduling policy based on the working

set of individual guest. Section 3.4.3 describes a novel approach to handle the reduced

working set of idle VMs. We show that additional energy can be saved by duplicating

the idle working set. Finally, we discuss the impact of sharing pages between different



3.2. REDUCING ENERGY FOR A SINGLE VM 17

guests, in Section 3.4.4. We demonstrate that sharing pages—in general—is adverse to

our approach on saving energy.

Finally, in Section 3.5, we discuss the implications of our design on environments

other than the primary focus of our work. Section 3.5.1 describes para-virtualization

techniques that can be helpful to our work. The primary focus of this work is pure

virtualization without modifications to the guest. In Section 3.5.2 we revisit the de-

cision to focus on single processor systems and describe what is necessary to expand

our design to work with multi processor and Non-uniform Memory Access (NUMA)

systems.

3.2 Reducing Energy for a Single VM

To reduce the static energy used by a single guest, we want to use a few memory nodes

as possible to store the memory used by the guest. There are two ways we can assure

that: First, we design an allocation policy that ensures that all memory allocations on

behalf of the guest end up on as few nodes as possible. Our allocation policy is the same

as proposed in previous work [8, 12]—sequential first touch. The second possible way

to ensure that the guest uses as few memory nodes as possible, is a dynamic approach.

We determine the working set of a guest during runtime and use migration to co-locate

the working set on fewer nodes.

3.2.1 Allocation Policy

We use the Sequential First Touch allocation policy, described in the referenced articles

[8, 12, 13]. For every guest, we keep a list of active memory nodes. This list contains

all memory nodes from which the guest has previously allocated memory. For a new

allocation, we prefer memory from a node in this list over adding a new node. For

the first allocation and when no more memory is available in any node in the list, the

policy picks the memory node with the most free memory and adds it to the list. This

is to ensure that as many future allocations as possible can be satisfied from the newly

added node.

This simple, greedy policy tries to ensure that the memory for each guest spans

a minimum number of nodes. In addition, the policy results in a placement where

different guest occupy disjunct active node sets, under the precondition that initially

all nodes are empty and of equal size. Current technology usually provides memory

nodes of equal size. In this situation, the allocation policy uses the first empty node

for the first guest. As a result, the available memory in this node is reduced. The first

allocation from the second guest is then serviced from a different, empty node. The

allocation policy will service following requests for memory from the first guest from

the first node and requests from the second guest from the second node. The process

continues in a similar fashion until there is at least one allocation in each memory

node. At this point, the allocation policy will select the node with the least allocations

for a new guest. This means that the new guest shares a node with a guest that did not

allocate a lot of memory so far. The hope is that neither guest will allocate much more

memory in the future and their allocations can be satisfied from that same node.

With the allocation policy, our design can already save energy. The active node list

contains all memory nodes that need to be active for a given guest. As a result, all the

remaining nodes in the system do not have to be active while this guest is running. Our

design uses the active node list when the hypervisor switches between guests. We put



18 CHAPTER 3. DESIGN

all memory nodes in the active node set of the new guest into the active state, and all

remaining nodes into a low power state.

In the next section, we take a closer look at the memory that is used by a guest. We

identify different types of memory and describe how we apply our allocation policy to

these individual portions of memory.

3.2.2 Different Types of Memory

In our environment of full-machine virtualization there are different types of mem-

ory that “belong” to a VM. Independent of the particular virtualization technology the

memory for a VM is comprised of:

1. Virtual main memory

2. Emulator and hypervisor code and static data

3. Dynamic state and data associated with a VM

4. Memory management data structures—the virtualization page table hierarchy

This is illustrated in Figure 3.2. The figure shows two individual VMs, sharing code

and data, their own dynamic data, and virtual main memory. The virtual main memory

also includes the page tables inside the VM. In the hypervisor there is also static code

and data, a state for each VM, and the virtualization page tables. Based on the different

properties of each of these memory regions, our design will treat each type of memory

differently to obtain the best results. Previous work focusing on per-process energy

savings provides some guidance [8].

Figure 3.2: Different Types of Memory in the VM System

To allow sharing of the static memory regions, our design will keep the static code

and data of the emulator and hypervisor in a single node that is shared by all VMs. This



3.2. REDUCING ENERGY FOR A SINGLE VM 19

is analogous to the placement of shared libraries and kernel code in previous work. For

example, the Huang paper [8] explicitly keeps all the kernel code and data in a central

system node and allocates shared libraries from a special node set, which is shared by

all processes that use those libraries. The special function of the hypervisor code as the

central point for the memory management and all scheduling decisions is an additional

reason that these memory regions need to be on a central node that stays active. The

alternative—to place a copy of this data on each VM’s active set—is not only wasteful

in space, but also has adverse impact on performance. Previous work [8] shows that

the wakeup delay required to switch a memory node from a low energy state back to

standby can be hidden in the task switch. Their idea is to switch the power state of a

memory device as soon as the scheduling decision has been made. The delay that is

required to re-enable the node is then hidden behind the additional processing that is

required to execute the actual task switch. This approach only works if all the code

and data, which are required to perform the scheduling decision and the task switch,

are located on a central node that stays active. It should be noted that switching be-

tween virtual machines, in general, is more expensive than switching between normal

processes—additional registers need to be saved and restored and programming the vir-

tualized cr3 register is an expensive operation. We conclude that our implementation

can easily hide the wakeup delay in the task switch processing, based on the numbers

given in the referenced work.

In addition we need all the data that is required for the scheduling decision and

task switch to be on the central node as well. This accounts for most of the dynamic

state and data that is allocated by the hypervisor to manage a VM. This data is mostly

the state of the virtual CPU that needs to be copied to and from the real CPU when

switching between VMs, as well as bookkeeping and accounting. It should also be

noted that this is a comparable small amount of data.

For the virtualization page tables we decided to also place them on the central

system node. This decision was made for a number of reasons: Eventhough this data

structure is only used while the associated VM is running, the migration policy, which

we describe in Section 3.3.2, also accesses the VPT. The migration decisions are made

from a background task. If we place the VPT data on separate nodes for each VM,

the migration policy would have to enable these nodes to perform its duties. Doing

so would waste energy. The observation that it is customary to provide VMs with a

“normal”—power of two sized—amount of virtual memory, provides us with another

reason to keep the VPT data on the system node. As hardware main memory is usually

power of two sized, off-the-shelf operating systems are optimized to work under this

precondition. For the same reason, the memory power management units are power

of two sized, as well. The result of all these sizes lining up, is that the virtual main

memory of a single VM will just fit into a number of memory nodes. For example,

4GB of virtual main memory in a system with 512MB memory nodes fills up 8 nodes.

If we were to add the VPT data to the same nodes as the virtual main memory, the nodes

would overflow by the size of the VPT data and lead to fragmentation. The final reason

to place the VPT data in the system node is the fact that previous work [8] implicitly

keeps the page tables, which—in their environment—serve the same purpose as the

VPT in our environment, on a central node as well.

Finally, the only type of memory is the virtual main memory itself. In order to

apply the allocation policy to any memory at all, we will apply it to the virtual main

memory. In addition, the virtual main memory is the only type of memory that is

exclusively used by a single VM and not required by the hypervisor during the task

switch. The migration task (cf. Section 3.3.2) does need access to the virtual main



20 CHAPTER 3. DESIGN

memory to migrate the data, but does not need access to make the decision. If memory

sharing between VMs is enabled, we need special placement of the shared regions as

we describe in Section 3.4.4, but this is orthogonal to the initial placement performed

by the allocation policy.

3.3 Improvements for a Single VM

The allocation policy described herein above already saves energy compared to the

default buddy system [11] based allocation policy, that places an allocation on an,

in-effect, random node. However, as soon as a single VM has an active node set of

more than one node there is room for optimization. We have to consider the current

hardware trends to explain why that is. Since the RAMBUS technology, with fine-

grained memory management capabilities, has not met consumer acceptance, DRAM

memory power-management has become more coarse-grained in general. The current

market does not provide node sizes smaller than 512MB. As a result a VM’s virtual

main memory will usually only span a few nodes. In addition, we assume that any

meaningful computation does not keep all of a VM’s virtual main memory active all

the time. Instead there is a working set to consider. We define a VM’s working set

as the collection of pages in the VM’s virtual main memory that this VM has touched

recently. If we can keep the current working set on a single node out of the VM’s

active node set, we can further decrease the VM’s power dissipation as we can switch

the other nodes in the active node set to a lower power mode, as well. We call these

nodes idle–active nodes, while the nodes that hold pages that are part of the working

set are called active–active nodes.

An example of the intended outcome of this section is shown in Figure 3.3. From

the initial placement of a VM’s virtual main memory shown in Figure 3.3(a) we would

like to arrive at an improved placement shown in Figure 3.3(e). The first task to make

this possible is to find a way to distinguish between active and passive portions of the

memory in each node (c.f. Figure 3.3(b)). For that purpose we need to design a way to

detect the active pages for a VM. In a second step, we then have to find a policy for the

migration (c.f. Figure 3.3(c) and 3.3(d)).

3.3.1 Working Set Detection

A VM’s working set is the collection of pages that this VM used recently. There are

several ways to obtain this information. The straight forward approach is to trace every

memory access of the VM and keep an ordered list of all the pages, moving that with

the most recent access to the front of the list. Based on such a list, the working set is

easily obtained by taking the first N pages in that list. This, however, is very expensive.

Instead we model our working set detection in the same way as traditional operating

systems obtain information about unused pages in order to swap them out to secondary

storage. We know all pages that are in use by a VM from looking at the virtualization

page table. Every page that has a mapping in the table has been used by the VM at

some point in time. If we allow the table to grow until the whole virtual memory is

mapped, we lose the information which pages have been recently referenced. Instead

we restrict the number of mappings that are allowed. When another mapping needs to

be established and there are no more mappings allowed, we release the least-recently-

used mappings in order to make room. With this simple approach the pages that are

mapped in the virtualization page table directly match the working set.



3.3. IMPROVEMENTS FOR A SINGLE VM 21

(a) VM with Three Active–Active Nodes

(b) Active and Passive Memory

(c) First Migration

(d) Second Migration—Making Room in the Target Node First

(e) Final Placement—One Active–Active Node

Figure 3.3: Migrating Active Memory



22 CHAPTER 3. DESIGN

To avoid over-estimation of the working set, which would mean that we have to

migrate too many pages later on, we want to keep the number of allowed mappings to

a minimum. On the other hand, if we under-estimate the working set we will suffer a

performance hit. When the guest references a larger number of pages than we allow

to be mapped in a short amount of time, we will end up releasing and re-establishing

the same mappings over and over. In addition we lose information about the age of a

mapping as we have to throw out valid active mappings in order to accommodate new

ones. To balance between over- and under-estimation, we need a way to guess the size

of the actual working set at runtime. Our approach is to limit the rate at which we

reclaim least-recently-used mappings. If this rate exceeds a threshold, we allow more

mappings to be established instead of reclaiming an old mapping. As a result, when

the guest references a lot of pages in a short time the number of mappings grows—

and with it the size of the working set. In addition to this, we need a counter measure

that reduces the size of the working set again after we detect that the guest no longer

references many pages.

Once the page reclaim rate stays below the threshold for a certain amount of time,

our design uses the page reclaim mechanism to find any mappings that have not been

used recently. In order to reduce the size of the working set, we then release these

mappings.

Now that we have a way to find all pages that are part of a guest’s working set, we

need to transform this information in a way that helps us with our migration decision.

For this we need two things:

1. The number of active pages in each node.

2. The time each page has been active.

The number of active pages in each node is easy to obtain. We simply add an account-

ing mechanism to each place that adds or removes a mapping in the VPT. Tracking

the time for each page individually is infeasible—both in space and time. The virtual

main memory of a node consists of hundred thousand pages or more. Storing even a

small timestamp information for each of them quickly grows to a considerable amount

of data. In addition, the mechanism to add a mapping to the virtualization page ta-

ble, which is the point where we can add the accounting, is optimized for performance

and any additional processing has to be designed accordingly, in order to avoid perfor-

mance loss. Furthermore, such detailed information would also overwhelm any policy

decision based on that information, as the policy would have to consider every piece

of data. Instead of tracking the age of an individual page, we track the age of each

active–active node. By this we mean the time since the last page from that node has

been added to the working set. This information is easily obtained and it provides us

with enough insight to make a migration decision. Looking at a node’s age, we know

that all pages in that node have been active for at least that long. Once we consider the

active pages on a node to be “old enough” we can try to move them to a “better node”

in order to optimize the placement. The next section describes a policy to determine

when a node is “old enough” and how to find a “better node”.

3.3.2 Page Migration

In this section, we explain our design of a migration policy based on the information

from working set detection. We outline how our policy selects a source and target node

for a migration. The first step to make a migration decision is to find a node as the



3.3. IMPROVEMENTS FOR A SINGLE VM 23

source of the migration. The section “Break Even Time” below describes how our pol-

icy finds a candidate based on the working set detection. In the next section—entitled

“Node Selection Policy”—we then show how our design picks one of the candidates

for the source and how it finds a target node, as well.

Break Even Time

Looking at other work in power-management, we quickly conclude that “old enough”

will somehow relate to the break-even time—the time it takes to set off the additional

energy invested into the migration by the anticipated savings due to the smaller active–

active node set. The premise is two-fold here. On one hand we except that a page that

has been active for a long time will stay active. This means that we do not move the

page to an active–active node just so that it is removed from the working set shortly

thereafter. On the other hand we also hope that once a node has reached a certain age,

no other pages from that node will be added to the working set in the immediate future.

If this second part does not hold, we can not materialize the anticipated energy savings

as the node does not stay idle–active long enough. We argue that the second part holds

due to the fact that pages touched together for the first time—thus allocated from a

single node at first—will also be touched together later on. The evaluation will show

that this is true for some guest operating systems. Guest operating systems that exhibit

more random access patterns will not benefit from migration as much.

We found two possible ways to address this problem. One way is to increase the

time before we consider a node to be “old enough”, once we detect that an idle–active

node has switched back to active–active too soon. This is in line with other power-

management policies that use exponential back-off to increase the break-even time

once they detect violation. Another approach is to force the node to stay idle. This

can be done by moving pages on-demand. As the hypervisor receives a page fault

that would add a page from a newly idle–active node to the working set, it switches

that node back on, only to copy the requested page to another already active–active

node. We got the idea for this from initial evaluation results, which show that after a

successful migration we sometimes receive page faults for a few “late” pages from the

old node. While increasing the wait time would also catch these “late” pages, we found

that we can increase the savings by on-demand migration, as “late” pages happen rather

seldom for most tested guest operating systems. Once we did migrate the late pages,

the node usually stays idle for a long time. Switching early and the longer total idle

time then sets off the additional energy that was payed for the on-demand migration.

Our implementation of the on-fault migration has to keep statistics to ensure that there

is a benefit from the mechanism. Otherwise we will switch to a back-off mechanism

instead if runtime behavior demands.

To calculate a specific value for the break-even time we have to consider the partic-

ular hardware that we work with. The break-even time is the time before the additional

effort—in our case the cost of the migration—is set off by the savings that result of the

effort—in our case the energy saved by being able to put an additional node into a lower

power mode. The anticipated energy savings can be easily determined by looking at the

specifications of the DRAM module in question. The energy required for the migra-

tion is more complicated to calculate, however. We were unable to make meaningful

measurements on our target platform. We also failed to find exemplary measurements

to guide us. We therefore resort to worst case calculation base on the specifications of

the memory modules [19] and benchmark results.

The DDR3-1066 modules we use clock in at about 1.6 GB/s for uncached, page



24 CHAPTER 3. DESIGN

sized reads and writes. Or 2.4 ms to read or write a single page. Now we assume that

the node stays in the highest power mode for the whole duration of the copy. With this

we can determine an upper bound for the energy.

Ecopy = (VDDQ × (IDD4R + IDD4W − 2× IDD2N ))× 2.4× 10−6s

Where VDDQ is the supply voltage (1.5V), IDD4R/W the operating burst read/write

current and IDD2N the precharge standby current. The anticipated energy saving can

be calculated by:

Psave = VDDQ × (IDD2N − IDD6)

with IDD6 being the self refresh current. Thus the break-even time for a single

page migration is:

tbe = Ecopy/Psave

Size IDD2N IDD4R/W IDD6 Ecopy Psave tbe
(MB) (mA) (mJ) (mW) (ms)

512 220 940 40 5.2 270 19.3

1024 440 1520 80 7.8 540 14.4

2048 990 2205 180 8.7 1215 7.2

Table 3.1: Break-Even Time for different Memory Module Sizes

Table 3.1 shows the actual numbers for different memory device sizes. For our

implementation, we add another 40% to the calculated break-even time. This results in

27ms for 512MB nodes, 20ms for 1024MB nodes, and 10ms for 2048MB nodes. We

deem 40% a realistic, conservative estimate for the additional energy required in the

memory system.

With the break-even time, we can also further qualify when on-demand migration

is beneficial. Due to the additional overhead for powering the idle–active node up

and down for the migration we add a tenfold safety-margin and consider on-demand

migration to be beneficial if it happens at a rate of below 1/100ms for 2048MB nodes,

1/200ms for 1024MB nodes, and 1/270ms for 512MB nodes.

Node Selection Policy

With the break-even time, we now have a criteria to determine when a node is old

enough to be considered as the source node for a migration. The migration policy now

has to determine how to select a target node for the pages that we would like to migrate

off the “old node”. The first step for migration is to find an “old node” as the source

for a possible migration. With the above definitions it is easy to define the criteria for

a node to be considered: First we want to be sure that no page from the node has been

added to the working set recently. Then we need to consider how many pages are active

from that node in order to calculate the required time for the migration to pay off. The

policy multiplies the number of active pages in the source node with the break-even

time for a single page migration—as defined in the previous section—to arrive at the

break-even time for migrating all active pages. Once the last time a page from the

node has been added to the working set is longer ago then the calculated break-even



3.4. REDUCING ENERGY FOR ALL VMS 25

time, we consider the node as potential source for migration. Now we need to find a

target node where we can migrate the active pages to. We want to choose a node from

the VM’s active–active node set. Preferably one that will stay active for a long time.

In addition we have to find room in that node. To ensure that the target node will stay

active we prefer the node with the most active pages. This also helps to avoid expensive

migrations in the future. If there is enough room on the selected target node we can

perform the migration. Otherwise we have three choices:

1. Select another active–active node as the target.

2. Make room in the target node by moving idle pages to another node.

3. Defer the migration.

Our policy tries theses options in the given order. First, we attempt to find an

alternative target node in the active–active node set. Given our considerations (see

Section 3.2.2) about typical node sizes as compared to typical virtual memory sizes, we

conclude that it is unlikely that there are many potential target nodes. As we describe

above, the virtual main memory of a single guest will only occupy a few nodes. In

addition, as normal sizes for the virtual main memory align with the size of normal

memory nodes, all used memory nodes will typically be fully populated.

If the policy can not find an alternative target node, it then tries the second option.

Making room in the target node requires additional effort. We first have to move some

pages away from the target node. This additional effort leads to the third option. The

policy first calculates the total effort required for the migration. To obtain this, it mul-

tiplies the number of pages that it needs to move away from the target node with the

break-even time to migrate a single page. The resulting time is then added to the break-

even time to migrate the active pages from the source node. The policy then checks if

the total time is greater than the age of the source node. If this is the case, the migration

can take place, otherwise we choose the third option and defer the migration until the

source node is old enough.

The example given in Figure 3.3 shows the two scenarios. The first migration in

Figure 3.3(c) uses the first option. In the depicted case, node 1 is the first potential

target as it has the most active pages. Since there is no room left in node 1, however,

the policy checks for an alternative target. We find that node 2 is also part of the active–

active node set and has enough room to accommodate the active pages from the source

node.

Figure 3.3(d) shows the second possible case. There is not enough room for the

active pages in the target node—node 3. In addition, this is the only node with active

pages, so the policy does not find an alternative target node. Instead, we first have

to make room in the target before we can perform the original migration. The policy

moves the idle pages in the target node to another node in the active node set of the

VM. Finally, the original migration from node 1 to node 3 can take place.

3.4 Reducing Energy for All VMs

Up to this point, our design focuses on a single VM and how to minimize the energy

dissipation in the memory system of that one VM. In this section we take a step back

and look at the whole system in order to identify additional opportunities for saving

energy.



26 CHAPTER 3. DESIGN

3.4.1 Inter-VM Migration

As we mentioned above, the sequential first touch allocation policy places different

VMs on disjunct node sets until it runs out of empty nodes. While this is beneficial

at first—as it ensures that as many pages of a single VM end up in the same node—it

is not optimal on the global scale. Consider the two placements given in Figure 3.4:

In the static case each VM is assigned a separate node. While VM 1 is running, node

1 is active and node 2 can be put into a lower energy mode. While VM 2 is running,

node 2 is active and node 1 can be put into a lower energy mode. As a result, every

time we switch between the two VMs, we have to also change the energy mode of the

associated memory nodes. While the absolute energy cost for this operation is quite

small, it does accumulate over time. If we can instead arrive at a placement as shown

in Figure 3.4(b) where we combine the active pages of both VMs in a single memory

node, we can avoid the switching and thus save additional energy.

(a) Static Placement Policy (b) Dynamic Placement Policy

Figure 3.4: Different Placements for two VMs

From the example figure we can already observe that transforming the static place-

ment into the dynamic one is an expensive operation. We have to move the whole

working set of one VM to another memory node in order to materialize the benefit. In

addition, we will most likely have to make room in that node first. Furthermore, if we

want to leverage the possible savings from this optimization, we also have to modify

the scheduling to consider shared nodes as a criterion for its decision. Otherwise, in a

scenario with four VMs in which VM 1 and 2 are sharing a node and VM 3 and 4 are

sharing another node, a schedule that runs VM 1, VM 3, VM 2, VM 4 does not save

energy at all.

With all that in mind, we conclude that inter-VM migration is not a worthwhile

target for our experimentation. The break-even time to migrate a typical working set

of some 100MB while also making room on the target node is a matter of hours not

minutes or seconds. It is of note that in this case we are looking at a far smaller return-

of-investment than in the case above. In the intra-VM case the energy saving comes

from powering down a memory node, while in the inter-VM case the saving comes

from avoiding to switch power states. The absolute value of this saving is already small

and it is only comes into effect whenever the scheduling actually switches between

VMs (in common hypervisors between 10 to 100 times per second).

3.4.2 Sequential First Touch with Reservation

Still there is an opportunity for improvement to the sequential first touch allocation

policy as described above. In contrast to previous work that is concerned with “normal”

processes that allocate and free memory unpredictably, in our scenario we know the



3.4. REDUCING ENERGY FOR ALL VMS 27

size of the virtual main memory for each VM at start-up (or short thereafter). We can

use that knowledge to improve on the initial allocation policy in a way that will co-

locate VMs if their virtual main memory is smaller than the node size. As we argued

herein above already, with current hardware that provides rather big memory nodes it

is likely that we can fit the virtual main memory of more than one VM into a single

node.

(a) Basic Sequential First Touch after First Al-

location

(b) Basic Sequential First Touch Result

(c) Sequential First Touch with Reservations

after First Allocation

(d) Sequential First Touch with Reservations

Result

Figure 3.5: Allocation Policy Improvements

The modification to the allocation policy is simple: Instead of choosing the node

with the most free memory for the first allocation we choose the node with the least

free memory that is still able to hold the whole virtual main memory of the VM we

are allocating for. In addition we place a reservation on the node that indicates how

much of the nodes memory will be used in the future. Our idea is illustrated in Figures

3.5(a) to 3.5(d). This best-fit policy ensures the most amount of sharing between VMs

without causing unnecessary fragmentation.

3.4.3 Idle VMs

In a hardware consolidation setup, we expect that there will be times where many of

the active guests are idle for prolonged periods—several hours in some cases. In this

section we describe a policy to optimize the handling of idle guests.

While a VM is idle it has a very restricted working set. In the best case scenario

the active memory is a single code page that holds the idle loop and a few extra page

table pages to map that code page. In this situation it can be beneficial to migrate

the working set to the shared system nodes. Considering that the idle loop runs very

quickly before it issues a HLT instruction that switches back to the hypervisor, it is

beneficial to avoid switching memory power states. Alternatively, we can also use a

layout as shown in Figure 3.6. The policy copies the few pages that constitute the idle

working set to the shared node instead of migrating them. This way we can avoid to

migrate back and forth. Instead we have to synchronize the copies if we detect a write

access. We can achieve that by mapping these pages read-only in the virtualization



28 CHAPTER 3. DESIGN

Figure 3.6: Duplication for Idle Guests

page table and handling the synchronization on a write-fault. We argue, however, that

write access to pages that are truly part of the idle working set are uncommon.

This optimization pays off almost immediately, because the investment for copying

the idle working set is very small. The only challenges are to properly detect that a VM

is idle and to find the related working set. Our working set detection already includes

all the necessary tools. Once a guest becomes idle, the page reclaim mechanism will

quickly shrink the working set. Once the working set size drops below a threshold and

the scheduling detects that the guest does not fully exercise the allotted timeslice, the

policy can assume that the machine is idle.

3.4.4 Shared Pages

There is a great number of recent work [6, 15, 20] that is concerned with finding pages

that can be shared between two or more processes or VMs in order to save physical

memory. In a hardware consolidation environment there is a potential for this kind of

sharing, especially if several instances of the same operating system and/or application

are running on one host. We argue, however, that page sharing between VMs is not

beneficial for saving energy in the memory system.

The reasoning behind this is illustrated in Figure 3.7. In this scenario, only VM 1

and VM 2 truly benefit from the placement of shared pages, while VM 3 and VM 4

now need to activate an additional node in order to access the shared pages. We argued

earlier, that it is unlikely that more than two or three VMs are located on a single node.

In most cases we only have one VM per memory node and thus no direct benefit from

sharing with other VMs can be obtained. In addition, page sharing produces additional

costs every time a shared page is written to, as we then have to make a private copy of

the page.

Figure 3.7: Shared Pages



3.5. ADDITIONAL CONSIDERATIONS 29

Instead of placing the shared pages in the active node sets of the VMs we could

place them in the shared system node. While this allows all nodes to obtain the benefit

from the sharing, it produces additional costs. In order to set up a shared page, the

responsible process scans all mapped pages. If it finds a page with the same content

mapped into two or more different address spaces, it removes all but one copy of the

content and remaps all address spaces to point to the remaining copy instead.

If we want the shared page on the system node, we would have to copy the content

first. In addition, the system node is a restricted resource, as well. While a single

node of 512MB can easily hold the code and data, which is required by the hypervisor,

storing shared data in the system node would quickly exceed the size. As a result, we

would have to use an additional system node that has to be active for all guests.

It should be noted that para-virtualized approaches to page sharing—such as pro-

posed by Milos et al [15]—can help to save energy in the storage subsystem. Their idea

is to track data that is taken off secondary storage and copied to memory, to share the

resulting pages directly. This approach can substantially reduce the access frequency

to the storage and thus allow the system to switch off the harddisk. This, however, is

out of the scope of this work.

3.5 Additional Considerations

In this section we provide additional consideration for two scenarios that are out of

the primary scope of our design. First, we discuss how the use of paravirtualization

techniques could help to improve our policies. Then we discuss multi-processor and

non-uniform memory access systems as the host.

3.5.1 Using Paravirtualization Techniques

There are a number of paravirtualization techniques discussed in related work [20] that

can be used to optimize our work further. By paravirtualization we mean techniques

that modify parts of the guest operating system in a way that it is possible to com-

municate information between host and guest system. These techniques aim to either

improve policy decisions made in the host by obtaining knowledge only available to

the guest, or the paravirtualization helps to improve performance by circumventing

expensive emulation.

In particular the concept of memory ballooning can help to improve migration de-

cisions. The idea is to introduce a driver into the guest operating system that can put

memory pressure on the guest. It does so by allocating a chunk of memory from the

guest. This balloon driver then informs the hypervisor about the location of this mem-

ory. In turn the hypervisor now can use this memory otherwise.

For our context, we can use this mechanism to obtain information from the guest

operating system. We go through great length to determine which part of the guest’s

memory is idle. By inflating the balloon, the guest can decide on its own. We could

even improve this further. Traditionally, memory ballooning is used to free up memory

that is then given to other tasks. Our interest, on the other hand, is to find out the guest’s

idea of idle memory. If we can construct a paravirtualized driver that can provide us

with that information, the guest does not have to give up that memory.

In either case, we end up with a collection of pages that are considered idle by the

guest OS and we can use them to make room in an active–active node. In addition we



30 CHAPTER 3. DESIGN

can use this information before doing a migration in order to avoid moving pages that

the guest considers idle already.

Other paravirtualization techniques [2] are mostly concerned with access to de-

vices. By sharing buffer space between host, guest, and even the hardware in some

cases, these techniques can improve performance by a great deal. The shared mem-

ory that is used in these techniques would need special handling, too. If the hardware

is involved, the policy is restricted to certain parts of the physical address space so

that DMA can be used and the placement options are limited. Otherwise, future work

should investigate where to place these memory buffers to optimize both performance

and energy savings.

3.5.2 Multi-Processor Hardware and NUMA

In our design we do not consider multi-processor or non-uniform memory access hard-

ware. We assume that there is only one VM running at any given time and thus only the

memory nodes for that VM need to be active. With MP hardware this is no longer the

case. Instead we have to schedule the active VMs carefully on the available processors

in order to maintain energy savings. In addition we have to consider that scheduling

many VMs from the same memory node at the same time on different processors will

also mean that the CPUs will congest the memory node. This is bad from a performance

perspective. There is previous work [14,17] that can offer some guidance. These works

are concerned with identifying congested resources and affecting the schedule in a way

to mitigate the resulting performance hit and resource overuse. Future work should

consider a VMs active node set as an additional resource to input into the scheduling

mechanisms presented therein.

Non-uniform Memory Access hardware does not directly affect our work. For

these platforms we can simply divide the system into parts that then can be considered

as uniform. As we will show in the following chapter, our implementation borrows

mechanisms that are developed to deal with NUMA hardware. We also show that we

can extend these mechanisms in a way that leaves the NUMA topology information

intact. The only concern for future work in relation to NUMA systems is to find a suit-

able allocation policy that puts the VMs onto the available NUMA nodes and migrates

them between nodes when asymmetric load is detected.

3.6 Summary

In this chapter we have outlined our design for a power-aware memory management for

virtual machines. We have modified the sequential first touch allocation policy to our

environment. We have also shown our design of a light-weight working set detection

and have described a migration policy that optimizes the initial placement done by the

allocation policy, using the working set detection as input.

In addition, we have investigated supplemental techniques to increase energy sav-

ings. In the course of this investigation, we have excluded page sharing as a viable

approach to save energy in our environment. We have also described the impact of our

design on systems out of the primary focus of this thesis in order to put our approach

into context.

In the next chapter, we provide a prototypical implementation of our basic alloca-

tion policy, the working set detection and our migration policy.



Chapter 4

Implementation

In this chapter we describe our implementation of the mechanisms and policies de-

scribed in the design chapter before. We first introduce our environment and map the

abstract terms used during the design stage to the actual entities used in that environ-

ment. In Section 4.2 we describe two mechanisms that are prerequisites for the the

core of our implementation: selecting the physical location for an allocation, and page

migration between memory devices. We then describe our implementation of the se-

quential first touch allocation policy, the working set detection, and the page migration

policy.

4.1 Environment

Out test implementation is based on the QEMU-KVM virtualization suite. KVM [23]

is a hypervisor that is hosted inside the Linux kernel [24]. As such, KVM is neither a

type 1 hypervisor that is solely in control of and responsible for the hardware, nor a type

2 hypervisor that is completely hosted on an operating system as a normal application.

We use a recent KVM development tree based off of Linux 2.6.32. This virtualization

system is divided into two parts. The QEMU userland emulator package [25] provides

full machine emulation, but can work in combination with the Kernel-based Virtual

Machine (KVM) hypervisor. This hypervisor lives inside the Linux kernel space. In-

teraction between the userland and kernel part happens through a pseudo device and a

number of control operations (ioctls) that can be issued on the device.

4.1.1 Starting a VM

In order to start a VM, we start a QEMU userland process. This process first asks KVM

to create a VM inside the kernel. At this point KVM allocates the main resources to

hold the VM’s state and bookkeeping. The QEMU process then maps virtual mem-

ory to back the VM’s virtual main memory using the mmap() system call. At this

time no memory is allocated to back this virtual memory. The QEMU process then

informs KVM about size and (virtual) location of the virtual main memory using the

/dev/kvm pseudo device. It also informs the hypervisor about the guest physical lo-

cation that this mapping refers to. The hypervisor adds the information to the VM’s

resources for reference later on. The QEMU process also maps some of its code as

virtual main memory. This code is responsible for basic emulation such as BIOS func-

31



32 CHAPTER 4. IMPLEMENTATION

tions. Finally—after some more basic set up operations—the QEMU process asks

KVM to start execution of the VM. KVM sets up the CPU for virtualization and starts

execution of the boot code.

As the boot sequence processes and touches portions of the virtual main memory,

the KVM page fault handler is asked to resolve mappings of previously unmapped

guest physical frames. The page fault handler uses the processes described in the back-

ground chapter. First the hypervisor needs the host virtual address inside the address

space of the QEMU process that backs the requested guest physical page frame. KVM

locates this information with the data previously obtained through the pseudo device.

Once the virtual address is known, KVM resolves it to a host physical address using

the page table that manages the address space of the QEMU process. If this is the first

time that this page is touched, the kernel allocates a physical page frame at this point.

Otherwise, the PTE in the page table of the QEMU process contains the host physical

address. Now that both guest physical and host physical address are known, KVM can

enter the mapping into the virtualization page table and the virtualization can continue.

Subsequent accesses to the same guest physical frame will no longer cause a page fault.

Figure 4.1: Comparison between the abstract concepts used during the design chapter

and the actual entities in the implementation environment

Figure 4.1 illustrates how the concepts from the design chapter are mapped to actual

implementation details. In this picture we revisit the abstract concept of different kinds

of memory and compare them to actual entities in our implementation environment.

4.2 Prerequisites

In order to implement our placement strategy we have to control on which node an

allocation request ends up. In addition, we need a mechanism to move a mapped page

from one physical location to another.



4.2. PREREQUISITES 33

4.2.1 Leveraging the Linux NUMA Framework

In order to support Non-Unified Memory Access (NUMA) systems, the Linux kernel

already includes a framework that provides support for the required mechanisms. In

a NUMA system there are also memory nodes to consider. In contrast to our work,

these nodes are not power-management units, but memory that is attached to a (set of)

CPU(s). The goal of a NUMA aware allocation policy is to allocate memory for a

task—running on a certain CPU—from a memory node that is close to that CPU(s) in

order to avoid delay.

Figure 4.2: Example NUMA Layout

Figure 4.2 shows an exemplary NUMA topology with four CPU packages—two

cores each—and attached memory nodes. Due to the simplistic interconnect between

the individual packages, there are different NUMA distances to the memory nodes of

different CPUs. For example, CPU0 has a distance of zero to its own node 0, a distance

of one to node 1 and node 2, and a distance of two to node 3. For an allocation on behalf

of a task that runs preferably on CPU0/1 the NUMA policy would prefer memory from

node 0 over memory from node 1/2 over memory from node 3.

For our work we extend this framework by splitting a single memory node (in the

NUMA sense) into its power-manageable units. Figure 4.3 shows the result. We keep

the notion of NUMA distance, however. Doing so will allow future work to consider

NUMA and multi-processor systems. As a result, we end up with a set of (NUMA)

memory nodes that represent power-management units. Using this setup, we can apply

specially crafted NUMA allocation policies that consider power-management units.

The NUMA framework allows the system to attach an allocation policy to a number

of kernel entities. We can define a policy for a whole process, but we can also attach

a policy to a portion of a process’ address space. We will use the latter to attach our

Sequential First Touch policy to the parts of the QEMU process that map the virtual

main memory. In addition, the NUMA framework allows us to define a default policy.



34 CHAPTER 4. IMPLEMENTATION

Figure 4.3: Power-Aware NUMA Layout

We use this mechanism to put all allocations, which are not for virtual main memory,

onto the first node(s)—the shared system node(s).

The NUMA framework also includes a primitive for page migration. A single

function—migrate pages()—takes care of all the details. The input for this func-

tion is a list of pages to migrate and an allocation policy to find a new location for

the migration. The function takes care of all the details required for the migration. To

migrate a single page, it first unmaps the page from every address space that has a map-

ping to that page. It then calls the provided allocation policy to find a new destination

for the contents of the page. Finally, it copies the page to the new location and remaps

the page into the affected address spaces.

As NUMA hardware is on the rise, we expect that any modern hypervisor will also

have to provide some type of handling for these systems that can be used in a similar

fashion to implement our changes on other systems.

4.3 Implementation

With this background we now describe the actual changes to KVM to implement the

policies described in the design chapter. Due to time constrains we did not implement

all of the ideas presented therein.

4.3.1 Sequential-First-Touch Allocation Policy

The first building block, which we implement, is the basic sequential-first-touch alloca-

tion policy. With the help of the NUMA framework this was quite simple and straight

forward. As we mentioned earlier, the NUMA framework allows the kernel to attach

a policy with a process or a virtual memory area (VMA) inside the address space of a

process. Whenever a physical allocation for that task or VMA is required we end up in

a central function inside the NUMA framework. At this point we have access to a data



4.3. IMPLEMENTATION 35

structure that describes our policy. We can then use primitives that allocate a page on a

selected node to satisfy the requested allocation.

In the data structure that describes a sequential-first-touch policy, we only have to

store the active node set. We define a helper function pick node() that takes the

active node set as input and returns the node from which we should allocate next. This

function performs the policy as outlined in the design. Checking for the node with

the most free memory is an expensive operation. It requires synchronization and—

the way it is implemented in the Linux kernel at this time—a memory allocation and

copy. That is why, we modify the policy slightly for better implementability. Instead

of choosing a new node at every allocation, we store the last node that we used in

the policy data structure. pick node returns this node for subsequent allocations

without having to check for free memory again. Once there is no more free memory in

the node, the subsequent allocation primitive fails. At this point the allocation function

calls pick node again, this time forcing a check for free memory. This change does

not impact on the outcome of the policy, but significantly speeds up the process.

With this, we only need to attach the same policy data structure with all VMAs that

describe the virtual main memory of a single VM. This is easily done in the ioctl that

QEMU uses to inform KVM about the location and size of the virtual main memory.

We simply transform the information provided by QEMU into VMAs and attach the

VM’s policy data.

4.3.2 Working Set Detection

The basic implementation idea for the working set detection is already described in

Chapter 3. We consider all page frames that KVM has mapped in the virtualization

page table to be part of the working set. This makes it easy to obtain the information

that we need. All we have to do, is to add an accounting mechanism into the page fault

handler. Every time a mapping is added to the virtualization page table, the accounting

looks up the node, to which the host physical address belongs to, and increases the

active page count for that node. Without further changes this would result in a work-

ing set that contains all pages that were ever touched. By default, KVM allows the

virtualization page table to grow until all guest physical addresses are mapped.

In order to obtain a current working set instead, we limit the size of the virtualiza-

tion page table. As a result KVM now has to reclaim old mappings before it can add

new ones. We describe how KVM does the reclaim in the following section. By using

a limited VPT and reclaiming old mappings, the mappings in the VPT represent a true

picture of the working set. It is this reclaim mechanism that introduces the performance

concerns that we discussed during the design. If a VM has a current working set that

is bigger than what can be covered by the restricted virtualization page table size, the

reclaiming will result in a lot of page faults. In order to control the performance loss,

we have to limit the rate of page faults.

Virtualization Page Table Page Reclaim

The KVM code already includes means to reclaim pages allocated to the virtualization

page table in order to react to memory pressure. The existing implementation is meant

to be a least-recently-used approximation. Unfortunately—probably due to the fact that

the memory pressure hook is little exercised in normal operation—there were several

bugs in that mechanism. We replaced the existing code with a true LRU approximation

using a clock algorithm.



36 CHAPTER 4. IMPLEMENTATION

The basic idea is to add each virtualization page table page to the head of a list of

all VPT pages upon allocation. When we want to find a candidate for reclaim we scan

that list from the tail end. For every page we check the referenced bit on that page’s

parent PTE. If a reference has occurred since the last scan, we clear the reference bit

and move the page to the head of the list. Otherwise we have found a candidate. In

order to avoid overscan, we limit the scan window to find a single candidate to a quarter

of the whole list. If no candidate has been found in that window, we reclaim the first

page that is located at page table level. The reasoning behind this being the fact that

reclaiming a page at page directory level page would tear down a whole section of the

guest physical mappings that might still be active.

During this work we discovered that Intel’s implementation of the virtualization

page table does not set the referenced bit in the EPT page table entries. This defeats all

efforts to implement LRU. In order to overcome this problem we use the PTE’s access

bits instead. Now we check if the parent PTE has the access bits set and clear them

instead of the reference bit before moving the page. This means that we now have to

take an additional page fault due to the access violation on the next reference to that

page. Fortunately, this kind of page fault can be handled quite quickly as we only have

to walk the EPT in software up to the point where the missing access bits are and set

them. This is far from optimal, but does not impact our experimentation too much. In

contrast to Intel’s EPT, AMD’s nested page tables do set the referenced bit. It is our

hope that Intel will follow suite in future CPU revisions as this feature is helpful for

other tasks as well.

Limiting the Page Fault Rate

With the reclaim mechanism in place we can now leverage it to complete the working

set detection. Again, our goal is to balance the working set size against the rate of page

faults that are caused due to the analysis. We start off with a limit of 64 VPT pages.

This is the suggested minimum as otherwise the mapping might deadlock while doing

the nested page walk. 64 VPT pages are enough to map up to 122 MB of linear guest

memory, which is already a relatively large working set to consider. Due to safety

margins and the fact that we rarely access the guest virtual memory in a linear fashion,

the actual perceived working set size with 64 VPT pages is usually between 30 and 60

MB. This reduced size is small enough to handle for migration.

Now we need to balance this against the page fault rate. Instead of actually measur-

ing the page fault rate that would also include the page faults due to the page reclaim

hack described above, we instead gauge the page reclaim rate. This is indicative of the

actual page fault rate and happens less frequent. If this rate exceeds a threshold1 we

do not reclaim a page, instead we increase the number of VPT pages that we allow to

be allocated at a time. We limit the growth of the VPT to 50% the size that would be

required to map the whole guest virtual main memory, as we consider a working set of

more than half the available memory to be in violation of normal guest behavior.

With these changes that arise from our implementation of the working set detection,

we were able to successfully counter act performance degradation due to the working

set detection. However, if we only ever grow the working set, we will later have a

problem when we try to find a manageable part of the working set for migration. In

order to avoid this, we also need a mechanism to shrink the working set once the page

fault rate is back to a reasonable amount. Once the page fault/reclaim rate stayed below

1We find a page reclaim rate of less than 128 per second to be a good threshold during the evaluation.



4.3. IMPLEMENTATION 37

the threshold for some time2 we use the page reclaim mechanism to free up all VPT

pages that have not been accessed during the last two seconds. If the page fault rate

stays below the threshold, we can assert that the working set has indeed become smaller

and we can reduce the number of pages allocated to the VPT again.

4.3.3 Migration

For our experimentation, we only implement intra-VM migration. As discussed in the

design chapter, taking advantage of inter-VM migration requires substantial changes to

the scheduling that could not be implemented during our timeframe.

We decided that the migration should take place inside a background task instead of

inside the processing path of the virtualization. This approach avoids a too big impact

on the performance of the VMs. We created a kernel level thread that is in charge of the

migration. This thread is given a list of all active VMs. It cycles that list and performs

the migration policy for each of them before going to sleep for a while3 and starting

over.

We implement the migration policy in two stages: The first stage checks the current

VM’s working set for old nodes as defined in the design. The second stage of the

migration process takes care of the actual migration.

If no old node is found, the migration thread also takes care of shrinking the work-

ing set. It first checks if the VM occupies more than a single node—otherwise shrinking

the working set does not provide any benefit. If more than one node is active–active

for the VM, it then checks the recent page reclaim rate for the VM and—if the rate is

below the threshold—it reclaims a portion of the VPT pages. After doing the reclaim,

the process continues with the next VM in the list.

If the scan identifies an old node, the process continues by finding a target node

for the migration. Once we have a possible source and target node, we then check if

there is enough room in the target node to perform the migration. We then calculate

the break-even time for the migration based on the findings. If there is enough room,

we only need to consider the number of active pages in the source node. Otherwise

we have to add the number of pages that we have to move out of the target node to the

calculation. Once the break-even time is determined we compare it against the source

node’s age. If the node age is greater than the break-even time, we then move to the

next stage with source and target node, as well as the number of pages that we need to

move away from the target node, as input.

The first task of the second stage is to make room in the target node, if the previous

stage so requested. In order to do that, we rely on the default Linux LRU mechanism

that is used to find candidate pages to swap out to secondary storage. We ask this

mechanism to provide us with the desired number of least-recently-used pages in the

target node. This mechanism suffers from the same problem as our VPT LRU im-

plementation: The EPT page lookup does not set the referenced bits and thus the LRU

information is flawed. In order to combat this problem we use a hack that was proposed

on the Linux Kernel Mailinglist:

Before the Linux LRU scanner adds a page to its candidate list for swap-out, it

issues a mmu-callback to interested parties. This is already used by KVM in order to

unmap VPT mappings for the page. To avoid that a page that is mapped in the VPT

2We wait for one second without a page reclaim event and fewer than 64 page reclaims in the previous

second for this threshold.
3We find that a five second interval provides good results for the experimentation.



38 CHAPTER 4. IMPLEMENTATION

hierarchy is added to the candidate list, we use that callback to indicate that the page is

still in use and the scanner moves on to find other candidates.

Once we have a list of least-recently-used pages, we then migrate these pages away

from the target node. We use the normal allocation policy to find a new home for these

pages—explicitly avoiding a reuse of the target node.

If the migration succeeded, or we had enough room in the target node to begin

with, we then have to identify the active pages on the source node. To do so, we walk

the VPT in software comparing the mapped host physical addresses against the source

node. Each matching mapping is removed and the backing page is added to a list.

Once all pages are collected, we migrate the pages in that list to the target node and the

migration is complete.

Old Node Detection

As we mentioned in Section 3.3.1 of the design, it is infeasible to track the age of every

mapping in the VPT due to the performance and space impact. Instead we consider

the most recent mapping in each node as the age of that node. To reduce the impact

of this process even further, we move the age calculation of a node to the migration

task. This avoids taking a timestamp, which itself is an expensive operation compared

to the optimized page fault handling process. In order to do that we store the number

of active pages in each node on every migration scan. If the number of active pages for

a node has not increased since the last scan, we increase the node age by the migration

scan interval. While this does not give an exact value for the node age, it provides a

good lower bound to use for the migration decision.

We base the migration interval on half the break-even time for a usual migration

size. Preliminary experimentation has shown that we usually migrate about 10 to 40

MB worth of data independent of the workload. This corresponds to ten seconds for

the break-even time—respectively five seconds for the migration interval. While this

seems rather intrusive on first sight, remember that most of the time we only check the

working set data, conclude that a migration is not required, and return. In case we do

not actually make a migration decision, the processing consists only of a few loads and

branches.



Chapter 5

Evaluation

In this chapter we use our implementation, which we described in Chapter 4, in or-

der to evaluate our design. We show two things in the following: First we show that

our changes to the memory management do not impact on performance in a negative

way. In fact, we show that there is no measurable difference. Then, we provide an

approximation on how much energy can be saved with our changes. As we discussed

already, we were unable to directly measure energy savings due to hardware shortcom-

ings. Instead we use a trace driven analysis to provide a lower bound for the possible

savings.

In the following sections, we first describe the hardware platform for our experi-

mentation. We then explain how we obtain trace information for analysis further down.

We also present a simple memory energy model based on the data that we obtain from

the traces. In Section 5.3, we describe the different workloads that we use during the

analysis. We present performance measurements for a number of benchmarks, com-

paring the unmodified baseline with our changes, in Section 5.4. Finally, in Section

5.5, we evaluate possible power savings based on the energy model.

5.1 Hardware Setup

We use an Intel Core i7 system. It was our initial hope that this setup will not only

provide us with the required advanced virtualization features, such as the enhanced

page table, but also allow for hardware memory power-management. The memory

controller embedded into the Core i7 CPU provides three independent channels with

up to four memory nodes each. Unfortunately, the controller makes use of memory

interleaving by default. As a result, a single physical page frame is distributed over

all available memory nodes and we can not switch off any nodes. We tried to disable

the memory interleaving with the help of MSI—the vendor of the mainboard for our

evaluation system. Unfortunately, these efforts were to no avail, despite much help

from the vendor for which we are truly thankful.

Our system is equipped with three memory devices of 2048MB. We use the NUMA

framework to divide the resulting 6GB of main memory into nodes of different sizes.

This way we can evaluate our changes for different memory layouts.

39



40 CHAPTER 5. EVALUATION

5.2 Trace Driven Analysis

Our goal is to compare the energy consumption of the system with our changes to

that of the unmodified base. We want to simulate a simple, reactive hardware power

management based on the access patterns that result of the default allocation policy.

In lieu of measuring the actual power consumption of the memory system, we

would like a trace of the memory accesses that the host system performs on behalf of

the guests. With that information we can then drive a model to arrive at the required

power for the observed access pattern. Unfortunately, it is not easy to obtain this infor-

mation without incurring a massive performance penalty that results in a completely

different run-time behavior. Otherwise we would use the memory access trace to drive

our working set detection, as well. Instead, we have to find an approximation. Our

working set detection is one possible approximation that we can use. However, we

must make sure that we avoid overestimation of the working set as this would unfairly

bias the analysis towards our design. If we overestimate the working set we would

consider more nodes active than are actually in use. Thus we explicitly choose the

trace points and analysis in a way that we underestimate the working set. If we can

show energy savings with an underestimated working set we can be sure that the actual

savings will be greater.

5.2.1 Trace Implementation

To obtain trace events from the hypervisor in the kernel, we need a facility that exports

the trace data to the userland. Fortunately, the Linux kernel already includes a powerful

tracing framework. This framework allows us to define trace records that are stored in

a circular buffer inside the kernel. This buffer is exported to userland where it can be

read and written to secondary storage for analysis. The mechanisms used to generate

the trace records and to export the data to userland are designed extremely lightweight.

In addition we use the multi processor capabilities of our experimentation system to

avoid most of the impact of the tracing on the experiments. We do so by pinning the

VMs and all related tasks and processes on a single processor (as we want to simulate

a single CPU for the experiment). The export of the traces takes place on a different

processor that is mostly independent of the one where we run the experiment.

5.2.2 Trace Events

For our model, which we will describe in more detail further below herein, we need to

trace the following events:

VM Scheduling We need to know when and which VM is scheduled to run on the

CPU.

Memory Accesses We need to know the physical address (or at least the memory

node) for each memory access that ends up on the memory bus.

Migration We need information on the migrations we perform.

The first type of trace—the scheduling information—is already implemented in Linux

and provides all the necessary data: A timestamp, and the process ID for the previous

and the next running task.

Exporting information about the activities of the migration task is also a simple

matter of defining a new trace record that holds the required information and calling



5.2. TRACE DRIVEN ANALYSIS 41

a special function in the migration task. The information that we need to drive the

model consists of: The VM for which we are migrating, the number of pages that are

migrated, and the source and target node.

Tracing memory accesses—on the other hand—is a more complex problem. We

considered a number of possible approaches to obtain this data.

Performance Monitor Counters Recent processors provide a number of special reg-

isters [22] that can be programmed to count performance critical events in order

to profile a workload. In particular, there is a performance event called “Last

Level Cache Miss” that provides exactly the information we are interested in.

This event happens whenever a memory access can not be satisfied by the cache

hierarchy and thus ends up on the memory bus. Unfortunately, counting this

event alone does not provide us with enough information for our trace. We need

the physical address for each event of this kind. This information is not provided

by the performance counter. We can, however, define a threshold for the counter.

Once this threshold is reached the hardware issues an interrupt and we can look

at the processor state to figure out the instruction that caused the memory access.

Again, this information—while valueable for performance profiling—does not

help our analysis as the cause of the actual memory access can be any number of

things. Either it is the instruction itself that is not cached, or it can be any of the

operands of the instruction, or it can be the page table information to back any of

these. In summary, while Performance Monitor Counters are a valueable tool for

some situations, the current implementation of them does not help our analysis.

Page Fault Driven Analysis As with our working set detection, another possible way

to obtain memory access patterns is tracing page faults. This has the advantage

that—in order to handle the page fault—we already know the physical address

for the access. The backdraw is that a page fault does not necessarily correspond

to a real memory access. Especially if we try to trace all memory accesses by

eagerly unmapping data, the data might still be stored in the cache hierarchy and

the access does not end up on the memory bus. In addition, handling page faults

is an expensive operation. We specifically designed our working set detection to

avoid unnecessary page faults for that reason.

For the analysis we use a page fault driven approach. In fact, we use accounting

that is very similar to our working set detection. In order to avoid overestimation

of the working set, we employ a more aggressive page reclaim strategy. While the

page reclaim rate due to page faults is below 128 per second, a thread—running every

500ms—reclaims all VPT pages that have not been referenced during the previous

500ms. In addition, we consider the VPT pages themself to be part of the working set.

This is different from the normal working set detection, where we keep the VPT pages

on the—always active—system node. This approach seems to bias the analysis towards

our modification, at first. Remember, however, that we do account for the system node

when we calculate the energy consumption of the system with our changes. In contrast

to that, in the baseline accesses to the hypervisor code and data are not recorded or

accounted for.

We define a new trace record to track the working set as perceived in the hypervisor.

The event record contains: A timestamp, a node identification and the information

whether the node is added to or removed from the working set.



42 CHAPTER 5. EVALUATION

5.2.3 Energy Model

We use a similar model as used in previous work [8]. The basic idea is to use the

memory access patterns obtained through the trace and infer the power state of the

individual nodes from that information.

U Set of all guests in the system

V Set of all memory nodes in the system

tactivei,j Total time that node j is active while guest i is running

tidlei,j Total time that node j is idle while guest i is running

mi Total number of migrations performed on behalf of guest i

Pactive Power dissipation of a node in active power state

Pidle Power dissipation of a node in active power state

Emigration Energy required to migrate a single page between two nodes

Table 5.1: Input Data Used in the Energy Model

The static energy used in the memory system can be calculated by a simple formula:

E =
∑

i∈U

∑

j∈V

(tactivei,j Pactive + tidlei,j Pidle) +
∑

i∈U

(miEmigration)

The data used in this model is shown in Table 5.1. V , Pactive, Pidle, andEmigration

are parameters of the system setup and provided to the analysis as such. The analysis

gathers information about the running guests ∈ U through the scheduling traces. We

calculate t
active/idle
i,j and mi based on the trace data. For every guest ∈ U we keep the

set of active nodes used by the working set of the guest. For every scheduling event

in the trace that starts or stops a guest, we modify the active and idle times for that

guest based on the current active node set. For every working set change event, we

recalculate the idle and active times based on the current active node set, before we

modify the active node set for the affected guest. The final parameter (mi) is directly

reported in the trace event.

In the referenced article [8], the authors calculate the total energy instead of just

the static energy. They do so by calculating a memory activity factor obtained through

performance counters. The activity factor is calculated by dividing the number of ob-

servered memory transaction by the number of possible memory transactions in a given

time interval. This factor is then multiplied with the power dissipation for a read or

write operation. We argue, however, that this calculation does not reflect the actual

energy usage, as the actual energy requirement for read and write is again dependent

on the node that is the destination of the operation. This is not reflected in the model.

In addition, our changes have no impact on the dynamic energy consumption and thus

we do not consider it for our analysis.

5.3 Benchmarks

In this section we describe the workloads used during this evaluation. We set up a

number of guest machines with freely available open source operating systems. Inside

the guest machines we run two different types of workloads. We argue that the main

difference for memory behavior in our environment is caused by the guest operating

system and not by the workload that runs inside the guest.



5.4. PERFORMANCE 43

5.3.1 Workloads

In order to run the same workload on different operating systems, we selected the

NetBSD kernel build as the first workload. The NetBSD build systems allows us to

build the same compiler suite and toolchain on any target. The build system then uses

the previously compiled tools to build a kernel. This way our evaluation can focus on

the differences in the guest operating system that runs the build. A source compilation

workload is a good approximation of a typical mixed workload: Some of the tasks

performed during a build are I/O-bound. For example, dependency tracking and pre-

processor runs. The actual compilation is CPU-bound, while linking, symbol resolution

and some optimizations are memory-bound.

As the second workload, we use a preconfigured guest image that can run a se-

lection of SPEC CPU2006 [26] benchmarks: 429.mcf, 444.namd, 458.sjeng, 470.lbm,

435.gromacs, 456.hmmer, and 462.libquantum. A detailed analysis of the memory

footprint and access behavior of these benchmarks can be found in an article by Gove

from 2007 [7]. The memory access patterns resulting of these benchmarks are distinct

and help to test our migration policy against a number of different cases: Both fast and

slow sequential, as well as random access to large and small working sets.

5.3.2 Guest Operating Systems

For the NetBSD source compilation, we use three different guest operating systems:

Debian 5.0.3 x86 64

FreeBSD 7.2 x86 64

OpenSolaris 2009.06 x86 64

We installed all guest on a 8GB pre-allocated raw disk using the original installation

CD and default settings. In addition, each guest is given a 1MB configuration disk that

we generate on the host. This disk contains the sequence of benchmarks that we want

the guest to perform. In addition, we can define a sleep time between individual runs

inside the guest. On startup, the guest reads the information from the configuration

disk and performs the benchmarks accordingly. Once all work is done, the guest writes

the performance information—obtained by the time(1) utility—for every run into

the configuration disk and shuts down the VM. This setup allows us to perform any

sequence of benchmark runs in an automated fashion, and to obtain the performance

information on the host through the configuration disk.

In addition we use a previously set up Linux 2.6.26 x86 32 installation that runs

the SPEC CPU2006 benchmarks described above. We use a similar setup as for the

other guest in order to run any sequence of SPEC benchmarks with additional sleep

time between individual runs.

5.4 Performance

In Chapter 4, we identified two configuration parameters for our implementation that

can impact on performance: The page reclaim rate and the rate at which we resize

the virtualization page table in case we detect a low page reclaim rate. We choose

these parameters in order to have minimal impact on performance. We started with

a page reclaim rate of 1024 per second and divided by two until we did not see any



44 CHAPTER 5. EVALUATION

measureable impact on our benchmarks. Using this method we arrived at 128 page

reclaims per second as the threshold. In addition, we found that resizing the VPT in

face of a low page reclaim rate did not impact performance significantly. This is of

particular interest, as we attempt to resize the VPT every 500ms for the baseline trace

comparison.

 220

 225

 230

 235

 240

 245

s
e

c
o

n
d

s

base

trace

mempm

(a) Debian

 210

 215

 220

 225

 230

 235

 240

s
e

c
o

n
d

s

base

trace

mempm

(b) FreeBSD

 270

 275

 280

 285

 290

 295

 300

s
e

c
o

n
d

s

base

trace

mempm

(c) OpenSolaris

Figure 5.1: NetBSD Kernel Build Performance under different guest operating systems

Figure 5.1 shows the NetBSD kernel build times in the different guest operating

systems. Each plot gives the median1, upper and lower quartiles2 centered around the

average, as well as minimum and maximum for each environment. These numbers

are calculated from 25 runs in each environment. The “base”-environment is the un-

modified KVM source, “trace” refers to the environment used for comparison in the

following section, and “mempm” denotes our changes. The slight absolute difference

between “base” and “mempm” in the figures is due to the tracing, not the actual changes

to the memory management. The fact that the difference is only about 1% and in some

cases not even of statistical relevance, shows that the trace is truly lightweight and does

not impact on the runtime behavior.

The difference between the “mempm” and “trace” environment is due to the more

aggressive VPT resizing. The penalty for the traces is 1.3% on average. We account

for this penalty, by modifying t
active/passive
i,j accordingly when we calculate the energy

consumption in the “trace” environment.

Figure 5.2 shows the performance of the various SPEC benchmarks. In these plots

we use the arithmetic average over all runs as the reported time already excludes all in-

teraction with secondary storage. Again, the difference between “base” and “mempm”

is below 1% and in most cases not of statistical relevance. The mcf benchmarks exhibits

the biggest variance. This is also the benchmark with the biggest memory footprint,

and the most memory bound one. CPU bound benchmarks (e.g. gromacs), in contrast,

exhibit very little variance.

The difference between “mempm” and “trace” is between 1.7% and 2.8% and we

account for this difference when calculating the energy consumption below.

5.5 Power Savings

We use the trace data for different benchmark runs and the memory model from Section

5.2.3 to plot the cumulative static energy used during a run. The plots are given relative

1We prefer the median over the arithmetic average in order to exclude the first run that populates buffers,

instead of manually excluding these runs.
2We use the t-distribution to calculate quartiles.



5.5. POWER SAVINGS 45

 460

 465

 470

 475

 480

 485

 490

 495

s
e

c
o

n
d

s

base

trace

mempm

(a) mcf

 654

 656

 658

 660

 662

 664

 666

 668

 670

s
e

c
o

n
d

s

base

trace

mempm

(b) namd

 725

 730

 735

 740

 745

 750

s
e

c
o

n
d

s

base

trace

mempm

(c) sjeng

 392

 394

 396

 398

 400

 402

 404

s
e

c
o

n
d

s

base

trace

mempm

(d) lbm

 1080

 1085

 1090

 1095

 1100

 1105

 1110

 1115

s
e

c
o

n
d

s
base

trace

mempm

(e) gromacs

 1140

 1145

 1150

 1155

 1160

 1165

 1170

s
e
c
o
n
d
s

base

trace

mempm

(f) hmmer

 720

 725

 730

 735

 740

 745

s
e
c
o
n
d
s

base

trace

mempm

(g) libquantum

Figure 5.2: Performance of the different SPEC benchmarks in our three test environ-

ments

to the maximum static energy when all host nodes are active all the time. We compare

to that, the static energy use with the baseline and with our changes. In the following,

we discuss different scenarios and point out where and how our changes save energy.

5.5.1 SPEC CPU2006

The plots in this section refer to a benchmark run with a single guest running the SPEC

benchmarks. The guest is given 4GB of virtual main memory. After each individual

SPEC run, the guest sleeps for 60 seconds before starting the next run. We run the

tests in the same order as mentioned above: 429.mcf, 444.namd, 458.sjeng, 470.lbm,

435.gromacs, 456.hmmer, and 462.libquantum.

Figure 5.3 shows the cumulative energy used for the SPEC tests on a host with

twelve memory nodes, 512MB each. In this test case, our modification uses over 60%

less static energy than the maximum, and about 29% less than the baseline. In addition,

this test case shows the effect of the migration. 2600 seconds into the run “mempm

base” needs to add another node to house the virtual main memory and the energy



46 CHAPTER 5. EVALUATION

 0.3

 0.35

 0.4

 0.45

 0.5

 0.55

 0.6

 0  1000

 2000

 3000

 4000

 5000

 6000

c
u

m
u

la
ti
v
e

 s
ta

ti
c
 e

n
e

rg
y

n
o

rm
a

liz
e

d
 t
o

 a
ll 

n
o

d
e

s
 a

c
ti
v
e

runtime [s]

baseline
mempm base

mempm migration

Figure 5.3: A single guest with 4GB of virtual main memory running all SPEC

CPU2006 benchmarks, spaced by 60 seconds with 512MB nodes

consumption starts to increase. In contrast to that, “mempm migration” manages to

keep the virtual main memory on fewer nodes and saves additional energy.

 0
 0.5

 1
 1.5

 2
 2.5

 3
 3.5

 4
 4.5

 5

 0  1000

 2000

 3000

 4000

 5000

 6000

c
u
m

u
la

ti
v
e
 s

ta
ti
c
 e

n
e
rg

y
n
o
rm

a
liz

e
d
 t

o
 a

ll 
n
o
d
e
s
 a

c
ti
v
e

runtime [s]

baseline
mempm bad

Figure 5.4: Same test run as 5.3 showing an implementation error in an early version

Figure 5.4 show the same test case as above, but with an early version of our im-

plementation. This version had a faulty implementation of the exponential back-off

mechanism that we discuss in Chapter 3.3.2. As a result the migration policy contin-

uesly migrates a small amount of memory from one node to another, but the source

node of the migration does not stay idle long enough to pay for the migration cost. The

energy consumption quickly grows to up to five times the basic—all nodes active—

energy usage. We only found this bug when we ran the complete SPEC benchmarks as

the gromacs benchmark—starting around 2000 seconds into the run—exhibits a mem-

ory access pattern that aligns with the break-even time.

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0  1000

 2000

 3000

 4000

 5000

 6000

c
u
m

u
la

ti
v
e
 s

ta
ti
c
 e

n
e
rg

y
n
o
rm

a
liz

e
d
 t
o
 a

ll 
n
o
d
e
s
 a

c
ti
v
e

runtime [s]

baseline
mempm base

mempm migration

Figure 5.5: A single guest with 4GB of virtual main memory running all SPEC

CPU2006 benchmarks, spaced by 60 seconds with 1024MB nodes



5.5. POWER SAVINGS 47

In addition, we ran the same test on a host configuration with six nodes, 1024MB

in size (cf. Figure 5.5). While in this scenario the modified version still reduces

the static energy consumption by 55%, the baseline consumes as much energy as the

maximum—all nodes active—case. The reason for this is that the baseline allocation

policy now has fewer nodes to choose from. As a result, the—in-effect—random node

selection of the buddy system allocator is more likely to place at least one page of the

working set into every node. Hence the baseline must keep all nodes active. In this

case there is no difference with migration, as no additional node is required late in the

run.

5.5.2 NetBSD Source Compilation

In this section we discuss benchmark runs of the NetBSD kernel compilation with the

different guest operating systems.

Debian

Figures 5.6 shows the cumulative energy consumption of a single Debian guest running

the NetBSD kernel compilation test. The VM is given 4GB of virtual main memory

and the host is setup with twelve nodes of 512MB and six nodes of 1024MB.

In the default setup, Debian uses very little memory for the buffer cache. As a

result, the test has a memory footprint of under 512MB. That is why “mempm base”

and “mempm migration” do not differ in these plots. The guest only uses a single node.

The resulting energy savings are 67% for the 512MB nodes and 55% for the 1024MB

nodes. The baseline is at about 59% of the energy consumption with all nodes active

for both cases.

 0.3

 0.35

 0.4

 0.45

 0.5

 0.55

 0.6

 0  100
 200

 300
 400

 500
 600

 700
 800

 900
 1000

c
u
m

u
la

ti
v
e
 s

ta
ti
c
 e

n
e
rg

y
n
o
rm

a
liz

e
d
 t

o
 a

ll 
n
o
d
e
s
 a

c
ti
v
e

runtime [s]

baseline
mempm base

mempm migration

(a) 512MB nodes

 0.44
 0.46
 0.48

 0.5
 0.52
 0.54
 0.56
 0.58

 0.6

 0  100
 200

 300
 400

 500
 600

 700
 800

 900
 1000

c
u
m

u
la

ti
v
e
 s

ta
ti
c
 e

n
e
rg

y
n
o
rm

a
liz

e
d
 t
o
 a

ll 
n
o

d
e
s
 a

c
ti
v
e

runtime [s]

baseline
mempm base

mempm migration

(b) 1024MB nodes

Figure 5.6: A single Debian guest with 4GB of virtual main memory running the

NetBSD source compilation spaced by 60, 120 and 240 seconds



48 CHAPTER 5. EVALUATION

OpenSolaris

The OpenSolaris compilation runs, show in Figure 5.7, are similar to that of Debian.

The only difference is due to the slow start of the system. In addition, OpenSolaris

exhibits a slightly less random access pattern that reduces the energy consumption in

the baseline.

 0.3
 0.32
 0.34
 0.36
 0.38

 0.4
 0.42
 0.44
 0.46
 0.48

 0  200
 400

 600
 800

 1000

 1200

c
u

m
u

la
ti
v
e

 s
ta

ti
c
 e

n
e

rg
y

n
o

rm
a

liz
e

d
 t
o

 a
ll 

n
o

d
e

s
 a

c
ti
v
e

runtime [s]

baseline
mempm base

mempm migration

(a) 512MB nodes

 0.44
 0.46
 0.48

 0.5
 0.52
 0.54
 0.56
 0.58

 0.6

 0  200
 400

 600
 800

 1000

 1200

c
u
m

u
la

ti
v
e
 s

ta
ti
c
 e

n
e
rg

y
n
o
rm

a
liz

e
d
 t

o
 a

ll 
n
o
d
e
s
 a

c
ti
v
e

runtime [s]

baseline
mempm base

mempm migration

(b) 1024MB nodes

Figure 5.7: A single OpenSolaris guest with 4GB of virtual main memory running the

NetBSD source compilation spaced by 60, 120 and 240 seconds

FreeBSD

Figure 5.8 shows the source compilation benchmark, this time with FreeBSD as the

guest operating system. In contrast to Debian and OpenSolaris, FreeBSD uses all avail-

able memory as buffer cache in the default configuration. Every block that is read from

or written to secondary storage is cached in memory. While some of the cached data is

reused—and thus remains part of the working set—other parts of the cache are written

once and never touched again. In this situation, migration is most effective. The re-

sult is up to 20% less energy consumption with migration enabled in the test case with

512MB nodes.

The test case with 1024MB nodes (cf. Figure 5.8(b)) illustrates the break-even time.

Initially, both modified versions use comparable amounts of energy until—250 seconds

into the run—the first migration is performed. Due to the bigger nodes, the number of

pages that need to be migrated is relatively big. We see a notable spike in the energy

usage of “mempm migration” caused by the migration. At this point the energy con-

sumption of the version with migration is higher than that of “mempm base”. During

the following 100 seconds, however, the energy consumption of “mempm migration”

drops as the migration successfully decreased the number of active–active nodes. In

contrast to that, the energy consumption of “mempm base” continues to rise. About



5.5. POWER SAVINGS 49

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0  100
 200

 300
 400

 500
 600

 700
 800

 900
 1000

c
u

m
u

la
ti
v
e

 s
ta

ti
c
 e

n
e

rg
y

n
o

rm
a

liz
e

d
 t
o

 a
ll 

n
o

d
e

s
 a

c
ti
v
e

runtime [s]

baseline
mempm base

mempm migration

(a) 512MB nodes

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0  100
 200

 300
 400

 500
 600

 700
 800

 900
 1000

c
u

m
u

la
ti
v
e

 s
ta

ti
c
 e

n
e

rg
y

n
o

rm
a

liz
e

d
 t
o

 a
ll 

n
o

d
e

s
 a

c
ti
v
e

runtime [s]

baseline
mempm base

mempm migration

(b) 1024MB nodes

Figure 5.8: A single FreeBSD guest with 4GB of virtual main memory running the

NetBSD source compilation spaced by 60, 120 and 240 seconds

50 seconds after the migration, the energy consumption for both cases are equal—the

break-even time has been reached. At second 450, we see another energy spike due to

migration. This time even more pages than before are migrated. We also see that this

first migration was unsuccessful—the energy consumption for “mempm migration”

keeps rising after the spike. This means that additional pages from the source node of

the migration have become active and we enter the exponential back-off. Another 20

seconds later, the back-off time has passed and the policy attempts another migration.

This time only a few pages are migrated, but the migration is successful and from that

point forward the energy consumption for “mempm migration” drops again.

The difference in possible energy savings between 512MB and 1024MB memory

node size is apparent. While “mempm base” can save 30% static energy with 512MB

nodes, there is no difference with 1024MB nodes in the long run. With migration

enabled, our modification is still able to save between 15-20%, however.

Migrate on Fault

Figure 5.9 shows the effect of migration on fault. We compare the version without mi-

gration, the basic migration without migrate on fault and the final version with migrate

on fault enabled. The version with migration, but without migrate on fault, initially

performs a number of migrations. The persistent load, however, results in many late

accesses that re-activate the source node. The policy enters the exponential back-off

and does not attempt further migrations. In the long run, the basic migration per-

forms similar to the version without migration. In contrast to this, the version with

migrate on fault manages to actually reduce the active–active node set. The effect is

most evident for the migration at around 250 seconds. The policy performs a rather

large migration—there is a noticeable spike in the energy consumption. For the next



50 CHAPTER 5. EVALUATION

250 seconds after the migration, there are a number of late accesses and there is no

immediate drop in the energy consumption. Finally, the late accesses stop, the node

becomes truly idle, and the energy consumption drops due to the reduced active–active

node set. All other tests herein that mention migration were performed with migrate

on fault activated.

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 0  500
 1000

 1500

 2000

 2500

 3000

 3500

 4000

 4500

c
u

m
u

la
ti
v
e

 s
ta

ti
c
 e

n
e

rg
y

n
o

rm
a

liz
e

d
 t
o

 a
ll 

n
o

d
e

s
 a

c
ti
v
e

runtime [s]

mempm base
mempm no MoF

mempm MoF

Figure 5.9: A single FreeBSD guest with 4GB of virtual main memory running the

NetBSD source compilation 20 times without sleeping between runs on 512MB nodes

5.5.3 Workloads with Multiple Guests

Our design and implementation focus on a single processor environment. At every

point of time only one guest is active and only the active guest causes memory accesses.

In addition, our changes ensure that the memory energy used by each individual guest

are optimized to reduce energy. Thus, we do not expect a different outcome from

running more than one guest at a time. In this section we show that this is the case

by running three guests on the same processor. We choose the FreeBSD and Debian

kernel compilation, together with the SPEC benchmark guest. We did not include the

OpenSolaris guest in these tests as OpenSolaris is unable to really shut down the guest,

which makes automated testing difficult.

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 0  1000

 2000

 3000

 4000

 5000

 6000

 7000

 8000

c
u
m

u
la

ti
v
e
 s

ta
ti
c
 e

n
e
rg

y
n
o
rm

a
liz

e
d
 t

o
 a

ll 
n
o
d
e
s
 a

c
ti
v
e

runtime [s]

baseline
mempm base

mempm migration

Figure 5.10: FreeBSD (1GB), SPEC (2GB), and Debian (1GB) with 512MB nodes

Figures 5.10 and 5.11 show the plots for this test. As expected, the result is an av-

erage of the results provided above. The spike in the energy consumption of “mempm

migration” at the beginning of the trace is due to migration in the FreeBSD guest. It

takes longer for this migration to pay off as the resulting benefit is only actualized

while the FreeBSD guest is active, but the absolute cost of the migration is accounted

for directly. Relative to the runtime of the FreeBSD guest, the situation remains the

same as above.



5.5. POWER SAVINGS 51

 0.4
 0.45

 0.5
 0.55

 0.6
 0.65

 0.7
 0.75

 0.8
 0.85

 0.9
 0.95

 0  1000

 2000

 3000

 4000

 5000

 6000

 7000

 8000

c
u
m

u
la

ti
v
e
 s

ta
ti
c
 e

n
e
rg

y
n
o
rm

a
liz

e
d
 t

o
 a

ll 
n
o
d
e
s
 a

c
ti
v
e

runtime [s]

baseline
mempm base

mempm migration

Figure 5.11: FreeBSD (1GB), SPEC (2GB), and Debian (1GB) with 1024MB nodes



52 CHAPTER 5. EVALUATION



Chapter 6

Conclusion

In this thesis, we have presented a design for memory management of virtual machines

with the goal to save energy in the memory system. We have adapted a previously pro-

posed allocation policy—designed for traditional processes in an operating system—to

the specific challenges of the virtualization environment. We identified different types

of memory that are in use on a virtualization platform and discussed special ways to

handle the allocation for each memory type. In addition, we have described a system

to track the working set of a virtual machine and a policy that uses this information

to improve the initial placement by migrating active memory to a better location. To

our knowledge, this is the first work to investigate memory power-management in the

specific environment of virtualization.

With a prototypical implementation of our allocation policy, the working set de-

tection, and the migration policy, we were able to show that our system can save up

to 55% of the static energy consumption in the memory system compared to a simple,

reactive hardware power-management. We also demonstrated that our migration policy

can help to save additional energy in some scenarios.

In addition we have identified similar requirements between our design and the

problem to support NUMA systems. As NUMA systems are on the rise in the con-

sumer market, we believe that the basic mechanisms to support a power aware allo-

cation policy will be available on a large number of hypervisors. It is our hope that

this synergy effect will help to promote solutions, such as ours, in future hypervi-

sor implementations—once functioning hardware power-management for the memory

system becomes available, again.

Our design also considered additional opportunities to save energy, which we did

not implement. We discussed the impact of the scheduling on the energy consumption.

Future work can use our findings to implement improved scheduling policies based on

our working set detection. We excluded the use of page sharing as a viable way to save

energy in the memory subsystem, but found that this technique can help to save en-

ergy in the system as a whole. Future work should investigate the interactions between

memory and secondary storage and balance the energy savings in either system. We

also elaborated on the use of para-virtualization techniques to improve our design. Fu-

ture work should investigate possible implementations of the principle ideas presented

in our work. Finally, we outlined our thoughts on multi-processor host systems and

the special challenges that these system present for the scheduling. Future work in

this area should combine our design with other work that is concerned with resource

based scheduling. Our working set detection can help to provide the required resource

53



54 CHAPTER 6. CONCLUSION

information.

We feel that the main shortcoming of this work is the lack of real measurements.

Our evaluation is purely based on a memory energy model. We plan to conduct addi-

tional experimentation on a different hardware setup that allows us to further evaluate

our design. We are currently looking for a platform that can either provide functioning

hardware memory power-management, or a system that can trace memory bus accesses

without overhead.



Bibliography

[1] AMD. Amd-v nested paging. Technical report, Advanced Micro Devices, Inc.,

2008.

[2] Paul Barham, Boris Dragovic, Keir Fraser, Steven Hand, Tim Harris, Alex Ho,

and Rolf Neugebauer. Xen and the art of virtualization. In Proceedings of the

19th ACM Symposium on Operating Systems Principles (SOSP’03), pages 164–

177, Bolton Landing, NY, USA, October 2003. ACM.

[3] Victor Delaluz, Mahmut T. Kandemir, Narayanan Vijaykrishnan, Anand Sivasub-

ramaniam, and Mary Jane Irwin. DRAM energy management using software and

hardware directed power mode control. In HPCA, pages 159–170, 2001.

[4] Victor Delaluz, Anand Sivasubramaniam, Mahmut T. Kandemir, Narayanan Vi-

jaykrishnan, and Mary Jane Irwin. Scheduler-based DRAM energy management.

In Proceedings of the 39th Design Automation Conference (DAC 2002), pages

697–702, New York, June 10–14 2002. ACM Press.

[5] Xiaobo Fan, Carla Ellis, and Alvin Lebeck. Memory controller policies for

DRAM power management. In Proceedings of the 2001 International Sympo-

sium on Low-Power Electronics and Design (ISLPED’01), August 2001.

[6] Justin M. Forbes. Ksm: Kernel shared memory for linux.

[7] Darryl Gove. Cpu2006 working set size. SIGARCH Comput. Archit. News,

35(1):90–96, 2007.

[8] H. Huang, P. Pillai, and K. G. Shin. Design and implementation of power-aware

virtual memory. In Proceedings of the 2003 USENIX Annual Technical Confer-

ence, June 2003.

[9] Hai Huang, Kang G. Shin, Charles Lefurgy, Karthick Rajamani, Tom W. Keller,

Eric Van Hensbergen, and Freeman L. Rawson III. Software-hardware coopera-

tive power management for main memory. In Babak Falsafi and T. N. Vijaykumar,

editors, PACS, volume 3471 of Lecture Notes in Computer Science, pages 61–77.

Springer, 2004.

[10] Rambus Inc. Rdram memory architecture

http://www.rambus.com/us/products/rdram/index.html.

[11] D. Knuth. The Art of Computer Programming, Volume 1: Fundamental Algo-

rithms. Addison-Wesley, Reading, MA., 1973.

55



56 BIBLIOGRAPHY

[12] Alvin R. Lebeck, Xiaobo Fan, Heng Zeng, and Carla Schlatter Ellis. Power aware

page allocation. In ASPLOS, pages 105–116, 2000.

[13] Min Lee, Euiseong Seo, Joonwon Lee, and Jinsoo Kim. PABC: Power-aware

buffer cache management for low power consumption. IEEE Trans. Computers,

56(4):488–501, 2007.

[14] Andreas Merkel and Frank Bellosa. Task activity vectors: a new metric for

temperature-aware scheduling. In Joseph S. Sventek and Steven Hand, editors,

Proceedings of the 2008 EuroSys Conference, Glasgow, Scotland, UK, April 1-4,

2008, pages 1–12. ACM, 2008.

[15] G. Milos, D. G. Murray, S. Hand, and M. Fetterman. Satori: Enlightened page

sharing. In Usenix, 2009.

[16] Gil Neiger, Amy Santoni, Felix Leung, Dion Rodgers, and Rich Uhlig. Intel Vir-

tualization Technology: Hardware support for efficient processor virtualization.

Intel Technology Journal, 10(3):167–177, August 2006.

[17] J. K. Ousterhout. Scheduling techniques for concurrent systems. In Proc. 3rd

Int’l. Conf. on Distr. Computing Sys., page 22, October 1982.

[18] Vivek Pandey, Weihang Jiang, Yuanyuan Zhou, and Ricardo Bianchini. DMA-

aware memory energy management. In HPCA, pages 133–144. IEEE Computer

Society, 2006.

[19] Samsung Electronics. DDR3 SDRAM Specification.

[20] Carl A. Waldspurger. Memory resource management in VMware ESX server. In

OSDI, 2002.

[21] Andreas Weissel, Bjoern Beutel, and Frank Bellosa. Cooperative I/O: A novel I/O

semantics for energy-aware applications. In Proceedings of the Fifth Symposium

on Operating System Design and Implementation (OSDI’02), December 2002.

[22] Wikipedia. Hardware performance counter — wikipedia, the free encyclopedia,

2009. [Online; accessed 18-November-2009].

[23] Wikipedia. Kernel-based virtual machine — wikipedia, the free encyclopedia,

2009. [Online; accessed 20-November-2009].

[24] Wikipedia. Linux — wikipedia, the free encyclopedia, 2009. [Online; accessed

20-November-2009].

[25] Wikipedia. Qemu — wikipedia, the free encyclopedia, 2009. [Online; accessed

20-November-2009].

[26] Wikipedia. Standard performance evaluation corporation — wikipedia, the free

encyclopedia, 2009. [Online; accessed 18-November-2009].

[27] Paul Willmann, Jeffrey Shafer, David Carr, Aravind Menon, Scott Rixner, Alan L.

Cox, and Willy Zwaenepoel. Concurrent direct network access for virtual ma-

chine monitors. In Proc. 13th International Conference on High-Performance

Computer Architecture (13th HPCA’07), pages 306–317, San Francisco, CA,

USA, February 2007. IEEE Computer Society.



BIBLIOGRAPHY 57

[28] Pin Zhou, Vivek Pandey, Jagadeesan Sundaresan, Anand Raghuraman, Yuanyuan

Zhou, and Sanjeev Kumar. Dynamic tracking of page miss ratio curve for memory

management. ACM SIGPLAN Notices, 39(11):177–188, November 2004.


